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Two hundred and four Escherichia coli strains were isolated from external and visceral cavity surfaces of 102
slaughtered broiler carcasses. The isolates were screened to determine the phylogenetic background and pres-
ence of Shiga toxins (stx1, stx2), intimin (eae) and beta-lactamase (blaTEM, blaSHV) genes. Phylotyping results re-
vealed that the E. coli isolates segregated in four phylogenetic groups A (56.86%), B1 (19.12%), B2 (4.90%) and
D (19.12%). PCR assays revealed that 13 isolates (6.37%) from 12 carcasses were positive for eae (12 isolates)
and/or stx2 (2) genes. The eae positive isolates belonged to phylogenetic groups A (A0, A1), B1, B2 (B22) and D
(D2). Two stx2 positive and seven eae positive isolates were recovered from visceral cavity surface, whereas
only 5 eae positive isolates were from the external surface of the carcasses. On the other hand, thirty one E. coli
strains isolated from visceral cavity and external surface of 26 carcasses carried the blaTEM (27) and blaSHV (4)
genes and belonged to different phylo-groups. This study suggests that broiler carcasses could be considered
as an important source of EPEC and STEC pathotypes in southeast of Iran; as well as the examined antibiotic re-
sistance genes, which were carried by some isolates and could be transferred to pathogens through the food
chain.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Escherichia coli (E. coli) strains are a part of intestinal normal micro-
flora ofmany animals, includinghumans and birds (Brzuszkiewicz et al.,
2011). Most E. coli strains are harmless commensals; however, some
strains have evolved pathogenic mechanisms to cause enteric/
diarrheagenic infections in humans and animals (Clements et al.,
2012). The diarrheagenic E. coli are divided into seven pathotypes in-
cluding enterotoxigenic E. coli (ETEC), enteropathogenic E. coli (EPEC),
enterohemorrhagic E. coli (EHEC), Shiga toxin-producing E. coli (STEC),
enteroinvasive E. coli (EIEC), enteroaggregative E. coli (EAEC) and dif-
fusely adhering E. coli (DAEC) (Nunes et al., 2012). Some STEC strains
are regarded as emerging food-borne pathogens of significant clinical
and public health concern (Kawano et al., 2012), which are the leading
cause of several human illnesses ranging from symptom-free carriage to
hemorrhagic colitis and even life-threatening sequelae such as
hemolytic uremic syndrome (HUS) (Bandyopadhyay et al., 2011). The
virulence factors contributing to STEC pathogenesis include the produc-
tion of two phage-encoded toxins, Shiga toxin 1 (STX1) and/or Shiga
toxin 2 (STX2) (Döpfer et al., 2012). Another important virulence factor

is the outer membrane protein, intimin, which is responsible for
attaching and effacing (AE) lesions in the enterocytes. Intimin is
encoded by the eae gene located on a chromosomal pathogenicity island
named the locus for enterocyte effacement (LEE) (Bentancor et al.,
2012). EPEC pathotype is defined as intimin-containing diarrheagenic
E. coli isolates that possess the ability to form AE lesions, but not possess
genes coding Shiga toxins (Bhat et al., 2008).

STEC have a low minimal infectious dose and may survive in a
range of foods and also in the harsh environment of the gastrointestinal
tract (Rode et al., 2012). Although ruminants, especially cattle are the
principal reservoir of STEC strains, some of these pathogens have been
detected from the fecal samples of healthy birds (Ghanbarpour and
Daneshdoost, 2012). Transmission to humansmainly occurs by contam-
inated foods of animal origin or cross contamination due to inadequate
food manipulation. The occurrence of STEC contamination in chicken
meat can be related to the evisceration process, mainly to the rupture
of the animal intestine (Alonso et al., 2012).

Resistance to antimicrobial agents is a matter of great concern in the
current antimicrobial resistance scenario (Escudero et al., 2010). Trans-
fer of antimicrobial resistant strains of E. coli from chickens to the food
chain is a well-recognized phenomenon (Obeng et al., 2012). Produc-
tion of beta-lactamases confers resistance to the majority of the
commonly used beta-lactam antimicrobials (Ryu et al., 2012). This re-
sistance has been observed in strains originating from all animal spe-
cies, especially in the isolates from intensive broiler productions
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(Depoorter et al., 2012). Beta-lactamases have been observed in virtual-
ly all the species of Enterobacteriaceae family and are oftenmediated by
blaTEM and blaSHV genes (Monstein et al., 2007; Sharma et al., 2010).

Phylogenetic analysis of the E. coli species has revealed that the
majority of strains belong to four phylogenetic groups: A, B1, B2, and
D. There is increasing evidence that the different phylogenetic groups
play a distinct ecological role (Chaudhuri and Henderson, 2012;
Escobar-Páramo et al., 2004).

The purposes of this study were to determine (i) the presence of
Shiga toxins and intimin genes, (ii) genotypic detection of some beta-
lactamases, and (iii) phylogenetic distribution of E. coli isolates from
broiler carcasses, collected during the slaughtering process in the south-
east of Iran.

2. Materials and methods

2.1. Sampling and microbial isolates

FromOctober 2009 toMarch 2010, samples from102healthy broiler
carcasses were obtained during slaughter in an abattoir in the Kerman
province (southeastern), Iran. The sampled broiler carcasses were
aged between 45 and 58 days and originated from seven different
flocks. Swab samples were collected from the external and visceral cav-
ity surfaces of each carcass. The external swab samples were obtained
from the skin of neck, breast, wing, leg and back area of carcasses after
defeathering. Visceral cavity swab samples were obtained from the
same carcasses after evisceration. The swab sampleswere placed direct-
ly in tubes containing Stuart transport medium (Oxoid, Hampshire, En-
gland) and transferred to the laboratory for immediate processing. Each
sample was streaked on Mac Conkey agar plates (Biolife Laboratories,
Milan, Italy) and incubated at 37 °C for 24 h. Bacterial colonies showing
E. coli characteristics were submitted to Gram staining and were con-
firmed to be E. coli by using the biochemical API 20E identification sys-
tem (BioMérieux, Marcy l'Etoile, France). The confirmed E. coli isolates
were stored in Luria–Bertani broth (Invitrogen, Paisley, Scotland) with
30% sterile glycerol at−80 °C. One confirmed isolate was chosen from
each sample; therefore, the PCR assays were undertaken on 204 isolates
(102 from visceral cavity and 102 from external surface).

2.2. Phylotyping assay

Several strains from the ECOR collection were used as controls for
phylogenetic grouping: ECOR58 (B1 group), ECOR50 (D group), ECOR62
(B2 group) and E. coli strainMG1655 as a positive control for phylogenetic
ECOR group A. The triplex PCR method described by Clermont et al.
(2000) was used to assign the E. coli isolates. The presence/absence of
the three PCR products (chuA, yjaA and tspE4.C2) is used to assign an
unknown isolate to one of the phylo-groups. The Clermont method has
the potential to yield seven distinct phylogenetic groups and subgroups
(A0, A1, B1, B22, B23, D1 and D2). The phylotype of each isolate was deter-
mined as described previously (Escobar-Páramo et al., 2004; Gordon
et al., 2008).

2.3. PCR assays

Freshly grown over night cultures of E. coli isolates and reference
strains were used for DNA extraction by boiling. Sakaï reference strain
was used as positive control for eae, stx1 and stx2 genes and E. coli strain
MG1655was used as a negative control for these genes. Reference E. coli
strains ATCC 35218 and Klebsiella 700603 were used as positive control
for blaTEM and blaSHV genes respectively. E. coli strain ATCC 25922 was
used as negative control for β-lactamase genes. DNA extracts from
E. coli isolates and reference strains were tested by PCR assays for the
presence of the genes encoding β-lactamase as described by Sharma
et al. (2010) and stx1, stx2 and eae, genes as described by Paton and
Paton (1998). Specific primers (TAG Copenhagen, Denmark) used for

amplification of the genes are presented in Table 1. PCR-amplified prod-
ucts were electrophoresed in 2% agarose gels and stainedwith ethidium
bromide.

3. Results

From the 102 broiler carcasses, 204 E. coli isolateswere obtained and
confirmed for molecular examinations. PCR phylotyping revealed that
the 204 E. coli isolates segregated in phylogenetic groups A (56.86%),
B1 (19.12%), B2 (4.90%) andD (19.12%). The results showed that the iso-
lates belong to 7 phylogenetic subgroups, including 75 isolates (36.76%)
to A0, 41 isolates (20.10%) to A1, 39 (19.12%) isolates to B1, 5 isolates
(2.45%) to B22, 5 isolates (2.45%) to B23, 30 isolates (14.71%) to D1 and
9 isolates (4.41%) to subgroup D2 (Table 2).

Among the 102 sampled carcasses, 12 carcasses (11.76%) were pos-
itive for stx2 and/or eae genes,whereas 13 (6.37%) isolates were positive
for these genes. Out of positive E. coli isolates, 11 isolates from 10 car-
casses were positive for eae gene. Only one isolate from a carcass pos-
sessed stx2 and one isolate from another carcass possessed both stx2
and eae genes. None of the isolates was positive for stx1 gene. The posi-
tive isolates for eae and stx2 genes were distributed in 4 phylogenetic
groups and 5 phylogenetic subgroups (Table 3).

Among the 204 investigated isolates, 27 isolates (13.24%) from 22
carcasses and 4 isolates (1.96%) from 4 other carcasses were positive
for the blaTEM and blaSHV genes respectively. These positive isolates
belonged to 4 phylogroups and 6 phylo-subgroups (A0, A1, B1, B22, D1

and D2). Twenty-seven positive isolates for blaTEM gene belonged to A
(14 isolates), B1 (6), B2 (2) and D (5) phylo-groups. All the four blaSHV
positive isolates belong to A phylo-group (Table 3). According to the re-
sults, all the positive isolates had only one of the β-lactamase encoding
genes (blaTEM or blaSHV).

PCR assays for phylotyping of 102 external isolates indicated that the
isolates are distributed in phylo-groups: 64 (62.75%) isolates in A, 19
(18.63%) in B1, 7 (6.86%) isolates in B2 and 12 (10.76%) isolates in D.
These isolates fell into 7 phylo-subgroups (Table 2). Among 102 exter-
nal isolates, 5 were positive for eae gene, which belonged to A0 (1 iso-
late), A1 (2), and B22 (2) phylo-subgroups. None of the isolates
possessed stx2 gene. According to PCR assays, 18 external isolates pos-
sessed β-lactamase encoding genes, of which 15 blaTEM positive isolates
segregated in A0 (8 isolates), A1 (1), B1 (4), B22 (1) and D1 (1) phylo-
subgroups. The three other isolates were positive for blaSHV gene,
which belonged to A0 (1) and A1 (2) phylo-subgroups (Table 3).

One hundred and two visceral cavity isolates fell into four phyloge-
netic groups, including 50.98% (52 isolates) into A, 19.61% (20) into
B1, 2.94% (3) into B2 and 26.47% (27) into D group. The isolates were
distributed in 4 and six phylo-groups and subgroups respectively
(Table 2). Among the visceral cavity isolates, 7 isolates were positive

Table 1
The specific primers used in this study.

Gene Primer sequence (5′–3′) Product
size (bp)

References

blaTEM ATAAAATTCTTGAAGACGAAA
GACAGTTACCAATGCTTAATC

1080 Sharma et al. (2010)

blaSHV GGGTAATTCTTATTTGTCGC
TTAGCGTTGCCAGTGCTC

928 Sharma et al. (2010)

stx1 ATAAATCGCCATTCGTTGACTAC
AGAACGCCCACTGAGATCATC

180 Paton and Paton (1998)

stx2 GGCACTGTCTGAAACTGCTCC
TCGCCAGTTATCTGACATTCTG

255 Paton and Paton (1998)

eae GACCCGGCACAAGCATAAGC
CCACCTGCAGCAACAAGAGG

384 Paton and Paton (1998)

chuA GACGAACCAACGGTCAGGAT
TGCCGCCAGTACCAAAGACA

279 Clermont et al. (2000)

yjaA TGAAGTGTCAGGAGACGCTG
ATGGAGAATGCGTTCCTCAAC

211 Clermont et al. (2000)

tspE4C2 GAGTAATGTCGGGGCATTCA
CGCGCCAACAAAGTATTACG

152 Clermont et al. (2000)
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for eae and 2 were positive for stx2. Of the seven eae positive isolates, 3
isolates were from A phylo-group (Table 3). One of the stx2 positive iso-
lates possessed eae (from D2 phylo-subgroup) and another one pos-
sessed blaTEM gene (from A1 phylo-subgroup) simultaneously
(Table 3). Of the 102 visceral cavity isolates, 12 isolates carried blaTEM
gene, which belonged to A0 (4 isolates), A1 (1), B1 (2), B22 (1), D1 (2)
and D2 (2) phylo-subgroups. The only blaSHV positive isolate from the
visceral cavity surface belonged to A phylo-group (Table 3).

4. Discussion

Human infectionwith STEC strains occurs after consumption of con-
taminated food or contact with an infected animal or human. Therefore,
identification of the sources of infection is an important step towards
decreasing the prevalence of this pathogen and thus decreasing the
risk of infection of human (Pedersen et al., 2006). Cattle and sheep are
thought to be the major reservoir of STEC, since the species often carry
STEC in their intestinal flora and serve as a source of food contamination
(Martins da Costa et al., 2011). There are some studies about the pres-
ence and prevalence of STEC and EPEC in healthy poultry feces and
product. The results of the present study revealed the presence of two
stx2 positive isolates, which were considered as STEC pathotype. On
the other hand, 11% of the examined external and visceral cavity isolates
were only positive for the eae gene, which were considered as EPEC
strains. Moreover, one of the isolates possessed both stx2 and eae
genes which is considered as highly pathogenic. This isolate belonged
to phylo-groupD and phylo-subgroupD2. Salehi (2012) in Iranhas eval-
uated the presence of virulence factors in 290 fecal E. coli isolates from
healthy broilers and found out that 9 and 3 isolates possessed eae and
stx2 genes respectively, which is similar to the results of the current
study. Several studies also revealed that EPEC contamination predomi-
nated over STEC contamination in chicken meat and feces (Alonso
et al., 2012; Kagambega et al., 2012; Kobayashi et al., 2002; Oh et al.,
2012).

STEC and EPEC strains are important pathogens related to public
health and there are several reports of these strains' contamination in
chickenmeat (Chinen et al., 2009; Drugdová et al., 2010). Retail poultry
products are routinely heavily contaminated with avian fecal E. coli iso-
lates (Johnson et al., 2003). Farooq et al. (2009) in India found that 4.24%
of the investigated avian species isolates were STEC and 15.56% were
EPEC. Another study on avian fecal E. coli isolates revealed that 4.5%
and 1.8% of isolates were positive for stx2 and eae genes respectively
(Ghanbarpour et al., 2011).

According to the results, eae positive (STEC) and stx2 positive (EPEC)
isolates belonged to A, B and D phylogenetic groups. A phylogenetic
analysis indicated that EHEC/eae + STEC isolates from animal origin
fell into phylogenetic groups A (35.5%) and B1 (38.7%), and EPEC strains
belonged to groups B1 (69.2%), and B2 (30.8%) (Tramuta et al., 2008).
Ghanbarpour et al., 2011 reported that commensal stx2 positive E. coli
isolates belong to B1 and D phylogenetic groups, whereas the eaeA pos-
itive isolates fell into group A. In USA the majority of the STEC strains,
which were initially isolated from the ruminants, carried the stx1c and/
or stx2d, ehxA, and saa genes and fell into E. coli phylogenetic group B1
(Ishii et al., 2007). Moreover, some data referring to the relationships
between the phylogenetic background of E. coli and the presence of stx
and eae genes in animals reveal partial similarities to the results of the
current study (Girardeau et al., 2005).

To understand the role of commensals in the acquisition and main-
tenance of various virulence genes, it is essential to investigate the evo-
lutionary origin of these strains (Baldy-Chudzik et al., 2008). According
to the results of the current study, the isolates fell into 4 phylogenetic
groups, with the majority classified in the A phylo-group. Several
studies indicated that commensal strains fall into groups A and B1,
whereas extraintestinal E. coli (ExPEC) belong mainly to group B2 and
diarrheagenic strains fall into groups A, B1, and D (Chapman et al.,
2006; Gordon et al., 2008). genotyping of E. coli from environmental
and animal samples in USA showed that chicken intestinal tract isolates
were distributed over all the four phylo-groups. In agreement with the
results, a survey of 40 isolates recovered from fecal samples of 20

Table 2
Distribution of visceral cavity and external E. coli isolates in detected phylo-groups/subgroups.

Phylo-group A no. (%) B1 no. (%) B2 no. (%) D no. (%) Total no. (%)

Phylo-subgroup A0 A1 B1 B22 B23 D1 D1

Visceral cavity isolates 32 (31.37) 20 (19.61) 20 (19.61) 1 (0.98) 2 (1.96) 20 (19.61) 7 (6.86) 102 (100.00)
External isolates 43 (42.16) 21 (20.59) 19 (18.63) 4 (3.92) 3 (2.94) 10 (9.80) 2 (1.96) 102 (100.00)
Total phylo-subgroup 75 (36.76) 41 (20.10) 39 (19.12) 5 (2.45) 5 (2.45) 30 (14.71) 9 (4.41) 204 (100.00)
Total phylo-group 116 (56.86) 39 (19.12) 10 (4.90) 39 (19.12) 204 (100.00)

Table 3
Details of positive isolates for stx1, stx2, eae, blaTEM and blaSHV according to phylogenetic background.

Isolates from visceral cavity surface of the carcasses Isolates from external surface of the carcasses

No Phylotype genes No Phylotype genes

stx1 stx2 eae blaTEM blaSHV stx1 stx2 eae blaTEM blaSHV

4 A (A0)a − − − + − 8 A (A0) − − − + −
2 D (D2) − − − + − 4 B1 (B1) − − − + −
2 D (D1) − − − + − 2 A (A1) − − − − +
2 A (A0) − − + − − 2 B2 (B22) − − + − −
2 B1 (B1) − − − + − 2 A (A1) − − + − −
2 B1 (B1) − − + − − 1 B2 (B22) − − − + −
1 A (A0) − − − − + 1 D (D1) − − − + −
1 B2 (B22) − − − + − 1 A (A0) − − − − +
1 D (D2) − − + − − 1 A (A0) − − + − −
1 D (D2) − + + − − 1 A (A1) − − − + −
1 A (A1) − − + − −
1 A (A1) − + − + −
Positive isolates
(no.)

0 2 7 12 1 Positive isolates
(no.)

0 0 5 15 3

Positive isolates (%) 0.00 1.96 6.86 11.76 0.98 Positive isolates (%) 0.00 0.00 4.90 14.71 2.94

a Phylo-group/phylo-subgroup.
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chickens reared in Maryland showed that 50% were phylotype A
(Higgins et al., 2007). A phylogenetic typing of broiler fecal and meat
isolates in Slovakia revealed that all fecal isolates from healthy chicken
broilers fell into pathogenic group D (62.5%) and group B2 (37.5%),
while 53% of meat-associated strains belonged to commensal phyloge-
netic groups A and B1 (Drugdová et al., 2010). It is believed that
although E. coli commensal strains are not completely associated with
the occurrence of disease, they carry some of the virulence genes
(Baldy-Chudzik et al., 2008).

One of the purposes of this studywas to determine the presence and
prevalence of blaTEM and blaSHV genes and phylogenetic background of
the positive isolates. Several antibacterial agents are widely used as
feed additives in the poultry industry to treat, prevent infections and
promote growth in Iran. Widespread antibiotic prescription in the
field of veterinary medicine may be one of the factors causing the pres-
ence of antibiotic-resistant bacteria to reach epidemic proportions in
recent years (Saei et al., 2012). In Portugal, analyses of E. coli isolates
from uncooked chicken carcasses, feces of healthy chickens and feces
of healthy swine samples demonstrated that ESBL-producing isolates
belonged to phylogenetic groups A, D or B1 (Machado et al., 2008). A
study on human enterohemorrhagic E. coli (EHEC) infections in France
showed that all of the ESBL-producing isolates were allocated to one
of the four phylogenetic groups A, B1, B2, and D. The results indicated
that 55.4% of these isolates belonged to group A, 25.5% to group D,
15.6% to group B1 and only one strain was found in group B2 (Valat
et al., 2012). It is believed that antibiotic resistant human isolates
were overall more similar to poultry isolates than to antibiotic-
susceptible human isolates (Johnson et al., 2007).

In conclusion, the results of this study indicate that E. coli isolates,
which originated from the external and visceral cavity surfaces of broil-
er carcasses, belong to different phylo-groups/subgroups, and contain
intimin, Shiga toxin and beta-lactamase coding genes. This study men-
tions that broiler carcasses could be considered as an important source
of EPEC and STEC pathotypes in the southeast of Iran. Considering the
presence of eae positive isolates, further investigations on the screening
of poultry originated eae-positive E. coli isolates could help to elucidate
the role and importance of these isolates. On the other hand, although
EPEC and STEC isolates tended to carry few antibiotic resistance genes,
some isolates possessed the examined antibiotic resistance genes,
which could be spread and transferred to pathogens through the food
chain. Regarding the public health and zoonotic importance of EPEC
and STEC and antibiotic-resistant E. coli isolates, continuous researches
on genotypic characterization of isolates from poultry sources can clar-
ify the risk of human infections from broiler carcasses.
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