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Abstract
We prove an arithmetic version of a theorem of Hirzebruch and Zagier saying that
Hirzebruch-Zagier divisors on a Hilbert modular surface are the coefficients of
an elliptic modular form of weight 2. Moreover, we determine the arithmetic self-
intersection number of the line bundle of modular forms equipped with its Petersson
metric on a regular model of a Hilbert modular surface, and we study Faltings heights
of arithmetic Hirzebruch-Zagier divisors.
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0. Introduction
It is of special interest in Arakelov theory to determine intrinsic arithmetic inter-
section numbers of varieties defined over number fields and Faltings heights of its
subvarieties. Here, we study Hilbert modular surfaces associated to a real quadratic
field K . Since these Shimura varieties are noncompact, we consider suitable toroidal
compactifications. As the natural metrics of automorphic vector bundles on such
varieties have singularities along the boundary (see, e.g., [M], [BKK1]), we work with
the extended arithmetic Chow rings constructed in [BKK2].

In their celebrated article [HZ], Hirzebruch and Zagier proved that the generating
series for the cohomology classes of Hirzebruch-Zagier divisors is a holomorphic mod-
ular form of weight 2. A different proof was obtained by Borcherds [B2]. Moreover,
it was shown by Franke [F] and by Hausmann [Ha] that the product of this generating
series with the first Chern class of the line bundle of modular forms (i.e., the generating
series for the hyperbolic volumes) equals a particular holomorphic Eisenstein series
E(τ ) of weight 2.

In the present article, we define certain arithmetic Hirzebruch-Zagier divisors on
a suitable regular model of the Hilbert modular surface. We show that the generating
series of their classes in the arithmetic Chow ring is a holomorphic modular form (of
the same level, weight, and character as in the case of Hirzebruch and Zagier). The
main result of our work is that the product of this generating series with the square
of the first arithmetic Chern class of the line bundle of modular forms equipped with
its Petersson metric is equal to a multiple of E(τ ). The factor of proportionality is
the arithmetic self-intersection number of the line bundle of modular forms which is
computed explicitly.

Since Hilbert modular surfaces can also be viewed as Shimura varieties associated
to the orthogonal group of a rational quadratic space of signature (2, 2), these results
are related to the program described by Kudla in [Ku2], [Ku3], [Ku4], [Ku6] (for
a discussion of results in that direction, see also the references therein). However,
notice that there are several technical differences. For instance, in the present case,
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the Shimura variety has to be compactified, the arithmetic Hirzebruch-Zagier divisors
contain boundary components, and we work with different Green functions.

We show that the arithmetic self-intersection number of the line bundle of modular
forms is essentially given by the logarithmic derivative at s = −1 of the Dedekind
zeta function ζK (s) of K . It equals the expression conjectured in [Kü1]. We refer to
Theorem B for the precise statement.

We also determine the Faltings heights of those Hirzebruch-Zagier divisors that
are disjoint to the boundary. It is well known that their normalizations are isomorphic
to compact Shimura curves associated with quaternion algebras. This result will be
used in a subsequent work [KK] to determine the arithmetic self-intersection number
of the Hodge bundle equipped with the hyperbolic metric on Shimura curves.

Our formulas provide further evidence for the conjecture of Kramer, based on
results obtained in [K] and [Kü1], that the arithmetic volume is essentially the deriv-
ative of the zeta value for the volume of the fundamental domain, the conjecture of
Kudla on the constant term of the derivative of certain Eisenstein series (see [Ku3],
[Ku4], [Ku6], [KRY]), and the conjecture of Maillot and Roessler on special values
of logarithmic derivatives of Artin L-functions (see [MR1], [MR2]).

Our approach requires various results on regular models for Hilbert modular
surfaces (see [R], [DP], [P]), as well as an extensive use of the theory of Borcherds
products (see [B1], [B2], [Br1], [Br2]). Another central point is the q-expansion
principle (see [R], [C]), which relates analysis to geometry. Finally, a result on Galois
representations (see [OS]) allows us to replace delicate calculations of finite intersec-
tion numbers with density results for Borcherds products.

We now describe the content of this article in more detail.
Since the natural metrics on automorphic line bundles have singularities along the

boundary, we cannot use arithmetic intersection theory as presented in [SABK] and
have to work with the extension developed in [BKK2]. In particular, our arithmetic
cycles are classes in the generalized arithmetic Chow ring ĈH

∗
(X ,Dpre), in which

the differential forms are allowed to have certain log-log singularities along a fixed
normal crossing divisor. We recall some of its basic properties in Section 1. Choosing
representatives, the arithmetic intersection product of two arithmetic cycles can be
split into the sum of a geometric contribution as in [SABK] and an integral over a
star product of Green objects. The formulas for the latter quantity generalize those of
[SABK] and may contain additional boundary terms.

We concentrate on the analytic aspects in Sections 2 and 3. The geometric con-
tribution is considered in Sections 5 and 6.

We begin Section 2 by recalling some facts on the analytic theory of Hilbert mod-
ular surfaces. Throughout the article, the discriminantD ofK is assumed to be prime.
Let � be a subgroup of finite index of the Hilbert modular group �K = SL2(OK ),
where OK denotes the ring of integers in K . We consider an (at the outset, arbitrary)
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desingularization X̃(�) of the Baily-Borel compactification X(�) of �\H2, where
H is the upper complex half-plane. Here, the “curve lemma” due to Freitag [Fr1,
Satz 1, Hilfssatz 2] is a main technical tool to obtain adequate local descriptions. We
introduce the line bundle of modular forms Mk(�) of weight k with its Petersson
metric ‖ · ‖Pet, which is singular along the normal crossing divisor formed by the
exceptional curves of the desingularization. We show that the Petersson metric is a
pre-log singular hermitian metric in the sense of [BKK2].

For any positive integer m, there is an algebraic divisor T (m) on X(�) called
the Hirzebruch-Zagier divisor of discriminant m. These divisors play a central role in
the study of the geometry of Hilbert modular surfaces (see, e.g., [G]). We consider
the Green function �m(z1, z2, s) on the quasi-projective variety �\H2, associated to
T (m), introduced in [Br1]. A new point here is the explicit description of the constant
term, given in Theorem 2.11, which involves ζK (s) and a certain generalized divisor
function σm(s) (see (2.32)). We then define the automorphic Green function Gm for
T (m) to be the constant term in the Laurent expansion at s = 1 of �m(z1, z2, s)
minus a natural normalizing constant, which is needed to obtain compatibility with
the theory of Borcherds products as used in Section 4. By abuse of notation, we also
denote by T (m) the pullback of T (m) to X̃(�). By means of the curve lemma, we
show that the Green function Gm defines a pre-log-log Green object in the sense of
[BKK2] for the divisor T (m) in the projective variety X̃(�).

In Section 3, we specialize the general formula for the star product to the Green
objects g(mj ) = (−2∂∂̄Gmj ,Gmj ) associated to suitable triples of Hirzebruch-Zagier
divisors T (mj ) (see Theorem 3.3). In this case, using the curve lemma, it can be shown
that certain boundary terms vanish. As a consequence, the resulting formula depends
only on the Baily-Borel compactificationX(�) and is independent of the choices made
in the desingularization. An analogous formula holds for the star product associated
to a Hirzebruch-Zagier divisor T (m) and the divisors of two Hilbert modular forms.
In that way, we reduce the analytical contributions to the arithmetic intersection
numbers in question to integrals of Green functions Gm over X(�) and star products
on Hirzebruch-Zagier divisors T (m).

The analysis of Section 2 allows us to determine the integral ofGm in terms of the
logarithmic derivatives of ζK (s) and σm(s) at s = −1 (Corollary 3.9). If p is a prime
that splits inK , then T (p) is birational to the modular curveX0(p). We determine the
star products on these T (p) using the results of [Kü2] in Theorem 3.13.

The proofs of our main results rely on the theory of Borcherds products in a
vital way. Therefore, in Section 4, we recall some of their basic properties with an
emphasis on the construction given in [Br1]. Borcherds products on Hilbert modular
surfaces are particular meromorphic Hilbert modular forms that arise as regularized
theta lifts of certain weakly holomorphic elliptic modular forms of weight zero. They
enjoy striking arithmetic properties. For instance, a sufficiently large power of any
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holomorphic Borcherds product has coprime integral Fourier coefficients. Hence, by
the q-expansion principle, it defines a section of the line bundle of modular forms
over Z. Moreover, the divisors of Borcherds products are explicit linear combinations
of Hirzebruch-Zagier divisors, dictated by the poles of the input modular form. By
[Br1], the logarithm of their Petersson norm is precisely given by a linear combination
of the Green functions Gm.

By a careful analysis of the obstruction space for the existence of Borcherds
products, we prove that for any given linear combination of Hirzebruch-Zagier divisors
C, there are infinitely many Borcherds products F1, F2 such that C ∩ div(F1) ∩
div(F2) = ∅ and such that further technical conditions are satisfied (Theorem 4.12).
This gives an ample supply of sections of the line bundle of modular forms for
which the associated star products can be calculated. In the rest of this section, we
essentially show that the subspace of Pic(X(�K )) ⊗Z Q, spanned by all Hirzebruch-
Zagier divisors, is already generated by the T (p), where p is a prime that splits in K
(Corollary 4.16). This fact can be viewed as an explicit moving lemma for Hirzebruch-
Zagier divisors (see Theorem 6.1), and it is crucial in the proof of Theorem B since it
noticeably simplifies the calculations at finite places.

In Section 5, we recall the arithmetic theory of Hilbert modular surfaces. Un-
fortunately, there are currently no references for projective regular models defined
over Spec Z. Therefore we work with regular models over the subring Z[ζN, 1/N]
of the N th cyclotomic field Q(ζN ). More precisely, we consider toroidal compacti-
fications H̃(N) of the moduli scheme associated with the Hilbert modular variety
for the principal congruence subgroup �K (N) of arbitrary level N ≥ 3. We define
TN (m) ⊆ H̃(N) as the Zariski closure of the Hirzebruch-Zagier divisor T (m) on
the generic fiber. This definition is well behaved with respect to pullbacks and is
compatible with the theory of Borcherds products (see Proposition 5.7). If p is a split
prime, there exists a natural modular morphism from the compactified moduli space
of elliptic curves with a subgroup of order p to the minimal compactification of H(1)
whose image is essentially T1(p) (see Proposition 5.13). This allows us to determine
the geometric contribution of the arithmetic intersection numbers in question using
the projection formula (Proposition 5.15).

In Section 6, the arithmetic intersection theory of Hilbert modular varieties is
studied. There exists no arithmetic intersection theory for the stack H̃(1). Thus,
following a suggestion of S. S. Kudla, we work with the tower of schemes {H̃(N)}N≥3

as a substitute for H̃(1). We define the arithmetic Chow ring for the Hilbert modular
variety to be the inverse limit of the arithmetic Chow rings associated to this tower. In
this way, we obtain R-valued arithmetic intersection numbers; even so, for every N ,
we need to calculate the arithmetic intersection numbers only up to contributions at
the finite places dividing the level.
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We introduce the arithmetic Hirzebruch-Zagier divisors T̂N (m) =
(TN (m), gN (m)), where gN (m) is the pullback of the automorphic Green object
described in Section 2. The subgroup of the first arithmetic Chow group generated by
these divisors has finite rank (see Theorem 6.1). We let ĉ1

(
Mk(�K (N))

)
be the first

arithmetic Chern class of the pre-log singular hermitian line bundle Mk(�K (N)) of
modular forms of weight k with the Petersson metric.

The sequences T̂(m) := (T̂N (m))N≥3 and ĉ1(Mk) := (
ĉ1(Mk(�K (N)))

)
N≥3

define classes in the arithmetic Chow group ĈH
1
(H̃,Dpre), which is defined as the

inverse limit of the arithmetic Chow groups ĈH
1
(H̃(N),Dpre).

Let M+
2 (D,χD) be the space of holomorphic modular forms of weight 2 for

the congruence subgroup �0(D) ⊆ SL2(Z) with character χD = (
D

·
)

satisfying the
“plus-condition” as in [HZ]. It has a natural Q-structure that is given by modular
forms with rational Fourier coefficients.

THEOREM A
The arithmetic generating series

Â(τ ) = ĉ1(M∨
1/2) +

∑
m>0

T̂(m)qm

is a holomorphic modular form in M+
2 (D,χD) with values in ĈH

1
(H̃,Dpre)Q, that

is, an element of M+
2 (D,χD) ⊗Q ĈH

1
(H̃,Dpre)Q.

To establish Theorem A, we show that the Green functionsGm are compatible with the
relations in the arithmetic Chow group given by Borcherds products (Theorem 4.3).
Moreover, using the q-expansion principle and the results of Section 4, we prove that
the divisor of a Borcherds product over Z is horizontal and therefore compatible with
the definition of the Hirzebruch-Zagier divisors over Z as Zariski closures (Proposi-
tion 5.7). Now, modularity follows by a duality argument due to Borcherds in the
geometric situation (see [B2]).

Our main result below provides some information on the position of the generating
series in the arithmetic Chow group. Its proof is much more involved since, in contrast
to Theorem A, it requires the computation of arithmetic intersections.

THEOREM B
We have the following identities of arithmetic intersection numbers:

Â(τ ) · ĉ1(Mk)
2 = k2

2
ζK (−1)

(ζ ′
K (−1)

ζK (−1)
+ ζ ′(−1)

ζ (−1)
+ 3

2
+ 1

2
log(D)

)
· E(τ ).
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Here, E(τ ) denotes the Eisenstein series defined in (4.2). In particular, the arithmetic
self-intersection number of Mk is given by

M3

k = −k3ζK (−1)
(ζ ′

K (−1)

ζK (−1)
+ ζ ′(−1)

ζ (−1)
+ 3

2
+ 1

2
log(D)

)
.

THEOREM C
If T (m) is a Hirzebruch-Zagier divisor that is disjoint to the boundary, then the
Faltings height of its model T(m) with respect to Mk equals

htMk

(
T(m)

) = −(2k)2 vol
(
T (m)

)(ζ ′(−1)

ζ (−1)
+ 1

2
+ 1

2

σ ′
m(−1)

σm(−1)

)
.

The arithmetic intersection theory used here can be viewed as a substitute of an
arithmetic intersection theory on stacks for our particular situation. Notice that any
reasonable arithmetic intersection theory for the coarse moduli space without level
structure has to map into the above theory so that all arithmetic degrees and heights
would agree.

Many arguments of the present article can (probably) be generalized to Shimura
varieties of type O(2, n), where one would like to study the arithmetic intersection
theory of Heegner divisors (also referred to as special divisors; see, e.g., [Ku6], [Ku1]).
In fact, the work on this article already motivated generalizations of partial aspects.
For instance, automorphic Green functions are investigated in [BK] and the curve
lemma in [Br3]. However, progress on the whole picture will (in the near future) be
limited to the exceptional cases, where regular models of such Shimura varieties are
available.

1. Arithmetic Chow rings with pre-log-log forms
The natural metrics that appear, when considering automorphic vector bundles
on noncompact locally symmetric spaces, do not extend to smooth metrics on a
compactification of the space. This is the case, for instance, for the Petersson metric
on the line bundle of modular forms on a Hilbert modular surface. Therefore the
arithmetic intersection theory developed by Gillet and Soulé [GS1], [GS2] cannot be
applied directly to study this kind of hermitian vector bundles. In the articles [BKK1]
and [BKK2], there are two extensions of the arithmetic intersection theory which are
suited to the study of automorphic vector bundles. The first of these theories is based
on what are called pre-log and pre-log-log forms, and the second extension is based
in log and log-log forms. The difference between them is that a differential form ω

is pre-log or pre-log-log if ω, ∂ω, ∂̄ω, and ∂∂̄ω satisfy certain growth conditions,
whereas a differential form is called log or log-log form if all the derivatives of all
the components of the differential form satisfy certain growth conditions. The main
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advantage of the second definition is that we know the cohomology computed by
the log and log-log forms; therefore the arithmetic Chow groups defined with them
have better properties. By contrast, the main advantage of the first approach is that it
is easier to check that a particular form satisfies the conditions defining pre-log and
pre-log-log forms. Since the arithmetic intersection products obtained by both theories
are compatible, for simplicity we have chosen to use in this article the first of these
theories.

1.1. Differential forms with growth conditions
Notation 1.1
LetX be a complex algebraic manifold of dimension d , and letD be a normal crossing
divisor of X. We denote by E ∗

X the sheaf of smooth complex differential forms on X.
Moreover, we write U = X \D, and we let j : U → X be the inclusion.

Let V be an open coordinate subset of X with coordinates z1, . . . , zd ; we put
ri = |zi |. We say that V is adapted to D if the divisor D is locally given by the
equation z1 · · · zk = 0. We assume that the coordinate neighborhood V is small
enough; more precisely, we assume that all the coordinates satisfy ri < 1/ee, which
implies that log 1/ri > e and log(log 1/ri) > 1.

If f and g are two complex functions, we write f ≺ g if there exists a constant
C > 0 such that |f (x)| ≤ C|g(x)| for all x in the domain of definition under
consideration.

Definition 1.2
We say that a smooth complex function f onX \D has log-log growth alongD if we
have

f (z1, . . . , zd) ≺
k∏
i=1

log
(

log
1

ri

)M
(1.1)

for any coordinate subset V adapted to D and some positive integer M . The sheaf
of differential forms on X with log-log growth along D is the subalgebra of j∗E ∗

U

generated, in each coordinate neighborhood V adapted to D, by the functions with
log-log growth along D and the differentials

dzi
zi log(1/ri)

,
dz̄i

z̄i log(1/ri)
, for i = 1, . . . , k,

dzi, dz̄i , for i = k + 1, . . . , d.

A differential form with log-log growth along D is called a log-log growth form.
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Definition 1.3
A log-log growth form ω such that ∂ω, ∂̄ω, and ∂∂̄ω are also log-log growth forms
is called a pre-log-log form. The sheaf of pre-log-log forms is the subalgebra of j∗E ∗

U

generated by the pre-log-log forms. We denote this complex by E ∗
X〈〈D〉〉pre.

In [BKK2, Proposition 7.6], it is shown that pre-log-log forms are integrable and the
currents associated to them do not have residues.

The sheaf E ∗
X〈〈D〉〉pre, together with its real structure, its bigrading, and the usual

differential operators ∂ , ∂̄ , is easily checked to be a sheaf of Dolbeault algebras. We
call it the Dolbeault algebra of pre-log-log forms. Observe that it is the maximal
subsheaf of Dolbeault algebras of the sheaf of differential forms with log-log growth.

Definition 1.4
We say that a smooth complex function f on U has log growth along D if we have

f (z1, . . . , zd) ≺
k∏
i=1

log
( 1

ri

)M
(1.2)

for any coordinate subset V adapted to D and some positive integer M . The sheaf of
differential forms on X with log growth alongD is the subalgebra of j∗E ∗

U generated,
in each coordinate neighborhood V adapted to D, by the functions with log growth
along D and the differentials

dzi
zi
,

dz̄i
z̄i
, for i = 1, . . . , k,

dzi, dz̄i , for i = k + 1, . . . , d.

A differential form with log growth along D is called a log growth form.

Definition 1.5
A log growth form ω such that ∂ω, ∂̄ω, and ∂∂̄ω are also log growth forms is called a
pre-log form. The sheaf of pre-log forms is the subalgebra of j∗E ∗

U generated by the
pre-log forms. We denote this complex by E ∗

X〈D〉pre.

The sheaf E ∗
X〈D〉pre, together with its real structure, its bigrading, and the usual

differential operators ∂ , ∂̄ , is easily checked to be a sheaf of Dolbeault algebras. We
call it the Dolbeault algebra of pre-log forms. It is the maximal subsheaf of Dolbeault
algebras of the sheaf of differential forms with log growth.

For the general situation of interest to us, we need a combination of the concepts
of pre-log-log and pre-log forms.
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Notation 1.6
Let X, D, U , and j be as above. Let D1 and D2 be normal crossing divisors, which
may have common components, and such that D = D1 ∪ D2. We denote by D′

2 the
union of the components of D2 which are not contained in D1. We say that the open
coordinate subset V is adapted toD1 andD2, ifD1 has the equation z1 · · · zk = 0,D′

2

has the equation zk+1 · · · zl = 0, and ri = |zi | < 1/ee for i = 1, . . . , d .

Definition 1.7
We define the sheaf of differential forms with log growth alongD1 and log-log growth
alongD2 to be the subalgebra of j∗E ∗

U generated by differential forms with log growth
along D1 and log-log growth along D2.

A differential form with log growth along D1 and log-log growth along D2 is
called a mixed growth form if the divisors D1 and D2 are clear from the context.

Definition 1.8
Let X, D = D1 ∪ D2, U , and j be as before. A mixed growth form ω such that
∂ω, ∂̄ω, and ∂∂̄ω are also mixed growth forms is called a mixed form. The sheaf of
mixed forms is the subalgebra of j∗E ∗

U generated by the mixed forms. We denote this
complex by E ∗

X〈D1〈D2〉〉pre.

The sheaf E ∗
X〈D1〈D2〉〉pre, together with its real structure, its bigrading, and the usual

differential operators ∂ , ∂̄ , is easily checked to be a sheaf of Dolbeault algebras. We
call it the Dolbeault algebra of mixed forms. Observe that we have, by definition,

E ∗
X

〈
D1〈D2〉

〉
pre

= E ∗
X

〈
D1〈D′

2〉
〉
pre
.

1.2. Pre-log-log Green objects
Notation 1.9
Let X be a complex algebraic manifold of dimension d , and let D be a normal
crossing divisor. We denote by X the pair (X,D). If W ⊆ X is an open subset, we
write W = (W,D ∩W ).

In the sequel, we consider all operations adapted to the pair X. For instance, if
Y � X is a closed algebraic subset and W = X \ Y , then an embedded resolution
of singularities of Y in X is a proper modification π : X̃ → X such that π |π−1(W ) :
π−1(W ) → W is an isomorphism, and

π−1(Y ), π−1(D), π−1(Y ∪D)

are normal crossing divisors on X̃. Using Hironaka’s theorem on the resolution of
singularities (see [Hi]), one can see that such an embedded resolution of singularities
exists.
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Analogously, a normal crossing compactification of X is a smooth compactifica-
tion X such that the closure D of D, the subset BX = X \X, and the subset BX ∪D
are normal crossing divisors.

Given a diagram of normal crossing compactifications of X ,

with divisorsB
X

′ andBX at infinity, respectively, then by functoriality of mixed forms,
there is an induced morphism

ϕ∗ : E ∗
X

〈
BX〈D〉〉

pre
−→ E ∗

X
′
〈
B
X

′ 〈D′〉〉
pre
.

In order to have a complex that is independent of the choice of a particular compacti-
fication, we take the limit over all possible compactifications. Namely, we denote

E∗
pre(X)◦ = lim

−→
�
(
X,E ∗

X

〈
BX〈D〉〉

pre

)
,

where the limit is taken over all normal crossing compactifications X of X.
The assignment that sends an open subset U of X to E∗

pre(U ) is a totally acyclic
sheaf in the Zariski topology (see [BKK1, Remark 3.8′]); we denote it by E∗

pre,X.

Definition 1.10
Let X = (X,D) be as above. Then we define the complex E∗

pre(X) of differential
forms on X, pre-log along infinity, and pre-log-log along D as the complex of global
sections of E∗

pre,X; that is,

E∗
pre(X) = �(X,E∗

pre,X).

Notation 1.11 (see [BKK2, Section 5.2])
LetX be a smooth real variety, and letD be a normal crossing divisor defined over R;
as before, we writeX = (X,D). For anyU ⊆ X, the complexE∗

pre(U ) is a Dolbeault
algebra with respect to the wedge product. For any Zariski open subset U ⊆ X, we
put

D∗
pre,X(U, ∗) = (

D∗
pre,X(U, ∗), dDpre

) = (
D∗(Epre(U C), ∗)σ , dDpre

)
,
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where D∗(Epre(U C), ∗) is the Deligne algebra associated to the Dolbeault algebra
E∗

pre(U ) and σ is the antilinear involution ω �→ F∞(ω) (see [BKK2, Definition
7.18]). When X = (X,D) is clear from the context, we write D∗

pre(U, ∗) instead of
D∗

pre,X(U, ∗).

The arithmetic complex Dpre made out of pre-log and pre-log-log forms can be
seen as the complex that satisfies the minimal requirement needed to allow log-log
singularities along a fixed divisor with normal crossing as well as to have a theory of
arithmetic intersection numbers. Observe that such singularities naturally occur if one
works with automorphic vector bundles (see [M]).

Let U → X be an open immersion, and let Y = X \ U . For integers n, p, we
write

Ĥ n
Dpre,Y

(X,p) = Ĥ n
(
D∗

pre,X(X,p),D∗
pre,X(U,p)

)
,

where the latter groups are truncated relative cohomology groups (see [BKK2, Defin-
ition 2.55]). Recall that a class g ∈ Ĥ n

Dpre,Y
(X,p) is represented by a pair g = (ω, g̃),

with ω ∈ Z(Dn
pre(X,p)) a cocycle and g̃ ∈ D̃n−1

pre (U,p) := Dn−1
pre (U,p)

/
Im dDpre ,

such that dDpre g̃ = ω. There are morphisms

ω : Ĥ n
Dpre,Y

(X,p) −→ Z
(
Dn

pre(X,p)
)
,

given by ω(g) = ω(ω, g̃) = ω, and surjective morphisms

cl : Ĥ n
Dpre,Y

(X,p) −→ Hn
Dpre,Y

(X,p),

given by sending the class of the pair (ω, g̃) in Ĥ n
Dpre,Y

(X,p) to its class [ω, g̃] in the
cohomology group Hn(D∗

pre(X,p),D∗
pre(U,p)).

Definition 1.12
Let y be a p-codimensional algebraic cycle on X with supp y ⊆ Y . A weak pre-log-
log Green object for y (with support in Y ) is an element gy ∈ Ĥ

2p
Dpre,Y

(X,p) such
that

cl(gy) = cl(y) ∈ H 2p
Dpre,Y

(X,p);

here, the class cl(y) is given by the image of the class of the cycle y in real Deligne-
Beilinson cohomology via the natural morphismH

2p
D,Y (X,R(p)) → H

2p
Dpre,Y

(X,p). If
Y = supp y, then gy is called a pre-log-log Green object for y.

The surjectivity of the morphism cl implies that any algebraic cycle as before has a
weak pre-log-log Green object with support in Y . For the convenience of the reader,
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we now recall that

Z
(
D2p

pre(X,p)
) = {

ω ∈ Ep,p
pre (X) ∩ E2p

pre,R(X,p)
∣∣ dω = 0

}
and

D̃2p−1
pre (U,p) = {

g ∈ Ep−1,p−1
pre (U ) ∩ E2p−2

pre,R (U,p − 1)
}
/(Im ∂ + Im ∂̄),

where d = ∂ + ∂̄ and ∂ , respectively, ∂̄ , are the usual holomorphic, respectively,
antiholomorphic, derivatives. Then a weak pre-log-log Green object for y, as above,
is represented by a pair

(−2∂∂̄gy, g̃y) ∈ Z
(
D2p

pre(X,p)
) ⊕ D̃2p−1

pre (U,p).

Observe that a weak pre-log-log Green object carries less information than a pre-
log-log Green object. For instance, the subsequent proposition is not true, in general,
for weak Green objects. Nevertheless, weak Green objects appear naturally when
considering nonproper intersections, and they are useful as intermediate steps (see
[BKK2, Remark 3.55]).

PROPOSITION 1.13
Let X = (X,D), where X is a proper smooth real variety and D is a fixed normal
crossing divisor. Let y be a p-codimensional cycle on X with support Y .
(i) If the class of a cycle (ω, g) in H 2p

Dpre,Y
(X,p) is equal to the class of y, then

−2∂∂̄[g] = [ω] − δy. (1.3)

Here, the current associated to a locally integrable form [·] and the Dirac
current associated to a cycle δy are defined as in [BKK2, (5.32), Definition
5.35].

(ii) Assume that y = ∑
j njYj with irreducible subvarieties Yj and certain mul-

tiplicities nj . If the cycle (ω, g) represents the class of y, then the equality

− lim
ε→0

∫
∂Bε(Y )

α dcg = (2πi)p−1

2

∑
j

nj

∫
Yj

α (1.4)

holds for any differential form α; here, dc= (1/(4πi))(∂ − ∂̄) and Bε(Y ) is an
ε-neighborhood of Y such that the orientation of ∂Bε(Y ) is induced from the
orientation of Bε(Y ).

Notice that in contrast to the theory by Gillet and Soulé, a pre-log-log Green object is
not characterized by (1.3). However, if ω is a smooth form, then a pre-log-log Green
object determines a Green current in the sense of Gillet and Soulé.
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In the sequel, we use (for a cycle y, as above) the shorthand∫
y

α =
∑
j

nj

∫
Yj

α,

where, as usual, ∫
Yj

α =
∫
Ỹj

ϕ∗α

with ϕ : Ỹj −→ Yj any resolution of singularities of Yj .

1.3. Star products of pre-log-log Green objects
Let X = (X,D) be a proper smooth real variety of dimension d with fixed normal
crossing divisor D. Moreover, let Y,Z be closed subsets of X. Then it is shown in
[BKK2] that the product • of Deligne-Beilinson cohomology induces a star product

∗ : Ĥ n
Dpre,Y

(X,p) × Ĥm
Dpre,Z

(X, q) −→ Ĥ n+m
Dpre,Y∩Z(X,p + q),

which is graded commutative, associative, and compatible with the morphisms ω
and cl. We fix a cycle y ∈ Zp(XR) with supp y ⊆ Y and a cycle z ∈ Zq(XR)
with supp z ⊆ Z. If y and z intersect properly, there is a well-defined intersection
cycle y · z. If they do not intersect properly, then the cycle y · z is defined in the
Chow group of X with supports on Y ∩ Z. Let gy = (ωy, g̃y) ∈ Ĥ

2p
Dpre,Y

(X,p)

and gz = (ωz, g̃z) ∈ Ĥ
2q
Dpre,Z

(X, q) be weak pre-log-log Green objects for y and z,
respectively. Then gy ∗ gz is a weak pre-log-log Green object for the cycle y · z with
support Y ∩Z. Moreover, if supp y = Y , supp z = Z, and Y andZ intersect properly,
then gy ∗ gz is a pre-log-log Green object for the cycle y · z. We now recall how to
find a representative of this Green object.

Adapting the argument of [Bu, p. 362], we can find an embedded resolution of
singularities of Y ∪ Z, π : X̃R → XR, which factors through embedded resolutions
of Y , Z, and Y ∩ Z. In particular, we can assume that

π−1(Y ), π−1(Z), π−1(Y ∩Z), π−1(Y ∩D), and π−1(Z ∩D)

are also normal crossing divisors. Let us denote by Ŷ the normal crossing divisor
formed by the components of π−1(Y ) which are not contained in π−1(Y ∩ Z). Ana-
logously, we denote by Ẑ the normal crossing divisor formed by the components of
π−1(Z) which are not contained in π−1(Y ∩Z). Then Ŷ and Ẑ are closed subsets of X̃
which do not meet. Therefore there exist two smooth, F∞-invariant functions σ

YZ
and

σ
ZY

satisfying 0 ≤ σ
YZ
, σ

ZY
≤ 1, σ

YZ
+ σ

ZY
= 1, σ

YZ
= 1 in a neighborhood of Ŷ ,

and σ
ZY

= 1 in a neighborhood of Ẑ. Finally, in the group Ĥ 2p+2q
Dpre,Y∩Z(X,p + q), we
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then have the identity

gy ∗ gz = (
ωy ∧ ωz, (−2σ

ZY
gy ∧ ∂∂̄gz − 2∂∂̄(σ

YZ
gy) ∧ gz)∼

)
. (1.5)

In order to compute the arithmetic degree of an arithmetic intersection, we need
formulas for the pushforward of certain ∗-products in the top degree of truncated
cohomology groups. We make the convention that for g = (ω, g̃) ∈ Ĥ 2d+2

Dpre,∅(X, d), we
write

∫
X

g instead of
∫
X
g.

THEOREM 1.14
Let X be as before, and assume that D = D1 ∪ D2, where D1 and D2 are normal
crossing divisors of X satisfying D1 ∩D2 = ∅. Let y and z be cycles of X such that
supp y = Y and supp z ⊆ Z. Let gy be a pre-log-log Green object for y, and let gz be
a weak pre-log-log Green object for z with support Z. Assume that p + q = d + 1,
and assume that Y ∩ Z = ∅, Y ∩D2 = ∅, and Z ∩D1 = ∅. Then

1

(2πi)d

∫
X

gy ∗ gz = lim
ε→0

( 1

(2πi)d

∫
X\Bε(D)

gy ∧ ωz

− 2

(2πi)d−1

∫
∂(Bε(D1))

(gz ∧ dcgy − gy ∧ dcgz)
)

+ 1

(2πi)q−1

∫
y\(y∩D1)

gz,

where Bε(Dj ) denotes an ε-neighborhood of Dj (j = 1, 2) and Bε(D) = Bε(D1) ∪
Bε(D2).

Proof
Let X̃ be an embedded resolution of Y ∪Z as described above. We write Y ′, respect-
ively, Z′, for the strict transforms of Y , respectively, Z; we note that Y ′ ∩ Z′ = ∅.
Furthermore, we writeY ′′ for the strict transform of the closure ofY \(Y∩D). Choosing
σ
YZ

and σ
ZY

as above, we may assume that σ
YZ

has value 1 in a neighborhood of D1

(since D1 ∩ Z = ∅) and vanishes in a neighborhood of D2.
Using −2∂∂̄ = (4πi) ddc, we get, by means of (1.5),

gy ∗ gz = (
ωy ∧ ωz, 4πi(ddc(σ

YZ
gy) ∧ gz + σ

ZY
gy ∧ ddcgz)

∼). (1.6)

In order to perform the following calculations, we put

Xε = X̃ \ (Bε(D) ∪ Bε(Y ′′) ∪ Bε(Z′)
)
,



16 BRUINIER, BURGOS GIL, and KÜHN

where Bε(·) denotes an ε-neighborhood of the quantities in question. On Xε, one can
split up the integral in question by means of [BKK2, (7.32)]:∫

Xε

(
ddc(σ

YZ
gy) ∧ gz + σ

ZY
gy ∧ ddcgz

)
=
∫
Xε

gy ∧ ddcgz +
∫
Xε

d
(
gz ∧ dc(σ

YZ
gy) − σ

YZ
gy ∧ dcgz

)
. (1.7)

Applying Stokes’s theorem to the latter integral and using the properties of the function
σ
YZ

, we obtain, for sufficiently small ε > 0,∫
Xε

d
(
gz ∧ dc(σ

YZ
gy) − σ

YZ
gy ∧ dcgz

)
= −

∫
∂(Bε(D1)∪Bε(Y ′′))

(gz ∧ dcgy − gy ∧ dcgz)

= −
∫
∂(Bε(D1))

(gz ∧ dcgy − gy ∧ dcgz)

−
∫
∂(Bε(Y ′′)\(Bε(Y ′′)∩Bε(D1)))

(gz ∧ dcgy − gy ∧ dcgz).

Taking into account that (ωy, g̃y) is a Green object for y and that gz is a smooth
(n− p, n− p)-form on Bε(Y ′′) \ (Bε(Y ′′) ∩ Bε(D1)), we derive, from (1.4),

−
∫
∂(Bε(Y ′′)\(Bε(Y ′′)∩Bε(D1)))

(gz ∧ dcgy − gy ∧ dcgz)

= (2πi)p−1

2

∫
y\(y∩D1)

gz + f (ε). (1.8)

Here, f (ε) is a continuous function with limε→0 f (ε) = 0. Combining (1.6), (1.7),
and (1.8), we finally find∫

Xε

gy ∗ gz = lim
ε→0

( ∫
X\Bε(D)

gy ∧ (−2∂∂̄gz) + (2πi)p
∫
y\(y∩D1)

gz

− 4πi
∫
∂(Bε(D1))

(gz ∧ dcgy − gy ∧ dcgz) + f (ε)
)
.

Hence the claim follows. �

Observe that if D is empty and supp z = Z, then the formula of Theorem 1.14
specializes to the formula for the star product given by Gillet and Soulé (see [GS1]).
Nevertheless, whenD is not empty, both terms in the formula of Gillet and Soulé may
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be divergent. Therefore one can view the theory of cohomological arithmetic Chow
groups as a device that gives, in the nonsmooth situation, the necessary correction
terms.

1.4. Arithmetic Chow rings with pre-log-log forms
LetK be a number field, letA be a subring ofK with field of fractionsK , and let� be
a complete set of complex embeddings of K into C. Let X be an arithmetic variety
over A of (relative) dimension d over S = SpecA (i.e., a regular scheme X that is
flat and quasi-projective over SpecA). We let X∞ = ∐

σ∈� Xσ (C). This complex
variety has a natural antilinear involution denoted F∞. We denote by XR the real
variety defined by X∞ and F∞. Let DK be a fixed normal crossing divisor of XK .
We denote byD the induced normal crossing divisor on XR. In this section, we recall
basic properties of the arithmetic Chow groups ĈH

∗
(X ,Dpre) defined in [BKK2].

Let Zp(X ) be the group formed by cycles on X of codimension p. Given
y ∈ Zp(X ), we write y∞ = ∐

σ∈� yσ (C) and let Y = supp y∞. We define

Ĥ
2p
Dpre,Y

(X , p) = Ĥ
2p
Dpre,Y

(X∞, p)F∞,

and we put

Ĥ
2p
Dpre,Z p (X , p) = lim

−→
Z p

Ĥ
2p
Dpre,Y

(X , p),

where in the limit, Z p is the set of cycles on X∞ of codimension at least p ordered
by inclusion.

Definition 1.15
The group of p-codimensional arithmetic cycles on X is the group

Ẑ
p
(X ,Dpre) = {

(y, gy) ∈ Zp(X ) ⊕ Ĥ
2p
Dpre,Z p (X , p)

∣∣ cl(gy) = cl(y∞)
}
.

Let w be a codimension p − 1 irreducible subvariety of X , and let h ∈ k(w)∗.
Write h∞ for the induced function on w∞, and set Y = supp(div(h∞)). Then there
is a distinguished pre-log-log Green object g(h) ∈ Ĥ

2p
Dpre,Y

(X , p) for div(h∞). We

point out that g(h) depends only on the class of h∞ in H 2p−1
Dpre

(X \ Y, p). We write

d̂iv(h) = (div(h), g(h)) for this arithmetic cycle, and we denote by R̂at
p
(X ,Dpre)

the subgroup of Ẑ
p
(X ,Dpre) generated by arithmetic cycles of the form d̂iv(h). Then

the pth arithmetic Chow group of X with log-log growth along D is defined by

ĈH
p
(X ,Dpre) = Ẑ

p
(X ,Dpre)/ R̂at

p
(X ,Dpre).
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A key result of [BKK2] is the definition of an arithmetic intersection product

ĈH
p
(X ,Dpre) ⊗ ĈH

q
(X ,Dpre) −→ ĈH

p+q
(X ,Dpre) ⊗Z Q,

so that

ĈH
∗
(X ,Dpre)Q =

⊕
p≥0

ĈH
p
(X ,Dpre) ⊗Z Q

equipped with this product has the structure of a commutative associative ring. We
call ĈH

∗
(X ,Dpre)Q the arithmetic Chow ring of X with log-log growth along D

(for a detailed description of the arithmetic intersection product, we refer to [BKK2,
Theorems 4.18, 4.19]). We now briefly discuss the special case of p + q = d + 1.

Let (y, gy) ∈ Ẑ
p
(X ,Dpre) and (z, gz) ∈ Ẑ

q
(X ,Dpre) be such that y∞ and z∞

have proper intersection on X . Since p + q = d + 1, this means y∞ ∩ z∞ = ∅,
and the intersection of y and z defines a class [y · z]fin in the Chow group with finite
support CHd+1

fin (X )Q. One obtains

[(y, gy) · (z, gz)] = [
[y · z]fin, gy ∗ gz

] ∈ ĈH
d+1

(X ,Dpre)Q. (1.9)

Definition 1.16
Let K be a number field, let OK be its ring of integers, and let � be a complete set
of complex embeddings of K into C. Then Spec OK is an arithmetic variety, and due
to the product formula forK , we have as in [SABK] a well-defined arithmetic degree
map

d̂eg : ĈH
1
(Spec OK,Dpre) −→ R, (1.10)

induced by the assignment(∑
pj∈S

njpj ,
∑
σ∈�

(0, g̃σ )
)

�→
∑
pj∈S

nj log| OK/pj | +
∑
σ∈�

gσ .

In particular, this map is a group homomorphism, which is an isomorphism in the case
of K = Q; it is common to identify ĈH

1
(Spec(Z),Dpre) with R.

Remark 1.17
If N is an integer and A = OK [1/N], then we obtain a homomorphism

d̂eg : ĈH
1
(S,Dpre) −→ RN,

where RN = R/
〈∑

p|N Q · log(p)
〉
, and the sum extends over all prime divisors p

of N .
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If X is a d-dimensional projective arithmetic variety over A and π : X → S is the
structure morphism, another key result of [BKK2] is the definition of a pushforward
morphism

π∗ : ĈH
d+1

(X ,Dpre) −→ ĈH
1
(S,Dpre).

The arithmetic Chow ring ĈH
∗
(X ,Dpre) is a generalization of the classical

construction ĈH
∗
(X ) due to Gillet and Soulé (see, e.g., [SABK]), in which the

differential forms are allowed to have certain log-log singularities along a fixed normal
crossing divisor.

THEOREM 1.18
If X is projective, then there is a commutative diagram

in which the upper morphism is compatible with the product structure, the vertical
morphisms are the pushforward morphisms, and the lower morphism is an isomorph-
ism compatible with arithmetic degrees. In particular, this diagram implies the com-
patibility of the arithmetic intersection numbers that can be computed in both theories.

Remark 1.19
Let A be as in Remark 1.17; then the morphism

d̂egπ∗ : ĈH
d+1

(X ,Dpre) −→ RN

is induced by the assignment∑
P∈Zd+1(X )

nP (P, gP ) �→
∑

P∈Zd+1(X )

nP

(
log #|k(P )| + 1

(2πi)d

∫
X∞

gP

)
.

Here, we used the convention that for gP = (ωP , g̃P ), we write
∫

X∞
gP instead of∫

X∞
gP .

In order to ease notation, we sometimes write for α ∈ ĈH
d+1

(X ,Dpre) simply α
instead of d̂egπ∗(α).

1.5. Pre-log singular hermitian line bundles and Faltings heights
Let X and D be as in Section 1.4.



20 BRUINIER, BURGOS GIL, and KÜHN

Definition 1.20
Let L be a line bundle on X equipped with an F∞-invariant singular hermitian
metric ‖·‖ on the induced line bundle L∞ over X∞. If there is an analytic trivializing
cover {Uα, sα}α such that, for all α,

− log‖sα‖ ∈ �(Uα,E 0
X∞〈〈D〉〉pre

)
, (1.11)

then the metric is called a pre-log singular hermitian metric. The pair (L , ‖ · ‖) is
called a pre-log singular hermitian line bundle and denoted by L .

LEMMA 1.21
If L is a pre-log singular hermitian line bundle on X , then for any rational section
s of L , (

div(s), (2∂∂̄ log‖s‖,− log‖s‖)
) ∈ Ẑ

1
(X ,Dpre). (1.12)

Proof
Let ‖ · ‖0 be an F∞-invariant smooth hermitian metric on the line bundle L∞. Since
the quotient ‖s‖/‖s‖0 does not depend on the section s, Definition 1.20 implies that

f = − log
‖s‖
‖s‖0

is a pre-log-log function. Consequently, (2∂∂̄f,−f ) is a pre-log-log Green object
for the empty divisor (see [BKK2, Section 7.7]). Since (2∂∂̄ log‖s‖0,− log‖s‖0) is a
Green object for div(s) and

(2∂∂̄ log‖s‖,− log‖s‖) = (2∂∂̄ log‖s‖0,− log‖s‖0) − a(f ),

we obtain that (2∂∂̄ log‖s‖,− log‖s‖) is a pre-log-log Green object for div(s). �

It is easy to see that the class of (1.12) depends only on the pair (L , ‖ · ‖). We denote
it by ĉ1(L ), and we call it the first arithmetic Chern class of L .

Definition 1.22
The arithmetic Picard group P̂ic(X ,Dpre) is the group of isomorphy classes of pre-
log singular hermitian line bundles, where the group structure is given by the tensor
product.

We have an inclusion P̂ic(X ) ⊆ P̂ic(X ,Dpre), where P̂ic(X ) is the arithmetic
Picard group defined by Gillet and Soulé. Moreover, the morphism

ĉ1 : P̂ic(X ,Dpre) −→ ĈH
1
(X ,Dpre), (1.13)
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given by equation (1.12), is an isomorphism. Finally, given a pre-log singular hermitian
line bundle L on an arithmetic variety of (relative) dimension d over A, we write

L
d+1 = d̂egπ∗

(
ĉ1(L )d+1

)
,

and we call it the arithmetic self-intersection number of L .
Putting U = XR \ D, we write ZqU (X ) for the group of the q-codimensional

cycles z of X so that zR intersects D properly. We introduce UK = XK \ DK and
observe that there is a natural injective map Zq(UK ) → ZqU (X ). In [BKK2], a height
pairing

(· | ·) : ĈH
p
(X ,Dpre) ⊗ ZqU (X ) −→ ĈH

p+q−d
(S,Dpre)Q (1.14)

is defined. Observe that since the height of a cycle, whose generic part is supported in
D, may be infinite, one cannot expect that the height pairing due to Bost, Gillet, and
Soulé [BGS] unconditionally generalizes to a height pairing between the arithmetic
Chow groups ĈH

p
(X ,Dpre) and the whole group of cycles Zq(X ).

We now let X ,D,U be as before, and we let p, q be integers satisfying p+q =
d + 1. Let z ∈ ZqU (X ) be an irreducible, reduced cycle, and let α ∈ ĈH

p
(X ,Dpre).

We representα by the class of an arithmetic cycle (y, gy), where y is ap-codimensional
cycle such that yK intersects zK properly and where gy = (ωy, g̃y) is a pre-log-log
Green object for y. We have

(α | z) = [
π∗([y · z]fin),

(
0, ˜π#(gy ∧ δz)

)] ∈ ĈH
1
(S,Dpre)Q. (1.15)

Here, the quantity ˜π#(gy ∧ δz) has to be understood as follows. Let Z = supp zR, and
let ı : Z̃ → Z be a resolution of singularities of Z adapted toD. Since yK ∩ zK = ∅,
the functoriality of pre-log-log forms shows that ı∗(gy) is a pre-log-log form on Z̃;
hence it is locally integrable on Z̃, and we have

˜π#(gy ∧ δz) = 1

(2πi)p−1

∫
Z̃

ı∗(gy).

The pairing (1.14) is now obtained by linearly extending the above definitions.
If we choose a basic pre-log-log Green form gz for z and put gz = (−2∂∂̄gz, g̃z),

then the height pairing (1.14) satisfies

(α | z) = π∗(α · [z, gz]) + (
0, (0, π#( ˜[ω(α) ∧ gz]XR

))
) ∈ ĈH

1
(S,Dpre)Q. (1.16)

The height pairing (1.14) is of particular interest when α = ĉ1(L )p for some pre-log
singular hermitian line bundle L on X . We call the real number

htL (z) = d̂eg
(

ĉ1(L )p
∣∣ z) (1.17)

the Faltings height of z (with respect to L ).
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Remark 1.23
As in Theorem 1.18, if the hermitian metric of L is smooth, the Faltings height
computed in this arithmetic intersection theory agrees with the one defined by Bost,
Gillet, and Soulé.

2. Complex theory of Hilbert modular surfaces
We begin by recalling some basic facts on Hilbert modular surfaces. This mainly
serves to fix notation (for a detailed account, we refer to [Fr3] and [G]).

LetK be a real quadratic field with discriminantD. Let OK be its ring of integers,
and let d = (

√
D) be the different. We write x �→ x ′ for the conjugation in K ,

tr(x) = x + x ′ for the trace, and N(x) = xx ′ for the norm of an element. Given an
a ∈ K , we write a � 0 if a is totally positive. Furthermore, we denote by ε0 > 1
the fundamental unit ofK . We write χD for the quadratic character associated withK
given by the Legendre symbol χD(x) = (

D

x

)
. The Dirichlet L-function corresponding

to χD is denoted by L(s, χD). Moreover, we write ζ (s) for the Riemann zeta function.
Let H = {z ∈ C; �(z) > 0} be the upper complex half-plane. The group

SL2(R) × SL2(R) acts on the product H2 of two copies of H via Möbius trans-
formations on both factors. As usual, we identify SL2(K) with a subgroup of
SL2(R) × SL2(R) by the embeddingM �→ (M,M ′), whereM ′ = (

a′ b′
c′ d ′

)
denotes the

conjugate of the matrix M = (
a b
c d

)
. If a is a fractional ideal of K , we write

�(OK ⊕ a) =
{(
a b

c d

)
∈ SL2(K); a, d ∈ OK, b ∈ a−1, c ∈ a

}
(2.1)

for the Hilbert modular group corresponding to a. Moreover, we briefly write

�K = �(OK ⊕ OK ) = SL2(OK ), (2.2)

and we denote by �K (N) the principal congruence subgroup of level N , that is, the
kernel of the natural homomorphism �K → SL2(OK/NOK ). Throughout, we use
z = (z1, z2) as a standard variable on H2. We denote its real part by (x1, x2) and its
imaginary part by (y1, y2).

Let � ≤ SL2(K) be a subgroup that is commensurable with �K . The quotient
�\H2 is called the Hilbert modular surface associated with �. It is a noncompact
normal complex space that can be compactified by adding the cusps of �, that is, the
�-classes of P1(K). By the theory of Baily and Borel, the quotient

X(�) = �\(H2 ∪ P1(K)
)
, (2.3)

together with the Baily-Borel topology, can be given the structure of a normal project-
ive algebraic variety over C. It is called the Baily-Borel compactification of �\H2.
Recall that the cusps of �(OK ⊕ a) are in bijection with the ideal classes of K by
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mapping (α : β) ∈ P1(K) to the ideal αOK +βa−1. So, in particular, the cusp ∞ cor-
responds to the principal class and 0 to the class of a−1. For any point ξ ∈ H2 ∪P1(K),
we denote by �ξ the stabilizer of ξ in �. If ξ ∈ H2, then the quotient G = �ξ/{±1}
is a finite cyclic group. If |G| > 1, then ξ is called an elliptic fixed point. Notice that
�K always has elliptic fixed points of orders 2 and 3. On the other hand, �K (N) acts
fixed-point-freely if N ≥ 3.

If a is a fractional ideal from the principal genus of K , there are a fractional
ideal c and a totally positive λ ∈ K such that a = λc2. If M denotes a matrix in(

c−1 c−1

c c

) ∩ SL2(K), then(
λ−1 0
0 1

)
M�KM

−1

(
λ 0
0 1

)
= �(OK ⊕ a). (2.4)

This induces an isomorphism of algebraic varieties over C,

�K\H2 −→ �(OK ⊕ a)\H2, z �→
(
λ−1 0
0 1

)
Mz. (2.5)

It extends to an isomorphismX(�K ) → X(�(OK ⊕a)) mapping the cusp b ofX(�K )
to the cusp b/c of X(�(OK ⊕ a)). In particular, the cusp c is mapped to the cusp ∞
of X(�(OK ⊕ a)), and c−1 is mapped to the cusp 0.

2.1. Desingularization and the curve lemma
Throughout, we write e(z) = e2πiz. We denote by E(δ) = {q ∈ C; |q| < δ} the δ-disc
around the origin, and we put E = E(1). Moreover, we write Ė = {q ∈ E; q �= 0}.

The singular locus X(�)sing of X(�) consists of the cusps and the elliptic fixed
points. Throughout, we work with desingularizations of X(�) such that the pullback
of the singular locus is a divisor with normal crossings. Given such a desingularization

π : X̃(�) −→ X(�), (2.6)

we denote this divisor by

D� = π∗(X(�)sing
)
. (2.7)

We now present a local description of X̃(�) using the “curve lemma” due to Freitag.
Let κ ∈ P1(K) be a cusp of �, and let g ∈ SL2(K) with κ = g∞. By replacing

� by the commensurable group g−1�g, we may assume that κ = ∞. There are a
Z-module t ⊂ K of rank 2 and a finite index subgroup � of the units of OK acting
on t such that �∞ has finite index in the semidirect product t � � (see [G, Chapter
2.1]). In particular, if γ ∈ �∞, then γ (z1, z2) = (εz1 + µ, ε′z2 + µ′) for some µ ∈ t

and some totally positive unit ε ∈ �. A fundamental system of open neighborhoods
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of ∞ ∈ X(�) is given by

VC = �∞\{(z1, z2) ∈ H2; y1y2 > C
} ∪ ∞, C > 0. (2.8)

Let C > 0. Let a ∈ X̃(�) be a point with π(a) = ∞, and let U ⊂ X̃(�) be
a small open neighborhood of a such that π(U ) ⊂ VC . Possibly replacing U by a
smaller neighborhood, after a biholomorphic change of coordinates we may assume
that U = E2 is the product of two unit discs, a = (0, 0), and that π∗∞ = div(qα1 q

β

2 )
on U with nonnegative integers α, β.

The desingularization map induces a holomorphic map E2 → VC , which we also
denote by π . If we restrict it to Ė2, we get a holomorphic map Ė2 → �∞\H2. Lifting
it to the universal covers, we obtain a commutative diagram

(2.9)

Here, � is a holomorphic function satisfying

�(τ1 + 1, τ2) =
(
ε1 0
0 ε′

1

)
�(τ1, τ2) +

(
µ1

µ′
1

)
, (2.10)

�(τ1, τ2 + 1) =
(
ε2 0
0 ε′

2

)
�(τ1, τ2) +

(
µ2

µ′
2

)
, (2.11)

with µ1, µ2 ∈ t and totally positive units ε1, ε2 ∈ �.

LEMMA 2.1
Let � : H2 → H2 be a holomorphic function satisfying (2.10) and (2.11). Then
ε1 = ε2 = 1, and there is a holomorphic function H : E2 → H2 such that

�(τ1, τ2) =
(
�1(τ1, τ2)
�2(τ1, τ2)

)
=
(
µ1τ1 + µ2τ2

µ′
1τ1 + µ′

2τ2

)
+H (q1, q2), (2.12)

where q1 = e(τ1) and q2 = e(τ2). Moreover, µ1, µ2, and their conjugates are
nonnegative.

Proof
Applying the “curve lemma” (see [Fr1, Satz 1, Hilfssatz 2]) to the functions H → H
given by τi �→ �j (τ1, τ2) with i, j ∈ {1, 2}, one finds that �(τ1, τ2) has the form
(2.12) with µ1, µ2 ∈ t. The fact that �(�j (τ1, τ2)) is positive implies that µ1, µ2, and
their conjugates have to be nonnegative. �
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Remark 2.2
The properties of the Baily-Borel topology onX(�) imply that the exceptional divisor
π∗(∞) contains the component {qj = 0} if and only if µj is totally positive.

Now, let ξ ∈ H2 be an elliptic fixed point of �, let G be the cyclic group �ξ/{±1},
and let n = |G|. Let V ⊂ H2 be a small open neighborhood of ξ on which �ξ acts.
Then �ξ\V is an open neighborhood of ξ ∈ �\H2. Let a ∈ X̃(�) be a point with
π(a) = ξ , and let U ⊂ X̃(�) be an open neighborhood of a such that π(U ) ⊂ �ξ\V .
Without loss of generality, we may assume that U = E2 is the product of two unit
discs, a = (0, 0), and that π∗ξ = div(qα1 q

β

2 ) on U .
The desingularization map induces a holomorphic map E2 → �ξ\V . Arguing as

in [Fr2, Hilfssatz 5.19, p. 200] and using the fact that |G| = n, we get a commutative
diagram of holomorphic maps

(2.13)

From this, one derives an analogue of the curve lemma for the elliptic fixed points.
There is a (unique up-to-a-positive multiple) symmetric (SL2(R) × SL2(R))-

invariant Kähler metric on H2. Its corresponding (1, 1)-form is given by

ω = 1

4π

(dx1 dy1

y2
1

+ dx2 dy2

y2
2

)
. (2.14)

PROPOSITION 2.3
The form ω induces a pre-log-log form on X̃(�) with respect to D� .

Proof
We show that if κ is a cusp of �, and a ∈ X̃(�) with π(a) = κ , then π∗ω satisfies the
growth conditions of Definition 1.2 in a small neighborhood of a. The corresponding
assertion for the elliptic fixed points is easy and is left to the reader.

Without loss of generality, we may assume that κ = ∞ and that π looks locally
near a as in (2.9).

By means of the �∞-invariant function log(y1y2), we may write ω =
(1/(2πi))∂∂̄ log(y1y2). Using the notation of Lemma 2.1, we see that

�∗
(
y1

y2

)
= − 1

2π

(
µ1 log|q1| + µ2 log|q2|
µ′

1 log|q1| + µ′
2 log|q2|

)
+ �

(
H1(q1, q2)
H2(q1, q2)

)
. (2.15)
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Consequently,

π∗( log(y1y2)
) = log

(
− 1

4π
g1(q1, q2)

)
+ log

(
− 1

4π
g2(q1, q2)

)
, (2.16)

where

g1(q1, q2) = µ1 log|q1|2 + µ2 log|q2|2 − 4π�H1(q1, q2),

g2(q1, q2) = µ′
1 log|q1|2 + µ′

2 log|q2|2 − 4π�H2(q1, q2).

Hence we find

2πiπ∗(ω) = ∂∂̄π∗(log(y1y2)
)

= − 1

g1(q1, q2)2

(
µ1

dq1

q1
+ µ2

dq2

q2
− 4π∂�H1

)
×
(
µ1

dq̄1

q̄1
+ µ2

dq̄2

q̄2
− 4π∂̄�H1

)
− 1

g2(q1, q2)2

(
µ′

1

dq1

q1
+ µ′

2

dq2

q2
− 4π∂�H2

)
×
(
µ′

1

dq̄1

q̄1
+ µ′

2

dq̄2

q̄2
− 4π∂̄�H2

)
− 4π

∂∂̄�H1

g1(q1, q2)
− 4π

∂∂̄�H2

g2(q1, q2)
. (2.17)

Since H is holomorphic, this differential form has log-log growth along π∗(∞). �

It follows that the volume form

ω2 = 1

8π2

dx1 dy1

y2
1

dx2 dy2

y2
2

(2.18)

is also a pre-log-log form. It is well known that∫
X̃(�K )

ω2 = 1

8π2

∫
�K\H2

dx1 dy1

y2
1

dx2 dy2

y2
2

= ζK (−1) (2.19)

(see, e.g., [G, p. 59]). Here, ζK (s) is the Dedekind zeta function of K .

2.2. Hilbert modular forms and the Petersson metric
Let k be an integer, and let χ be a character of �. A meromorphic function F on H2

is called a Hilbert modular form of weight k (with respect to � and χ ) if it satisfies

F (γ z1, γ
′z2) = χ(γ )(cz1 + d)k(c′z2 + d ′)kF (z1, z2) (2.20)
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for all γ = (
a b
c d

) ∈ �. If F is holomorphic on H2, it is called a holomorphic Hilbert
modular form. Then, by the Koecher principle, F is automatically holomorphic at the
cusps. We denote the vector space of holomorphic Hilbert modular forms of weight
k (with respect to � and trivial character) by Mk(�). A holomorphic Hilbert modular
form F has a Fourier expansion at the cusp ∞ of the form

F (z1, z2) = a0 +
∑
ν∈t
ν�0

aν e(νz1 + ν ′z2), (2.21)

and it has analogous expansions at the other cusps. The sum runs through all totally
positive ν in a suitable Z-module t ⊂ K of rank 2. For instance, if � = �(OK ⊕ a),
then t is equal to ad−1. Any Hilbert modular form is the quotient of two holomorphic
forms. We say that a Hilbert modular form has rational Fourier coefficients, if it is the
quotient of two holomorphic Hilbert modular forms with rational Fourier coefficients.

Meromorphic (holomorphic) modular forms of weight k can be interpreted as
rational (global) sections of the sheaf Mk(�) of modular forms. If we write p : H2 →
�\H2 for the canonical projection, then the sections over an open subset U ⊂ �\H2

are holomorphic functions on p−1(U ), which satisfy the transformation law (2.20).
This defines a coherent analytic sheaf on �\H2, which is actually algebraic. By the
Koecher principle, it extends to an algebraic sheaf on X(�). By the theory of Baily
and Borel, there is a positive integer n� such that Mk(�) is a line bundle if n�|k,
and

X(�) ∼= Proj
( ⊕
k≥0, n� |k

Mk(�)
)

(see [G, p. 44], [C, p. 549]). The line bundle of modular forms of weight k (divisible
by n�) on X̃(�) is defined as the pullback π∗Mk(�). By abuse of notation, we also
denote it by Mk(�). In the same way, if F is a Hilbert modular form of weight k, we
simply write F for the section π∗(F ) on X̃. The divisor div(F ) of F decomposes into

div(F ) = div(F )′ +
∑
j

njEj .

Here, div(F )′ denotes the strict transform of the divisor of the modular form F on
X(�), and Ej are the irreducible components of the exceptional divisor D� . The
multiplicities nj are determined by the orthogonality relations

div(F ) ·Ej = 0.

Definition 2.4
If F ∈ Mk(�)(U ) is a rational section over an open subset U ⊂ �\H2, we define its
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Petersson metric by

‖F (z1, z2)‖2
Pet = |F (z1, z2)|2(16π2y1y2)k.

This defines a hermitian metric on the line bundle of modular forms of weight k on
�\H2. We now study how it extends to X̃(�).

PROPOSITION 2.5
The Petersson metric on the line bundle Mk(�) of modular forms on X̃(�) is a pre-log
singular hermitian metric (with respect to D�).

Proof
We have to verify the conditions of Definition 1.20 locally for the points of D� . Here,
we consider only the points above the cusps ofX(�). The corresponding assertion for
the elliptic fixed points (if there are any) is left to the reader.

Let κ be a cusp, and let a ∈ X̃(�) with π(a) = κ . Moreover, letF be a trivializing
section of Mk(�) over a small neighborhood of a. We have to show that log ‖F‖Pet

satisfies the growth conditions of Definition 1.3. Without loss of generality, we may
assume that κ = ∞ and that π looks locally near a as in (2.9). It suffices to show that
π∗ log(y1y2) is a pre-log-log form near a.

That π∗ log(y1y2) and ∂∂̄π∗ log(y1y2) have log-log growth along D� follows
from (2.16) and (2.17) in the proof of Lemma 2.3. Using the notation of Lemma 2.3,
we see that

∂̄π∗ log(y1y2) = 1

g1(q1, q2)

(
µ1

dq̄1

q̄1
+ µ2

dq̄2

q̄2
− 4π∂̄�H1

)
+ 1

g2(q1, q2)

(
µ′

1

dq̄1

q̄1
+ µ′

2

dq̄2

q̄2
− 4π∂̄�H2

)
.

Since H is holomorphic, we may infer that ∂̄π∗ log(y1y2) has log-log growth along
D� . Analogously, we see that ∂π∗ log(y1y2) has log-log growth. �

The first Chern form c1(Mk(�), ‖ · ‖Pet) of the line bundle Mk(�) equipped with the
Petersson metric is given by

c1

(
Mk(�), ‖ · ‖Pet

) = 2πik · ω. (2.22)

Definition 2.6
If F is a Hilbert modular form for �, then we denote the Green object for div(F ) by

g(F ) = (2∂∂̄ log‖F‖Pet,− log‖F‖Pet). (2.23)
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Remark 2.7
In view of (2.19), the geometric self-intersection number Mk(�)2 of the line bundle
of modular forms of weight k is equal to k2 [�K : �] ζK (−1).

2.3. Green functions for Hirzebruch-Zagier divisors
From now on, we assume that the discriminant D of the real quadratic field K is a
prime. This implies that the fundamental unit ε0 has norm −1.

We consider the rational quadratic space V of signature (2, 2) of matrices A =(
a ν
ν ′ b

)
with a, b ∈ Q and ν ∈ K , with the quadratic form q(A) = det(A). For a

fractional ideal a of K , we consider the lattices

L(a) = { (
a ν
ν ′ b

)
; a ∈ N(a)Z, b ∈ Z, and ν ∈ a

}
, (2.24)

L′(a) = { (
a ν
ν ′ b

)
; a ∈ N(a)Z, b ∈ Z, and ν ∈ ad−1

}
. (2.25)

Notice that the dual of L(a) is (1/N(a))L′(a). The group SL2(K) acts on V by γ.A =
γAγ ′t for γ ∈ SL2(K). Under this action,�(OK⊕a−1) preserves the latticesL(a) and
L′(a). In particular, one obtains an injective homomorphism �(OK ⊕ a−1)/{±1} →
O(L(a)) into the orthogonal group of L(a).

Let m be a positive integer. Recall that the subset⋃
A=

(
a ν

ν′ b

)
∈L′(a)

det(A)=mN(a)/D

{
(z1, z2) ∈ H2; az1z2 + νz1 + ν ′z2 + b = 0

}
(2.26)

defines a �(OK ⊕ a)-invariant divisor Ta(m) on H2, the Hirzebruch-Zagier divisor of
discriminantm. It is the inverse image of an algebraic divisor on the quotient �(OK ⊕
a)\H2, which is also denoted by Ta(m). Here, we understand that all irreducible
components of Ta(m) are assigned the multiplicity 1. (There is no ramification in
codimension 1.) The divisor Ta(m) is nonzero if and only if χD(m) �= −1. If m is
square free, then since D is prime, Ta(m) is irreducible (see [HZ], [G, Chapter 5]).
Moreover, Ta(m) and Ta(n) intersect properly if and only if mn is not a square.

Since there is only one genus, there are a fractional ideal c and a totally positive
λ ∈ K such that a = λc2. If M denotes a matrix in

(
c−1 c−1

c c

) ∩ SL2(K), then( (
λ−1 0
0 1

)
M
)−t

·L(OK ) = 1

N(c)
L(a),

( (
λ−1 0
0 1

)
M
)−t

·L′(OK ) = 1

N(c)
L′(a).

This implies that the isomorphism (2.5) takes TOK (m) to Ta(m).
We are mainly interested in the case of a = OK . To lighten the notation, we briefly

write L = L(OK ), L′ = L′(OK ), and T (m) = TOK (m).
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Definition 2.8
Let m be a positive integer with χD(m) �= −1. If m is the norm of an ideal in OK ,
then T (m) is a noncompact divisor on �K\H2, birational to a linear combination of
modular curves. In this case, we say that T (m) is isotropic. If m is not the norm
of an ideal in OK , then T (m) is a compact divisor on �K\H2, birational to a linear
combination of Shimura curves. In that case, we say that T (m) is anisotropic.

These notions are compatible with the description of �K\H2 and the divisors T (m) as
arithmetic quotients corresponding to orthogonal groups of type O(2, 2) and O(2, 1),
respectively (see Section 4.2). Here, isotropic (anisotropic) Hirzebruch-Zagier divisors
are given by isotropic (anisotropic) rational quadratic spaces of signature (2, 1).

In [Br1, Section 3], a certain Green function�m(z1, z2, s) was constructed which
is associated to the divisor T (m). We briefly recall some of its properties. For s ∈ C
with �(s) > 1, the function �m(z1, z2, s) is defined by

�m(z1, z2, s) =
∑
a,b∈Z

λ∈d−1

ab−N(λ)=m/D

Qs−1

(
1 + |az1z2 + λz1 + λ′z2 + b|2

2y1y2m/D

)
. (2.27)

Here, Qs−1(t) is the Legendre function of the second kind (see [AS, Section 8]),
defined by

Qs−1(t) =
∫ ∞

0
(t +

√
t2 − 1 cosh u)−s du (t > 1, �(s) > 0). (2.28)

The sum in (2.27) converges normally for �(s) > 1 and (z1, z2) ∈ H2 − T (m). This
implies that �m(z1, z2, s) is invariant under �K . It has a Fourier expansion

�m(z1, z2, s) = u0(y1, y2, s) +
∑
ν∈d−1

ν �=0

uν(y1, y2, s) e(νx1 + ν ′x2), (2.29)

which converges for y1y2 > m/D and (z1, z2) /∈ T (m). As a function in s, the
latter sum over ν �= 0 converges normally for �(s) > 3/4. The constant term is
a meromorphic function in s with a simple pole at s = 1. A refinement of these
facts can be used to show that �m(z1, z2, s) has a meromorphic continuation in s to
{s ∈ C; �(s) > 3/4}. Up to a simple pole in s = 1, it is holomorphic in this domain
(see [Br1, Theorem 1]).

We denote by

�1 = y2
1

( ∂2

∂x2
1

+ ∂2

∂y2
1

)
, �2 = y2

2

( ∂2

∂x2
2

+ ∂2

∂y2
2

)
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the (SL2(R) × SL2(R))-invariant Laplace operators on H2. The differential equation
for Qs−1(t) implies that

�j�m(z1, z2, s) = s(s − 1)�m(z1, z2, s).

Because Qs−1(t) = −(1/2) log(t − 1) + O(1) for t → 1, the function
�m(z1, z2, s) has a logarithmic singularity along T (m) of type − log|f |2, where
f is a local equation.

The Fourier expansion (2.29) of�m(z1, z2, s) was determined in [Br1]. It follows
from [Br1, identity (19), Lemmas 1, 2] that the constant term is given by

u0(y1, y2, s) = 2π

(2s − 1)

∑
λ∈d−1

N(λ)=−m/D

max(|λy1|, |λ′y2|)1−s min(|λy1|, |λ′y2|)s

+ π�(s − 1/2)2

√
D�(2s)

(4m

D

)s
(y1y2)1−s

∞∑
a=1

Ga(m, 0)a−2s . (2.30)

Here, Ga(m, ν) is the finite exponential sum

Ga(m, ν) =
∑

λ∈d−1/aOK
N(λ)≡−m/D (aZ)

e
( tr(νλ)

a

)
. (2.31)

Notice that our Ga(m, ν) equals Ga(−m, ν) in the notation of [Z1]. For the purposes
of the present article, we need to compute u0(y1, y2, s) more explicitly.

We define a generalized divisor sum of m by

σm(s) = m(1−s)/2 ∑
d|m

ds
(
χD(d) + χD

(m
d

))
. (2.32)

It satisfies the functional equation σm(s) = σm(−s). If p is a prime and n ∈ Z, then
we denote by vp(n) the additive p-adic valuation of n.

LEMMA 2.9

(i) If m = m0D
δ with (m0,D) = 1, then σm(s) has the Euler product expansion

σm(s) = m(1−s)/2(1 + χD(m0)Dδs
) ∏
p prime
p|m0

1 − χD(p)vp(m0)+1p(vp(m0)+1)s

1 − χD(p)ps
.

(ii) If m is square free and coprime to D, then

−2
σ ′
m(−1)

σm(−1)
=

∑
p prime
p|m

p − χD(p)

p + χD(p)
log(p). (2.33)
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Proof
The first formula follows from the multiplicativity of σm(s). The second can be
obtained from the Euler product expansion in a straightforward way. �

LEMMA 2.10
We have

ms/2
∞∑
a=1

Ga(m, 0)a−s = ζ (s − 1)

L(s, χD)
σm(1 − s).

Proof
The exponential sum Ga(m, 0) is equal to

Ga(m, 0) = #
{
λ ∈ OK (mod ad); N(λ) ≡ −m (mod aD)

}
= D−1#

{
λ ∈ OK (mod aD); N(λ) ≡ −m (mod aD)

}
= D−1NaD(−m)

with

Nb(n) = #
{
λ ∈ OK/bOK ; N(λ) = n (mod b)

}
,

as in [Z1, p. 27]. It is easily seen that Nb(n) is multiplicative in b. Hence it suffices
to determine Nb(n) for prime powers b = pr . We get the following Euler product
expansion:

∞∑
a=1

Ga(m, 0)a−s = 1

D

∞∑
a=1

NaD(−m)a−s

= 1

D

( ∞∑
r=0

ND1+r (−m)D−rs
) ∏
p prime
p �=D

( ∞∑
r=0

Npr (−m)p−rs
)
. (2.34)

The function Npr (n) can be determined explicitly by means of [Z1, Lemma 3].
By a straightforward computation, we find that the local Euler factors are equal to

∞∑
r=0

ND1+r (−m)D−rs = D

1 −D1−s
(
1 + χD(m0)Dδ(1−s)),

∞∑
r=0

Npr (−m)p−rs = 1 − χD(p)p−s

1 − p1−s · 1 − χD(p)vp(m0)+1p(vp(m0)+1)(1−s)

1 − χD(p)p1−s

for p prime with (p,D) = 1. Inserting this into (2.34), we obtain the assertion by
means of Lemma 2.9. �
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Hence the second term in (2.30) is equal to

π�(s − 1/2)2

√
D�(2s)

( 4

D

)s
(y1y2)1−s ζ (2s − 1)

L(2s, χD)
σm(2s − 1). (2.35)

By virtue of the functional equation

L(2s, χD) =
( π
D

)2s−1/2�(1/2 − s)

�(s)
L(1 − 2s, χD),

we may rewrite (2.35) in the form

4sπ3/2−2s
(y1y2

D

)1−s �(s − 1/2)2�(s)

�(2s)�(1/2 − s)

ζ (2s − 1)

L(1 − 2s, χD)
σm(2s − 1).

Using the Legendre duplication formula, �(s − 1/2)�(s) = √
π22−2s�(2s − 1), we

finally obtain, for the second term in (2.30),

−2
(π2y1y2

D

)1−s �(s − 1/2)

�(3/2 − s)

ζ (2s − 1)

L(1 − 2s, χD)
σm(2s − 1). (2.36)

In the following, we compute the first summand in (2.30). The subset

S(m) =
⋃
λ∈d−1

N(λ)=−m/D

{
(z1, z2) ∈ H2; λy1 + λ′y2 = 0

}
(2.37)

of H2 is a union of hyperplanes of real codimension 1. It is invariant under the stabilizer
of the cusp ∞. Following the notation of [B1], we call the connected components of
H2 − S(m) the Weyl chambers of discriminant m. For a subset W ′ ⊂ H2 and λ ∈ K ,
we write (λ,W ′) > 0 if λy1 + λ′y2 > 0 for all (z1, z2) ∈ W ′.

Let W ⊂ H2 be a fixed Weyl chamber of discriminant m, and let W ′ ⊂ W

be a nonempty subset. There are only finitely many λ ∈ d−1 such that λ > 0,
N(λ) = −m/D, and

(λ,W ′) < 0, (ε2
0λ,W

′) > 0.

Denote the set of these λ by R(W ′, m). It is easily seen that R(W ′, m) = R(W,m)
for all nonempty subsets W ′ ⊂ W . By Dirichlet’s unit theorem, the set of all λ ∈ d−1

with N(λ) = −m/D is given by{ ± λε2n
0 ; λ ∈ R(W,m), n ∈ Z

}
.

For (z1, z2) ∈ W , λ ∈ R(W,m), and n ∈ Z, we have

max(|λε2n
0 y1|, |λ′ε′

0
2n
y2|) =

{
λε2n

0 y1 if n > 0,

−λ′ε′
0

2n
y2 if n ≤ 0.
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On W , we may rewrite the first summand in (2.30) as

4π

2s − 1

∑
λ∈R(W,m)

∑
n∈Z

max(|λε2n
0 y1|, |λ′ε′

0
2n
y2|)1−s min(|λε2n

0 y1|, |λ′ε′
0

2n
y2|)s

= 4π

2s − 1

∑
λ∈R(W,m)

(∑
n≥1

(λε2n
0 y1)1−s(−λ′ε′

0
2n
y2)s+

∑
n≥0

(−λ′ε′
0
−2n
y2)1−s(λε−2n

0 y1)s
)

= 4π

2s − 1

∑
λ∈R(W,m)

(
(λy1)1−s(−λ′y2)s

ε2−4s
0

1 − ε2−4s
0

+(−λ′y2)1−s(λy1)s
1

1 − ε2−4s
0

)
.

We summarize the above computations in the following theorem.

THEOREM 2.11
Let W ⊂ H2 be a Weyl chamber of discriminant m. For (z1, z2) ∈ W , the constant
term of the Fourier expansion of �m(z1, z2, s) is given by

u0(y1, y2, s) = 2ζ (2s − 1)ϕm(s)
(π2y1y2

D

)1−s

+ 4π

2s − 1
· 1

1 − ε2−4s
0

∑
λ∈R(W,m)

(
ε2−4s

0 (λy1)1−s(−λ′y2)s

+ (−λ′y2)1−s(λy1)s
)
, (2.38)

where

ϕm(s) = −�(s − 1/2)

�(3/2 − s)

1

L(1 − 2s, χD)
σm(2s − 1). (2.39)

As a function in s, the Green function �m(z1, z2, s) has a simple pole at s = 1
coming from the factor ζ (2s − 1) in the first term of u0(y1, y2, s). However, it can be
regularized at this place by defining�m(z1, z2) to be the constant term of the Laurent
expansion of �m(z1, z2, s) at s = 1 (see [Br1, p. 66]).

Using the Laurent expansion ζ (2s − 1) = (1/2)(s − 1)−1 − �′(1) + O(s − 1),
we get at s = 1 the expansion

2ζ (2s − 1)ϕm(s)
(π2y1y2

D

)1−s
= ϕm(1)(s − 1)−1 − ϕm(1) log(16π2y1y2)

+ Lm +O(s − 1), (2.40)

where

Lm = ϕ′
m(1) − ϕm(1)

(
2�′(1) − log(16D)

)
. (2.41)
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By means of the Laurent expansion of�(s), one infers thatLm is more explicitly given
by

Lm = ϕm(1)
(

2
L′(−1, χD)

L(−1, χD)
− 2

σ ′
m(−1)

σm(−1)
+ log(D)

)
. (2.42)

In later applications, it is convenient to write the regularized function �m(z1, z2)
as a limit. In view of (2.40), we find that

�m(z1, z2) = lim
s→1

(
�m(z1, z2, s) − ϕm(1)

s − 1

)
. (2.43)

The Fourier expansion of�m(z1, z2) can be deduced from (2.29) by virtue of Theorem
2.11 and (2.40). It is given by

�m(z1, z2) = lim
s→1

(
u0(y1, y2, s) − ϕm(1)

s − 1

)
+

∑
ν∈d−1

ν �=0

uν(y1, y2, 1) e(νx1 + ν ′x2).

On a Weyl chamber W of discriminant m, we get

�m(z1, z2) = Lm − ϕm(1) log(16π2y1y2) + 4π(ρWy1 + ρ ′
Wy2) (2.44)

+
∑
ν∈d−1

ν �=0

uν(y1, y2, 1) e(νx1 + ν ′x2),

where

ρW = ε0

tr(ε0)

∑
λ∈R(W,m)

λ (2.45)

is the so-called Weyl vector associated with W and m.

Remark 2.12
If we compare (2.44) with the formula given in [Br1, p. 67], we see that the quantities
L and q0(m) in [Br1] are given byL = Lm−ϕm(1) log(16π2) and q0(m) = −2ϕm(1).
Moreover, the Weyl vector ρW in [Br1] is equal to (2.45).

In order to get a Green function with a “good” arithmetic normalization, which is
compatible with our normalization of the Petersson metric, we have to renormalize as
follows.

Definition 2.13
We define the normalized Green function for the divisor T (m) by

Gm(z1, z2) = 1

2

(
�m(z1, z2) − Lm

)
.
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According to (2.44) and [Br1, Section 3.3], we have

Gm(z1, z2) = −ϕm(1)

2
log(16π2y1y2)

− log
∣∣∣e(ρWz1 + ρ ′

Wz2)
∏
ν∈d−1

(ν,W )>0
N(ν)=−m/D

(
1 − e(νz1 + ν ′z2)

)∣∣∣ + o(z1, z2).

(2.46)

Here,W is a Weyl chamber of discriminantm and ρW the corresponding Weyl vector.
Moreover, o(z1, z2) is a �K,∞-invariant function on H2, which defines a smooth
function in the neighborhood Vm/D of ∞ and vanishes at ∞. This describes the
singularities of Gm(z1, z2) near the cusp ∞. Analogous expansions hold at the other
cusps.

We now considerGm(z1, z2) as a singular function on X̃(�). For this purpose, we
also write T (m) for the closure of T (m) ⊂ � \H2 in the Baily-Borel compactification
X(�).

LEMMA 2.14
The divisor T (m) on X(�) is a Q-Cartier divisor.

Proof
We show that there exists an integer n such that nT (m) is given locally as the divisor of
a holomorphic function. This is clear for the restriction of T (m) to�\H2 because there
are only finitely many singular points that are finite quotient singularities. Hence it
suffices to consider T (m) locally at the cusps where trivializing holomorphic functions
can be constructed explicitly using local Borcherds products (see [BF]). For instance,
for the cusp ∞, the function

�∞
m (z1, z2) = e(ρWz1 + ρ ′

Wz2)
∏
ν∈d−1

(ν,W )>0
N(ν)=−m/D

(
1 − e(νz1 + ν ′z2)

)

is a local Borcherds product in the sense of [BF]. There exists a positive integer n
such that nρW ∈ d−1. (By (2.45), one can take n = tr(ε0).) Then �∞

m (z1, z2)n defines
a holomorphic function in a small neighborhood of ∞, whose divisor equals the
restriction of nT (m). �

Remark 2.15
This lemma allows us to define the pullback π∗T (m) as a Q-Cartier divisor on X̃(�).
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Remark 2.16
Observe that π∗T (m) may contain components of the exceptional divisor D� .
This is actually always the case if T (m) is isotropic. If X̃(�K ) is the Hirzebruch
desingularization of X(�K ), then π∗T (m) is equal to the divisor T cm considered by
Hirzebruch and Zagier in [HZ].

PROPOSITION 2.17
If � ≤ �K is a subgroup of finite index, then

g(m) = (−2∂∂̄π∗Gm, π
∗Gm) (2.47)

defines a pre-log-log Green object for the Q-divisor π∗(T (m)) on X̃(�).

Proof
Let n be a positive integer such that nT (m) is a Cartier divisor. We define a metric on
the line bundle O

(
π∗(nT (m))

)
on X̃(�) by giving the canonical section 1O(π∗(nT (m)))

the norm

‖1O(π∗(nT (m)))‖ = exp(−nπ∗Gm).

By [Br1, Section 3.3] and formula (38), this metric is smooth outside D� . We now
show that it is a pre-log singular hermitian metric in the sense of Definition 1.20.

We consider the growth of this metric locally near points a ∈ D� . Here, we
carry out only the case where a lies above the cusp ∞. The other cusps are treated
analogously, and the easier case where a lies above an elliptic fixed point is left to the
reader.

So, let a ∈ π∗(∞), and let U ⊂ X̃(�) be a small open neighborhood of a such
thatπ(U ) ⊂ VC withC > m/D, as in the discussion preceding Lemma 2.1. In view of
the proof of Lemma 2.14, the function π∗(�∞

m )n has precisely the divisor π∗(nT (m))
on U . Thus s = 1O(π∗(nT (m)))/π

∗(�∞
m )n is a trivializing section for O

(
π∗(nT (m))

)
on

U . By means of (2.46), we find that

log‖s‖ = n
ϕm(1)

2
π∗( log(y1y2)

) + smooth function.

In the proof of Proposition 2.5, we already saw that π∗(log(y1y2)) is a pre-log-log
form on U . Hence the assertion follows from Lemma 1.21. �

Notation 2.18
To lighten the notation, we frequently drop the π∗. We write

g(m) = (ωm,Gm) = (−2∂∂̄Gm,Gm) (2.48)

and also T (m) instead of π∗T (m).
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Remark 2.19
The Chern form ωm is computed and studied in [Br1, Theorem 7]. It turns out that

ωm = 2πiϕm(1)ω + f (ε0z1, ε
′
0z̄2) dz1 ∧ dz̄2 + f (ε0z2, ε

′
0z̄1) dz2 ∧ dz̄1. (2.49)

Here, f (z1, z2) is a certain Hilbert cusp form of weight 2 for �K , essentially the
Doi-Naganuma lift of themth Poincaré series in S+

2 (D,χD). Green functions likeGm

are investigated in the context of the Weil representation in [BFu] and in the context
of the theory of spherical functions on real Lie groups in [OT].

3. Star products on Hilbert modular surfaces
Here, we compute star products on Hilbert modular surfaces related to Hirzebruch-
Zagier divisors. Throughout, let � ≤ �K be a subgroup of finite index.

3.1. Star products for Hirzebruch-Zagier divisors
In general, the product of a mixed growth form as Gm and a pre-log-log form as
ω2 need not be integrable. Therefore the following lemma, which is crucial for
Theorem 3.3, is special for Hilbert modular surfaces. It seems to be related to the
Koecher principle.

LEMMA 3.1
The Green function Gm(z1, z2) is in L1(X̃(�), ω2).

Proof
By possibly replacing � by a torsion-free subgroup of finite index, we may assume
that �\H2 is regular. Since X̃(�) is compact, it suffices to show that Gm is locally
integrable in a neighborhood of any point of X̃(�). Outside the exceptional divisor
D� , this easily follows from the fact that Gm has only logarithmic singularities along
T (m) on �\H2. Hence we only have to show local integrability at D� . For simplicity,
here, we treat the points only above the cusp ∞; for the other cusps, one can argue
analogously.

So, let a ∈ π∗(∞) be a point above ∞. Assuming the notation of the discussion
preceding Lemma 2.1, it suffices to prove that∫

E(δ)2

|π∗(Gm)|π∗(ω2) (3.1)

converges for some δ > 0.
By possibly replacing X̃(�) by a desingularization of X̃(�) with respect to T (m),

we may assume that π∗(∞), π∗T (m), and π∗(∞)∪π∗T (m) are divisors with normal
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crossings supported on the coordinate axes of E2. By virtue of (2.46), we have

π∗(Gm) ≺ −ϕm(1)

2
π∗( log(y1y2)

) − log|π∗(�∞
m )|

on E(δ)2. In view of the proof of Lemma 2.14, the function π∗(�∞
m ) is holomorphic

on E2 with divisor π∗T (m). Consequently, if we introduce polar coordinates

qj = rj e
iρj (0 ≤ rj < 1, 0 ≤ ρj < 2π )

on E2, we obtain by means of (2.16),

π∗(Gm) ≺ log(r1r2). (3.2)

We now estimate π∗(ω2). As H (q1, q2) is bounded near (0, 0), it follows from
(2.15) that there is a small δ > 0 such that

|µ1 log r1 + µ2 log r2| · |µ′
1 log r1 + µ′

2 log r2|
≺ π∗(y1y2) ≺ |µ1 log r1 + µ2 log r2| · |µ′

1 log r1 + µ′
2 log r2|

on E(δ)2. In view of Lemma 2.1, the complex Jacobi matrix of π at (q1, q2) is given
by

J (π, q1, q2) = 1

2πi

(
µ1/q1 µ2/q2

µ′
1/q1 µ

′
2/q2

)
+ J (H, q1, q2),

where J (H, q1, q2) is smooth.
If µ1 and µ2 are both totally positive, we may infer that all the components of

J (π, q1, q2) satisfy J (π, q1, q2)i,j ≺ 1/(r1r2). Consequently, on E(δ)2, we have

π∗(ω2) = π∗
( 1

8π2

dx1 dy1

y2
1

dx2 dy2

y2
2

)
≺ dr1 dr2 dρ1 dρ2

r1r2(µ1 log r1 + µ2 log r2)2(µ′
1 log r1 + µ′

2 log r2)2
. (3.3)

Combining the estimates (3.2) and (3.3), we see that∫
E(δ)2

|π∗(Gm)|π∗(ω2) ≺
∫

E(δ)2

| log(r1r2)| dr1 dr2 dρ1 dρ2

r1r2(µ1 log r1 + µ2 log r2)2(µ′
1 log r1 + µ′

2 log r2)2
.

In order to prove the convergence of the latter integral, it suffices to show that∫ δ

0

∫ δ

0

| log r1| dr1 dr2

r1r2(µ1 log r1 + µ2 log r2)2(µ′
1 log r1 + µ′

2 log r2)2
(3.4)
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converges. If 0 ≤ ε ≤ 1, then the inequality between geometric and arithmetic mean
implies that A1+εB1−ε ≺ (A+ B)2 uniformly for A,B > 0. Taking into account the
fact that µ1 and µ2 are totally positive, we derive that

(3.4) ≺
∫ δ

0

∫ δ

0

| log r1| dr1 dr2

r1r2| log r1|2+2ε| log r2|2−2ε
=
∫ δ

0

dr1

r1| log r1|1+2ε

∫ δ

0

dr2

r2| log r2|2−2ε
.

Since the latter integrals are clearly finite for 0 < ε < 1/2, we obtain the assertion.
If µ1 and µ2 are not both totally positive, then without any restriction we may

assume that µ1 � 0 and µ2 = 0. Then (log r1)2 ≺ π∗(y1y2) ≺ (log r1)2 and
J (π, q1, q2) ≺ 1/r1, and the convergence of (3.1) is immediate. �

LEMMA 3.2
Let T (m1), T (m2), T (m3) be Hirzebruch-Zagier divisors, and let κ ∈ X(�) be a
cusp or an elliptic fixed point. If κ is a cusp, then assume, in addition, that T (m2) is
anisotropic. If Bε(κ) denotes an ε-neighborhood of π∗(κ) ⊂ X̃(�), then

lim
ε→0

∫
∂(Bε(κ))

Gm1 (z1, z2) dcGm2 (z1, z2) ∧ ωm3 = 0, (3.5)

lim
ε→0

∫
∂(Bε(κ))

Gm2 (z1, z2) dcGm1 (z1, z2) ∧ ωm3 = 0. (3.6)

Proof
We prove the assertion only in the case where κ is a cusp, leaving the other easier case
to the reader.

By possibly interchanging X̃(�) with an embedded desingularization of T (m1)
in X̃(�), we may assume that π∗(∞), π∗T (m1), and π∗(∞) ∪ π∗T (m1) are divisors
with normal crossings. Since X̃(�) is compact, it suffices to show that (3.5) and
(3.6) hold locally. We do this only for the cusp ∞; at the other cusps, one can argue
analogously. Let a ∈ π∗(∞) be a point on the exceptional divisor over ∞, and let
U ⊂ X̃(�) be a small open neighborhood of a such that (π∗T (m2)) ∩U = ∅. After a
biholomorphic change of coordinates, we may assume that U = E2, a = (0, 0), and
π∗T (m1) = div(qα1 q

β

2 ) on U . We assume the notation of the proof of Lemma 3.1.
Without loss of generality, it suffices to show that for some 1 ≥ δ > 0,

lim
ε→0

∫
E(δ)×∂E(ε)

|π∗(Gm1 ) dcπ∗(Gm2 ) ∧ π∗(ωm3 )| = 0, (3.7)

lim
ε→0

∫
E(δ)×∂E(ε)

|π∗(Gm2 ) dcπ∗(Gm1 ) ∧ π∗(ωm3 )| = 0. (3.8)
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We use the local expansions of Gm1 and Gm2 at the cusp ∞ given in (2.46). On E2,
we have

π∗(Gm1 ) = −ϕm1 (1)

2
π∗( log(y1y2)

) − log|qα1 qβ2 | + smooth function,

π∗(Gm2 ) = −ϕm2 (1)

2
π∗( log(y1y2)

) + smooth function.

Here, we have used the fact that T (m2) is anisotropic, which implies that �∞
m2

= 1.
Furthermore, by means of (2.49), we find

π∗(ωm3 ) = 2πiϕm3 (1)π∗(ω) + smooth differential form.

We now estimate the quantities occurring in the above boundary integrals in polar
coordinates. We recall from (2.16) that

π∗( log(y1y2)
) = log

(
− 1

4π
g1(q1, q2)

)
+ log

(
− 1

4π
g2(q1, q2)

)
,

where

g1(q1, q2) = µ1 log|q1|2 + µ2 log|q2|2 − 4π�H1(q1, q2),

g2(q1, q2) = µ′
1 log|q1|2 + µ′

2 log|q2|2 − 4π�H2(q1, q2).

There is a small 1 > δ > 0 such that

µ1 log r1 + µ2 log r2 ≺ gj (q1, q2) ≺ µ1 log r1 + µ2 log r2

for j = 1, 2 on E(δ2). It follows that

π∗(Gm1 ) ≺ log r1 + log r2,

π∗(Gm2 ) ≺ log| log r1| + log| log r2|.

Moreover,

dcπ∗(Gm2 ) ≺ r1 dρ1 + r2 dρ2 + dr1 + dr2 + dcπ∗( log(y1y2)
)
,

≺ r1 dρ1 + r2 dρ2 + dr1 + dr2 + dcg1

g1
+ dcg2

g2

≺ r1 dρ1 + r2 dρ2 + dr1 + dr2 + µ1 dρ1 + µ2 dρ2 + dr1 + dr2

|µ1 log r1 + µ2 log r2| .
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Here, “≺” is understood componentwise in the present coordinates. In the same way,
we get

dcπ∗(Gm1 ) ≺ dρ1 + dρ2 + dr1 + dr2 + dcπ∗( log(y1y2)
)
,

≺ dρ1 + dρ2 + dr1 + dr2 + µ1 dρ1 + µ2 dρ2 + dr1 + dr2

|µ1 log r1 + µ2 log r2| .

Finally, we find

π∗(ω) = − ddcπ∗( log(y1y2)
)

= dg1 dcg1

g2
1

+ dg2 dcg2

g2
2

+ 4π ddc�H1

g1
+ 4π ddc�H2

g2

≺
(
µ1

dr1
r1

+ µ2
dr2
r2

+ r1 dρ1 + r2 dρ2

)
(µ1 dρ1 + µ2 dρ2 + dr1 + dr2)

(µ1 log r1 + µ2 log r2)2

+ (r1 dρ1 + r2 dρ2 + dr1 + dr2)2

|µ1 log r1 + µ2 log r2| .

We now estimate the integrals in (3.7) and (3.8). We consider only the case
where both µ1 and µ2 are nonzero, leaving the easier case where one of them van-
ishes to the reader. Only the dr1 dρ1 dρ2-component of the integrand gives a nonzero
contribution. After a calculation, we find that in (3.7), this component is bounded
by

dr1 dρ1 dρ2

r1| log r1 + log r2|2 + r1 + r2

| log r1 + log r2| dr1 dρ1 dρ2.

In (3.8), it is bounded by the same quantity times log| log r1| + log| log r2|. In both
cases, this implies that the integrals are O(1/

√| log(ε)|) as ε → 0. �

THEOREM 3.3
Let T (m1), T (m2), and T (m3) be Hirzebruch-Zagier divisors such that all possible
intersections on X(�) among them are proper and such that T (m2) is anisotropic.
Then

1

(2πi)2

∫
X̃(�)

g(m1) ∗ g(m2) ∗ g(m3)

= 1

(2πi)2

∫
�\H2

Gm1 ωm2 ∧ ωm3 + 1

2πi

∫
T (m1)′

g(m2) ∗ g(m3). (3.9)

Here, T (m1)′ denotes the strict transform of the divisor T (m1) on X̃(�).
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Proof
Let D1 be the sum of the connected components of D� , which have nonempty in-
tersection with T (m1) on X̃(�). To ease the notation, we put g2,3 = g(m2) ∗ g(m3).
Since T (m2) and T (m3) may intersect at elliptic fixed points, in general they do not
intersect properly on X̃(�). Therefore g2,3 = (−2∂∂̄g2,3, g2,3) is a weak pre-log-log
Green object for the zero cycle T (m2) · T (m3) with support T (m2) ∩ T (m3), which
has empty intersection with D1. Thus the assumptions of Theorem 1.14 are satisfied.
Consequently,

1

(2πi)2

∫
X̃(�)

g(m1) ∗ g2,3

= lim
ε→0

( 1

(2πi)2

∫
X̃(�)\Bε(D� )

Gm1 ∧ −2∂∂̄g2,3

− 2

2πi

∫
∂(Bε(D1))

g2,3 ∧ dcGm1 −Gm1 ∧ dcg2,3

)
+ 1

2πi

∫
T (m1)\(T (m1)∩D1)

g2,3.

Since −2∂∂̄g2,3 = ωm2 ∧ωm3 and ωm2 ∧ωm3 ≺ ω2, we obtain by Lemma 3.1, for the
first integral in question,

lim
ε→0

( ∫
X̃(�)\Bε(D� )

Gm1 ∧ −2∂∂̄g2,3

)
=
∫
�\H2

Gm1ωm2 ∧ ωm2 . (3.10)

We now show that the integrals along the boundary vanish in the limit. Recall that
by (1.6), a representative of g2,3 is given by the pair(

ωm2 ∧ ωm3, σ3,2Gm2 · ωm3 − 2∂∂̄(σ2,3Gm2 ) ·Gm3

)
;

here, σ2,3 := σT (m2),T (m3) and σ3,2 form a partition of unity as in (1.5). Because T (m2)∩
T (m3) ∩Ej = ∅ for all irreducible components Ej of D1, we may choose σ2,3 so that

g2,3|∂(Bε (Ej )) =
{
Gm3ωm2 if T (m2) ∩ Ej �= ∅,

Gm2ωm3 if T (m2) ∩ Ej = ∅.

In particular, by our assumption on T (m2), if Ej lies above a cusp, then the second
case applies. Because ωmj ≺ ω for j = 2, 3, we find by Lemma 3.2,

lim
ε→0

( ∫
∂(Bε(D1))

g2,3 ∧ dcGm1 −Gm1 ∧ dcg2,3

)
= 0. (3.11)



44 BRUINIER, BURGOS GIL, and KÜHN

Finally, since T (m1)′ = T (m1) \ (T (m1) ∩ D1), we observe that

1

2πi

∫
T (m1)\(T (m1)∩D1)

g2,3 = 1

2πi

∫
T (m1)′

g(m2) ∗ g(m3). �

Notice that in the above star product, the components of the desingularization of the
divisor T (m1) do not contribute. In other words, this star product is independent of
the choice we made in the desingularization and depends only on the Baily-Borel
compactification X(�).

Remark 3.4
The formula for the star product in Theorem 3.3 agrees with the formula by Gillet and
Soulé for the star product of Green currents when formally applied to the Baily-Borel
compactification X(�) that is a singular space.

Remark 3.5
Since T (m) and g(m) are invariant under the full Hilbert modular group�K , we clearly
have ∫

X̃(�)
g(m1) ∗ g(m2) ∗ g(m3) = [�K : �]

∫
X̃(�K )

g(m1) ∗ g(m2) ∗ g(m3).

3.2. Integrals of Green functions
The purpose of this section is to compute the first integral in (3.9) in the case of
ωm2 = ωm3 = 2πiω. Recall our normalization (2.14) of the invariant Kähler form ω.
In addition, we put

η1 = 1

4π

dx1 dy1

y2
1

, η2 = 1

4π

dx2 dy2

y2
2

.

We consider the quadratic space V and the lattices L = L(OK ), L′ = L′(OK )
defined at the beginning of Section 2.3. We put W = (

0 −1
1 0

)
. The Hilbert modular

group �K acts on L′ by γ.A = γAγ ′t for γ ∈ �K . For every A = (
a ν
ν ′ b

) ∈
L′, the graph {(WAz, z); z ∈ H} defines a divisor in H2 given by the equation
az1z2 + νz1 + ν ′z2 + b = 0. The stabilizer �K,A of A under the action of �K can be
viewed as an arithmetic subgroup of SL2(R) with finite covolume (see [Z1, Section
1], [G, Chapter 5.1]). By reduction theory, the subset

L′
m =

{
A ∈ L′; detA = m

D

}
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of elements with norm m/D decomposes into finitely many �K -orbits. The divisor
T (m) on �K\H2 is given by

T (m) ∼=
⋃

A∈�K\L′
m/{±1}

�K,A\H. (3.12)

Here, {±1} acts on L′
m by scalar multiplication.

We may rewrite �m(z1, z2, s) using this splitting. For A = (
a ν
ν ′ b

) ∈ L′
m, we

define

dA(z1, z2) = 1 + |z1 −WAz2|2
2�(z1)�(WAz2)

= 1 + |az1z2 + νz1 + ν ′z2 + b|2
2y1y2m/D

. (3.13)

If γ ∈ �K , we have

dγ.A(z1, z2) = dA(γ tz1, γ
′t z2).

This follows from the fact that |z1 − z2|2/(2y1y2) is a point-pair invariant; that is, it
depends only on the hyperbolic distance of z1 and z2. Consequently,

�m(z1, z2, s) =
∑
A∈L′

m

Qs−1

(
dA(z1, z2)

) =
∑

A∈�K\L′
m

∑
γ∈�K,A\�K

Qs−1

(
dA(γ z1, γ

′z2)
)
.

(3.14)

PROPOSITION 3.6
The integral ∫

�K\H2

|�m(z1, z2, s)|ω2

converges for all s ∈ C with �(s) > 1.

Proof
According to (3.14), we have the formal identity∫

�K\H2

|�m(z1, z2, s)|ω2 =
∑

A∈�K\L′
m

∫
�K\H2

∑
γ∈�K,A\�K

∣∣Qs−1

(
dA(γ z1, γ

′z2)
) ∣∣ω2

=
∑

A∈�K\L′
m

∫
�K,A\H2

∣∣Qs−1

(
dA(z1, z2)

)∣∣ω2

= 2
∑

A∈�K\L′
m

∫
z2∈�K,A\H

∫
z1∈H

∣∣Qs−1

(
dA(z1, z2)

)∣∣ η1 η2.

(3.15)
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By a standard Fubini-type lemma on integrals over Poincaré series (see, e.g., [Fr3,
Appendix 2, Theorem 7]), the integral on the left-hand side converges (and equals the
right-hand side) if the latter integral on the right-hand side converges. Thus it suffices
to prove that ∫

z2∈�K,A\H

∫
z1∈H

∣∣Qs−1

(
dA(z1, z2)

)∣∣ η1 η2 (3.16)

converges. We notice that the inner integral actually does not depend on z2 and A.
Using the fact that |z1 − z2|2/(2y1y2) is a point-pair invariant and the invariance of
η1, we find that (3.16) is equal to∫

z2∈�K,A\H

∫
z1∈H

∣∣∣Qs−1

(
1 + |z1 − i|2

2�z1�i
)∣∣∣ η1 η2.

This integral is obviously bounded by

vol(�K,A\H)
∫
z1∈H

∣∣∣Qs−1

(
1 + |z1 − i|2

2y1

)∣∣∣ η1.

That the latter integral is finite for �(s) > 1 is a well-known fact (see, e.g., [L, Chapter
14, Section 3]). �

LEMMA 3.7
Let h : H → C be a bounded eigenfunction of the hyperbolic Laplacian �1 with
eigenvalue λ. Then for s ∈ C with �(s) > 1, we have∫

H

Qs−1

(
1 + |z1 − z2|2

2y1y2

)
h(z1) η1 = 1/2

s(s − 1) − λ
h(z2).

Proof
This statement is well known. It can be proved using the Green formula (see, e.g., [I,
Chapter 1.9]; notice the different normalization there). �

THEOREM 3.8
Let f : �K\H2 → C be a bounded eigenfunction of the Laplacian �1 (or �2) with
eigenvalue λ. Then for s ∈ C with �(s) > 1, we have∫

�K\H2

�m(z1, z2, s)f (z1, z2)ω2 = 1

s(s − 1) − λ

∫
T (m)

f (z1, z2)ω.

Proof
Since�m(z1, z2, s) is invariant under (z1, z2) �→ (z2, z1), we may assume that f is an
eigenfunction of �1 with eigenvalue λ.
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First, we notice that the integral I on the left-hand side converges by Proposi-
tion 3.6. Similarly, as in the proof of Proposition 3.6, we rewrite it as

I =
∫
�K\H2

∑
A∈�K\L′

m

∑
γ∈�K,A\�K

Qs−1

(
dA(γ z1, γ

′z2)
)
f (z1, z2)ω2

= 2
∑

A∈�K\L′
m

∫
z2∈�K,A\H

∫
z1∈H

Qs−1

(
1 + |z1 −WAz2|2

2�(z1)�(WAz2)

)
f (z1, z2) η1 η2.

Here, the inner integral can be computed by means of Lemma 3.7. We obtain

I = 2

s(s − 1) − λ

∑
A∈�K\L′

m/{±1}

∫
z2∈�K,A\H

f (WAz2, z2) η2

= 1

s(s − 1) − λ

∫
T (m)

f (z1, z2)ω.

This concludes the proof of the theorem. �

COROLLARY 3.9

(i) If s ∈ C with �(s) > 1, then∫
�K\H2

�m(z1, z2, s)ω
2 = 2

s(s − 1)
vol

(
T (m)

)
.

(ii) The volume of T (m) with respect to the invariant volume form dx dy
4πy2 on H

equals

vol
(
T (m)

) = 1

2
ζK (−1)ϕm(1) = 1

24
σm(−1). (3.17)

(iii) We have∫
�K\H2

Gm(z1, z2)ω2

= −vol
(
T (m)

)(
2
L′(−1, χD)

L(−1, χD)
− 2

σ ′
m(−1)

σm(−1)
+ 1 + log(D)

)
.

(3.18)

Proof
If we use Theorem 3.8 with f = 1, we get∫

�K\H2

�m(z1, z2, s)ω
2 = 1

s(s − 1)

∫
T (m)

ω = 2

s(s − 1)
vol

(
T (m)

)
= 2 vol(T (m))

s − 1
− 2vol

(
T (m)

) +O(s − 1).
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By (2.19), we have, in addition,∫
�K\H2

ϕm(1)

s − 1
ω2 = 1

s − 1
ζK (−1)ϕm(1).

Since �m(z1, z2) = lims→1(�m(z1, z2, s) − ϕm(1)/(s − 1)) is regular and integrable
at s = 1, we derive the second claim by comparing residues in the latter two equalities.
The third claim follows from Definition 2.13 and (2.42) by comparing the constant
terms. �

Notice that our normalization of vol T (m) equals −1/2 times the normalization of
[HZ] and [G, Chapter 5.5]. In particular, here, the volume of T (1) ∼= �(1)\H is 1/12.

3.3. Star products on isotropic Hirzebruch-Zagier divisors
For the rest of this section, we assume that p is a prime that is split in OK or p = 1.
Let p be a prime ideal of OK above p. There are a fractional ideal c and a totally
positive λ ∈ K such that p = λc2. We fix a matrix M ∈ (

c−1 c−1

c c

) ∩ SL2(K).
It is well known that the isotropic Hirzebruch-Zagier divisor T (p) ⊂ �K \ H2 is

irreducible (see [G, Chapter 5.1] and [HZ]). It may have points of self-intersection, and
its normalization is isomorphic to the noncompact modular curve Y0(p) = �0(p)\H.
The normalization of the closure of T (p) in X(�K ) is isomorphic to the compact
modular curve X0(p), the standard compactification of Y0(p) (for basic facts on
integral models ofX0(p), the line bundle of modular forms on it, and the normalization
of the corresponding Petersson metric, we refer to [Kü2]).

We now describe how T (p) can be parametrized; later, in Proposition 5.11, we
give a modular description of this map. On the Hilbert modular surfaceX(�(OK⊕p)),
the Hirzebruch-Zagier divisor Tp(p) is simply given by the diagonal. More precisely,
the assignment τ �→ (τ, τ ) induces a morphism of degree 1,

X0(p) −→ X
(
�(OK ⊕ p)

)
, (3.19)

whose image is Tp(p). In fact, the vector
( 0 p/

√
D

−p/√D 0

) ∈ L′(p) has determinant

p2/D. Since Tp(p) is irreducible, the image of the diagonal in X(�(OK ⊕ p)) is
Tp(p). Moreover, it is easily checked that the stabilizer in �(OK ⊕ p) of the diagonal
in H2 is equal to �0(p). The cusp ∞ (resp., 0) of X0(p) is mapped to the cusp ∞
(resp., 0) of X(�(OK ⊕ p)).

PROPOSITION 3.10
The map H → H2, τ �→ M−1

(
λ 0
0 1

)
(τ, τ ) induces a morphism

ϕ : X0(p) −→ X(�K ), (3.20)

which is generically one-to-one and whose image equals T (p). The cusp ∞ (resp., 0)
of X0(p) is mapped to the cusp c (resp., c−1) of X(�K ).
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Proof
The map ϕ is given by the commutative diagram

where the horizontal arrow is given by (3.20) and the vertical arrow (which is an
isomorphism) by (2.5). The properties of the latter two maps imply the assertion. �

It is easily seen that the pullback of the Kähler form ω equals 2 dx dy
4πy2 .

For the next proposition, we recall that the Fricke involution Wp on the space
of modular forms of weight k for �0(p) is defined by f (z) �→ (f |kWp)(z) =
pk/2z−kf (−1/pz). Moreover, we define the Petersson slash operator for Hilbert mod-
ular forms in weight k by

(F | kγ )(z1, z2) = N
(

det(γ )
)k/2

(cz1 + d)−k(c′z2 + d ′)−kF (γ z1, γ
′z2)

for γ = (
a b
c d

) ∈ GL+
2 (K).

PROPOSITION 3.11

(i) If F is a Hilbert modular form of weight k for �K , then its pullback

(ϕ∗F )(τ ) = (
F |kM−1

(
λ 0
0 1

) )
(τ, τ )

is a modular form of weight 2k for the group �0(p).
(ii) If F is, in addition, holomorphic and has the Fourier expansions

F |kM−1
(
λ 0
0 1

) =
∑
ν∈pd−1

aν e(νz1 + ν ′z2),

F |kM ′−1 ( λ′ 0
0 1

) =
∑

ν∈p′d−1

bν e(νz1 + ν ′z2),

at the cusps c and c′, respectively, then the Fourier expansions of ϕ∗F at ∞
and 0 are given by

ϕ∗F =
∞∑
n=0

∑
ν∈pd−1

tr(ν)=n

aν e(nτ ), (3.21)

(ϕ∗F )|kWp =
∞∑
n=0

∑
ν∈p′d−1

tr(ν)=n

bν e(nτ ). (3.22)
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(iii) For the Petersson metric, we have

ϕ∗ (log‖F‖Pet) = log(‖ϕ∗F‖Pet). (3.23)

�

Remark 3.12
Proposition 3.11 implies, in particular, that Hilbert modular forms with rational Fourier
coefficients are mapped to modular forms for �0(p) with rational Fourier coefficients.
This shows that ϕ is actually defined over Q (see Proposition 5.5).

We now compute certain star products of pullbacks of Hilbert modular forms via ϕ.

THEOREM 3.13
Let F , G be Hilbert modular forms of weight k with rational Fourier coefficients.
Assume that all possible intersections on X(�K ) of T (p), div(F ), div(G) are proper,
and assume that F does not vanish at the cusps c and c−1 of �K . Then

1

2πi

∫
X0(p)

ϕ∗g(F ) ∗ ϕ∗g(G)

= −(2k)2vol
(
T (p)

)(ζ ′(−1)

ζ (−1)
+ 1

2

)
− (

div(ϕ∗F ), div(ϕ∗G)
)

X0(p),fin
. (3.24)

Here, (div(ϕ∗F ), div(ϕ∗G))X0(p),fin denotes the intersection number at the finite places
on the minimal regular model X0(p) of X0(p) of the divisors associated with the sec-
tions of the line bundle of modular forms corresponding to ϕ∗F and ϕ∗G (see [Kü2]).

Proof
Because of (3.23), ϕ∗g(F ) = g(ϕ∗F ). Thus, on X0(p), we have

ϕ∗g(F ) ∗ ϕ∗g(G) = g(ϕ∗F ) ∗ g(ϕ∗G).

By assumption, ϕ∗F, ϕ∗G are modular forms for �0(p) of weight 2k with rational
Fourier expansions, and ϕ∗F does not vanish at the cusps. They determine sections
of the line bundle of modular forms of weight 2k on X0(p). Notice that onX0(p), we
have div(ϕ∗F ) ∩ div(ϕ∗G) = ∅. By the compatibility with the arithmetic intersection
product of [Kü2], the left-hand side of (3.24) equals the generalized arithmetic inter-
section number 〈ϕ∗F, ϕ∗G〉∞ at the infinite place given in [Kü1, Lemma 3.9]. Hence
we have

1

2πi

∫
X0(p)

ϕ∗g(F ) ∗ ϕ∗g(G) = 〈ϕ∗F, ϕ∗G〉∞.
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Now, the claim follows from [Kü1, Corollary 6.2]; that is,

(2k)2(p+ 1)
(1

2
ζ (−1) + ζ ′(−1)

)
= (

div(ϕ∗F ), div(ϕ∗G)
)

X0(p),fin
+ 〈ϕ∗F, ϕ∗G〉∞,

using the identity vol T (p) = volX0(p) = −ζ (−1)[�(1) : �0(p)] = (p + 1)/12. �

3.4. Star products on Hilbert modular surfaces
We combine the results of the previous sections to compute star products on Hilbert
modular surfaces.

THEOREM 3.14
Let p be a prime that is split in OK or p = 1, and let F , G be Hilbert modular forms
of weight k with rational Fourier coefficients. Assume that all possible intersections
on X(�K ) of T (p), div(F ), div(G) are proper, and assume that F does not vanish at
any cusp of �K . Then

1

(2πi)2

∫
X̃(�K )

g(p) ∗ g(F ) ∗ g(G)

= −k2vol
(
T (p)

)(
2
ζ ′
K (−1)

ζK (−1)
+ 2

ζ ′(−1)

ζ (−1)
+ 3 + log(D)

)
− k2vol

(
T (p)

)p − 1

p + 1
log(p) − (

div(ϕ∗F ), div(ϕ∗G)
)

X0(p),fin
.

Proof
The logarithm of the Petersson norm of a Hilbert modular form satisfies along D� the
same bounds as the Green functions Gm. Hence we may calculate the star product in
question by means of the formula of Theorem 3.3:

1

(2πi)2

∫
X̃(�K )

g(p) ∗ g(F ) ∗ g(G) = k2

∫
�K\H2

Gp ω
2 + 1

2πi

∫
T (p)′

g(F ) ∗ g(G).

By Corollary 3.9(iii) and (2.33), the first integral is given by

k2

∫
�K\H2

Gp ω
2 = −k2vol

(
T (p)

)(
2
L′(−1, χD)

L(−1, χD)
+ p − 1

p + 1
log(p) + 1 + log(D)

)
.

Here, we have used the fact that χD(p) = 1. For the remaining integral, we use the
morphism ϕ defined by (3.20) to infer

1

2πi

∫
T (p)′

g(F ) ∗ g(G)

= 1

2πi

∫
X0(p)

ϕ∗g(F ) ∗ ϕ∗g(G)

= −k2vol
(
T (p)

)(
4
ζ ′(−1)

ζ (−1)
+ 2

)
− (

div(ϕ∗F ), div(ϕ∗G)
)

X0(p),fin
,
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where the last equality was derived by means of Theorem 3.13. Adding the above
expressions, the claim follows by the identity ζK (s) = ζ (s)L(s, χD). �

4. Borcherds products on Hilbert modular surfaces
It was shown in [Br1, Section 4] that for certain integral linear combinations of the
Gm(z1, z2), all Fourier coefficients, whose index ν ∈ d−1 has negative norm, vanish.
Such a linear combination is then the logarithm of the Petersson metric of a Hilbert
modular form, which has a Borcherds product expansion. We now explain this in more
detail.

4.1. Basic properties of Borcherds products
Recall our assumption thatD be a prime. Let k be an integer. We denote byAk(D,χD)
the space of weakly holomorphic modular forms of weight k with character χD for
the group �0(D). These are holomorphic functions f : H → C, which satisfy the
transformation law

f (Mτ ) = χD(d)(cτ + d)kf (τ )

for all M = (
a b
c d

) ∈ �0(D), and are meromorphic at the cusps of �0(D). If f =∑
n∈Z c(n)qn ∈ Ak(D,χD), then the Fourier polynomial∑

n<0

c(n)qn

is called the principal part of f . Here, q = e2πiτ , as usual. We writeMk(D,χD) (resp.,
Sk(D,χD)) for the subspace of holomorphic modular forms (resp., cusp forms).

For ε ∈ {±1}, we let Aεk(D,χD) be the subspace of all f = ∑
n∈Z c(n)qn in

Ak(D,χD) for which c(n) = 0 if χD(n) = −ε (see [BB]). A classical lemma due to
Hecke implies that

Ak(D,χD) = A+
k (D,χD) ⊕ A−

k (D,χD) (4.1)

(see, e.g., [O, Lemma 6, p. 32]). Finally, we define the spaces Mε
k (D,χD) and

Sεk (D,χD) analogously.
Here, we mainly consider M+

2 (D,χD) and A+
0 (D,χD). The Eisenstein series

E(τ ) = 1 +
∑
n≥1

BD(n)qn = 1 + 2

L(−1, χD)

∑
n≥1

σn(−1)qn (4.2)

is a special element of M+
2 (D,χD). Note that by (3.17),

BD(n) = −2ϕn(1) = − 4

ζK (−1)
vol

(
T (n)

)
. (4.3)
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The space M+
2 (D,χD) is the orthogonal sum of CE and the subspace of cusp forms

S+
2 (D,χD).

The existence of weakly holomorphic modular forms in A+
0 (D,χD) with the

prescribed principal part is dictated by S+
2 (D,χD). Before making this more precise,

it is convenient to introduce the following notation. If
∑

n∈Z c(n)qn ∈ C((q)) is a
formal Laurent series, we put

c̃(n) =
{

2c(n) if n ≡ 0 (mod D),
c(n) if n �≡ 0 (mod D).

(4.4)

We now recall [BB, Theorem 6], which is a reformulation of [B2, Theorem 3.1].

THEOREM 4.1
There exists a weakly holomorphic modular form f ∈ A+

0 (D,χD) with the prescribed
principal part

∑
n<0 c(n)qn (where c(n) = 0 if χD(n) = −1) if and only if∑

n<0

c̃(n)b(−n) = 0 (4.5)

for every cusp form g = ∑
m>0 b(m)qm in S+

2 (D,χD). Then the constant term c(0) of
f is given by the coefficients of the Eisenstein series E:

c(0) = −1

2

∑
n<0

c̃(n)BD(−n) = 2

ζK (−1)

∑
n<0

c̃(n) vol
(
T (−n)

)
.

Using orthogonality relations for the nondegenerate bilinear pairing between Fourier
polynomials in C[q−1] and formal power series in C[[q]] given by{∑

n≤0

c(n)qn,
∑
m≥0

b(m)qm
}

=
∑
n≤0

c̃(n)b(−n),

one can deduce the following.

COROLLARY 4.2
A formal power series

∑
n≥0 b(n)qn ∈ C[[q]] (where b(n) = 0 if χD(n) = −1) is a

modular form in M+
2 (D,χD) if and only if∑

n≤0

c̃(n)b(−n) = 0

for every f = ∑
n�−∞ c(n)qn in A+

0 (D,χD).
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By Borcherds’s theory [B1, Theorem 13.3], there is a lift from weakly holomorphic
modular forms in A+

0 (D,χD) to Hilbert modular forms for the group �K , whose
divisors are linear combinations of Hirzebruch-Zagier divisors. Since this result is
vital for us, we state it in detail.

THEOREM 4.3 (see [B1, Theorem 13.3], [Br1, Theorem 5], [BB, Theorem 9])
Let f = ∑

n∈Z c(n)qn ∈ A+
0 (D,χD), and assume that c̃(n) ∈ Z for all n < 0. Then

there is a meromorphic function F (z1, z2) on H2 with the following properties.
(i) F is a meromorphic modular form for �K with some multiplier system of finite

order. The weight of F is equal to the constant coefficient c(0) of f . It can also
be computed using Theorem 4.1.

(ii) The divisor of F is determined by the principal part of f . It equals∑
n<0

c̃(n)T (−n).

(iii) LetW ⊂ H2 be a Weyl chamber attached to f , that is, a connected component
of

H2 −
⋃
n<0
c(n)�=0

S(−n),

and define the “Weyl vector” ρW ∈ K for W and f by

ρW = ε0

tr(ε0)

∑
n<0

c̃(n)
∑

λ∈R(W,−n)

λ. (4.6)

The function F has the Borcherds product expansion

F (z1, z2) = e(ρWz1 + ρ ′
Wz2)

∏
ν∈d−1

(ν,W )>0

(
1 − e(νz1 + ν ′z2)

)c̃(Dνν ′)
.

The product converges for all (z1, z2) with y1y2 > | min{n; c(n) �= 0}|/D
outside the set of poles.

(iv) The Petersson metric of F is given by

−log‖F‖Pet =
∑
n<0

c̃(n)G−n(z1, z2). (4.7)

(v) We have∫
�K\H2

log‖F (z1, z2)‖Pet ω
2

=
∑
n<0

c̃(n) vol
(
T (−n)

)(
2
L′(−1, χD)

L(−1, χD)
− 2

σ ′
−n(−1)

σ−n(−1)
+ 1 + log(D)

)
.
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Proof
The statements (i), (ii), and (iii) are proved in [BB] using [B1, Theorem 13.3]. There-
fore we only have to verify (iv) and (v).

By Theorem 4.1, the existence of f ∈ A+
0 (D,χD) implies that condition (4.5)

is fulfilled for all cusp forms g ∈ S+
2 (D,χD). Using Poincaré series, it is easily

checked that (4.5) actually holds for all g ∈ S2(D,χD). Thus, by [Br1, Theorem 5],
the right-hand side of (4.7) is equal to the logarithm of the Petersson metric of a
Hilbert modular form F ′ with the same divisor as F . Hence the quotient F ′/F is a
Hilbert modular form without any zeros and poles on H2 and thereby constant. This
shows that (4.7) holds up to an additive constant. By comparing the constant terms in
the Fourier expansions of both sides, one finds that this constant equals zero. Here,
the Fourier expansion of the right-hand side is given by (2.46). This proves (iv). The
last assertion follows from (iv) and (3.18) in Corollary 3.9. �

Notice that in [Br1], the assertions (i) and (ii) are deduced from (iv). There, however,
a slightly different product expansion is obtained, which involves Fourier coefficients
of weakly holomorphic Poincaré series of weight 2. Similarly, as in [Br2, Chapter 1],
these can be related to the coefficients of weakly holomorphic modular forms of
weight zero. In that way, a more direct proof of Theorem 4.3 can be given. Another
direct proof can be obtained by completely arguing as in [Br2]. There, the Green
functions �m(z1, z2, s) are constructed as regularized theta lifts of nonholomorphic
Hejhal-Poincaré series of weight zero. Here, for brevity, we have preferred to argue
as above. Observe that (v) also follows from [Ku5, Main Theorem 2.12].

Definition 4.4
Hilbert modular forms that arise as lifts via Theorem 4.3 are called Borcherds products.
A holomorphic Borcherds product is called integral if it has trivial multiplier system
and integral coprime Fourier coefficients. A meromorphic Borcherds product is called
integral if it is the quotient of two holomorphic integral Borcherds products.

PROPOSITION 4.5
For any Borcherds productF , there exists a positive integerN such thatFN is integral.

Proof
Let f = ∑

n∈Z c(n)qn ∈ A+
0 (D,χD), as in Theorem 4.3, be the preimage of F under

the Borcherds lift. It is explained in [BB, Proposition 8] that the condition c̃(n) ∈ Z for
n < 0 automatically implies that all coefficients c(n) of f are rational with bounded
denominators.
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Thus, if F is holomorphic, the Borcherds product expansion of F implies that
a suitable power of F has integral coprime Fourier coefficients. Since the multiplier
system of F has finite order, we obtain the assertion in that case.

It remains to show that any meromorphic Borcherds product is the quotient of two
holomorphic Borcherds products. In view of Theorem 4.3(ii), it suffices to show that
there exist two weakly holomorphic modular formsfj = ∑

n∈Z cj (n)qn ∈ A+
0 (D,χD)

such that c̃j (n) ∈ Z≥0 for all n < 0 (where j = 1, 2) and f = f1 − f2. Then F is the
quotient of the Borcherds lifts of f1 and f2. We now construct such forms explicitly.

Let

E+
12(τ ) = 1 + 2

L(−11, χD)

∑
n≥1

n5σn(−11)qn

be the normalized Eisenstein series in M+
12(D,χD). It follows from the functional

equation and the Euler product expansion of L(s, χD) that L(−11, χD) > 0.
Moreover, σn(−11) > 0 if χD(n) �= −1, and σn(−11) = 0 if χD(n) = −1. Let
� = q

∏
n≥1(1 − qn)24 be the Delta function, let E4 be the normalized Eisenstein

series of weight 4 for SL2(Z), and let j = E3
4/� be the j -function. The partition

theoretic interpretation of 1/� shows that all Fourier coefficients of 1/� and j with
index at least −1 are positive integers. Consequently, if c is a positive integer, then

g(τ ) = E+
12(τ )

�(Dτ )
j (Dτ )c−1 ∈ A+

0 (D,χD),

and the Fourier coefficients b(n) of g satisfy

b(n) = 0 if n < −Dc,
b(n) = 0 if n ≥ −Dc and χD(n) = −1,

b(n) > 0 if n ≥ −Dc and χD(n) �= −1.

Thus, if we choose c large enough, then there is a positive integer c′ such that
f1 := f + c′g and f2 := c′g are elements of A+

0 (D,χD) with the required proper-
ties. �

Remark 4.6
According to a result of Hecke, the dimension of M+

2 (D,χD) is given by
[(D + 19)/24]. In particular, S+

2 (D,χD) = {0} for the primes D = 5, 13, 17. In
this case, for any Hirzebruch-Zagier divisor T (m), there exists a Borcherds product
of weight ϕm(1) with divisor T (m) (for explicit examples and calculations, we refer
to [BB]).
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4.2. Density of Borcherds products
Definition 4.7
Intersection points z ∈ �K\H2 of Hirzebruch-Zagier divisors are called special points
(see [G, Chapter 5.6]).

Particular examples of special points are the elliptic fixed points (if D > 5).

THEOREM 4.8
If S ⊂ �K\H2 is a finite set of special points, then there exist infinitely many mero-
morphic Borcherds products of nonzero weight whose divisors are disjoint from S and
are given by linear combinations of isotropic Hirzebruch-Zagier divisors T (p) with
p prime and coprime to D.

Here and in the following, by “infinitely many Borcherds products” we understand
infinitely many Borcherds products whose divisors have pairwise proper intersection.

To prove this theorem, it is convenient to view SL2(OK ) as an orthogonal group.
We briefly recall some facts on the identification of (SL2(R)×SL2(R))/{±(1, 1)} with
the group SO0(2, 2)/{±1} (for more details, see [G, Chapter 5.4] and [B2, Example
5.5]).

We consider the quadratic space V and the lattices L = L(OK ), L′ = L′(OK )
defined at the beginning of Section 2.3. The upper half-plane H2 can be identified
with the Grassmannian

Gr(L) = {
v ⊂ L⊗Z R; dim(v) = 2, q|v < 0

}
of 2-dimensional negative definite subspaces of L ⊗Z R. The action of SL2(OK )
on H2 corresponds to the linear action of O(L) on Gr(L). In terms of Gr(L), the
Hirzebruch-Zagier divisor T (m) is given by⋃

λ∈L′
q(λ)=m/D

λ⊥,

where λ⊥ means the orthogonal complement of λ in Gr(L).
For v ∈ Gr(L), we denote by Lv the lattice L′ ∩ v⊥ with the integral quadratic

form qv = D · q|Lv . If g ∈ O(L), then the quadratic modules (Lv, qv) and (Lgv, qgv)
are equivalent. Therefore the equivalence classes of these quadratic forms can be
viewed as invariants of the points of �K\H2. The following lemma is well known.

LEMMA 4.9
Let z ∈ �K\H2, and assume that z corresponds to v ∈ Gr(L). Then z ∈ T (m) if and
only if the quadratic form qv on Lv represents m.
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It is easily checked that Lv has rank 2 if and only if v corresponds to a special point
z ∈ H2. In this case, (Lv, qv) is a positive definite integral binary quadratic form. If
we write �v for its discriminant, then �v < 0 and �v ≡ 0, 1 (mod 4).

LEMMA 4.10
If S ⊂ �K\H2 is a finite set of special points, then there are infinitely many primes p
coprime to D such that T (p) is nonempty, isotropic, and T (p) ∩ S = ∅.

Proof
LetQ1, . . . ,Qr be the positive definite integral binary quadratic forms corresponding
to the special points in S. In view of the above discussion, it suffices to show that there
exist infinitely many primes p, which are not represented by Q1, . . . ,Qr , and such
that χD(p) = 1.

Let�j be the discriminant ofQj . Then�j < 0 and�j ≡ 0, 1(mod 4). Letn be a
nonzero integer coprime to�j . It is well known thatR(�j, n), the total representation
number of n by positive definite integral binary quadratic forms of discriminant �j ,
is given by

R(�j, n) =
∑
d|n
χ�j (d)

(see [Z2, Section 8]). Hence, if R(�j, n) = 0 for n coprime to �j , then Qj does not
represent n. In particular, any prime p with χ�j (p) = −1 is not represented by Qj .

Thus it suffices to show that there are infinitely many primes p with

χ�j (p) = −1 (j = 1, . . . , r),

χD(p) = 1.

Since the�j are negative andD is positive, this is clearly true. In fact, even a positive
proportion of primes has these properties. �

For the rest of this section, we temporarily abbreviate M := M+
2 (D,χD) and S :=

S+
2 (D,χD). We denote the dual C-vector spaces byM∨ and S∨, respectively. For any

positive integer r , the functional

ar : M → C, f =
∑
n

b(n)qn �→ ar (f ) := b(r)

is a special element of M∨, and M∨ is generated by the family (ar )r∈N as a vector
space over C. We denote byM∨

Z the Z-submodule ofM∨ generated by the ar (r ∈ N).
The fact that M has a basis of modular forms with integral coefficients implies that
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the rank of M∨
Z equals the dimension of M and that M∨

Z ⊗Z C = M∨. We write

¯ : M∨ → S∨, a �→ ā

for the natural map given by the restriction of a functional.

LEMMA 4.11
Let I be an infinite set of positive integers m with χD(m) �= −1, and let A∨ be the
Z-submodule ofM∨

Z generated by the am withm ∈ I . Then there is a nonzero a ∈ A∨

with the property that ā = 0 in S∨.

Proof
We consider the image Ā∨ ofA∨ in S∨. It is a free Z-module of rank d ≤ dim S. There
exist n1, . . . , nd ∈ I such that ān1, . . . , ānd are linearly independent in Ā∨. Then for
any m ∈ I , there is a linear relation

r0(m)ām + r1(m)ān1 + · · · + rd(m)ānd = 0 (4.8)

in Ā∨ with integral coefficients rj (m) and r0(m) �= 0.
If the corresponding linear combination

r0(m)BD(m) + r1(m)BD(n1) + · · · + rd(m)BD(nd) (4.9)

of the coefficients of the Eisenstein series E does not vanish, then a = r0(m)am +
r1(m)an1 + · · · + rd(m)and is a nonzero element of A∨ with the claimed property, and
we are done.

We now assume that the linear combination (4.9) vanishes for allm ∈ I and derive
a contradiction. If the vector r(m) = (r1(m), . . . , rd(m)) is equal to zero for some m,
then the vanishing of (4.9) implies that r0(m) = 0, contradicting our assumption on
the rj (m). Therefore we may further assume that r(m) �= 0 for all m ∈ I .

Equation (4.8) and the vanishing of (4.9) imply

BD(m)
(
r1(m)ān1 + · · · + rd(m)ānd

) = (
r1(m)BD(n1) + · · · + rd(m)BD(nd)

)
ām

(4.10)

for allm ∈ I . We write ‖r‖ for the Euclidean norm of a vector r = (r1, . . . , rd) ∈ Cd

and also denote by ‖ · ‖ a norm on S∨, say, the operator norm. Since ān1, . . . , ānd are
linearly independent, there exists an ε > 0 such that

‖r1ān1 + · · · + rd ānd‖ ≥ ε‖r‖
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for all r ∈ Cd . Moreover, there exists a C > 0 such that

|r1BD(n1) + · · · + rdBD(nd)| ≤ C‖r‖

for all r ∈ Cd . If we insert these estimates into the norm of (4.10), we obtain

ε|BD(m)| · ‖r(m)‖ ≤ C‖r(m)‖ · ‖ām‖.

Since ‖r(m)‖ �= 0, we find that

|BD(m)| ≤ C

ε
· ‖ām‖

for all m ∈ I .
By (4.2), for any δ > 0 the coefficientsBD(m) withχD(m) �= 1 satisfy |BD(m)| ≥

C ′m1−δ as m → ∞ for some positive constant C ′. But the Deligne bound for the
growth of the coefficients of cusp forms in S implies that ‖ām‖ = Oδ(m1/2+δ),
contradicting the above inequality. �

Proof of Theorem 4.8
Let I be the infinite set of primes coprime to D which we get by Lemma 4.10.
According to Lemma 4.11, there exists a nonzero integral finite linear combination

a =
∑
p∈I

c̃(p)ap ∈ M∨
Z

with ā = 0 in S∨. But then Theorem 4.1 implies that there is a weakly holomorphic
modular form f ∈ A+

0 (D,χD) with the principal part
∑

p∈I c(p)q−p and nonzero
constant coefficient c(0) = −(1/2)

∑
p∈I c̃(p)BD(p). If we apply Theorem 4.3 to this

f , we get a Borcherds product with the claimed properties.
We may remove the primes p with c(p) �= 0 from the set I and repeat the above

construction to get another Borcherds product. By induction, we get infinitely many
Borcherds products with the claimed properties. �

THEOREM 4.12
Let C ∈ Div(X(�K )) be a linear combination of Hirzebruch-Zagier divisors. Then
there exist infinitely many meromorphic integral Borcherds products F2 and F1 of
nonzero weights such that
(i) all possible intersections of div(F1), div(F2), and C are proper;
(ii) F2(κ) = 1 at all cusps κ of X(�K );
(iii) div(F1) is a linear combination of isotropic Hirzebruch-Zagier divisors of

prime discriminant p coprime to D (and thus χD(p) = 1).
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Proof
Since there are infinitely many anisotropic Hirzebruch-Zagier divisors, Theorem 4.1
and Lemma 4.11 imply that there are infinitely many Borcherds productsF2 of nonzero
weight, whose divisor consists of anisotropic Hirzebruch-Zagier divisors, and such
that C and div(F2) intersect properly. Choose such an F2. Since F2 has an anisotropic
divisor, the Weyl vectors in the Borcherds product expansion ofF2 at the different cusps
of X(�K ) equal zero. Consequently, F2 is holomorphic at all cusps with value 1.

Let S ⊂ �K\H2 be the finite set of intersection points div(F2) ∩ C. By Theorem
4.8, there exist infinitely many Borcherds products F1 of nonzero weight such that
div(F1) is disjoint to S and such that properties (i) and (iii) are fulfilled.

By possibly replacing F2, F1 by sufficiently large powers, we may assume that
these are integral Borcherds products. �

In the rest of this section, we essentially show that the subspace of Pic(X(�K )) ⊗Z Q,
spanned by all Hirzebruch-Zagier divisors, is already generated by the T (p) with
prime index p and χD(p) = 1.

PROPOSITION 4.13
Let I be a set of primes containing almost all primes p with χD(p) = 1. Then the
functionals ap with p ∈ I generate a Z-submodule of finite index in M∨

Z .

Proof
Since M has a basis of modular forms with integral coefficients, it suffices to show
that the ap with p ∈ I generate M∨ as a C-vector space. In view of Lemma 4.11, it
suffices to show that the āp generate S∨. Therefore the assertion is a consequence of
the following lemma. �

LEMMA 4.14
Let I be as in Proposition 4.13. If f ∈ S is a cusp form that is annihilated by all āp
with p ∈ I , then f = 0.

Proof
Since S has a basis of modular forms with rational Fourier coefficients, we may
assume, without loss of generality, that the Fourier coefficients of f are algebraic. By
the hypothesis, and because f ∈ S = S+

2 (D,χD), we have ap(f ) = 0 for almost all
primes p.

The assertion follows from the properties of the �-adic Galois representations
associated to a basis of normalized newforms of S using the main lemma of [OS] (by
a similar argument as on [OS, p. 461]). Notice that S does not contain any eigenforms
with complex multiplication since D is a prime ≡ 1(mod 4). �
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THEOREM 4.15
Let T (m) be any Hirzebruch-Zagier divisor. Then there exist infinitely many mero-
morphic integral Borcherds products F of weight zero such that

div(F ) = c̃(m)T (m) +
∑
p prime
χD(p)=1

c̃(p)T (p)

with suitable integral coefficients c̃(p) and c̃(m) �= 0.

Proof
Let I be the set of all primes p coprime to m with χD(p) = 1. By Proposition 4.13,
there exist integral coefficients c̃(p) and a nonzero integer c̃(m) such that

c̃(m)am =
∑
p∈I

c̃(p)ap ∈ M∨
Z .

Here, c̃(p) = 0 for all but finitely many p ∈ I . Therefore, in view of Theorem 4.1,
there exists a weakly holomorphic modular form f ∈ A+

0 (D,χD) with the principal
part

c(m)q−m −
∑
p∈I

c(p)q−p

and vanishing constant term c(0). The Borcherds lift of f is a Borcherds product of
weight zero with divisor of the required type. By taking a sufficiently large power,
we may assume that it is integral. We may now remove the primes p occurring with
c(p) �= 0 in the above sum from the set I and repeat the argument. Inductively, we
find infinitely many Borcherds products of the required type. �

COROLLARY 4.16
Let T (m) be any Hirzebruch-Zagier divisor. Then there exist infinitely many mero-
morphic integral Borcherds products F of nonzero weight such that

div(F ) = c̃(m)T (m) +
∑
p prime
χD(p)=1

c̃(p)T (p)

with suitable integral coefficients c̃(p) and c̃(m) �= 0.

Proof
By Theorem 4.8, we can find infinitely many integral meromorphic Borcherds products
G of nonzero weight such that div(G) is a linear combination of isotropic Hirzebruch-
Zagier divisors T (p) with p prime and coprime tomD. In particular, div(G) does not
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have T (m) as a component. The product of any suchG and any F as in Theorem 4.15
is a Borcherds product with the required properties. �

5. Arithmetic theory of Hilbert modular surfaces
Throughout this section, we keep the assumptions of the previous sections. In partic-
ular, D is a prime congruent 1 modulo 4 and K = Q(

√
D).

5.1. Moduli spaces of abelian schemes with real multiplication
In this section, we recall some background material on integral models of Hilbert
modular surfaces. The reader is referred to [R], [DP], [P], and [V] for more details.

Suppose that A → S is an abelian scheme. Then there exist a dual abelian
scheme A∨ → S and a natural isomorphism A ∼= (A∨)∨. If φ : A → B is a
homomorphism of abelian schemes, then there is a dual morphism φ∨ : B∨ → A∨.
A homomorphism µ ∈ Hom(A,A∨) is called symmetric if µ equals the composition

A ∼= (A∨)∨
µ∨

−→ A∨. In this case, we write µ = µ∨. We denote by Hom(A,A∨)sym

the space of symmetric homomorphisms.
An abelian scheme A → S of relative dimension 2, together with a ring homo-

morphism

ι : OK −→ End(A),

is called an abelian surface with multiplication by OK and denoted by the pair (A, ι).
Via α �→ ι(α)∨, we obtain an OK -multiplication on the dual abelian surface. If a ⊂ OK

is an ideal, we write A[a] for the a-torsion on A.
Suppose from now on that (A, ι) is an abelian surface with multiplication by OK .

An element µ ∈ Hom(A,A∨) is called OK -linear if µι(α) = ι(α)∨µ for all α ∈ OK .
We denote by P (A) the sheaf for the étale topology (large étale site) on Sch /S defined
by

P (A)T = {λ : AT → A∨
T ; λ is symmetric and OK -linear} (5.1)

for all T → S. We write P (A)+ for the subsheaf of polarizations in P (A). The pair
(A, ι) is said to satisfy the Deligne-Pappas condition (DP) if the canonical morphism
of sheaves

A⊗OK P (A) −→ A∨, a ⊗ λ �→ λ(a) (DP)

is an isomorphism. In this case, P (A) is a locally constant sheaf of projective OK -
modules of rank 1 (see [V, Proposition 1.4]). The Deligne-Pappas condition (DP) is,
over Z[1/D]-schemes, equivalent to the Rapoport condition (R) that �1

A/S be locally
on S a free (OS⊗ZOK )-module. Moreover, in characteristic zero, it holds automatically
(see, e.g., [Go, p. 99]).
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Let l be a fractional ideal ofK , and let l+ be the subset of totally positive elements.
An l-polarization on (A, ι) is a homomorphism of OK -modules

ψ : l −→ P (A)S,

taking l+ to P (A)+S , so that the natural homomorphism

A⊗OK l −→ A∨, a ⊗ λ �→ ψ(λ)(a)

is an isomorphism. By [V, Proposition 3.3], a homomorphism of OK -modules l →
P (A)S is an l-polarization if and only if (A, ι) satisfies (DP) and the induced morphism
of sheaves (l, l+) → (P (A), P (A)+) for the étale topology is an isomorphism.

Let N be a positive integer. Suppose that S is scheme over Spec Z[1/N]. A full
level-N structure on an abelian surface A over S with real multiplication by OK is an
OK -linear isomorphism

(OK/NOK )2
S −→ A[N]

between the constant group scheme defined by (OK/NOK )2 and the N -torsion on A.
With the formulation of the next theorem, which summarizes some properties of

the moduli spaces of abelian surfaces needed below, we follow [P, Theorem 2.1.2,
p. 47; Remark 2.1.3, p. 47] (see also [C], [R], [Go]; in particular, see [Go, Theorem
2.17, p. 57; Lemma 5.5, p. 99]). Furthermore, we choose a primitiveN th root of unity
ζN .

THEOREM 5.1
The moduli problem “Abelian surfaces over S with real multiplication by OK and
l-polarization with (DP) and full level-N structure” is represented by a regular al-
gebraic stack Hl(N), which is flat and of relative dimension 2 over Spec Z[ζN, 1/N].
It is smooth over Spec Z[ζN, 1/ND], and the fiber of Hl(N) above D is smooth
outside a closed subset of codimension 2. Moreover, if N ≥ 3, then H(N) is a
scheme.

It is well known that �(OK ⊕ a)\H2 can be identified with Had−1
(1)(C). The iso-

morphism can be described as follows (see, e.g., [Go, Chapter 2.2] for a detailed
discussion).

To z = (z1, z2) ∈ H2, we associate the lattice

�z = OKz+ a−1 = (OK, a−1)

(
z

1

)
=
{(

αz1 + β

α′z2 + β ′

)
∈ C2; α ∈ OK, β ∈ a−1

}
.
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If γ = (
a b
c d

) ∈ GL2(K) with totally positive determinant, then

�γz = 1

cz+ d
(OK, a−1)

(
a b

c d

)(
z

1

)
. (5.2)

In particular, if γ ∈ �(OK ⊕ a), then �γz = (1/(cz+ d))�z. For any r ∈ ad−1, we
define a hermitian form on C2 by

Hr,z(u, v) = r
u1v̄1

y1
+ r ′u2v̄2

y2
(u, v ∈ C2).

For αz+ β, γ z+ δ ∈ �z ⊂ C2, we have

Er,z(αz+ β, γ z+ δ) = �Hr,z(α + βz, γ + δz) = tr
(
r(αδ − βγ )

) ∈ Z.

The hermitian form Hr,z is positive definite (and therefore defines a polarization) if
and only if r ∈ (ad−1)+.

We see that Az = K ⊗Q C/�z is an abelian surface. On Az, we have a natural
OK -multiplication ι : OK ↪→ End(Az), where ν ∈ OK acts via ι(ν) = (

ν 0
0 ν ′

)
on C2.

We write λr for the OK -linear homomorphism in P (Az), given by x �→ Hr,z(x, ·). The
assignment r �→ λr defines an OK -linear isomorphism ψ : ad−1 → P (Az), which
maps the totally positive elements to polarizations.

Observe that the moduli algebraic stack Hl(N) depends (up to a canonical iso-
morphism) only on the ideal class of l. To lighten the notation, we frequently omit
the superscript l whenever l ∼= d−1; for example, we simply write H(N) for Hl(N).
We write H = H(1). By abuse of notation, we denote the (coarse) moduli schemes
associated with H and H(N) by H and H(N), respectively.

For the following results, we refer to [C, Theorems 3.6, 4.3] and [R, Theo-
rems 5.1, 6.7].

THEOREM 5.2
There is a toroidal compactification hN : H̃(N) → Spec Z[ζN, 1/N] of H(N)
which is smooth at infinity and such that forgetting the level induces a morphism
πN : H̃(N) → H̃(1) which is a Galois cover. The complement H̃(N) \ H(N) is a
relative divisor with normal crossings.

We also refer to [C] and [R] for the fact that one can choose a compatible system of
toroidal compactifications for which we have morphisms πM,N : H̃(M) → H̃(N)
whenever N |M .

THEOREM 5.3 (q-expansion principle)
There is a positive integer n0 (depending on K and N ) such that in all weights
k divisible by n0, there exists a line bundle Mk(�K (N)) on H̃(N), whose global
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sections correspond to holomorphic Hilbert modular forms of weight k for �K (N)
with Fourier coefficients in Z[ζN, 1/N]. If N ≥ 3, then we can put n0 = 1.

We call Mk(�K (N)) the line bundle of Hilbert modular forms. It is given by the
kth power of the Hodge bundle, that is, the pullback along the zero section of the
determinant of the relative cotangent bundle of the universal family over H(N).

According to Proposition 4.5, any integral Borcherds product of weight k (divis-
ible by n0) defines a rational section of Mk(�K (N)).

THEOREM 5.4
The minimal compactification of the (coarse) moduli scheme H(N) is given by

H(N) = Proj
( ⊕
k≥0, n0|k

H 0
(
H̃(N), Mk(�K (N))

))
. (5.3)

The scheme H(N) is normal, projective, and flat over Spec Z[ζN, 1/N] (see [C,
p. 549]). Furthermore, for N = 1, its fibers over Spec Z are irreducible (see [DP,
p. 65]).

For any embedding σ ∈ Hom(Q(ζN ),C), the complex variety H(N)σ (C) is iso-
morphic to X(�K (N)) (see, e.g., [R, p. 331]).

PROPOSITION 5.5
For any m, the divisor T (m) ⊂ X(�K ) = H(C) is defined over Q.

Proof
This fact is well known (see, e.g., [HLR], [G] for related formulations). We sketch a
different proof using the theory of Borcherds products.

Let p be a prime that is split in OK . According to Proposition 3.10, T (p) is the
image of the morphism ϕ defined in (3.20). By Proposition 3.11, the pullback via ϕ
of a Hilbert modular form with rational Fourier coefficients is a modular form for
�0(p) with rational coefficients. Thus the ideal of holomorphic Hilbert modular forms
vanishing along T (p) in the graded ring of holomorphic Hilbert modular forms is
generated by Hilbert modular forms with rational coefficients. Since X(�K ) is equal
to Proj

⊕
n0|k H

0(H̃,Mk(�K ))(C), we obtain the claim for T (p) (see also Proposition
5.11).

If T (m) is any Hirzebruch-Zagier divisor, then by Theorem 4.15, there exists an
integral Borcherds product whose divisor is a linear combination of T (m) and divisors
T (p) with prime index p, as above. Now the claim follows by linearity. �

Definition 5.6
We define the Hirzebruch-Zagier divisor TN (m) on the generic fiber H̃(N)Q(ζN ) as the
pullback of T (m) on HQ. Moreover, we define the Hirzebruch-Zagier divisor TN (m)
on H̃(N) as the Zariski closure of TN (m).



BORCHERDS PRODUCTS AND ARITHMETIC INTERSECTION THEORY 67

If N = 1, we frequently write T(m) for T1(m). Observe that TN (m) = π∗
NT(m).

PROPOSITION 5.7
Let F be an integral Borcherds product of weight k, and write divN (F ) for the divisor
on H̃(N) of the corresponding global section of Mk(�K (N)). Then divN (F ) is equal
to the Zariski closure of the induced divisor on the generic fiber. In particular, if
div(F )(C) = ∑

m a(m)T (m) on X(�K ), then we have, on H̃(N),

divN (F ) =
∑
m

a(m) TN (m).

Proof
Without loss of generality, we may assume that F is holomorphic. It suffices to show
that divN (F ) is a horizontal divisor. Since F is a modular form for the full group �K ,
the divisor divN (F ) is the pullback of a divisor on H̃. Because H̃ is geometrically
irreducible at all primes (see [DP, p. 65]), the vertical part of divN (F ) can contain only
multiples of full fibers of H̃(N). But the Borcherds product expansion implies that the
Fourier coefficients ofF are coprime. Therefore, by the q-expansion principle (see [C,
Theorem 4.1]), divN (F ) does not contain a full fiber of H̃(N) above Spec Z[ζN, 1/N].
This concludes the proof of the proposition. �

5.2. Modular morphisms
We extend the morphism ϕ : Y0(p) → �K\H2 of Section 3.3 to integral models by
giving a modular interpretation. We basically follow the descriptions in [Go, Chap-
ter 2.5.1] and [La, p. 134] (see also [KR, Remark (ii), p. 169] for related results).
Moreover, we extend it to compactifications by means of the q-expansion principle.

For the rest of this section, we assume that p is a prime that is split in OK or
p = 1. Let p be a prime ideal of OK above p. There are a fractional ideal c and a
totally positive λ ∈ K such that p = λc2. We may assume that N(λ) is a power of
p (e.g., if we take c = p(h+1)/2, where h is the class number of K). We fix a matrix
M ∈ (

c−1 c−1

c c

) ∩ SL2(K).
The following two lemmas were communicated to us by T. Wedhorn [W].

LEMMA 5.8
Let A/S and B/S be abelian surfaces with OK -multiplication such that P (A) and
P (B) are locally constant sheaves of projective OK -modules of rank 1.
(i) Let π : A → B be an OK -linear isogeny whose degree is invertible on S, and

denote by π∗ : P (B) ↪→ P (A), g �→ π∨gπ the canonical map. Then the
index of π∗P (B) in P (A) is equal to the degree of π .

(ii) Let a be an ideal of OK , and let π : A → B := A/A[a] be the canonical
projection. Then a2P (A) ⊂ π∗P (B). If the norm of a is invertible on S, we
have equality.
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Proof
(i) We write ( )p for ( ) ⊗Z Zp. It suffices to show that the length of the cokernel
of π∗

p : P (B)p ↪→ P (A)p is equal to the p-adic valuation of deg(π) for any prime
number p that divides the degree of π . We have a commutative diagram

where Tp(A) and Tp(B) denote the Tate modules corresponding to A and B, and for
an alternating form of (OK ⊗ Zp)-modules β :

∧2
OK⊗Zp

Tp(A) → OK ⊗ Zp, we put

Tp(ξ )∗(β) = β ◦ ∧2
Tp(ξ ) (see, e.g., [V, (1.7.4)]). Since

vp
(

deg(π)
) = length

(
Coker(Tp(π))

)
= length

(
Coker(Tp(π)∗)

)
= length

(
Coker(π∗

p)
)
,

we obtain the first claim.
(ii) Let C be any abelian scheme over S with OK -multiplication. We first claim

that a HomOK (A,C) ⊂ HomOK (B,C)π . Let x ∈ a, and let α ∈ HomOK (A,C). We
have to show that xα annihilates A[a], but this is obvious as α is OK -linear.

Next, we claim that a HomOK (C,A∨) ⊂ π∨ HomOK (C,B∨). Note that if we
dualize the canonical projection π : A → B, π∨ is the canonical projection
B∨ → B∨/B∨[a]. This follows from the fact that the dual of the multiplication with
an element x ∈ OK on any abelian schemeA with OK -multiplication is just the multi-
plication with x onA∨. Hence the second claim follows from the first one by dualizing.

Altogether, these two claims imply that a2 HomOK (A,A∨) ⊂ π∗ HomOK (B,B∨),
and hence a2P (A) ⊂ π∗P (B).

It follows that a2P (A) ⊂ π∗P (B) ⊂ P (A), and as P (A) is a locally constant
sheaf of projective OK -modules of rank 1, this is also true for P (B). Moreover, the
degree of π is N(a)2. Hence the assertion follows from (i). �

LEMMA 5.9
Let S be a scheme over Z[1/p], and let A/S be an abelian surface with OK -
multiplication such that P (A) is a locally constant sheaf of projective OK -modules of
rank 1. Let 0 � H � A[p] be an OK -invariant locally free subgroup scheme, and
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write π : A → A/H for the canonical projection. Then the image of the canonical
map π∗ : P (A/H ) → P (A) is equal to pP (A).

Proof
If we briefly write B = A/H , we have a commutative diagram

where pr denotes the natural projection. The morphism ξ exists because H ⊂ A[p].
The condition 0 � H � A[p] implies that both π and ξ have degree greater than 1.
Since the degree of pr is equal to p2, we have deg(π) = deg(ξ ) = p. In view of
Lemma 5.8, the above diagram induces the following inclusions for the polarization
modules:

p2P (A) = pr∗ P (A/A[p]) � π∗P (B) � P (A).

Therefore π∗P (B) = pP (A). �

Let l be a fractional ideal of K , and let E/S be an elliptic curve over a scheme S. We
consider the abelian surface

E ⊗Z l ∼= E ×S E (5.4)

with the canonical OK -action, the isomorphism being obtained by choosing a Z-basis
to l. Then the natural OK -action on l is given by a ring homomorphism OK ↪→
M2(Z), u �→ Ru. The corresponding OK -action on E ×S E is given by the inclusion
M2(Z) ⊂ End(E ×S E). One easily checks that for any u ∈ OK , the conjugate acts
by Ru′ = R∗

u
t = (

0 −1
1 0

)
Ru

(
0 1
−1 0

)
.

LEMMA 5.10
The dual of the abelian surface with OK -multiplicationE⊗Z l is given byE⊗Z (ld)−1.
Moreover, P (E ⊗Z l) ∼= l−2d−1, the isomorphism preserves the positivity, and the
Deligne-Pappas condition (DP) holds.

Proof
If we choose a Z-basis of l, the natural OK -action on l is given by a ring homomorphism
OK ↪→ M2(Z), x �→ Rx . The dual of l with respect to the trace form onK is equal to
(ld)−1, and the dual OK -action with respect to the dual basis is given by x �→ Rtx .

On the other hand, we may identify (E ×S E)∨ canonically with E ×S E. This
identifies the dual R∨ of a morphism R ∈ M2(Z) ⊂ End(E ×S E) with Rt . This
yields the first assertion.
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We obtain an OK -linear monomorphism l−2d−1 → P (E⊗Z l) by the assignment
x �→ (e ⊗ l �→ e ⊗ xl). One can check that totally positive elements are mapped to
polarizations. The natural composite morphism

(E ⊗Z l) ⊗OK (l−2d−1) −→ (E ⊗Z l) ⊗OK P (E ⊗Z l) −→ (E ⊗Z l)∨

is an isomorphism. Now, the assertion follows from [V, Proposition 3.3]. �

PROPOSITION 5.11
There exists a morphism (defined in the proof) from the moduli stack Y0(p) over
Sch /Z[1/p] of elliptic curves, together with a cyclic subgroup of orderp to the moduli
stack H over Sch /Z[1/p] of abelian schemes with OK -multiplication and d−1-
polarization with condition (DP). Moreover, the associated morphism Y0(p)(C) →
H(C) is induced by the morphism of Section 3.3, H → H2, τ �→ M−1

(
λ 0
0 1

)
(τ, τ ).

Proof
Let S be a scheme over Z[1/p], let E be an elliptic curve over S, and let C be a finite
locally free subgroup scheme of E whose geometric fibers are cyclic groups of order
p. We consider A = E ⊗Z c as in (5.4) with c as in the beginning of Section 5.2.
The subgroup C ⊗Z c ⊂ A of order p2 is invariant under the action of OK . It is also
invariant under the isomorphism σ = (

0 −1
1 0

) ∈ SL2(Z) ⊂ End(A).
The p-torsion A[p] ⊂ A is a subgroup of order p2, which is also invariant under

the action of OK , but A[p]σ = A[p′]. Consequently, H = (C ⊗Z c) ∩ A[p] is a
subgroup of A of order p, which is OK -invariant. The fact that the orders of C ⊗Z c

andA[p] are invertible on the base implies that they are both étale over S. HenceH is
also étale over S. We have an exact sequence of group schemes with OK -multiplication

0 −→ H −→ A −→ B −→ 0.

SinceH satisfies the conditions of [AG, Corollary 3.2], the abelian scheme B satisfies
(DP) for P (B), which is equal to pc−2d−1 ∼= d−1 by Lemmas 5.9 and 5.10. The
assignment (E,C) �→ B is functorial and defines a morphism Y0(p) → H.

We now trace this morphism on the complex points. Recall that points on�0(p)\H
correspond to isomorphism classes of elliptic curves over C together with a subgroup of
orderp via the assignment τ �→ = (Eτ , Cτ ) := (C/�τ , 〈1/p〉), where�τ = Zτ+Z,
and 〈1/p〉 denotes the subgroup of Eτ generated by the point 1/p+�τ . The abelian
surface A is defined by the lattice �τ,τ = c(τ, τ ) + c. The lattice for the quotient
A/(Cτ ⊗ c) is given by c(τ, τ ) + (1/p)c ⊂ C2 and that for A/A[p] is given by
cp−1(τ, τ ) + cp−1. Therefore the lattice for B is equal to �B = c(τ, τ ) + cp−1. On
the other hand, the abelian surface corresponding to the point M−1

(
λ 0
0 1

)
z ∈ �K\H2

is given by the lattice �̃z = OKM
−1
(
λ 0
0 1

)
z + OK . If we write M = (

a b
c d

)
and use
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(5.2), we see that

�̃z = 1

−cz+ a
(OK, OK )M−1

(
λ 0
0 1

)(
z

1

)
= λ

−cz+ a

(
c, (λc)−1

)(z
1

)
= λ

−cz+ a
(cz+ cp−1).

Therefore�B
∼= �̃(τ,τ ), and the associated morphism Y0(p)(C) → H(C) is induced

by τ �→ M−1
(
λ 0
0 1

)
(τ, τ ). �

Remark 5.12
(i) If we considerA = E⊗Z OK in the above construction instead ofA = E⊗Z c,

we obtain a moduli description of the morphism of (3.19).
(ii) If we simply consider E �→ A = E ⊗Z OK (and do not take a quotient), we

obtain a moduli description of the diagonal embedding SL2(Z)\H → �K (see
[Go, Chapter 2.5]).

By abuse of notation, we denote the coarse moduli scheme associated with Y0(p) by
Y0(p), too. In the following proposition, we extend the morphism of moduli schemes
Y0(p) → H given by Proposition 5.11 to the minimal compactifications. Recall that
the minimal compactification X0(p) of Y0(p) can be described analogously to (5.3)
as

X0(p) = Proj
( ⊕
k≥0, n1|k

H 0
(
X0(p), Mk(�0(p))

))
. (5.5)

Here, n1 is a suitable positive integer (depending on p), and (for k divisible by n1)
Mk(�0(p)) denotes the line bundle of modular forms on X0(p).

Moreover, by the q-expansion principle on modular curves, the global sections
of the bundle Mk(�0(p)) correspond to modular forms of weight k for �0(p) whose
Fourier coefficients at the cusp ∞ belong to Z[1/p].

PROPOSITION 5.13
There exists a unique proper morphism ϕ̄ : X0(p) → H of schemes over Z[1/p]
such that the diagram
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commutes. Here, ϕ denotes the morphism given by Proposition 5.11. Moreover, ϕ̄
maps the cusps of X0(p) to cusps of H. The image of ϕ̄ is the Zariski closure of the
Hirzebruch-Zagier divisor T (p) on the generic fiber HQ.

Proof
We have to prove the existence of ϕ̄. The uniqueness follows from the separatedness
of H.

We may assume that the integer n1 of (5.5) is equal to 2n0. The morphism ϕ

induces an isomorphism of line bundles on Y0(p):

ϕ∗(Mk(�K )
) ∼−→ M2k

(
�0(p)

)∣∣
Y0(p)

. (5.6)

This can be seen by considering ϕ on the universal objects over the moduli stacks
Y0(p) and H and using the definition of the line bundles of modular forms in terms of
relative cotangent bundles. The isomorphism (5.6) induces a morphism on the sections
over any open subset U ⊂ H:

ϕ∗ : Mk(�K )(U ) −→ M2k

(
�0(p)

)
(ϕ−1U ), s �→ s ◦ ϕ.

Consequently, ϕ gives rise to a graded morphism of graded rings

S :=
⊕

k≥0, n0|k
H 0

(
H̃, Mk(�K )

) ϕ∗
−→

⊕
k≥0, n0|k

H 0
(
Y0(p), M2k(�0(p))

)
.

The induced morphism over C is (up to a scalar power of p factor) given by mapping
a Hilbert modular form F of weight k to the modular form ϕ∗(F ) of weight 2k for
the group �0(p), as in Proposition 3.11 (which a priori may have singularities at the
cusps of �0(p)).

We first show that ϕ∗(F ) ∈ H 0
(
X0(p),M2k(�0(p))

)
for any F ∈

H 0(H̃, Mk(�K )). This implies thatϕ∗ factors into a graded homomorphism of graded
rings ⊕

n0|k
H 0

(
H̃,Mk(�K )

) ϕ̄∗
−→

⊕
n0|k

H 0
(
X0(p),M2k(�0(p))

)
and the homomorphism induced by the inclusion Y0(p) → X0(p).

Over the complex points, this follows by looking at the Fourier expansions. By
Proposition 3.11(ii), we see that ϕ∗(F ) is given by (3.21) and (3.22), and therefore
ϕ∗(F ) ∈ H 0

(
X0(p)(C),M2k(�0(p))

)
. Moreover, Hilbert modular forms with integral

Fourier coefficients are mapped to modular forms for �0(p) with coefficients in
Z[1/p]. The algebraic q-expansion is equal to the holomorphic Fourier expansion.
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Since taking q-expansions commutes with base change, the map on q-expansions
given by (3.21) and (3.22) defines the desired homomorphism ϕ̄∗ over Z[1/p].

By [H, Exercise 2.2.14], ϕ̄∗ induces a morphism

U
ϕ̄−→ Proj S = H,

defined on some open subsetU ⊂ Proj
⊕

n0|k H
0
(
X0(p),M2k(�0(p))

)
. By construc-

tion, U contains Y0(p). We now prove that U = X0(p). It suffices to show that there
is an F ∈ S+ such that ϕ̄∗(F ) does not vanish on the cusps 0 and ∞ as sections over
Z[1/p]. By the q-expansion principle, it suffices to show that there is a holomorphic
Hilbert modular F of positive weight with integral Fourier coefficients such that the
constant coefficient of ϕ̄∗(F ) at ∞ (resp., 0) is a unit in Z[1/p]. Since the constant
coefficient of ϕ̄∗(F ) at ∞ is up to a power of p equal to the constant coefficient of F
at c (resp., the constant coefficient of ϕ̄∗(F ) at 0 is up to a power of p equal to the
constant coefficient of F at c−1), it suffices to show that there is a holomorphic Hilbert
modular form F of positive weight with integral Fourier coefficients whose constant
coefficient at c (resp., c−1) is a unit in Z[1/p]. But the existence of such an F follows
from [C, Proposition 4.5]. (Alternatively, we can use an integral Borcherds product
whose divisor consists of anisotropic Hirzebruch-Zagier divisors.)

The properness of ϕ̄ follows from [H, Corollary 2.4.8(e)]. By Proposition 5.11,
we know that the Hirzebruch-Zagier divisor T (p) on the generic fiber HQ is equal
to the image of ϕ̄ ⊗ Q. Since ϕ̄ is proper, it follows that the Zariski closure of
T (p) is contained in the image of ϕ̄. The assertion follows from the irreducibility of
X0(p). �

Remark 5.14
The above argument, in particular, shows that for a Hilbert modular form F of weight
k with rational coefficients, the pullback to X0(p) of the corresponding section of
Mk(�K ) over Z[1/p] is equal to the section of M2k(�0(p)) over Z[1/p] correspond-
ing to the pullback ϕ̄∗(F ) over C.

PROPOSITION 5.15
Let F , G be Hilbert modular forms for �K with rational coefficients of weight k
(with k divisible by n0 and n1). Assume that all possible intersections among divF ,
divG, and T (p) on X(�K ) are proper. Let divN (F ), divN (G) be the divisors on
H̃(N) of the rational sections of Mk(�K (N)) associated with F and G. Moreover,
let S = Spec Z[1/Np] and g : X0(p) → S be given by the structure morphism. Then
we have, in CH1

fin(S) = Z1(S),

(hN )∗
(
TN (p) · divN (F ) · divN (G)

) = deg(πN ) · g∗
(

div(ϕ̄∗F ) · div(ϕ̄∗G)
)
.
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Proof
In the following, we consider all schemes as schemes over S. We use the diagram

(5.7)

We may view F and G as sections of the line bundle of modular forms on H̃(N),
H̃, and H. Throughout the proof, we temporarily denote the corresponding Cartier
divisors by divN (F ), div1(F ), and div(F ), respectively (and analogously for G). So,
divN (F ) = π∗

N div1(F ) and div1(F ) = u∗ div(F ). We may use intersection theory for
the intersection of a Cartier divisor and a cycle as described in [Fu, Chapters 1, 2] on
the normal schemes H̃ and H as intermediate steps (see [Fu, Chapter 20.1]).

By means of the projection formula, we obtain, in CH2
|TN (p)|∩| divN (F )|(H̃),

(πN )∗
(
TN (p) · divN (F )

) = (πN )∗
(
π∗
NT(p) · π∗

N div1(F )
)

= (πN )∗π∗
NT(p) · div1(F )

= deg(πN ) · T(p) · div1(F ).

For the latter equality, we have used the fact that πN is a flat morphism.
Since the intersection of TN (p), divN (F ), and divN (G) does not meet the generic

fiber, we have, in CH3
fin(H̃),

(πN )∗
(
TN (p) · divN (F ) · divN (G)

) = (πN )∗
(
π∗
NT(p) · π∗

N div1(F ) · π∗
N div1(G)

)
= (πN )∗

(
π∗
NT(p) · π∗

N div1(F )
) · div1(G)

= deg(πN ) · T(p) · div1(F ) · div1(G). (5.7)

Proposition 5.13 implies that u∗(T(p)) = ϕ̄∗(X0(p)). Thus, by the projection for-
mula, we get in CH3

fin(H) the equality

u∗
(
T(p) · div1(F ) · div1(G)

) = u∗
(
T(p)

) · div(F ) · div(G)

= ϕ̄∗
(
X0(p)

) · div(F ) · div(G).

Since ϕ̄ is proper, again using the projection formula we find

ϕ̄∗
(
X0(p)

) · div(F ) = ϕ̄∗
(
X0(p) · ϕ̄∗ div(F )

)
,
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which implies in CH3
fin(H) the equality

ϕ̄∗
(
X0(p)

) · div(F ) · div(G) = ϕ∗
(
X0(p) · ϕ̄∗ div(F )

) · div(G)

= ϕ̄∗
(
X0(p) · ϕ̄∗ div(F ) · ϕ̄∗ div(G)

)
= ϕ̄∗

(
ϕ̄∗ div(F ) · ϕ̄∗ div(G)

)
.

Since g∗ = h̄∗ ◦ ϕ̄∗, we find, in CH1
fin(S),

h̄∗u∗
(
T(p) · div1(F ) · div1(G)

) = g∗
(
ϕ̄∗ div(F ) · ϕ̄∗ div(G)

)
.

Combining this with (5.7) and Remark 5.14, we obtain the assertion. �

6. Arithmetic intersection theory on Hilbert modular varieties
Since there exists no arithmetic intersection theory for the stack H̃(1), we work with
the tower of schemes {H̃(N )}N≥3 as a substitute for H̃(1). We define in Section 6.3
the arithmetic Chow ring of the Hilbert modular variety without level structure to be
the inverse limit of the arithmetic Chow rings associated to this tower. In this way, we
obtain R-valued arithmetic intersection numbers; even so, for every level N , we need
only calculate the arithmetic intersection numbers up to contributions from the finite
places dividing N .

We keep our assumption that K be a real quadratic field with prime discriminant
D. Moreover, let N be an integer at least 3. Throughout this section, we mainly work
over the arithmetic ring Z[ζN, 1/N]. We put SN = Spec Z[ζN, 1/N] and

RN = R/
〈∑
p|N

Q · log(p)
〉
.

Consequently, we have an arithmetic degree map

d̂eg : ĈH
1
(SN ) −→ RN.

We consider a toroidal compactification hN : H̃(N) → SN of the Hilbert modular
variety H(N) for the principal congruence subgroup �K (N) as in Theorem 5.2. It is
an arithmetic variety of dimension 2 over Z[ζN, 1/N] (see [BKK2, Definition 4.3]).
If � = Hom(Q(ζN ),C) denotes the set of all embeddings from Q(ζN ) into C, then
the associated analytic space is

H̃(N)∞ = H̃(N)�(C) =
∐
σ∈�

H̃(N)σ (C).

Analogously, we let D∞ = ∐
σ∈�(H̃(N) \ H(N))σ (C). By construction, D∞ is

a normal crossing divisor on H̃(N)∞ which is stable under F∞. We write Dpre for the
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Deligne algebra with pre-log-log forms along D∞. These data give rise to arithmetic
Chow groups with pre-log-log forms denoted by ĈH

∗
(H̃(N),Dpre).

We write

dN = [Q(ζN ) : Q][�K : �K (N)] (6.1)

for the total degree of the morphism H̃(N) → H̃ of schemes over Z[1/N].
From Proposition 2.5, we deduce that the line bundle of modular forms of weight

k on H̃(N) equipped with the Petersson metric is a pre-log singular hermitian line
bundle, which we denote by Mk(�K (N)). Its first arithmetic Chern class defines a
class

ĉ1

(
Mk(�K (N))

) ∈ ĈH
1 (H̃(N),Dpre

)
which one may represent by (div(F ), gN (F )), where F is a Hilbert modular form of
weight k with Fourier coefficients in Q(ζN ) and gN (F ) = (2πik ·ω,− log ‖Fσ‖)σ∈� .
The first arithmetic Chern class ĉ1

(
Mk(�K (N))

)
is linear in the weight k.

6.1. Arithmetic Hirzebruch-Zagier divisors
If we consider Gm(z1, z2) as a Green function on �K (N)\H2, it immediately follows
from Proposition 2.17 that

gN (m) = ( −2∂∂̄Gm(z1, z2),Gm(z1, z2)
)
σ∈�

is a Green object for the divisor TN (m)∞ on H̃(N)∞. We obtain the following
arithmetic Hirzebruch-Zagier divisors:

T̂N (m) = (
TN (m), gN (m)

) ∈ ĈH
1 (H̃(N),Dpre

)
. (6.2)

Moreover, we define, for k sufficiently divisible,

ĉ1( M∨
1/2) = − 1

2k
ĉ1

(
Mk(�K (N))

) ∈ ĈH
1 (H̃(N),Dpre

)
Q
.

THEOREM 6.1
The subspace of ĈH

1
(H̃(N),Dpre)Q spanned by the T̂N (m) has dimension

dimCM
+
2 (D,χD) = [(D + 19)/24]. It is already generated by {T̂N (p); p ∈ I },

where I is any set consisting of all but finitely many primes that split in OK .

Proof
We choose for T̂N (−n) the representatives given in (6.2). That the subspace of
ĈH

1
(H̃(N),Dpre)Q spanned by the T̂N (m) has dimension at most dimCM

+
2 (D,χD)
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follows by Theorem 4.1 arguing as in [B2, Lemma 4.4]. Here, one also needs Propos-
ition 5.7 and its analytical counterpart Theorem 4.3(iv).

On the other hand, the dimension is at least dimCM
+
2 (D,χD) because of [Br1,

Theorem 9], which says that any rational function onX(�K ) whose divisor is supported
on Hirzebruch-Zagier divisors is a Borcherds product.

Let I be a set of primes as above, and let T (m) be any Hirzebruch-Zagier divisor.
By Theorem 4.15, there exist an integral Borcherds product of weight zero and thereby
a rational function on H̃(N) with divisor c̃(m)T (m)+∑

p∈I c̃(p)T (p) onX(�K ) and
c̃(m) �= 0. We may conclude by Proposition 5.7 and Theorem 4.3(iv) that

T̂N (m) = − 1

c̃(m)

∑
p∈I

c̃(p)T̂N (p) ∈ ĈH
1 (H̃(N),Dpre

)
Q
.

This proves the theorem. �

THEOREM 6.2
The arithmetic generating series

ÂN (τ ) = ĉ1( M∨
1/2) +

∑
m>0

T̂N (m)qm (6.3)

is a modular form in M+
2 (D,χD) with values in ĈH

1
(H̃(N),Dpre)Q, that is, an

element of M+
2 (D,χD) ⊗Q ĈH

1
(H̃(N),Dpre)Q.

Proof
By Theorem 6.1 and in view of Corollary 4.2, it suffices to show that for any weakly
holomorphic modular form f = ∑

n c(n)qn in A+
0 (D,χD), we have the relation

c̃(0) ĉ1( M∨
1/2) +

∑
n<0

c̃(n)T̂N (−n) = 0 (6.4)

in ĈH
1
(H̃(N),Dpre)Q. Since A+

0 (D,χD) has a basis of modular forms with rational
coefficients, it suffices to check (6.4) for those f with c̃(n) ∈ Z for n < 0. Then,
by Theorem 4.3, there exists a Borcherds product F of weight c(0) with divisor∑

n<0 c̃(n)T (−n) onX(�K ). We may assume that F is an integral Borcherds product
and therefore defines a section of Mc(0)(�K (N)). If we choose for T̂N (−n) the
representatives of (6.2), we may conclude by Proposition 5.7 and Theorem 4.3(iv)
that ∑

n<0

c̃(n)T̂N (−n) =
∑
n<0

c̃(n)
(
TN (−n), gN (−n)

) = (
divN (F ), gN (F )

)
.
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By (1.12), the right-hand side of the latter equality equals ĉ1

(
Mc(0)(�K (N))

)
. Us-

ing the linearity of the arithmetic Chow groups, we obtain (6.4) and hence the
assertion. �

6.2. Arithmetic intersection numbers and Faltings heights
Recall our convention that for an arithmetic cycle α ∈ ĈH

3
(H̃(N),Dpre)Q, we

frequently write α instead of d̂eg((hN )∗α).

LEMMA 6.3
Let k be a positive integer, and let p be a prime that is split in OK or p = 1; then
there is a γp,k ∈ Q such that we have, in RN ,

T̂N (p) · ĉ1

(
Mk(�K (N))

)2

= −k2dNvol
(
T (p)

)(
2
ζ ′
K (−1)

ζK (−1)
+ 2

ζ ′(−1)

ζ (−1)
+ 3 + log(D)

)
+ γp,k log(p).

In the proof of Theorem 6.4, we show that γp,k = 0 when (p,N) = 1.

Proof
Throughout the proof, all equalities that contain the image of the arithmetic degree
map d̂eg are equalities in RN .

Without loss of generality, we may assume k sufficiently large. In order to
prove the lemma, we represent T̂N (p) by (TN (p), gN (p)). We also choose integral
Borcherds products F , G of nonzero weight k so that F (κ) = 1 at all cusps κ
and so that all possible intersections on X(�K ) of T (p), div(F ), div(G) are proper.
Such Borcherds products exist by Theorem 4.12. We take the pairs (divN (F ), gN (F ))
and (divN (G), gN (G)) as representatives for ĉ1

(
Mk(�K (N))

)
, where we have put

gN (F ) = (2πikω,− log ‖Fσ (z1, z2)‖)σ∈� and gN (G) analogously. With our con-
vention on arithmetic intersection numbers, we have

T̂N (p) · ĉ1

(
Mk(�K (N))

)2

= d̂eg
(
(hN )∗(TN (p) · divN (F ) · divN (G))

)
+ 1

(2πi)2

∫
H̃(N)∞

gN (p) ∗ gN (F ) ∗ gN (G). (6.5)

For the first summand of (6.5), we obtain, by Proposition 5.15,

d̂eg
(
(hN )∗(TN (p) · divN (F ) · divN (G))

)
= deg(πN ) · d̂eg

(
g∗(div(ϕ∗F ) · div(ϕ∗G))

) + γ ′
p,k log(p)

for some γ ′
p,k ∈ Q.
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Since F and G are integral Borcherds products, they are invariant under
Aut(C/Q). Therefore, by means of Remark 3.5, we find, for the second summand of
(6.5),∫

H̃(N)∞
gN (p) ∗ gN (F ) ∗ gN (G)=[Q(ζN ) : Q][�K : �K (N)]

∫
X̃(�K )

g(p) ∗ g(F ) ∗ g(G).

The latter integral was calculated in Theorem 3.14:

1

(2πi)2

∫
X̃(�K )

g(p) ∗ g(F ) ∗ g(G)

= −k2 vol
(
T (p)

)(
2
ζ ′
K (−1)

ζK (−1)
+ 2

ζ ′(−1)

ζ (−1)
+ 3 + log(D)

)
− k2 vol

(
T (p)

)p − 1

p + 1
log(p) − (

div(ϕ∗F ), div(ϕ∗G)
)

X0(p),fin
.

Observe that in this formula, the contribution of the finite primes is calculated with
respect to a regular model of X0(p) over Spec Z. Since deg(πN ) = [�K : �K (N)],
and because

d̂eg
(
g∗(div(ϕ∗F ) · div(ϕ∗G))

) = [Q(ζN ) : Q]
(

div(ϕ∗F ), div(ϕ∗G)
)

X0(p),fin
,

we obtain the assertion. �

THEOREM 6.4
Let Mk(�K (N)) be the line bundle of modular forms of weight k on H̃(N) equipped
with the Petersson metric as in Definition 2.4. Then in RN , we have the following
identities of arithmetic intersection numbers:

ÂN (τ ) · ĉ1

(
Mk(�K (N))

)2=k
2

2
dNζK (−1)

(ζ ′
K (−1)

ζK (−1)
+ζ

′(−1)

ζ (−1)
+3

2
+1

2
log(D)

)
·E(τ ).

Here, ÂN (τ ) is the arithmetic generating series (6.3), andE(τ ) is the holomorphic Ei-
senstein series of weight 2 (see (4.2)). In particular, for the arithmetic self-intersection
number of Mk(�K (N)), we have, in RN ,

Mk

(
�K (N)

)3 = −k3dNζK (−1)
(ζ ′

K (−1)

ζK (−1)
+ ζ ′(−1)

ζ (−1)
+ 3

2
+ 1

2
log(D)

)
. (6.6)

Proof
Throughout the proof, all equalities that contain the image of the arithmetic degree
map d̂eg are equalities in RN .
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Let us start by proving (6.6). By definition, we have

Mk

(
�K (N)

)3 = ĉ1

(
Mk(�K (N))

)3 = d̂eg
(
(hN )∗( ĉ1( Mk(�K (N)))3)

)
.

By the multilinearity of the intersection product, we may assume k to be sufficiently
large. In view of Corollary 4.16, there exists a Borcherds product F of positive
weight k with divisor div(F ) = ∑

p a(p)T (p), where a(p) �= 0 only for primes p
with χD(p) = 1. (Apply Corollary 4.16 with m equal to any given prime p0 with
χD(p0) = 1.) We have shown in the proof of Theorem 6.2 that any such Borcherds
product gives rise to a decomposition

ĉ1

(
Mk(�K (N))

) =
∑
p

a(p)T̂N (p).

Hence, in view of Lemma 6.3, we obtain the equality

ĉ1

(
Mk(�K (N))

)3

= −k2dN
∑
p

a(p) vol
(
T (p)

)(
2
ζ ′
K (−1)

ζK (−1)
+ 2

ζ ′(−1)

ζ (−1)
+ 3 + log(D)

)
+

∑
p

a(p)�=0

γp,k log(p)

for some γp,k ∈ Q. There also exists a Borcherds product G with divisor div(G) =∑
p b(p)T (p), where b(p) �= 0 only for primes p with χD(p) = 1 and a(p) = 0. By

means of the well-definedness of the arithmetic intersection numbers, we find∑
p prime
a(p)�=0

γp,k log(p) =
∑
p prime
b(p)�=0

γp,k log(p) ∈ RN,

which by the unique factorization in Z, in turn, implies that all γp,k vanish. This shows
that the formula of Lemma 6.3 actually holds with γp,k = 0. Since F is a Borcherds
product of weight k, we have the relation

1

2
ζK (−1)k =

∑
p

a(p) vol
(
T (p)

)
.

This concludes the proof of (6.6).
Now, let T (m) be any Hirzebruch-Zagier divisor. In view of Corollary 4.16, there

exists a Borcherds product F whose divisor is equal to a(m)T (m) + ∑
p a(p)T (p),

where a(m) �= 0, the a(p) are integral coefficients, and a(p) �= 0 only for primes p
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with χD(p) = 1. Therefore

T̂N (m) · ĉ1

(
Mk(�K (N))

)2

= 1

a(m)

(
ĉ1

(
Mk(�K (N))

)3 −
∑
p

a(p)T̂N (p) · ĉ1

(
Mk(�K (N))

)2
)

= −k2dN vol
(
T (m)

)(
2
ζ ′
K (−1)

ζK (−1)
+ 2

ζ ′(−1)

ζ (−1)
+ 3 + log(D)

)
.

In the last equality, we have used the relation a(m) vol(T (m)) = (ζK (−1)/2)k −∑
p a(p) vol(T (p)). Hence the claim follows from (4.3). �

THEOREM 6.5
If T (m) is an anisotropic Hirzebruch-Zagier divisor, then the Faltings height in RN

of its model TN (m) ∈ Z1
U (H̃(N)) is given by

htMk(�K (N))

(
TN (m)

) = −(2k)2dN vol
(
T (m)

)(ζ ′(−1)

ζ (−1)
+ 1

2
+ 1

2

σ ′
m(−1)

σm(−1)

)
.

Proof
By means of formula (1.16), the Faltings height equals

htMk(�K (N))

(
TN (m)

)
= T̂N (m) · ĉ1

(
Mk(�K (N))

)2 −
∑
σ∈�

1

(2πi)2

∫
H̃(N)σ

Gm ∧ c1

(
Mk(�K (N))

)2
.

(6.7)

The first term is computed in Theorem 6.4. The integral is, by functoriality of the
intersection product, equal to dN times the quantity from (3.18) of Corollary 3.9. �

Remark 6.6
(i) Observe that in view of Lemma 3.1, we may calculate formula (6.7) for allT (m) and,
in particular, also for isotropic Hirzebruch-Zagier divisors. We may take this quantity
as an ad hoc definition for the Faltings height of TN (m) with respect to Mk(�K (N)).
For example, if m is square free and χD(p) = 1 for all primes p dividing m, then up
to boundary components, the normalization of TN (m) is isomorphic to some modular
curve (see Remark 2.16). Although TN (m) /∈ Z1

U (H̃(N)), we obtain, in RN ,

htMk(�K (N))

(
TN (m)

) = −(2k)2 vol
(
TN (m)

)(ζ ′(−1)

ζ (−1)
+ 1

2
− 1

4

∑
p|m

p − 1

p + 1
log(p)

)
.

Up to the sum over primes dividing the level m, this equals the arithmetic self-
intersection number of the line bundle of modular forms on that modular curve as
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computed in [Kü2]. It would be interesting to obtain a geometric interpretation of the
difference using the change of moduli problems over Z extending Proposition 5.11.
At the primes dividing m, the morphism of line bundles (5.6) is not necessarily an
isomorphism anymore.

(ii) Recall that if T (m) ⊂ X(�K ) is anisotropic, then its normalization is iso-
morphic to some Shimura curve of discriminant m. For example, if m is square free
with an even number of prime factors, and χD(p) = −1 for all primes p dividing m,
then T (m) is anisotropic and our formula gives, in RN ,

htMk(�K (N))

(
TN (m)

) = −(2k)2 vol
(
TN (m)

)(ζ ′(−1)

ζ (−1)
+ 1

2
− 1

4

∑
p|m

p + 1

p − 1
log(p)

)
.

(6.8)

Related formulas have been obtained by Maillot and Roessler (see [MR1, Proposi-
tion 2.3]) using completely different techniques.

In recent work, Kudla, Rapoport, and Yang stated a conjecture for the arithmetic
self-intersection number of the Hodge bundle on a Shimura curve (see [KRY, (0.17),
p. 891]). In the forthcoming work [KK], it will be shown that (6.8), together with
versions of Propositions 3.11 and 5.11 for Shimura curves, can be used to obtain a
proof of their conjecture.

6.3. R-valued arithmetic intersection theory
We now choose a family of toroidal compactifications H̃(N), N ≥ 3, provided
with a system of morphisms πM,N : H̃(M) → H̃(N) given for all N |M such that
πM,N ◦ πL,M = πL,N .

Then we define the arithmetic Chow groups

ĈH
∗
(H̃,Dpre) = lim←−

N≥3

ĈH
∗(H̃(N),Dpre

)
.

The group ĈH
∗
(H̃,Dpre) has a commutative and associative product defined com-

ponentwise.
An element x ∈ ĈH

∗
(H̃,Dpre) is a family (xN )N≥3 with xN ∈ ĈH

∗
(H̃(N),Dpre)

such that for all N |M , we have π∗
M,NxN = xM . Therefore

T̂(m) := (
T̂N (m)

)
N≥3

∈ ĈH
1
(H̃,Dpre).

Analogously, we define the arithmetic characteristic class ĉ1(Mk) of the line bundle
of modular forms and the generating series Â(τ ).
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PROPOSITION 6.7
There exists a well-defined arithmetic degree map

d̂eg : ĈH
3
(H̃,Dpre) → R.

Proof
The arithmetic degree maps d̂eg : ĈH

3
(H̃(N),Dpre) → RN induce an arithmetic

degree map

d̂eg : ĈH
3
(H̃,Dpre) → lim←−

N≥3

RN,

given in each stage by d̂eg(x)N = (1/dN ) d̂eg(xN ). But now, for any two in-
tegers N,M ≥ 3 with (N,M) = 1, by the unique factorization in Z, the
sequence

0 −→ R −→ RN ⊕ RM −→ RNM, (6.9)

where the first map is the diagonal and the second is the difference, is exact. Thus we
have an isomorphism lim←−N≥3

RN
∼= R. �

By abuse of notation, given an element x ∈ ĈH
3
(H̃,Dpre), we denote also by x its

image d̂eg(x) ∈ R under the arithmetic degree map.
Then Theorem 6.4 implies the following.

THEOREM 6.8
We have the following identity of modular forms:

Â(τ ) · ĉ1( Mk)
2 = k2

2
ζK (−1)

(ζ ′
K (−1)

ζK (−1)
+ ζ ′(−1)

ζ (−1)
+ 3

2
+ 1

2
log(D)

)
· E(τ ).

Analogously, we can define a height pairing

(· | ·) : ĈH
2
(H̃,Dpre) ⊗ lim←−

N≥3

Z1
U

(
H̃(N)

) −→ R

and the associated Faltings height htMk
(Z) = (̂c1( Mk)2 |Z). The sequence

T(m) = (TN (m))N≥3 belongs to lim←−N≥3
Z1
U (H̃(N)). Theorem 6.5 now implies the

following.
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THEOREM 6.9
If T (m) is an anisotropic Hirzebruch-Zagier divisor, then the Faltings height of T(m)
is given by

htMk

(
T(m)

) = −(2k)2 vol
(
T (m)

)(ζ ′(−1)

ζ (−1)
+ 1

2
+ 1

2

σ ′
m(−1)

σm(−1)

)
.

Remark 6.10
Although it is more canonical to work with the whole tower {H̃(N)}N≥3, the proof

of Proposition 6.7 shows that it is already enough to pick up two integers N,M ≥ 3
with (N,M) = 1 and define arithmetic Chow groups ĈH

∗
(H̃N,M,Dpre) as the kernel

of the morphism

Again, this group ĈH
∗
(H̃N,M,Dpre)Q has a commutative and associative product

defined componentwise and an R-valued arithmetic degree map. Similarly, we can
define the arithmetic Hirzebruch-Zagier divisors, the arithmetic first Chern class of
the line bundles of modular forms, and the arithmetic generating series in this group.

Remark 6.11
Finally, we note that if there were an arithmetic Chow ring for the stack H̃(1)
satisfying the usual functorialities, then it would map to ĈH

∗
(H̃,Dpre), and the

arithmetic degrees, as well as the values of the height pairing, would coincide.
One can also follow different strategies to obtain R-valued arithmetic inter-

section numbers. First, we note that the proofs of Theorems 6.8 and 6.9 would
directly carry over to other level structures. For instance, Pappas constructed
regular models over Z of Hilbert modular surfaces associated to congruence sub-
groups �00(A) ⊂ �K (see [P]). If there exists a toroidal compactification over Z of
HFil

00 (A) (see [P, p. 51]), one can work on that arithmetic variety and derive formulas
as in Theorems B and C. Alternatively, one can try to work directly on the coarse
moduli space. This requires arithmetic Chow groups for singular arithmetic varieties
of some kind (e.g., for arithmetic Baily-Borel compactifications of Hilbert modular
surfaces), equipped with arithmetic Chern-class operations for hermitian line bundles.
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