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Temperature-induced resonances and Landau damping of collective modes
in Bose-Einstein condensed gases in spherical traps
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Interaction between collective monopole oscillations of a trapped Bose-Einstein condensate and thermal
excitations is investigated by means of perturbation theory. We assume spherical symmetry to calculate the
matrix elements by solving the linearized Gross-Pitaevskii equations. We use them to study the resonances of
the condensate induced by temperature when an external perturbation of the trapping frequency is applied and
to calculate the Landau damping of the oscillations.

PACS number~s!: 03.75.Fi, 02.70.Lq, 67.40.Db
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I. INTRODUCTION

Since the discovery of Bose-Einstein condensation
magnetically trapped Bose gases, the study of the low-en
collective excitations has attracted much interest, both fr
an experimental and a theoretical point of view. Mean-fi
theory has proven to be a good framework to study sta
dynamic, and thermodynamic properties of these trap
gases. In particular, it provides predictions of the frequenc
of collective excitations that agree very well with the o
served ones. Recently@1,2#, the energy shifts and dampin
rates of these low-lying collective excitations have be
measured as a function of temperature. However, these
nomena have not yet been completely understood theo
cally.

In this paper we study the influence of thermal excitatio
on collective oscillations of the condensate in the collisio
less regime. Previous papers on this subject have been
voted mainly to calculation of the Landau damping by mea
of perturbation theory. In Refs.@3–6# only the uniform sys-
tem has been considered, whereas in Refs.@7,8# Landau
damping in trapped Bose gases has also been studied
using the semiclassical approximation for thermal excitati
and the hydrodynamic approximation for collective oscil
tions. An important point of Refs.@7,8# is that the authors
discuss the possible chaotic behavior of the excitations in
anisotropic trap. The frequency shift has also been stud
for a trapped condensate in the collisionless regime in R
@8#.

In the present work, we study the interaction betwe
collective and thermal excitations using the Gross-Pitaev
equation and perturbation theory. We consider spheric
symmetric traps, since in this case the spectrum of exc
tions is easily calculated, avoiding the use of further appro
mations. Even though the case of anisotropic traps can
significantly different in the final results, a detailed inves
gation of spherical traps is instructive. We explore, in p
ticular, the properties of monopole oscillations by studyi
the temperature-induced resonances that occur in the con
sate when an external perturbation of the trapping freque
is applied and, also, the Landau damping associated with
interaction with thermally excited states.
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This paper is organized as follows. In Sec. II we introdu
the general equations that describe the elementary excita
of the condensate within the Bogoliubov theory@9#. In Sec.
III we recall the perturbation theory for a trapped Bos
condensed gas in order to study the interaction between
ementary excitations. In Sec. IV we introduce the line
response function formalism and calculate the respo
function of the condensate when a small perturbation of
trapping frequency is applied. We derive analytic equatio
for the response function at zero temperature and treat
turbatively the contribution of the elementary excitation
which is related to Landau damping. In Sec. V we discu
the main results.

II. ELEMENTARY EXCITATIONS
OF AN ISOTROPIC TRAP

We consider a weakly interacting Bose-condensed
confined in an external potentialVext at T50. The elemen-
tary excitations of a degenerate Bose gas are associated
the fluctuations of the condensate. At low temperature t
are described by the time-dependent Gross-Pitaevskii~GP!
equation for the order parameter@10,11#:

i\
]

]t
C~r ,t !5S 2

\2
“

2

2m
1Vext~r !1guC~r ,t !u2DC~r ,t !,

~1!

where*dr uCu25N0 is the number of atoms in the conde
sate. At zero temperature it coincides with the total num
of atomsN, except for a very small differencedN!N due to
the quantum depletion of the condensate. The coupling c
stant g is proportional to thes-wave scattering lengtha
throughg54p\2a/m. In the present work we will discus
the case of positive scattering length, as for87Rb atoms. The
trap is included throughVext, which is chosen here in the
form of an isotropic harmonic potential:Vext(r )
5(1/2)mvho

2 r 2. The harmonic trap provides a typical leng
scale for the system,aho5(\/mvho)

1/2.
So far experimental traps have axial symmetry, with d

ferent radial and axial frequencies, but experiments w
spherical traps are also feasible@12#. The choice here of a
spherical trap is due to two different reasons. First, it grea
©1999 The American Physical Society02-1
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reduces the numerical effort and will allow us to study t
interaction of oscillations with elementary excitations wit
out any further approximations. Second, the energy spect
of the excitations in such a trap is well resolved, yielding
the appearance of well-separated resonances. In anisot
traps, conversely, the spectrum of excitations is much den

The normal modes of the condensate can be found
linearizing Eq.~1!, i.e., looking for solutions of the form

C~r ,t !5e2 imt/\@C0~r !1u~r !e2 ivt1v* ~r !eivt#, ~2!

wherem is the chemical potential and the functionsu andv
are the ‘‘particle’’ and ‘‘hole’’ components characterizin
the Bogoliubov transformations. After inserting in Eq.~1!
and retaining terms up to first order inu and v, one finds
three equations. The first one is the nonlinear equation
the order parameter of the ground state,

@H01gC0
2~r !#C0~r !5mC0~r !, ~3!

where H052(\2/2m)“21Vext(r ), while u(r ) and v(r )
obey the following coupled equations@11#:

\vu~r !5@H02m12gC0
2#u~r !1gC0

2v~r !, ~4!

2\vv~r !5@H02m12gC0
2#v~r !1gC0

2u~r !. ~5!

Numerical solutions of these equations have been found
different authors@13–18#. In the present work, we use the
to calculate the response function of the condensate unde
external perturbation and the Landau damping of collec
modes.

When the adimensional parameterNa/aho is large, the
time-dependent GP equation reduces to the hydrodyna
equations@19#:

]r

]t
1“~vr!50, ~6!

m
]

]t
v1“S Vext1gr1

mv2

2 D50, ~7!

wherer(r ,t)5uC(r ,t)u2 is the particle density and the ve
locity field is v(r ,t)5(C*“C2C“C* )\/(2mir). The
static solution of Eqs.~6! and ~7! gives the Thomas-Ferm
ground-state density, which in the spherical symmetric t
reads

r~r !5g21@m2Vext~r !# ~8!

in the region wherem.Vext(r ), and r50 elsewhere. The
chemical potentialm is fixed by the normalization of the
density to the number of particlesN0 in the condensate. Th
density profile ~8! has the form of an inverted parabol
which vanishes at the classical turning pointR defined by the
conditionm5Vext(R). For a spherical trap, this implies

m5
mvho

2 R2

2
. ~9!
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It has been shown@19# that the hydrodynamic equations~6!
and ~7! correctly reproduce the low-lying normal modes
the trapped gas in the linear regime whenNa/aho is large
~see, however, Ref.@20#!.

III. PERTURBATION THEORY

Let us briefly recall the perturbation theory for the inte
action between collective modes of a condensate and the
excitations as it was developed in Ref.@4#. Suppose that a
certain mode of the condensate has been excited and, th
fore, it oscillates with the corresponding frequencyVosc. We
assume that this oscillation is classical, i.e., the numbe
quanta of oscillation (nosc) is very large. Then, the energy o
the system associated with the occurrence of this class
oscillation can be calculated asE5\Voscnosc with nosc@1.
Due to interaction effects, the thermal bath can either abs
or emit quanta of this mode producing a damping of t
collective oscillation. The energy loss can be written as

Ė52\Vosc~W(a)2W(e)!, ~10!

whereW(a) andW(e) are the probabilities of absorption an
emission of one quantum\Vosc, respectively. The interac
tion between excitations is small, so one can use perturba
theory to calculate the probabilities for the transition b
tween ani th excitation and akth one, available by therma
activation

W5p(
i ,k

z^kuVintu i & z2. ~11!

Let Ei and Ek be the corresponding energies and assu
Ek.Ei . Since energy is conserved during the transition p
cess, one hasEk5Ei1\Vosc.

The interaction term in second quantization is given b

Vint5
g

2E dr Ĉ†Ĉ†ĈĈ. ~12!

In the framework of Bogoliubov theory, the field operatorĈ
can be written as the sum of the condensate wave func
C0, which is the order parameter at equilibrium, and
fluctuations dĈ, where Ĉ5C01dĈ @see Eq.~2!#. The
fluctuations can be expressed in terms of the annihilationa)
and creation (a†) operators of the elementary excitations
the system:

dĈ5(
j

@uj~r !a j1v j* ~r !a j
†#, ~13!

where the functionsu and v are properly normalized solu
tions of Eqs.~4! and ~5!. In the sum~13!, one can select a
low-energy collective mode, for which we use the notati
uosc,vosc,aosc,aosc

† , and investigate its interaction with
higher-energy single-particle excitations, for which we u
the indicesi ,k as in Eq.~11!. These latter excitations ar
assumed to be thermally excited. Inserting expression~13!
into Eq. ~12!, one rewrites the interaction termVint in terms
2-2
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TEMPERATURE-INDUCED RESONANCES AND LANDAU . . . PHYSICAL REVIEW A61 013602
of the annihilation and creation operators. Since we wan
study the decay process in which a quantum of oscillat
\Vosc is annihilated~created! and thei th excitation is trans-
formed into thekth one ~or vice versa!, we will keep only
terms linear inaosc (aosc

† ) and in the productak
†a i (aka i

†).
And the energy conservation during the transition proc
will be ensured by the delta functiond(Ek2Ei2\Vosc).
This mechanism is known as Landau damping@21#.

Assuming that at equilibrium the statesi ,k are thermally
occupied with the usual Bose factorf i5@exp(Ei /kBT)
21#21, the rate of energy loss can be calculated as@4#

Ė522p
E

\ (
ik

uAiku2d~Ek2Ei2\Vosc!~ f i2 f k!, ~14!

where

Aik52gE dr c0@~uk* v i1vk* v i1uk* ui !uosc

1~vk* ui1vk* v i1uk* ui !vosc#. ~15!

Let us define the dissipation rateg through the following
relation between the energy of the systemE and its dissipa-
tion Ė:

Ė522gE. ~16!

Using expression~14!, g can be calculated as

g

Vosc
5(

ik
g ikd~v ik2Vosc!, ~17!

where the transition frequenciesv ik5(Ek2Ei)/\ are posi-
tive. The ‘‘damping strength’’

g ik5
p

\2Vosc

uAiku2~ f i2 f k! ~18!

has the dimensions of a frequency. In this work we calcu
the quantitiesg ik by using the numerical solutionsu andv of
Eqs. ~2!–~5! in the integrals~15!. The results will be dis-
cussed in Sec. V.

IV. RESPONSE FUNCTION

The results of the preceding section can be used als
study the effect that an external perturbation of the trap
on the collective excitations of the condensate. Let us
sume the trapping frequency in the form@vho1dvho(t)#,
where dvho;exp(2ivt) is a time-dependent modulation
Assuming that the perturbation is small, one can use
response function formalism to describe the fluctuations
the system. Let us briefly recall the basic formalism@22#.

The behavior of a system under an external perturba
can be described by studying the fluctuations that may g
erate the external interaction to a certain physical quantit
the system. An external perturbation acting on the system
described by a new term in the Hamiltonian of the type
01360
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V̂52 x̂ f ~ t !, ~19!

wherex̂ is the quantum operator of the physical quantity th
may fluctuate, andf (t) is the ‘‘perturbing force.’’ The mean
value ^x& is zero in the equilibrium state, in the absence
perturbation, and is not zero when it is present. For a p
odic perturbationf (t);exp(2ivt), the relation between̂x&
and f (v) is

^x&5a~v! f , ~20!

wherea(v) is the response function also called generaliz
susceptibility.

In general,a(v) is a complex function. It can be seen th
the imaginary part of the susceptibility determines the
sorption of energyQ of the external forcef by the system
through the relation

Q5
v

2
Im@a~v!#u f u2, ~21!

and that the real and imaginary parts ofa(v) satisfy the
Kramers-Krönig relation

Re@a~v!#5
2

p
PE

0

` Im@a~j!#

j22v2
j dj, ~22!

whereP means the principal value of the integral.
The time-dependent external drivedvho induces oscilla-

tions of the condensate densitydr with frequency v;
r(r ,t)5r(r ,0)1dr. Expanding the energy due to the co
fining potential,Eho5*Vext r dr , with respect todvho and
dr one obtains the ‘‘mixed’’ term, corresponding to th
Hamiltonian~19!:

V5mvhodvhoE r 2dr dr . ~23!

Comparing it with Eq.~19!, one can identify the perturbing
force and the corresponding coordinate as

f 52mvhodvho, x5E r 2dr~r ,t !dr . ~24!

Note that the first-order termmvhodvho*r 2r(r ,0)dr can be
omitted because it gives an additive shift in the Hamilton
which does not contribute to the equations of motion of
system.

Once we have identifiedf and x, we can calculate the
response function of the condensatea(v). According to the
definition one has

x5a~v! f . ~25!

Let us present the response function in the forma(v)
5a0(v)1a1(v), wherea0(v) corresponds to the respons
function of the condensate atT50, i.e., calculated without
elementary excitations, anda1(v) is the contribution of the
excitations. At low temperatures it can be assumed t
a1(v)!a0(v), and thena1 can be treated as a perturbatio
2-3
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We proceed as follows. First, we use the hydrodynam
approximation to obtain the response function atT50.
Then, within a perturbation theory, we introduce the con
bution of the elementary excitations at finiteT to obtain
a1(v).

A. Calculation of a0„v… at T50

For a spherically symmetric breathing mode@23#, one can
easily prove that the hydrodynamic equations of motion~6!
and ~7! admit analytic solutions of the form@24#

r~r ,t !5a0~ t !2ar~ t !r 2, v~r ,t !5a r~ t !r . ~26!

These equations are restricted to the region wherer>0. No-
tice that they include the ground-state solution~8! in the
Thomas-Fermi limit. This is recovered by settinga r50, ar

5mvho
2 /(2g), anda05m/g. Inserting Eqs.~26! into the hy-

drodynamic equations, one obtains two coupled differen
equations for the time-dependent coefficientsar(t) and
a r(t), while at any timea052(15N/8p)2/5ar

3/5 is fixed by
the normalization of the density to the total number of atom
The form ~26! for the density and velocity distributions i
equivalent to a scaling transformation of the order parame
That is, at each time, the parabolic shape of the densit
preserved, while the classical radiusR, where the density
~26! vanishes, scales in time as@25#

R~ t !5R~0! b~ t !5A 2m

mvho
2

b~ t !, ~27!

where the unperturbed radiusR(0) is given by Eq.~9!.
The relation between the scaling parameterb(t) and the

coefficientar(t) is ar5mvho
2 /(2gb5). Inserting it into Eq.

~26!, we obtain

r~r ,t !52
1

g Fmvho
2 r 2

1

2b5
2m

1

b3G . ~28!

The hydrodynamic equations then yielda r5ḃ/b and

b̈1@vho1dvho~ t !#2b2
vho

2

b4
50. ~29!

The second and third terms of Eq.~29! give the effect of the
external trap and of the interatomic forces, respective
From Eqs.~27! and ~29! it follows that at equilibriumb51
and ḃ50. For a small driving strengthdvho, one can as-
sume that the radius of the cloud is perturbed around
equilibrium value, so

R~ t !5R~0!1dR~ t !, b~ t !511db~ t !, ~30!

where

db~ t !5
dR~ t !

R~0!
. ~31!
01360
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This means thatdb is the fractional amplitude of oscillation
of the radius and, therefore, it is a measurable quantity.

In the small-amplitude limit, one can linearize Eq.~29!
with respect todvho anddb yielding the following equation:

db̈15vho
2 db522vhodvho. ~32!

The solution is

db~ t !5
22vho

VM
2 2v2

dvho, ~33!

whereVM5A5vho corresponds to the frequency of the no
mal mode of monopole in the hydrodynamic limit@19#.

Keeping only the lowest order in the small perturbati
db, Eq. ~28! yields

r~r ,t !5r~r ,0!1
1

g F5
1

2
mvho

2 r 223mGdb, ~34!

and using the Thomas-Fermi radius at equilibrium~9!, it fol-
lows that the density fluctuation is given by

dr~r ,t !5r~r ,t !2r~r ,0!

5
5m

g F S r

R~0! D
2

2
3

5Gdb~ t !. ~35!

We can calculate nowx using Eqs.~24! and ~35!, finding

x5Cdb~ t !, ~36!

whereC516pmR(0)5/(35g). Then, from Eq.~33!, one gets

x5
22Cvho

VM
2 2v2

dvho. ~37!

At T50 there are no thermally excited states and, hen
a(v)5a0(v). By comparing the definition~25! with Eq.
~37!, one has

a0~v!5
2C

m~VM
2 2v2!

. ~38!

This is the response function at zero temperature with
including any dissipation. Therefore,a0(v) is real, i.e., the
induced oscillations atT50 are undamped.

The energy of oscillation can be calculated as twice
mean kinetic energy associated to the mode,E
5*dr r(r ,0)v2. For a monopole mode in an isotropic tra
the calculation@23,24# gives E5 15

7 Nmudbu2, whereudbu is
the amplitude of the oscillation of the cloud~31!. Using Eqs.
~36! and ~25! at T50, it follows that

E5
15

7C2
mNua0~v! f u2. ~39!
2-4
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B. Calculation of a1„v…

Now we want to calculate the contribution of the the
mally excited states to the response function. We study
low-temperature regime, wherea1!a0 and the energy of
oscillation ~39! can be estimated usinga0 instead ofa(v)
5a0(v)1a1(v). The effect ofa1 will be introduced within
a perturbation theory.

We have already seen that the thermal excitations
either absorb or emit quanta of oscillation\v and thus they
will dissipate energy. The contribution of the elementary e
citations to the susceptibility will be a complex functio
a1(v)5Re@a1#1 i Im@a1#, whose imaginary part is relate
to the absorption of energyQ of the external perturbation
However, in a stationary solution which is the case un
consideration, the absorptionQ must be compensated by th
energy dissipation~16! due to the interaction with the el
ementary excitations. Therefore,

Q1Ė50. ~40!

Let us rewrite the definition of the damping rate~16! by
using Eqs.~17! and~18! with a generic oscillation frequenc
v:

Ė522v(
ik

g ikd~v ik2v!E. ~41!

Inserting Eq. ~39! and defining b(v)5a0(v)/C
52/@m(VM

2 2v2)#, one obtains the energy dissipation

Ė522v
15mN

7 (
ik

g ikd~v ik2v!ub~v!u2u f u2. ~42!

Let us recall that the energy dissipation according to E
~21! and~40! can be calculated also from the imaginary p
of the response functiona(v)5a0(v)1a1(v). Since
a0(v) is real, Eq.~21! becomes

Q5
v

2
Im@a1~v!#u f u252Ė. ~43!

Comparing Eqs.~42! and ~43!, one can calculate the imag
nary part ofa1(v) as

Im@a1~v!#54
15mN

7 (
ik

g ikd~v ik2v!ub~v!u2, ~44!

and using the Kramers-Kro¨nig relation~22! one finds the rea
part

Re@a1~v!#5
8

p (
ik

v ikg ik

v ik
2 2v2

15mN

7
ub~v ik!u2. ~45!

Now we have all the ingredients to calculate the respo
function of a spherically symmetric trapped condensate w
the monopole mode is excited and a small perturbation of
trapping frequencydvho;exp(2ivt) is applied. It can be
calculated within first-order perturbation asa(v)5a0(v)
1Re@a1(v)#1 i Im@a1(v)#, by using Eqs.~38!, ~45!, and
01360
e
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~44!, respectively. It is worth stressing that the real part
the susceptibility diverges atVM ~resonance of the conden
sate atT50) but also atv ik , which are the frequencies o
the thermal excited modes that due to the interaction
coupled with the monopole.

Actually, the resonances of the condensate can be fo
by measuring the fractional amplitude of oscillations of t
cloud radiusdb at different perturbing frequencies. Th
measurable quantity can be easily related to the respo
function a(v) from Eqs.~36! and ~25!,

db52a~v!
mvho

C
dvho. ~46!

Note that the perturbation theory we have used is va
when ua1u!ua0u. This condition becomes very restrictive
v nearVM . However, it is not difficult to improve the ap
proximation in this region by taking the benefit of the an
ogy between the response function and the Green functioG.

It is well known that the Green function obeys the Dys
equation@26#, which relates the perturbed quantity~G! and
the unperturbed one (G0) through the inverse function
(G21 andG0

21) in such a way that a perturbation theory f
G21 has a wider applicability than forG. Analogously, we
will find a relation between the inverse response functio
perturbed (a21) and unperturbed (a0

21). One has

1

a
5

1

~a01a1!
5

1

a0~11a1 /a0!
~47!

and formally with the same accuracy

1

a
.

1

a0
S 12

a1

a0
D

5
m

2C
~VM

2 2v2!2
8

p (
ik

v ikg ik

v ik
2 2v2

15mN

7C2
. ~48!

Now the applicability of Eq.~48! is restricted only by the
condition that the second term is small compared
(m/2C)VM

2 .
It is worth noting that according to Eq.~48! the poles of

a(v) related to the resonances are shifted compared to
quencies v ik and are given by the equatio
a1(vR8 )/a0(vR8 )51. However, these shifts are very small

V. RESULTS

In order to present numerical results, we choose a
of 87Rb atoms~scattering lengtha55.8231027 cm). For
the spherical trap we fix the frequencyvho52p187 Hz,
which is the geometric average of the axial and radial f
quencies of Ref.@1# and corresponds to the oscillator leng
aho50.79131024 cm. We solve the linearized Gross
Pitaevskii equations~2!–~5! at zero temperature to obtain th
ground-state wave functionC0 and the spectrum of excite
statesEi as well as the corresponding functionsui(r ),v i(r ).
In spherically symmetric traps, the eigenfunctions are
beled byi 5(n,l ,m), wheren is the number of nodes in th
2-5
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M. GUILLEUMAS AND L. P. PITAEVSKII PHYSICAL REVIEW A 61 013602
radial solution,l is the orbital angular momentum, andm its
projection. The eigenfunctions are unlm(r )
5Unl(r )Ylm(u,w), the energiesEnl are (2l 11) degenerate
and the occupation of the thermally excited states is fixed
the Bose factor.

For a fixed number of trapped atoms,N, the number of
atoms in the condensate,N0, depends on temperatureT. At
zero temperature all the atoms are in the condensate, ex
a negligible quantum depletion@18#. At finite temperature
the condensate atoms coexist with the thermal bath. In
thermodynamic limit@27# the T dependence of the conden
sate fraction isN0(T)5N@12(T/Tc

0)3#.
We consider the collective excitations in the collisionle

regime. This regime is achieved at low enough temperat
The excitation spectrum at low temperature can be sa
calculated by neglecting the coupling between the cond
sate and thermal atoms@28#. It means that the excitation
energies at a givenT can be obtained within Bogoliubo
theory atT50 normalizing the number of condensate ato
to N0(T).

We investigate the monopole mode (l 5m50 and n
51). The functionsuosc and vosc do not present angula
dependence, and from Eq.~15! it is straightforward to see
that the matrix elementAik couples only those energy leve
( i ,k) with the same quantum numbersl andm. That is, the
selection rules corresponding to the monopolelike transi
areD l 50 andDm50. It is obvious, also, that different pair
of levels with the same quantum numbersn and l but differ-
ent m give the same contribution. Therefore, only the in
gration of the radial part has to be done numerically.

With fixed N0 and at a given temperature, we calcula
the damping strengths~18! for the transitionsv ik coupled
with the monopole. In Fig. 1, we show the values ofg ik ~in
units of vho) for N0550 000 87Rb atoms atkBT5m. The
arrow points to the frequency of the breathing modeVM
52.231vho, and the chemical potential ism515.69\vho
@these values are numerical results of the linearized Gr
Pitaevskii equations~2!–~5! for N0550 000 rubidium at-
oms#. The position of the bars corresponds to the allow
transition frequenciesv ik ~in units of vho), whereas their
height defines the numerical value ofg ik @29#.

One can see that there are two different types of allow
transitionsv ik . The damping strength associated to most
them is very small. Conversely, there are a few transiti
which give relatively large values ofg ik . The latter corre-
spond to transitions between the lowest levels (nk51, ni
50) for different values ofl ( l 52,3,4,5). The main reaso
for these ‘‘strong transitions’’ is that the temperature occ
pation factor for these low-lying levels is large. Moreove
the calculation shows that the matrix elements are also
hanced compared to other transitions. This is due to the
that the radial wave functions involved in the integrati
have either one (nk51) or no node (ni50), contrary to the
oscillating character of the radial wave functions associa
to higher levels@20#.

The contribution of the other transitions is like a sm
‘‘background’’ which is difficult to resolve in the scale of th
figure. A close-up view of the damping strengths of the tra
01360
y

ept

e

s
e.
ly
n-

s

n

-

s-

d

d
f
s

-
,
n-
ct

d

l

-

sition frequencies around the monopole is displayed in
inset of Fig. 1 in order to show the dense background. I
worth stressing that such a distinction between ‘‘bac
ground’’ and ‘‘strong’’ transitions depends on the number
condensed atoms in the system and, of course, on temp
ture. When the number of atoms in the condensate increa
the number of excited states available by thermal excitati
also increases, leading to a denser and less resoluble b
ground.

In Fig. 2 we present the same as in Fig. 1 but forN0
55000 atoms of rubidium atkBT5m, where herem
56.25\vho. In this case, one can see that the differen
between the ‘‘strong’’ and ‘‘weak’’ transitions is not so im
pressive as in a bigger condensate since all damp
strengths can be appreciated in the same scale.

We can conclude that at largeN0 we have actually two
different phenomena. The strong transitions cre
temperature-induced resonances which can be observe
direct experiments. The background transitions give rise
Landau damping of the collective oscillations~see Sec. V B!.

A. Temperature-induced resonances

Using the transition frequenciesv ik and the correspond
ing damping strengthg ik , we have calculated the respon

FIG. 1. Transition frequenciesv ik ~in units of vho) allowed by
the monopole selection rules, forN0550 000 atoms of87Rb in a
spherical trap withaho50.79131024 cm, atkBT5m. The vertical
bars have length equal to the corresponding damping strength~in
units ofvho). The arrow points to the monopole frequencyVM . A
close-up view of the transition frequencies aroundVM is presented
in the inset in order to show the dense background.
2-6
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function a(v). At zero temperature, the response functi
a0(v) given by Eq.~38! gives a resonance at the monopo
frequencyVM5A5vho evaluated in the hydrodynamic re
gime. Due to interaction, thermal excited modes are coup
with the monopole. It means that when one excites
breathing mode of the condensate, the elementary excita
can give rise to other resonances atv ik , which are the fre-
quencies where Re@a1(v)# diverges@see Eq.~45!#. We will
now discuss the conditions for the observation of these
fects in actual experiments. In particular, we calculate
contribution of these resonances to the response function
estimate the associated strengths.

Let us study the resonances atkBT5m for N05150 000
atoms of 87Rb. The behavior of the damping coefficientsg ik
is analogous to that for 50 000 condensate atoms~see Fig. 1!,
but in this case the difference between ‘‘strong’’ resonan
and small background is even bigger: the dense backgro
is not more resoluble in the scale of the strong resonan
There are five resonances that stand out from the others
that we label asvR and gR for the corresponding dampin
strength~see Table I for numerical values!.

For perturbing frequencies close to the monopolev
;VM , the monopole susceptibility, Eq.~38!, can be ap-
proximated to

a0~v!5
2C

m~VM2v!~VM1v!
.A0

1

~VM2v!
, ~49!

whereA05C/(mVM).
Analogously,a1(v) near each resonancev;vR can be

presented in the forma1(v).A1 /(vR2v). The ratio

FIG. 2. Same as Fig. 1 but forN055000 atoms atkBT5m.
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A1 /A0 is a measure of the relative intensity betwe
temperature-induced and monopole resonance.

Table I displays the numerical values of the relative
tensity for each temperature-induced resonancevR with re-
spect to the monopole one, forN05150 000 atoms in the
condensate atkBT5m. The relative strength of the respons
function (A1 /A0) at vR depends not only on the dampin
coefficientgR but also on (VM

2 2vR
2)21. It means that one

mode vR will be easier to excite, i.e., the strength of th
response will be bigger when it is close to the frequency
the monopole. Note also that the resonance strength
creases with temperature throughgR .

From Table I one can see that the biggest resonance
curs atvR52.2576vho, which is resoluble from the mono
pole frequencyVM52.234vho and has a large enough rela
tive strength to be observed. It means that by tuning
perturbation frequencyv to this value, a fluctuation of the
fractional amplitude of oscillations can be observed.

In Fig. 3, we have plotted the frequency dependence
the real part of the response functiona(v) calculated ac-
cording to Eq.~48! for N05150 000. The response functio
is given in arbitrary units, and frequency is in units ofvho.
The dashed line shows the monopole resonance atVM ,
whereas the other divergences ofa(v) correspond to the
temperature-induced resonances atvR . From this figure one
can see that the thermal induced resonances are quite dis
from each other and from the monopole one. Therefo

FIG. 3. Real part of the response functiona(v) ~in arbitrary
units! as a function ofv ~in units of vho), for N05150 000 at
kBT5m. The dashed line shows the monopole resonance atVM ,
whereas the other divergences ofa(v) correspond to the
temperature-induced resonances atvR .

TABLE I. Damping coefficientsgR ~in units of vho) of the
‘‘strong resonances’’vR ~in units of vho) and relative intensities
uA1 /A0u between the temperature-induced and the monopole r
nance, forN05150 000 condensate atoms of87Rb in a spherical
trap with aho50.79131024 cm atkBT5m.

vR gR uA1 /A0u

1.9115 0.009268 0.063
2.0252 0.004147 0.063
2.1432 0.002102 0.127
2.2576 0.001097 0.298
2.3655 0.000545 0.020
2-7
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M. GUILLEUMAS AND L. P. PITAEVSKII PHYSICAL REVIEW A 61 013602
temperature-induced resonances could be observed in ex
ments with good enough frequency resolution and good
curacy in the measurement of the radius fluctuations.

We would like to stress that the phenomenon we h
discussed is related to quite delicate features of interac
between elementary excitations, and therefore its observa
would give rich information about the properties of Bos
Einstein condensed gases at finite temperature.

B. Landau damping of collective modes

From Fig. 1 one can see that the weak background t
sitions v ik have, generally speaking, very small frequen
separation. To estimate this distance quantitatively, let
renominate the resonances by an indexi in the order of in-
creasing value ofv. Then, one can define the average d
tance between resonancesDv according to

Dv5

(
i

g i~v i 112v i !

(
i

g i

. ~50!

In a small interval around the collective oscillation 0.82VM
,v ik,1.18VM , we sum up all the transition frequencie
allowed by the monopole selection rules and find the follo
ing values for the average distance between two consecu
transition frequencies:Dv/vho.0.0006, 0.001, and 0.00
for N05150 000, 50 000, and 5000, respectively. It is futi
of course, to try to resolve these resonances. Actually, th
are reasons to believe that these resonances are smo
and overlapped. First of all, a real trap cannot be exa
isotropic. This means that levels with differentm have
slightly different energies; only levels withm56umu are
exactly degenerated. Therefore, each energy level wit
given l will be split on l 11 closer sublevels, making th
energy spectrum more dense. Furthermore, all excitation
finite temperature have an associated finite lifetime. Exc
tions with E;m, which are the ones that mainly contribu
in the ‘‘background’’ transitions, have the shortest lifetim
This can be accounted for phenomenologically by assum
that these levels have a finite Lorentzian widthD. That is,
instead ofd functions in the equation for the damping ra
~17!, we will consider a Lorentzian distribution centered
v ik with a fixed width D: f L(v ik ,D)5D/(2p\)@(v ik
2Vosc)

21D2/4#. In this case the damping rate becomes
smooth function ofVosc and its value whenVosc5VM de-
fines the Landau damping of the monopole oscillations.
conditions

Dv!D!vho, ~51!

the damping rate will have only a weak dependence on
exact value ofD. In Fig. 4, we plot the dimensionless dam
ing rateg/VM as a function of the Lorentzian widthD ~in
units of vho) for N0550 000 at different temperatures. Th
summation in Eq.~17! has been done over all resonanc
excluding, of course, the ‘‘strong resonances’’ presented
Fig. 1. One can see that theD dependence is weak indeed
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the intervalD/vho50.05– 0.2 andg can be reliably extrapo-
lated from this interval to the valueD50. We take as Landau
damping this extrapolated value ofg. One can estimate the
accuracy of this extrapolation procedure to be of the orde
10% according to the change ofg over this interval. In Fig.
5, we plot the damping rate versuskBT/m for N05150 000
and 50 000 atoms in the condensate. As expected, Lan
damping increases with temperature since the number of
citations available at thermal equilibrium is larger whenT
increases. One can distinguish two different regimes in F
5, one at very lowT (kBT!m) and the other at higherT. The
behavior of the damping rate becomes linear at relativ
small temperature (kBT;m) in comparison to the homoge
neous system@4#, where this regime occurs atkBT@m.
Moreover, the damping rate increases for a larger numbe

FIG. 4. Dimensionless damping rateg/VM as a function of the
Lorentzian widthD ~in units ofvho), for N0550 00087Rb atoms in
the spherical trap at different temperatures. Dashed lines are plo
as a guide for the eye. Solid dots, squares, and triangles corres
to the numerical calculation atkBT/m50.55, 1.1, and 1.3, respec
tively.

FIG. 5. Dimensionless damping rateg/VM as a function of
kBT/m for N05150 000 atoms~dots! and N0550 000 atoms
~squares!. Dashed lines are plotted as a guide for the eye.
2-8
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condensed atoms because the density of states availab
the system also increases. It is interesting to note that
order of magnitude of the damping rate is the same as
one previously estimated for a uniform gas@3–6# and for
anisotropic traps@7,8#.

VI. SUMMARY

We have considered the monopole oscillation of a Bo
condensed dilute atomic gas in an isotropic trap. First of
we have calculated the normal modes of the condensat
solving the time-dependent Gross-Pitaevskii equation wit
Bogoliubov theory@18# and then we have used the formalis
developed in Ref.@4# to calculate the matrix elements ass
ciated with the transitions between excited states allowed
the monopole selection rules. Within a first-order pertur
tion theory, we have studied the Landau damping of coll
tive modes due to the coupling with thermal excited leve
We have developed the response function formalism to st
the fluctuations of the system due to an external perturbat
The contribution of the elementary excitations has been
.A
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troduced also perturbatively as in the calculation of t
damping strength, and we have derived analytic equati
for the response function at zero temperature and at the
temperature regime. We have seen that when the conden
oscillates with the monopole mode and a small perturba
to the trap frequency is applied, one can excite new re
nances at the transition frequencies. These thermal-indu
resonances are coupled with the monopole due to interac
effects. One cannot excludea priori the possibility to ob-
serve such resonances also in anisotropic traps. This prob
deserves further investigation. Observation of these re
nances would give important and unique information ab
the interaction between elementary excitations in Bo
Einstein condensed gases.
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