
Improved user similarity computation 
for finding friends in your location
Georgios Tsakalakis1 and Polychronis Koutsakis2* 

Introduction
The diversity of social networks makes the problem of correctly estimating user pref-
erences essential for personalized applications [1]. Most recommender systems suggest 
items of possible interest to their users by employing collaborative filtering to predict the 
attractiveness of an item for a specific user, based on the user’s previous rating and the 
ratings of “similar” users. In this work, rather than focusing on possible items of inter-
est for a user, we are interested in designing an algorithm that will utilize user ratings in 
order to recommend one user to another as a possible friend.

This paper continues our recent work [2], where we presented the architectural design, 
the functional requirements and the user interface of eMatch [3], an Android application 
which was inspired by the idea of finding people with common interests in the same geo-
graphical area. Close friendship is a measure of trust between individuals [4] and friends 
have the tendency to share common interests and activities, as has been shown in multi-
ple studies in the literature starting with important work on personality similarities and 
friendship dating in the 70 s [5, 6] and continuing until today [7]. In terms of social net-
works, people selectively establish social links with those who are similar to them, and 
their attitudes, beliefs and behavioral propensities are affected by their social ties [8, 9]. 
In eMatch, in order to compare people’s interests, users rate as many as nine interest cat-
egories: {Movies, Music, Books, Games, Sports, Science, Shopping, Food, Travel}, while 
they can add and rate items to each one of them. For example a user could rate the cat-
egory “Sports” with “7” on a scale of 1 to 10, and add to this category the item “football” 

Abstract 

Recommender systems are most often used to predict possible ratings that a user 
would assign to items, in order to find and propose items of possible interest to each 
user. In our work, we are interested in a system that will analyze user preferences 
in order to find and connect people with common interests that happen to be in 
the same geographical area, i.e., a “friend” recommendation system. We present and 
propose an algorithm, Egosimilar+, which is shown to achieve superior performance 
against a number of well-known similarity computation methods from the literature. 
The algorithm adapts ideas and techniques from the recommender systems litera-
ture and the skyline queries literature and combines them with our own ideas on the 
importance and utilization of item popularity.

Open Access

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and 
indicate if changes were made.

RESEARCH

Tsakalakis and Koutsakis  
Hum. Cent. Comput. Inf. Sci.            (2018) 8:36  
https://doi.org/10.1186/s13673-018-0160-7

*Correspondence:   
p.koutsakis@murdoch.edu.au 
2 School of Engineering 
and Information Technology, 
Murdoch University, Science 
and Computing Building 
245, SC1.012, 90 South Street, 
Murdoch, WA 6150, Australia
Full list of author information 
is available at the end of the 
article

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Repository

https://core.ac.uk/display/162003722?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orcid.org/0000-0002-4168-0888
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13673-018-0160-7&domain=pdf


Page 2 of 17Tsakalakis and Koutsakis  Hum. Cent. Comput. Inf. Sci.            (2018) 8:36 

with rating “9”. Based on this type of rating, the application’s algorithm computes users’ 
matching in order to suggest potential friends.

The information location is used in eMatch only for practical reasons, i.e., in order to 
locate potential friends in the same area and not for tracking on the map and revealing 
the user’s location as other applications do. The goal of eMatch is to facilitate poten-
tial friends to meet and introduce themselves to each other only if they so wish. The 
user’s location is considered private and sensitive information and is treated that way. 
The only information that is public is the matching percentage for all pairs of “Visible” 
users inside the geographical area. In this way the individual’s privacy is preserved. More 
information can be found in [2].

The work in that paper introduced EgoSimilar, an algorithm which computes the simi-
larity between users and is implemented in eMatch. Based on a dataset of 57 users, Ego-
Similar was found to outperform two of the most well-known similarity measures, the 
Pearson Correlation and the Cosine Similarity, in regard to the most significant metrics 
used our study. Unlike other approaches in the literature, EgoSimilar takes into account 
the popularity of the items that have been rated in its computations.

The main contributions of the present work are as follows. We collected a much larger 
number of completed questionnaires (286 in total) from users of eMatch and evaluated 
EgoSimilar again, in order to study whether the conclusions of the work in [2] were con-
firmed. After confirming the excellence of EgoSimilar again in comparison to the Pear-
son Correlation and Cosine Similarity, however, we added into our new study several 
similarity measures, one of which was found to outperform EgoSimilar. For this reason, 
we substantially changed EgoSimilar by adapting ideas and techniques from the recom-
mender systems literature and the skyline queries literature. The new algorithm, Ego-
similar+, presented in this paper for the first time, is compared against several of the 
most well-known similarity computation methods from the literature and is shown to 
outperform all of them in regard to being able to identify existing friendships.

The rest of the paper is structured as follows. In “Related work” section we discuss 
related work in the field. “EgoSimilar” section briefly presents the original EgoSimilar 
algorithm. In “Evaluation of Egosimilar” section we evaluate EgoSimilar versus other 
similarity computation methods. “EgoSimilar+” section presents EgoSimilar+ and dis-
cusses the ideas and the motivation behind the new algorithm. “Evaluation of EgoSimi-
lar+” section presents the results with the use of EgoSimilar+. Finally, “Conclusions and 
future work” section presents the conclusions of our study and the next steps in our 
work.

Related work
The Youhoo application [10] is the closest to eMatch among all current applications in 
iOS and Android that are related to finding friends in an area near the user. Its goal is 
to create circles of people with common interests in an area. However, Youhoo profiles 
are created from Facebook, therefore users who do not use Facebook are excluded from 
using the application, and users who wish to create a different profile in their Youhoo 
profile cannot do so. Additionally, the circles of people with common interests created by 
the application are quite generic or one-dimensional, e.g., students in the same univer-
sity, people working in the same field, fans of a specific singer. On the contrary, eMatch 



Page 3 of 17Tsakalakis and Koutsakis  Hum. Cent. Comput. Inf. Sci.            (2018) 8:36 

computes the match between users based on the whole profile that the users wish to 
share through the application, and of course allows users to create a profile that is inde-
pendent from any other application. Other social networking applications like GeoSo-
cials [11] and Jiveocity [12] simply present to the user other users in the same location, 
without any recommendation on whether they would be a good match as friends.

Other proposals from the literature for friend recommendation focus on link pre-
diction utilizing node proximity [13], on recommending which Twitter users to follow 
based on user-generated content which indicates profile similarity [14], on recommend-
ing friends according to the degree to which a friend satisfies the target user’s unfulfilled 
informational need [15], and on selecting a community of users that can meet the spe-
cific requirements of an application [16]. The work in [16] differs from our work not only 
because of its different goal, but also because it computes a metric based on a binary 
characterization of users’ interest in a specific item (interested/not interested) which 
does not include information on the degree of user interest for the item; it also does not 
consider common interest categories between users as our work does, therefore related 
interests are considered to be completely different.

The authors in [17] use ranking functions to propose a method that represents peo-
ple’s preferences in a metric space, where it is possible to define a kernel-based similar-
ity function; they then use clustering to discover significant groups with homogeneous 
states. The authors point out the success of the Pearson Correlation and the cosine simi-
larity in order to make comparisons between the rating vectors of different users and 
they use cosine similarity in their work. As it will be shown in our results, our proposed 
similarity computation approach outperforms both the Pearson Correlation and the 
Cosine Similarity. Also, the proposed class separation technique in [17], which utilizes 
Support Vector Machines, becomes computationally complex and leads the authors to 
avoid using K-means clustering, to decrease the computational complexity of combining 
K-means with their technique.

EgoSimilar
In this section we present our “matching” algorithm from [2], EgoSimilar, for computing 
the similarity between users based on their interests and preferences. We also present, 
briefly, all the other widely used methods for assessing similarity that we will compare 
to EgoSimilar. All approaches were implemented in eMatch, in order to find potential 
friends based on user ratings. These algorithms run from the server side in order to keep 
the computational cost contained. Their running at the smartphone would be uneco-
nomic, and also battery- and time-consuming, since it would constantly require data 
transfers via mobile internet and many calculations to be executed.

For the matching algorithm to run at the server, the mobile must have Internet access 
and at least one location provider activated. It should also store periodically (e.g., every 
10 min) the geographical location of the user.

EgoSimilar takes the following rationale into account:

a. The matching is done in an “egocentric” way because each user should search friends 
based on his/her own criteria and interests. Thus, the matching percentage between 
two users that will appear on each user’s screen will most likely be different. Hence, 



Page 4 of 17Tsakalakis and Koutsakis  Hum. Cent. Comput. Inf. Sci.            (2018) 8:36 

if for example user X has one active category of interest while user Y has five, the 
matching percentage (X, Y) will be based on that one category, while the match-
ing percentage (Y, X) on all five, leading to different results showing on each user’s 
screen.

b. More popular items (popular in the sense that they are rated positively or negatively 
by many users) should not affect matching results as much as less popular items do, 
if users “agree” on them. The reason is that even if users share, e.g., a favorable opin-
ion on a very well-known band, book, movie, etc., this does not really give a sub-
stantial hint that their tastes match in general. A similar case regarding a relatively 
unknown band/book/movie gives a much stronger indication of common interests. 
This was also pointed out in [18], where it was explained that the presence of popular 
objects that meet the general interest of a broad spectrum of audience may introduce 
weak relationships between users and adversely influence the correct ranking of can-
didate objects. The work in [18], however, is different from ours, as it begins with the 
construction of a user similarity network from historical data, in order to calculate 
scores for candidate objects. Our work in this paper focuses on recommending peo-
ple as potential friends, not items of interest, and no historical data is relevant due to 
the nature of our study.

c. The rating choices of users are on a scale from 1 to 10. Consequently the maxi-
mum rating difference will be 9 and the weight of one unit in rating difference will 
be 1/9 ≈ 0.11. This weight is included in the computation of the similarity between 
users.

The steps followed by eMatch in computing the matching between users are described 
below. The first three steps are followed regardless of the matching computation method, 
which is implemented in step 4.

Let X be the user who runs the application, therefore, the matching is done according 
to X’s tastes.

1. Check if the user’s location is stored. If not, inform the user, else go to the next step.
2. Find users that are in close geographical proximity with user X.
3. Find all the active interest categories of user X.
4. The matching in EgoSimilar is computed as follows: for each user Y found in step 2, 

calculate the 

where kX is the number of active categories of user X, X,  kX ∊ [1, 9];  w1 is the weight 
attributed to the general rating of a category;  w2 is the weight of the ratings of all 
individual items of a category. In our case,  w1 should be smaller than  w2, as we con-
sider the “general” matching of users (e.g., both of them loving movies), to be of 
smaller importance, as their specific tastes in that category may differ significantly 
or even completely. The exact values of  w1 and  w2 are discussed in “Evaluation of 

(1)

Matching(X, Y) =
1

kx

kX
�

c=1



w1[1− 0.11d1(X, Y, c)]+
w2

ncx

ncx
�

i=1

[1− 0.11d2(X, Y, c, i)]







Page 5 of 17Tsakalakis and Koutsakis  Hum. Cent. Comput. Inf. Sci.            (2018) 8:36 

EgoSimilar” section; ncx is the number of items user X has inserted in category c; 
 d1(X,Y,c) is a function which computes the absolute difference in ratings between 
users X and Y for the cth activated category of user X. If user Y has deactivated the 
specific category, then we set (1 − 0.11·d1(X,Y,c)) = 0;  d2(X,Y,c,i) is associated with 
the ith item inserted by user X in cth activated category and denotes the distance of 
ratings between users X and Y for the specific item.

• If user Y has not rated this item, then we set (1 − 0.11·d2(X,Y,c,i)) = 0,
• Otherwise  d2(X,Y,c,i) is calculated, taking into account the popularity of the 

specific item, as follows:

 a. Compute  d2(X,Y,c,i).
 b.  Let m be the number of users that have inserted this item, and n be the num-

ber of users that have inserted items in the cth activated category of user X. 
Then, the popularity weight of the specific item is defined as: Wi

c(X) = m/n. An 
item is assumed to be popular if Wi

c(X) > 0.5, which means that more than half 
of the users that “voted” for this category have inserted the specific item (with 
either negative or positive rating).

 c.  d2(X,Y,c,i) is adapted with respect to the popularity of the item and the ration-
ale explained above, as follows:

 If (Wi
c(X) > 0.5 AND  d2(X,Y,c,i) < 5), then

      d2(X,Y,c,i) = d2(X,Y,c,i) + Wchange∙d2(X,Y,c,i).
 else if (Wi

c(X) > 0.5 AND  d2(X,Y,c,i) ≥ 5), then
      d2(X,Y,c,i) = d2(X,Y,c,i)
 else if (Wi

c(X) ≤ 0.5 AND  d2(X,Y,c,i) < 5), then
    d2(X,Y,c,i) = d2(X,Y,c,i) − Wchange∙d2(X,Y,c,i).
 else if (Wi

c(X) ≤ 0.5 AND  d2(X,Y,c,i) ≥ 5), then
    d2(X,Y,c,i) = d2(X,Y,c,i) + Wchange∙d2(X,Y,c,i).

This states that when an item is popular and the ratings of users are close, then 
this item should not affect matching results as much as less popular items do. There-
fore, the distance of the ratings between users X and Y must be increased in order 
to decrease their matching. This increase is implemented via the  Wchange weight, the 
value of which is discussed in “Evaluation of EgoSimilar” section.

If, however, the item is popular and the ratings of users are close, then this item 
should affect matching results more than the popular items do. Accordingly, the dis-
tance of the ratings between users X and Y must be decreased in order to increase 
their matching. This is implemented once again via the  Wchange weight.

Similarly, in the case where the item is not popular and the ratings of users are not 
close, we infer that this is an indication of users that do not have common interests. 
So, by increasing the distance of their ratings, their matching is decreased.

The complexity of the algorithm is: Ο(pqr), where p is the number of the users, q is 
the number of categories (in our case, nine) and r is the maximum number of items 
inserted in one of the categories.



Page 6 of 17Tsakalakis and Koutsakis  Hum. Cent. Comput. Inf. Sci.            (2018) 8:36 

Evaluation of EgoSimilar
For our preliminary evaluation we wanted to confirm whether the results presented in 
[2] would stand for a much larger dataset and to investigate whether EgoSimilar would 
also excel in comparison with several additional similarity computation measures.

We collected data from 286 users (in comparison to the 57 users in our previous work), 
ages 18–40. Of the 286 participants, 272 had at least one connection (i.e., were friends) 
with a person from our dataset in real life. The collected information consisted of the 
activation/deactivation of the 9 interest categories, the Ratings for all active categories 
and the Ratings for the individual items in all the active categories. The items rated in 
each category were either new insertions by the users or as many of the default items as 
the users wished to rate. The mean rating given by the users was 6.6 and the standard 
deviation 2.5. These statistics confirmed the tendency shown in [2], of users mainly rat-
ing items that they like instead of taking the time to also add several items that they dis-
like. The details of the dataset are presented in Table 1.

The reason we chose to collect data mainly from groups of friends, a choice which car-
ries a bias in the dataset and the results, was that in this way it would be feasible to eval-
uate whether the similarity computation methods would be able to “discover”, through 
higher matching values, existing friendships.

To compare the results we ran the K-means clustering algorithm, each time with a dif-
ferent similarity computation measure (EgoSimilar and five other measures that are pre-
sented later in this section). We derived results for a number of clusters K ranging from 5 
to 20 in order to evaluate how (and if ) the number of clusters influences the user match-
ing. K-means is preferred in comparison to new efficient methods like the one proposed 
in [19], because we do not want to have predefined classes in our system; classes (clus-
ters) need to change based on the users who find themselves in the same area. Also, con-
trary to several approaches where it is useful to have weighted information incorporated 
into similarity scores (e.g. [20]), in our system all users should have equal weights when 
computing their similarity.

The following metrics and parameters were used in our study (the abbreviations are 
also presented in Table 2 for ease of reading):

a. Average friends’ placement (AFP). This is arguably the most important metric of 
all, in terms of evaluating the quality of a similarity metric, as it refers to the order 
in which “matching users” appear on the user’s screen, in decreasing percentages. 
A user would obviously consider first the users with whom he/she has the high-

Table 1 Dataset

Number of participants 286

Ages 18–40

Gender 177 male, 109 female

Mean rating 6.6

Standard deviation 2.5

Number of participants with at least one connection 272



Page 7 of 17Tsakalakis and Koutsakis  Hum. Cent. Comput. Inf. Sci.            (2018) 8:36 

est matching, regardless of the actual matching percentage (unless the matching 
percentage is very low even for the “top matched” user, which would be discour-
aging). Most importantly, in this matching list we would expect existing friends to 
place “low”, i.e., to appear among the top matching choices. Therefore, we can study 
whether our approach outperforms other similarity computation methods in placing 
existing friends higher on the list, as existing friends should have similar interests [5, 
6]. The similarity computation method that performs better in finding actual friends 
would be expected to be able to outperform others in finding potential friends as 
well.

b. N1: the number of users in the cluster.
c. N2: the number of users in the cluster that have a network (i.e., they are connected 

with at least one other user, who may be in that cluster or in another one).
d. N3: the number of users in the cluster that are connected in reality as friends.
e. Average valid connections (AVC): for each user in a cluster we computed the per-

centage of their connections that are included in the specific cluster, and derived the 
average percentage.

f. Average matching (AM): This is the average matching percentage of all users of the 
specific cluster.

g. Average matching of connected users (AMC): This is the average matching percent-
age of all the connected users of the cluster.

h. Average matching of not connected users (AMnC): This is the average matching per-
centage of all the users of the cluster who are not connected.

We have used several additional similarity measures in our study and implemented 
them in eMatch in order to compare them against Egosimilar. These similarity measures 
include the Pearson Correlation and the Cosine Similarity [21], which were also used in 
[2] and were found to provide inferior results to EgoSimilar for the smaller dataset of 57 
users. The other similarity measures that we used in the present work are:

1. The Jaccard Index [22], also known as the Jaccard similarity coefficient, which is 
a statistic used for comparing the similarity and diversity of two sample sets. The 
Jaccard coefficient measures similarity between finite sample sets and is defined as 
the size of the intersection divided by the size of the union of two sample sets, as 
depicted in Eq. (2) below 

Table 2 Abbreviations

Abbreviation Meaning

AFP Average friends’ placement

N1 Number of users in the cluster

N2 Number of users in the cluster with a network

N3 Number of users in the cluster connected in 
reality as friends

AVC Average valid connections

AM Average matching

AMC Average matching of connected users

AMnC Average matching of not connected users



Page 8 of 17Tsakalakis and Koutsakis  Hum. Cent. Comput. Inf. Sci.            (2018) 8:36 

where A and B denote the two sample sets.
2. The π coefficient [23], which is calculated as: 

where  po is defined as the observed agreement between two raters who each classify 
items into a set of M mutually exclusive categories, and  pe is defined as the expected 
agreement by chance.

3. The κ coefficient [24], which is similar to the π coefficient and is defined again by 
Eq.  (3). The difference between the two coefficients lies in the way the expected 
agreement  pe is computed. In the π coefficient, both annotators are assumed to clas-
sify items into a category via the same probability distribution, whereas the κ coef-
ficient does not make this assumption (hence each annotator each assumed to have a 
different probability distribution). As explained in [25], when using the π coefficient 
any differences in the observed distributions of users’ judgements are considered to 
be noise in the data. When using the κ coefficient these differences are considered to 
be related to the biases of the users.

By “agreement” in the case of the π and κ coefficients, and by “intersection of sets” 
in the case of the Jaccard index, we are referring to two users giving the same rating 
for a category or for an item within a category.

Finally, in order to examine the results of the above measures, users were separated 
into groups via the K-means clustering algorithm [26], using the matching percent-
ages derived by each of the similarity computation approaches. The procedure will 
always terminate, but K-means does not necessarily find the optimal configuration. 
A disadvantage of K-means is its sensitivity to the random initialization of cluster 
centroids; generally initial centroids should be “far apart”. We addressed this issue by 
using different centroids and computing average results over 10 independent runs. 
Later in the paper, in the evaluation of our new algorithm EgoSimilar+ in “Evaluation 
of EgoSimilar+” section, we focused on finding the appropriate number of clusters by 
utilizing silhouettes [27].

For space economy purposes and in order to focus on the most important contri-
butions of this study, we will only present here a summary of the results of the new 
evaluation of EgoSimilar.

Our results were derived for the following sets of weights:  (w1,w2) = (0.25, 0.75), 
(0.5, 0.5), (0.75, 0.25) and for  wchange = 0.3, a value which was shown for both the 
larger dataset and the smaller one in [2] to provide the overall best results across all 
similarity computation methods. It did not provide the best results in all cases for 
EgoSimilar, which often had better results for values of 0.1 or 0.2, but for fairness 
and uniformity purposes we are showing the results for  wchange = 0.3. We should 
emphasize again that we are interested in  w1 < w2 as our work is focused on achiev-
ing a more specific (items-oriented) matching between users than a more generic 

(2)
J(A,B) =

|A ∩ B|

|A ∪ B|

(3)π = (po − pe)/(1− pe)



Page 9 of 17Tsakalakis and Koutsakis  Hum. Cent. Comput. Inf. Sci.            (2018) 8:36 

(categories-based) one. However, we also experimented with the cases where  w1 = w2 
and  w1 > w2 in order to study the behavior of the different similarity computation 
methods.

Our results showed that in regard to the comparison between EgoSimilar, the Pear-
son Correlation and the Cosine Similarity, there were no changes in the conclusions 
for this larger dataset when compared with the small dataset in our previous work. 
More specifically, EgoSimilar outperforms both methods in terms of distinguishing 
between already connected and not already connected users (i.e., already connected 
users have a higher matching percentage). In regard to the average friends’ placement, 
EgoSimilar also continues to outperform the Cosine Similarity and the Pearson Cor-
relation, as in [2], by placing existing friends “lower” (i.e., closer to the top) in the 
users’ matching list. The reason that EgoSimilar excels is that both the Cosine Sim-
ilarity and Pearson Correlation only examine the current ratings of each category/
item, by each of the two users. EgoSimilar, however, tries to be more sophisticated by 
using weights to take advantage of the popularity of the rated items.

Tables  3 and 4 present the average results for all similarity computation methods 
for the number of clusters K taking all values between 5 and 20.

The results indicate that:

1. EgoSimilar outperforms all similarity computation methods in terms of distinguish-
ing between already connected and not already connected users for all  (w1,  w2) 
weights.

Table 3 Average matching difference between connected and not-connected users

Similarity computation 
method

Difference

w1 = 0.25 (%) w1 = 0.5 (%) w1 = 0.75 (%)

EgoSimilar 5.03 4.98 4.92

Pearson 3.45 3.72 4.01

Cosine 3.69 2.98 2.28

Jaccard index 1.96 2.19 2.36

π coefficient 1.69 1.93 2.03

κ coefficient 1.97 2.24 2.45

Table 4 Average friends’ placement

Similarity computation method Placement

w1 = 0.25 w1 = 0.5 w1 = 0.75

EgoSimilar 109.92 105.74 102.44

Pearson 111.46 114.07 117.20

Cosine 119.23 119.35 119.66

Jaccard index 107.45 112.56 118.90

π coefficient 103.62 110.56 117.02

κ coefficient 101.11 108.72 114.23



Page 10 of 17Tsakalakis and Koutsakis  Hum. Cent. Comput. Inf. Sci.            (2018) 8:36 

2. EgoSimilar also outperforms all similarity computation methods in terms of the aver-
age friends’ placement, which is the most important metric in our study, as explained 
above, for  (w1,w2) = (0.5, 0.5) and  (w1,w2) = (0.75, 0.25).

3. However, EgoSimilar is outperformed in terms of the average friends’ placement by 
all similarity computation methods, except the Cosine Similarity and the Pearson 
Correlation, for  (w1,w2) = (0.25, 0.75). This is an important negative result, given that 
our focus is on placing larger importance on individual items for making friends sug-
gestions, therefore EgoSimilar should be able to find existing friend connections by 
placing them “lower” in each user’s list.

4. All similarity computation methods place existing friends on average at around the 
36–39% mark (positions 102 to 110 out of 285 users). This means that on average 
existing friends are placed close to the middle of each user’s list, whereas we would 
expect them to place near the top. Once again, this is a negative result, which in this 
case applies to all similarity computation methods used in our study.

We should also note that we attempted to create groups of ratings (i.e., {1–2}, {3–5}, 
{6–8}, {9–10}) to avoid cases where users may like or dislike an item almost equally but a 
small difference in their rating would cause the similarity computation to miss the com-
mon predilection. Therefore, we considered that users “agree” if they give a rating that 
belongs to the same set of ratings, as defined above. We found, however, that this choice 
improved the results of the π and κ coefficient only slightly (by about 0.6% in the results 
of Table 3 and by about 3–4 positions in terms of the average friends’ placement shown 
in Table  4). Hence, in the rest of the paper we kept the standard definition of “agree-
ment” for the π and κ coefficients.

EgoSimilar+
The results of our evaluation of EgoSimilar against all other similarity computation 
methods showed that the premise of EgoSimilar is promising but was not enough to help 
our proposed approach excel overall, and in particular in the cases which were of the 
most interest for our work on eMatch.

Therefore, we first focused on understanding the reasons why EgoSimilar is outper-
formed by the new similarity computation methods added to our study (Jaccard index, 
π coefficient, κ coefficient) for the case of  (w1,w2) = (0.25, 0.75). All three similarity com-
putation methods that outperformed EgoSimilar focus on computing the exact agree-
ment between users, whereas EgoSimilar computes distance. Therefore, the results in 
this part of our work seem to indicate that even though it is more rare, exact agreement 
in items leads to better results in identifying existing (and hence, also possible future) 
friendships, especially when the element of chance agreement is removed, as is the case 
for the π and κ coefficients. The improved results achieved by computing exact agree-
ment can be, at least partially, attributed to the fact that some items are essentially cat-
egories in themselves, e.g., “football” (in the category Sports) or “pop” (in the category 
Music); this can lead more often to exact agreement between users than a more specific 
football-related or pop-related item.

The results in Table 4 show that the use of the κ coefficient achieves the best results 
among all other similarity computation methods and outperforms EgoSimilar for 



Page 11 of 17Tsakalakis and Koutsakis  Hum. Cent. Comput. Inf. Sci.            (2018) 8:36 

 (w1,w2) = (0.25, 0.75). The distinctive feature of the κ and π coefficients in comparison 
to the Jaccard index is the removal of chance agreement from the observed agreement 
and the distinctive feature of the κ coefficient in comparison to the π coefficient is the 
“acceptance” of differences in user ratings as being related to the biases of the users, 
instead of noise.

Based on the above, we decided to create an improved version of EgoSimilar which 
we name EgoSimilar+. This new version incorporates the following differences with 
the original algorithm:

a. We added the calculation of biases into EgoSimilar+. Similarly to [28], a first-order 
approximation of the bias involved in a rating  Rui is 

where u represents the user, i represents the item. The bias involved in rating  Rui is 
denoted by  Bui and accounts for the user and item effects. The overall average rating 
is denoted by μ, while the parameters  Bu,  Bi, indicate the observed deviations of user 
u and item i, respectively. An example, from [28], on how the adding of biases works: 
suppose that we want a first-order estimate for user Joe’s rating of the movie Titanic. 
Suppose that the average rating for all movies, μ, is 7.4/10 and that Titanic has a bet-
ter than average rating and tends to be rated 1 star above the average. On the other 
hand, Joe is a critical user, who tends to rate 0.6 stars lower than the average. Thus, 
the estimate for Titanic’s rating by Joe would be (7.4 + 1 − 0.6) = 7.8/10.

 We added biases in order to estimate the users’ ratings for items that the user had not 
rated although the items belonged to the user’s favorite categories (categories rated 
equally or higher than 7/10 by the user).

b. In recent literature on databases, skyline query processing has received very signifi-
cant attention [29–31]. Skyline queries find within a database the set of points that 
are not dominated by any other point. A n-dimensional point is not dominated by 
another point if it is true that it is not worse than any other point in (n − 1) dimen-
sions and is better in at least one dimension. We adapted the idea of choosing 
non-dominated objects into EgoSimilar+. More specifically, after adding biases as 
explained above, dividing users in clusters and calculating user matching, EgoSimi-
lar+ creates, for each user, two sets of potential friends. Set A contains the non-
dominated potential friends, who are shown in descending matching percentage 
order, and Set B contains the dominated potential friends, who are again shown 
in descending matching percentage order. In order to identify the non-dominated 
potential friends, we use Eq. (1) and we calculate user matching in each category 
and that category’s items. A non-dominated potential friend of user X is one who 
does not have a smaller matching percentage with X than any other user in 8 inter-
est categories and is better than all other potential friends in at least one interest 
category.

It should be noted that a potential friend of user X in set B may have a higher overall 
matching percentage than a potential friend of X in set A. This can happen if the user 
in set B has a high matching percentage with X in a specific category but is dominated 

(4)Bui = µ+ Bu + Bi



Page 12 of 17Tsakalakis and Koutsakis  Hum. Cent. Comput. Inf. Sci.            (2018) 8:36 

in another category. Still, the fact that users in set A are not dominated lead us to 
place them “lower” (closer to the top) in user X’s matching list.

Evaluation of EgoSimilar+
As mentioned in “Evaluation of EgoSimilar” sectiom, in order to find the appropriate 
number of clusters to use for K-means clustering in our dataset, we utilized silhouettes 
[27]. Silhouettes are a widely-used graphical aid for the interpretation and validation of 
cluster analysis. A silhouette shows which objects lie well within their cluster and which 
ones are merely somewhere in between clusters. If we take any user i of a cluster A we 
define as a(i) the average dissimilarity of i to all other objects of A, and as b(i) the dissim-
ilarity of i to all objects of the second-best cluster then the silhouette s(i) is computed as:

By “dissimilarity” in our study we are referring to the Euclidean distance between user 
vectors.

Equation  (5) indicates that the best possible clustering (i.e., s(i) being close to 1) is 
achieved when the “within” dissimilarity is much smaller than the smallest “between” 
dissimilarity b(i). In this case user i is well-clustered. When s(i) is close to zero, this 
means that a(i) and b(i) are approximately equal and hence it is not clear to which of 
the two clusters user i should be assigned. When s(i) is close to − 1, this means that the 
clustering is erroneous as user i is closer to the second best cluster and should have been 
assigned to it.

Silhouettes are especially useful because they can help identify cases where we have 
set k to be too low or too high; in both cases s(i) would be low, in the first due to a high 
a(i) and in the second due to a low b(i).

To find the appropriate K we studied the 286 users of our datasets and we clustered 
them with K ranging from 1 to 143, i.e., up to the case where we would have on average 
two users in each cluster.

(5)s(i) = (b(i)− a(i))/max(a(i), b(i))

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0 20 40 60 80 100 120 140

Av
er

ag
e 

Si
lh

ou
e�

e

K

Fig. 1 Average silhouette for EgoSimilar+



Page 13 of 17Tsakalakis and Koutsakis  Hum. Cent. Comput. Inf. Sci.            (2018) 8:36 

Figure 1 shows the average silhouette for all objects (users) in the dataset, for different 
values of K (average over 10 independent runs for each value).

Our results are qualitatively similar with those in [32] where for a different problem it 
was again shown through silhouettes that the increase of K up to a point increases the 
probability of a user being in the best possible cluster, however the general quality of the 
solution decreases with a too big increase of K. We derived the best silhouette when K is 
around 25, i.e., for an average number of 11–12 users per cluster. The best K values when 
using all other similarity computation methods in eMatch were in the range of [20, 23], 
and for each method we used its best K for the results that follow, in order to make a fair 
comparison.

In order to make a fair comparison between EgoSimilar+ and the other similarity 
computation methods we initially implemented on them the same new ideas that we 
implemented on EgoSimilar+, which are presented in “EgoSimilar+” section. However, 
the first idea, of adding biases, leads to a smaller exact agreement between users and 
this in turn led to worse results for the κ coefficient, π coefficient and Jaccard index. The 
addition of biases had a negligible effect on the Pearson Correlation and Cosine Similar-
ity results. Therefore, for fairness reasons we implemented for all five similarity compu-
tation methods only the second idea, of finding and presenting first the non-dominated 
potential friends.

Figure 2 presents the matching difference between connected and not-connected users 
for “the best” version of all similarity computation methods (best K, addition of the new 
idea or ideas the improve the method’s results). EgoSimilar+ is shown not only to excel, 
once again but to significantly improve its results in comparison to EgoSimilar. Espe-
cially for the case that is of the most interest for us, i.e.,  (w1,w2) = (0.25, 0.75), EgoSimi-
lar+ shows a 34% improvement in comparison to EgoSimilar in distinguishing between 
already connected and not already connected users.

The actual matching percentages between users in each cluster vary for all similar-
ity computation methods between 50 and 70%, with the exception of the Cosine Sim-
ilarity metric which, when used in eMatch, shows an average matching percentage 

0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

6.00%

7.00%

8.00%

EgoSimilar+ Pearson Cosine Jaccard
Index

π 
coefficient

κ 
coefficient

w1=0.25

w1=0.5

w1=0.75

Fig. 2 Average matching difference between connected and not-connected users



Page 14 of 17Tsakalakis and Koutsakis  Hum. Cent. Comput. Inf. Sci.            (2018) 8:36 

larger than 80% between the users in most clusters. However, the actual matching 
percentage is of little value. The only substantial effect that it might have, especially 
in the case of not connected users, is that a quantitatively higher percentage might be 
more intriguing for a user in order to decide to communicate with another user. What 
is truly substantial is the order in which “matching users” appear on the user’s screen, 
in decreasing percentages (high to low), where, as it will be explained below, EgoSimi-
lar+ clearly outperforms all similarity computation metrics.

Table  5 presents the average friends’ placement results for EgoSimilar+ and the 
other similarity computation methods, again all of them in their “best” version. It is 
clear from the results presented in the Table that:

1. EgoSimilar+ now outperforms all similarity computation methods in terms of the 
average friends’ placement, which is the most important metric in our study, for all 
values of  (w1,w2), including  (w1,w2) = (0.25, 0.75) which is the most important case of 
our study, as explained earlier.

2. The improvement of EgoSimilar+ through the use of the two new ideas (adding 
biases, finding and promoting non-dominated potential friends) is very substan-
tial, leading it to place existing friends on average at around the 29% mark (position 
83/285). This improves our confidence on the quality of friend recommendations 
that EgoSimilar can make. EgoSimilar+ also clearly excels against all other similar-
ity computation methods for weights  (w1,w2) = (0.5, 0.5) and  (w1,w2) = (0.75, 0.25), 
however its improvement over EgoSimilar is not as large since the critical factor in its 
improvement is the addition of biases to compute unknown ratings for items, and in 
the above cases item similarity has a smaller weight than in the  (w1,w2) = (0.25, 0.75) 
case.

Figure 3 furthers shows visually the percentage improvement provided by EgoSimi-
lar+ in terms of the average friends’ placement in comparison to all other similarity 
computation measures. For  (w1,w2) = (0.25, 0.75) this improvement ranges between 
8.5% and 25.5% and even for  (w1,w2) = (0.75, 0.25) the smallest improvement is still 
4.5%.

Table  6 presents the same type of results as Table  5, with the difference that the 
same value of K for the K-means clustering was used for all the experiments, 
instead of using the best K for each method. The conclusions derived by Fig.  2 and 
Table  5 stand, once again, for the results of Table  6, which show that EgoSimilar+ 

Table 5 Average friends’ placement for the best version of all methods

Similarity computation method Placement

w1 = 0.25 w1 = 0.5 w1 = 0.75

EgoSimilar+ 82.41 92.36 100.80

Pearson 99.85 102.44 108.71

Cosine 110.56 110.91 111.32

Jaccard index 93.26 99.23 109.02

π coefficient 92.43 99.59 107.38

κ coefficient 90.05 98.40 105.57



Page 15 of 17Tsakalakis and Koutsakis  Hum. Cent. Comput. Inf. Sci.            (2018) 8:36 

outperforms all other similarity computation method in reard to the average friends’ 
placement in the users’ matching list.

Conclusions and future work
We have presented and proposed a user similarity computation algorithm, Egosimi-
lar+, with the aim of using it to find and connect people with common interests in 
the same geographical area. The algorithm is incorporated into a mobile application 
that serves as a “friend” recommendation system. EgoSimilar+ adapts ideas and tech-
niques from the recommender systems literature and the skyline queries literature 
and combines them with our own ideas on the importance and utilization of item 
popularity. Our proposed algorithm is compared against five well-known similarity 
computation methods from the literature and is shown to excel in comparison with 
all of them, improving by 4.5–25.5% their results in terms of identifying true friends 
based on their interests.

The idea for eMatch, and hence the need for an algorithm like EgoSimilar+, was 
created by the fact that the contemporary way of life leads a large number of people to 
spend much time away from home, often alone among strangers. Therefore, it makes 
sense for them to connect right on the spot with someone close by who shares their 
interests. This is a decision that can be made quickly with the help of an intelligent 

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

Pearson Cosine Jaccard
Index

π 
coefficient

κ 
coefficient

w1 = 0.25

w1 = 0.5

w1 = 0.75

Fig. 3 Percentage of improvement offered by EgoSimilar+ in average friends’ placement in comparison to all 
other similarity computation measures

Table 6 Average friends’ placement for K = 40

Similarity computation method Placement

w1 = 0.25 w1 = 0.5 w1 = 0.75

EgoSimilar+ 84.35 95.08 102.09

Pearson 102.47 106.26 112.10

Cosine 114.32 114.75 114.99

Jaccard index 95.41 102.89 111.53

π coefficient 93.70 100.82 109.41

κ coefficient 91.52 99.62 107.48



Page 16 of 17Tsakalakis and Koutsakis  Hum. Cent. Comput. Inf. Sci.            (2018) 8:36 

application, as opposed to decisions regarding finding possible life partners, which 
would usually require much more thought and study from the user (other applica-
tions focus on this area). Even at home, however, users spend a large amount of time 
using their mobile devices. Therefore, even users who want to take their time with 
evaluating possible friends will have the opportunity to do so.

One limitation of the existing work is the fact that the extended dataset is still rela-
tively small. In future work, we will use EgoSimilar+ in large datasets from other sources 
in order to provide recommendations for users/items and we will compare it once again 
against benchmark similarity computation methods. We also intend to incorporate 
semantic similarity computation algorithms into eMatch, to further improve the clus-
tering and the implicit (via the matching percentage) friendship recommendations. The 
use of such algorithms is important, so that relevant concepts, names and items will be 
linked automatically by the application (e.g., soccer and football, or soccer and Man-
chester United). The incorporation of spell check software is also important, in order to 
avoid spelling errors that can cause the algorithm to miss a commonly liked or disliked 
item by two users.

Authors’ contributions
GS analysed the extended dataset, produced and analyzed the results of the evaluation of EgoSimilar. PK collected the 
extended dataset and analyzed the results of the evaluation of EgoSimilar. PK also designed and evaluated EgoSimilar+. 
Both authors read and approved the final manuscript.

Author details
1 School of Electrical and Computer Engineering, Technical University of Crete, Chania, Greece. 2 School of Engineer-
ing and Information Technology, Murdoch University, Science and Computing Building 245, SC1.012, 90 South Street, 
Murdoch, WA 6150, Australia. 

Acknowledgements
The authors wish to sincerely thank the developer of eMatch, Georgia Athanasopoulou, for her valuable help during the 
time that this work was conducted.

Competing interests
The authors declare that they have no competing interests.

Availability of data and materials
The datasets used and analysed in this study are available from the corresponding author on reasonable request.

Funding
This was not a funded research project.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 25 September 2018   Accepted: 26 November 2018

References
 1. Oommen BJ, Yazidi A, Granmo O-C (2012) An adaptive approach to learning the preferences of users in a social 

network using weak estimators. J Inf Process Syst 8:191–212
 2. Athanasopoulou G, Koutsakis P (2015) eMatch: an android application for finding friends in your location. Mob Inf 

Syst J. Article ID 463791
 3. Athanasopoulou G (2013) https ://andro idapp sapk.co/detai l-ematc h-com-tuc-ematc h/Acces sed. 06 Nov 2018
 4. Farrahi K, Zia K (2017) Trust reality-mining: evidencing the role of friendship for trust diffusion. HumanCentric Com-

put Inf Sci 7:4
 5. Duck SW, Craig G (1978) Personality similarity and the development of friendship: a longitudinal study. Br J Soc Clin 

Psychol 17:237–242
 6. Werner C, Parmelee P (1979) Similarity of activity preferences among friends: those who play together stay together. 

Soc Psychol Quart 42:62–66
 7. Han X, Wang L, Crespi N, Park S, Cuevas A (2015) Alike people, alike interests? Inferring interest similarity in online 

social networks. Decis Support Syst 69:92–106

https://androidappsapk.co/detail-ematch-com-tuc-ematch/Accessed


Page 17 of 17Tsakalakis and Koutsakis  Hum. Cent. Comput. Inf. Sci.            (2018) 8:36 

 8. Lee D (2015) Personalizing information using users’ online social networks: a case study of CiteULike. J Inf Process 
Syst 11:1–21

 9. Souri A, Hosseinpour S, Rahmani AM (2018) Personality classification based on profiles of social networks’ users and 
the five-factor model of personality. HumanCentric Comput Inf Sci 8:24

 10. Youhoo (2018) http://appcr awlr.com/andro id/youho o. Accessed 06 Nov 2018
 11. GeoSocials (2018) http://appcr awlr.com/andro id/geoso cials . Accessed 06 Nov 2018
 12. Jiveocity (2018) http://appcr awlr.com/andro id/jiveo city. Accessed 06 Nov 2018
 13. Liben-Nowell D, Kleinberg J (2007) The link prediction problem for social networks. J Assoc Inf Sci Technol 

58:1019–1031
 14. Hannon J, Bennett M, Smyth B (2010) Recommending Twitter users to follow using content and collaborative filter-

ing approaches. In: Paper presented at the 4th ACM conference on recommender systems (RecSys), Barcelona; 2010
 15. Wan S et al (2013) Informational friend recommendation in social media. In: Paper presented at the 36th interna-

tional ACM SIGIR conference on research and development in information retrieval (SIGIR), Dublin; 2013
 16. Han X et al (2016) CSD: a multi-user similarity metric for community recommendation in online social networks. 

Expert Syst Appl 53:14–26
 17. Diez J, del Coz JJ, Luaces O, Bahamonde A (2008) Clustering people according to their preference criteria. Expert 

Syst Appl 34:1274–1284
 18. Gan M, Jiang R (2013) Constructing a user similarity network to remove adverse influence of popular objects for 

personalized recommendation. Expert Syst Appl 40:4044–4053
 19. Hwang D, Kim D (2017) Nearest neighbor based prototype classification preserving class regions. J Inf Process Syst 

13:1345–1357
 20. Wu J et al (2017) Weighted local Naïve Bayes link prediction. J Inf Process Syst 13:914–927
 21. Mekouar L, Iraqi Y, Boutaba R (2012) An analysis of peer similarity for recommendations in P2P systems. Multimedia 

Tools Appl 60:277–303
 22. Jaccard P (1908) Nouvelles Recherches Sur la Distribution Florale. Bulletin de la Societe Vaudoise des Sciences 

Naturelles 44:223–270
 23. Scott WA (1955) Reliability of content analysis: the case of nominal scale coding. Public Opin Quart 19:321–325
 24. Cohen J (1960) A Coefficient of agreement for nominal scales. Educ Psychol Measur 20:37–46
 25. Di Eugenio B, Glass M (2004) The kappa statistic: a second look. Comput Linguistics 30:95–101
 26. Forgy EW (1965) Cluster analysis of multivariate data: efficiency versus interpretability of classifications. Biometrics 

21:768–769
 27. Rousseeuw PJ (1987) Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J Comput 

Appl Math 20:53–65
 28. Koren Y, Bell R, Volinsky C (2009) Matrix factorization techniques for recommender systems. Computer 42:42–49
 29. Borzsony S, Kossman D, Stocker K (2001) The skyline operator. In: Paper presented at the 17th international confer-

ence on data engineering (ICDE), Heidelberg; 2001
 30. Papadias D, Tao Y, Fu G, Seeger B (2005) Progressive skyline computation in database systems. ACM Trans Database 

Syst 30:41–82
 31. Zhang K et al (2017) Probabilistic skyline on incomplete data. In: Paper presented at the 26th ACM international 

conference on information and knowledge management (CIKM), Singapore; 2017
 32. Thuillier E, Moalic L, Lamrous S, Caminada A (2018) Clustering weekly patterns of human mobility through mobile 

phone data. IEEE Trans Mob Comput 17:817–830

http://appcrawlr.com/android/youhoo
http://appcrawlr.com/android/geosocials
http://appcrawlr.com/android/jiveocity

	Improved user similarity computation for finding friends in your location
	Abstract 
	Introduction
	Related work
	EgoSimilar
	Evaluation of EgoSimilar
	EgoSimilar+
	Evaluation of EgoSimilar+
	Conclusions and future work
	Authors’ contributions
	References




