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Squared interaction matrix Sherrington-Kirkpatrick model for a spin glass
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The mean-field theory of a spin glass with a specific form of nearest- and next-nearest-neighbor interactions
is investigated. Depending on the sign of the interaction matrix chosen we find either the continuous replica
symmetry breaking seen in the Sherrington-Kirkpartick model or a one-step solution similar to that found in
structural glasses. Our results are confirmed by numerical simulations and the link between the type of
spin-glass behavior and the density of eigenvalues of the interaction matrix is discussed.
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I. INTRODUCTION relations introduced in the couplings can lead to a physics
different to that of the SK model. In addition this model
The Sherrington-Kirkpatrick(SK) modef is the most allows one to discuss the role of the density eigenvalues of
well-known example of a disordered and frustrated system iihe interaction matrix in the spin-glass behavior.
the field of spin glasséslt corresponds to the infinite-range
version of the Edwards-AndersoffitA) model introduced Il. MODEL
earlier in 1975 In the EA model quenched disorder is intro-
duced in the random sign of the exchange couplings betwee,
nearest-neighbor spins on a lattice. The infinite-ranged ver-
sion is the natural mean-field version of the EA model, in the 1
same sense as the infinite-range ferromagnet is the mean- H=-— E KijSS;, (1)
field theory for the Ising model. A nearly complete solution 2 7]
of the_ SK model has been fou‘hd\/hlc_h has raised subtle _the spinsS, (1<i=<N) being Ising spins taking the values
qguestions about the nature of the spin-glass phase shOW|nlgl_ Here we take the interaction matkxto be of a squared
that the mean-field theory of spin glasses is ConSiderabIYnteraction type:
more complex than the standard mean field of, say, ferro-
magnetic systems. Plenty of questions were posed after it K=J3J", )
was shown that the correct thermodynamic solution had to be
understood in terms of a replica-symmetric broken solutionwhere theJ;; are independent Gaussian random variables
For instance, does the ergodicity breakiigplied by rep-  such that);;=0 andJ;;Jy= 65; /N. Here the overbar de-
lica symmetry breakingalso occur in short-range systems? notes the disorder averaging and we note that the matrix
Also, has replica symmetry a true physical meaning inashere is not symmetric. The same model wittsymmetric
much as time-reversal symmetry has for usual ferromagnetsfay be studied; however, takilgas nonsymmetric consid-
After many years of research these questions have turned ogtably simplifies the analytical study of the model. We note
to be extremely difficult and in the meantime criticisms ques-+that, in finite dimensions, il were a next-nearest-neighbor
tioning their relevance regarding our understanding of exinteraction, thenK is a matrix which has interactions be-
perimental systems have also been raised. Scaling theories feen next nearest neighbors.
finite-dimensional spin glasses, so-called droplet matlels, In this paper we will consider two models: the positive
seem to be at variance with the image of replica symmetryemperature model wheke=JJ" (we will refer to this as the
breaking. It is thus useful to introduce new solvable modelk >0 mode) and the negative temperature model whisre
which correspond to mean-field versions of different finite-= — JJ7 (we will refer to this as th& <0 mode). Contrary
dimensional problems in order to improve our understandingo what happens in the usual Sherrington-Kirkpatrick model,
of the spin-glass problem. the model(1) is not invariant under the transformatiéh—
In this paper we introduce a solvable spin-glass model-K. Clearly K is a matrix which is positive definite and
which corresponds to the mean-field version of the Edwards-- K a matrix which is negative definite.
Anderson model but includes next-nearest-neighbor interac- For a symmetric matrixJ taken from the Gaussian en-
tions in a particular way. We will refer to this model as the semble, the density of eigenvalueds given by the Wigner
squared interaction matrig§IM) SK model. The motivation semicircle laf
is that the model admits the possibility of being realized on a
finite-dimensional lattice and incorporates correlations be- 1
tween the first-nearest-neighbor and second-nearest-neighbor PaN) = 5—NA— N2, 3)
coupling interactions. At a first glance it seems strange to
consider a next-nearest-neighbor interaction in a totally conwith X [ —2,2]. In the corresponding spherical spin model,
nected spin-glass model; however, we shall see that the coat low temperature, the system minimizes its energy via a

The model we study is a totally connected one with
amiltonian
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macroscopic condensation onto the eigenvector correspondhere it was shown that the equilibrium behavior is the same
ing toA=2. In the case of the SK model this condensation isfor both the SK and Littlé¢for both asymmetric and symmet-
not possible due to the discrete nature of the spins; howeveric couplings models. Here we have verified numerically
it seems reasonable to assume that the depgixy for \ that, in our model also, a symmetric or asymmetric matrix
~2 plays an important role in the low-temperature behaviorleads to the same physical behavior.

In our model, ifJ is taken to be symmetric, the density of

eigenvaluesc is clearly given by lll. POSITIVE-TEMPERATURE K>0 MODEL
1 We introduce replicas of both the Gaussian and Ising
p+k(K)= ———=V4Fk, (4) spins in order to average over the disorder via the replica
Am\*EK method, obtaining
where nowk e[0,4] in the +K or K>0 model andx e o B2
[—4,0] for the —K or K<0 model. In fact one can show Zn=T|’Sa’X_anF{— > >SS
thaf this is also the density of eigenvalues in the casd of b 2N 7T ap

nonsymmetric. Hence, in the positive case, the low-energy BN
region of the interaction matrix has the same form as the SK =Tra x?eXF{— 2 Qabpab} (9)
model as one would have in a spherical model a condensa- P 2 ap
tion onto the eigenvector of the largest eigenvalue. In thgyhere we have introduced the Ising and parabolic spin over-
negative case, however, the largest eigenvalues ace-ét, laps
but the density of eigenvalues now diverges in this region. In
the corresponding spherical model it is easy to see that this 1 b 1 ab
eliminates the finite-temperature phase transition. This hap- Qab=1y >SS’ and Pab=y > X (10
pens in exactly the same way that the divergence of the den- ' '
sity of occupation of the zero-energy states for free bosons iffhe trace over the Ising spins is accomplished using a
two or less dimensions eliminates the finite-temperatured-function representation of the overlap constraint:
Bose-Einstein transition.

In the following treatment we consider tie>0 model, Tread EQ - s
although the same mathematical treatment we present here SO\ 2 vab T
can be applied to thE <0 case on changing the sign of the

inverse temperatur@. The Hamiltonian of the model can 1 q
thus be written as T om” 277)“2-”5,a Aap
1 N 1
H=- 2 HEk Jik‘]jksis' ! 5 X ex;{ EE AapQap— EAabE Saﬁb)
ab i

and the partition function for the model is therefore given by

N
ZJ dA peX 5% AapQap+NIn(Zg) |,

"2
Z=Treex B > 3idiS S| (6) (2m)
i 2 1K (12)
In order to facilitate taking the disorder average we make avhere
Hubbard-Stratonovich transformation by introducing the L
auxiliary Gaussian sping to obtain 7= Trsaex;{ -3 Z AabSaSb>. (12)
ab

Z:Trsi ,XieXF{ ﬁ; J” Sixj

) (7)  The same procedure is used for the Gaussian spins to yield

where Tr indicates the trace over the Gaussian spiand is In[Z"]
defined {;y N exrsS™IQPALL, (13
(B Bx2 whereS** [Q,P,A,I'] is the saddle point action,
TFXZ f dx Zex;{ — T) . (8)

B 1
S*[Q,PAI=2 Part = > A
In the form (7) the model is that of an asymmetric Little [Q 1=3 % QavPant 3 % abQab

modef but where one of the two sets of spins is Gaussian

rather than Ising. Interest in the Little model arose one de- n
cade ago, in the context of neural networks as the parallel

dynamics of the standard Hopfield moffetoincides with

the sequential dynamics in the Little mod&IThe corre-

sponding mean-field spin-glass model was studied in Ref. 1and

; T apPaptIN(Zg) +IN(Z,),

N| -

(14
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1
Z,=Treexpg — = > Fabxaxb). (15)
2 ab

The saddle point equations with respectRg, and Q,, al-
low the evaluation of the saddle values of the varialbgg
andl,p,

IS**

9P =0=Ty= _ﬁzQab- (16)

a

a5+ ;

Q.1 =0=A,p=—B"Pap, (17)
a

leading to the reduced saddle poBit[ Q,P] such that

In[Z"]
=extrS*[Q,P], (18
with
2
S*[va]:_% < QabPab
Bz
+In Trsaexp( 7Eb Pabsasb”
1
— ETr In(l - BQ) (19

and where the Gaussian integral gividg has been evalu-
ated. The saddle point value Bt is given by

S p=ti-po)t
Qg AR

thus leading to the new reduced actigQ] such that

(20

In[Z"]

(21)

with
1
S[Q]=5[n=Tr(1- Q) *~Trin(I - BQ)]

+In Trsaexr{g % [(1—BQ) 11,57 |.
(22)

The saddle point equation from E@2) is

2
—pQ) 1+ 2 (1-pQ) A=,

(23

B ,, B
—5(=8Q) 2+ 5

where the elements of the matuxare given by

PHYSICAL REVIEW B 65 224209

TrSaSaSbexr< g% [(1-8Q)" 1]abSaSb)

Aap= (24)

Trsaexp(§ > [0 —ﬁQ)l]absasb)

We use the fact that the matrix{ 8Q) should not be sin-
gular at the saddle poiribtherwise the saddle point lies on a
branch cutto conclude

Q=A, (29
which is the physical saddle point equation f@r We pro-
ceed by studying the replica-symmetric form of this action
with

Qab_(l_q)éab—’—quab! (26)

whereU,,=1 for all (a,b). After some algebra one finds
that

Q79 _
n

s(q)=lim ~nf1-p-)]
n—0 2

_1Bq[-1+2Bq(1-q)]

2 [1-B1-o) V27
7 Bzq
X exy< ?) In| 2 cosh m (27

Taking the saddle point with respect goabove yields

ds(q) _p° (Ba+B-1) f dz _z_z)
dg 2 [1-B1-9)|) \2x 2
Bz\q )
Xt""”ﬁ([l B1-0)] ql
=0. (28)
There are two sets of possible solutions to E2):
S 29
T
and
[ dz. Bz\q )
- ex"( 2/ H—([l—ﬁ(l—Q)] 30

However, as mentioned above, the soluti@) is unphysi-
cal. The solution(30) corresponds to the physical solution
(25 and only has the paramagnetic solutigr=0 for T
>T.=2. Hence forT>T.=2 one is (in the replica-
symmetric schemen a paramagnetic phase.

The energy per spii obtained from Eq(22) is

1, 1 .
E=lim ~5| 1~ 7 TM(1-8Q) Y,

whereQ,, here is the solution to the saddle point equation.
The replica-symmetri€RS) energy per spin is thus

(31)
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1/(1-g)[1-p(1-a)]+q , f 1 B
RS_ _ — - _

S N EE (32 San= 875 5=IN(2) = 5I(1+B)+ 575 (39
Hence, forT>T.=2, that is to say in the paramagnetic T
phase where one can be sure that the RS solution is correct, The annealed energy is given by
one has 1

g 33 ) .
S 21-p)

The annealed solution can only be valid as longag is
For T<1 a low-temperature expansion of E§0) yields positive. If there exists ByoungSuch thatS;,{ Bpound <O for
B> Boounds then Buoung gives us an upper bound for the in-
T 3 verse temperature at which the equilibrium transition occurs,
q=1- +0O(T). (34 .. In the Adam—Gibbs—Di Marzio scenatioTy=1/8«
1+ VP2 K
corresponds to the temperature where the configurational en-
With the replica-symmetric ansatz, in the spin-glass phasdjopy S.on Vanishes and the subindéxin B stands for the

the ground-state energy is Kauzmann temperature which originates from the Kauzmann
paradox* which is based on the observation that an extrapo-
RS 1/2 22 lation of a high-temperature entropy cannot cross the low-
Ecs=—5| -+ +1 (39 temperature solution. Sometimég is also referred to as the
2 N p : R

ideal glass transition temperature, not to be confused with
As in the SK model, if one computes the entropy correspondthe experimental glass transition temperatiigein the con-
ing to this replica-symmetric solution within the spin-glasstext of finite-dimensional glasses which turns out to be only
phase, one finds a temperature where it becomes negative,convention corresponding to an extremely large relaxation
indicating the need to break replica symmetry. We believaime as opposed to a diverging one. Because both entropies
that the continuous nature of the transition, however, sug¢S,,,andS..,) are monotonically increasing functions of the
gests that the underlying physics is the same as that of themperature an®.,<S,nn, this means thaBpoung™ Bk IS
SK model and the Landau expansionS)R,,] has the same an upper bound of the ideal glass transition temperakure
generic form as that of the SK model, indicating a continu-One finds thatByou,~8.82 and henceT oy 1/Buound
ous replica symmetry breakingRSB) which sets in afl.. ~0.113.
However, the RSB solution is very sensitive to the details In the replica-symmetric ansatz the equation for the
and coefficients of the Landau expansion and this pictur&dwards-Anderson order parametgis
needs to be confirmed. The introduction of next-nearest-
neighbor interactions thus does not qualitatively change the
behavior of the model, in agreement with the previously dis- q= —ex;{
cussed intuitive notion thafor a given spin typethe behav-

ior of the density of the largest eigenvalues determines the o . )
nature of the transition. The examination of this equation shows that one can no

longer have a continuous phase transition frgm0. For
low temperatures one can show that a solution withon-
zero exists and that

The Hamiltonian(1) is not invariant under the transfor-

Bz\q

Pl ey ey

) (40

IV. NEGATIVE-TEMPERATURE K<0 MODEL

mation K— —K. In this case the action for the replicated T
partition function is given by q=1- erO(Tz). (41)
i
1
Q=5 [n—"Tr(l +BQ) ' =Trin(1+ Q)] Numerically the inverse temperatugs® at whichq can

become nonzero is found to K8ES~29.3, thus givingTR®
~0.034. This is much lower thaiy above and hence the
replica-symmetric solution cannot eliminate the entropy cri-
sis atT,ung- Clearly one must resort to a replica-symmetry-
(36) broken ansatz. Guided by the results of our RS calculation
and the numerical simulations we make the random energy
PnodeI(REM) (one-step like ansatz where the matri® is

given by n/m matricesQ about the diagonal o of size

1 1 mxm and is zero outside these blocks. The ma@itakes
fann: - /—Bln(Z) + ﬁ'ﬂ(l'f’ B) (37) the form

+In Trgaex —gzb [(1+BQ) 11,37 |.

In the high-temperature phase we expect the annealed a
proximation to be exact and find

The annealed entropy per s, is thus O=1(1-q)+qU, (42)
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wherel is the identity matrix and) is the matrix with each
element equal to 1. We note the following results:

(1+8Q)~ 1_m

. BqU
[1+B(1-q)][1+B8(1—q)+Bmq]’
(43

Tr(1+,8Q)‘1=%Tr(1+,8(~3)‘1

_n 1 N m—1 )
mil+B(1-q)+Bmg 1+p(1—-q)/)’
(44)
n ~
Trln[(1+,8Q)‘1]=ETrIn[(1+,8Q)‘1]
= L[ 1+ B(1-0)+ Aam]

+(m=1)In[1+B(1-q)]}, (45

and

In Trsaexp( gzb [(1-8Q) 1]abSaSb)

:%In TI’San[< g% [(1+B0Q) —1]absasb)

[l 2

2[1+/3 1 a1t m
x{2 COSfﬂﬁZa(q,m,B)]}m], (46)
where
Ja
a(q,m,B)=

V[1+B(1-g)][1+B(1—q)+Bmd] w

One therefore finds the one-step action

SLQ1?
n

s(qm)= lim

:l[ —B%q(1—q+mq)
2[[1+B(1-g][1+B(1—q)+mpBq]

1
— 1+ B(1-a)+mpa]

1 1
_(1_ E)|n[1+[3(1—q)]}+ —Infz(g,m)],
(48)

PHYSICAL REVIEW B 65 224209

where

dz 1
z(g,m)= f Eex;{ — 522>{2 cosh Bza(q,m,B)]}™.

(49
One finds that
P
Es(q ,m)
— BPa(q, B)M(l—m)
aq
1 dz 1
_ = _ -2
X{q z<q,m>f N 22)
x{2 COSHLBZa(q,m,B)]}mtanf?[Ba(q,m,B)Z]l-
(50

The saddle point o(q,m) corresponding to the solution
(25) is thus

_;J‘Eex —EZZ){ZCOSIﬁ za(q,m,B)]}"
“2am) f2n 2 pretamp

X tani[ Ba(q,m,B)z]. (51

If one considers the casa=1, this solution must give the
same free energy as the replica-symmetric free energy, which
above the static transition temperature is the annealed free
energy. However, one can find a nonzero valug efhich
signals a dynamical transition where the system becomes
stuck in metastable states of high free energy. Settiagl

in Eq. (51) gives
| _exp( 2|

x cosh Bza(q,1,8) Jtantf[ Ba(q,1,8)Z]. (52

For smallB this equation has only the solutiar=0. How-
ever, atBy=7.325 (T4=1/B84~0.137) one finds a nonzero
value of g with g~0.922. This transition corresponds to
what is known as the mode-coupling transition in mode-
coupling theories of the glass transition in their idealized
version®

The precise way to locate both transitiong; (and T)
was suggested in a series of papers by Kirkpatgtlal'®
and later on applied to several models such as the random
orthogonal modet! Potts glasse¥ and mean-field quantum
spin glassed’ The static transition is located by expanding
the corresponding free enerdyq,m) aboutm=1 and writ-

ing

q=exp( > B%a(q,1,8)?

ﬁf(q:m):ﬁfpara+(m_l)V(Q)+O((m_ 1)2)1 (53

wheref .= f(0,1) is the paramagnetic free energy and
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FIG. 1. Behavior of the potentiaf(q) on loweringT. The dif-
ferent regimes ar@>Ty (solid ling), T=Ty (dotted ling, Tx<T
<T4 (dashed ling andT=T, (dot-dashed ling

V(q)— Bﬁ (q m) s(q,m)

om (54)

m=1—

1

m

The static transitiorT is given by the values oBx where
V(gk)=V'(gx)=0. The dynamic transitioff 4 is given by

PHYSICAL REVIEW B65 224209

Hence we see that in the cake<0 the physics of the
problem is drastically altered by the interaction matrix and
that the model now exhibits the phenomenology dfreean-
field) structural glass.

V. NUMERICAL SIMULATIONS

We have verified the main predictions for the SIM-SK
model with positive and negative temperature by doing some
numerical simulations in both cases. For the positive-
temperature model we checked that the transition indeed oc-
curs atT=2. This has been done applying standard finite-
size scaling techniques useful for investigating small-size
systems. For the negative model we found that strong freez-
ing occurs at the mode-coupling temperatliie=0.137 as
happens for other models such as hepirt® or the random
orthogonal mode(Ref. 17).

A. Some details of the simulations

Simulations consist of standard Monte Carlo annealings
using the Metropolis algorithm. The system is cooled down
from high temperature@ypically twice the value ofT for
the K>0 model and twicdl 4 for the K<0 case. Annealing
schedules are as follows: evekyl = 0.2 for theK >0 model
and everyAT=0.01 for theK<<0 model the system is al-
lowed to equilibrate over 1000 Monte Carlo stéptCS) and
statistics are collected during 3(MCS at each MCS. The

the conditionsV’(qg4) =V"(dqg) =0 which correspond to the sizes are smallN=25,50,75,100, but enough to locate the
marginality condition and coincide with the solution found at transition with some precision. The simulated range of tem-

m=1 and reported above.
The explicit form of the potentiaV is

BA(1+2p)
2(1+ A1+ b(1—-q)] 2'”[”ﬁ(1 a)]

Vig)=3

1 1 ) 5
—Eln(1+ﬂ)—ex —5,8 a(q,m,B)

<[ e - 37

X cosli Bza(q,1,8)]In{cosh Ba(q,1,8)z]}.
(59

peratures is fronT =4 down toT=0.2 for theK>0 model
and fromT=0.3 down toT=0.01 for theK<<O model. The
number of samples were several thousands for all sizes.
Due to the long-range character of the interactions, the
dependence of the time needed to do a MCS grows quite fast
with the size of the systertactually likeN?). Therefore, for
the statics, we had to limit our investigation to relatively
small sizes. Moreover, a careful study of the relevant param-
eters for the transitiofisuch as the kurtosis or the param-
eter to be defined belgwequires a large number of samples
(this is especially true for parameters likewhich measure
sample-to-sample fluctuationsThis last parameter is the
most successful example of what are referred to as order-
parameter fluctuation parametéf3PF parametey$!
Before showing the results let us mention that, while for
the positiveK model we achieved thermalization in a range
of temperatures in the vicinity of;, for the negative<

Using this to compute the static transition one finds that thisnodel thermalization was hardly achieved due to the quite

gives Tk=~0.116 andqx=~0.985. The behavior o¥(q) on
lowering T is shown in Fig. 1.
Note that atT,4 the value of the potentiaV (qy) is finite

small acceptance rate for all the temperatures simulated. This
behavior is due to the small value of the relevant tempera-
tures of theK<0 model where the transition occu¢sne

and corresponds to the configurational entropy at that temerder of magnitude smallgr Because the typical energy

perature. AsT decreases beloW,, the analytical continua-
tion of the solutionqy to the saddle point of Eq48) in-
creases while the value ofmy(T) decreases.
configurational entropy evaluated at<Ty is Si(T)
=B F(Ay(T),my(T))—fpad T)] and decreases whil€ de-
creases down to a temperatdrg where it vanishes angy
is the analytically continued value of(Tk).

change for both models is the same, the Boltzmann factor is
drastically reduced for changes which increase the energy in

The theK<0 model as compared to tie>0 case. This implies

a very small acceptance rate for tKe<O models as com-

pared to theK>0 case. In Fig. 2 we show the acceptance as
a function ofT for the two cases. Note that the acceptance is
nearly two orders of magnitude smaller in the negative

224209-6
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1 T T

0.1

FIG. 2. Acceptance rate as a functionTfn
the relevant temperature ranges for tke>0

8
- i (right set of curvepandK <0 (left set of curvep
8 models. For each set and from top to bottom we
= haveN=25,50,75,100. Note that the acceptance
rate is typically 10 times smaller in thK<0
model.
0.001 ]
0.0001 1 1
0.01 0.1 1 10
T
model as compared to the positive model. Hence a good 2))2_ ((g2))?
. O \ (™) = («a%)
sampling of the configurational space for the negative model = ——. (57
can be excluded. Q@) —(«a9))
B. Positive-temperatureK>0 model In the infinite-size limit these parameters behave as

In this model there is a continuous RSB transitionrat  B(T)=B(T) 6u(Tc—T) while the behavior ofs turns out to

. 'l v .
=2. The energy and the specific heat are shown as a functidtf SIMPIerG(T)=36u(T.—T), and hence transpires to be a
of T in Figs. 3 and 4. We also plot the result for the annealed?€tter indicator for the transition. In Fig. 5 we show the
expression only valid above the critical temperature. As we<Ur0Sis paramete as a functlona]gﬂ' for different sizes. In
see the behavior of these quantities is similar to what i$"€ Same way as in the SK moteive find a crossing at a
found for the SK model: the maximum of the specific heatl€MPperature close .=2. This crossing turns out to be also
occurs belowT, . present for the OPF parame@ras shown in Fig. 6.

The transition can be well determined by looking at Bhe
andG parameters as functions of the temperature. These pa- C. Negative-temperatureK<0 model

rameters are defined b
y As mentioned previously, we were not able to thermalize

1 T for this case close to the transition, so we do not have good
( — ﬂ) , (56  data for order parameters suchB®or G. We show the re-
((g?))? sults for the energy and specific heat in Figs. 7 and 8.
'01 T T T T T T T

2

0.2 |
-0.3 |

04 |

FIG. 3. Energy as a function of for the
model K>0. From top to bottom we havél
=25,50,75,100. The solid line is the replica-
symmetric result.

-06

Energy

0.7

0.8 |

-09 |

1.1 F

12 1 ! ! 1 1 1 !
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0.45

04

0.35 -

03 |
2 oasp FIG. 4. Specific heat as a function Bffor the
= model K>0. From bottom to top at higl we
3} 02 haveN=25,50,75,100. The solid line is the high-

T result.

0.15

01 |

0.05

0 1 1 1 1 1 1 1
0 0.5 1 15 2 25 3 3.5 4

As we said before we did not succeed in thermalizing thgo deviate from the higf- line. We plot two independent
model at low temperatures to extract the behavior of thalynamical histories to demonstrate how the departure from
order parameters. Consequently we do not have good dathe ergodic line depends on the dynamical history signaling
for the kurtosisB, Eq. (56), and the OPFG, Eq. (57). The  the presence of nonergodic effects in the dynanfbedow
only transition about which we may have some hints is theT* the typical relaxation time has become much larger than
dynamical transition where the dynamics becomes extremelyhe time the system remains at each temperature, i.8), 10
SIOW. One COUId be tempted to interpret the CI’OSSing pOint for Note that in th|s dynamica' Study the static transitm
the specific heat at different sizésig. 8) as the signature of emajins completely hidden. At this temperature no diver-
thgt dynamical transition. Despite the fact that this in_terpre-gence of a relaxation time can be observed since that time
tation seems reasonable, we are not absolutely certain and §ag 4jready diverged above at the dynamical transition. The
we prefer tc_) leave this question open. . only way to show the existence of this transition is by esti-

_More ewde_nce for the dynamlt_:al transition can be .Ob'mating the configurational entropy and determining the tem-
tained by doing annealing experiments for finite cooling : . .

; . . erature at which that quantity vanishes. Such a task has
rates and very large sizes. One of these cooling expenmentgéen successfully undertaken in the case of the random-
shown in Fig. 9 for a system of siZé¢=1000, was cooled h | modét which disol imilar behavi
down to very low temperatures staying for’10CS at each orthogonal moder whic ISpiays a very simiiar be _aV|ort0

the K<0 model and requires the use of projection tech-

temperature and changing by 0.01. The system gets . . . _ -
trapped below a crossover temperatiife~0.14 and starts niques, in the spirit of those introduced by Stillinger and

1

FIG. 5. KurtosisB as a function ofT for the

@ otr model K>0. From top to bottom we havél
=25,50,75,100. The crossing temperature shifts
with the size towardJ.=2.

001 1 1 1 1 1 1
0 05 1 15 2 25 3 35 4
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01|

FIG. 6. OPFG as a function ofT for the
model K>0. From top to bottom at lowl we
haveN=25,50,75,100. The different curves cross
close toT,=2 whereG.=0.057.

0.001
0

Weber, for the study of the potential energy landscape in thand the equilibrium distributionondensatearound configu-
context of glasse® rations in the vicinity of the maximum eigenvector. For the
K<0 the eigenvalue density diverges at the threstiodd,
N_=0). In that case, the equilibrium configuratioonden-
satesaround an extremely large number of eigenvectors with
In this paper we introduced a solvable model of a spineigenvalue close to 0. Hence, the phase space splits into a
glass corresponding to a mean-field version of a spin-glasgery large numberexponentially large with the size of the
model with particular nearest- and next-nearest-neighbor insystem of ergodic components or phases, these phases cor-
teractions. The main interest of the model is that it showsesponding to different eigenvectors with eigenvalue very
how correlations in the couplings may completely change thelose to the threshold which extensively contribute to the
character of the spin-glass transition from continuous replicgonfigurational entropy. Obviously, eigenvectors of the cou-
symmetry breaking to a one-step transition. We analyzed tw@ling matrix never coincide with possible configurations of
cases: the positive mod&>0 with a phase transition and the Ising system, so this argumentation must be taken only as
behavior similar to that of the SK model and tiec0 model  a rough picture. Nevertheless, the idea that the type of eigen-
with ideal mode-coupling behavior and a phase transitiorvalue distribution determines the character of the transition
similar to the ROM or to thep-spin model. The different seems quite intuitive. Actually, if one considers spherical in-
character of the transition in both models can be ascribed tetead of Ising spins, then the transition disappears foKthe
the different behavior of the eigenvalue density distribution<O model but persists for th&>0 case. For thek <0
close to the maximum eigenvalue or threshold. For ikhe model the transition disappears because there is no longer a
>0 the distribution vanishes at the threshéi@., N\, =4)  vanishing of the configurational entrofthe classical nature

VI. CONCLUSIONS

-0.36

04 F

FIG. 7. Energy as a function of for the
model K<0. From top to bottom we have
N=25,50,75,100. The solid line is the high-
result.

-0.42 -

Energy

_0.44 | /,/” .

-0.46 - -

[¢] 0.05 0.1 0.15 0.2 0.25 0.3
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0.5

0.45

0.4

0.35

0.3

§ FIG. 8. Specific heat as function @ffor the
g 025 model K<0. From top to bottom at lowl we
(% 02 haveN=25,50,75,100. The solid line is the high-
| T result.
0.15

0.1

of spins allows for a negative entropfrhe same mechanism  rjum free energy valu€{T) while for models with a one-
occurs in the ROM where the one-step transition with Isingstep scenario this function may display a minimum at a
spins disappears in case of spherical spins. In this case, thiereshold valug=* (T) higher that the equilibrium free en-
density of eigenvalues is given hy(\)=38(A—1)+36(\  ergy Fe{T). The difference[F*(T) —F{T)] defines the
+1), showing that the density diverges in the vicinity of the complexity at that temperatu® (T)=S.(F*(T),T) which
maximum eigenvalue. is positive for one-step models but vanishes in continuous
What is the real connection between the density of eigenmodels. Because at high free energled=,T) ~F it is clear
values and the order of the transition? The mechanism whicthat the abundance of metastable solutions m&kesways
makes a continuous transition become first or@erthe or-  larger, raising the possibility that the potentfa(F,T) dis-
der parametérin spin-glass theory is well known and based plays a minimum above the equilibrium free energy. There-
on the role of the so-called complexity gometimes mis- fore, a divergence of the eigenvalue density at the lowest
leadingly configurational entrop}#**?* In mean-field value goes in the appropriate direction of generating a mini-
theory the complexityS,(F,T) at a given free energy and mum in ® and hence making the transition become first
temperature corresponds to the logarithm of the number odrder in the order parameter.
Thouless-Anderson-PalméFAP) free energy minima solu- As for further directions of interest we mention the inves-
tions with that free energy and temperature. The complexityigation of the existence of a model interpolating between the
defines the so-called potentil(F, T)=F —TS(F,T). This K>0 andK<0 models. This would be very interesting to
quantity displays two types of different behaviors at low understand better the mechanism which makes the spin-glass
enough temperatures. For models with continuous replica&ansition change from a continuous one to a discontinuous
symmetry breakingb has a single minimum at the equilib- one, as well as to connect this change with the behavior of

0.32 — T T T T T T
-0.34
-0.36

038 FIG. 9. Cooling experiments in the model

<0. The two vertical dashed lines limit the range
of temperatures 0.13-0.14. The dotted line is the
high-T result.

Energy

-0.4

-0.42

0.44

.0.46 | fE 1 1 1 1 1 1
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
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the density of eigenvalues close to the threshold. In this dithis can be done taking to be nearest-neighbor Gaussian
rection it would be also interesting to investigate in a generamatrix and defining< according to Eq(2). It would be very
way the type of phase transition for a generic eigenvaluénteresting to see how the two universality classes describing
distribution using analytical techniques such as those devethe mean-field behavior are modified in the presence of ac-
oped for the ROM. tivated processes and how they manifest themselves in the
It would also be interesting to investigate the behavior Ofdynamical properties of realistic systems. This could give
the different terms in the TAP expansion to see how thisyqditional understanding about why some models behave in
change of behavior occurs and how this is related to thgne way or another and how topological properties of the

geometrical properties of the free energy landscape. Notgndscape influence the dynamical behavior of real systems.
that the information contained in the density of eigenvalues

is closely related to the topological features of the energy
landscape. Therefore, it is reasonable to think that the nature
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