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1. Introduction

Let f!J denote the Boolean algebra with two elements 0 and 1 with addition and multiplication
defined as if 0 and 1 were real, except that 1 + 1 = 1.Amatrix with entries from f!J is called a Boolean
matrix. Let Mm.n(f!J) be the space of all m x n Boolean matrices. IfA is an m x n non-zero Boolean
matrix, its Boolean rank, b(A), is the least integer k for which there exist m x k and k x n Boolean
matrices Band Cwith A= Be. The Boolean rank of the zero matrix is O.It is known that b(A) is the
least k such that A is the sum of k Boolean matrices of rank one (see [3]). An operator T from a space of
Boolean matrices to another is called linear if T preserves sums and sends the zero matrix to the zero
matrix.

In [1), Beasley and Pullman proved the following result.
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1fT is a linear operator on Mm•n (P4). and min(m. n) ~ 2, then the following statements are equivalent.

(i) T preserves Boolean ranks 1 and 2.
(ii) T is invertible and preserves Boolean rank 1.
(iii) There exist permutation matrices P and Q such that T(A) = PAQ for all A E Mm.n(P4) or m = n

and T(A) = PAtQ for all A E Mm.n(P4).

In [4). Pullman gave a graph-theoretic interpretation ofthe above result.
Asubset Vof Mm.1(P4) is called a Boolean vector space if Vcontains 0 and is closed under addition.

In this paper, we first introduce the concept of tensor products of two Boolean vector spaces and study
some of their basic properties. We next characterize (i) linear transformations from one tensor product
of two Boolean vector spaces to another that send pairs of distinct rank one elements to pairs of distinct
rank one elements and (ii) surjective mappings from one tensor product of two Boolean vector spaces
to another that send rank one elements to rank one elements and preserve order relation in both
directions. We obtain from the above characterization theorems the corresponding results concerning
rank one preservers between spaces of Boolean matrices as a special case.

2. Tensor products of Boolean vector spaces

LetX be a non-empty set. Let P4x denote the set of all functions f from X to P4 such that {x EX:
f(x) =1= 0). the support off, is a finite set. Let If! denote the cardinality of the support off For any f, g E
P4x, letf + g be the function from X to P4 such that (J + g) (x) = f(x) + g(x) for any x EX. Clearly
f + g E P4x. For our purpose, we define a Boolean vector space to be any subset of P4x containing the
zero function which is closed under addition.

If f and g are in P4x, we write! ~ g if f(x) + g(x) = f(x) for any x EX. Clearly P4x is a partially
ordered set under this order relation. We writef > g whenf ~ g andf =1= g.

LetV and Vbe Boolean vector spaces. IfV ~ V,then V is called a subspace ofV. LetS be a non-empty
subset of V. Let (S) denote the intersection of all subspaces of V that contain S.Then (S) is a subspace of
V called the subspace spanned by S.Note thatf E (S) if and only iff is a linear combination of a finite
number of elements in S. i.e., f = L~=1)qSi for some SI, .•• ,Sk in 5 and some )q E P4, i= 1, ... , k.
The set S is called independent if every elementf in 5 is not the sum of any finite number of elements
in S\ {J}. We regard the empty sum as the zero vector. A subset E of V is called a basis of V if E is
independent and (E) = V. We regard the empty set as the basis of the zero Boolean vector space.

The following result is known for the case where V is finite dimensional (see [2)).

Proposition 2.1. Every Boolean vector space V has a unique basis.

Proof. We may assume that V =1= {OJ.Let K = {If! :f E V\{O}}. We can write K as {ki : i E I} where
1= {1, 2•...• n} for some integer n or I is the set of all positive integers and k; < kj if i < j. Letj, =
{J E V : If! = k;}, i E I. LetHI =11.Ifj + 1 E I,we define Hj+l be the set of all elements! in1j+l such
that (U=1 Hi) U {J} is independent. LetH = UiEI Hi. It is clear that H forms a basis of V.

Suppose that M is a basis of V.We shall show that M ;2 H. Suppose the contrary. Then there exists
h E H such that h ~ M. Since M spans V, it follows that h = gl + ... + gm for some gl, ... ,gm in M.
Since h ~ M, we have h > gi for i= 1, ... ,m. Since H spans V and h > gj for i= 1, ... ,m, it follows
that each g, is the sum of a finite number of elements in H\{h}. Hence h is the sum of a finite number
of elements in H\ {h}. a contradiction to the fact that H is independent. This shows that M ;2 H. Since
every element of V\H is a linear combination of some elements of H, it follows that M = H. 0

The cardinality of the basis of a Boolean vector space is called its dimension. For convenience, we
call each element of the basis of a Boolean vector space a cell.

A non-empty subset H of a Boolean vector space V is called non-dominating if for any non-empty
finite subset S of Hand u E H\S, we have LVES v~u.
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Lemma 2.2. Let U =1= {OJbe a Boolean subspace of fJDy. Then the basis Ui : i E Ll}ofU is non-dominating
if and only if there exists an injective mapping a : ..1 -+ Y such that for every i E ..1. fi(a (i» = 1 and
fj(a (i» = 0 for alIj =1= i.

Proof. The sufficiency part is clear. We prove the necessity. Let iE ..1 and Yi = (y E Y : fi (y) = 1}.
For each tj E Yj. let Ztj be the subset of all fj.j =1= i. such thatfj(tj) = 1. Suppose that Ztj =1= ¢ for all
tj E Yj. Let htj E Ztj' Then LtjEYj htj ~fi. a contradiction since {fj : i ELl} is a non-dominating basis.
Hence ZSj = ¢ for some Sj E Yj. This shows thatfj(sj) = 1.fj(sj) = 0 for allj =1= i. Clearly. Sj =1= Sj for all
i =1= j. Hence the mapping a : ..1 -+ Y defined by a (i) = Sj is injective. This proves the necessity. 0

Let U be a subspace of fJDy• It is possible that dim U > dim fJDy (see [1D. For example. if {fl •... In}
is the basis of fJDy and n > 2, then the subspace iflJl +hh +hh ... In} is of dimension n + 1.
However, the following is true:

Proposition 2.3. If U is a subspace of fJDy with a non-dominating basis, then dim U ~ dim fJDy.

Proof. This follows from Lemma 2.2. 0

Let U and Vbe Boolean vector spaces. Then a mapping T : U -+ Vwhich preserves sums and 0 is
said to be a (Boolean) linear transformation. Alinear transformation T is called singular ifT(u) = 0 for
some non-zero vector u.We say that U is isomorphic to Vif there exists a bijective linear transformation
from Uto V.

Lemma 2.4. Let U be a Boolean vector space with a non-dominating basis. Then for any non-zero vector u
in U, there exists a unique set of cells {Cl' ... , Ck} of U such that u = Cl + ... + ci,

Proof. Suppose that u = L~l ci = L~l ei where both Cl, ... , Ck and el, ... , em are distinct cells.
Since L~l ej ~ Cj for eachj, it follows that Cj = ea (j) for some a (j) ~m.Hence m ~ k.Since LJ=l Cj ~ ei
for any i, we see that ei = cT(i) for some rei) ~ k. Hence k ~ m. Therefore k = m and the proof is
complete. 0

Proposition 2.5. Let U be a Boolean vector space with a non-dominating basis {ej : i E l}. Then U is
isomorphic to fJDl.

Proof. For each non-empty finite subset] ofI, let A] = LjE] ei and letfj E £?6'1 be such thatfj (i) = 1 if
iE] andfj (i) = 0 if i rt]. By Lemma 2.4, we see that the mapping sending zero to zero and A] to fj is
a well-defined bijective linear transformation from Uto [MI. 0

Proposition 2.6. Let U and V be Boolean vector spaces and T : U -+ V be a linear transformation. Then
the following two conditions are equivalent:

(i) T is injective.
(ii) For all u, v E U, T(u) ~ T(v) ::::? u ~ v.

IfU has a non-dominating basis [e, : i E l}, then condition (ii) is equivalent to the following condition
(iii) {T(e.) : i E l} is a non-dominating basis for Im(T).

Proof. (i) ::::}(ii): Suppose that T(u) ~ T(v). Then T(u) + T(v) = T(u + v) = T(u) and hence u +
v = u. This shows that u ~ v.

(ii) ::::? (i): Suppose thatT(u) = T(v). Then the result follows from the hypothesis since T(u) ~ T(v)
and T(v) ~ T(u).

Now we assume that Uhas a non-dominating basis lei : i E l}.
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(ii) =} (iii): Since for any non-empty finite subset H of I and any j ¢. H, we have LiEH ei'j:.ej, it
follows from (ii) that

T (L ei) = LT(ei)'j:.T(ej).
iEH iEH

This shows that {T(ei) : iE I} is a non-dominating basis for Im(T).
(iii) =} (i): Suppose that T(u) = T(v), but u +- v.We may assume that u'j:.v. Suppose that u = O.

Then T(v) = O.Since T(ei) +- 0 for any iE I, it follows that v = 0, a contradiction. Hence u +- 0 and
we have u = LiEH ei for some non-empty finite subset H of I. Clearly there exists j E I\H such that
ej ~ v. Since T is linear, we have T(v) ~ T(ej). Since

LT(ei)'j:.T(ej),
iEH

it follows that

T(u) = LT(ei)'j:.T(v),
iEH

a contradiction. This proves that T is injective. D

Foranyf E .9Ix andg E .9Iy,letf ® gdenotethefunctionfromX x Yto.9lsuch that(f ® g)(x,y) =
f(x)g(y) for any x E X and y E Y. The map f ® g is called a decomposable element. Clearly f ® g E
~xXy andf ® g = 0 if and only iff = 0 or g = O.For any h E .9Ix and k E .9Iy, we have

(f + h) ® g = f ® g + h ® g,
f ® (g + k) = f ® g + f ® k.

Let U and V be subspaces of .9Ix and ~y respectively. Let U ® V denote the subspace of ~xxy
spanned by all the decomposable elements f ® g with fEU and g E V. We call U ® V the tensor
product of U and V.Clearly.9lx ® ~y = .9Ixxy.lfX = {l, 2, ... ,m} and Y = {l, 2, ... , n}. then ~xxy
can be identified naturally with the space of all m x n Boolean matrices. LetA be a non-zero element
in U ® V. Then A is said to have rank s ifA is the sum of s, but not less than s, non-zero decomposable
elements in U ® V. The rank of the zero element in U ® V is O.

For each non-zero vector u in U and each non-zero subspace Kof V, u ® K := {u ® v : v E K} is
called a left factor subspace of U ® V. Similarly, for each non-zero vector v in Vand each non-zero
subspace H of U,H ® v := {u ® v : u E H} is called a right factor subspace of U ® V.

Let T be a linear transformation from U ® V to W ® Z where Wand Z are Boolean vector spaces.
Then T is said to be induced by two linear transformations if one of the following conditions holds:

(i) there exist linear transformations e : U -+ Wand ({J: V -+ Z such that T(u ® v) = e(u) ®
({J(v) foranyu E Uandv E V;

(ii) there exist linear transformations e : U -+ Z and ({J: V -+ W such that T(u ® v) = ((J(v) ®
e(u) foranyu E U and v E V.

For the first case, we write T = ()® ({J,while for the second case, we write T = (j ® ({J.
LeW = .9Ix,V = $y,W = $/,Z = $),whereX = {l,2, ... ,m},Y = {l,2, ... ,n},I = {l,2 .... ,p},

] = {l, 2, ... , q}. Then $x ® $y and $/ ® .91) can be identified naturally with Mm•n (.91) and Mp.q(~)
respectively. If T : U ® V -+ W ® Z is a linear transformation satisfying condition (i), then T(A) =
PAQ for some p x m Boolean matrix P and some n x q Boolean matrix Q. If T : U ® V -+ W ® Z is
a linear transformation satisfying condition (ii), then T(A) = PAtQ for some p x n Boolean matrix P
and some m x q Boolean matrix Q.

For the following three results, we assume that U and Vare subs paces of .9Ix and $y respectively.
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Lemma 2.7. If I:~1 fi ® gi ;;. I:l=l Uj ® Vj where fi ® gi, Uj e Vj are non-zero decomposable elements
in U ® V, then I:~1 fi ;;. I:l=l Uj and I:~1 gi ;;. I:l=l Vj.

Proof. Suppose that I:~1 fi~ I:l=l Uj. Then there exists x E X such that (I:~1 fi) (x) = 0 and

(I:1=1 Uj) (x) = 1.Hence there exists 1 ,,; s ,,; n such that Us (x) = 1.Choose y E Y such that vs(y) = 1.
Clearly,

(t," ®g,) ("Y) ~ 0 and (t, Uj e Vj) (',Y) ~ 1,

a contradiction. This shows that I:~1 fi ;;. I:l=l Uj. Similarly, we have I:~1 gi ;;. I:l=l Vj. 0

Corollary 2.8. If I:~1 fi ® gi = I:l=l Uj ® Vj where fi ® gj, Uj ® Vj are non-zero decomposable ele-
ments in U ® V, then

m n m n
Lfi = LUj and Lgi = LVj.
i=l j=l i=l j=l

From Corollary 2.8, we see that every non-zero decomposable element A of U ® V has a unique
representationf ® g wheref E U and g E V. We calif the left factor of A and g the right factor of A.

Theorem 2.9. Let C and D be bases of Boolean vector spaces U and V respectively. Let E = {u ® v : U E

C. V ED}. Then

(i) E is the basis ofU ® V;
(ii) C and D are non-dominating if and only if E is non-dominating.

Proof. (i) It is clear that U ® V is spanned by E. Suppose that E is not independent. Then there exists
U® VEE such that U ® v is the sum of finite number of elements from E\ [u ® v}. We see that

U ® v = U1 ® V1 + ... + Uk® Vk
for some distinct elements U1, .... uk E C and some non-zero vectors V1, .... Vk E V. By Corollary 2.8,
we have U = I:~=1 Ui. Since [u, Ulo ... ,Uk} ~ C and C is independent, it follows that U = Ui for some
i.Without loss of generality, we may assume that U = U1.We have the following two cases:

Case 1. k = 1.We have v = V1, a contradiction to U1 ® V1 E E\{u ® v}.

Case 2. k ;;. 2. Since

U = U1 + ... + Uk and U =1= U2 + ... + Uk,

there exists x E X such that u(x) = 1 and Ui(X) = 0 for each i;;. 2. Note that v =1= V1 and v;;. V1. Hence
there exists y E Y such that v(y) = 1 and V1(y) = O.This implies that (u ® v) (x, y) = 1. However,

(U1 ® V1)(X,y) = 0

since V1(y) = 0, and

(Ui ® Vi)(X,y) = 0

for i ~ 2 since Ui(X) = 0 for i;;. 2. Hence,
k

U ® v =1= LUi ® Vi.
i=l

a contradiction. This proves that E is independent.
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(ii) (=» Suppose thatE is dominating. Then there existu ® vEE and A, ..... AmE E\ {u ® v}such
that

Al +···+Am~u®v.

Let {Ul..... Uk} be the subset of C consisting of the left factors of Al..... Am.Then

Al + ... + Am= Ul ® Vl + ... + Uk ® Vb

where for each i= 1..... k; Viis the sum of the right factors of those Aj with Ujas their left factors. By
Lemma 2.7. L~=l Ui~ u. Since C is non-dominating. it follows that U= u, for some i. Without loss of
generality. we may assume that U = Ul. Since Aj =1= U ® Vfor anyj. it follows that Vl =Wl + ... + w,
for some Wi E D\ {V}.Since D is non-dominating. we have Vl~v. If k = 1. then Ul ® Vl ~ U ® v and
hence by Lemma 2.7. vi ~ V.a contradiction. Now. suppose that k ~ 2. Since vi ~v. there exists y E Y
such that Vl(y) = 0 and v(y) = 1. Since C is non-dominating. it follows that U2 + ... + Uk~U and
hence Ui(X) = 0 for i~2 and u(x) = 1 for some x EX. This shows that

(tUi® Vi) (x.y) = O.
1=1

However. (u ® v)(x.y) = 1. a contradiction. This proves that E is non-dominating.
({=) Suppose that C is dominating. Then L~l Ui ~ U for some U E C and some Ul •...• Uk E C\ {u}.

For any VE D. we have

Ul ® V+ ... + Uk ® v ~ U ® v,

a contradiction since E is non-dominating. Hence C must be non-dominating. Similarly. we can show
that D is non-dominating. 0

Proposition 2.10. Suppose that T : U ® V -+ W ® Z is a linear transfonnation induced by two linear
transfonnations () and cp where U =1= {O} and V =1= {O}. 1fT is injective. then both () and cp are injective. If
U or V has a non-dominating basis. then the converse is also true.

Proof. Suppose that T is injective. Consider the case where T = ()® tp, Suppose that ()(f) = ()(g)
for somef.g E U. Let hE V\{O}. Then T(f ® h) = T(g ® h). Hencef ® h = g ® h. This shows that
f = g. Hence () is injective. Similarly. we can show that sp is injective. For the case where T = ()® tp,
the result can be proved similarly.

Suppose that e and tp are injective. We have the following two cases:

Case 1. T = e ® cpo Suppose that U has a non-dominating basis C. Since e is injective. it follows from
Proposition 2.6 thate(C) is a non-dominating basis ofIm e. Suppose that T(A) = T(8) for some vectors
A. 8 in U ® V. Either (i) A= 8 = 0 or (ii) not both Aand 8 are zero. Consider case (ii). Without loss of
generality. we may assume that A =1= O. Note that

A = Ul ® V1 + ... + Um ® Vm

for some distinct cells Ul •••.• Um E C and some non-zero vectors Vl.···. VmE V. Let &(Ui) = Wi.
cp(Vj) = Zi. i= 1..... m. Then

T(A) =Wl ® Zl + ... + Wm® Zm·

Since () and cp are injective. we have Wl =1= O.Zl =1= 0 and hence Wl ® Zl' =1= O.This shows thatT(A) =1= 0
and hence 8 =1= O.Thus

8 = fl ® gl + ... + fn ® gn

for some distinct cells fl •... In E Cand some non-zero vectors gl ..... gn E V. Lete (fi) = hi. CP(gi) =
ki. i= 1•.... n. Then
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T(A) = W1 ® Zl + ... +Wm ® Zm

= T(B)
= h1 ® k1 + ... + hn ® kn.

In view of Corollary 2.8.
W1 + ... +Wm = h1 + ... + hn.

Since (j (C) is a non-dominating basis of 1m(j. it follows from Lemma 2.4 that
m = nand {W1 •...• wm} = {h1 •. ··• hm}·

Without loss of generality. we may assume that hi = Wi. i = 1..... m. Since () is injective. it follows
that ui = Ji, i = 1..... m. Suppose that m = 1.Then W1 ® Zl = h1 ® k1 and hence by Corollary 2.8.
Zl = k1. Since cpis injective. it follows that V1 = gl and hence A = B.Now. suppose that m > 1. Since
(j (C) is a non-dominating basis of 1m(j. we have L~2 Wi liW1 . Hence there exists an element p such
that W1 (P) = 1 and Wi(P) = 0 for i ~ 2. For any element q in the domain of Zl. we have

(t,Wi ® Z) (P. q) = W1 (P)Zl (q) = Zl (q)

= (t,Wi ® k) (P. q) = W1 (P)k1 (q) = k1(q).

Hence Zl = k1. Similarly we can show thatz, = ki. i ~ 2. Since cpis injective. it follows that Vi = gj. i =
1•...• m. Hence A = B.This shows that T is injective. Similarly. if V has a non-dominating basis. we can
show that T is injective.

Case 2.T = (j ® tp, The proof is similar to that of Case 1. 0

3. Rank one preservers between tensor products of Boolean vector spaces

Throughout this section. U. V. Wand Z are Boolean vector spaces each of dimension at least two.
We denote the set of all rank one elements in U ® V by ~(U. V).

Two elements U1. U2 of a Boolean vector space are said to be comparable if U1 > U2 or U2 > U1.

The following result was proved in [1. Lemma 2.6.2) for the space Mm.nU~). It can be proved by
using the same argument as in [1. Lemma 2.6.2).

Lemma 3.1. Let A and B be two rank one elements in U ® V such that A + B is of rank one. If A. Bare
incomparable. then A and B have a common factor.

Theorem 3.2. Let U and V be two Boolean vector spaces both without comparable cells. Let T : U ® V -+
W ® Z be a linear transformation. Then Tsends distinct rank 1 elements to distinct rank 1 elements if and
only if one of the following is true:

(i) there exist a fixed non-zero elementw E Wand a linear transformation cpfrom U ® V to Z such that
T(A) = W ® cp(A)

for any A in U ® V where cpl~(u.v) is injective.
(ii) there exist a fixed non-zero element Z E Z and a linear transformation ()from U ® V to W such that

T(A) = ()(A) ® Z

for any A in U ® V where () I~(u.v) is injective.
(iii) T is induced by two injective linear transformations.

~::s-c
~
I-
(f)a:
w
>
z
::>
z

~
~en
::::>a..a:w
{L
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Proof. The sufficiency part is clear. We now prove the necessity. We first show that for any non-zero
vector u E U. T(u @ V) is a factor subspace of W @ Z. Let v1 and V2 be two distinct cells in V.Then

T(U@V1)=W1 @Zl.
T(u @ V2) = W2 @ Z2

for some non-zero vectors W1. W2 in Wand non-zero vectors z-, Z2 in Z. IfW1 @ Zl ~ W2 @ Z2. then

T(u @ (V1 + V2» = T(u e V1)
and hence by hypothesis. u @ (V1 + V2) = u @ v1. This implies that V1 + V2 = V1 and hence V1 > V2.

a contradiction. Hence W1 @ Zl "j;W2 @ Z2. Similarly we can show that W2 @ Z2 "j;W1 @ Zl. Hence by
Lemma 3.1. either W1 = W2 or Zl = Z2 since W1 @ Zl + W2 @ Z2 is of rank 1. Suppose that W1 = W2·

Then Zl =1= Z2. Now for any cell v in V such that v ¢. {V1. V2}. we have T(u @ v) = W @z for some
non-zero vector W in Wand non-zero vector z in Z. By the previous argument. we see that w @ z
and Wi @ z, have a common factor for i= 1.2. Hence W = W1 = W2 since Zl =1= Z2. This shows that
T(u @ V) ~ W @ Z. Similarly. if Zl = Z2. we have T(u @ V) ~ W @ z-.

Using the same argument as above. one can show that for any non-zero vector v E v. T(U @ v) is
a factor subspace of W @ Z.

Claim. For any two distinct non-zero vectors U1. U2 in U. T(U1 @ V). T(U2 @ V) are either left factor
subspaces or rightfactor subspaces. Suppose the contrary. Then there exist distinct non-zero vectors x, yin
U such that

T(x @ V) = x' @Zl.
T(y @ V) = W1 @ y'

for some non-zero x' E W. y' E Z. some subspace Zl ofZ. and some subspace W1 ofW. Choose a non-zero
vector g E Zl such thatg =1= y'. Letc E V such thatT(x @ c) = x' @g.SinceT(x @ c) and T(y @ c) have
a common factor. itfollows that T(y @ c) = x' @y'. Hence x' E W1. Similarly. we can show thaty' E Zl·
Hence T(x @ V) n T(y @ V) contains x' @y'. a contradiction to the hypothesis. This proves the Claim.

We have the following two cases:

Case (i). For any non-zero vector e in U. T(e @ V) is a left factor subspace of W @ Z.
We have T(e @ V) = e' @ Ze for some non-zero vector e' E Wand some subspace Ze of Z.
Suppose there exists a non-zero vector f E V such that

T(U@f) =1' @Kf

for some non-zero vector f' E Wand some subspace Kf in Z. Since

e@f E (e@ V) n (U@f).
it follows thatf' = e'.ln this case we have Im(T) ~ f' @ Z. Hence there exist a linear transformation
cpfrom U @ V to Z such that

T(A) = I' @ cp(A)
for any A in U @ V where cpl~(u.v) is injective.

Suppose now that for each non-zero vector f E V.

T(U@f) = Wf@f

for some subspace Wf of Wand some non-zero vector 1E Z.This implies that

T(e@f) = e' @l
for any non-zero vector e in U and any non-zero vector f E V. Le! () : U --+ W be the mapping such
that e (e) = e' and cp : V --+ Z be the mapping such that cp(f) = f.Since T is a linear transformation.
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it follows that both e and cp are linear transformations. Hence T = e ® cp. Clearly both e and cp are
injective.

Case (ii). For any non-zero vector e in U, T(e ® V) is a right factor subspace. By using a similar argu-
ment as in Case (i), we can show that either there exist a fixed non-zero element Z E Z and a linear
transformation () from U ® V to W such that T(A) = ()(A) ® z for any A in U ® V where ()1!lI(u.v) is
injective, or T is induced by some injective linear transformations T] : U ~ Z and S : V ~ W. 0

The following example shows that Theorem 3.2 is not true if one of the Boolean vector spaces U
and V has comparable cells.

Example 3.3. Let U be a Boolean vector space consisting of three elements O. el. e2 where el < e2·
Let Vand Wbe Boolean vector spaces with non-dominating bases ifl./2} and {gl,g2.g3} respectively.
Then there exists a linear transformation T from U® V to W ® W such that

T(el ®f1) =gl ®gl. T(el ®/2) =gl ®g2.
T(e2 ® f1) = (gl + g3) ® (gl + g3).
T(e2 ® /2) = (gl + g3) ® (g2+ g3).

Note that U ® V has six rank one elements and

T(el ® (Jl + /2» = gl ® (gl + g2).
T(e2 ® (Jl + /2» = (gl + g3) ® (gl + g2 + g3).

Hence T sends distinct rank 1 elements to distinct rank 1 elements. However, Im(T) is not a factor
subspace of W ® Wand also T is not induced by two injective linear transformations. We note that T
sends rank 2 elements to rank 2 elements.

Remark 3.4. A linear transformation U ® V to W ® Z sending pairs of distinct rank one elements to
pairs of distinct rank one elements is not necessarily injective. For example, the linear transformation
T : M2 (P4) to M2,4 (P4) defined by

T ([~ ~]) = [~ ~ ~ at d]
has this property.

Remark 3.5. Theorem 3.2 is analogous to the following result of Westwick [6): If T is a linear trans-
formation from one tensor product of two vector spaces over a field to another that sends non-zero
decomposable elements to non-zero decomposable elements, then either the image of T consists of
decomposable elements or T is induced by two injective linear transformations.

Lemma 3.6. LetP E Mm.n(~). Then the lineartransformatione : Mn.l (~) ~ Mm.l (P4) defined by8u =
Pu, is injective if and only if P contains an n x n permutation submatrix.

Proof. Let {ei : i = 1.... , n} be the standard basis of Mn.l (~). Using Proposition 2.6 and Lemma 2.2,
we see that

e is injective
-¢} {Pel, ...• Pen} is a non-dominating basis of 1me
-¢} There exists an injective mapping a : {1, ... , n} ~ {1 ....• m} such that the a (i)th coordinate

of Pe, is 1 and the a (i)th coordinate of Pej is 0 for any j =1= i
-¢} P contains an n x n permutation submatrix. 0
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The following result follows from Theorem 3.2 and Lemma 3.6.

Corollary 3.7. Let T : Mm.n (fJ4) ~ Mk.l (fJ4) be a linear transformation where min{m, n, k, I} ~ 2. Then T
sends distinct rank one matrices to distinct rank one matrices if and only if one of the following is true:

(i) there exist a fixed non-zero vector w in Mk.l (fJ4) and a linear transformation cpfrom Mm.n(fJ4) to
Ml.l(fJ4) such that

T(A) = wcp(A)
for any A in Mm.n (~) where the restriction of cpto the set of all rank one matrices is injective,

(ii) there exist a fixed non-zero element z in Ml.l(fJ4) and a linear transformation 8 from Mm.n(fJ4) to
Mk.l (fJ4) such that

T(A) = 8(A)z
for any A in Mm.n(~) where the restriction of8 to the set of all rank one matrices is injective.

(iii) T(A) = PAQfor some P E Mk.m(~) and some Q E Mn.e(fJ4) where P contains anm x mpermuta-
tion submatrix and Q contains an n x npermutation submatrix,

(iv) T(A) = PAtQfor some P E Mk.n(fJ4) and some Q E Mm.e(fJ4) where P contains an n x n permuta-
tion submatrix and Q contains an m x m permutation submatrix.

Example 3.8. LetIj and T2 be any two linear rank one preservers onM2(~)' LetT : M4(~) ~ M4(fJ4)
be defined by

if C =1= 0 or D =1= 0, where A, B E M2 (fJ4).Then T is a linear rank one preserver which is not of the form
(i) or (ii) mentioned in Corollary 3.7. Note that T(El1) and T(E13) do not have a common factor, Tcannot
be of the form (iii) or (iv) mentioned in Corollary 3.7. Here Eij denotes the matrix with 1 in position i, j
and 0 elsewhere.

The following result was proved in [1,5] for the space Mm.n(fJ4). Our proof here is very short.

Lemma 3.9. Let A and B be distinct rank one elements in U ® V where both U and Vhave no comparable
cells. Then there exists a rank one element C in U ® V such that {rank(A + C), rank(B + C)} = {1, 2}.

Proof. LetA = u ® v and B = x ® y. Since A =1= B,we may assume thaty =1= v. Either y'jv or v'jy. We
consider only the first case as the second case can be proved similarly. Let w be a cell of U such that
x ~ wand let z be another cell of U. Since U has no comparable cells, it follows that z'jw. Hence z'jx.
Let C = z ® v. Then A + C is of rank one and by Lemma 3.1, B + C is of rank 2. 0

Remark 3.10. It can be shown that Lemma 3.9 holds true under the weaker hypothesis that either
U\ {OJ or V\ {OJ has no least element. However we do not need it for the following corollary.

Corollary 3.11. Let T : U ® V ~ W ® Z be a linear transformation where both U and V have no compa-
rable cells. Then the following two conditions are equivalent:

(i) T sends rank k elements to rank k elements when k = 1,2.
(ii) T is induced by two injective linear transformations.
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Proof. (i) => (ii): Suppose that A and Bare two distinct rank one elements in U 0 V such that T(A) =
T(B). By Lemma 3.9. there exists a rank one element C in U 0 V such that

{rank(A + C). rank(B + C)} = {1. 2}.

Hence
{rank T(A + C). rank T(B + C)} = {1. 2}.

a contradiction since T(A + C) = T(B + C). This proves that T sends distinct rank one elements to
distinct rank one elements and hence the result follows from Theorem 3.2.

(ii) => (i): Suppose that T is induced by two injective linear transformations Band cp.We consider
only the case T = B 0 sp as the proof for the other case is similar. Clearly T sends rank 1elements to
rank 1 elements. Suppose that A is of rank 2.Then A = U10 V1+ U20 V2for some U1. U2 E U and
V1.V2 E V. Hence T(A) = B1+ B2. where B, = B(Ui) 0 cp(Vi). i= 1.2.If B1. B2have a common factor.
say fJ (U1) = fJ (U2). then U1= U2and hence A is of rank ~ 1. a contradiction. If B1 ~ B2. then by Lemma
2.7. fJ(U1) ~ fJ (U2) and CP(V1) ~ cp(V2). By Proposition 2.6. we have U1~ U2and V1~ V2·This implies that
A = U10 V1. a contradiction. Similarly it is not possible that B2 ~ B1· By Lemma 3.1. T(A) is of rank 2.
This completes the proof. 0 .

Remark 3.12. Example 3.3 shows that Corollary 3.11 is not true if one of the Boolean vector spaces U
and V has comparable cells.

Theorem 3.13. Let T be a linear transfonnation on U0 U where U is finite dimensional and U\ {O}has
no least element. Then T sends maximal left factor subspaces to maximal factor subspaces if and only if

T = fJ 0 cp or T = fJ 0 cpfor some non-singular linear transfonnation fJ on Uand some bijective linear
transfonnation cp on U.

Proof. The sufficiency part is clear. We now prove the necessity. Let E be the basis of U and n be
its cardinality. Since E is a finite partially ordered set. it follows that E has a minimal element e1·
Similarly E\ [ej ] has a minimal element e2. Continue the process. we can choose a minimal element
es from E\ {e1 •.... es-1} if n ~ s > 2. Hence E = {e1. e2•...• en} where es is a minimal element of
{es• es+1 •...• en}, s = 1..... n.

Suppose that
T(U1 0 U) = f 0 U and T(U2 0 U) = U 0 g

for some distinct uj.U2 E U\{O} and for somef. g E U\{O}.SinceT«u1 + U2) 0 U) is a maximal factor
subspace. it follows that

T«U1 + U2) 0 U) =!' 0 U

for some f' E U\ {O}or

T«U1 + U2) 0 U) = U0 g'
for some g' E U\ {O}.Consider the first case. There exists VkE U such that

T«U1 + U2) 0 Vk) =!' 0 ek. k = 1..... n.

Since
T«U1 + U2) 0 Vk) ~ T(U2 0 Vk).

it follows that ek ~ g for any k. Since U\ {O}has no least element. it follows thatg = O.a contradiction.
Similarly. the second case leads to a contradiction. Hence {T(u 0 U) : U E U} consists of maximal left
factor subs paces or consists of maximal right factor subspaces. Consider the first case. We have

T(ei 0 U) = Ii 0 U
for sorne f E U\{O}. i= 1•.... n. For each i= 1....• n, there exists a bijective linear transformation
CPion U such that
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T(ei ® e) = Ii ® ({Ji(e)

for any cell e. Note that E = {({Ji(el) •. ··• ({Ji(en)}.
Suppose that f = h = ... = In· Letl :=11.Note that for any distinct iandj,

T«ei + ej) ® U) = I ® U

and hence for each s = 1..... n, there exists Cs E E such that

T«ei + ej) ® cs) = I ® e..
Hence

I ® e, = I ® ({Ji(Cs) + I ® ({Jj(cs).

This implies that

e, ~ ({Ji(Cs) and es ~ ({Jj(cs).

Since el is a minimal element of E. it follows that

el = ({Ji(Cl) = ({Jj(Cl).

Suppose that

es = ({Ji(Cs) = ({Jj(cs). S = 1..... k - 1

where k is a fixed positive integer such that 1 < k < n. Then

{ek •...• en} = {({Ji(Ck) •...• ({Ji(Cn)}

= {({Jj(q) •...• ({Jj(cn)}.

Since ek is a minimal element {eko ek+l •...• en}. it follows that

ek = ({Ji(Ck) = ({Jj(Ck).

By induction. we see that

e, = ({Ji(Cs) = ({Jj(cs)

for any s = 1....• n. Hence ({Ji = ({Jj for any iandj. Let e be the linear transformation on U such that
&(u) = I for any non-zero vector U E U. Clearly & is non-singular and T = & ® ({Jl·

Suppose now that Ii '* fj for some distinct iandj. We have

T«ei + ej) ® U) = U ® U

for some non-zero vector u in U. For each s = 1..... n, there exists Ws E E such that

T«ei + ej) ® ws) = u ® e..

Hence

u ® es = Ji ® ({Ji(Ws) + fj ® ({Jj(ws),

This implies that

e, ~ ({Ji(Ws) and es ~ ({Jj(ws),

By the same argument as in the last paragraph. we have

e, = ({Ji(Ws) = ({Jj(ws)

for s = 1..... n. Hence ({Ji= ({Jj since {WI •...• wn} is the basis of U. For any positive integer k ( n. we
have either Ik '* Ji or Ik '* fj. Hence ({Jk= ({Ji.This shows that

T(es ® v) = Is ® ({Jl (v)

for s = 1..... n and any v E U. Since T is a linear transformation. it follows that there exists a linear
transformation e on U such that e (es) = Is. s = 1..... n. Clearly e is non-singular and T = e ® ({Jl·
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For the case where {T(u ® U) : u E U} consists of maximal right factor subspaces. it can be proved
similarly that T = a ® fJ for some non-singular linear transformation a on U and some bijective linear
transformation fJ on U. 0

The following example shows that the condition that U\{O} has no least element is necessary for
Theorem 3.13.

Example 3.14. Let U be the Boolean vector space consisting of three elements O. el. e2 where el < e2.
Then there exists a linear transformation Ton U ® U such that

T(ei ® e.) = ei ® ei, i = 1,2,

T(el ® e2) = T(e2 ® el) = el ® e2·

We have T( el ® U) = el ® U and T (e2 ® U) = U ® e2. Clearly T cannot be induced by any two linear
transformations on U.

Theorem 3.13 is not true if U is infinite dimensional as shown by the following example.

Example 3.15. Let N be the set of all positive integer. Let {ei : i E N} be the basis of ~N. Let T be the
linear transformation on ~N ® ~N such that

T(el ® el) = el ® (el + e2),

T(en®el) =el ®el for any n x z,

T(en ® e.) = el ® ei-l for any n EN and i ~ 2.
Then T sends every maximal left factor subspaces to el ® ~N' However, T is clearly not induced by
any two linear transformations on ~N.

The following example shows that there exist surjective linear rank one preservers from U ® U to
V® Vthat send maximal left factor subspaces to maximal factor subs paces which are not induced by
any two non-singular linear transformations.

Example 3.16. Let T : M3(~) -+ M2(~) be the linear transformation defined by

T ([g~ ~ I]) = [a + c + g + ~ b + h + i]
h i d+f+g+1 e+h+i'

We check that T is a rank one preserver. Let U :=M3.1(~) and V :=M2.1(~). Let {el' e2, e3} be the
standard basis of U. Then T(el e U) = m ® V, T(e2 ® U) = m ® Vand T(u ® U) = G) ® Vfor
any non-zero vector u ¢ {el, e2}. Hence T is surjective and it sends maximal left factor subspaces to
maximal factor subs paces. Since

T(E13) = Ell and T(E33) = Ell + E12 + E21+ E22,

it is easy to see that there do not exist matrices P and Q such that T(A) = PAQ for all A in M3(~) or
T(A) = PAtQ for all A in M3(~)'

The following result is a characterization of surjective mappings from a tensor product of two
Boolean vector spaces without comparable cells to another that send rank one elements to rank one
elements and preserve order relation in both directions.

Theorem 3.17. Let U, V, W, and Z be Boolean vector spaces where both U and V have no comparable cells.
1fT: U ® V -+ W ® Z is a surjective mapping sending rank one elements to rank one elements and
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T(A) > T(B) '*A > B for any A.B E U ® V
then T is linear and induced by two bijective linear transformations.

Proof. We first show that Tis injective. Suppose that T(A) = T(B). but A =1= B. Since T(A)fT(B) and
T(B)fT(A). it follows from the hypothesis thatAfB and BfA. We have the following cases:

Case 1. One ofAand B.say B.is not a cell in U ® V. SinceAfB. there is a cell Cin U ® V such that B > C
butA~C. This implies that T(B) > T(C) and T(A)fT(C) and. a contradiction since T(A) = T(B).

Case 2. Both A and Bare cells of U ® V. Then by Theorem 2.9.

A= Cl ® dl, B= C2® d2
for some cells Cl, C2in U and some cells d1• d2 in V. Suppose that A and B have a common factor, say
Cl = C2. Since AfB. we have d1 fd2. Let e be a cell in U distinct from Cl. Let D = (e + Cl) ® d1. Then
D > Aand Df B.Hence

T(D) > T(A) and T(D)fT(B),
a contradiction. Suppose now that A and B have no common factors. Let K = (Cl + C2) ® d1• Then
K > Aand KfB. since U and V have no comparable cells. Hence

T(K) > T(A) and T(K)fT(B).
a contradiction.

Since both cases lead to a contradiction. we have A = Band hence T is injective.
We shall show that Tis linear. Let {Ei : i E l} be the basis of U ® V. LetA be a non-zero element in

U ® V which is not a cell. Then A = LjE} Ej for some finite subset] oflwhere lJl ;;, 2. Since T(A) ;;,T(Ej)
for any j in]. it follows that

T(A) ;;,L T(Ej).
jE}

Since T is surjective. we have

T(B) =L T(Ej)
jE}

for some B in U ® V. Hence A;;, B. Since T(B) ;;, T(Ej) for any j in]. it follows that B;;, Ej for any j in].
Hence

B;;' LEj =A.
jE}

This shows that A= B.Hence T(A) = LjE} T(Ej).
LetAl and A2be two non-zero elements in U ® V. Then Ai= LjE}i Ej for some finite subsetsj, of

I. i= 1.2. Clearly Al +A2= LjEhUh Ej. Hence

T(Al + A2) = L T(Ej)
jEhUh

=L T(Ej) +L T(Ej)
jEh jEh

= T(Al) + T(A2)'

This shows that T is linear and hence the result follows from Theorem 3.2. 0

Ifa non-zero vector u in a Boolean vector space with a non-dominating basis is the sum of k distinct
cells. then k is called the height of u and is denoted by p (u) = k.

Lemma 3.18. Let U be a Boolean vector space with a non-dominating basis. ffu E U\ {OJ has height k and
u ;;,Cifor k distinct cells Cl, ...• Ck. then u = L~=l Ci·
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Proof. By hypothesis. u = L~=l ei for some cells e1....• ei, Since u ;;:,Ci. it follows that Ci= eo (i) for
some u(i):( k. Hence u = C1+ ... + ck. 0

The following result is analogous to Theorem 3.17.

Proposition 3.19. Let U. V. W. and Z be Boolean vector spaces where each of them has a non-dominating
basis. Then T : ~(U, V) ---+ ~(W. Z) is a surjective mapping such that

T(A) > T(B) {} A > B for any A. B E ~(U. V)

if and only ifTcould be extended to a linear transformation from U 0 V to W 0 Z which is induced by two
bijective linear transformations.

Proof. The sufficiency part of the result is clear. We now prove the necessity. From the first paragraph
of the proof ofTheorem 3.17. we see that T is injective.

Let {Ei : i E I} be the basis of U 0 V. Then by Theorem 2.9. Ei E ~(U. V). i E I. and {Ei : i E I} is
non-dominating. Since T preserves order relation in both directions. it follows that {T(Ei) : i E I} is
the set of all cells of W 0 Z.

Let A be an element in ~(U. V) which is not a cell. Then A = LjE] Ej for some finite subset] of
I where 1I1;;:,2. Since T(A) ;;:,T(Ej) for any j in]. it follows from Lemma 3.18 that p(T(A» ;;:,k where
k = 1I1.lfT(A) > T(Es) for some s ¢.]. then A > Es. a contradiction. This shows that p(T(A» = k and
hence by Lemma 3.18. we have

T(A) = "LT(Ej).
jE]

Now from the last paragraph of the proof ofTheorem 3.17. we see that Tcan be extended to a bijective
linear transformation from U 0 V to W 0 Z.Hence the result follows from Theorem 3.2. 0

Corollary 3.20. Let U. V, W. and Z be finite dimensional Boolean vector spaces where each of them has
a non-dominating basis. If T : U 0 V ---+ W 0 Z is a bijective mapping sending rank one elements to
rank one elements and A > B =? T(A) > T(B) for any A. B E U 0 V. then T is linear and induced by two
bijective linear transformations.

Proof. Let dim U = s, dim V = r, dim W = P and dim Z = q.ln view ofTheorem 2.9. both U 0 Vand
W 0 Z have non-dominating bases. Since T is bijective. it follows from Lemma 2.4 that U 0 V and
W 0 Z have the same number of cells. Hence st = pq and the maximal height of all elements in U 0 V
and in W 0 Z are the same. Let {Ei : i E I} be the basis of U 0 V where I = {1•.... st}.

Let A be an element of U 0 V of height k > O.Then A = LjE] Ej for some non-empty finite subset
] of I. Clearly there exist elements Ai of height i. i = 1..... m where m = st such that Ak = A and
Ai < Ai+1 for i= 1•.... m - 1. Since T(Ai) < T(Ai+1) for i= 1•.... m - 1. it follows that T(Ak) is of
height k. This shows that {T(Ei) : i E I} is the set of all cells of W 0 Z and T sends zero to zero. Since
T(A);;:' T(Ej) for any j in] and p(T(A» = k, it follows from Lemma 3.18 that T(A) = LjE] T(Ej).

Suppose that T(B) > T(C) > O.Since {T(Ei) : i E I} is a non-dominating basis of W 0 Z. we have

T(B) = "LT(Ej). T(C) = "LT(Ej).
jEK jEH

where H is a proper subset of K. Therefore B = LjEK Ej and C = LjEH Ej. This shows that B > C. The
corollary now follows from Theorem 3.17. 0

Remark 3.21. From Corollary 3.20. we have the following corresponding result for spaces of Boolean
matrices:

Let T : Mm.n(P4) ---+ Mk.l (P4) be a bijective mapping where min{m. n, k.l} ;;:,2. If T sends rank one
matrices to rank one matrices and A > B =? T(A) > T(B) for any A,B in Mm•n (P4). then {m. n} = {k.l}
and there exist permutation matrices P and Q such that T(A) = PAQ for all A E Mm.n(P4) or T(A) =
PAtQ for all A E Mm.n(P4).
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LetB(m. n) denote the set of all bipartite graphs with bipartition (X. Y) where IXI = m, IVI = n. Let
G E B(m, n). Then it was shown in (3) that the biclique covering number of G, bcc(G), is the same as
the Boolean rank of the (0,1)-incidence matrix of G.Following (4). the above result can be translated
into graph-theoretic terms as follows:

Let T : B(m, n) -+ B(k, I) be a bijective mapping where min{m, n, k, /} ) 2.
If bcc(G) = 1 ~ bcc(T(G)) = 1 for any Gin B(m, n) and H is a subgraph of K implies that T(H) is

a subgraph ofT(K) for every H,K E B(m, n), then {m, n} = {k, I} and T(G) is isomorphic to Gfor all G
inB(m, n).
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