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Squared interaction matrix Sherrington-Kirkpatrick model for a spin glass
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The mean-field theory of a spin glass with a specific form of nearest- and next-nearest-neighbor interactions
is investigated. Depending on the sign of the interaction matrix chosen we find either the continuous replica
symmetry breaking seen in the Sherrington-Kirkpartick model or a one-step solution similar to that found in
structural glasses. Our results are confirmed by numerical simulations and the link between the type of
spin-glass behavior and the density of eigenvalues of the interaction matrix is discussed.
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I. INTRODUCTION

The Sherrington-Kirkpatrick~SK! model1 is the most
well-known example of a disordered and frustrated system
the field of spin glasses.2 It corresponds to the infinite-rang
version of the Edwards-Anderson~EA! model introduced
earlier in 1975.3 In the EA model quenched disorder is intr
duced in the random sign of the exchange couplings betw
nearest-neighbor spins on a lattice. The infinite-ranged
sion is the natural mean-field version of the EA model, in
same sense as the infinite-range ferromagnet is the m
field theory for the Ising model. A nearly complete solutio
of the SK model has been found4 which has raised subtle
questions about the nature of the spin-glass phase sho
that the mean-field theory of spin glasses is considera
more complex than the standard mean field of, say, fe
magnetic systems. Plenty of questions were posed aft
was shown that the correct thermodynamic solution had to
understood in terms of a replica-symmetric broken soluti
For instance, does the ergodicity breaking~implied by rep-
lica symmetry breaking! also occur in short-range system
Also, has replica symmetry a true physical meaning in
much as time-reversal symmetry has for usual ferromagn
After many years of research these questions have turned
to be extremely difficult and in the meantime criticisms qu
tioning their relevance regarding our understanding of
perimental systems have also been raised. Scaling theori
finite-dimensional spin glasses, so-called droplet mode5

seem to be at variance with the image of replica symme
breaking. It is thus useful to introduce new solvable mod
which correspond to mean-field versions of different fini
dimensional problems in order to improve our understand
of the spin-glass problem.

In this paper we introduce a solvable spin-glass mo
which corresponds to the mean-field version of the Edwa
Anderson model but includes next-nearest-neighbor inte
tions in a particular way. We will refer to this model as th
squared interaction matrix~SIM! SK model. The motivation
is that the model admits the possibility of being realized o
finite-dimensional lattice and incorporates correlations
tween the first-nearest-neighbor and second-nearest-neig
coupling interactions. At a first glance it seems strange
consider a next-nearest-neighbor interaction in a totally c
nected spin-glass model; however, we shall see that the
0163-1829/2002/65~22!/224209~11!/$20.00 65 2242
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relations introduced in the couplings can lead to a phys
different to that of the SK model. In addition this mod
allows one to discuss the role of the density eigenvalues
the interaction matrix in the spin-glass behavior.

II. MODEL

The model we study is a totally connected one w
Hamiltonian

H52
1

2 (
i j

Ki j SiSj , ~1!

the spinsSi (1< i<N) being Ising spins taking the value
61. Here we take the interaction matrixK to be of a squared
interaction type:

K5JJT, ~2!

where theJi j are independent Gaussian random variab
such thatJ̄i j 50 andJi j Jkl5d ikd j l /N. Here the overbar de
notes the disorder averaging and we note that the matrJ
here is not symmetric. The same model withJ symmetric
may be studied; however, takingJ as nonsymmetric consid
erably simplifies the analytical study of the model. We no
that, in finite dimensions, ifJ were a next-nearest-neighbo
interaction, thenK is a matrix which has interactions be
tween next nearest neighbors.

In this paper we will consider two models: the positiv
temperature model whereK5JJT ~we will refer to this as the
K.0 model! and the negative temperature model whereK
52JJT ~we will refer to this as theK,0 model!. Contrary
to what happens in the usual Sherrington-Kirkpatrick mod
the model~1! is not invariant under the transformationK→
2K. Clearly K is a matrix which is positive definite and
2K a matrix which is negative definite.

For a symmetric matrixJ taken from the Gaussian en
semble, the density of eigenvaluesl is given by the Wigner
semicircle law6

rJ~l!5
1

2p
A42l2, ~3!

with lP@22,2#. In the corresponding spherical spin mode7

at low temperature, the system minimizes its energy vi
©2002 The American Physical Society09-1
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D. S. DEAN AND F. RITORT PHYSICAL REVIEW B65 224209
macroscopic condensation onto the eigenvector corresp
ing to l52. In the case of the SK model this condensation
not possible due to the discrete nature of the spins; howe
it seems reasonable to assume that the densityr(l) for l
;2 plays an important role in the low-temperature behav
In our model, ifJ is taken to be symmetric, the density
eigenvaluesk is clearly given by

r6K~k!5
1

4pA6k
A47k, ~4!

where nowkP@0,4# in the 1K or K.0 model andkP
@24,0# for the 2K or K,0 model. In fact one can show
that9 this is also the density of eigenvalues in the case oJ
nonsymmetric. Hence, in the positive case, the low-ene
region of the interaction matrix has the same form as the
model as one would have in a spherical model a conde
tion onto the eigenvector of the largest eigenvalue. In
negative case, however, the largest eigenvalues are atk50,
but the density of eigenvalues now diverges in this region
the corresponding spherical model it is easy to see that
eliminates the finite-temperature phase transition. This h
pens in exactly the same way that the divergence of the d
sity of occupation of the zero-energy states for free boson
two or less dimensions eliminates the finite-temperat
Bose-Einstein transition.

In the following treatment we consider theK.0 model,
although the same mathematical treatment we present
can be applied to theK,0 case on changing the sign of th
inverse temperatureb. The Hamiltonian of the model ca
thus be written as

H52
1

2 (
i jk

JikJjkSiSj , ~5!

and the partition function for the model is therefore given

Z5TrSi
expFb

2 (
i jk

JikJjkSiSj G . ~6!

In order to facilitate taking the disorder average we mak
Hubbard-Stratonovich transformation by introducing t
auxiliary Gaussian spinsxi to obtain

Z5TrSi ,xi
expFb(

i j
Ji j Sixj G , ~7!

where Trx indicates the trace over the Gaussian spinx and is
defined by

Trx5E dxA b

2p
expS 2

bx2

2 D . ~8!

In the form ~7! the model is that of an asymmetric Littl
model8 but where one of the two sets of spins is Gauss
rather than Ising. Interest in the Little model arose one
cade ago, in the context of neural networks as the para
dynamics of the standard Hopfield model10 coincides with
the sequential dynamics in the Little model.11 The corre-
sponding mean-field spin-glass model was studied in Ref
22420
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where it was shown that the equilibrium behavior is the sa
for both the SK and Little~for both asymmetric and symme
ric couplings! models. Here we have verified numerical
that, in our model also, a symmetric or asymmetric mat
leads to the same physical behavior.

III. POSITIVE-TEMPERATURE KÌ0 MODEL

We introduce replicas of both the Gaussian and Is
spins in order to average over the disorder via the rep
method, obtaining

Zn5TrS
i
a ,x

i
aexpF b2

2N (
i j

(
ab

Si
axj

aSi
bxj

bG
5TrS

i
a ,x

i
aexpFb2N

2 (
ab

QabPabG , ~9!

where we have introduced the Ising and parabolic spin ov
laps

Qab5
1

N (
i

Si
aSi

b and Pab5
1

N (
i

xi
axi

b . ~10!

The trace over the Ising spins is accomplished using
d-function representation of the overlap constraint:

TrS
i
adS N

2
Qab2(

i
Si

aSi
bD

5
1

~2p!n2TrS
i
aE dLab

3expS N

2(
ab

LabQab2
1

2
Lab(

i
Si

aSi
bD

5
1

~2p!n2E dLabexpS N

2 (
ab

LabQab1N ln~ZS! D ,

~11!

where

ZS5TrSaexpS 2
1

2 (
ab

LabS
aSbD . ~12!

The same procedure is used for the Gaussian spins to y

ln@Zn#

N
5extrS** @Q,P,L,G#, ~13!

whereS** @Q,P,L,G# is the saddle point action,

S** @Q,P,L,G#5
b2

2 (
ab

QabPab1
1

2 (
ab

LabQab

1
1

2 (
ab

GabPab1 ln~ZS!1 ln~Zx!,

~14!

and
9-2
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Zx5TrxaexpS 2
1

2 (
ab

Gabx
axbD . ~15!

The saddle point equations with respect toPab andQab al-
low the evaluation of the saddle values of the variablesLab
andGab ,

]S**

]Pab
50⇒Gab52b2Qab , ~16!

]S**

]Qab
50⇒Lab52b2Pab , ~17!

leading to the reduced saddle pointS* @Q,P# such that

ln@Zn#

N
5extrS* @Q,P#, ~18!

with

S* @Q,P#52
b2

2 (
ab

QabPab

1 lnFTrSaexpS b2

2 (
ab

PabS
aSbD G

2
1

2
Tr ln~ I 2bQ! ~19!

and where the Gaussian integral givingZx has been evalu
ated. The saddle point value ofPab is given by

]S*

]Qab
⇒P5

1

b
~ I 2bQ!21, ~20!

thus leading to the new reduced actionS@Q# such that

ln@Zn#

N
5extrS@Q#, ~21!

with

S@Q#5
1

2
@n2Tr~ I 2bQ!212Tr ln~ I 2bQ!#

1 ln TrSaexpS b

2 (
ab

@~ I 2bQ!21#abS
aSbD .

~22!

The saddle point equation from Eq.~22! is

2
b

2
~ I 2bQ!221

b

2
~ I 2bQ!211

b2

2
~ I 2bQ!22A50,

~23!

where the elements of the matrixA are given by
22420
Aab5

TrSaSaSbexpS b

2(
ab

@~ I 2bQ!21#abS
aSbD

TrSaexpS b

2 (
ab

@~ I 2bQ!21#abS
aSbD . ~24!

We use the fact that the matrix (I 2bQ) should not be sin-
gular at the saddle point~otherwise the saddle point lies on
branch cut! to conclude

Q5A, ~25!

which is the physical saddle point equation forQ. We pro-
ceed by studying the replica-symmetric form of this acti
with

Qab
RS5~12q!dab1qUab , ~26!

where Uab51 for all (a,b). After some algebra one find
that

s~q!5 lim
n→0

S@QRS#

n
52

1
2

ln@12b~12q!#

2
1
2

bq@2112bq~12q!#

@12b~12q!#2 1E dz

A2p

3expS 2
z2

2 D lnF2 coshS bzAq
@12b~12q!#

D G . ~27!

Taking the saddle point with respect toq above yields

ds~q!

dq
5

b2

2

~bq1b21!

@12b~12q!#3 F E dz

A2p
expS 2

z2

2 D
3tanh2S bzAq

@12b~12q!#
D 2qG

50. ~28!

There are two sets of possible solutions to Eq.~28!:

q5
1

b
21 ~29!

and

q5E dz

A2p
expS 2

z2

2 D tanh2S bzAq

@12b~12q!#
D ~30!

However, as mentioned above, the solution~29! is unphysi-
cal. The solution~30! corresponds to the physical solutio
~25! and only has the paramagnetic solutionq50 for T
.Tc52. Hence for T.Tc52 one is ~in the replica-
symmetric scheme! in a paramagnetic phase.

The energy per spinE obtained from Eq.~22! is

E5 lim
n→0

1
2b F12

1
n

Tr~12bQ!21G , ~31!

whereQab here is the solution to the saddle point equatio
The replica-symmetric~RS! energy per spin is thus
9-3
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D. S. DEAN AND F. RITORT PHYSICAL REVIEW B65 224209
ERS52
1

2 S ~12q!@12b~12q!#1q

@12b~12q!#2 D . ~32!

Hence, for T.Tc52, that is to say in the paramagnet
phase where one can be sure that the RS solution is cor
one has

E52
1

2~12b!
. ~33!

For T!1 a low-temperature expansion of Eq.~30! yields

q512
T

11Ap/2
1O~T3!. ~34!

With the replica-symmetric ansatz, in the spin-glass pha
the ground-state energy is

EGS
RS52

1

2 S 2

p
1

2A2

Ap
11D . ~35!

As in the SK model, if one computes the entropy correspo
ing to this replica-symmetric solution within the spin-gla
phase, one finds a temperature where it becomes nega
indicating the need to break replica symmetry. We belie
that the continuous nature of the transition, however, s
gests that the underlying physics is the same as that of
SK model and the Landau expansion ofS@Qab# has the same
generic form as that of the SK model, indicating a contin
ous replica symmetry breaking~RSB! which sets in atTc .
However, the RSB solution is very sensitive to the deta
and coefficients of the Landau expansion and this pict
needs to be confirmed. The introduction of next-neare
neighbor interactions thus does not qualitatively change
behavior of the model, in agreement with the previously d
cussed intuitive notion that~for a given spin type! the behav-
ior of the density of the largest eigenvalues determines
nature of the transition.

IV. NEGATIVE-TEMPERATURE KË0 MODEL

The Hamiltonian~1! is not invariant under the transfor
mation K→2K. In this case the action for the replicate
partition function is given by

S@Q#5
1

2
@n2Tr~ I 1bQ!212Tr ln~ I 1bQ!#

1 ln TrSaexpS 2
b

2 (
ab

@~ I 1bQ!21#abS
aSbD .

~36!

In the high-temperature phase we expect the annealed
proximation to be exact and find

f ann52
1

b
ln~2!1

1

2b
ln~11b!. ~37!

The annealed entropy per spinSann is thus
22420
ct,
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Sann52b2
] f

]b
5 ln~2!2

1

2
ln~11b!1

b

2~11b!
. ~38!

The annealed energy is given by

Eann5
1

2~11b!
. ~39!

The annealed solution can only be valid as long asSann is
positive. If there exists abboundsuch thatSann(bbound),0 for
b.bbound, thenbbound gives us an upper bound for the in
verse temperature at which the equilibrium transition occu
bK . In the Adam–Gibbs–Di Marzio scenario13 TK51/bK
corresponds to the temperature where the configurationa
tropy Sconf vanishes and the subindexK in b stands for the
Kauzmann temperature which originates from the Kauzm
paradox14 which is based on the observation that an extra
lation of a high-temperature entropy cannot cross the lo
temperature solution. SometimesTK is also referred to as the
ideal glass transition temperature, not to be confused w
the experimental glass transition temperatureTg in the con-
text of finite-dimensional glasses which turns out to be o
a convention corresponding to an extremely large relaxa
time as opposed to a diverging one. Because both entro
(SannandSconf) are monotonically increasing functions of th
temperature andSconf,Sann, this means thatbbound.bK is
an upper bound of the ideal glass transition temperatureTK .
One finds thatbbound'8.82 and henceTbound51/bbound
'0.113.

In the replica-symmetric ansatz the equation for t
Edwards-Anderson order parameterq is

q5E dz

A2p
expS 2

z2

2 D tanh2 S bzAq

@11b~12q!#
D . ~40!

The examination of this equation shows that one can
longer have a continuous phase transition fromq50. For
low temperatures one can show that a solution withq non-
zero exists and that

q512
T

Ap/221
1O~T2!. ~41!

Numerically the inverse temperaturebc
RS at whichq can

become nonzero is found to bebc
RS'29.3, thus givingTc

RS

'0.034. This is much lower thanTK above and hence th
replica-symmetric solution cannot eliminate the entropy c
sis atTbound. Clearly one must resort to a replica-symmetr
broken ansatz. Guided by the results of our RS calcula
and the numerical simulations we make the random ene
model ~REM! ~one-step! like ansatz where the matrixQ is
given by n/m matricesQ̃ about the diagonal ofQ of size
m3m and is zero outside these blocks. The matrixQ̃ takes
the form

Q̃5I ~12q!1qŨ, ~42!
9-4
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whereI is the identity matrix andŨ is the matrix with each
element equal to 1. We note the following results:

~ I 1bQ̃!215
1

11b~12q!
I

1
bqŨ

@11b~12q!#@11b~12q!1bmq#
,

~43!

Tr~11bQ!215
n

m
Tr~11bQ̃!21

5
n

m S 1

11b~12q!1bmq
1

m21

11b~12q! D ,

~44!

Tr ln@~11bQ!21#5
n

m
Tr ln@~11bQ̃!21#

5
n

m
$ ln@11b~12q!1bqm#

1~m21!ln@11b~12q!#%, ~45!

and

ln TrSaexpS b

2(
ab

@~ I 2bQ!21#abS
aSbD

5
n

m
ln TrSaexpS b

2(
ab

@~ I 1bQ̃!21#abS
aSbD

5
nb

2@11b~12q!#
1

n

m
lnF E dz

A2p
expS 2

1

2
z2D

3$2 cosh@bza~q,m,b!#%mG , ~46!

where

a~q,m,b!5
Aq

A@11b~12q!#@11b~12q!1bmq#
.

~47!

One therefore finds the one-step action

s~q,m!5 lim
n→0

S@Q1RSB#

n

5
1
2F 2b2q~12q1mq!

@11b~12q!#@11b~12q!1mbq#

2
1
m

ln@11b~12q!1mbq#

2 S 12
1
mD ln@11b~12q!# G1 1

m
ln@z~q,m!#,

~48!
22420
where

z~q,m!5E dz

A2p
expS 2

1

2
z2D $2 cosh@bza~q,m,b!#%m.

~49!

One finds that

]

]q
s~q,m!

5b2a~q,m,b!
]a~q,m,b!

]q
~12m!

3Fq2
1

z~q,m!
E dz

A2p
expS 2

1

2
z2D

3$2 cosh@bza~q,m,b!#%mtanh2@ba~q,m,b!z#G .

~50!

The saddle point ofs(q,m) corresponding to the solution
~25! is thus

q5
1

z~q,m!
E dz

A2p
expS 2

1

2
z2D $2 cosh@bza~q,m,b!#%m

3tanh2@ba~q,m,b!z#. ~51!

If one considers the casem51, this solution must give the
same free energy as the replica-symmetric free energy, w
above the static transition temperature is the annealed
energy. However, one can find a nonzero value ofq which
signals a dynamical transition where the system beco
stuck in metastable states of high free energy. Settingm51
in Eq. ~51! gives

q5expS 2
1

2
b2a~q,1,b!2D E dz

A2p
expS 2

1

2
z2D

3cosh@bza~q,1,b!#tanh2@ba~q,1,b!z#. ~52!

For smallb this equation has only the solutionq50. How-
ever, atbd'7.325 (Td51/bd'0.137) one finds a nonzer
value of q with q'0.922. This transition corresponds
what is known as the mode-coupling transition in mod
coupling theories of the glass transition in their idealiz
version.15

The precise way to locate both transitions (Td and TK)
was suggested in a series of papers by Kirkpatricket al.16

and later on applied to several models such as the ran
orthogonal model,17 Potts glasses,18 and mean-field quantum
spin glasses.19 The static transition is located by expandin
the corresponding free energyf (q,m) aboutm51 and writ-
ing

b f ~q,m!5b f para1~m21!V~q!1O~~m21!2!, ~53!

where f para5 f (0,1) is the paramagnetic free energy and
9-5
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V~q!5b
] f ~q,m!

]m Um5152
]s~q,m!

]m U
m51

. ~54!

The static transitionTK is given by the values ofbK where
V(qK)5V8(qK)50. The dynamic transitionTd is given by
the conditionsV8(qd)5V9(qd)50 which correspond to the
marginality condition and coincide with the solution found
m51 and reported above.

The explicit form of the potentialV is

V~q!5
bq~112b!

2~11b!@11b~12q!#
1

1

2
ln@11b~12q!#

2
1

2
ln~11b!2expS 2

1

2
b2a~q,m,b!2D

3E dz

A2p
expS 2

1

2
z2D

3cosh@bza~q,1,b!# ln$cosh@ba~q,1,b!z#%.

~55!

Using this to compute the static transition one finds that
gives TK'0.116 andqK'0.985. The behavior ofV(q) on
lowering T is shown in Fig. 1.

Note that atTd the value of the potentialV(qd) is finite
and corresponds to the configurational entropy at that t
perature. AsT decreases belowTd , the analytical continua-
tion of the solutionqd to the saddle point of Eq.~48! in-
creases while the value ofmd(T) decreases. The
configurational entropy evaluated atT,Td is Sc(T)
5b@ f „qd(T),md(T)…2 f para(T)# and decreases whileT de-
creases down to a temperatureTK where it vanishes andqK
is the analytically continued value ofqd(TK).

FIG. 1. Behavior of the potentialV(q) on loweringT. The dif-
ferent regimes areT.Td ~solid line!, T5Td ~dotted line!, TK,T
,Td ~dashed line!, andT5TK ~dot-dashed line!.
22420
t

is

-

Hence we see that in the caseK,0 the physics of the
problem is drastically altered by the interaction matrix a
that the model now exhibits the phenomenology of a~mean-
field! structural glass.

V. NUMERICAL SIMULATIONS

We have verified the main predictions for the SIM-S
model with positive and negative temperature by doing so
numerical simulations in both cases. For the positiv
temperature model we checked that the transition indeed
curs atT52. This has been done applying standard fini
size scaling techniques useful for investigating small-s
systems. For the negative model we found that strong fre
ing occurs at the mode-coupling temperatureTd50.137 as
happens for other models such as thep-spin20 or the random
orthogonal model~Ref. 17!.

A. Some details of the simulations

Simulations consist of standard Monte Carlo annealin
using the Metropolis algorithm. The system is cooled do
from high temperatures~typically twice the value ofTc for
theK.0 model and twiceTd for theK,0 case!. Annealing
schedules are as follows: everyDT50.2 for theK.0 model
and everyDT50.01 for theK,0 model the system is al
lowed to equilibrate over 1000 Monte Carlo steps~MCS! and
statistics are collected during 105 MCS at each MCS. The
sizes are small,N525,50,75,100, but enough to locate th
transition with some precision. The simulated range of te
peratures is fromT54 down toT50.2 for theK.0 model
and fromT50.3 down toT50.01 for theK,0 model. The
number of samples were several thousands for all sizes.

Due to the long-range character of the interactions,
dependence of the time needed to do a MCS grows quite
with the size of the system~actually likeN2). Therefore, for
the statics, we had to limit our investigation to relative
small sizes. Moreover, a careful study of the relevant para
eters for the transition~such as the kurtosis or theG param-
eter to be defined below! requires a large number of sample
~this is especially true for parameters likeG which measure
sample-to-sample fluctuations!. This last parameter is the
most successful example of what are referred to as or
parameter fluctuation parameters~OPF parameters!.21

Before showing the results let us mention that, while
the positive-K model we achieved thermalization in a ran
of temperatures in the vicinity ofTc , for the negative-K
model thermalization was hardly achieved due to the qu
small acceptance rate for all the temperatures simulated.
behavior is due to the small value of the relevant tempe
tures of theK,0 model where the transition occurs~one
order of magnitude smaller!. Because the typical energ
change for both models is the same, the Boltzmann facto
drastically reduced for changes which increase the energ
theK,0 model as compared to theK.0 case. This implies
a very small acceptance rate for theK,0 models as com-
pared to theK.0 case. In Fig. 2 we show the acceptance
a function ofT for the two cases. Note that the acceptance
nearly two orders of magnitude smaller in the negat
9-6
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FIG. 2. Acceptance rate as a function ofT in
the relevant temperature ranges for theK.0
~right set of curves! andK,0 ~left set of curves!
models. For each set and from top to bottom w
haveN525,50,75,100. Note that the acceptan
rate is typically 10 times smaller in theK,0
model.
oo
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ood
model as compared to the positive model. Hence a g
sampling of the configurational space for the negative mo
can be excluded.

B. Positive-temperatureKÌ0 model

In this model there is a continuous RSB transition atTc
52. The energy and the specific heat are shown as a func
of T in Figs. 3 and 4. We also plot the result for the annea
expression only valid above the critical temperature. As
see the behavior of these quantities is similar to wha
found for the SK model: the maximum of the specific he
occurs belowTc .

The transition can be well determined by looking at theB
andG parameters as functions of the temperature. These
rameters are defined by

B5
1

2 S 32
^q4&

~^q2&!2D , ~56!
22420
d
el

on
d
e
is
t

a-

G5
~^q2&!22~^q2&!2

^q4&2~^q2&!2
. ~57!

In the infinite-size limit these parameters behave
B(T)5B̂(T)uH(Tc2T) while the behavior ofG turns out to
be simpler,G(T)5 1

3 uH(Tc2T), and hence transpires to be
better indicator for the transition. In Fig. 5 we show th
kurtosis parameterB as a function ofT for different sizes. In
the same way as in the SK model21 we find a crossing at a
temperature close toTc52. This crossing turns out to be als
present for the OPF parameterG as shown in Fig. 6.

C. Negative-temperatureKË0 model

As mentioned previously, we were not able to thermal
for this case close to the transition, so we do not have g
data for order parameters such asB or G. We show the re-
sults for the energy and specific heat in Figs. 7 and 8.
-

FIG. 3. Energy as a function ofT for the
model K.0. From top to bottom we haveN
525,50,75,100. The solid line is the replica
symmetric result.
9-7
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FIG. 4. Specific heat as a function ofT for the
model K.0. From bottom to top at highT we
haveN525,50,75,100. The solid line is the high
T result.
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As we said before we did not succeed in thermalizing
model at low temperatures to extract the behavior of
order parameters. Consequently we do not have good
for the kurtosisB, Eq. ~56!, and the OPFG, Eq. ~57!. The
only transition about which we may have some hints is
dynamical transition where the dynamics becomes extrem
slow. One could be tempted to interpret the crossing point
the specific heat at different sizes~Fig. 8! as the signature o
that dynamical transition. Despite the fact that this interp
tation seems reasonable, we are not absolutely certain an
we prefer to leave this question open.

More evidence for the dynamical transition can be o
tained by doing annealing experiments for finite cooli
rates and very large sizes. One of these cooling experime
shown in Fig. 9 for a system of sizeN51000, was cooled
down to very low temperatures staying for 105 MCS at each
temperature and changingT by 0.01. The system get
trapped below a crossover temperatureT* ;0.14 and starts
22420
e
e
ta

e
ly
r

-
so

-

ts,

to deviate from the high-T line. We plot two independen
dynamical histories to demonstrate how the departure fr
the ergodic line depends on the dynamical history signa
the presence of nonergodic effects in the dynamics~below
T* the typical relaxation time has become much larger th
the time the system remains at each temperature, i.e., 15).

Note that in this dynamical study the static transitionTK

remains completely hidden. At this temperature no div
gence of a relaxation time can be observed since that t
has already diverged above at the dynamical transition.
only way to show the existence of this transition is by es
mating the configurational entropy and determining the te
perature at which that quantity vanishes. Such a task
been successfully undertaken in the case of the rand
orthogonal model22 which displays a very similar behavior t
the K,0 model and requires the use of projection tec
niques, in the spirit of those introduced by Stillinger a
ifts
FIG. 5. KurtosisB as a function ofT for the
model K.0. From top to bottom we haveN
525,50,75,100. The crossing temperature sh
with the size towardsTc52.
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FIG. 6. OPFG as a function ofT for the
model K.0. From top to bottom at lowT we
haveN525,50,75,100. The different curves cro
close toTc52 whereGc.0.057.
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Weber, for the study of the potential energy landscape in
context of glasses.23

VI. CONCLUSIONS

In this paper we introduced a solvable model of a s
glass corresponding to a mean-field version of a spin-g
model with particular nearest- and next-nearest-neighbor
teractions. The main interest of the model is that it sho
how correlations in the couplings may completely change
character of the spin-glass transition from continuous rep
symmetry breaking to a one-step transition. We analyzed
cases: the positive modelK.0 with a phase transition an
behavior similar to that of the SK model and theK,0 model
with ideal mode-coupling behavior and a phase transit
similar to the ROM or to thep-spin model. The different
character of the transition in both models can be ascribe
the different behavior of the eigenvalue density distribut
close to the maximum eigenvalue or threshold. For theK
.0 the distribution vanishes at the threshold~i.e., l154)
22420
e

n
ss
n-
s
e
a
o

n

to

and the equilibrium distributioncondensatesaround configu-
rations in the vicinity of the maximum eigenvector. For th
K,0 the eigenvalue density diverges at the threshold~i.e.,
l250). In that case, the equilibrium configurationconden-
satesaround an extremely large number of eigenvectors w
eigenvalue close to 0. Hence, the phase space splits in
very large number~exponentially large with the size of th
system! of ergodic components or phases, these phases
responding to different eigenvectors with eigenvalue v
close to the threshold which extensively contribute to
configurational entropy. Obviously, eigenvectors of the co
pling matrix never coincide with possible configurations
the Ising system, so this argumentation must be taken onl
a rough picture. Nevertheless, the idea that the type of eig
value distribution determines the character of the transit
seems quite intuitive. Actually, if one considers spherical
stead of Ising spins, then the transition disappears for thK
,0 model but persists for theK.0 case. For theK,0
model the transition disappears because there is no long
vanishing of the configurational entropy~the classical nature
FIG. 7. Energy as a function ofT for the
model K,0. From top to bottom we have
N525,50,75,100. The solid line is the high-T
result.
9-9
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FIG. 8. Specific heat as function ofT for the
model K,0. From top to bottom at lowT we
haveN525,50,75,100. The solid line is the high
T result.
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of spins allows for a negative entropy!. The same mechanism
occurs in the ROM where the one-step transition with Is
spins disappears in case of spherical spins. In this case
density of eigenvalues is given byr(l)5 1

2 d(l21)1 1
2 d(l

11), showing that the density diverges in the vicinity of t
maximum eigenvalue.

What is the real connection between the density of eig
values and the order of the transition? The mechanism w
makes a continuous transition become first order~in the or-
der parameter! in spin-glass theory is well known and bas
on the role of the so-called complexity or~sometimes mis-
leadingly! configurational entropy.16,24,25 In mean-field
theory the complexitySc(F,T) at a given free energy an
temperature corresponds to the logarithm of the numbe
Thouless-Anderson-Palmer~TAP! free energy minima solu
tions with that free energy and temperature. The comple
defines the so-called potentialF(F,T)5F2TSc(F,T). This
quantity displays two types of different behaviors at lo
enough temperatures. For models with continuous rep
symmetry breakingF has a single minimum at the equilib
22420
g
the

-
h

of

ty

a

rium free energy valueFeq(T) while for models with a one-
step scenario this function may display a minimum at
threshold valueF* (T) higher that the equilibrium free en
ergy Feq(T). The differenceb@F* (T)2Feq(T)# defines the
complexity at that temperatureS* (T)5Sc„F* (T),T… which
is positive for one-step models but vanishes in continu
models. Because at high free energiesF(F,T);F it is clear
that the abundance of metastable solutions makesSc always
larger, raising the possibility that the potentialF(F,T) dis-
plays a minimum above the equilibrium free energy. The
fore, a divergence of the eigenvalue density at the low
value goes in the appropriate direction of generating a m
mum in F and hence making the transition become fi
order in the order parameter.

As for further directions of interest we mention the inve
tigation of the existence of a model interpolating between
K.0 andK,0 models. This would be very interesting t
understand better the mechanism which makes the spin-g
transition change from a continuous one to a discontinu
one, as well as to connect this change with the behavio
e
he
FIG. 9. Cooling experiments in the modelK
,0. The two vertical dashed lines limit the rang
of temperatures 0.13–0.14. The dotted line is t
high-T result.
9-10
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the density of eigenvalues close to the threshold. In this
rection it would be also interesting to investigate in a gene
way the type of phase transition for a generic eigenva
distribution using analytical techniques such as those de
oped for the ROM.17

It would also be interesting to investigate the behavior
the different terms in the TAP expansion to see how t
change of behavior occurs and how this is related to
geometrical properties of the free energy landscape. N
that the information contained in the density of eigenvalu
is closely related to the topological features of the ene
landscape. Therefore, it is reasonable to think that the na
of the transition in these models arises from the geometr
properties of the energy~and hence, the free energy! land-
scape.

Finally, we would like to investigate the behavior of th
model on a finite-dimensional lattice. In the simplest w
-

n-

et

ca

224209
l

l-

e

e
l

this can be done takingJ to be nearest-neighbor Gaussia
matrix and definingK according to Eq.~2!. It would be very
interesting to see how the two universality classes describ
the mean-field behavior are modified in the presence of
tivated processes and how they manifest themselves in
dynamical properties of realistic systems. This could gi
additional understanding about why some models behave
one way or another and how topological properties of t
landscape influence the dynamical behavior of real system
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