
Q
o

M

1

T
s
i
T
q
s
n

s
o
h
t
m
m
m

p
b
t
d
i
n
a

I
T
J
N
E
M

2

6

brought to you by COREView metadata, citation and similar papers at core.ac.uk

l Repository
uantum-implementable selective reconstruction
f high-resolution images

itja Peruš, Horst Bischof, H. John Caulfield, and Chu Kiong Loo

This paper, written for interdisciplinary audience, presents computational image reconstruction imple-
mentable by quantum optics. The input-triggered selection of a high-resolution image among many stored
ones, and its reconstruction if the input is occluded or noisy, has been successfully simulated. The original
algorithm, based on the Hopfield associative neural net, was transformed in order to enable its quantum-
wave implementation based on holography. The main limitations of the classical Hopfield net are much
reduced with the simulated new quantum-optical implementation. © 2004 Optical Society of America
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. Introduction

here is growing evidence that quantum-physical
ystems could be harnessed for information process-
ng,1 including image recognition,2 in two ways: by
uring-machine-based quantum computing by use of
uantum logic gates3–8 and by quantum processing9

imilar to those in oscillatory associative neural
ets10,11 and holography.12

This interdisciplinary paper reports how it is pos-
ible, in principle, to implement successful image rec-
gnition, as verified by our simulations, in a quantum
olographic process.13 Since the natural fundamen-
al quantum-wave dynamics is harnessed, it allows
uch easier and cheaper physical realization with
uch-bigger sizes and resolutions of images than the
ainstream quantum-computing approaches.3–8

The main contribution of this paper is not to pro-
ose a generally better image-recognition method,
ut to present its potential alternative implementa-
ion into a quantum-wave medium �Section 2�, and to
emonstrate its plausibility by computational exper-
ments �Section 3�. Quantum-net’s capacities of con-
ectivity, parallelism, storage, associativity, speed,
nd miniaturization are enormous.
The Hopfield model with real-valued �thus not nec-
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ssarily binary� activities of units�neurons, having lin-
ar �not sigmoid or signum� activation function, can be
ransformed into a quantum-holographic proce-
ure13,14 where the Hebbian memory storage is re-
laced by multiple self-interferences of quantum plane
aves. This translation15 succeeded by the simplest
ariable exchange of the Hopfield’s real-valued vari-
bles with the complex-valued variables changing as
inusoids �waves�. Thereby, all input-to-output
ransformations are preserved. Thus quantum-wave
mage recognition functions equivalently to Hopfield’s
ne; only the implementation is much miniaturized,
nabling almost infinitely large associative memory.
Since the opposite translation, i.e., digitalization of

olography, was done in the 1960s to get the first
omputational associative memories, one might won-
er what is new in the present proposal. Addition-
lly to the big experimental success of classical
optical, acoustic, microwave, x-ray, atom, and elec-
ron� holography,16 the recent fast development of
uantum optics17 gave birth to quantum hologra-
hy.13,14,18 The latter might implement the well-
nown Hopfield model and its generalizations in a
ompletely new framework in which the former ob-
tacles �memory-capacity limitations, problems with
onorthogonality of small-size inputs producing cross
alk� are very much reduced.

. Hopfield Net and Quantum Holography

sing neuroquantum analogies19 we transform the
opfield-like associative neural net into quantum

ormalism:9,15

• Quantum wave-function � acts as net’s state

ector q.
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• Quantum eigenwave functions �k �k � 1, . . . ,
� act as Hopfield’s pattern-bearing eigen-vectors �at-

ractors� vk.
• The quantum Green-function propagator G re-

laces the Hebb memory matrix J.
• Thus sum of self-interferences �k

R �k of quan-
um waves �k �the hologram G� implements the sum
f autocorrelations of input-pattern configurations vk

vk �the content-addressable associative memory J�.
R denotes tensor�outer product.�

The Hebb-equivalent expression for elements of G
i.e., ¥k �k

R �k, which implements matrix J� is

Ghj � �
k�1

P

�h
k��j

k�*, (1)

here h and j denote the unit�pixel neuron at loca-
ions r1 and r2 at time t �h, j � 1, . . . , N�. The
sterisk denotes a complex conjugation �optical ana-
og, phase conjugation�.

After we have succeeded in encoding images as
igenstates �attractors� �k into the quantum system,
reparing it using Eq. �1�, we can reconstruct one
mage �e.g., k0

th� by presenting a new input similar to
he k0

th stored one:

�h
output � �

j�1

N

Ghj�j
input

� �
j�1

N ��
k�1

P

�h
k��j

k�*��j
input

� �
k�1

P ��
j�1

N

��j
k�*�j

input��h
k � �h

k0 (2)

escribes the resulting collapse-like selective re-
rieval �recognition� of image vk0 encoded in �k0.9,15

In the Dirac notation, Eq. �2� is, by use of �a R b�c �
b, c�a:

��output� � G��input�

� ��
k

��k���k�� ��input�

� �
k

��k��input���k� � �k0. (3)

We assume that we can encode images vk into
uantum plane waves:

�k�r, t� � Ak�r, t�exp	i
k�r, t��

� Ak exp� i
�

�pkr � Ekt�� . (4)

or nonphysicists: �k describes the sinusoidally
hanging probability distribution for measuring the
th mode of the photon with momentum pk and en-
rgy Ek at location r at time t �� is Planck’s constant;
� �1�.
We may choose the same constant amplitudes A,

o that quantum phases �delays between wave

eaks� 
 encode the whole information. Let us g

2

ake A � 1 �or A � 1�N for convenient quantum
ormalization�; therefore, Aj

k � 1 for all k, j. The
mage-modulated laser beam is thus: �k �
exp�i
1

k�, exp�i
2
k�, . . . exp�i
N

k�� where N is the
umber of wave-front peaks.
The neuro-quantum isomorphism15 allows us to ex-

hange variables, vk7 exp�i
k� giving �j
k � exp�i
j

k�
nstead of Hopfield-like �j

k � vj
k �or �j

k � Aj
k, respec-

ively�. With this exchange in Eqs. �1� and �2�, all of
he information-processing mathematics, verified by
omputer experiments in Section 3, remains valid for
inusoid-encoded images also. Namely, because Eq.
1� becomes

Ghj � �
k�1

P

exp�i
h
k�exp��i
j

k� � �
k�1

P

exp	i�
h
k � 
j

k��;

(5)

q. �2� becomes

exp�i
h
output�

� �
j�1

N ��
k�1

P

exp�i
h
k�exp��i
j

k��exp�i
j
input�

� �
k�1

P ��
j�1

N

exp��i
j
k�exp�i
j

input��exp�i
h
k�

� exp�i
h
k0�. (6)

If the images are almost orthogonal, a wave carry-
ng an image �those among many stored ones that is
he most similar to the newly input one� is selectively
econstructed.

There is a nonlocal information exchange involved
n this holographic process, which in our quantum
ase exploits the quantum interference array �G� it-
elf, not its static imprint onto a crystal plate as in
lassical holography.

Our information-processing result could be ex-
racted from �k0 by use of new quantum-optical tech-
iques such as

• wave packet reconstruction, sculpting, or engi-
eering13,14

• quantum tomography20,21

• �coherent� quantum control and manipulation22

• quantum-phase estimation and engineering23

hey are interrelated and often computer-aided.
�k0 can be determined from a series of measure-
ents on an ensemble of identically prepared sys-

ems �e.g., individual photons�. Real-valued results
rom the measured observables are sufficient for
e.g., quantum-holographic13,14� reconstruction of the
omplex-valued wave function or density matrix.
hase-sensitive measurements, needed for that, have
een experimentally realized on some systems, as
isted in Ref. 13.

. Computational Experiments

ll experiments were done on a Pentium 4 1.3-GHz
ersonal computer using the following algorithm pro-

rammed in MATLAB with Image Processing Toolbox:

0 November 2004 � Vol. 43, No. 33 � APPLIED OPTICS 6135
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• P images with index k were encoded into ṽk �
ṽ1

k, . . . , ṽN
k�, where a pixel’s greyness is described

y ṽj
k � 	0, 255� � j � 1, . . . , N�.

• Images were preprocessed according to vj
k �

˜ j
k � 1�N ¥j�1

N ṽj
k for each k, j. The resulting vector

k was then normalized to satisfy ¥j�1
N �vj

k�2 � 1.
uch normalized vk are assumed to be quantum im-

ig. 1. Plots of peak signal-to-noise ratio of reconstructed image
a� Chinese pictograms and �b� fingerprints, where �a� query is a Chi
ngerprint.
lemented into plane wave�laser beam �k. t

136 APPLIED OPTICS � Vol. 43, No. 33 � 20 November 2004
• Memory matrix Eq. �1� was calculated �storage
tage�.

• Later, in the selective reconstruction stage, a
ew query�recall-key input �corresponding to the
eference beam� was inserted. The network re-
cted as described in Eq. �3�, or equivalently in Eq.
6�. The query input was completed �if partial ini-

“query-image” versus number of simultaneously-stored images of
pictogram with salt-and-pepper noise, and �b� query is an occluded
from
nese
ially� or corrected �if corrupted� based on memo-
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ized examples, and scaled back into the 	0, 255�
ange.

Quality of reconstructed image v was measured
ith peak signal-to-noise ratio �in dB; for 255 gray-
alues�:

PSNR � 20 log10� 255
RMSE� ,

RMSE � � 1
N �

j�1

N

�vj
original � vj

reconstructed�2�1�2

.

We found that reconstruction quality only slightly
ecreased with an increasing number of images
tored simultaneously, and that this behavior was
imilar regardless of the type of stored images and
he type and rate of deviation of the query image from
he stored images. For two examples see Fig. 1.
ompare these plots with Fig. 2, which demonstrates
xamples of image recovery from occlusion or noise.
ndeed, the capability of selective reconstruction by
se of memory is almost the same for different rates
f degradation �occlusion or corruption with noise� of
he query image or its deviation from the original
tored image�s�.
As evident from Fig. 2, the image that shared the
ost pixels with the query image was selected from

he memory matrix and reconstructed �recognized�,
eing disrupted �merely� by cross talk due to the
onorthogonality of the stored images. Such re-
ults, typical for associative nets and holography,
ere also found in the mixed-set experiment �Fig. 3�.
ere, three very different sets of 10 different-content

mages, i.e., with big interset differences and small
ntraset differences, were simultaneously stored.

ig. 2. �a�, Original image; �b�, original image �a� with 80% salt-an
imultaneously stored fingerprints after presentation of the “query
a�, �e� 50%-occluded �a�, �f � 75%-occluded �a�, and �g� noisy image

ig. 3. Reconstruction from 30 simultaneously stored images �10 d
nd 10 different face poses, such as in �a� and �b�. “Query” �c� tr

0%-occluded “query”-pictogram.

2

ross-talk backgrounds can be seen in Figs. 3�d�–3�f �,
ut the reconstructed images are not disturbed too
uch.

. Conclusions

ur simulations confirm Hopfield net’s capabilities.
he novelty of our simulations is the reconsideration
f Hopfield net’s characteristics in the age of powerful
omputers—early simulations of the 1980s had a lim-
ted resolution of patterns rather than images.

oreover, our original proposal of quantum-wave im-
lementation opens a possibility of nets having up to
n almost infinite size, and of processing of huge or
igh-resolution images. Therefore Hopfield net’s
torage limitations and cross talk do not manifest
too� much for our practical needs. The first prob-
em, memory-capacity of the Hopfield model’s being
imited �to P � 0.14N�, is much reduced with the
ossibility of an astronomically big N. The second
roblem, cross talk, is reduced since images with a
uge number of pixels are with high probability al-
ost orthogonal. A summary of the proof: The

robability distribution of values of the scalar prod-
ct �SP� converges to Gaussian distribution, owing to
he Central Limit Theorem, which can be applied for
calar product ��a, �b� if the components of � are
andom. The Gaussian distribution has zero mean,
o ��a, �b� � 0 �mean SP� and �SP

2 � R�N 3 0 �SP
ariance� if N 3 � �R is a limited real number de-
endent on possible values of �j

k�.24 Then, orthogo-
ality is thus most probable.
Instead of plane waves, images could be encoded

nto Gabor wavelets, which are similar to quantum
ave packets. Other possible �great� improvements
ill be studied in the future.
So why should one go to the trouble of doing opti-

per noise; and �c�–�g�, image restored from memory of 10 different
ge,” which is �c� whole original image �a�, �d� 25%-occluded image

nt Chinese pictograms and 10 different fingerprints as on Fig. 2�a�
s reconstruction �d�. �e� and �f �, reconstructions from 25%- and
d-pep
-ima
iffere
igger
0 November 2004 � Vol. 43, No. 33 � APPLIED OPTICS 6137
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ally and quantum mechanically what works so well
n the digital analog of such a quantum optical pro-
essor? There are two distinct kinds of benefits that
tem from doing most of the calculations virtually,
.e., in the wave domain, and detecting only the final
esult. First, there is an energy advantage. Ben-
ett and Landauer25 pointed out that physical logic
ates that are required in conventional computers
ust dissipate at least an amount of energy kT ln 2

t temperature T for each binary operation �k is the
oltzmann constant�. Actual logic gates typically
issipate far more energy, say 105 kT per bit. Caul-
eld et al.26–28 showed that operations done optically
nd virtually and never measured cost no energy, so
f most of the operations are virtual, the energy cost
er operation can drop below kT. Even 105 kT is not
ery much energy, but if the system is to produce
any bits per second, the power dissipated can be

uite large. Fast electronic computers run hot.
ast optical computers do not. Second, Caulfield et
l. failed to notice that real, i.e., electronic, operations
end to limit the throughput speed of computations.
irtual operations, on the other hand, work at what-
ver bandwidth the input and the readout dictate.
hey themselves do not limit the speed. Quantum
ptics offers the possibility of performing some of the
perations virtually without involving electronic
ates. Operations performed virtually, in the wave
omain, have the advantage of not causing either
nergy dissipation or process speed limitations.
Our quantum-holographic proposal has clear ad-

antages over other proposed quantum associative
emories,3–8 based on the mainstream of the quan-

um computing science using quantum-implemented
ogic gates, in the sense of simplicity, miniaturiza-
ion, natural physical realizability of associative pro-
essing, memory capacity and dimensionality of data
specifically, size and resolution of images�.
uantum-gate models3–8 are, however, more compat-

ble with the mainstream attempts for an universal-
urpose quantum computer, not merely for
ssociative tasks which our model masters.

M.P. thanks for discussions V. Bužek and C. Tru-
enberger. M.P. gratefully worked as an EU Marie
urie postdoc fellow �contract HPMF-CT-2002-
1808�.
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