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In a visual odometry system, location of a mobile robot is automatically estimated (localized) from video. 
When the video is captured by an "upward" camera fixed to an indoor mobile robot, a panorama image of 
the ceiling (ceiling map) is generated by using a visual motion between two adjacent frames in the video. 
Similarly, location of another robot can be estimated on the ceiling map by using a visual motion 
between the current frame and the previously generated ceiling map. Under the assumption that the 
robot goes straight or rotates around a fixed point, there is no problem on the localization as far as the 
floor is flat. However, when there is debris on the floor, the estimated location contains error. In this paper, 
we reduce this error by utilizing visual motions in video from the "forward" camera fixed to the robot. 
This is a visual compensation of motions in the "upward" camera's video with those in the "forward" 
camera's video. It was experimentally confirmed that the maximum absolute value of the error was 
reduced to approximately 11%. 
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INTRODUCTION 
 
Auto-localization of a moving robot is a challenging 
problem for engineers to develop a robot vision network, in 
which various kinds of mobile robots communicate and 
cooperate with each other automatically. In a situation 
such that a global positioning system (GPS) is not 
applicable, various inner robot sensors such as an 
acceleration sensor, a geomagnetic attitude sensor, a 
laser range finder and a gyroscope are useful for this 
purpose. 

Comparing to these sensors, video based localization 
methods are less accurate and less robust in general. 
However, it is still attractive for constructing an energy 
saving small mobile robot with micro CCD sensors. It is 
becoming useful owing to recently developed odometry 
and simultaneous localization and mapping (SLAM) 
techniques (Desouza and Kak, 2002; Nister et al., 2004; 
Munguia and Grau, 2007). 
   In this paper, we deal with a system in which location of a 
mobile  robot  is  automatically estimated  (localized)  from  
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video. When the video is captured by an "upward" camera 
fixed to an indoor mobile robot, a panorama image of the 
ceiling (a ceiling map) is generated by using a visual 
motion (motion vector) between two adjacent frames in the 
video. Similarly, location of another robot can be estimated 
on the ceiling map by using a motion vector between the 
current frame and the previously generated ceiling map 
(Papanikolopoulos et al., 1993). Under the assumption 
that the robot goes straight or rotates around a fixed point, 
there is no problem on the localization as far as the floor is 
flat (Udomsiri et al., 2009). However, when there is debris 
on the floor, the estimated location contains error. 

In this paper, we reduce this error by utilizing motion 
vectors in video from the "forward" camera fixed to the 
robot. This is a visual compensation of motions in the 
"upward" camera's video with those in the "forward" 
camera's video. We theoretically analyze relation between 
kinetic movements of a robot and motion vectors observed 
in videos from the upward camera and the forward 
camera. 

To estimate a motion vector, correlation based matching 
technique has been utilized not only for MPEG video data 
compression standard, but  also   for  map  generation  and  
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Figure 1. Localization of a robot: (a) side view, (b) front view. 
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Figure 2. Movements of a robot and their corresponding visual motions in video. 

 
 
 

localization (Wilson and Theriot, 2006). However it is 
sensitive to lighting conditions. Therefore, we utilize the 
rotation invariant phase only correlation (RI-POC) 
technique for stable and precise motion estimation (Sasaki 
et al., 1998; Ito et al., 2004). 

 
 
OVERVIEW OF THE SYSTEM AND ITS PROBLEM 

 
Figure 1 illustrates an indoor mobile robot. It is controlled 
to go straight or rotate around a fixed point on a flat floor 
under a flat ceiling. The robot has two video cameras - 
upward and forward. It is our purpose to automatically and 
precisely estimate its location (localization) from the 
videos. 

Firstly, a panorama image of the ceiling (a ceiling map) is 
generated by using a visual motion (motion vector) 
between two  adjacent  frames  in  video  from  the  upward 

camera. Secondly, location of another robot is estimated 
on the ceiling map by using a motion vector between the 
current frame and the previously generated ceiling map. 

Under the assumption that the robot goes straight or 
rotates around a fixed point, there is no problem on the 
localization as far as the floor is flat. However, when there 
is debris on the floor as illustrated in the figure, the 
estimated location contains error T∆x and/or T∆y. 
 
 
ANALYSIS AND THE PROPOSED METHOD 

 
Analysis on kinetic movements and visual motions 

 
Figure 2 summarizes relation between kinetic movements of a robot 
and visual motions (motion vectors) observed in videos from the two 
video cameras. Under the assumption in the previous section, a 
robot is controlled to have only two kinetic movements - translation Tx 
and rotation θz. In this case, in video from the upward camera, 
translation  TX  and   rotation   θZ    are   observed.   It   determines   the 
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Figure 3. Modeling of translation distances 

and rotation angles. 
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Figure 4. Experiment 1. (a) side view (b) before (c) after. 

 
 
 
controlled movements Tx and θz without any error. 

However, if there is debris on the floor, the robot has two 
turbulences - rotation θ∆y and rotation θ∆x. Each of them generates 
translation error T∆X and T∆Y respectively. In this case, mixture of TX 
and T∆X is observed in X direction in the video from the upward 
camera. Those are not separable by using only  the  upward  camera.  
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It is our purpose to compensate this error for precise estimation of 
movement and location of a mobile robot. 
 
 
VISUAL COMPENSATION 
 
In this paper, we utilized visual motions in video from the "forward" 
camera to compensate the error. This is a visual compensation of 
motions in the "upward" camera's video with those in the "forward" 
camera's video. We estimate the visual motions (T∆X*, ∆θZ*) in the 
forward camera's video to calculate the errors (T∆x, T∆y) for precise 
estimation of (Tx, θz). 

Figure 3 illustrates a model for theoretical analysis on our visual 
compensation. According to the figure, we have a relation between 
parameters as 
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where the distances a, d and h are previously measured constant 
values. This equation determines the error as 
 

∆y∆yx ahT θθ tan)sin( −=∆ .                                                                      (2) 

 
Similarly, we have 
 

∆x∆xy ahT θθ tan)sin( −=∆ .                                                                      (3) 

 
In the proposed method, we calculate the rotation turbulences (θ∆y, 
θ∆x) in the equation above from the visual motions (T∆X*, ∆θZ*) 
estimated by using video from the forward camera. The estimation is 
carried out by the rotation invariant phase only correlation (RI-POC) 
described in [7,8]. As a result of utilization of the forward camera's 
video, it is expected to have reduced errors in localization of a robot 
on the ceiling map. 

 
 
EXPERIMENTAL RESULTS 
 
In the following experiments, the parameters in Figure 3 
are a = 14 cm, d = 45 cm, and h = 260 cm, respectively. 
The robot goes straight at a constant speed. 
 
 
Example 1 
 
Figure 4a illustrates side view of this experiment. The 
debris brings about the error T∆x to be eliminated by the 
proposed method. Figure 4b and 4c illustrate the 
estimated locations on a ceiling map before and after 
applying the proposed method respectively. In Figure 4c, 
locations are plotted in a line at a constant interval as the 
errors are eliminated and the locations are compensated. 

Figure 5 summarizes the error T∆x for the case in Figure 
4. It is observed  that  the  maximum absolute  value  of  the  
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Figure 5. Error in the experiment 1. 
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Figure 6. Experiment 2. (a) top view (b) side view 
(c) before (d) after. 

 
 
 

error is reduced from 21 to 2 cm. It is confirmed that the 
proposed method can reduce the error to 9.52%. 
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Figure 7. Errors in the experiment 2. (a) x direction (b) y direction. 

 
 
 
Example 2 

 
Figure 6a and 6b illustrate top view and side view of this 
experiment respectively. The debris brings about the error 
T∆x and also T∆y. Figure 6c and 6d illustrate the estimated 
locations on a ceiling map before and after applying the 
proposed method respectively. In Figure 6d, locations are 
plotted in a line at a constant interval as the errors are 
eliminated. 

Figure 7a and 7b summarizes the error T∆x and T∆y for 
the case in Figure 6. It is observed that the maximum 
absolute value of the error is reduced from 17 to 2 cm and 
from 9 to 1 cm respectively. It is observed that the 
proposed method can reduce the error to 11.76 and 
11.11% respectively. It is confirmed that utilization of the 
forward camera's video reduced the error to approximately 
11%. 

 
 
Conclusions 

 
In this paper, we reduced errors in estimating location of 
an indoor mobile robot on a ceiling map  by  utilizing  visual 



 
 
 
 
compensation of motions in the "upward" camera's video 
with those in the "forward" camera's video. It was 
experimentally confirmed that the maximum absolute 
value of the error was reduced to approximately 11%. 
Future work such as modification of the current 
mathematical model or other approach will be done to 
enhance current estimation performance. 
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