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The effect of the local environment on the energetic strain within small �SiO�N rings �with N=2,3� in silica
materials is investigated via periodic model systems employing density functional calculations. Through com-
parison of the energies of various nonterminated systems containing small rings in strained and relatively
unstrained environments, with alpha quartz, we demonstrate how small ring strain is affected by the nature of
the embedding environment. We compare our findings with numerous previously reported calculations, often
predicting significantly different small-ring strain energies, leading to a critical assessment of methods of
calculating accurate localized ring energies. The results have relevance for estimates of the strain-induced
response �e.g., chemical, photo, and radio� of small silica rings, and the propensity for them to form in bulk
glasses, thin films, and nanoclusters.
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INTRODUCTION

Theoretical and experimental studies have confirmed the
existence of rings containing two SiO units �two-rings� on
the surfaces of, and rings containing three SiO units �three-
rings� on and within reconstructed and dehydroxylated crys-
talline silicas,1–3 thin films.4,5 silica glasses3,6–8 and silica
nanoparticles.5,9 Both ring types are strain-activated reactive
centers,6 which are thought to play an important role in stress
corrosion and mechanical hydrolytic weakening of silica.10

Small silica rings have also been put forward as likely elec-
tron traps which, under external stimuli from light or radia-
tion, give rise to E�-type defects.11,12 The presence of such
defects deeply affects the quality of optical and electronic
devices �e.g., optical fibres, transistor gate dielectrics�, which
rely on high-purity silica for their performance. In order to
understand the formation and stability of small rings, and
thus minimize their detrimental impact in technical applica-
tions, it is imperative that we have an accurate assessment of
the inherent strain with these centers and how the type of
siliceous environment in which they reside affects this strain.

Most estimates of small-ring strain have used calculations
employing either terminated silica clusters or periodic silicas
containing small rings as model strained systems �MS sys-
tems�. The energy of a relatively unstrained system �U sys-
tem� of a suitable corresponding type is then subtracted from
that of the MS system in order to evaluate the excess small-
ring strain energy. In such calculations it is assumed that the
strain energy of a small ring is very localized, and thus all
the difference in energy between the MS and U systems
comes from the small ring in question. In MS systems, where
a small ring is embedded in an extended unstrained silica
environment or is simply terminated by freely relaxed termi-
nating groups, it seems quite clear that by employing the
corresponding type of U system the energies of the un-
strained and/or relaxed parts of each system will cancel,
leaving the energy difference of a small ring and unstrained
silica.

The first reported estimates of small ring strain were
based upon Hartree-Fock �HF� calculations of Born-Haber
reaction cycles13–15 using small OH-terminated cluster mod-
els. Essentially such methods can be classed as subtractive
methods where the energy of the relaxed siliceous “reac-
tants” is subtracted from the energy of the small-ring-
containing “products” to give an estimate of the energy re-
quired to form a small ring. One of the more reliable
calculations of this type gives an estimated two-ring strain of
1.83 eV and a three-ring strain of 0.81 eV.15 Other, more
recent subtractive cluster based approaches using both HF 16

and density functional theory �DFT� �Ref. 17� do not rely on
explicit reaction schemes but, nevertheless, as with the
former type of calculation, assume that the terminating spe-
cies �typically OH groups� employed in the U system and the
MS system clusters possess the same energy in both systems.
Using an elegant subtractive technique Uchino et al.16 em-
ployed four different Si9O25H14 clusters to give Hartree-Fock
�HF� calculated estimates of the strain energies of two-rings
and three-rings of 1.85 and 0.26 eV, respectively. In another
subtractive cluster calculation, using DFT and based directly
on OH-terminated small rings of sizes �SiO�N N=2–4,17

two- and three-ring strain energies were estimated to be 1.42
and 0.24 eV. The two-ring angular strain energy quoted in
Ref. 17 of 0.71 eV is that of an OH-terminated two-ring
normalized to its two constitutive O–Si�OH�2 units. The total
energy per two-ring is thus twice this value, giving 1.42 eV
per two-ring. In the Discussion section below, we examine
the choices of theory and/or MS system in some of these
cluster subtractive calculations in order to assess their ad-
equacy for refined measures of minimal small-ring strain en-
ergies.

One feature excluded from all cluster subtractive calcula-
tions is the provision for an extended nonterminated sili-
ceous environment to better represent the embedding envi-
ronment within which small rings actually exist in real
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siliceous materials. This point has been particularly stressed
by Hamman,8 who performed the first periodic DFT subtrac-
tive calculations to obtain two- and three-ring strain energies.
This study is often regarded as providing benchmark strain
energies for two- and three-rings embedded in siliceous ma-
terials. It is noted that these periodic subtractive calculations
yielded relatively low small-ring strain energies compared to
subtractive cluster calculations, indicating the importance of
including an embedding material environment in such stud-
ies.

For subtractive cluster calculations the U and MS system
energies are just the total respective cluster energies, whereas
for periodic systems energies are always necessarily per
some repeat unit of the material. This simple observation
becomes important when one considers subtractive calcula-
tions using MS systems with varying densities of small rings.
As an illustrative example, we take two extreme cases of
periodic subtractive calculations of two-ring strain from the
literature: �i� a MS system consisting of a large unit cell
containing over 50 atoms and only one two-ring,3 and �ii� an
MS system with a unit cell consisting of only two-rings.18

We show that employing the same units �eV/Si2O4� for the
energy per two-ring in both cases gives quite different values
of the resulting two-ring strain energy. In fact, the subtractive
procedure in each study should indeed give quite similar
energies per two-ring but only when taking account of the
respective density of two-rings in each case.

In Figs. 1�c� and 1�d� representations of SiO2 and Si2O4
units are schematically shown, each corresponding to a way
of partitioning a two-ring from its environment. For the SiO2
unit we have simply the four Si–O bonds that constitute the
internal energy of the ring. In the case of the Si2O4 unit we
have in addition four further Si–O bonds. In the first study3

the MS system is taken to be a large supercell slab of cris-
tobalite containing one reconstructed surface with a single
two-ring and another hydroxylated suface. Subtracted from
the total energy of this system is �i� half the energy of a fully
hydroxylated supercell slab of the same size, together with
�ii� the energy of the number of SiO2 units in the remaining
half-slab taken to have the energy per SiO2 of relaxed bulk

cristobalite. If we use the units of eV/Si2O4 to express the
final energy difference, we will figuratively have the energy
of the unit expressed in Fig. 1�c�. As the two-ring in the MS
system is linked to its surroundings via four Si-O bonds with
a similar energy to those in normal cristobalite �i.e., the
Si–O bonds E1–E4 in Fig. 1�c� are energetically similar to
those of Fig. 1�a��, the contribution of these “extra” bonds to
the energy difference will largely cancel, essentially leaving
the energy of only the four Si-O internal bonds of the two-
ring. Such a procedure is found to yield an energy of 1.38 eV
per two-ring.3 In fact, for such a MS system, as we only have
one two-ring per unit cell and if we assume that the Si-O
bond energies external to the two-ring are canceled in the
subtraction procedure, any energy unit with respect to at least
four Si–O bonds, up to the size of the unit cell itself, is
adequate.

In systems where the small rings in the MS system are in
an environment possessing considerable strain, the cancella-
tion of the extra Si–O bond energy �i.e. of E1–E4 in Fig.
1�c�� is however not complete. In such cases the use of the
eV/Si2O4 unit leads to a significant additional term to the
energy difference between MS and U systems, and thus a
correspondingly increased measure of small-ring strain. This
effect of the immediate embedding environment on calcu-
lated small-ring strain is clearly highlighted in the type of
MS system employed in Ref. 18. Here, a material consisting
solely of discrete chains of connected two-rings �silica-w9� is
employed as the MS system and the energy compared with
that of alpha-quartz per Si2O4. In silica-w, which can ideally
be considered as a concatenation of the SiO2 units shown in
Fig. 1�d�, the number of two-rings corresponds to the number
of SiO2 units �see Fig. 2�.

Thus, the energy per the four Si-O bonds in every two-
ring in silica-w is simply the energy per SiO2 unit. Calculat-
ing the energy subtraction using units of eV/Si2O4 means
that we also take into account the extra strained Si-O bonds
�i.e. E1–E4 in Fig. 1�c�� which, due to the structure of silica-
w, are also within two-rings. The energetic difference of such
bonds with the corresponding unstrained bonds in the alpha-

FIG. 1. Schematic representations of Si2O4 and SiO2 units when
taken to be a part of a relaxed siliceous material �a� and �b� and
when constituting a strained two-ring �c� and �d�. FIG. 2. �Color online� Perspective view of the two-ring-chain-

based silica-w material looking down the c axis.
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quartz U system is significant �actually the energy of another
two-ring�, leading to a calculated two-ring strain energy of
2.46 eV/Si2O4. The value quoted in Ref. 18 in Table V is too
small by a factor of two due to the use of eV/Si2O4 units
rather than eV/SiO2.20 Otherwise, in the paper the calculated
energy per two-ring in silica-w is correctly stated as being
1.23 eV. The value of 1.23 eV/SiO2 �i.e., 1.23 eV per two-
ring in silica-w� is comparable to that found for two-ring on
the reconstructed cristobalite surface.3 In each case, although
the units are different it is the final energy per two-ring
which is the important value.

The value of 1.23 eV per two-ring from the subtractive
silica-w calculation18 was found to be the lowest estimate of
two-ring strain reported in the literature, and has become an
important benchmark value. Similar periodic subtractive cal-
culations on three-rings in the same study16 also predict rela-
tively small three-ring strain energies. In this work we assess
the use of silica-w as a two-ring MS system employing a
range of different methodologies and levels of theory using
periodic subtractive calculations. Further extending this idea,
we test a number of MS systems, which have been deliber-
ately designed to vary the degree of environmental strain
placed on the embedded small rings �both two-rings and
three-rings�. We investigate how all these choices affect the
resulting small-ring strain energies obtained.

METHODOLOGY

In order to assess the effect of the choice of calculation
methodology on calculated small-ring strain, we performed a
series of periodic DF and HF calculations on the silica-w MS
system and the U system �alpha quartz� with three method-
ologically different codes: VASP,21 CRYSTAL,22 and DACAPO,23

each with its particular features with respect to the descrip-
tion of the core electrons or in the type of basis set em-
ployed. The silica-w material is made solely of discrete infi-
nite chains of connected two-rings and is essentially one-
dimensional structurally �see Fig. 2�. Interactions between
the chains have been reported as being small enough to be
negligible and to be an nonessential contribution to the cal-
culation of the strain energy and geometry of a two-ring.24,18

In order to explicitly test this we also calculated the energies
of both isolated two-ring chains and the interacting chain
system of silica-w, finding, as we describe below, that inter-
actions between two-ring-containing systems are in fact sur-
prisingly important. For all other calculations reported for
other two-ring- and three-ring-containing MS systems the
VASP code was used exclusively.

For all VASP-calculated energies and structures, periodic
DF calculations using the projected augmented wave25

method for core states and a plane-wave basis set were em-
ployed with the PW91 functional26 and suitable k-point
meshes generated via the Monkhorst-Pack scheme.27 All cal-
culations allowed for both internal atomic positions and cell
dimensions to vary freely in order to obtain the lowest en-
ergy structures. A relatively large energy cutoff of 800 eV
was employed to minimize the spurious effects of basis set
variability with changing cell size, and all final energies were
checked by subsequent reoptimizations with a reset cutoff

and finally via high-level single-point calculations.
Plane-wave pseudopotential �PW-PP� calculations were

done using DACAPO software accessed through the CamposASE

environment.22 As in the case of VASP calculations, we used
the PW91 functional,25 with Monkhorst-Pack meshes of k
points.26 For all PW-PP calculations we used Vanderbilt ul-
trasoft pseudopotentials �USPPs�.28 The silicon USPP was
used as included in the 7.3.4 version of the USPP generation
package, while the oxygen USPP had to be generated. The
original USPP package does not contain oxygen USPP gener-
ated with the PW91 functional, so we used another USPP
generated with the gradient-corrected functional as a tem-
plate. As the transferability test included with the USPP re-
turned essentially the same results as for the original one, no
further testing of the oxygen USPP was done. In most of the
calculations using DACAPO, we allowed ions to fully relax
within fixed unit cell and used a 900 eV kinetic energy cut-
off. Only in some instances, the structural relaxation was
done at 400 eV cutoff, followed by a 900 eV single-point
energy calculation. The latter procedure has been tested to
yield energies within 1 meV difference from full optimiza-
tion at 900 eV cutoff. Unit cell optimizations using DACAPO

code have been done only for the silica-w unit cell, using the
stress tensor and conjugated gradients optimization proce-
dure. Calculations of alpha quartz were done at the experi-
mental unit cell geometry.

Periodic all-electron calculations have been performed by
using the periodic HF method,29,30 and several DFT approxi-
mations �LDA, GGA, and B3-LYP�,31 as implemented in the
CRYSTAL03 code.22 The LDA Hamiltonian is based on ap-
proximate local functionals for both the exchange and the
correlation effects. The S-VWN parametrization was used,
according to Slater’s exchange32 and Vosko-Wilk-Nusair’s
correlation33 potentials. The gradient corrected approxima-
tion �GGA� used is based on the Perdew and Wang
exchange-correlation functional.34 Finally, the B3-LYP func-
tional is a combination of Becke’s35 and Hartree-Fock poten-
tials for the exchange effect and uses the gradient-corrected
correlation functional of Lee, Yang, and Parr.36 All-electron
localized basis sets used to represent the atomic orbitals of Si
and O have been reported in Ref. 37 with slightly different
exponents for outermost sp and d functions O:a�p�=0.28,
a�d�=0.8; Si:a�p�=0.21, a�d�=0.45. The same basis set was
used to extract the relative stability of silica-w with respect
to alpha quartz. The level of numerical approximation in
evaluating the Coulomb and exchange series appearing in the
self-consistent fields �SCF� equations for periodic systems is
controlled by the ITOL, which were set to 7 7 7 7 and 14
strict values. The reciprocal space was sampled according to
a regular sublattice defined by seven points in the irreducible
Brillouin zone for alpha quartz. For silica-w four points have
been used in the irreducible Brillouin zone.

RESULTS

In the following subsections we report our finding for
small-ring strain employing various computational method-
ologies, levels of theory, and types of MS system.
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Two-ring chains

In Table I we summarize our calculations of two-ring
strain in silica-w �see Fig. 2� as judged via the energy per
SiO2 unit with respect to that of alpha quartz using periodic
calculations employing different levels of theory and compu-
tational setup. Also included for comparison are two reported
values of two-ring strain in silica-w from the literature, each
calculated using exactly the same methodology as employed
herein.

Table I contains the results of a series of calculations per-
formed on both isolated infinite two-ring chains and on the
packed two-ring chain system of silica-w. Where necessary
the isolated two-ring chain was taken to be a periodic system
of chains separated from each other by 12 Å in the a-b
plane. Taking first the three calculations performed on the
silica-w system with the PW91 gradient corrected functional
�bottom three entries of Table I�, we can see that the energy
per two-ring is consistently predicted to be �1.225 eV
�±0.035�, forming the lowest range of calculated two-ring
energies. In comparison, the two PW91 calculations of two-
ring strain in an isolated two-ring chain give �1.39 eV
�±0.020�, which is a significant ��13.5% � increase over the
value in silica-w. The most direct comparison can be made
between respective calculations done with the same compu-
tational setup and functional �VASP/PW91�, where we can
directly see an increase in energy per SiO2 unit from
1.26 to 1.37 eV �+8.7% �. The lower relative energy calcu-
lated per two-ring in silica-w is due to the interchain inter-
actions and as such should not be ascribed to the four bonds
within the two-rings but rather at the interaction between
two-rings in different chains. The energy ascribed to the in-
teractions between two-ring chains ��0.11 eV/SiO2� would

be surprisingly high for a van de Waals-type interaction in an
inorganic material, as has been suggested to be the cause of
the interchain attraction in Refs. 18 and 24, but is of a typical
strength for a hydrogen bonded system. Although it is known
that the application of DFT methods to systems with weak
dispersive interactions is problematic, for electrostatically
dominated hydrogen bonded systems such as the water dimer
most pure GGA and hybrid functionals provide a good esti-
mate �within 10%� of the interaction energy from experiment
and high-level ab initio calculations.39 Based upon our
GGA-calculated interaction strength we suggest that the in-
terchain interaction is mainly of electrostatic origin, perhaps
resulting from the dipolar nature of the constituent semi-
ionic Si-O bonds in the chains. We note also that the inter-
chain interaction is not totally passive with respect to the
structure of the chains, with a small expansion of the c pa-
rameter by 0.024 Å occurring when isolated chains are
brought together to form silica-w. This structural difference
between isolated chains and interacting chain appears to arise
almost solely because of small angular distortions induced in
the two-rings rather than changes in the lengths of the con-
stituent Si-O bonds. Due to the sensitivity of the energy and
structure of the two-ring chains upon their mutual interac-
tion, we prefer to concentrate on the noninteracting isolated
two-ring chain as a MS system in order to evaluate two-ring
strain energies.

For the remaining isolated chain calculations the largest
two-ring energies are given by the HF and LDA calculations.
Although the predicted c parameter for the isolated chain
calculations is likely to be slightly contracted with respect to
that calculated for the condensed material, comparison with
the experimental c lattice parameter gives an indication of
the quality of the isolated chain results. The predicted c lat-

TABLE I. Summary of periodic calculations of silica- w performed with CRYSTAL �Ref. 21� VASP �Ref.
21�, custom plane-wave code �Refs. 18 and 38�, DACAPO �Ref. 23�. For calculation with VASP and DACAPO a
3�3�4 grid of k points was employed. The calculated c lattice parameters of silica-w and the isolated
two-ring chains are compared in parentheses to the experimental value of 4.72 Å for silica-w �Ref. 19�. For
further comparison, we also give the ranges of bond lengths and angles for alpha quartz �optimized employ-
ing VASP �Ref. 21� with a 2�2�2 supercell, the PW91 functional, and a 4�4�4 grid of k points�: Si–O
bond lengths �1.627–1.632�, O-Si-O angles �108.7–110.5�, Si-O-Si angles �144.1�.

Theory

c lattice
parameter of
silica-W �Å�

c lattice
parameter of an

isolated two-
ring chain �Å�

Energy per
two-ring

with respect to quartz
�eV/SiO2�

Si–O bond
length �Å�

O-Si-O
angle �°�

Si-O-Si
angle �°�

HFa 4.695�−0.025� �/1.73 �/1.644 �/91.0 �/89.0

HFa �Ref. 24� 4.68�−0.04� �/2.12 �/1.643 �/90.9 �/89.1

LDAa 4.661�−0.059� �/1.58 �/1.664 �/91.1 �/88.9

B3LYPa 4.716�−0.004� �/1.48 �/1.699 �/90.1 �/89.9

PW91a 4.712�−0.008� �/1.41 �/1.681 �/91.1 �/88.9

PW91b 4.731�+0.011� 4.707�−0.013� 1.26/1.37 1.673/1.672 90.0/90.6 90.0/89.4

PW91c �Ref. 18� 4.757�+0.037� 1.23/� 1.678/� 89.7/� 90.3/�

PW91d 4.701�−0.019� 1.19/� 1.674/� 90.5/� 89.5/�

aCRYSTAL �Ref. 21�.
bVASP �Ref. 21�.
cCustom plane-wave code �Refs. 18 and 38�.
dDACAPO �Ref. 23�.
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tice parameter closest to the experimental value of 4.72 Å
�Ref. 20� is given by the localized basis set CRYSTAL calcu-
lations using the B3LYP and PW91 functionals and also by
the plane-wave VASP PW91 calculation, all giving only very
slightly contracted values of c �lower by 0.004–0.013� with
respect to the experimental value. The same set of three cal-
culations also predicts very similar two-ring strain energies:
�1.425 eV �±0.055�. In contrast, the HF and LDA calcula-
tions listed in Table I all give relatively high and inconsistent
two-ring energies and significantly contracted geometries
compared to experiment.

With respect to the agreement with the experimentally
determined geometry, the internal consistency of predicted
magnitude of two-ring strain and the known improvements
of GGA and hybrid functionals over HF and LDA ap-
proaches, the CRYSTAL calculations using B3LYP and PW91
and the VASP calculations using the PW91 functional appear
to give a relatively better description of the two-ring chain
MS system. In the remainder of the paper all reported calcu-
lations are performed using the VASP code with the PW91
functional.

Two-ring strain energies in alternative MS systems

In comparing the energies �eV/SiO2� of an isolated two-
ring chain and alpha quartz we cleanly calculate the average
energy difference between a two-ring and a SiO2 unit in the
most unstrained �lowest energy� polymorph known. Al-
though in this case we can be sure that we have only two-
rings in our MS system �i.e., and no terminating groups or
other types of Si-O bonds�, we cannot assess how the energy
of the four Si-O bonds within a two-ring are affected by
being physically embedded within in an infinite chain of
other two-rings. In order to gauge the effect of the directly
bonded embedding environment of a two-ring upon the in-
ternal strain energy of systems we consider a range of MS
systems in which the size of the rings immediately embed-
ding the two-rings are systematically varied: SiNON N=2
�silica-w�, 3, 4, 6. In addition, to further induce environmen-
tal strain on the two-rings in such systems, we consider the
effect of applying topological distortions to the end members
of this range.

For straight two-ring chains one of the simplest topologi-
cal distortions one can apply to form a new periodic MS
system is to bend regular segments of the chains upon them-
selves to form an array of closed rings of two-rings �see Fig.
3�. Such systems were first considered in the context of in-
vestigating the energetic balance between internal strain and
defect termination in finite two-ring chains, showing that
fully coordinated rings were energetically favored over ter-
minated finite chains for relatively small chain lengths.40

A periodic two-ring chain MS system is ideally infinite
and thus devoid of energetically disfavored terminating de-
fects. The internal strain is thus not compensated in the for-
mation of an array of two-ring rings and the energy per two-
ring increases significantly �+0.19 eV per two-ring for an
array of Si24O48 rings—see Table II�.

In order to increase the ring size of the immediate embed-
ding environment of a two-ring, we must employ MS sys-

tems with richer topologies than periodic systems based
upon simple one-dimensional chains and rings to accommo-
date the introduction of extra Si “vertices.” Extending our
repeat unit to two dimensions can be achieved by forming
layered sheetlike materials consisting of a two-ring per every
other SiO2 unit. Examples of four sheetlike materials are
shown in Figs. 4�a�–4�d� with two-rings embedded by rings
of size SiNON N=3, 4, and 6, respectively �referred to as
N-2-sheets hereafter�. For the 6-2 embedding, two possible
materials were assessed �see Figs. 4�c� and 4�d�� with the
latter material �6-2-sheet-v2� found to have a slightly lower
energy than the former �6-2-sheet�v1�. Henceforth, “6-2-
sheet” refers to the lower energy 6-2-sheet�v2 material. In
order to assess the relative energy per two-ring with respect
to alpha quartz in such systems, one must remember that
only half of the SiO2 units in the MS system are within
two-rings. One way to do this is to calculate the energy per
SiO2 with respect to alpha quartz and then weigh this value
with respect to the proportion of SiO2 units per two-ring.
Although this procedure always gives the energy per two-
ring, only in the ideal case of a system with two-rings in a
perfectly unstrained environment �i.e., with Si–O bond en-
ergies of alpha quartz� does this procedure yield exactly the
energy of a two-ring in the system. Generally, however, the
environmental embedding energy per SiO2 in a MS system
will not be perfectly canceled by the energy per SiO2 in
alpha quartz giving rise to an “excess” energy. In fact, when
the proportion of “normal” SiO2 bonds to two-rings is 2, as
for the sheet materials, this procedure effectively calculates
the energy per Si2O4, which, as we saw above for the case of
silica-w, introduces energy extra to that only of the two-
rings. Although it is difficult to accurately assign localized
energetic contributions in a periodic system, intuitively we
would expect that the energy per Si2O4 tends to the limit of
that of an isolated two-ring as we progressively decrease the
strain on its embedding environment towards that of alpha
quartz.

In Fig. 5 we show the energy �eV/Si2O4� of a series of
materials with the size of the rings immediately embedding

FIG. 3. �Color online� A silica two-ring ring �Si24O48�.
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the two-rings increasing from Si2O2 to Si6O6 �silica-w, 3-2-
sheet, 4-2-sheet, 6-2-sheet�v2�. As expected, the energy per
Si2O4 unit tends towards a limiting value as the strain in the
embedding bonding environment decreases with increasing
N. Comparing the energy two-ring in the 6-2-sheet material
�1.23 eV/Si2O4� with the energy per two-ring in silica-w
�1.26 eV/SiO2�, we see that the two-ring energy is slightly
lower in the sheet material, indicating a small increase in the
calculated two-ring strain energy due to a bonding environ-
ment consisting of strained rings rather than larger unstrained
rings. In each case, however, the unit cell of each material
was fully relaxed, allowing for energy-lowering intersheet/
interchain interactions. For a fairer comparison of two-ring
strain energies in noninteracting two-ring chains and 6-2
sheets we also performed calculations of an isolated 6-2-
sheet, giving an energy per two-ring of 1.35 eV, compared to
1.37 eV in an isolated two-ring chain. In both cases the MS
system energy increases with respect to the corresponding
interacting system, moreover, by a greater proportion than
the change induced by varying the immediate ring size of the
bonding environment. By reducing the influence of both
bonding and nonbonding environments through an appropri-
ate choice of MS system, we have refined our estimate of
two-ring strain.

It is worth noting that the 6-2-sheet MS system can also
be regarded as a structural analog to a graphene sheet by

simply following the schematic formal analogy presented in
Fig. 6. As for carbon-based graphene sheets, which can be
thought of as providing the structural basis for carbon nano-
tubes and fullerenes, we can form silica-based analogous
structures from the rolling-up 6-2-sheets. Using the carbon
nanotube vector notation, we show in Figs. 7�a� and 7�b�
�4,0� and �5,0� 6-2-sheet-based nanotubes, respectively.

For isolated silica nanotubes we see from Table II that the
energy per Si2O4 unit is slightly increased �+0.17 �0,4�-tube,
+0.27 �0,5�-tube� with respect to the pure graphenelike iso-
lated planar 6-2-sheet. We note that, although we use a struc-
tural analogy with experimentally realized carbon nanotubes,
our silica nanotubes are quite unlike those currently formed
by experimental means,41 which are typically amorphous and
possess thicker walls. Our well-defined silica nanostructures
are perhaps targets for future experiments, but for present
purposes make for useful model systems for studying strain.
Taking the analogy with carbon nanostructures further, we
can also consider closed fullerenelike silica cages such as a
C24 �Ref. 42� analog presented in Fig. 8 �possessing four-
rings and six-rings as an immediate embedding environment
to the two-rings�. Such cagelike topologies significantly in-
crease the strain energy per Si2O4 unit, with the calculated
energy of the isolated Si24O48 fullerene found to be
1.83 eV/Si2O4 above alpha quartz. We have previously
studied this and other types of silica cage in another study
using the B3LYP functional and a localized 6-31G* basis

TABLE II. Summary of periodic DFT calculations of different structures with high concentrations of two-rings using the VASP code and
the PW91 functional. Isolated two-ring-containing structures were calculated using sufficient separating space around them to avoid signifi-
cant mutual interactions. The nanotubes were calculated using 1�5�1 Monkhorst-Pack line of k points along the tube direction; all other
materials were calculated using 4�4�4 Monkhorst-Pack grid of k points. For the MS systems in which the two-rings have more than one
value for a specific parameter and/or two-rings with more than one geometry exists, the min/max range of geometric parameters is given.

MS system a b c � � �
Si–O bond
length �Å�

O-Si-O
angle �°�

Si-O-Si
angle �°�

Energy
per
two-ring
�eV/Si2O4�

Isolated 1.669– 90.3 88.8–

Si24O48 ring 30.00 30.00 12.00 90.0 90.0 90.0 1.679 89.5 1.46

3-2 sheet 1.672 90.7 89.3

material 10.06 10.06 7.01 79.8 79.8 60.0 1.44

4-2 sheet 1.673 90.8 89.2

material 6.86 6.83 5.21 50.7 89.9 90.0 1.26

6-2 sheet 1.675– 89.7 90.3

material 8.34 5.13 4.75 90.2 119.2 90.0 1.683 1.23

Isolated 6-2- 1.675 90.6 89.4

sheet 8.33 5.11 11.20 101.6 119.3 90.0 1.35

Isolated �5,0� 1.673– 90.9 89.1–

nanotube 20.38 8.44 19.07 91.0 91.3 88.7 1.675 89.2 1.40

Isolated �4,0� 1.667– 90.7 89.0–

nanotube 20.37 8.41 20.60 91.6 91.8 87.6 1.677 89.6 1.50

Isolated 1.661– 89.8– 88.6–

Si24O48 1.687 90.6 90.1

fullerene 20.00 20.00 20.00 90.0 90.0 90.0 1.83

6-2-3D- 1.672 90.7 89.3

material 8.65 5.21 8.51 79.3 115.5 75.8 1.33
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set, which also yielded a very similar energy excess esti-
mate for the Si24O48 fullerene with respect to quartz
��1.89 eV/Si2O4�, but which also noted its relative ener-
getic stability with respect to other clusters of a similar
size.43

Although isolated 6-2-sheets provide a MS system with
apparently low environmental bonding strain due to the large
embedding six-rings, there still remains the question as to
whether there may exists residual strain in the 6-ring due to
the topological constraint of being in a two-dimensional
sheet. In an attempt to relax this possible contribution to the
environmental strain of the two-rings, we have further de-
signed a three-dimensional two-ring-containing MS system
with six-rings as immediate embedding rings �6-2-3D-
material: see Fig. 9�. This material can be thought of as being
formed from the concatenation of Si2O4 units as displayed in

Fig. 1�c�, where for every Si2O4 unit four others join to it in
mutally opposing directions, forming a natural tetrahedral
building block. The energy of the 6-2-3D material formed in
this way per Si2O4 is found to be 1.33 eV, even slightly
lower than the isolated 6-2-sheet, perhaps indicating a small
excess energetic contribution to the calculated two-ring
strain energy in a more planar two-dimensional topology.

Three-rings

For assessing small-ring strain using periodic subtractive
calculations, we have seen above that the MS system yield-
ing the lowest ring strain is a three-dimensional material in
which there is miminal ring-ring interation and embedding
provided by large rings. These criteria are satisfied for three-
rings by a MS system proposed by Hamann,18 which con-
tains three-rings in a three-dimensional network spaced by
seven-rings �see Fig. 10�a��. Our calculated energy of this
material per three-ring �0.21 eV/Si3O6� is even slightly
lower than that reported by Hamann �0.25 eV/Si3O6 �Ref.
18�� using a very similar methodology which may be as-
cribed to small differences in calculation methodologies. We

FIG. 4. �Color online� Sheetlike MS systems containing two-
rings embedded by three-rings �3-2-sheet—�a�, four-rings �4-2-
sheet—�b�, six-rings �6-2-sheet�v1—�c�, and 6-2-sheet�v2—�d��.
The respective two-ring �solid bars� embedding is schematically
represented on the right. The gray box in each figure, and in all
subsequent figures, denotes the unit cell of the material.

FIG. 5. The calculated energy per Si2O4 unit in a series of
materials containing two-rings directly embedded by SiNON rings of
varying size �N=2 corresponds to silica-w and N=6 to the 6-2-sheet
material�. The line is a guide to the eye.

FIG. 6. Schematic representation of the formal bonding analogy
between two-rings and carbon double bonds.
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note that our lattice parameters �see Table III� also slightly
differ from those reported by Hamann,18 which may further
indicate that our simultaneous optimization of atomic posi-
tions and unit cell parameters may have yielded a lower en-
ergy structure than the fit of the energies of nine atomically
relaxed structures with fixed unit cells to a polynomial as
done in Ref. 18.

Additionally, to see the effect of local embedding strain
on calculated three-ring strain in a periodic MS system we
also calculate the energy of OSO:44 an all-three-ring frame-
work material. As with the silica-w MS-system for two-rings,
in OSO all three-rings share all their silicon vertices directly
with adjacent three-rings �see Fig. 10�b��. This feature, as
with silica-w, allows us to use energy units that exactly par-
tition the material into only three-ring contributions and does
not include extra embedding Si-O bonds. In this way, using
eV/Si3/2O3, the strain energy per three-ring in OSO with
respect to alpha quartz is calculated to be 0.24 eV, slightly

higher than for the L3R material. As in the case of compar-
ing the isolated two-ring chain with the isolated 6-2-sheet,
the probable reason for the small difference is the increased
strain induced within the three-rings in OSO due to the rela-
tively strained embedding environment.

DISCUSSION AND CONCLUSIONS

Using the periodic subtractive methodology, we have at-
tempted to refine the requirements with respect to deriving

FIG. 7. �Color online� Isolated silica-based nanotubes formed
from rolling up the 6-2-sheet. A �4,0� tube is shown in �a�, and a
�5,0� tube in �b�.

FIG. 8. �Color online� An isolated Si24O48 silica fullerene
analog.

FIG. 9. �Color online� A three-dimensionally connected material
containing two-rings and embedding six-rings.
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the minimal intrinsic strain energies of small �SiO�N N�4
rings. Through detailed considerations of two-ring-
containing materials in particular, the type of MS system and
the level of theory are both found to be important. The use-
fulness of a MS system in periodic subtractive calculations
of energies of small rings is strongly dependent on the nature
of the embedding environment of the rings, which is re-
flected in the energy units employed. In such calculations,

gradient corrected �e.g., PW91� or hybrid functionals �e.g.,
B3LYP� appear to perform better than local density function-
als and HF, the latter both giving energies too high and poor
agreement with available experimental data.

We note that our final results for two and three-ring strain
�1.37 and 0.21 eV respectively� are considerably lower than
most estimates based on cluster subtractive calculations �e.g.,
1.83 �Ref. 15�–1.85 eV �Ref. 16� for two-rings and 0.27
�Ref. 16�–0.81 eV �Ref. 15� for three-rings�. In these calcu-
lations, however, HF was employed, which is known from
our calculations on two-ring chains above to give relatively
high estimates of strain energy. In contrast, the study in Ref.
17, using the B3LYP functional and DFT cluster subtractive
calculations, gives a relatively low two-ring strain energy of
1.42 eV. In these calculations it is assumed that a symmetric
planar OH-terminated four-ring �Si4O4� is a suitable U sys-
tem. In the calculations of Uchino et al. the strain in a puck-
ered four-ring is calculated to indeed be very low �0.02 eV�;
however, in a more planar conformation, the estimated
inherent strain energy is thought to be considerably higher
��0.16 eV.45�. Calculating the energy of the planar ring and
a relaxed puckered OH-terminated four-ring cluster at ex-
actly the same level of theory reported in Ref. 17 verifies that
the planar ring is an energetically higher-lying minima. We
also note that the reported O-Si-O angles of 138° in Ref. 17
seem unphysically high and so possibly erroneous. Our cal-
culations of the same planar four-ring system using exactly
the same level of theory give an O-Si-O angle of 112.7°,
giving a sum of internal angles �together with the reproduced
Si-O-Si angles of 157.3°� of 1080°, as required for a planar
system, rather than 1180° as in Ref. 17 When modeling a
puckered OH-terminated four-ring cluster, one has to be
careful to ensure that no significant intrahydrogen bonding
occurs which would spuriously lower the energy of the sys-
tem. In our puckered four-ring the distances between all pos-
sible O¯H-interacting pairs on OH groups on neighboring
silicon atoms are all greater than 3.85 Å, ensuring a minimal
hydrogen bonding contribution to the energy. Using the
puckered four-ring minima as a slightly improved U system,
and an OH-terminated two-ring MS system calculated at the
same level of theory, the calculated two-ring strain energy
increases by �6% �1.51 eV for a two-ring� with respect to
the reported result using a planar four-ring U system.17 This
small correction to the original result gives quite a high es-
timate of two-ring strain with respect to our periodic calcu-

FIG. 10. �Color online� Two three-ring-containing materials: to
the left is the L3R material proposed by Hamann �Ref. 18� with
embedding seven-rings, and to the right the OSO �Ref. 44� frame-
work material consisting only of connected three-rings.

TABLE III. Summary of periodic DFT calculations of different structures with high concentrations of two-rings. Our calculations used
the VASP code with the PW91 functional and employed a 3�3�3 Monkhorst-Pack grid of k points. The calculation of Ref. 18 used a custom
plane-wave DF code �Ref. 38� with the PW91 functional. For the OSO MS systems the min/max range of three-ring geometric parameters
is given.

MS system a b c � � �
Si–O bond
length �Å�

O-Si-O
angle �°�

Si-O-Si
angle �°�

Energy per
three-ring
�eV�

L3R material 5.33 5.33 5.33 97.6 97.6 97.6 1.637 107.9 132.1 0.21

L3R material �Ref. 18� 5.31 5.31 5.31 96.9 96.9 96.9 1.640 109.0 131.0 0.25

OSO framework 1.635– 107.3– 129.4–

10.31 10.31 7.78 90.0 90.0 120.0 1.638 107.5 129.7 0.24
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lations, but which is still lower than all HF estimates indi-
cating, as we have also found above, the relative superiority
of B3LYP in small-ring calculations. We have also repeated
the calculation, using the same methodology as in Ref. 17
with respect to three-rings, with the puckered four-ring U
system. In our three-ring we observe a very small puckering
of the three-ring, giving Si–O–Si angles of 130° rather than
131° in the planar three-ring in Ref. 17 with otherwise ap-
parently identical geometries. Using our puckered four-ring
as a MS system yields a three-ring strain of 0.22 eV, in ex-
cellent agreement with our periodic calculations �0.21 eV�
and significantly lower than the lowest values predicted from
HF-cluster calculations �0.27 eV16�. At once this confirms
both our low three-ring strain energy prediction using peri-
odic PW91 calculations and the improvement of using hy-
brid and/or gradient corrected functionals over HF. The
agreement between our cluster and periodic DF calculations
of three-ring strain energy contrasts with the corresponding
predictions for two-ring energies, indicating the importance
of incorporating a realistic environment for assessments of
strain in the latter. All our cluster calculations were per-
formed with no symmetry constraints using the GAMESS-UK

code.46

Although we advocate the use of gradient corrected
and/or hybrid density functionals for more accurate small
ring calculations, the DF approach cannot, with current func-
tionals, incorporate all electronic degrees of freedom that
could be of significance in small-ring systems. In an effort to
go beyond the DF approximation while incorporating a real-
istic local embedding, Mukhopadhyay et al.24 used an ab
initio incremental cluster technique to estimate accurate
strain energies of two-rings in isolated two-ring chains with
respect to alpha quartz. For the MS system an OH-
terminated Si8O16 chain cluster, energy minimized at a
coupled cluster �CCSD� level, was employed. For the U sys-
tem a H- and OH- terminated fragment of alpha quartz was
employed, fixed at the experimentaly determined geometry.
Although one may argue if a terminated two-ring chain is
truly representative of an infinite two-ring chain, the latter
allowing for greater geometric relaxation and possessing
long-range electrostatic interactions not present in the
former, it is clear that such a relaxed linear cluster will pos-
sess two-rings in a relatively low-energy state. In the em-
ployed MS system, however, no geometric relaxation is per-
formed and thus one must rely on the fixed structure of the
terminated cluster to accurately represent the energetics of
the extended alpha-quartz system. In this latter case the long-
range Madelung field is not taken into account, which, in the
real material, would contribute to stabilizing the electronic
state in the fixed bonding configuration chosen, but, probably
more significantly, the terminated cluster will inevitably pos-
sess an energy penalizing dipole. In the real material, under
normal conditions, the dipole is excluded and does not con-
tribute to raising the energy of the material. These two fac-
tors would likely result in a significant increase in the energy
of the fixed cluster U system employed and thus in a reduced
energy difference between the MS and U systems in the sub-
tractive calculation of two-ring strain. The reported value of
two-ring strain in Ref. 24 is, in fact, by far the lowest ever
reported �0.61 eV/SiO2�, being over half that of our periodic

DF calculations on isolated two-ring chains �see Table I� and
is, we feel, at least partially due to the above reasons, prob-
ably inaccurate. One other possible reason for such a low
reported value could simply be due to an error in the reported
units, which as we showed above, should be chosen with
care for two-ring chains. This, however, seems unlikely as in
the same study the strain energy of a two-ring in an isolated
chain, employing a periodic HF calculation, is also given as
2.12 eV/SiO2, which although fairly high, is of a similar
order of magnitude to our, and other, HF-calculated estimates
�1.73–1.85 �Ref. 16� eV/SiO2�.

In summary, we have carefully examined the use of vari-
ous MS and U systems within the subtractive methodology
of calculating small-ring strain and used the analysis to op-
timize the MS system in our periodic DF calculations.
Through this procedure we attempt to provide refined bench-
mark values for two- and three-ring strain. For two-rings the
6-2-3D material isolated 6-2-sheet, and the isolated chain
provide MS systems yielding a small range of two-ring strain
energies �1.33–1.37 eV�. The slightly different predictions
are likely to be mainly due to the variability in the strain in
the immediate embedding environment in each MS system.
Considering the very minor changes in two-ring geometry in
each MS system �see Tables I and II�, however, the long-
range electrostatics of the MS system in question may also
contribute to the differences, making it difficult to discern the
best intrinsic two-ring strain measure. Considering that two-
rings in real siliceous materials always lie within an extended
bonded SiO2 network, it is perhaps better to use this range of
values �containing the most-strained and least-strained im-
mediate embedding environments� as a guide to the small
variability of two-ring strain energies in real materials. We
further note that these optimal estimates of two-ring strain
are only slightly lower than the estimate by Ceresoli et al.
�1.38 eV� �Ref. 3�, mutually confirming the periodic subtrac-
tive methodology employed in each case. For three-rings we
confirm the methdology of Hamann18 in the use of the L3R
material as an appropriate periodic MS system for calculat-
ing 3-ring strain, obtaining a value of 0.21 eV. It is hoped
that the refined small-ring strain values reported herein will
be of use in experimental and theoretical studies of strain
silica systems.
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