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Momentum spread of spontaneously decaying cold gas in thermal radiation
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We study the quantum dynamics of the center-of-mass momentum distribution for the populations of a cold
gas with two-level system undergoing spontaneous decay and coupled to a Markovian thermal reservoir at
arbitrary temperature. We derive the momentum-convolutionless coupled equations for momentum Fourier
transform of the populations which can be easily solved numerically and analytically for a specific internal
scheme and for zero-temperature cases. The time and momentum evolutions of the populations are obtained by
inverse Fourier transform. The momentum spread and the center-of-mass entropy across one momentum
dimension are computed and compared for different internal schemes, between zero-temperature and finite-
temperature cases and betweeando .. transitions. For initial subrecoil momentum width, thre transition
displays a two-peak feature. Our results well describe the momentum spread dynamics of cold gas in thermal
radiation at early time and complement the results based on Fokker-Planck equation.
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. INTRODUCTION expansions in orders dfk, resulting in the Fokker-Planck
equation. From the perspective of the booming research in
The theory of spontaneous emissions without quantizatio@old gases, it would be interesting to investigate the nature of
of the center-of-mas&.m) motion has been developed long the momentum spreading from spontaneous emissions of a
ago[1] based on the master equation. In the last two decadespld gas. In this paper, we restrict our considerations to the
the momentum transfer between photons and a particle in dilute and cold gas where the momentum width of the dis-
radiative processes has been practically used to manipulatgbution is sufficiently narrowin the order of recoil momen-
the motion of particles in laser lighi2]. This is the concept tum) such that [P|<Mc). This enables us to derive accurate
behind the development of laser coolif&] and atom optics theoretical solutions for finite or zero thermal radiation tem-
[4]. In laser cooling, spontaneous emission is the dissipativeerature and study the c.m. momentum spreading from the
mechanism which removes the entropy from a gas. The fuffPontaneous decay. The results are also valid in the regime
quantum theory of optical laser cooling of atoms has beefP|=|%k| which is complementary to the regime described
developed by neglecting the contribution of the thermal phoPY the Fokker-Planck equation .

tons from the surroundings]. This is justified for optical /& develop the theory starting from the master equation

transition occurring in atoms. For radiative transition at roomW'th_ quantization of the ¢.m. momentum a_nd derive the_gen-
ralized Bloch equations for the populatiof@esented in

temperature in the infrared frequency and below, the mea ppendix A). In Sec. Il, we show that the cold gas regime

therma! photoq numbem. may be 'n.on—negllglble- For opti-  epaples the Bloch equations to be expressed in closed form.
cally thick media, there is an additional source of incoherentgnyolutionless first-order coupled differential equations are
radiation with thermal nature from radiation trapping of theObtained by Fourier transform, which are eas”y solved nu-
spontaneous emitted photons from other partitfdsinco-  merically for the populations in time and momentum do-
herent thermal excitations would have equally important efmains for arbitrary initial distribution by numerical integra-
fects as free spontaneous emissions on the momentum disttion followed by inverse fast Fourier transform. Analytical
bution of an ensemble of gas. This is the case of a typicaolutions of the populations in the time domain and the mo-
molecular gas, where fluorescence in the infrared and evementum Fourier-transform domain are obtained for a specific
microwave regimes are unavoidable. The typical infrarednternal scheme. We also derive the transient solutions of the
photon momentum is only about 10-50 times smaller tharmomentum-summed populations for the general case. In Sec.
an optical photon momentum and the momentum spreafll analytical expressions are obtained for the populations
from spontaneous decay would be significant compared tithout the thermal radiation for the initial Gaussian distri-
the momentum width for ultracold gas. bution. In Sec. IV the results for pure two-level system are
The momentum spread dynamics from spontaneous emigresented. Expressions for the steady-state momentum distri-

sions in thermal radiation has been developed by Dalibarg¢utions, momentum-summed populations and internal en-
and Cohen-Tannoudt al. in Ref. [11] in the “hot gas”  tropy are also derived. The c.m. entropy is computed from
regime where the conditiofP|>|#k| enables perturbative the probability momentum distribution while the internal en-

tropy from the momentum-summed populatidese Appen-

dix B). The computed results are discussed in Sec. V. Finally,

*Electronic address: ooi@spock.physik.uni-konstanz.de in Sec. VI we compare valid range of our results with that
"Electronic address: Peter.Marzlin@uni-konstanz.de obtained from the Fokker-Planck equation for hot gas
*Electronic address: Juergen.Audretsch@uni-konstanz.de regime.
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Il. COLD GAS IN THERMAL RADIATION

The generalized Bloch equations for momentum and time-dependent populations of a single excited state and three degen-
erate ground stategcoupled to thermal radiation with the Born-Markov, dipole and rotating wave approximations are given
by

d ee(Pvt) 3 3 (on 7" — — ~h
pTzl“S—ﬂ_j dwww—osfo d¢fo deg 2 Caqu(G)&(A:p)(—(n(w)+l)pee(P,t)+n(w)pjj(P—KTw,t)],

dp;;(P,t)
at

3 w3 (2m T 5 _ — — ~fw
=I‘§J dww_O?’JO dquO d0q=0,¢1 Cq.iNg(0) 3(Ap) | —n(w)pjj(P,t) +[N(w) +1]ped P+KT,t , (D

where T=(d2w,%3e,himcd), n(w)=(e"*T-1)"1 Now, we can perform the Fourier transform on
Ng(0) = 8q0SIntO+ 3y (sin 6—3sin’6), Ajp=w—w, EUS. (2 def'neﬂP'Qb% Heeqq)(Q.t) =F{peeqa (P.1)}
—P-kw/Mc*hw?/2Mc?, and x=(sinfcose,sindsine, = -wpeaqq(P)e""“d°P and obtain a closed set of
cosd). The detailed derivation of Eg¢l) starting from the coupled linear equations

master equation is presented in Appendix A. The right-hand

side of Egs(1) are convoluted in the frequency and angular M: —T'(n+ DIT.{Q,t)

variables in a complicated manner due to the angular depen- at

dence in thes function and cannot be expressed exactly in a

closed form. +TNY, aqfq(— QI (Q)0),
We consider a distribution of cold gagP{<Mc) where q

the maximum Doppler frequenciP,,«w/Mc| is negligible.

For the typical transition frequency at optical frequency and911qq(Q.t) —I'(n f H il

below, w,=<10' s~ and particle mass df1=10 a.m.u., the ot 1T Dagl(Q) ed QU ~ agl'nllgq(Q.1),

corresponding recoil frequenay, ~ % w2/2M c?< 10w, is (4)

negligibly small compared to the transition frequensy. _

Therefore, the contributions of the Doppler frequency andvheref(+Q)=3/8m[37d¢[FdONy(6)e™'Q "o,

recoil frequency ind(w— w,— wp* w,) can be disregarded  Next, we evaluate the functiorfq(=Q). By using

and Eqgs(1) is reduced to a simpler form QxCosgp+Qsingp=Acosip—a) with Acosa=Qy, Asina
=Q,, A=Qi+Q; and [§7e" B ¢~ Idp=273y(B) with

Ipee P,t) — — ~ B=A%k,sin 6, we can rewrite
eeT: —I'(n+ 1)pee(P,t)+an:0+ agpqq(Pi1), 0
g 3 (n
+0)= —
Pl PY 1 1) agpid PO~ Thagoeg PO, () e 87J° o
- - = dgp L) ¢4 p IAVS] .
at aree araa x 2m3o(\/Q2+ Q2fik,sin §) =Rz kac0s0,
with the definitions ®
3 (2n . By replacingS=rik,cosé, Eq. (5) becomes
pqq(Pyt)t gfo d¢j0 daNq( ¢9)qu(P_ kfiKq 1), ik
fq(Q)iJ' Ng(S)
3 (27 T ~fiko
pd (P,t)i—f d¢f dON(0) ped P+ kiky 1), (3) s \?] .
Pee 87Jo o A iPee ° X Jo| VQI+ Q1Ko k(ﬁ) e'Q5d s,
0
wherea,= EJ-C?“- 5Mj Mg+q is the transition coefficient, with (6)
ng;gﬂalii?jtieog 20(1031:81 /3and l(‘jotih“’olc' t\Ne have used \\here f(—Q)=f(Q) is an even function sincel,
{Joenc(é)ft?etweg% )trTe( s:;te) ir?g' mng t%rt]ae';rg;losri]t(iaor?oi:dezpon- and Nq(S) = (3/4ko) L1 (S/ftko) "] dgo + (3/8hKo) [ 1
Fand | 5 ¥ 4 (S/fik,)?] 5. are even functions of .

from M;=Mc+q. The convolution integralg,4(P,t) and Equations(4) describe the time evolution of the Fourier

pedP,t) contain the contributions of all momentum families transform of the populations for ultracold gas exposed to
within 7k, radius fromP as the result of momentum recoils thermal radiation and can be solved fbgq ) (Q,t) numeri-

in all directions from incoherent photon absorptions andcally and then numerically perform an inverse Fourier trans-
emissions, respectively. form to obtainpegqq(P,t). We can also proceed with the
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Laplace transform of Egs.(4) using Ilggqq(Q,S) o o

LM q( Q)= [T equq(Q.0e it and solve for masPe)= | AP [ APyplP Py Pt
[Megqq)(Q,8) analytically. However, in general case where
all the coefficients are different_ # ag# «, , the inverse
Laplace transform ofl¢¢qq)(Q,S) t0 I¢qqq(Q,t) are alge-
braically too cumbersome. This is so even for the case of
'symmetric’ transition coefficientsr =« , and 2v. + «ag

. . ~ 1 (= )
=1, which applies wheiM,=0. Taa( Py, 1) = EJ f(+£Q)1,4(0,0Q,,1)e"=dQ, .
8

1 iP,Q
:E 7xHaa(0107Q21t)e z ZdQZr

A. Analytical solutions with same transition coefficients
This is equivalent to settin@,=Q,=0 in Egs.(5) and
For the case where the excited statglis=0M.=0) and  (6), which give
the ground states arfd,=1M,=0,+1) all the transition
coefficients are the samaf,q:az%. This applies to most 3(n A fikg ,
atoms, and to the spinless molecules in ground electronic fq(Q)izj Nq(ﬂ)e'Qﬁ’k°°°S(’d6=J N;(S)e'Sds,
state 'S ,. Thus, Eqs(4) yield analytical solutions 0 Mo

y 3siny 1
e Q) =T Q.00e” | coshzt— —sinhzt fi(Q)=§T—§fo(y),
+ 2 Fo(QTq(Q 0)@e‘“/‘sinhzt siny cosy| .
T a7 ' fo(Q)=3| ——— | =lo(¥) Tiay)
oA I y) + 3spdy)}
[(n+1)f = VoY s2Y) 5
Hkk(Q,t):Hee(Q,O)Me”‘sinhzt y
‘ ©
—al"?[
Qe wherey=Qfik, and the subscrit has been dropped.
f(Q) From the definitions in Eq9(8), we obtain the coupled
2f2+(Q)+fS(Q)|§ fq(Q)qu(Q’o)] equations,
y — d — -
x{ e~ " Zsinh zt+coshzt| —e 2"} (7) — Ted P,)=—T(N+ 1) med P, + TN, agmyq(P,1),
z dt q
_ o d - - _
where y=il(n(a+1)+1), zQ)*=I%’n(n+1){2f2(Q) &qu(P.t)Zaqr(n+1)7Tge(P,t)—aan7qu(P,t).
+f2(Q)}+y?% andy=1iT((1—a)n+1). (10

Three-dimensional populations distributions in momen-
i ' i i ~ . ik
tum space can be obtained by r_1umer|cally_ inverse Fourief here WEe(P,t)=f_;?k Ng(S) med P+S,t)dS
transforming Eqgs(4). However, it is not possible to display _ K o
a 3d plot of the momentum distribution in three dimensional Tqq(P,1) =/ No(S)7qq(P—S,t)dS. For the caseq,
momentum space. The physics of the decay dynamics can ke, =1 solutions of Eqs(10) are obtained by inverse Fou-
seen more clearly from a specific direction in momentunyier transforming the Eqs(7) upon settingQ—Q,. When

space. n=0, Eqgs.(10) reduce to that of Ref5].

and

B. One-dimensional momentum dependence C. Analytical solutions of momentum-summed populations

. . The external(momentum)-summpdpulations are defined
We shall investigate the momentum spread alongzhe as m ()= [* ma(P.)dP=11,,(Q=01). It follows that

direction, which is defined as the quantization axis. We com- K
pare the cases far transition AM=0) and foro+ transi- fq(O)zf_,;’koNq(S)dS= 1. For the case dfl.=0, we have
tion (AM==1). The zmomentum dependent populations the symmetric case where.=a«a, and ¢g=1-2a.. We
medP2it), mqq(P2,t) are obtained by tracing out theandy  can solve Eqs(10) analytically for the time evolution of the
momentum componen{$] using populations,
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(aF+ 1

Ted )= eo(0)| € Mcoshzt—T )e* Msinhzt

+{am__(0)+am,,(0)

I'n ] .
+(1— 2a)7700(0)}7e* Msinhzt+1I?n’a

X(1—2a)F(0}),

r a ] —
m__(t)=1ed0) e sinhzt+7__(0)e ™

(n+1)
Z

+T?n(n+1)a(1-2a)F(Ot)+{m, ,(0)

+7__(0)}a(3a—1)I'2n(n+1)F(aln,t),

['(n+1)(1-2a)

Too(t) = Ted 0) e sinhzt+ myy(0)

1 (1+3an)

X | e "coshzt+ EF

e Vtsinhzt)

n+1
+ =
4n+3

1-e” 7‘( coshzt+ %/sinhzt) } ,

I'(n+1)a

7y (D) =med0) e~ "sinhzt+ 7, , (0)e~ ™

+T?n(n+1)a(1-2a)F(Ot)+{m, ,(0)

+7__(0)a(3a—1)I?n(n+1)F(alnt),
(11)

where  F(At)=1/[z2—(y—A)?|{e” "[(y—A)/z)sinhzt
+coshzf—e A%, F(0,t)=[1/(z>— y*)1{e” "[(y/z)sinhzt
+coshzt]—1}, y=3I'[n(2—a-)+1], andz>=[a.n(—5n
— 1434 . n+6a.)+n(n+1)+3]r2

When all coefficients are the same = a=ay=3, EQs.
(11) reduce to

— n
Tedt)=e 3Nt a (0)+ —
ee ee( n+3

(1_ e7(4/3n+ l)l"t),

(n+1) n
+

Tqq(1)= —= _ e—(4/3ﬁ+1)rt
(4n+3) 3(4n+3)
1 —
_ §77_&‘@(0)ef(4/3n+:|.)rt, (12)

where mqg(t)y=7_ _()=me(t) =7, (1) and me(t)
+3my4(t) =1. We obtain the same results from E¢#). by
settingf, (Q)—1.

The steady-state solutions for “identical” ground states

are obtained from Egs(12) as meest= (n/an+3)=1/(1
+3€") and 7yq = (N+1)/(4n+3)=€*/(1+3€¥). The ra-
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tio of the excited-state population to the each ground state
has the Maxwell-Boltzmann distribution. The equilibrium
entropy is

h o,

S st=Kgln(1+3e"wo’keT) —( T

)(%eﬁwo/kBT+ 1)71.

(13

Ill. ZERO TEMPERATURE CASE

Forn=0 with general transition coefficients,, Eqs.(2)
lead to the decoupled exact solutions for the populations

Ted Pit) = e P,O)efl“t,

Taq(P,) = maq(P,0)+Dg(P)(1—e™ ), (14
whereD(P)=« LP e'P QI (Q,0)f4(Q)d®Q
q q(zﬂ_)a/z - € ! q )

For one-dimensional momentum dependence, we have

1 [~
Dq(P)zaq\/:J epoHee(an)fq(Q)an
2mJ) —
_ 1 ” iPQ iko iSQN|’
aq\/ﬁfme Hee(Q,O)deﬁkoe Ng(S)dS,

fiko
Iaqf Ng(S) e P+S,00dS, (15
— ik
with the notations defined in Eq9).

By assuming the initial population distribution to be

Gaussian, .o P,0)= (1/Jmo)e P77", we obtain the ana-
lytical expressions foD 4(P),

Do(P)= [el- (1P 4 p)

g
8\/m(fik,)
+e (1 —p)),

2_ 2
+ T60 (2p%—2+02)

—1+p 1+p
erf — —erfl —
g g

30

16Vm(ik,)
+e [+Re% (1 )]

X

: (16)

D.(P)= [e [(-1+PFo% (1 4 p)

—__—  (n2 2
16(ﬁko)(p +1+0°/2)

—1+p)
— —erf
g

X

1+
erf _p

: 17

o

whereo= olfik, ,p=PI#k, .

063413-4



MOMENTUM SPREAD OF SPONTANEOUSLY DECAYING. ..

The steady-state momentum distribution g P)g;

S dmqq(P,0)+Dy(P)} While the  corresponding
momentum-summed  populations  aremee s 0,7qq st
— Tqq(0)+ @qmed0).
IV. PURE TWO-LEVEL SYSTEM 7uP) 15
(g ms™!

For the pure two-level system, the momentum spread is
due to eitherr or ¢ transition and not both. This enables us
to distinguish the nature of momentum spread between the
two types of transitions. The results for pure two-state sys-

PHYSICAL REVIEW &6, 063413 (2002

)-1
1t

tem in thermal radiation are easily obtained from Eg$ by
settinga,—1 andq—g as

Hee(Q,t):e_th{ e Q, O)(coshzzt— : smhzzt)

r—
+Hgg(Q,0)Z—2nfg(Q)sinhzzt] ,

Hgg(Q,t)=e_’2t[ ee(QO) (n+1)fg(Q)SlnhZzt

+Hgg(Q,0)(cosh22t+

r
Z—Zzsmhzzt) ] (18

where  f,(Q) is defined in Eq. (6),
2,(Q) =T \n(n+1)f3(Q)+} and y,=iI'(2n+1). Forn
=0, Egs.(18) are equivalent to Eqq14), except with the
replacementy;— 1 andgq—g.

The momentum-summed solutions follow from E(ES):

_')’Zt)

(1-e

2n+1

med)=5| 1+e BRCE med 0)

n(1-e 72

+—
(2n+1)

ng(O),

(n+1)(1—e 72
(2n+1)

ng(t): Teel0)

e~ ’}’Zt)

D

(1-

(2n+

1 t
S| 1+e 72+

+3 (19

ng(O),

wherey,=1I'(2n+1).

At steady state, Eqs(19) reduce to the Maxwell-
Boltzmann thermal distribution for internal statg¢43]
Teest=N/(2N+1)=1/(e"+1) and myqs=(N+1)/(2n+1)
=e*/(e*+ 1) wherex=%w,/kgT with the corresponding in-
ternal entropy

hwolT

S si=kgIn(e"@o/keT+1) — —————
i, st= KgIn( ) o foolkaT 1 1

(20

bl
§ SHIH:H

o %
=,

o , 95
Cams™) o4l

2 3
time, t /r”?
b)

FIG. 1. Case of the same transition coeﬁiciem,zaO:%
(for the excited statdJo=0M.=0) and the ground statefsl,
=1My=0,+1)) in thermal radlatlonn 1, with an initial Gauss-
ian momentum width ofr=17%k~2%x 10 2° kgms *: (a) momen-
tum distributions for the excited stater.(P), ground states
w__(P),moo(P) and 7, . (P), and totalf(P) populations versus
normalized momentunfP/#k at timet=5/". The figure is com-
puted from analytical results, Eq&Z). (b) Time evolutions of the
populationgmomentum summedare computed from analytical re-
sults, Egs(12). [Note: Thex axis is in units of' . The scale of
1078 on they axis is due to the normalizatioff (P)dP=1.]

V. DISCUSSIONS OF COMPUTED RESULTS

We have computed the distributions alomrgnomentum
component and temporal evolutions of the populations for
three schemes of the two-level system with three degenerate

ground states in thermal radiatiam=1. The simplest one is
the identical scheméshown in Figs. 1f0r excited statéJ,

=0,M,=0) and the ground state}s] =0,=1) with
all the transition coefﬂmentseq—a The “symmetrlc
scheme witha. = 3, ag=2 for states|J «=0) and

|3g= =+2,+1,0 are shown in Figs. 2 The results for
the scheme with different coefficienta_ = Z,ao—s,a+
=& with [J¢=3,Me=—3) and|J4=3 M,=—3,—3,3) are
shown in Figs. 3. In computlng F|gs(alt we have used
analytical solutions of Eqg7), which agree very well with
the results from the numerical integration of E¢4). We

which is of course smaller than the degenerate ground-statésve also verified the validity of Eq§l2) and(11) used for

case, Eq(20).

computing Figs. (b) and Zb), respectively.
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0.9 =
4 —= Ten
0.9 =, 0.8} —
0.8 —_ | o T
—o— T o7 o T
0.7 N 0.6f
0.6} 1 x (f
"l ul) o5t
W P5r (kgms™'y 0.4
(kgms™y .
0.4} 0t
0.3| oeee 0.2}
0.2} 1 0.1}
0.1} .
. ) () 1 2 .3 4 5
0 1 2 ,3 4 5 time, ¢/
time, t I~ (b)
(b) 15

FIG. 2. Case of symmetric transition coefficientstzl%,
ag=% in thermal radiationn=1 with initial momentum width
1#k. (@ Momentum distributions of the populations at tinie
=5". (b) Time evolutions of the populationgmomentum En
summed computed from analytical results, Eq41). s

As expected, the populations in all states have a momen-
tum spreadFigs. 1a), 2(a), 3(a)] compared to the initial
total distributionf(P,0) due to incoherent interaction with

the thermal radiation. From Fig.(d), even if the transition ! zume,t/r‘ ?

coefficientsa, are the same, we see that the spreadingrfor (c)

transitions are slightly larger. This is due to the different

angular dependendé,(6) between ther and = transitions. FIG. 3. Case of different transition coefficients;_=3,

This difference can be seen more clearly in Fie)3vhere ~ @0=3, a, =3 for the excited statdJ.=3,M.=—73) and the

a, are different for ther and 7 transitions. From Fig. @), ~ ground statedg=3,Mq=—3,—3,3) in thermal radiationn=1,

where the coefficients are different, the momentum spreadaith initial momentum width Zk. (&) Momentum distributions of

are different for different transitions. the populations at time=5/T". (b) Time evolutions of the popula-
The time evolution of the populations can be analyzedions(momentum summegd(c) Time evolutions of the c.m. entropy

from Figs. 1b), 2(b), and 3b). The excited population de- difference,S;,— S;m(0) and the inter_nal entrop®; . All results in

cays exponentially, essentially unaffected by the transitiorf®: (b), and(c) are computed numerically.

coefficients of the ground states. For the samecase, the

ground-state populations increases exponentj&ly. 1(b)].

However, wheny, are different, the time evolution would be 5(b)], where the steady-state populations are dependent on

different and can bawonexponential although the popula- the transition coefficiente, instead of the temperature.

tions seem to evolve to a common equilibrium value. This is It would be interesting to compare the momentum spreads

clearly seen in Fig. @), where the populationr_ _ with between thes transition and ther transition for the pure

largest coefficientv_ =3 rises above the equilibrium value two-level system. The polarization of the emitted photons

at aroundt~ 1/I" before falling towards a converging value. also affect the momentum spread. Figurés énd 6b) show

This is compared to the case without thermal phofdfig.  that the spread is slightly larger for thetransition than the
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1
0.5}
l
)
o .
0 1 2 3 4 5 0 1 2 3 4 5
time, t /-1 time, t
( c ) ( c )

FIG. 4. Same as the case in Fig(dfferent transition coeffi-
cients,a_ =%, ap=3%, a, =+ with thermal radiationn=1). (a)
Momentum distributions of the populations at tire 5/I" with an
initial subrecoil momentum width of 04k and time evolutions of
the c.m. entropy differenc8;,,— S;(0) from (b) this paper andc)
the Fokker-Planck equatidieq. (21)] for initial Gaussian distribu-
tion.

FIG. 5. Same as Fig. 4 except without thermal radiation,
=0. (Initial subrecoil momentum width of O#k. Different transi-
tion coefficientsa_ =3, ay=3, a, =%.) (@ Momentum distribu-
tions of the populations at time=5/T", (b) time evolutions of the
populations, andc) time evolutions of the c.m. entropy difference
Sem— Sem(0) and the internal entrop$; .

be seen clearer in the pure two-level cdBay. 7(a)]. This
7 transition. This is due to the different angular dependencéeature exists only for the transition(and not inm transi-
of the spontaneously emitted photons ¢gifor 7 transition  tion) in the absence of thermal radiation=0. It is due to
and 1— 3sir@ for o+ transitions. For 7 transition, a pho-  the angular anisotropy of the photon emissions indttean-
ton tends to be emitted at right angle to the dipoidnich  sition, with higher transition probability along the axis
coincides with the quantization axiwhile for o transition, a  (which coincides with quantization axisThe population
photon tends to be emitted parallel to the dipole. around zero momenturgpeak undergoes recoil around to-
For subrecaoil initial momentum width, the ground popu- wards =4k during spontaneous emission. The double peak
lations display a soft double-peak feat{iFég. 5(@)] and can feature does not show up in the presence of thermal radiation
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o x10% .
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(kg ms!)! (kgf('::_, ! §
4.
3.
2.
J
- 2 1 0 1 2
,g.pff’
f(P)
(kgm-l)—l
P /hk
b) (b)

FIG. 6. Pure two-level system. Probability distributib(P) at FIG. 7. Pure two-level system. Probability distributibP) for
t=>5/I" for (a) case ofn=0 and(b) case ofn=1, with initial dis- ¢ transitions = = 1) with subrecoil initial widtho=0.4%k, : (a)
tribution (dashed ling 7 transition(q=0, thin line), ando = tran- casen=0 att=5T for o=0.4hk, and (c) casen=1, o=0.4%k,
sitions @=*1, thick line). for distributions at initiathin line), 21" (line), and 5T" (thick line).

[Figs. 4a) and 1b)], since photon reabsorption repopulates

the population around zero momentum and smooths out thgarough the fluctuation-dissipation mechanism in a decay

distribution. process. The excited population shrinks with a slight mo-
The time evolution of the c.m. entropy and the internalmentum spread while the ground population increases with

entropy are also analyzed. In thermal radiation, the internaéreater momentum spread than in the case-00. On over-

tehn;rgrr?]’ résnifove%é?esgégsaaﬂ?gisrpgmaﬁ?ﬁ%i‘z%;.lﬂswe?g)e all, the momentum spread in the probability distribution is
v Ry g WS- 20), larger forn=0 [Fig. 6(b)] compared tan=0 [Fig. 6(a)].

4(b), 5(c)]. It is interesting to find from Fig. @) that the c.m. ) .
entropy increases faster and to a larger value if the initial Although the decay rate in the presence of thermal noise

momentum width is smaller. The rate of entropy reduceds enhanced by a factor of 6+ 1) (for three ground statgs
with time. Comparison of Fig.(B) and Fig. 7c) also shows and (n+1) (for pure two leve), the excited population
qualitative correspondence between our results and that frogannot be emptied but reaches a finite limiting value. The
Ref. [11]. For zero temperature, the internal entropy ap-thermal radiation provides continuous pumping which main-
proaches zergFig. 5c)] since all the populations decay to tains a nonzero population in the excited state with finite
one internal state while the c.m. entropy begins to saturatgternal entropy at equilibrium.

after about two decay lifetime. Equatiofs4) show that the

spontaneous decay does not lead to momentum spread in the

excited-state population since there is no excitation from they;; coMPARISONS WITH FOKKER-PLANCK RESULTS
ground state.

When thermal photons are present, the decay process is All the above results correctly describe the dynamics of
no longer purely characterized by free decay from spontanghe momentum distribution fgP|<M c with negligible Dop-
ous emission. The thermal photons induce incoherent excitgler shift. This corresponds to the early stage of the time
tions (absorption which occur concurrently with the sponta- evolution when the distribution is still narrow. As the spread-
neous emissions. Both processes contribute to give thi@g continues in thermal radiation, the maximum Doppler
overall momentum spread. The thermal photons act as thghift increases and the Doppler shift becomes significant.
noise which gives the heating effect or momentum diffusionThe dynamics for part of the distribution witfP|>7%k,
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should well be described the Fokker-
of Ref. [11] while the part with|P|<Mc is still precisely
described by our results. Our results can well describe the

early dynamics of the cold gas but not the steady-state dis- \yie have solved and studied the momentum and temporal

tribution..The steady-state distributio_n can be described by,qutions of a cold gas undergoing spontaneous emissions
the solutions of Fokker-Planck equation of Riifl] for the  j; 5 two-level system with an excited state and three degen-

Planck equation resultgoth Egs.(23) and(22) are in accordance with Fig(d.

VII. CONCLUSIONS

probability momentum distributiof(P,t), erate ground states. Analytical solutions that are essentially
af(P,t) A exact in the cold gas regime are derived for a specific inter-
o YVAPHPD}+ 3DV, (21)  nal scheme and for the zero-temperature cases. The analyti-

__ _ cal results are combined with Fourier-transform technique to
where y=(1/kgT)(#2k5/3M)[T'n(n+1)/2n+1] is the compute the time- and momentum-dependent populations.
damping rate towards thermal equilibrium and This technique provides an alternative to other mettjads
DiﬁZkg[FF(F+ 1)/2n+1] is the diffusion coefficient. for simulation of the laser cooling process where the density-
For the initial Gaussian distribution f(P,0) matrix elements depend on the continuous variables of time
:Hi=x,y,z(l/\/;ai)ei(Pi /ai)z, Eq. (21) gives the transient and momentum. T_he_ results of the momentum spread of cqld

. _n. () —P2a2() h gas in thermal radiation are computed and compared for dif-
solution f(P.t) Hl_x,_\,|22~{t1/[a|2(t)_27tr]_}e v WNEre  ferent internal schemes, with subrecoil initial width, without
a;(t)=(2D/3y)(1-e~*")+afe > is the transient Mo- thermal radiation and the different types of transitions in a
mentum width. The gas reaches the steady-state distributiqsyre two-level system. We confine our computation results to
f(P,)=(1/\J7m2D/3y)e "2/} wjith the maximum en- one dimension to bring out the essential physics. Extension
tropy and momentum widtk/2D/3y, corresponding to the of the computation results to higher dimensions is straight-
thermal radiation temperatuie=(D/y3Mkg). This occurs forward using the obtained theoretical solutions. We have
in a very long time scale ofy '~10%s (1F yr) and 3  pointed out the range of validity of our results and compared
X 10 s(9000 yr) for optical and infrared transitions, re- them to the Fokker-Planck results. Our results can well de-
spectively. Thus, spontaneous emission is a very slow angcribe the cold gas regime and thus complement the results
ineffective mechanism of thermalization with the thermal ra-in Ref. [11].
diation. This is not surprising because of the weak coupling
between atom and radiation in free space. Physically, the ACKNOWLEDGMENTS
presence of damping is due to the higher probability of ) )
absorbing a blue-Doppler shifted thermal photon and slowed We gratefully acknowledge the financial support of the
down. The thermal photons act as a “viscous medium’” to theDeutsche Forschungsgemeinschaft and the Forschergruppe
particles and eventually bring the gas into thermal equilib-Quantengase.
rium with thermal radiation.

For timet<s y‘l, we can expan®‘27t~1—2yt in the APPENDIX A: LIOUVILLEAN AND GENERALIZED
transient solution and find that the change in the momentum BLOCH EQUATIONS
width decreases with time as

ai(t)= \/ e

3 2afy

Similarly, we find that the amount of momentum spread-8auation dps(t)/dt]=Lps(t) for the reduced density opera-
ing after one decay lifetime is dependent on the initial mo-tor of the systenpg(t) whereL pg(t) is the dissipative Liou-
mentum width as villean. The Liouvillean formultistatesystem in interaction

2 nn+1) (1 a pictu're with the Born—Mark'ov, dipqle and rotating wave ap-

! ] (23)  proximations has been derived using the standard m¢fHod

%22 -
L P TV T as

The quantum dynamics of the internal and center-of-mass
(c.m) momentum states of a particle system in the thermal
reservoir of temperatur@ is fully described by the master

t+a?. (22)

N t _ L+ . ~ - . A
Lpg(t)=— fodr_ % y Gikn G (N 1)e_|AjkP’Te""oijtS|+Sj|P')(P'|ps(t)+nkelAjkP’Te_'wOijtSS;—lP'><P'|ps(t)}
1], KA,

t — ~ ) L+ —a . —
- jodT > il (Nt 1)Ps(t)|P'><P'|Sj+3eilw°”temikp’f+ nsz(t)|P'><P’|Sjs'|+elw°”teimikp'7}
i\ kAP

t —_— LT ~ r_ . —_— T ~ ! .
+ fodr Y Gagiaine e S pe(p e S ot (n+ 1)el e S pg(pa i 1) S) e et}
i,j KNP P

t — .t ~ r_ . —_— AT ~ ’ .
+ fdr Y g€ i ™S ps(p i ) Se T @it+ (ne+1)e i 'S pg(B, ThE DS eleaiitt (AL
0 ijk\P P
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with the definitions dpii(P,1) — [t - :
”T: _ Ek)\ gik)\gjk}\nkJOdT{elAikplTe_leijtpji(P.t)
i

P e D)= PP P (P k| (D) P ik (P,

Wy Wy
G =i £4n Voo vz Ui ; . €anaCai \ 25 vz
=T, (0]

0o

+Pij(P:t)eiw"”te_mi_kP’T}Jr% |G| 2(ng
t

+l)pee(P+ﬁk)J d72 CosAp, (A2)
0

Ajp= 0= woj— wpt o, where i,jea,b,c and p;;(P=7k,t)=(i P+hk|p(t)]j,P
*hk).

The termsp; ;.; are associated with the Zeeman coher-
where the indices, ] correspond to a pair states with dipole ences are nonvanishing only if the dipole moments are non-
allowed transition with energy-level spacing;=w; orth_ogo_nal, V‘.’h'Ch can be re@_xhzed using polarlz_atlon prese-

lection in cavity[9] and specific atomic levels which lead to

~ o5, wp=P: z'cwk“\gc the first-order — Doppler  g,,htaneously generated coherer{ds,
shift, o, =fhwi/2Mc the  recoil  frequency, Here, we consider the typical scheme available in a mo-
k=(sin 6 cos ¢, sin 6 sin ¢, cosd) the photon unit wavevec- |ecular system where the Zeeman coherences vanish between
tor in terms of spherical angleQ@=(¢,6), n,=(e"*x’ksT different transitions due to orthogonality of the vector dipole
—1)" 1 is the mean thermal photon numb&:=|g;)(g;| is  matrix elements. Thus, Eq$A2) reduce to the multistate
the lowering operator for théth pair of levels,d; is the coupled equations between the excited and ground popula-
reduced dipole momené, 4 is theq component of the elec- tions without coherences,
tric field with wave vectork and polarization index, and

(i)pr_prri(,()pr wpr,

Cg,i the numerical factor which includes the Clebsch-Gordamped P,t) 2n [1 N —
coefficient and the Hud-London factor(for molecule$ [8] T:j%x 9j 10l ZJOdTCOSAkPT{—(nk+ 1)pedPit)
for the transition between thi¢h pair of levels. The change
in magnetic quantum numbegs=Mg;—Mg; corresponds to +Hkp“(p_ﬁk,t)},
the dipole alloweds transition @==1) andw transition
(9=0). apj;(Pb) t
We consider atwo-level multistatesystem, specifically ’)“—’:2 |g; k>\|22f d7coA (o7 — N (P,1) + (Nye
with one excited statge) with the magnetic quantum num- at o 0 !

ber M, and three degenerate magnet@eeman ground

stateda), |b) and|c) with the respective magnetic quantum

numbersM ,=M.—1, My,=M,, andM.=M.+ 1. By tak-

ing the dlagonal matrix elements in the momentum states imwhere p,.(P*#k,t)=(a,P*#k|p(t)|a,P+#%k) and j

Eqg. Al, we obtain the generalized Bloch equations e a,b,c. Equations(A3) can be simply reduced to thmire
two-levelor two-statesystem which is restricted only to at-
oms and pure rotational dipole transitions in molecules, for

+1)pedPHAK, 1)}, (A3)

Iped P,t) example betweef=1M=1) and|J=0M =0).
— - pee(Pt)E |91kx|2(”k+l)J d72 cosAjipr In  the iso?rJopic fre?e sp|>ace With> continuum
frequency sp3ectrgm we  use Zy,|gj
P —(I'27) [do(w lw,®) [dD; . . ., where  [d®; ...
* 2% 193 *nepyy (P k) = (308m) (374 5d0Zg 0:1CE N(#) . -, T=(dGo,
e fimc®, and Ny(0)= 5q05|n36+ +(smé’ 3sin’d). For t
thdq_(efmﬁpuremﬁ@f), >1/Akp, we replace fodfcosAkprawé(Akp) 76(w
0 —w,— wp* w,;) and Eqs.(A3) become

dpedPt) 3 w3 (27 m ) N — — ( N0 )
T—F%J da)w—oaf0 quJO dé’; 51 Cq’qu(G)é(Akp)[—(n(w)-l—1)pee(P,t)+n(w)pjj P—KT,t ,

tfhw )]
P+xk—,t];.
C

(A4)

apii(P,t) 27 _ _
L_ _J dw—f dd)J de O'+1ngqu(H)(S(Akp)[—n(w)pjj(P,t)-i-[n(w)-l-1]pee
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APPENDIX B: ENTROPY . . ~ .
probability f(P,t)=(P|pcm(t)|P) = ped(P.t) + Zqpqq(P:t) is

The center-of-mass quantum entr@yn(t) can be com- the probablllty momentum distribution with Single-particle
puted from Ref[12], normalization,f f(P,t)d®P=1.
The internal entropys(t) is defined as

Scm(t) =- kBTrcm{;’cm(t)ln ;’cm(t)}
S(0=—keTri{pi(DINpi(D}= kg 2, Tag()INTaq(D),
(82)

=—kBEP g(P,O)Ing(P,t), (B1)

wherefo is the density operator of the gas which includes theyhere ;)i(t)iTrcm{;)(t)}:f<P|;)(t)|P>d3P, Taa(t)
internal and c.m. degrees of freedom,n(t)=Tri{p(t)}  =(a|pi(t)|a) is the momentum summed population in state
=3 e0-(alp(t)]a),g(P,t)=f(P,t)A%P is the discretized |a).
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