metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Di- μ -thiocyanato- $\kappa^2 N:S; \kappa^2 S:N$ -bis[bis(2methyl-1*H*-benzimidazole- κN^3)-(thiocyanato- κN)cadmium(II)]

Shayma A. Shaker, Hamid Khaledi* and Hapipah Mohd Ali

Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: khaledi@siswa.um.edu.my

Received 12 October 2010; accepted 19 October 2010

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.003 Å; R factor = 0.021; wR factor = 0.047; data-to-parameter ratio = 14.2.

The title compound, $[Cd_2(NCS)_4(C_8H_8N_2)_4]$, is a centrosymmetric dinuclear cadmium(II) complex in which each two metal ions are linked by a pair of thiocyanate *N*:*S*-bridges. Two 2-methylbenzimidazole N-atom donors and one terminal thiocyanate N atom complete a highly distorted square-pyramidal geometry around the Cd atom. In the crystal structure, two N-H···S hydrogen-bonding interactions occur, resulting in a three-dimensional polymeric structure. The apical 2-methylbenzimidazole ring and its symmetry-related counterpart are arranged in an antiparallel manner with a centroid-centroid separation of 3.6050 (14) Å, indicative of a π - π interaction.

Related literature

For cadmium complexes having a $[Cd_2(\mu_2-NCS)_2(NCS)_2]$ unit, see: Gou *et al.* (2008); Govor *et al.* (2008); Shi *et al.* (2004).

Crystal data

 $\begin{bmatrix} Cd_2(NCS)_4(C_8H_8N_2)_4 \end{bmatrix} \\ M_r = 985.78 \\ Monoclinic, C2/c \\ a = 18.1519 (11) Å \\ b = 10.2098 (6) Å \\ c = 21.7385 (13) Å \\ \beta = 97.864 (1)^{\circ} \end{bmatrix}$

Data collection

Bruker APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\rm min} = 0.634, T_{\rm max} = 0.847$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.021$	
$wR(F^2) = 0.047$	
S = 1.03	
3593 reflections	
253 parameters	
3 restraints	

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$N2 - H2N \cdots S1^{i}$ N4 - H4N \cdots S1^{ii}	0.86 (2) 0.84 (2)	2.45 (2) 2.48 (2)	3.273 (2) 3.281 (2)	163 (2) 159 (2)
Symmetry codes: (i)	$-x + \frac{3}{2}, y + \frac{1}{2}, -z$	$+\frac{3}{2}$; (ii) $x - \frac{1}{2}, y$	$-\frac{1}{2}, z.$	

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *XP* in *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXL97* and *publCIF* (Westrip, 2010).

The authors thank University of Malaya for funding this study (UMRG grant RG024/09BIO).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2278).

References

Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Gou, L., Wu, Q. R., Hu, H. M., Qin, T., Xue, G. L., Yang, M. L. & Tang, Z. X. (2008). Polyhedron, 27, 1517–1526.

Govor, E. V., Lysenko, A. B., Domasevitch, K. V., Rusanov, E. B. & Chernega, A. N. (2008). Acta Cryst. C64, m117–m120.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Shi, Q., Xu, L. J., Ji, J. X., Li, Y. M., Wang, R. H., Zhou, Z. Y., Cao, R., Hong, M. C. & Chan, A. S. C. (2004). *Inorg. Chem. Commun.* 7, 1254–1257. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

 $V = 3990.8 \text{ (4) } \text{\AA}^3$ Z = 4 Mo K\alpha radiation \mu = 1.32 mm^{-1} T = 100 K 0.38 \times 0.20 \times 0.13 mm

9361 measured reflections 3593 independent reflections 3213 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.022$

H atoms treated by a mixture of independent and constrained refinement
$$\begin{split} &\Delta\rho_{max}=0.35~e~{\rm \AA}^{-3}\\ &\Delta\rho_{min}=-0.31~e~{\rm \AA}^{-3} \end{split}$$

Cro

supplementary materials

Acta Cryst. (2010). E66, m1464 [doi:10.1107/S1600536810042443]

Di- μ -thiocyanato- $\kappa^2 N:S; \kappa^2 S:N$ -bis[bis(2-methyl-1*H*-benzimidazole- κN^3)(thiocyanato- κN)cadmium(II)]

S. A. Shaker, H. Khaledi and H. Mohd Ali

Comment

The title compound is a mixed-ligand cadmium(II) complex with thiocyanate and 2-methylbenzimidazole. The thiocyanate ions act as either bridging or terminal ligands. The pairs of the former, link each two metal ions into a centrosymmetric dinuclear complex. The resulting eight-membered $Cd_2(\mu_2-NCS)_2$ ring is almost planar (r.m.s = 0.015), unlike the chair conformation observed in most of the similar structures (Gou *et al.* 2008; Govor *et al.* 2008; Shi *et al.* 2004). The terminal thiocyanate ligand forms two types of hydrogen bond with the amine hydrogen atoms (Fig. 2), leading to an infinite three-dimensional network. Two 2-methylbenzimidazole ligands, one in the apical position and the other one equatorially positioned, complete the penta-coordinate cadmium(II) complex in a highly distorted square pyramidal geometry (τ = 0.26). The apical 2-methylbenzimidazole ring and its symmetry related counterpart at (-x+1, -y, -z+1) are arranged in an antiparallel manner with separation of 3.6050 (14) Å, indicative of a π - π interaction.

Experimental

An ethanolic solution (15 ml) of 2-methylbenzimidazole (1.32 g, 10 mmol) was added to an aqueous solution (20 ml) of $CdCl_2$. H_2O (0.5 g, 2.5 mmol) followed by addition of an aqueous solution (15 ml) of KSCN (0.49 g, 5 mmol). The mixture was heated in a water bath for 30 min with constant stirring. The resulting precipitate was filtered off and recrystallized from ethanol to give the colorless crystals of the title cadmium(II) complex.

Refinement

The C-bound hydrogen atoms were placed in idealized locations (C—H = 0.95-0.98 Å) and refined as riding on their parent carbon atoms. The N-bound hydrogen atoms were located in a difference Fourier map and were refined with distance restraints of N—H 0.88 (2) Å. *U*(H) were set to either 1.2 *U*eq of the parent atom, or 1.5 *U*eq(C) for methyl H. An additional rigid-bond type restraint (DELU in SHELXL97) was placed on the displacement parameters of S1 and C17.

Figures

Fig. 1. The molecular structure of the title compound showing displacement ellipsoids at the 50% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius. The unlabelled atoms are generated by the symmetry operation (-x + 1, -y + 1, -z + 1).

Fig. 2. A view of the hydrogen bonding interactions (dashed lines). C-bound hydrogen atoms have been omitted for clarity. Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) x + 1/2, y + 1/2, z; (iii) -x + 3/2, -y + 3/2, -z + 1/2; (iv) -x + 3/2, y - 1/2, -z + 3/2.

Di- μ -thiocyanato- $\kappa^2 N$:S; $\kappa^2 S$:N- bis[bis(2-methyl-1*H*-benzimidazole- κN^3)(thiocyanato- κN)cadmium(II)]

Crystal data	
[Cd ₂ (NCS) ₄ (C ₈ H ₈ N ₂) ₄]	F(000) = 1968
$M_r = 985.78$	$D_{\rm x} = 1.641 {\rm Mg m}^{-3}$
Monoclinic, $C2/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -C 2yc	Cell parameters from 4666 reflections
<i>a</i> = 18.1519 (11) Å	$\theta = 2.3 - 30.1^{\circ}$
b = 10.2098 (6) Å	$\mu = 1.32 \text{ mm}^{-1}$
c = 21.7385 (13) Å	T = 100 K
$\beta = 97.864 \ (1)^{\circ}$	Block, colorless
$V = 3990.8 (4) \text{ Å}^3$	$0.38\times0.20\times0.13~mm$
Z = 4	

Data collection

Bruker APEXII CCD diffractometer	3593 independent reflections
Radiation source: fine-focus sealed tube	3213 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.022$
ϕ and ω scans	$\theta_{\text{max}} = 25.2^{\circ}, \ \theta_{\text{min}} = 2.3^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1996)	$h = -21 \rightarrow 21$
$T_{\min} = 0.634, T_{\max} = 0.847$	$k = -12 \rightarrow 8$
9361 measured reflections	$l = -26 \rightarrow 26$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.021$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.047$	H atoms treated by a mixture of independent and constrained refinement
<i>S</i> = 1.03	$w = 1/[\sigma^2(F_o^2) + (0.0169P)^2 + 6.0676P]$ where $P = (F_o^2 + 2F_c^2)/3$
3593 reflections	$(\Delta/\sigma)_{\rm max} = 0.003$

253 parameters	$\Delta \rho_{max} = 0.35 \text{ e } \text{\AA}^{-3}$
3 restraints	$\Delta \rho_{\rm min} = -0.31 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Cd1	0.611050 (9)	0.354819 (16)	0.590885 (7)	0.01561 (6)
S1	0.88100 (3)	0.33657 (6)	0.67126 (3)	0.02608 (15)
S2	0.63546 (3)	0.42113 (7)	0.47897 (3)	0.02741 (16)
N1	0.62322 (10)	0.41831 (19)	0.69141 (9)	0.0181 (4)
N2	0.63781 (11)	0.5391 (2)	0.77688 (9)	0.0211 (5)
H2N	0.6364 (14)	0.609 (2)	0.7982 (11)	0.025*
N3	0.57608 (10)	0.14637 (19)	0.58946 (8)	0.0166 (4)
N4	0.50684 (11)	-0.0294 (2)	0.59628 (9)	0.0193 (4)
H4N	0.4715 (12)	-0.075 (2)	0.6062 (11)	0.023*
N5	0.73824 (11)	0.3290 (2)	0.60377 (10)	0.0258 (5)
N6	0.49556 (11)	0.4528 (2)	0.57293 (9)	0.0227 (5)
C1	0.57531 (15)	0.6482 (2)	0.68162 (12)	0.0279 (6)
H1A	0.5852	0.6462	0.6384	0.042*
H1B	0.5953	0.7293	0.7014	0.042*
H1C	0.5215	0.6444	0.6826	0.042*
C2	0.61150 (12)	0.5342 (2)	0.71553 (11)	0.0195 (5)
C3	0.67023 (13)	0.4198 (2)	0.79411 (11)	0.0199 (5)
C4	0.70777 (13)	0.3741 (3)	0.85017 (11)	0.0256 (6)
H4	0.7157	0.4277	0.8862	0.031*
C5	0.73278 (13)	0.2465 (3)	0.85032 (11)	0.0267 (6)
Н5	0.7590	0.2115	0.8875	0.032*
C6	0.72085 (13)	0.1674 (3)	0.79777 (11)	0.0244 (6)
Н6	0.7376	0.0791	0.8004	0.029*
C7	0.68519 (13)	0.2141 (2)	0.74170 (11)	0.0207 (5)
H7	0.6782	0.1606	0.7056	0.025*
C8	0.66004 (12)	0.3433 (2)	0.74051 (10)	0.0180 (5)
С9	0.47424 (14)	0.1670 (2)	0.65538 (11)	0.0235 (6)
H9A	0.5070	0.1980	0.6921	0.035*
H9B	0.4369	0.1074	0.6683	0.035*
H9C	0.4493	0.2419	0.6333	0.035*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

0.51909 (12)	0.0964 (2)	0.61350 (10)	0.0180 (5)
0.55900 (12)	-0.0656 (2)	0.55862 (10)	0.0179 (5)
0.57193 (13)	-0.1818 (2)	0.52880 (11)	0.0215 (5)
0.5417	-0.2570	0.5316	0.026*
0.63096 (14)	-0.1828 (2)	0.49486 (11)	0.0224 (5)
0.6421	-0.2610	0.4743	0.027*
0.67477 (13)	-0.0712 (2)	0.49010 (11)	0.0221 (5)
0.7146	-0.0752	0.4660	0.027*
0.66144 (13)	0.0441 (2)	0.51961 (10)	0.0191 (5)
0.6914	0.1194	0.5164	0.023*
0.60252 (12)	0.0460 (2)	0.55436 (10)	0.0162 (5)
0.79736 (13)	0.3327 (2)	0.63127 (11)	0.0190 (5)
0.55777 (13)	0.4945 (2)	0.44892 (10)	0.0181 (5)
	$\begin{array}{c} 0.51909\ (12)\\ 0.55900\ (12)\\ 0.57193\ (13)\\ 0.5417\\ 0.63096\ (14)\\ 0.6421\\ 0.67477\ (13)\\ 0.7146\\ 0.66144\ (13)\\ 0.6914\\ 0.60252\ (12)\\ 0.79736\ (13)\\ 0.55777\ (13) \end{array}$	$\begin{array}{ccccc} 0.51909(12) & 0.0964(2) \\ 0.55900(12) & -0.0656(2) \\ 0.57193(13) & -0.1818(2) \\ 0.5417 & -0.2570 \\ 0.63096(14) & -0.1828(2) \\ 0.6421 & -0.2610 \\ 0.67477(13) & -0.0712(2) \\ 0.7146 & -0.0752 \\ 0.66144(13) & 0.0441(2) \\ 0.6914 & 0.1194 \\ 0.60252(12) & 0.0460(2) \\ 0.79736(13) & 0.3327(2) \\ 0.55777(13) & 0.4945(2) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cd1	0.01419 (9)	0.01624 (10)	0.01592 (9)	-0.00017 (7)	0.00037 (6)	-0.00061 (7)
S1	0.0177 (3)	0.0296 (4)	0.0292 (3)	-0.0058 (3)	-0.0026 (3)	0.0120 (3)
S2	0.0179 (3)	0.0383 (4)	0.0273 (3)	0.0099 (3)	0.0080 (3)	0.0139 (3)
N1	0.0166 (10)	0.0187 (11)	0.0187 (10)	0.0004 (8)	0.0009 (8)	-0.0010 (9)
N2	0.0222 (11)	0.0219 (12)	0.0193 (11)	0.0006 (9)	0.0026 (9)	-0.0070 (9)
N3	0.0148 (9)	0.0179 (10)	0.0169 (9)	-0.0008 (8)	0.0016 (8)	0.0001 (8)
N4	0.0176 (10)	0.0214 (11)	0.0190 (10)	-0.0059 (8)	0.0024 (8)	0.0023 (9)
N5	0.0183 (11)	0.0351 (13)	0.0245 (11)	0.0003 (9)	0.0043 (9)	0.0033 (10)
N6	0.0210 (11)	0.0283 (12)	0.0188 (10)	0.0040 (9)	0.0031 (9)	-0.0008 (9)
C1	0.0305 (14)	0.0229 (14)	0.0288 (13)	0.0028 (11)	-0.0010 (12)	-0.0035 (12)
C2	0.0150 (11)	0.0213 (13)	0.0223 (12)	-0.0009 (10)	0.0027 (10)	-0.0012 (11)
C3	0.0160 (12)	0.0262 (14)	0.0181 (12)	-0.0029 (10)	0.0043 (10)	-0.0003 (11)
C4	0.0209 (13)	0.0399 (17)	0.0162 (12)	-0.0057 (11)	0.0033 (10)	-0.0021 (11)
C5	0.0186 (13)	0.0414 (17)	0.0202 (13)	0.0015 (11)	0.0023 (10)	0.0108 (12)
C6	0.0185 (12)	0.0260 (14)	0.0298 (14)	0.0029 (10)	0.0071 (11)	0.0095 (11)
C7	0.0177 (12)	0.0222 (14)	0.0222 (12)	0.0005 (10)	0.0027 (10)	0.0000 (11)
C8	0.0138 (11)	0.0215 (13)	0.0185 (12)	-0.0012 (10)	0.0018 (9)	0.0018 (10)
С9	0.0232 (13)	0.0284 (15)	0.0197 (12)	-0.0038 (11)	0.0061 (10)	-0.0028 (11)
C10	0.0164 (12)	0.0220 (13)	0.0148 (11)	-0.0014 (10)	-0.0002 (10)	0.0035 (10)
C11	0.0178 (12)	0.0211 (13)	0.0139 (11)	-0.0015 (10)	-0.0016 (9)	0.0039 (10)
C12	0.0248 (13)	0.0182 (13)	0.0198 (12)	-0.0046 (10)	-0.0025 (10)	0.0013 (10)
C13	0.0256 (13)	0.0197 (13)	0.0206 (12)	0.0024 (10)	-0.0010 (11)	-0.0029 (10)
C14	0.0194 (12)	0.0262 (14)	0.0208 (12)	0.0011 (10)	0.0032 (10)	-0.0010 (11)
C15	0.0174 (12)	0.0184 (13)	0.0210 (12)	-0.0023 (10)	0.0002 (10)	0.0004 (10)
C16	0.0156 (11)	0.0176 (12)	0.0141 (11)	0.0004 (9)	-0.0023 (9)	0.0016 (10)
C17	0.0201 (12)	0.0184 (13)	0.0193 (12)	-0.0006 (10)	0.0061 (10)	0.0050 (10)
C18	0.0177 (12)	0.0207 (13)	0.0164 (12)	-0.0015 (10)	0.0048 (10)	0.0004 (10)
-	, 9					

Geometric parameters (Å, °)

Cd1—N3	2.2199 (19)	C3—C8	1.394 (3)
Cd1—N1	2.2611 (19)	C4—C5	1.379 (4)

Cd1—N5	2.302 (2)	C4—H4	0.9500
Cd1—N6	2.307 (2)	C5—C6	1.392 (4)
Cd1—S2	2.6207 (7)	С5—Н5	0.9500
S1—C17	1.644 (2)	C6—C7	1.385 (3)
S2—C18	1.651 (2)	С6—Н6	0.9500
N1—C2	1.323 (3)	С7—С8	1.394 (3)
N1—C8	1.406 (3)	С7—Н7	0.9500
N2—C2	1.355 (3)	C9—C10	1.488 (3)
N2—C3	1.382 (3)	С9—Н9А	0.9800
N2—H2N	0.856 (17)	С9—Н9В	0.9800
N3—C10	1.323 (3)	С9—Н9С	0.9800
N3—C16	1.401 (3)	C11—C12	1.388 (3)
N4	1.347 (3)	C11—C16	1.396 (3)
N4—C11	1.384 (3)	C12—C13	1.382 (3)
N4—H4N	0.844 (16)	C12—H12	0.9500
N5—C17	1.155 (3)	C13—C14	1.401 (3)
N6—C18 ⁱ	1.152 (3)	С13—Н13	0.9500
C1—C2	1.482 (3)	C14—C15	1.378 (3)
C1—H1A	0.9800	C14—H14	0.9500
C1—H1B	0.9800	C15—C16	1.391 (3)
C1—H1C	0.9800	C15—H15	0.9500
C3—C4	1.393 (3)	C18—N6 ⁱ	1.152 (3)
N3—Cd1—N1	106.16 (7)	С4—С5—Н5	118.9
N3—Cd1—N5	99.90 (7)	С6—С5—Н5	118.9
N1—Cd1—N5	87.22 (7)	C7—C6—C5	121.6 (2)
N3—Cd1—N6	99.32 (7)	С7—С6—Н6	119.2
N1—Cd1—N6	90.32 (7)	С5—С6—Н6	119.2
N5—Cd1—N6	160.55 (7)	C6—C7—C8	117.1 (2)
N3—Cd1—S2	108.61 (5)	С6—С7—Н7	121.5
N1—Cd1—S2	144.74 (5)	С8—С7—Н7	121.5
N5—Cd1—S2	81.28 (5)	C3—C8—C7	120.6 (2)
N6—Cd1—S2	89.77 (5)	C3—C8—N1	108.9 (2)
C18—S2—Cd1	103.94 (8)	C7—C8—N1	130.5 (2)
C2—N1—C8	105.77 (19)	С10—С9—Н9А	109.5
C2—N1—Cd1	129.77 (16)	С10—С9—Н9В	109.5
C8—N1—Cd1	123.42 (15)	Н9А—С9—Н9В	109.5
C2—N2—C3	108.3 (2)	С10—С9—Н9С	109.5
C2—N2—H2N	122.1 (18)	Н9А—С9—Н9С	109.5
C3—N2—H2N	129.4 (18)	Н9В—С9—Н9С	109.5
C10—N3—C16	106.11 (19)	N3—C10—N4	111.5 (2)
C10—N3—Cd1	126.99 (16)	N3—C10—C9	125.3 (2)
C16—N3—Cd1	126.17 (15)	N4—C10—C9	123.2 (2)
C10—N4—C11	108.57 (19)	N4—C11—C12	132.7 (2)
C10—N4—H4N	123.9 (18)	N4—C11—C16	105.1 (2)
C11—N4—H4N	127.4 (18)	C12—C11—C16	122.2 (2)
C17—N5—Cd1	154.70 (19)	C13—C12—C11	116.7 (2)
C18 ⁱ —N6—Cd1	164.86 (18)	C13—C12—H12	121.7
C2—C1—H1A	109.5	C11—C12—H12	121.7

supplementary materials

C2—C1—H1B	109.5	C12—C13—C14	121.5 (2)
H1A—C1—H1B	109.5	C12—C13—H13	119.2
C2—C1—H1C	109.5	C14—C13—H13	119.2
H1A—C1—H1C	109.5	C15—C14—C13	121.5 (2)
H1B—C1—H1C	109.5	C15—C14—H14	119.2
N1—C2—N2	111.7 (2)	C13—C14—H14	119.2
N1—C2—C1	126.1 (2)	C14—C15—C16	117.5 (2)
N2—C2—C1	122.2 (2)	C14—C15—H15	121.2
N2—C3—C4	132.2 (2)	С16—С15—Н15	121.2
N2—C3—C8	105.3 (2)	C15—C16—C11	120.5 (2)
C4—C3—C8	122.4 (2)	C15—C16—N3	130.7 (2)
C5—C4—C3	116.1 (2)	C11—C16—N3	108.8 (2)
С5—С4—Н4	121.9	N5-C17-S1	179.1 (2)
C3—C4—H4	121.9	N6 ⁱ —C18—S2	178.5 (2)
C4—C5—C6	122.2 (2)		
C			

Symmetry codes: (i) -x+1, -y+1, -z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D -\!\!\!-\!\!\!\!-\!\!\!\!\!\!\!\!\!-\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$
N2—H2N···S1 ⁱⁱ	0.86 (2)	2.44 (2)	3.273 (2)	163 (2)
N4—H4N…S1 ⁱⁱⁱ	0.84 (2)	2.48 (2)	3.281 (2)	159 (2)
Symmetry codes: (ii) $-x+3/2$, $y+1/2$, $-z+3/2$; (iii) $x-1/2$, $y-1/2$, z .				

Fig. 1

Fig. 2

