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Abstract: 

An ab initio study of the adsorption processes on NOx compounds on (110) SnO2 surface is 

presented with the aim of providing theoretical hints for the development of improved NOx gas sensors. 

From first principles calculations (DFT-GGA approximation), the most relevant NO and NO2 adsorption 

processes are analyzed by means of the estimation of their adsorption energies. The resulting values and the 

developed model are also corroborated with experimental desorption temperatures for NO and NO2, 

allowing us to explain the temperature-programmed desorption experiments. The interference of the SO2 

poisoning agent on the studied processes is discussed and the blocking adsorption site consequences on 

sensing response are analyzed. 
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1.- Introduction: 

Developing new solid state gas sensors with improved properties carries with it an obvious close 

relationship between the sensing performance of the active materials and their surface chemical activity. 

The theoretical study of such surface-absorbate interactions provides a valuable tool to get superior 

performances that are unattainable using only a trial-and-error approach together with a powerful analytic 

methodology to explain the experimental data. 

Tin dioxide (SnO2) plays a key role as one of the more representative sensing materials in solid 

state gas sensors [1], presenting a significant surface reactivity with many important reducing (CO, NO) 

and oxidizing gases (O2, NO2) [2,3]. The present article deals with sensing mechanisms and processes 

concerning the detection of NOx using SnO2. Detection of NOx is clearly important because it is a well-

known environmental pollutant with harmful consequences for human health [4]. However, to explain the 

sensing behavior it is necessary to keep in mind that there exist interfering processes poisoning the surface 

[5] and that these can dramatically change the effective adsorptions of the target species and, therefore, 

their eventual detection. In the case of the SnO2 surface, SO2 is one of the more relevant poison specimens 

[6]. Thus, in the present analysis, its effects have also been studied in order to point up the consequences of 

the poisoning process on the sensing mechanisms. 

Nowadays, first-principles methodologies based on density functional theory (DFT) can provide 

precise calculations of the energetic and vibrational properties of the adsorption [7]. Moreover, faster codes 

and new computational facilities allow dealing with numbers of surface-absorbate configurations in 

moderate computing times. 

In this context, the aim of the present work is to provide theoretical hints for the development of 

improved NOx gas sensors using SnO2 as the base sensing material. The surface orientation relevance is 

discussed, and the most significant adsorption sites of NOx are identified. Regarding SO2 as poisoning 

specimen, its adsorption sites are located and the dependence of the poisoning effect with technologically 

accessible parameters is discussed.    
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2.- Calculation Details: 

The first-principles methodology we used is based on density functional theory [8,9] (DFT) as 

implemented in the SIESTA code [10,11]. We made use of the generalized gradient approximation (GGA) 

for the exchange-correlation functional [12] and norm-conserving Troullier-Martins pseudopotentials [13] 

in Kleinman-Bylander factorization form [14]. The solutions of the Kohn-Sham equations are expanded as 

a linear combination of atomic pseudo-wave-functions of finite range. For all atomic species double ζ  plus 

polarization orbitals basis-sets were used. Total energy convergence is guaranteed below 10meV, as is 

usual in this kind of calculations [15]. A real space mesh cut-off of 250Ry and a reciprocal space grid cut-

off of approximately 15Å were used. The structural relaxations were done by means of a conjugate gradient 

minimization of the energy, until the forces on all the atoms were smaller than 0.04eV/Å (which provides 

relaxed total energy values more stable than 10meV). No constraints were imposed in the relaxation where 

forces were calculated as analytical derivatives of the total energy [16]. Spin polarization was also 

considered in the total energy computations, and basis set superposition error [17] (BSSE) was corrected in 

the calculated adsorption energies. 

 

 

3.- Results and discussion: 

3.1- Surface modeling: 

It is commonly accepted that the facets of a crystal are those that minimize the total surface energy 

Esurf [18]. Consequently, for a given material, the most common (and relevant) faceting orientation will 

have the lowest Esurf. Therefore, we calculated the surface energies of several low index facets of SnO2-

cassiterite —also known as rutile or tetragonal phase, space group P42mnm, lattice parameters a = b = 

4.74Å  c = 3.19Å and two nonsymmetry-equivalent atoms at (0.0,0.0,0.0)Sn and (0.305,0.305,0.0)O [2]—  

were calculated in order to select the surface on which the adsorption processes would be analyzed. The 

initially considered low-index orientations are (110), (100), (101) and (001), which are accepted as some of 

the most common SnO2-cassiterite faceting surfaces [19].    
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Esurf values were calculated following the procedure and definitions described in [19,20], and the 

results compared with values from the literature, are shown in Table 1. Our calculated data are in 

acceptable agreement with the literature and provide confidence in the accuracy of the calculation 

framework used. TiO2 results are shown for comparison with another cassiterite system where (110) is also 

the lowest surface energy [21]. Therefore, in the following sections, adsorption phenomena will be studied 

over this surface orientation. 

 

 

3.2.- Adsorption energy modeling:  

To be able to estimate the energy change involved in the process of adsorption of a molecule onto 

a clean surface, we built models of 1) the clean surface slab, 2) the molecule, and 3) the surface plus the 

molecule system. For all three of these models, total energy calculations were performed, allowing us to 

evaluate the total energy balance of the adsorption process (so called adsorption energy Eabs) as follows:  

ETinitial = ET(clean surface) + ET(molecule) 

ETfinal = ET(clean surface+molecule) 

Eabs = ∆ET = ETfinal - ETinitial       (1) 

Accordingly, a negative value of Eabs means that the adsorption is energetically favorable, it being 

possible for this to occur spontaneously without entropic considerations (DFT deals with the ground state at 

0K).  

It is necessary to ensure the effective cancellation of errors between the large energies that appear 

in equation (1). For this, adequate conditions were considered [7]. It has been verified that, in our case, a 2 

layer thick slab is enough to ensure the stability of the adsorption energy values. Additionally, to ensure 

that the absorbed compound will not interact with periodic images of the slab, a 12Å vacuum thickness and 

a 2x1 unit cell slab width were used. 

 Moreover, the adsorption analysis requires several complementary steps: location of possible 

surface adsorption sites, also considering vacant sites, molecular modeling and, finally, adsorption 

modeling of NOx and SO2 compounds. 
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 Figure 1 shows the slab model used for the adsorption on the SnO2-cassiterite(110) surface. In 

order to obtain realistic values, surface relaxation was necessary (Figure 1 also presents the relaxed slab). 

Surface relaxation shows how six-fold coordinated Sn atoms (Sn6c) tend to move outside the surface plane 

whereas five-fold coordinated Sn atoms (Sn5c) tend to move inside. A similar behavior on (110) surface 

relaxation has been observed by other authors [22]. 

 Two relevant adsorption sites appear to be a natural choice for the stoichiometric surface: a 

bridging site around bridging-oxygen [OBridg] and an inplane site around Sn5c and the neighboring O3c 

[SnInPlane]. In addition, OBridg appears at first glance, to be the most clear vacancy formation site [OBridgVac] 

[15]. Consequently,  two additional adsorption sites will be considered: a single OBridg vacancy (or a 50% 

reduced surface as long as there are only 2 nonequivalent OBridg atoms per slab) and a double OBridg vacancy 

site (or a 100% reduced surface). Finally, the adsorption of a molecule between an inplane Sn5c and an 

OBridg vacancy [OBridgVac-SnInPlane] was considered for NO2 and SO2. 

 

As long as a good description of the absorbed molecules is necessary to obtain credible theoretical 

predictions, Table 2 presents the molecular models used and the obtained energetic and geometric 

parameters compared with those in the literature. It is worth noting that the agreement achieved is 

comparable with the commonly accepted discrepancy described in the literature [24].  

 

Table 3 summarizes the calculated Eabs of NO and NO2 on the considered adsorption sites. 

Adsorption temperature results are obtained by means of the well known Redheat equation, which links the 

|Eabs| of a process with its maximum desorption rate temperature (TMDR) in a temperature-programmed 

desorption (TPD) experiment [30]. Adjusting parameters were set according to the experimental conditions 

of [31] where an experimental TPD spectrum can be found for NO and NO2 desorption from SnO2(110) 

surface (Figure 2).  

We recall that our model only provides energies (and their corresponding desorption temperatures) 

for the concrete adsorption configurations analyzed. In contrast, an experimental TPD spectrum provides 

the temperature range at which a given species is desorbed by considering a plethora of adsorption 

configurations present in the real sample. Consequently, we would expect the calculated temperatures to 
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belong to the corresponding experimental TPD signal range. It is remarkable, therefore, how theoretical 

predictions of TMDR for the few adsorption cases considered fall within the wide experimental desorption 

peaks from [31].  

Our results suggest that OBridg sites are the most energetically favorable for NO. This behavior is 

compatible with the observed fact that NO reduces the SnO2, given that NO is expected to bond with a 

surface oxygen to be able eventually to remove it reducing the surface [1]. Instead, however, OBridgVac are 

involved in the energetically preferred adsorption sites for NO2.  

For these preferred adsorption sites, a dependency of the adsorption energy with the reduction 

state of the surface is observed. In both cases (NO and NO2) surface reduction seems to diminish slightly 

the adsorption energy on OBridg and OBridgVac sites respectively. 

It is important to note that the difference in the preferred adsorption sites between NO and NO2 

suggests that by generating vacant sites and adjusting their density, the adsorption feasibility of NO versus 

NO2 on an eventual SnO2-based gas sensor may be changed. This leads to a technological suggestion in the 

preparation of the sensing material. 

 

Concerning the SO2 adsorption, Table 4 summarizes the calculated Eabs of SO2 on several sites. As 

for NO2, the preferred adsorption sites also involve OBridgVac but, in this case, it seems that the more reduced 

the surface is, the stronger is the SO2 adsorption that takes place. This different behavior with respect to the 

surface reduction percentage has dramatic consequences on the interference of SO2 when trying to detect 

NO2. 

 

It is a known fact that SO2 avidly saturates NO2 adsorption sites, reducing the SnO2 sensing 

capability [6]. In order to shed some light on this, Figure 3 shows the Eabs values of the most energetically 

favorable adsorptions of NO2 and SO2 as a function of the surface reduction. At every reduction percentage, 

the same adsorption configuration is considered for both compounds, so a competitive situation is analyzed. 

It is confirmed that the strongest adsorption within the studied cases corresponds to SO2, which is a 

theoretical behavior compatible with the experimental evidence of the poisoning effect.  
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It is also clear that SO2 absorbs stronger than NO2 in stoichiometric and also in 100% reduced 

configurations. However, for intermediate surface reductions, NO2 seems to be absorbed stronger than SO2. 

This suggests that the poisoning strength is dependant on the surface reduction state and may even be 

reduced for intermediate bridging-oxygen vacancy densities on the SnO2 (110) surface. This again points 

out a technological hint for the preparation of the sensing material. 

Regarding NO, it has been shown that its preferred adsorption sites are OBridg. Therefore, it may 

seem that there is no competitive behavior with SO2. However, Table 3 shows how, for intermediate 

reductions, the adsorption of NO on OBridg under the presence of an SO2 occupying an OBridgVac site (Table 3 

case #) is slightly stronger than in the noninteracting (case c). These results suggest that in spite of the fact 

that the preferred adsorption sites for NO and SO2 are different, a cross-influence may occur between both 

compounds, and this would merit further analysis. 

 

 

4.- Conclusions: 

A theoretical approach to the NO and NO2 adsorption on SnO2(110) based on ab initio 

calculations has been presented. Bridging-oxygen sites and bridging-oxygen vacancy sites were identified 

as the most relevant adsorption sites for NO and NO2 respectively. This difference may suggest that 

adjusting oxygen vacant sites density the adsorption feasibility of NO versus NO2 on an eventual SnO2-

based gas sensor may be changed. 

Regarding the poisoning by SO2, bridging-oxygen vacancies seem to be the most favorable 

adsorption sites, suggesting a competitive behavior with NO2. Theoretical trends indicate that NO2 

adsorption strength decreases with the surface reduction while for SO2, it increases. Such a different 

evolution insinuates that the poisoning effect may be diminished by means of adjusting the SnO2 surface 

reduction to intermediate values. In the case of NO, no competitive behavior with SO2 is expected because 

of their preferred adsorption sites being different, but further study may be necessary to analyze an eventual 

cross-influence. 

To conclude, under the light of the presented adsorption sites and their corresponding maximum 

desorption rate temperatures, one can see that adjusting the working conditions (i.e, working temperature) 
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of an eventual SnO2-based gas sensor will determine the reversibility of the adsorption at a given site. 

Working at temperatures around 300ºC, where the low desorption rate may ease the fast saturation of the 

adsorption sites, thus spoiling the sensing properties, seems to be particularly problematic. In any case, to 

make theoretical predictions on the optimum working conditions of a real sensor, a more complex model is 

necessary, for example, one including the cross-influence of OH groups due to humidity. 
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Tables: 

 

 

 

 

 

Table 1: Surface energy results for the considered SnO2-cassiterite faceting orientations. Several references 

form the literature are given. Computational uncertainty is also shown when possible. 

 

Esurf [J/m2] 
This work SnO2 GGA  SnO2 GGA [19]  TiO2 LDA [21]  Surface 

<±0.20 <±0.20  
(110) 1.01 1.04 0.89 
(100) 1.32 1.14 1.12 
(101) 1.49 1.33 1.39 
(001) 1.87 1.72 1.65 
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Table 2: Energetic and geometric first principles modeled parameters of several molecules involved in the 

adsorptions considered in this work. Reference values are from the literature. 

 

Compound Bond energy [eV] Bond length [Å] Angle [º] 
  This work Ref.[24]  This work Ref. This work Ref. 

O2 
 
 5.90 6.23 (calc.) 

5.23 (exp.) 1.24 1.18 – 1.21 [25] – – 

N2  9.47 10.55 (calc.) 
9.47 (exp.) 1.12 1.09 – 1.11 [26] – – 

NO  7.03 7.45 (calc.) 
6.63 (exp.) 1.17 1.12 – 1.17 [27] – – 

NO2  5.54 – 1.23 1.20 [28] 132 133-134 [28]  
SO2  5.91 – 1.49 1.48 [29] 112 109 [29]  
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Table 3: Calculated adsorption energies Eabs for NOx on several adsorption sites of the SnO2(110) surface 

and maximum desorption rate temperature TMDR estimated for the experimental conditions of [31]. Some 

configurations are not energetically favorable (Eabs > 0). Energetically favorable processes are labeled using 

letters in parentheses to identify them in Figure 2. For NO, a configuration with presence of SO2 (#) is 

considered for later discussion on poisoning. Notice that NO2 adsorption on a 100% reduced slab can 

appear with two different configurations: bonding one single O atom of the molecule (single bonded) or 

bonding both (double bonded).  

 
 

Absorbate Surface state Adsorption site Eabs [eV] TMDR  [ºC]  

Stoichiometric slab OBridg  –1.32 188 (a) 

Stoichiometric slab SnInPlane  –0.24 52 (b) 

50% reduced slab OBridg  –1.18 167 (c) 

50% reduced slab OBridg + (SO2 in OBridgVac)  –1.28 – (# ) 

50% reduced slab OBridgVac  –0.42 89 (d) 

NO 

100% reduced slab OBridgVac  –0.98 153 (e) 

Stoichiometric slab OBridg  +1.51 –  

Stoichiometric slab SnInPlane  –0.52 94 (v) 

50% reduced slab OBridgVac (single bonded) –2.31 502 (w) 

50% reduced slab OBridgVac-SnInPlane  +0.34 –  

100% reduced slab OBridgVac 
(single bonded) 
(double bonded) 

–2.02 
–1.95 

424 
400 

(x) 

(y) 

NO2 

100% reduced slab OBridgVac-SnInPlane  –2.11 454 (z) 
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Table 4: Calculated adsorption energies Eabs for SO2 on several adsorption sites of the SnO2(110) surface 

and maximum desorption rate temperature TMDR estimated for the experimental conditions of [31]. Notice 

that, in contrast with the NO2 case, calculations show that SO2 adsorption on a 100% reduced slab may only 

be spontaneous (Eabs < 0) in one single O bonding configuration. Some configurations are not energetically 

favorable (Eabs > 0). 

 

Absorbate Surface state Adsorption site Eabs [eV] TMDR  [ºC] 
stoichiometric slab OBridg  +1.72 – 
stoichiometric slab SnInPlane  –0.86 128 
50% reduced slab OBridgVac (single bonded) –2.05 435 
50% reduced slab OBridgVac-SnInPlane  +1.12 – 

100% reduced slab OBridgVac 
(single bonded) 
(doble bonded) 

+0.26 
–2.56 

– 
606 

SO2 

100% reduced slab OBridgVac-SnInPlane  –2.97 741 
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Figure Captions: 

 

 

Figure 1: Slab model of the SnO2-cassiterite (110) surface. Relaxed and unrelaxed geometries are shown. 

Adsorption sites are highlighted and relevant surface atoms are identified. 

 

 

 

Figure 2: Top: Experimental TPD spectra of NO and NO2 desorbing form a dehydroxylated SnO2(110) 

surface (reprinted from [31], with permission from Elsevier). Bottom: Calculated TPD spectra for NO and 

NO2 considering all the configurations detailed in Table 3. One TPD spectrum was simulated (by means of 

solving the rate expression for desorption kinetics [30,32]) for each adsorption configuration with the 

experimental parameters given in [31]. For every configuration the temperature corresponding to its 

maximum desorption rate is indicated with a labeled arrow –see labels and TMDR values in Table 3–. Total 

spectra were obtained as the summation of the normalized single configuration spectra. 

 

 

 

Figure 3: Adsorption energies Eabs of NO2 and SO2 as a function of the SnO2(110) surface reduction. Only 

stronger adsorptions and identical configurations are considered at every reduction percentage so a 

competitive situation is analyzed. Details on adsorption configurations of every data point is given in Table 

3 and Table 4. Dotted lines are plotted as visual aids. 
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