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Temperature-induced resonances and Landau damping of collective modes
in Bose-Einstein condensed gases in spherical traps
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Interaction between collective monopole oscillations of a trapped Bose-Einstein condensate and thermal
excitations is investigated by means of perturbation theory. We assume spherical symmetry to calculate the
matrix elements by solving the linearized Gross-Pitaevskii equations. We use them to study the resonances of
the condensate induced by temperature when an external perturbation of the trapping frequency is applied and
to calculate the Landau damping of the oscillations.

PACS numbegps): 03.75.Fi, 02.70.Lq, 67.40.Db

[. INTRODUCTION This paper is organized as follows. In Sec. Il we introduce
the general equations that describe the elementary excitations
Since the discovery of Bose-Einstein condensation irof the condensate within the Bogoliubov theg8y. In Sec.
magnetically trapped Bose gases, the study of the low-energyl we recall the perturbation theory for a trapped Bose-
collective excitations has attracted much interest, both frongondensed gas in order to study the interaction between el-
an experimental and a theoretical point of view. Mean-field@mentary excitations. In Sec. IV we introduce the linear-
theory has proven to be a good framework to study staticf€SPonse function formalism and calculate the response
dynamic, and thermodynamic properties of these trappef}‘”c“_on of the cond_ensate_ when a sm_all perturl_)atlon of_ the
gases. In particular, it provides predictions of the frequencie§@PPing frequency is applied. We derive analytic equations
of collective excitations that agree very well with the ob- for the response function at zero temperature and treat per-

served ones. Recent( 2, the enery sifs and caping LISANEN (he contibuton of the clemenany exciatons,
rates of these low-lying collective excitations have bee pIng. '

measured as a function of temperature. However, these prrlltehe main results.

nomena have not yet been completely understood theoreti-
cally.

In this paper we study the influence of thermal excitations
on collective oscillations of the condensate in the collision- We consider a weakly interacting Bose-condensed gas
less regime. Previous papers on this subject have been deenfined in an external potentiff,, at T=0. The elemen-
voted mainly to calculation of the Landau damping by meansary excitations of a degenerate Bose gas are associated with
of perturbation theory. In Ref§3—6] only the uniform sys- the fluctuations of the condensate. At low temperature they
tem has been considered, whereas in REfs8] Landau are described by the time-dependent Gross-PitaeySi
damping in trapped Bose gases has also been studied beguation for the order parame{el0,11]:
using the semiclassical approximation for thermal excitations 5 2y2
and the hydrodynamic approximation for collective oscilla- - _ 2
tions. An ?/mpor}c/ant pointpgf Refd.7,8] is that the authors h S WD ={ = S +Ved )+ (Y ¥ (r.),
discuss the possible chaotic behavior of the excitations in an @
anisotropic trap. The frequency shift has also been studied
for a trapped condensate in the collisionless regime in Refvhere [dr|W|*=N is the number of atoms in the conden-
[8]. sate. At zero temperature it coincides with the total number

In the present work, we study the interaction betweerPf atomsN, except for a very small differencBN<N due to
collective and thermal excitations using the Gross-Pitaevskiine quantum depletion of the condensate. The coupling con-
equation and perturbation theory. We consider sphericallyptant g is proportional to thes-wave scattering lengtla
symmetric traps, since in this case the spectrum of excitathroughg=4mx72a/m. In the present work we will discuss
tions is easily calculated, avoiding the use of further approxithe case of positive scattering length, as &b atoms. The
mations. Even though the case of anisotropic traps can b#ap is included throughV.,, which is chosen here in the
significantly different in the final results, a detailed investi-form of an isotropic harmonic potential:Vey(r)
gation of spherical traps is instructive. We explore, in par-=(1/2)mwﬁor2. The harmonic trap provides a typical length
ticular, the properties of monopole oscillations by studyingscale for the systeng,,= (%/Mwpq)*2
the temperature-induced resonances that occur in the conden- So far experimental traps have axial symmetry, with dif-
sate when an external perturbation of the trapping frequencierent radial and axial frequencies, but experiments with
is applied and, also, the Landau damping associated with thepherical traps are also feasiljtE2]. The choice here of a
interaction with thermally excited states. spherical trap is due to two different reasons. First, it greatly

Il. ELEMENTARY EXCITATIONS
OF AN ISOTROPIC TRAP
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reduces the numerical effort and will allow us to study thelt has been showfl9] that the hydrodynamic equatiol®)
interaction of oscillations with elementary excitations with- and (7) correctly reproduce the low-lying normal modes of
out any further approximations. Second, the energy spectrutine trapped gas in the linear regime whda/a,,, is large
of the excitations in such a trap is well resolved, yielding to(see, however, Ref20]).

the appearance of well-separated resonances. In anisotropic

traps, conversely, the spectrum of excitations is much denser. Il. PERTURBATION THEORY
The normal modes of the condensate can be found by _ ) _
linearizing Eq.(1), i.e., looking for solutions of the form Let us briefly recall the perturbation theory for the inter-

action between collective modes of a condensate and thermal
P(r,t)=e "YW (r)+u(r)e 't +v*(r)e'“!], (2) excitations as it was developed in Rg4]. Suppose that a
certain mode of the condensate has been excited and, there-
whereu is the chemical potential and the functiomsindv fore, it oscillates with the corresponding frequerity,.. We
are the “particle” and “hole” components characterizing assume that this oscillation is classical, i.e., the number of
the Bogoliubov transformations. After inserting in Ed) guanta of oscillationrf,s) is very large. Then, the energy of
and retaining terms up to first order inandv, one finds the system associated with the occurrence of this classical
three equations. The first one is the nonlinear equation fooscillation can be calculated &=7 ) sdysc With Nys>1.

the order parameter of the ground state, Due to interaction effects, the thermal bath can either absorb
) or emit quanta of this mode producing a damping of the
[Ho+gWo(r)]Wo(r)=puWo(r), (3)  collective oscillation. The energy loss can be written as
where Hy=— (£2/2m)V2+ Vg (r), while u(r) and v(r) E=— A0 W@ — W), (10)

obey the following coupled equation$l]:
whereW® andW(® are the probabilities of absorption and
ﬁwu(r)=[Ho—,u+29\If§]u(r)+g\lf§v(r), 4 emission of one quanturi() .., respectively. The interac-
tion between excitations is small, so one can use perturbation
—fhov(r)=[Ho— u+2g¥3]lv(r)+gWPau(r). (5 theory to calculate the probabilities for the transition be-
tween anith excitation and &th one, available by thermal
Numerical solutions of these equations have been found bsctivation
different author§13-18. In the present work, we use them
to calculate the response function of the condensate under an _ 12
external perturbation and the Landau damping of collective W= W% KK[Vind DI (1)
modes.

When the adimensional parametdia/a,, is large, the Let E; and E, be the corresponding energies and assume
time-dependent GP equation reduces to the hydrodynami€, >E;. Since energy is conserved during the transition pro-
equationg19]: cess, one hak, =E;+7%) ..

The interaction term in second quantization is given by

ap
E‘FV(VP):O, (6) _g TSRS
Vim—z dr "Wy, (12

mv?
Vexrtdp+ ——

0+V
m—v 5

at

=0, (7) " In the framework of Bogoliubov theory, the field operator

can be written as the sum of the condensate wave function
where p(r,t)=|W¥(r,t)|? is the particle density and the ve- ¥, which isAthe orderAparametet at equilibrium, and its
locity field is v(r,t)=(V*VV¥ —-WwVWV*)i/(2mip). The fluctuations sV, where V=¥,+ 6V [see Eq.(2)]. The
static solution of Eqs(6) and (7) gives the Thomas-Fermi fluctuations can be expressed in terms of the annihilatgn (
ground-state density, which in the spherical symmetric tramand creation ¢") operators of the elementary excitations of
reads the system:

p(1)=9"Tu=Vex(r)] 8

in the region whereu>V(r), and p=0 elsewhere. The

chemical potentialu is fixed by the normalization of the where the functionsi andv are properly normalized solu-
density to the number of particlég, in the condensate. The tions of Egs.(4) and (5). In the sum(13), one can select a
density profile(8) has the form of an inverted parabola, |ow-energy collective mode, for which we use the notation
which vanishes at the classical turning pddefined by the uosovoscvaoscaagscy and investigate its interaction with
condition u=Ve,(R). For a spherical trap, this implies higher-energy single-particle excitations, for which we use
the indicesi,k as in Eq.(11). These latter excitations are
assumed to be thermally excited. Inserting express§i@
into Eq. (12), one rewrites the interaction ter¥,,; in terms

axif:}j‘, [uj(Naj+v}(a]l, (13)

2 2
mth
p=—s— (9)
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of the annihilation and creation operators. Since we want to V=—xf(t) (19)
study the decay process in which a quantum of oscillation '

floscis annihilated(created and theith excitation is trans-  yherex is the quantum operator of the physical quantity that
formed into thekth one (or vice versg we W}'L" keep oTnIy may fluctuate, and(t) is the “perturbing force.” The mean

terms linear inwese (aos) and in the productya; (axai).  value(x) is zero in the equilibrium state, in the absence of
And the energy conservation during the transition procesperturbation, and is not zero when it is present. For a peri-

will be ensured by the delta functiof(Ex—Ej 7.  odic perturbatiorf(t)~exp(—iwt), the relation betweenx)
This mechanism is known as Landau dampiag]. andf(w) is

Assuming that at equilibrium the stateg are thermally
occupied with the usual Bose factof;=[exp(; /ksT) (X)y=a(w)f, (20)

—1]7%, the rate of energy loss can be calculated4s _ _ _
wherea(w) is the response function also called generalized

. E 5 susceptibility.
E=—2m 2 |AWIPS(E—Ei— Qo) (fi—Ty), (14) In general(w) is a complex function. It can be seen that
ik . . ey .
the imaginary part of the susceptibility determines the ab-
where sorption of energyQ of the external forcd by the system

through the relation

Ax=2g| dr ugvi+viv,+ugu)u ®
ik gf thol (Ui Vit Vi Vi Ui Ui) Ugse Q=§|m[a(w)]|f|2, (22)
+(VRUj+VEVi+ UR UiV osd - (15
and that the real and imaginary parts @fw) satisfy the
Let us define the dissipation ragethrough the following ~ Kramers-Kraig relation
relation between the energy of the systBnand its dissipa-

tion E: 2 f”'m[a(ﬁ)]

Ra(w)]= 7P| 5= ¢t (@2

E=—29E. (16)
whereP means the principal value of the integral.
Using expressioiil4), y can be calculated as The time-dependent external driviw,,, induces oscilla-
tions of the condensate densi§p with frequency w;
Y _ ‘ o p(r,t)=p(r,0)+ Sp. Expanding the energy due to the con-
QOSC_% VO @ik~ Losd, 7 fining potential, Epy=fVex p dr, with respect todwp, and
Sp one obtains the “mixed” term, corresponding to the
where the transition frequencies,=(E,—E;)/# are posi- Hamiltonian(19):
tive. The “damping strength”

m 2
Y= 12g | Al (fi— i) (18)
osc

VzmwhoﬁwhoJ' r2spdr. (23

Comparing it with Eq(19), one can identify the perturbing

. . . for nd th rr ndin rdin
has the dimensions of a frequency. In this work we calculate0 ce and the corresponding coordinate as

the quantitiesy;, by using the numerical solutionsandv of
Egs. (2—(5) in the integrals(15). The results will be dis- f=—Mwp,dwnh,, X=J' r28p(r,t)dr. (29
cussed in Sec. V.
Note that the first-order termwp,dwnof 1 2p(r,0)dr can be
IV. RESPONSE FUNCTION omitted because it gives an additive shift in the Hamiltonian

) . which does not contribute to the equations of motion of the
The results of the preceding section can be used also tgystem.

study the effect that an external perturbation of the trap has” e we have identifiedl and x, we can calculate the
on the collective excitations of the condensate. Let Us aSgagnonse function of the condensatw). According to the
sume the trapping frequency in the folm,+ dwng(t)], definition one has

where Swp,~exp(—iwt) is a time-dependent modulation.

Assuming that the perturbation is small, one can use the x=a(w)f. (25)
response function formalism to describe the fluctuations of
the system. Let us briefly recall the basic formalig2d]. Let us present the response function in the foarfw)

The behavior of a system under an external perturbatiorr ag(w) + a1(w), whereag(w) corresponds to the response
can be described by studying the fluctuations that may gerfunction of the condensate at=0, i.e., calculated without
erate the external interaction to a certain physical quantity oélementary excitations, ang,(w) is the contribution of the
the system. An external perturbation acting on the system iexcitations. At low temperatures it can be assumed that
described by a new term in the Hamiltonian of the type  a4(w)<<ag(w), and thern, can be treated as a perturbation.
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We proceed as follows. First, we use the hydrodynamicThis means thabb is the fractional amplitude of oscillations
approximation to obtain the response function Tat 0. of the radius and, therefore, it is a measurable quantity.
Then, within a perturbation theory, we introduce the contri- In the small-amplitude limit, one can linearize EQ9)
bution of the elementary excitations at finifleto obtain  with respect toSw;,, and b yielding the following equation:
a1(w). )

Sb+5w2,0b=—2whdwhe. (32)
A. Calculation of ag(w) at T=0

For a spherically symmetric breathing md@s], one can The solution is

easily prove that the hydrodynamic equations of motién -

and(7) admit analytic solutions of the forii24] Sb(t)= 22wh02 Sewong. (39

p(r.)=ag(t)—a ()r?, v(r,)=e,(t)r.  (26) M

whereQ,,= /5wy, corresponds to the frequency of the nor-
mal mode of monopole in the hydrodynamic lirfiit9].

Keeping only the lowest order in the small perturbation
ob, Eqg. (28) yields

These equations are restricted to the region wher@. No-
tice that they include the ground-state soluti@) in the
Thomas-Fermi limit. This is recovered by setting=0, a,
=mw?/(2g), anda,=u/g. Inserting Eqs(26) into the hy-
drodynamic equations, one obtains two coupled differential 1
equations for the time-dependent coefficiersigt) and p(r,t)=p(r,0)+—
a,(t), while at any timea,= — (15N/87)%%a>" is fixed by 9
the normalization of the density to the total number of atoms ; ; P D e e
The form (26) for the density and velocity distributions is ﬁ)r\zssutﬂgtgt:\heec;hnc;ri?i ?llfciggtlig?]d;: Sgslte?]qg;/“b”(gh itfol
equivalent to a scaling transformation of the order parameter.
That is, at each time, the parabolic shape of the density is Sp(r,t)=p(r,H)—p(r,0)
preserved, while the classical radigs where the density
(26) vanishes, scales in time §25]

1 2.2
5§mwhor —3u|8b, (39

28 ( ' )2 3\ st 35
R(t)=R(0) b(t)= >0(b), (27) . o
Mwi, We can calculate now using Egs(24) and(35), finding
where the unperturbed radii0) is given by Eq.(9). x=Cdbh(t), (36)

The relation between the scaling paramdiér) and the
coefficienta,(t) is a,=mw?2/(2gb°). Inserting it into Eq. whereC=16mxR(0)%(35g). Then, from Eq(33), one gets
(26), we obtain

_chho
1 2l 1 g 7
p(r,t)=_§ My, I 2—b5—,U,E . (28) M
At T=0 there are no thermally excited states and, hence,
The hydrodynamic equations then yield=b/b and a(w)=ag(w). By comparing the definitior{25) with Eq.
(37), one has
2
D+ [ whot Swng(t)]?b— “ho_g. (29 2C
b* ap(w)= (38)

m(Q%—w?)
The second and third terms of EQ9) give the effect of the o ) )
external trap and of the interatomic forces, respectively1his is the response function at zero temperature without
From Eqgs.(27) and (29) it follows that at equilibriumb=1 including any dissipation. Thereforey(w) is real, i.e., the

andb=0. For a small driving strengtidw,, one can as- induced oscillations &l =0 are undamped.

sume that the radius of the cloud is perturbed around its_ egr]f ekri]r?;?i)é Ofe?:a?"atlogsgszi;tidcaltcgIatti(i, asmt\cl)V(IiCEe the
equilibrium value, so gy ;

= [dr p(r,0)v2. For a monopole mode in an isotropic trap,
_ _ the calculation23,24] gives E=%Nu|b|?, where|sb| is
R(t)=R(0)+ 6R(t), b(t)=1+ 8b(t), 30 . T ;
(H)=R(0) (®), bV ) (30 the amplitude of the oscillation of the clo#l). Using Egs.

where (36) and(25) at T=0, it follows that

15
sb(t)= %. (31) E= ﬁuNlao(w)flz- (39
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B. Calculation of a;(w) (44), respectively. It is worth stressing that the real part of
Now we want to calculate the contribution of the ther- the susceptibility diverges &2y (resonance of the conden-

mally excited states to the response function. We study th&&te aff =0) but also atwy,, which are the frequencies of
low-temperature regime, where;<a, and the energy of the thermal excited modes that due to the interaction are

oscillation (39) can be estimated using, instead ofa(w)  COUPIed with the monopole.
= arg() + @1(w). The effect ofa; will be introduced within Actually, the resonances of the condensate can be found
a perturbation theory. by measuring the fractional amplitude of oscillations of the

We have already seen that the thermal excitations cafloud radius ob at different pertqrbing frequencies. This
either absorb or emit quanta of oscillatiéim and thus they Mmeasurable quantity can be easily related to the response

will dissipate energy. The contribution of the elementary ex-unction () from Egs.(36) and(25),

citations to the susceptibility will be a complex function,
a1(w)=Rd aq]+ilm[a4], whose imaginary part is related Sb=—a(w)
to the absorption of energ® of the external perturbation.
However, in a stationary solution which is the case under
consideration, the absorptigp must be compensated by the
energy dissipatior{16) due to the interaction with the el-
ementary excitations. Therefore,

Mwpg

C

Swno. (46)

Note that the perturbation theory we have used is valid
when|a;|<|ag|. This condition becomes very restrictive at
o near(}y,. However, it is not difficult to improve the ap-
proximation in this region by taking the benefit of the anal-
Q+E=0 (40) ogy petween the response function and. the Green fun@ion

' It is well known that the Green function obeys the Dyson

Let us rewrite the definition of the damping rate6) by equation[26], which relates the perturbed quantii$) and

using Eqs(17) and(18) with a generic oscillation frequency the unpertur?eq oneQ) through the inverse functions
" (G 1 andG, ") in such a way that a perturbation theory for

G ! has a wider applicability than faB. Analogously, we
will find a relation between the inverse response functions,

E= _2“’% Yikd( wik— @)E. (4D perturbed ¢~ 1) and unperturbedd; *). One has
Inserting Eq. (390 and defining B(w)=aq(w)/C i1 1 47
=2[m(QZ— w?)], one obtains the energy dissipation a (apgtay) ag(l+ai/ag)
. 15uN and formally with the same accuracy
E=—20—=—2 ydox—w)|Bw)lf%. (42
ik 1 1 L a1>
Let us recall that the energy dissipation according to Egs. a  ag o
(21) and(40) can be calculated also from the imaginary part
of the response functionx(w)= ag(w)+ ai(w). Since m , 8 wikYik 15uN
: =—(OQy—w)—— . (48
ag(w) is real, Eq.(21) becomes zc( M T % wizk_wz 7C2
w . . ™ . .
Q= —Im[ay(w)]|f|?=—E. (43) Now_t_he applicability of Eq.(48) is r_estrlcted only by the
2 condition that the second term is small compared to

(m/2C) Q3 .

It is worth noting that according to E@48) the poles of
a(w) related to the resonances are shifted compared to fre-
15uN quencies w;y, and are given by the equation
Im[al(w)]=4T Ek Yikd(wi— )| B(w)|?, (44  ai(wp)/ag(wg)=1. However, these shifts are very small.

I

Comparing Egs(42) and (43), one can calculate the imagi-
nary part ofa;(w) as

and using the Kramers-Knig relation(22) one finds the real V. RESULTS

part In order to present numerical results, we choose a gas
o 15N of 8Rb atoms(scattering lengtta=5.82x10" " cm). For
_° WikYik LK Y the spherical trap we fix the frequenay,,=27187 Hz,
Re ay(@)]= T % wizk 2 7 |Blwi)]*. (49 which is the geometric average of the axial and radial fre-
quencies of Refl1] and corresponds to the oscillator length
Now we have all the ingredients to calculate the respons@n,,=0.791x10 4 cm. We solve the linearized Gross-
function of a spherically symmetric trapped condensate wheRitaevskii equation&)—(5) at zero temperature to obtain the
the monopole mode is excited and a small perturbation of thground-state wave functioWy and the spectrum of excited
trapping frequencydw,,~exp(—iwt) is applied. It can be statesE; as well as the corresponding functiomgr),v;(r).
calculated within first-order perturbation ag )= ag(w) In spherically symmetric traps, the eigenfunctions are la-
+Rd aj(w)]+ilm[ai(w)], by using Egs(38), (45), and beled byi=(n,l,m), wheren is the number of nodes in the

—w
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radial solution| is the orbital angular momentum, andlits 0.006 5001
projection. The eigenfunctions are Upym(r)
=Un(r)Ym(0,¢), the energiek,, are (4 +1) degenerate,
and the occupation of the thermally excited states is fixed by
the Bose factor.

For a fixed number of trapped atomis, the number of 5e-05 -
atoms in the condensatly, depends on temperatuie At
zero temperature all the atoms are in the condensate, exce| 0.004
a negligible quantum depletiofl8]. At finite temperature
the condensate atoms coexist with the thermal bath. In the
thermodynamic limif27] the T dependence of the conden- ) 2.1 22 23
sate fraction ifNo(T)=N[1—(T/T)3]. >t

We consider the collective excitations in the collisionless
regime. This regime is achieved at low enough temperature N, = 50000
The excitation spectrum at low temperature can be safely 0.002
calculated by neglecting the coupling between the conden
sate and thermal aton{28]. It means that the excitation
energies at a givefl can be obtained within Bogoliubov
theory atT=0 normalizing the number of condensate atoms
to No(T).

We investigate the monopole modé=m=0 and n J
=1). The functionsuys. and v,s. do not present angular 0 il ] bl , | AT N i
dependence, and from E(L5) it is straightforward to see 1.8 2.0 2.2 24 2.6
that the matrix elemer,;, couples only those energy levels 0]

(i,k) with the same quantum numbdrandm. That is, the
selection rules correqunding_ to the monopolglike trans.itioqhe
areAl=0 a}ndAm=0. It is obvious, also, that dn‘ferent Pairs spherical trap witha,,=0.791x 104 cm, atksT = . The vertical
of Ievel§ with the same qugntl,!m numberand| but d'fferf bars have length equal to the corresponding damping streéirgth
entm give the same contribution. Therefore, only the inte- s of wpy). The arrow points to the monopole frequert@y, . A

gration of the radial part has to be done numerically. close-up view of the transition frequencies aroudg is presented
With fixed Ny and at a given temperature, we calculatejn the inset in order to show the dense background.

the damping strength€l8) for the transitionsw;, coupled
with the monopole. In Fig. 1, we show the valuesygf (in
units of wp,) for Ny=50000 8'Rb atoms akgT=pu. The
arrow points to the frequency of the breathing mddg

P

P

kT=u

FIG. 1. Transition frequencies;, (in units of wy,,) allowed by
monopole selection rules, fdt,=50000 atoms of'Rb in a

sition frequencies around the monopole is displayed in the
inset of Fig. 1 in order to show the dense background. It is
—2.231w,,, and the chemical potential ia=15.69% wp, worth stressing that such a distinction between “back-

[these values are numerical results of the linearized Gros@round” and “strong” transitions depends on the number of
Pitaevskii equationg2)—(5) for Ny=50000 rubidium at- condensed atoms in the system _and, of course, on tempera-
oms). The position of the bars corresponds to the allowedUre- When the number of atoms in the condensate increases,
transition frequencies;, (in units of ), whereas their the n_umber of ex0|te_d states available by thermal excitations
height defines the numerical value pf, [29]. also increases, leading to a denser and less resoluble back-

One can see that there are two different types of aIIowe@round: N
transitionsw;, . The damping strength associated to most of In Fig. 2 we present .the same as in Fig. 1 but fey
them is very small. Conversely, there are a few transitions 2000 atoms of rubidium akgT=x, where hereu
which give relatively large values ofi,. The latter corre- — 9-291@ho. In this case, one can see that the difference
spond to transitions between the lowest levaig=(1,n, ~ Petween the “strong” and “weak” transitions is not so im-
= 0) for different values of (I=2,3,4,5). The main reason P'€SSIVe as in a bigger condensate since all damping

for these “strong transitions” is that the temperature Occu_str(\a/\rllgths can b‘T %pprﬁmatec: in the sarr?e scale. !
pation factor for these low-lying levels is large. Moreover, . € can chonc ude that 16":1 argeé, we have actually two
the calculation shows that the matrix elements are also erfifferént - phenomena. e strong transitions create

hanced compared to other transitions. This is due to the faé(Fmperaturejlnduced resonances which can be ‘?bsef"eo' n
that the radial wave functions involved in the integrationiIreCt €xperiments. The background transitions give rise to

have either oner(,=1) or no node §,=0), contrary to the Landau damping of the collective oscillatiofsee Sec. V B

oscillating character of the radial wave functions associated
to higher leveld20].

The contribution of the other transitions is like a small
“background” which is difficult to resolve in the scale of the ~ Using the transition frequencies;, and the correspond-
figure. A close-up view of the damping strengths of the traning damping strengthy,,, we have calculated the response

A. Temperature-induced resonances
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0.003

TABLE |. Damping coefficientsyg (in units of w,) of the
“strong resonances’wg (in units of wy,,) and relative intensities
|A1/Ao| between the temperature-induced and the monopole reso-
nance, forNy=150000 condensate atoms &fRb in a spherical
trap witha,,=0.791x 10~ * cm atkgT= pu.

N, = 5000

kT=n

WR YR |A1/Ao|

1.9115
2.0252
2.1432
2.2576
2.3655

0.009268
0.004147
0.002102
0.001097
0.000545

0.063
0.063
0.127
0.298
0.020

0.002

Y

Ai/Aqy is a measure of the relative intensity between
temperature-induced and monopole resonance.

Table | displays the numerical values of the relative in-
tensity for each temperature-induced resonangewith re-
spect to the monopole one, fdf;=150000 atoms in the
condensate dtzT= w. The relative strength of the response
function (A;/Ay) at wg depends not only on the damping
coefficient yg but also on 04— »3) 1. It means that one
mode wgr will be easier to excite, i.e., the strength of the
response will be bigger when it is close to the frequency of
the monopole. Note also that the resonance strength in-
creases with temperature through.

From Table | one can see that the biggest resonance oc-

function a(w). At zero temperature, the response functionCurs atwg=2.2576vp,,, which is resoluble from the mono-
ao(w) given by Eq.(38) gives a resonance at the monopole Pole frequencyy =2.234v,, and has a large enough rela-
frequencyQy = 5wy, evaluated in the hydrodynamic re- tive strength to be observeq. It means that by tuning the
gime. Due to interaction, thermal excited modes are couple@erturbation frequency to this value, a fluctuation of the
with the monopole. It means that when one excites thgractlonal amplitude of oscillations can be observed.
breathing mode of the condensate, the elementary excitations '" Fig- 3, we have plotted the frequency dependence of
can give rise to other resonancessgf, which are the fre- the real part of the response functiarfw) calculated ac-
quencies where Re;(w)] diverges/see Eq(45)]. We will _cordmg t_o Eq.(_48) for Noz 150 000. The response function
now discuss the conditions for the observation of these eflS 9iven in arbitrary units, and frequency is in units@f,.
fects in actual experiments. In particular, we calculate the! "€ dashed line shows the monopole resonanc€l gt

contribution of these resonances to the response function a¢hereas the other divergences @fw) correspond to the
estimate the associated strengths. temperature-induced resonancesat From this figure one

Let us study the resonanceskafT = u for No=150000 Can see that the thermal induced resonances are quite distinct
atoms of 8Rb. The behavior of the damping coefficienig from each other and from the monopole one. Therefore,
is analogous to that for 50 000 condensate atses Fig. 1,
but in this case the difference between “strong” resonances
and small background is even bigger: the dense background
is not more resoluble in the scale of the strong resonances. 1
There are five resonances that stand out from the others, and

0.001

. \“, I
18 2
(O]

2

FIG. 2. Same as Fig. 1 but fo¢;=5000 atoms akgT= .

0
1.6 2.2 4

2

_

that we label asvg and yg for the corresponding damping 3 0
strength(see Table | for numerical valugs ; F
For perturbing frequencies close to the monopale -1 !
~Qu, the monopole susceptibility, Eq38), can be ap-
proximated to ) |
2C 1.8 19 2 31 22 23 24
(49

ao(w)= =Ao ,
m(Qy— Qu+ Qu—
(Qu=0)(Quto) Q=) FIG. 3. Real part of the response functiasfw) (in arbitrary

unit9 as a function ofw (in units of wyy), for Ny=150000 at

whereAy=C/(mQy,).
Analogously,a;(w) near each resonanee~ wg can be
presented in the forma;(w)=A;/(wg—w). The ratio

kgT=w. The dashed line shows the monopole resonande,at
whereas the other divergences af(w) correspond to the
temperature-induced resonancesvat

013602-7
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temperature-induced resonances could be observed in exper 003 -

ments with good enough frequency resolution and good ac N, = 50000

curacy in the measurement of the radius fluctuations. 1.3
We would like to stress that the phenomenon we have e

discussed is related to quite delicate features of interactior . | /,/ 11

between elementary excitations, and therefore its observatio 4 R R AR RN EE s E-Bme-E mm 4

would give rich information about the properties of Bose- -t

Einstein condensed gases at finite temperature. .

¥/ Q

B. Landau damping of collective modes 001 |

kT/p= 055
From Fig. 1 one can see that the weak background tran _.JJ,‘_._,_,*,_.,._,,:,._.,,,,_
sitions w;, have, generally speaking, very small frequency "

separation. To estimate this distance quantitatively, let us
renominate the resonances by an indeéx the order of in- % 0.05 Y 015 02
creasing value ot. Then, one can define the average dis- A

tance between resonancés according to

FIG. 4. Dimensionless damping raj¢(),, as a function of the
Lorentzian widthA (in units of wy,g), for Ng=50 0008’Rb atoms in

Z Yi(wi41— ;) the spherical trap at different temperatures. Dashed lines are plotted
Aw= : ] (50) as a guide for the eye. Solid dots, squares, and triangles correspond
E to the numerical calculation &3 T/« =0.55, 1.1, and 1.3, respec-
: Vi tively.

In a small interval around the collective oscillation Bg  the intervalA/w,,=0.05—0.2 andy can be reliably extrapo-
<wj<1.18)y, we sum up all the transition frequencies lated from this interval to the valuk=0. We take as Landau
allowed by the monopole selection rules and find the follow-damping this extrapolated value ¢f One can estimate the
ing values for the average distance between two consecutivgcuracy of this extrapolation procedure to be of the order of
transition frequenciesA w/w,,=0.0006, 0.001, and 0.006 10% according to the change gfover this interval. In Fig.

for Ng=150 000, 50 000, and 5000, respectively. It is futile,5, we plot the damping rate verskgT/u for Ng=150 000

of course, to try to resolve these resonances. Actually, therand 50 000 atoms in the condensate. As expected, Landau
are reasons to believe that these resonances are smoothdaping increases with temperature since the number of ex-
and overlapped. First of all, a real trap cannot be exactlyitations available at thermal equilibrium is larger whén
isotropic. This means that levels with different have increases. One can distinguish two different regimes in Fig.
slightly different energies; only levels witm=+|m| are 5, one at very lowl (kgT<x) and the other at highdr. The
exactly degenerated. Therefore, each energy level with behavior of the damping rate becomes linear at relatively
given | will be split on|+1 closer sublevels, making the small temperaturekgT~ &) in comparison to the homoge-
energy spectrum more dense. Furthermore, all excitations aeous systeni4], where this regime occurs d&gT> u.

finite temperature have an associated finite lifetime. ExcitaMoreover, the damping rate increases for a larger number of
tions with E~ u, which are the ones that mainly contribute

in the “background” transitions, have the shortest lifetime.  o0.06
This can be accounted for phenomenologically by assuming

that these levels have a finite Lorentzian width That is, .
instead ofé functions in the equation for the damping rate /,-’/ .
(17), we will consider a Lorentzian distribution centered at N,= 150000 * e
wy with a fixed width A: f (o ,A)=A/(27H)[ (wi 0.04 ¢ A
— 002+ A%4]. In this case the damping rate becomes a
smooth function ofQ) .. and its value wherf) =, de- ] B
fines the Landau damping of the monopole oscillations. At > A " N,=50000
conditions 0.02 | ' /

= /,/ o

Aw<A<wp,, (51) o

the damping rate will have only a weak dependence on the %
exact value ofA. In Fig. 4, we plot the dimensionless damp- oLaze™
ing rate y/Q,, as a function of the Lorentzian width (in KT/

units of wy,) for Ng=50000 at different temperatures. The ?

summation in Eq(17) has been done over all resonances, FIG. 5. Dimensionless damping ratgQ, as a function of
excluding, of course, the *“strong resonances” presented ikgT/u for No=150000 atoms(dots and No=50000 atoms
Fig. 1. One can see that tiledependence is weak indeed in (squares Dashed lines are plotted as a guide for the eye.
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condensed atoms because the density of states availablettoduced also perturbatively as in the calculation of the
the system also increases. It is interesting to note that theamping strength, and we have derived analytic equations
order of magnitude of the damping rate is the same as th#or the response function at zero temperature and at the low-
one previously estimated for a uniform ge&-6] and for  temperature regime. We have seen that when the condensate
anisotropic trap$7,8]. oscillates with the monopole mode and a small perturbation
to the trap frequency is applied, one can excite new reso-
nances at the transition frequencies. These thermal-induced
) o resonances are coupled with the monopole due to interaction
We have considered the monopole oscillation of a Bosegffects. One cannot exclude priori the possibility to ob-
condensed dilute atomic gas in an isotropic trap. First of allgerye such resonances also in anisotropic traps. This problem
we have calculated the normal modes of the condensate byeserves further investigation. Observation of these reso-
solving the time-dependent Gross-Pitaevskii equation withithances would give important and unique information about

Bogoliubov theory 18] and then we have used the formalism {he interaction between elementary excitations in Bose-
developed in Refl4] to calculate the matrix elements asso- Einstein condensed gases.

ciated with the transitions between excited states allowed by
the monopole selection rules. Within a first-order perturba-

tion theory, we have studied the Landau damping of collec-
tive modes due to the coupling with thermal excited levels.

We have developed the response function formalism to study We thank F. Dalfovo, P. Fedichev, and S. Stringari for

the fluctuations of the system due to an external perturbatiorhelpful discussions. M.G. thanks the Istituto Nazionale per la
The contribution of the elementary excitations has been inFisica della Materidltaly) for financial support.

VI. SUMMARY
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