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Momentum spread of spontaneously decaying cold gas in thermal radiation

C. H. Raymond Ooi,* Karl-Peter Marzlin,† and Ju¨rgen Audretsch‡
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We study the quantum dynamics of the center-of-mass momentum distribution for the populations of a cold
gas with two-level system undergoing spontaneous decay and coupled to a Markovian thermal reservoir at
arbitrary temperature. We derive the momentum-convolutionless coupled equations for momentum Fourier
transform of the populations which can be easily solved numerically and analytically for a specific internal
scheme and for zero-temperature cases. The time and momentum evolutions of the populations are obtained by
inverse Fourier transform. The momentum spread and the center-of-mass entropy across one momentum
dimension are computed and compared for different internal schemes, between zero-temperature and finite-
temperature cases and betweenp ands6 transitions. For initial subrecoil momentum width, thes6 transition
displays a two-peak feature. Our results well describe the momentum spread dynamics of cold gas in thermal
radiation at early time and complement the results based on Fokker-Planck equation.
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I. INTRODUCTION

The theory of spontaneous emissions without quantiza
of the center-of-mass~c.m.! motion has been developed lon
ago@1# based on the master equation. In the last two deca
the momentum transfer between photons and a particle
radiative processes has been practically used to manip
the motion of particles in laser light@2#. This is the concept
behind the development of laser cooling@3# and atom optics
@4#. In laser cooling, spontaneous emission is the dissipa
mechanism which removes the entropy from a gas. The
quantum theory of optical laser cooling of atoms has b
developed by neglecting the contribution of the thermal p
tons from the surrounding@5#. This is justified for optical
transition occurring in atoms. For radiative transition at roo
temperature in the infrared frequency and below, the m

thermal photon numbern̄ may be non-negligible. For opti
cally thick media, there is an additional source of incoher
radiation with thermal nature from radiation trapping of t
spontaneous emitted photons from other particles@6#. Inco-
herent thermal excitations would have equally important
fects as free spontaneous emissions on the momentum d
bution of an ensemble of gas. This is the case of a typ
molecular gas, where fluorescence in the infrared and e
microwave regimes are unavoidable. The typical infra
photon momentum is only about 10–50 times smaller th
an optical photon momentum and the momentum spr
from spontaneous decay would be significant compared
the momentum width for ultracold gas.

The momentum spread dynamics from spontaneous e
sions in thermal radiation has been developed by Dalib
and Cohen-Tannoudjiet al. in Ref. @11# in the ‘‘hot gas’’
regime where the conditionuPu@u\ku enables perturbative
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expansions in orders of\k, resulting in the Fokker-Planck
equation. From the perspective of the booming researc
cold gases, it would be interesting to investigate the natur
the momentum spreading from spontaneous emissions
cold gas. In this paper, we restrict our considerations to
dilute and cold gas where the momentum width of the d
tribution is sufficiently narrow~in the order of recoil momen-
tum! such that (uPu!Mc). This enables us to derive accura
theoretical solutions for finite or zero thermal radiation te
perature and study the c.m. momentum spreading from
spontaneous decay. The results are also valid in the reg
uPu&u\ku which is complementary to the regime describ
by the Fokker-Planck equation .

We develop the theory starting from the master equat
with quantization of the c.m. momentum and derive the g
eralized Bloch equations for the populations~presented in
Appendix A!. In Sec. II, we show that the cold gas regim
enables the Bloch equations to be expressed in closed f
Convolutionless first-order coupled differential equations
obtained by Fourier transform, which are easily solved n
merically for the populations in time and momentum d
mains for arbitrary initial distribution by numerical integra
tion followed by inverse fast Fourier transform. Analytic
solutions of the populations in the time domain and the m
mentum Fourier-transform domain are obtained for a spec
internal scheme. We also derive the transient solutions of
momentum-summed populations for the general case. In
III analytical expressions are obtained for the populatio
without the thermal radiation for the initial Gaussian dist
bution. In Sec. IV the results for pure two-level system a
presented. Expressions for the steady-state momentum d
butions, momentum-summed populations and internal
tropy are also derived. The c.m. entropy is computed fr
the probability momentum distribution while the internal e
tropy from the momentum-summed populations~see Appen-
dix B!. The computed results are discussed in Sec. V. Fina
in Sec. VI we compare valid range of our results with th
obtained from the Fokker-Planck equation for hot g
regime.
©2002 The American Physical Society13-1
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II. COLD GAS IN THERMAL RADIATION

The generalized Bloch equations for momentum and time-dependent populations of a single excited state and thre
erate ground states,j coupled to thermal radiation with the Born-Markov, dipole and rotating wave approximations are
by

]ree~P,t !

]t
5G

3

8pE dv
v3

vo
3E0

2p

dfE
0

p

du(
j

(
q50,61

Cq, j
2 Nq~u!d~DkP

1 !H 2~ n̄~v!11!ree~P,t !1n̄~v!r j j S P2k̂
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where G8(do
2vo

3/3«o\pc3), n̄(v)8(e\v/kBT21)21,
Nq(u)8dq0sin3u1dq6(sinu21

2sin3u), D j kP
6 8v2vo j

2P•k̂v/Mc6\v2/2Mc2, and k̂8(sinu cosf,sinu sinf,
cosu). The detailed derivation of Eqs.~1! starting from the
master equation is presented in Appendix A. The right-ha
side of Eqs.~1! are convoluted in the frequency and angu
variables in a complicated manner due to the angular de
dence in thed function and cannot be expressed exactly in
closed form.

We consider a distribution of cold gas (uPz™Mc) where
the maximum Doppler frequency,uPmaxv/Mcu is negligible.
For the typical transition frequency at optical frequency a
below,vo&1016 s21 and particle mass ofM*10 a.m.u., the
corresponding recoil frequencyv r;\vo

2/2Mc2&10210vo is
negligibly small compared to the transition frequencyvo .
Therefore, the contributions of the Doppler frequency a
recoil frequency ind(v2vo2vP6v r) can be disregarded
and Eqs.~1! is reduced to a simpler form

]ree~P,t !

]t
52G~ n̄11!ree~P,t !1Gn̄ (

q50,6
aqr̃qq~P,t !,

]rqq~P,t !

]t
5G~ n̄11!aqr̃ee

q ~P,t !2Gn̄aqrqq~P,t !, ~2!

with the definitions

r̃qq~P,t !8
3

8pE0

2p

dfE
0

p

duNq~u!rqq~P2k̂\ko ,t !,

r̃ee
q ~P,t !8

3

8pE0

2p

dfE
0

p

duNq~u!ree~P1k̂\ko ,t !, ~3!

whereaq8( jCq, j
2 dM j ,Me1q is the transition coefficient, with

normalization (qaq51 and ko8vo /c. We have used
*0

2pdf*0
pduNq(u)5(8p/3) and the one-to-one correspo

dence between the state indexj and the transition indexq
from M j5Me1q. The convolution integralsr̃gg(P,t) and
r̃ee(P,t) contain the contributions of all momentum familie
within \ko radius fromP as the result of momentum recoi
in all directions from incoherent photon absorptions a
emissions, respectively.
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Now, we can perform the Fourier transform o
Eqs. ~2! defined by Pee(qq)(Q,t)8F$ree(qq)(P,t)%
5*2`

` ree(qq)(P,t)e2 iP•Qd3P and obtain a closed set o
coupled linear equations

]Pee~Q,t !

]t
52G~ n̄11!Pee~Q,t !

1Gn̄(
q

aqf q~2Q!Pqq~Q,t…,

]Pqq~Q,t !

]t
5G~ n̄11!aqf q~Q!Pee~Q,t…2aqGn̄Pqq~Q,t !,

~4!

where f (6Q)83/8p*0
2pdf*0

pduNq(u)e6 iQ•\ko.
Next, we evaluate the functionf q(6Q). By using

Qxcosf1Qysinf[Acos(f2a) with A cosa5Qx , A sina
5Qy , A5AQx

21Qy
2 and *0

2pe6 iB cos(f2a)df52pJ0(B) with
B5A\kosinu, we can rewrite

f q~6Q!8
3

8pE0

p

duNq~u!

32pJ0~AQx
21Qy

2\kosinu!e6 iQz\kocosu.
~5!

By replacingS8\kocosu, Eq. ~5! becomes

f q~Q!8E
2\ko

\ko
Nq8~S!

3J0FAQx
21Qy

2\koA12S S

\ko
D 2GeiQzSdS,

~6!

where f (2Q)5 f (Q) is an even function sinceJ0

and Nq8(S)8(3/4\ko)@12(S/\ko)2#dq01(3/8\ko)@1
1(S/\ko)2#dq6 are even functions ofS.

Equations~4! describe the time evolution of the Fourie
transform of the populations for ultracold gas exposed
thermal radiation and can be solved forPee(qq)(Q,t) numeri-
cally and then numerically perform an inverse Fourier tra
form to obtainree(qq)(P,t). We can also proceed with th
3-2



re

n

n
ri
y
a
n
um

e
m

s

-

MOMENTUM SPREAD OF SPONTANEOUSLY DECAYING . . . PHYSICAL REVIEW A66, 063413 ~2002!
Laplace transform of Eqs. ~4! using Pee(qq)(Q,s)
8L$Pee(qq)(Q,t)%5*0

`Pee(qq)(Q,t)e2stdt and solve for
Pee(qq)(Q,s) analytically. However, in general case whe
all the coefficients are differenta2Þa0Þa1 , the inverse
Laplace transform ofPee(qq)(Q,s) to Pee(qq)(Q,t) are alge-
braically too cumbersome. This is so even for the case
’symmetric’ transition coefficientsa25a1 , and 2a61a0

51, which applies whenMe50.

A. Analytical solutions with same transition coefficients

For the case where the excited state isuJe50,Me50& and
the ground states areuJq51,Mq50,61& all the transition
coefficients are the same,aq5a5 1

3 . This applies to most
atoms, and to the spinless molecules in ground electro
state 1S0. Thus, Eqs.~4! yield analytical solutions

Pee~Q,t !5Pee~Q,0!e2gtS coshzt2
y

z
sinh ztD

1(
q

f q~Q!Pqq~Q,0!
aGn̄

z
e2gtsinh zt,

Pkk~Q,t !5Pee~Q,0!
aG~ n̄11! f k~Q!

z
e2gtsinh zt

1Pkk~Q,0!e2aGn̄t

1
f k~Q!

2 f 6
2 ~Q!1 f 0

2~Q!
H(

q
f q~Q!Pqq~Q,0!J

3H e2gtS y

z
sinh zt1coshztD2e2aGn̄tJ , ~7!

where g81
2G~n̄~a11!11!, z~Q!28G2a2n̄(n̄11)$2f 6

2 ~Q!

1 f 0
2(Q)%1y2, andy8 1

2 G((12a)n̄11).
Three-dimensional populations distributions in mome

tum space can be obtained by numerically inverse Fou
transforming Eqs.~4!. However, it is not possible to displa
a 3d plot of the momentum distribution in three dimension
momentum space. The physics of the decay dynamics ca
seen more clearly from a specific direction in moment
space.

B. One-dimensional momentum dependence

We shall investigate the momentum spread along thz
direction, which is defined as the quantization axis. We co
pare the cases forp transition (DM50) and fors6 transi-
tion (DM561). The z-momentum dependent population
pee(Pz,t),pqq(Pz ,t) are obtained by tracing out thex andy
momentum components@5# using
06341
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paa~Pz ,t !5E
2`

`

dPxE
2`

`

dPyraa~Px ,Py ,Pz ,t !

5
1

2pE2`

`

Paa~0,0,Qz ,t !eiPzQzdQz ,

p̃aa~Pz ,t !5
1

2pE2`

`

f ~6Qz!Paa~0,0,Qz ,t !eiPzQzdQz .

~8!

This is equivalent to settingQx5Qy50 in Eqs.~5! and
~6!, which give

f q~Q!8
3

4E0

p

Nq~u!eiQ\kocosudu5E
2\ko

\ko
Nq8~S!eiSQdS,

f 6~Q!8
3

2

siny

y
2

1

2
f 0~y!,

f 0~Q!83S siny

y3
2

cosy

y2 D 5 j 0~y!1 j 2~y!

5Ap

2y
$J1/2~y!1J5/2~y!%,

~9!

wherey8Q\ko and the subscriptz has been dropped.
From the definitions in Eqs.~8!, we obtain the coupled

equations,

d

dt
pee~P,t !52G~ n̄11!pee~P,t !1Gn̄(

q
aqp̃qq~P,t !,

d

dt
pqq~P,t !5aqG~ n̄11!p̃ee

q ~P,t !2aqGn̄pqq~P,t !,

~10!

where p̃ee
q (P,t)8*

2\ko

\ko Nq(S)pee(P1S,t)dS and

p̃qq(P,t)8*
2\ko

\ko Nq(S)pqq(P2S,t)dS. For the caseaq

5a5 1
3 , solutions of Eqs.~10! are obtained by inverse Fou

rier transforming the Eqs.~7! upon settingQ→Qz . When
n̄50, Eqs.~10! reduce to that of Ref.@5#.

C. Analytical solutions of momentum-summed populations

Theexternal(momentum)-summedpopulations are defined
aspaa(t)8*2`

` paa(P,t)d3P5Paa(QÄ0,t). It follows that
f q(0)5*

2\ko

\ko Nq(S)dS51. For the case ofMe50, we have

the symmetric case wherea65a, and a05122a6 . We
can solve Eqs.~10! analytically for the time evolution of the
populations,
3-3
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pee~ t !5pee~0!S e2gtcoshzt2G
~an̄11!

2z
e2gtsinhztD

1$ap22~0!1ap11~0!

1~122a!p00~0!%
Gn̄

z
e2gtsinhzt1G2n̄2a

3~122a!F~0,t !,

p22~ t !5pee~0!
G~ n̄11!a

z
e2gtsinhzt1p22~0!e2aGn̄t

1G2n̄~ n̄11!a~122a!F~0,t !1$p11~0!

1p22~0!%a~3a21!G2n̄~ n̄11!F~aGn̄,t !,

p00~ t !5pee~0!
G~ n̄11!~122a!

z
e2gtsinhzt1p00~0!

3S e2gtcoshzt1
1

2
G

~113an̄!

z
e2gtsinhztD

1
n̄11

4n̄13
H 12e2gtS coshzt1

g

z
sinhztD J ,

p11~ t !5pee~0!
G~ n̄11!a

z
e2gtsinhzt1p11~0!e2aGn̄t

1G2n̄~ n̄11!a~122a!F~0,t !1$p11~0!

1p22~0!%a~3a21!G2n̄~ n̄11!F~aGn̄,t !,

~11!

where F(A,t)81/@z22(g2A)2#$e2gt@(g2A)/z…sinhzt
1coshzt]2e2At% , F(0,t)8@1/(z22g2)#$e2gt@(g/z)sinhzt

1coshzt#21%, g8 1
2 G@ n̄(22a6)11#, andz28@a6n̄(25n̄

2 7
2 1 33

4 a6n̄16a6)1n̄(n̄11)1 1
4 #G2.

When all coefficients are the samea65a5a05 1
3 , Eqs.

~11! reduce to

pee~ t !5e2(4/3n̄11)Gtpee~0!1
n̄

4n̄13
~12e2(4/3n̄11)Gt!,

pqq~ t !5
~ n̄11!

~4n̄13!
1

n̄

3~4n̄13!
e2(4/3n̄11)Gt

2
1

3
pee~0!e2(4/3n̄11)Gt, ~12!

where pqq(t)5p22(t)5p00(t)5p11(t) and pee(t)
13pqq(t)51. We obtain the same results from Eqs.~7! by
setting f k(Q)→1.

The steady-state solutions for ‘‘identical’’ ground stat
are obtained from Eqs.~12! as pee,st5(n̄/4n̄13)51/(1
13ex) andpqq,st5(n̄11)/(4n̄13)5ex/(113ex). The ra-
06341
tio of the excited-state population to the each ground s
has the Maxwell-Boltzmann distribution. The equilibriu
entropy is

Si ,st5kBln~113e\vo /kBT!2S \vo

T D ~ 1
3 e2\vo /kBT11!21.

~13!

III. ZERO TEMPERATURE CASE

For n̄50 with general transition coefficientsaq , Eqs.~2!
lead to the decoupled exact solutions for the populations

pee~P,t !5pee~P,0!e2Gt,

pqq~P,t !5pqq~P,0!1Dq~P!~12e2Gt!, ~14!

whereDq(P)8aq

1

(2p)3/2
*2`

` eiP•QPee(Q,0)f q(Q)d3Q.

For one-dimensional momentum dependence, we hav

Dq~P!5aq

1

A2p
E

2`

`

eiPQPee~Q,0! f q~Q!dQ,

5aq

1

A2p
E

2`

`

eiPQPee~Q,0!dQE
2\ko

\ko
eiSQNq8~S!dS,

5aqE
2\ko

\ko
Nq8~S!pee~P1S,0!dS, ~15!

with the notations defined in Eqs.~9!.
By assuming the initial population distribution to b

Gaussian,pee(P,0)5(1/Aps)e2P2/s2
, we obtain the ana-

lytical expressions forDq(P),

D0~P!8
3s̄

8Ap~\ko!
@e[ 2(211p)2/s̄2]~11p!

1e2[(11p)2/s̄2]~12p!],

1
3

16~\ko!
~2p2221s̄2!

3FerfS 211p

s̄
D 2erfS 11p

s̄
D G , ~16!

D6~P!82
3s̄

16Ap~\ko!
@e2[( 211p)2/s̄2]~11p!

1e2[(11p)2/s̄2]~12p!]

2
3

16~\ko!
~p2111s̄2/2!

3FerfS 211p

s̄
D 2erfS 11p

s̄
D G , ~17!

wheres̄8s/\ko ,p8P/\ko .
3-4
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The steady-state momentum distribution isf (P)st
5(q$pqq(P,0)1Dq(P)% while the corresponding
momentum-summed populations arepee,st→0,pqq,st
→pqq(0)1aqpee(0).

IV. PURE TWO-LEVEL SYSTEM

For the pure two-level system, the momentum sprea
due to eitherp or s transition and not both. This enables
to distinguish the nature of momentum spread between
two types of transitions. The results for pure two-state s
tem in thermal radiation are easily obtained from Eqs.~4! by
settingaq→1 andq→g as

Pee~Q,t !5e2g2tH Pee~Q,0!S coshz2t2
G

2z2
sinhz2t D

1Pgg~Q,0!
G

z2
n̄ f g~Q!sinhz2tJ ,

Pgg~Q,t !5e2g2tH Pee~Q,0!
G

z2
~ n̄11! f g~Q!sinhz2t

1Pgg~Q,0!S coshz2t1
G

2z2
sinhz2t D J , ~18!

where f g(Q) is defined in Eq. ~6!,

z2(Q)8GAn̄(n̄11) f g
2(Q)1 1

4 and g28 1
2 G(2n̄11). For n̄

50, Eqs.~18! are equivalent to Eqs.~14!, except with the
replacementaq→1 andq→g.

The momentum-summed solutions follow from Eqs.~18!:

pee~ t !5
1

2 F11e2g2t2
~12e2g2t!

2n̄11
Gpee~0!

1
n̄~12e2g2t!

~2n̄11!
pgg~0!,

pgg~ t !5
~ n̄11!~12e2g2t!

~2n̄11!
pee~0!

1
1

2 S 11e2g2t1
~12e2g2t!

~2n̄11!
D pgg~0!, ~19!

whereg28 1
2 G(2n̄11).

At steady state, Eqs.~19! reduce to the Maxwell-
Boltzmann thermal distribution for internal states@13#

pee,st5n̄/(2n̄11)51/(ex11) and pgg,st5(n̄11)/(2n̄11)
5ex/(ex11) wherex5\vo /kBT with the corresponding in-
ternal entropy

Si ,st5kBln~e\vo /kBT11!2
\vo /T

e2\vo /kBT11
, ~20!

which is of course smaller than the degenerate ground-s
case, Eq.~20!.
06341
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V. DISCUSSIONS OF COMPUTED RESULTS

We have computed the distributions alongz-momentum
component and temporal evolutions of the populations
three schemes of the two-level system with three degene
ground states in thermal radiation,n̄51. The simplest one is
the identical scheme~shown in Figs. 1! for excited stateuJe
50,Me50& and the ground statesuJq51,Mq50,61& with
all the transition coefficientsaq5a5 1

3 . The ‘‘symmetric’’
scheme witha65 3

10 ,a05 2
5 for statesuJe51,Me50& and

uJg52,Mq562,61,0& are shown in Figs. 2. The results fo
the scheme with different coefficientsa25 1

2 ,a05 1
3 ,a1

5 1
6 with uJe5 1

2 ,Me52 1
2 & anduJg5 3

2 ,Mq52 3
2 ,2 1

2 , 1
2 & are

shown in Figs. 3. In computing Figs. 1~a!, we have used
analytical solutions of Eqs.~7!, which agree very well with
the results from the numerical integration of Eqs.~4!. We
have also verified the validity of Eqs.~12! and~11! used for
computing Figs. 1~b! and 2~b!, respectively.

FIG. 1. Case of the same transition coefficients,a65a05
1
3

~for the excited stateuJe50,Me50& and the ground statesuJg

51,Mq50,61&) in thermal radiation,n̄51, with an initial Gauss-
ian momentum width ofs51\k;2310229 kgm s21: ~a! momen-
tum distributions for the excited statepee(P), ground states
p22(P),p00(P) and p11(P), and totalf (P) populations versus
normalized momentumP/\k at time t55/G. The figure is com-
puted from analytical results, Eqs.~7!. ~b! Time evolutions of the
populations~momentum summed! are computed from analytical re
sults, Eqs.~12!. @Note: Thex axis is in units ofG21. The scale of
1028 on they axis is due to the normalization* f (P)dP51.#
3-5
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As expected, the populations in all states have a mom
tum spread@Figs. 1~a!, 2~a!, 3~a!# compared to the initial
total distribution f (P,0) due to incoherent interaction wit
the thermal radiation. From Fig. 1~a!, even if the transition
coefficientsaq are the same, we see that the spreading fos
transitions are slightly larger. This is due to the differe
angular dependenceNq(u) between thes andp transitions.
This difference can be seen more clearly in Fig. 2~a! where
aq are different for thes andp transitions. From Fig. 3~a!,
where the coefficients are different, the momentum spre
are different for different transitions.

The time evolution of the populations can be analyz
from Figs. 1~b!, 2~b!, and 3~b!. The excited population de
cays exponentially, essentially unaffected by the transit
coefficients of the ground states. For the sameaq case, the
ground-state populations increases exponentially@Fig. 1~b!#.
However, whenaq are different, the time evolution would b
different and can benonexponential, although the popula-
tions seem to evolve to a common equilibrium value. This
clearly seen in Fig. 3~b!, where the populationp22 with
largest coefficienta25 1

2 rises above the equilibrium valu
at aroundt;1/G before falling towards a converging valu
This is compared to the case without thermal photons@Fig.

FIG. 2. Case of symmetric transition coefficients,a65
3

10,

a05
2
5 in thermal radiation,n̄51 with initial momentum width

1\k. ~a! Momentum distributions of the populations at timet
55/G. ~b! Time evolutions of the populations~momentum
summed! computed from analytical results, Eqs.~11!.
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ds
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s

5~b!#, where the steady-state populations are dependen
the transition coefficientsaq instead of the temperature.

It would be interesting to compare the momentum spre
between thes transition and thep transition for the pure
two-level system. The polarization of the emitted photo
also affect the momentum spread. Figures 6~a! and 6~b! show
that the spread is slightly larger for thes transition than the

FIG. 3. Case of different transition coefficients,a25
1
2 ,

a05
1
3 , a15

1
6 for the excited stateuJe5

1
2 ,Me52

1
2 & and the

ground statesuJg5
3
2 ,Mq52

3
2 ,2 1

2 , 1
2 & in thermal radiation,n̄51,

with initial momentum width 1\k. ~a! Momentum distributions of
the populations at timet55/G. ~b! Time evolutions of the popula-
tions~momentum summed!. ~c! Time evolutions of the c.m. entropy
difference,Scm2Scm(0) and the internal entropySi . All results in
~a!, ~b!, and~c! are computed numerically.
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p transition. This is due to the different angular depende
of the spontaneously emitted photons (sin2u for p transition
and 12 1

2 sin2u for s6 transitions!. For p transition, a pho-
ton tends to be emitted at right angle to the dipole~which
coincides with the quantization axis! while for s transition, a
photon tends to be emitted parallel to the dipole.

For subrecoil initial momentum width, the ground pop
lations display a soft double-peak feature@Fig. 5~a!# and can

FIG. 4. Same as the case in Fig. 3~different transition coeffi-

cients,a25
1
2 , a05

1
3 , a15

1
6 with thermal radiation,n̄51). ~a!

Momentum distributions of the populations at timet55/G with an
initial subrecoil momentum width of 0.5\k and time evolutions of
the c.m. entropy differenceScm2Scm(0) from ~b! this paper and~c!
the Fokker-Planck equation@Eq. ~21!# for initial Gaussian distribu-
tion.
06341
e
be seen clearer in the pure two-level case@Fig. 7~a!#. This
feature exists only for thes transition~and not inp transi-
tion! in the absence of thermal radiationn̄50. It is due to
the angular anisotropy of the photon emissions in thes tran-
sition, with higher transition probability along thez axis
~which coincides with quantization axis! The population
around zero momentum~peak! undergoes recoil around to
wards6\k during spontaneous emission. The double pe
feature does not show up in the presence of thermal radia

FIG. 5. Same as Fig. 4 except without thermal radiation,n̄
50. ~Initial subrecoil momentum width of 0.5\k. Different transi-
tion coefficients,a25

1
2 , a05

1
3 , a15

1
6 .! ~a! Momentum distribu-

tions of the populations at timet55/G, ~b! time evolutions of the
populations, and~c! time evolutions of the c.m. entropy differenc
Scm2Scm(0) and the internal entropySi .
3-7
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@Figs. 4~a! and 7~b!#, since photon reabsorption repopulat
the population around zero momentum and smooths out
distribution.

The time evolution of the c.m. entropy and the intern
entropy are also analyzed. In thermal radiation, the inte
entropy rises very fast to a maximum after about 1/G while
the c.m. entropy increases almost logarithmically@Figs. 3~c!,
4~b!, 5~c!#. It is interesting to find from Fig. 4~b! that the c.m.
entropy increases faster and to a larger value if the in
momentum width is smaller. The rate of entropy reduc
with time. Comparison of Fig. 7~b! and Fig. 7~c! also shows
qualitative correspondence between our results and that
Ref. @11#. For zero temperature, the internal entropy a
proaches zero@Fig. 5~c!# since all the populations decay t
one internal state while the c.m. entropy begins to satu
after about two decay lifetime. Equations~14! show that the
spontaneous decay does not lead to momentum spread i
excited-state population since there is no excitation from
ground state.

When thermal photons are present, the decay proce
no longer purely characterized by free decay from sponta
ous emission. The thermal photons induce incoherent ex
tions ~absorption! which occur concurrently with the sponta
neous emissions. Both processes contribute to give
overall momentum spread. The thermal photons act as
noise which gives the heating effect or momentum diffus

FIG. 6. Pure two-level system. Probability distributionf (P) at

t55/G for ~a! case ofn̄50 and~b! case ofn̄51, with initial dis-
tribution ~dashed line!, p transition~q50, thin line!, ands6 tran-
sitions (q561, thick line!.
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through the fluctuation-dissipation mechanism in a de
process. The excited population shrinks with a slight m
mentum spread while the ground population increases w

greater momentum spread than in the case ofn̄50. On over-
all, the momentum spread in the probability distribution
larger for n̄Þ0 @Fig. 6~b!# compared ton̄50 @Fig. 6~a!#.

Although the decay rate in the presence of thermal no

is enhanced by a factor of (4
3 n̄11) ~for three ground states!

and (2n̄11) ~for pure two level!, the excited population
cannot be emptied but reaches a finite limiting value. T
thermal radiation provides continuous pumping which ma
tains a nonzero population in the excited state with fin
internal entropy at equilibrium.

VI. COMPARISONS WITH FOKKER-PLANCK RESULTS

All the above results correctly describe the dynamics
the momentum distribution foruPz™Mc with negligible Dop-
pler shift. This corresponds to the early stage of the ti
evolution when the distribution is still narrow. As the sprea
ing continues in thermal radiation, the maximum Dopp
shift increases and the Doppler shift becomes significa
The dynamics for part of the distribution withuPz@\ko

FIG. 7. Pure two-level system. Probability distributionf ~P! for
s transitions (q561) with subrecoil initial widths50.4\ko : ~a!

casen̄50 at t55/G for s50.4\ko and ~c! casen̄51, s50.4\ko

for distributions at initial~thin line!, 2/G ~line!, and 5/G ~thick line!.
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should well be described the Fokker-Planck equation res
of Ref. @11# while the part withuPz™Mc is still precisely
described by our results. Our results can well describe
early dynamics of the cold gas but not the steady-state
tribution. The steady-state distribution can be described
the solutions of Fokker-Planck equation of Ref.@11# for the
probability momentum distributionf (P,t),

] f ~P,t !

]t
5g“•$Pf ~P,t !%1 1

3 D¹2f ~P,t !, ~21!

where g8(1/kBT)(\2ko
2/3M )@Gn̄(n̄11)/2n̄11# is the

damping rate towards thermal equilibrium an
D8\2ko

2@Gn̄(n̄11)/2n̄11# is the diffusion coefficient.
For the initial Gaussian distribution f (P,0)
5) i 5x,y,z(1/Apai)e

2(Pi /ai )
2
, Eq. ~21! gives the transien

solution f (P,t)5) i 5x,y,z$1/@ai(t)Ap#%e2Pi
2/ai

2(t), where
ai(t)8A(2D/3g)(12e22gt)1ai

2e22gt is the transient mo-
mentum width. The gas reaches the steady-state distribu
f (P,`)5(1/Ap2D/3g)e2P2/$2D/3g% with the maximum en-
tropy and momentum widthA2D/3g, corresponding to the
thermal radiation temperatureT5(D/g3MkB). This occurs
in a very long time scale ofg21'1013 s (106 yr) and 3
31011 s(9000 yr) for optical and infrared transitions, r
spectively. Thus, spontaneous emission is a very slow
ineffective mechanism of thermalization with the thermal
diation. This is not surprising because of the weak coupl
between atom and radiation in free space. Physically,
presence of dampingg is due to the higher probability o
absorbing a blue-Doppler shifted thermal photon and slow
down. The thermal photons act as a ‘‘viscous medium’’ to
particles and eventually bring the gas into thermal equi
rium with thermal radiation.

For time t!g21, we can expande22gt;122gt in the
transient solution and find that the change in the momen
width decreases with time as

ai~ t !5AS 4D

3
22ai

2g D t1ai
2. ~22!

Similarly, we find that the amount of momentum sprea
ing after one decay lifetime is dependent on the initial m
mentum width as

ds i5
2

3
\2ko

2n̄~ n̄11!

2n̄11
S 1

ai
2

ai

2MkBTD . ~23!
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Both Eqs.~23! and ~22! are in accordance with Fig. 4~c!.

VII. CONCLUSIONS

We have solved and studied the momentum and temp
evolutions of a cold gas undergoing spontaneous emiss
in a two-level system with an excited state and three deg
erate ground states. Analytical solutions that are essent
exact in the cold gas regime are derived for a specific in
nal scheme and for the zero-temperature cases. The an
cal results are combined with Fourier-transform technique
compute the time- and momentum-dependent populatio
This technique provides an alternative to other methods@14#
for simulation of the laser cooling process where the dens
matrix elements depend on the continuous variables of t
and momentum. The results of the momentum spread of c
gas in thermal radiation are computed and compared for
ferent internal schemes, with subrecoil initial width, witho
thermal radiation and the different types of transitions in
pure two-level system. We confine our computation result
one dimension to bring out the essential physics. Extens
of the computation results to higher dimensions is straig
forward using the obtained theoretical solutions. We ha
pointed out the range of validity of our results and compa
them to the Fokker-Planck results. Our results can well
scribe the cold gas regime and thus complement the res
in Ref. @11#.
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APPENDIX A: LIOUVILLEAN AND GENERALIZED
BLOCH EQUATIONS

The quantum dynamics of the internal and center-of-m
~c.m.! momentum states of a particle system in the therm
reservoir of temperatureT is fully described by the maste
equation@]r̂S(t)/]t#5L r̂S(t) for the reduced density opera
tor of the systemr̂S(t) whereL r̂S(t) is the dissipative Liou-
villean. The Liouvillean formultistatesystem in interaction
picture with the Born-Markov, dipole and rotating wave a
proximations has been derived using the standard method@7#
as
L r̂S~ t !82E
0

t

dt (
i , j ,k,l,P8

giklgj kl* $~ n̄k11!e2 iD
j kP8
1

teivoi j tSi
1Sj uP8&^P8ur̂S~ t !1n̄ke

iD
j kP8
2

te2 ivoi j tSiSj
1uP8&^P8ur̂S~ t !%

2E
0

t

dt (
i , j ,k,l,P8

giklgj kl* $~ n̄k11!r̂S~ t !uP8&^P8uSj
1Sie

2 ivoi j teiD
j kP8
1

t1n̄kr̂S~ t !uP8&^P8uSjSi
1eivoi j te2 iD

j kP8
2

t%

1E
0

t

dt (
i , j ,k,l,P8,P9

giklgj kl* $n̄ke
2 iD

j kP9
1

tSi
1r̂S~P92\k

P82\k ,t !Sje
ivoi j t1~ n̄k11!eiD

j kP9
2

tSi r̂S~P91\k
P81\k ,t !Sj

1e2 ivoi j t%

1E
0

t

dt (
i , j ,k,l,P8,P9

giklgj kl* $n̄ke
iD

j kP8
1

tSj
1r̂S~P92\k

P82\k ,t !Sie
2 ivoi j t1~ n̄k11!e2 iD

j kP8
2

tSj r̂S~P91\k
P81\k ,t !Si

1eivoi j t% ~A1!
3-9
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with the definitions

r̂S~P96\k
P86\k ,t !8e7 i (vP82P9)tuP8&^P86\kur̂S~ t !uP96\k&^P9u,

gikl8di• «̂klA vk

2«oV\
5di (

q51,2,0
eklqCq,iA vk

2«oV\
,

D j kP
6 8vk2vo j2vP6v r ,

vP82P98vP82vP9 ,

where the indicesi , j correspond to a pair states with dipo
allowed transition with energy-level spacingvoi j8voi

2vo j , vP8P•k̂vk /Mc the first-order Doppler
shift, v r8\vk

2/2Mc2 the recoil frequency,

k̂8(sinu cosf, sinu sinf, cosu) the photon unit wavevec
tor in terms of spherical anglesV[(f,u), n̄k8(e\vk /kBT

21)21 is the mean thermal photon number,Si8ugi&^ei u is
the lowering operator for thei th pair of levels,di is the
reduced dipole moment,eklq is theq component of the elec
tric field with wave vectork and polarization indexl, and
Cq,i the numerical factor which includes the Clebsch-Gord
coefficient and the Ho¨nl-London factor~for molecules! @8#
for the transition between thei th pair of levels. The change
in magnetic quantum numbersq8Mei2Mgi corresponds to
the dipole alloweds transition (q561) and p transition
(q50).

We consider atwo-level multistatesystem, specifically
with one excited stateue& with the magnetic quantum num
ber Me and three degenerate magnetic~Zeeman! ground
statesua&, ub& anduc& with the respective magnetic quantu
numbersMa5Me21, Mb5Me , andMc5Me11. By tak-
ing the diagonal matrix elements in the momentum state
Eq. A1, we obtain the generalized Bloch equations

]ree~P,t !

]t
52ree~P,t !(

j ,kl
ugj klu2~ n̄k11!E

0

t

dt2 cosD j kP
1 t

1(
j ,kl

ugj klu2n̄kr j j ~P2\k!

3E
0

t

dt~e2 iD j kP
1 t1eiD ikP

1 t!,
06341
n

in

]r i i ~P,t !

]t
52(

j ,kl
giklgj kln̄kE

0

t

dt$eiD
j kP8
2

te2 ivoi j tr j i ~P,t !

1r i j ~P,t !eivoi j te2 iD
j kP8
2

t%1(
kl

ugiklu2~ n̄k

11!ree~P1\k!E
0

t

dt2 cosD ikP
2 t, ~A2!

where i , j Pa,b,c and r i j (P6\k,t)8^ i ,P6\kur̂(t)u j ,P
6\k&.

The termsr i , j Þ i are associated with the Zeeman coh
ences are nonvanishing only if the dipole moments are n
orthogonal, which can be realized using polarization pre
lection in cavity@9# and specific atomic levels which lead t
spontaneously generated coherences@10#.

Here, we consider the typical scheme available in a m
lecular system where the Zeeman coherences vanish bet
different transitions due to orthogonality of the vector dipo
matrix elements. Thus, Eqs.~A2! reduce to the multistate
coupled equations between the excited and ground pop
tions without coherences,

]ree~P,t !

]t
5 (

j ,k,l
ugj ,klu22E

0

t

dt cosDkP
1 t$2~ n̄k11!ree~P,t !

1n̄kr j j ~P2\k,t !%,

]r j j ~P,t !

]t
5(

k,l
ugj ,klu22E

0

t

dtcosDkP
2 t$2n̄kr j j ~P,t !1~ n̄k

11!ree~P1\k,t !%, ~A3!

where raa(P6\k,t)8^a,P6\kur̂(t)ua,P6\k& and j
Pa,b,c. Equations~A3! can be simply reduced to thepure
two-levelor two-statesystem which is restricted only to a
oms and pure rotational dipole transitions in molecules,
example betweenuJ51,M51& and uJ50,M50&.

In the isotropic free space with continuum
frequency spectrum, we use (k,lugj ,klu2 . . .
→(G/2p)*dv(v3/vo

3)*dF j . . . , where *dF j . . .
8(3/8p)*0

2pdf*0
pdu(q50,61Cq, j

2 Nq(u) . . . , G8(do
2vo

3/
3«o\pc3, and Nq(u)8dq0sin3u1dq6(sinu21

2sin3u). For t
@1/DkP

6 , we replace *0
t dt cosDkP

6 t→pd(DkP
6 )5pd(v

2vo2vP6v r) and Eqs.~A3! become
]ree~P,t !

]t
5G

3

8pE dv
v3

vo
3E0

2p

dfE
0

p

du(
j

(
q50,61

Cq, j
2 Nq~u!d~DkP

1 !H 2~ n̄~v!11!ree~P,t !1n̄~v!r j j S P2k̂
\v

c
,t D J ,

]r j j ~P,t !

]t
5G

3

8pE dv
v3

vo
3E0

2p

dfE
0

p

du (
q50,61

Cq, j
2 Nq~u!d~DkP

2 !H 2n̄~v!r j j ~P,t !1@ n̄~v!11#reeS P1k̂
\v

c
,t D J .

~A4!
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APPENDIX B: ENTROPY

The center-of-mass quantum entropyScm(t) can be com-
puted from Ref.@12#,

Scm~ t !82kBTrcm$r̂cm~ t !ln r̂cm~ t !%

52kB(
P

g~P,t !ln g~P,t !, ~B1!

wherer̂ is the density operator of the gas which includes
internal and c.m. degrees of freedom,r̂cm(t)8Tri$r̂(t)%
5(a5e,0,6^aur̂(t)ua&,g(P,t)8 f (P,t)D3P is the discretized
d

-

s.

06341
e

probability f (P,t)8^Pur̂cm(t)uP&5ree(P,t)1(qrqq(P,t) is
the probability momentum distribution with single-partic
normalization,* f (P,t)d3P51.

The internal entropySi(t) is defined as

Si~ t !82kBTri$r̂ i~ t !ln r̂ i~ t !%52kB (
a5e,0,6

paa~ t !lnpaa~ t !,

~B2!

where r̂ i(t)8Trcm$r̂(t)%5*^Pur̂(t)uP&d3P, paa(t)
8^aur̂ i(t)ua& is the momentum summed population in sta
ua&.
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