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Abstract  

 

This thesis describes a number of scientific studies investigating different interesting 

properties of rare earth metal oxides desired in different applications via combined 

experimental measurements and accurate density functional theory (DFT) calculations.  The 

electronic, structural, mechanical and thermodynamic properties of cubic lanthanide 

sesquioxides are first reported, with a particular focus on the most common dioxide in the 

lanthanide family, ceria (CeO2).  This is followed an investigation into the effect of Hf and Zr 

dopants on the reduction energies of pure ceria.  The reduction enthalpies of Ce1-xHfxO2 and 

Ce1-xZrxO2 and Ce1-2xHfxZrxO2 solid solutions are computed as a function of the reduction 

extent (x).  Alloying with Hf and Zr is found to systematically reduce the energies required to 

remove oxygen atoms from bulk of ceria.  The computed coefficients in the Born-Huang 

criterion infer a mechanical stability of all cubic lanthanide sesquioxides.  Acquired 

electronic parameters encompass Bader’s atomic charges and Partial Density of States 

(PDOS). 

 

An important part of the thesis focuses on the catalytic capacity of CeO2 in acting as a stand-

alone environmental catalyst toward the decomposition of a series of chlorinated volatile 

organic compounds, namely chloroethene, chloroethane and chlorobenzene.  Guided by 

recent experimental measurements, the pyrolytic and oxidative decomposition of selected 

chlorinated compounds have been modelled on the most stable ceria surface, CeO2 (111).  

Dissociative addition (surface-assisted fission of the C-Cl bond) and direct elimination 

pathways (departure of a stable hydrocarbon entity with the co-adsorption of H and Cl atoms 

on the surface) assume comparable importance.  Fission of the C-Cl bond over oxygen 

vacancies systematically necessitates lower energy barriers in reference to perfect surfaces.  

We have illustrated that observed catalytic deactivation in the experiment is attributed to the 

profound stability of adsorbed hydrocarbon adduct.  Decomposition of an adsorbed phenyl 

moiety proceeds via addition of oxygen molecules to partially reduced surfaces.  A simplified 

kinetic model plots the temperature-conversion profiles for the three compounds against 

corresponding experimental profiles, where a reasonable agreement has been attained.  
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Surfaces of terbium dioxide (TbO2) possess an important catalytic feature in that they are 

capable of producing hydrogen by splitting water molecules.  We have computed a large 

array of thermo-mechanical properties including heat capacities, bulk modules and thermal 

expansions of bulk TbO2 as a function of temperatures and pressures based on the quasi-

harmonic approximation (QHA) approach.  Our calculated lattice constant and band gap were 

in good agreement with analogous experimental findings.  A surface truncated along the 

(111), terminated with O atoms and with oxygen vacant site (111): O+1Vo incurs a higher 

thermodynamic stability across all values of oxygen chemical potential.   Nonetheless, in the 

vicinity of the lean-limit of chemical potential the surface terminated with Tb atoms (111): 

Tb becomes more stable.  The implications of these geometries on OH-H fission reactions 

have been discussed.  

 

Magnetron sputtered CeO2 films as optically transparent materials, deposited onto crystalline 

silicon substrates at various oxygen-argon mixture gas, have been intensively studied and 

characterized by correlating their structural and chemical bonding states.  All the thin films 

exhibit a polycrystalline character with cubic fluorite – structure for cerium dioxide along 

(111), (200) and (222) orientations.  The XPS survey scans of the CeOx coatings revealed that 

that Ce, O, C elements are present in all of the obtained spectra of the studied films.  XPS 

analysis demonstrated that the atomic percentages of Ce and O atoms increase as oxygen-

argon mixture increases.  Two oxidation states of CeO2 and Ce2O3 are present in the films 

prepared at lower oxygen/argon flow ratios; whereas the films are completely oxidized into 

CeO2 as the oxygen/argon flow ratio increase.  Reflectance data obtained from UV-Vis 

examinations were utilized to calculate the optical constants such as absorption coefficient 

(α), the real and imaginary parts of the dielectric function (ε1, ε2), the refractive index (n) and 

the extinction coefficient (k).  Our analysis indicates that the CeO2 films display indirect 

optical band gaps residing in the range of 2.25 - 3.1 eV.  We utilized DFT calculations to 

estimate optical constants of a CeO2 cluster at ground state. The computed electronic density 

of states (DOSs) of the optimized unit cell of CeO2 yields a band gap that agrees well with 

the corresponding experimental value. The measured and DFT-computed absorption 

coefficient (α) exhibit a similar trend with similar values in the wavelength range from 100 to 
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2500 nm.  Overall, a satisfactory correlation between the theoretical and experimental 

findings is demonstrated.   

Spinal oxides of CuxCo3-xO4 thin films as one of metal mixed oxide systems, synthesized by 

sol-gel method and annealed at various temperatures ranging from º200 to º500 with interval 

100, are deeply studied and characterized by various structural and optical characterization 

techniques. XRD data indicates that as annealing progresses, all the coatings possess a 

crystalline phase of Cu0.56Co2.44O4 (ICSD 78-2175) with preferential orientation along (400) 

reflection plane.  Optical analysis reveals that the solar selectivity of the studied films 

improves as the annealing progresses.  Bader’s charge analysis calculated by DFT 

implemented in VASP code points out that the Cu and Co atoms in all the stoichiometries 

hold positive charges whereas the O atoms are linked with negative charges.  Our model 

reveals a covalent character for Cu-Co bond in all the system and ionic characteristics for Cu-

O and Co-O bonds. 

 

Finally, the influence of the variation in the Hubbard parameter U on the activation and 

reaction energies on CeO2-catalyzed reactions is studied.  This has been achieved by 

surveying the change in activation and reaction energies for reactions underpinning the partial 

and full hydrogenation of acetylene over the CeO2 (111) surface.  A positive correlation 

between the U values and reaction and activation energies reported.  It is suggested that 

kinetic modeling against experimental profiles of products could be used as an approach to 

optimize the U value.  
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Chapter 1 : Introduction and Overview 

 

1.1 Introduction 

Transition metals (TMs) are a class of elements in the periodic table with distinguished 

electronic structures.  They differ from other materials in that their valance electrons can 

occupy more than one shell, affording them with a number of possible oxidation states. This 

is clearly displayed in acquiring different electronic characteristics, spanning insulating, 

conducting, as well as including superconducting behaviors.  In addition, owing to paired and 

unpaired electrons in their orbitals, they also exhibit unique magnetic properties such as 

paramagnetism, ferromagnetism and diamagnetism.   

Transition metals and their oxides have emerged as promising materials in a wide array of 

applications, most notably in catalysis, lighting, electronics and automobile industries.  These 

applications stem from the unique properties of transition metal oxides as materials incurring 

excellent mechanical and optical properties.  Owing to their favorable properties, some TMs 

are deployed in the improvement of optical and mechanical characteristics of materials.  A 

great deal of experimental and theoretical work in the last decade has provided accurate 

measurements of optical and mechanical properties for several TMs, a better understanding 

of electronic reasoning behind these properties, and the variation of thermo-mechanical 

characteristics with the relative loads of TMs.  Figure 1.1 depicts some of the main 

applications of transition metal oxides. 
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Figure 1.1 : Applications of transition metal oxides. 

 

Rare earth metals, as a part of transition metal family, and their oxides have displayed 

remarkable features and characteristics suitable to many important industrial fields, especially 

in automobile and electronic industries.  Figure 1.2 depicts the position of rare earth metals in 

the periodic table of elements. 
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Figure 1.2: The position of rare earth elements in the periodic table. 

Their application to the abovementioned industrial fields is due to the unique properties rare 

metal oxides possess, such as oxidation resistance and water repellant surfaces.  This crucial 

role in extending lifetime of the coatings, enhancing their hardness, and increasing their 

thermal stability under harsh operating environment.  It has previously been shown that the 

oxides of rare earth metals, such as Ce, La, Y, and Zr, enhance the high temperature 

oxidation resistance of various metal alloys up to 1000 °C.  Investigations of structural, 

thermal, optical and mechanical properties of films, purely consisting of transition metal 

oxides, have been a central research theme.  Experimentally, the aforementioned properties of 

these films have been probed using a combination of characterization techniques such as X-

ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), field emission scanning 

electron microscopy (FESEM), atomic force microscopy (AFM), ultra violet visible (UV-vis), 

Fourier transform infrared spectroscopy (FTIR) and nanoindentation.  From theoretical point 

of view, attempts have been made to underpin various structural and electronic features of 

rare earth metal oxides based on accurate density functional theory (DFT) calculations.  

Covered aspects encompass: geometries and thermodynamic stability of their surfaces; 

chemical reactions with prominent species such as hydrogen and water molecules; and 

predicting their thermo-mechanical properties.  Literature also presents comprehensive DFT 

accounts on thermal stability of transitional metal oxide surfaces and their chemical reactivity 

towards fragmentation or forming chemical species.  Furthermore, computational studies 
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have also simulated experimentally-measured various optical and mechanical properties of 

transition metal; including rare earth oxide coatings. 

 

1.2 Objectives and Thesis Outline 

 

Rare earth metals and their oxides are now widely deployed in electronic devices such as 

electrodes in batteries, and anti-reflection coating material in solar selective surfaces, 

catalysts ingredients in partial hydrogenation reactions, and in oxidative decomposition of 

halogenated pollutants.  The major objective of this dissertation is to build a comprehensive 

and reliable framework for the various characteristic properties of the lanthanide family and 

mixed metal oxides (spinal metal oxides).  The underlying aim is to acquire a detailed 

atomic-based understanding that enables improvement of the unique mechanical, optical and 

catalytic application of this family of compounds.   

 

This dissertation is arranged as follows: Chapter 2 surveys literature pertinent to techniques 

utilized in the synthesis of transition metal oxides with a focus on the rare earth metal oxides. 

The electronic, geometric, thermo-mechanical and optical properties of these compounds are 

also examined, along with their catalytic capacity toward prominent chemical applications.  

Chapter 3 highlights the preparation techniques deployed in Chapters 7 and 8 in this thesis, 

as well as the techniques utilized to characterize the investigated films.  Specifically, the 

physical principles underpinning the operation of these characterization techniques have been 

described.  Apart from experimental instruments, this chapter also presents a brief 

background on utilized theoretical approaches in the thesis, most notably, the DFT formalism, 

the transition state theory, the software used throughout chapters of the thesis, and the ab 

initio atomistic thermodynamics approach that is typically utilized to construct 

thermodynamic stability diagram of surfaces. 

 

Chapter 4 reports on the electronic and mechanical properties for the bulk of rare earth 

oxides (lanthanide series) as well as the thermodynamic properties of the most important 

compound in this family, ceria (CeOx).  We found in this chapter that alloying CeOx phases 

with Zr and Hf atoms systematically reduces reduction energies with respect to pure ceria.  
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For the first time, this chapter provides Bader’s charge distribution for all structures in this 

family.  Chapter 5 presents a theoretical investigation of the catalytic performance of both 

pristine and reduced CeO2 (111) surface in destroying some chlorinated volatile organic 

compounds; namely chloroethene (CE), chloroethane (CA) and chlorobenzene (CB).  We 

found that the C-Cl bond in the three studied compounds is broken over CeO2 (111) via 

modest activation barriers.  Dehalogenation of CE and CA molecules (i.e., release of HCl 

molecules) occurs via a dissociative addition pathway rather than via a direct elimination 

route.  Chapter 6 explores both perfect and defect surfaces of terbia (TbO2); a material that is 

widely deployed in electronic and chemical applications.  Findings from ab initio atomistic 

thermodynamic calculations indicate that surfaces with Tb atoms and surfaces with oxygen 

atoms and oxygen vacant sites truncated along the (111) direction incur higher 

thermodynamic stabilities than other surfaces across a wide range of oxygen chemical 

potentials.  Chapter 7 presents a combined theoretical and experimental study on the 

structural and optical properties of thin film samples of CeOx deposited on Si substrates.  The 

XPS survey scans of the CeOx coatings reveal that the Ce: O ratio between 14% and 56% 

oxygen/argon flow ratios is largely consistent with the CeO2 stoichiometry.  Introducing 

oxygen pressure into the system enhances the antireflection characteristics of the films in the 

visible regions.  In Chapter 8, a theoretical and experimental investigation is presented to 

report on the electronic, structural and optical properties of mixed metal oxides coatings such 

as CoCu-oxides.  In this chapter, we have also computed Bader’s charges of various forms of 

CoCu-oxides. Our results indicate that the solar selectivity of the studied films improves with 

an increase in the annealing temperature.  The success of the DFT +U approach to precisely 

calculate the reduction energies of bulk CeO2 in Chapter 4 motivated the investigation of the 

influence of the variation of U value on the activation and reaction energies for well-studied 

catalytic systems, that is partial and fully hydrogenation of acetylene over the CeO2(111) 

surface.  Calculations in Chapter 9 disclose that reaction barriers for prominent 

hydrogenation step correlates positively with the utilized value of U.  In addition to the very 

demanding computational frameworks, it is suggested in this chapter that optimization of the 

U value could also be achieved via kinetic modelling against experimental profiles of 

products.  We have shown that the barrier and reaction energies positively increase with the 

U values.  Finally, Chapter 10 summarizes the most important findings in this thesis along 

with suggestions for future directions.  Figure 1.3 presents an overall layout of the thesis with 

an emphasis on the synergy between experimental measurements and accurate DFT 

calculations.  
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Figure 1.3 : The overall layout of the thesis. 
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Chapter 2 : Literature review 

2.1 Rare Earths Metal Oxides 

A great deal of experimental and theoretical research has been devoted towards studying the 

properties of rare earth metals (lanthanide metals) and their oxides (Ln2O3).  These materials 

are widely deployed in a diverse range of applications encompassing catalysis, lighting, 

electronics and automobile industries. Depending on the operational temperature and pressure, 

Ln2O3 species can adopt three distinct phases at temperatures below 2000 ◦C.  The light rare 

earth elements Ln2O3 oxides (A-type, space group of P3m1, no.164) feature a hexagonal 

structure as depicted in Figure 2.1.  

 

Figure 2.1: Unit cells of Ln2O3 (a) A-type (hexagonal), (b) B-type (monoclinic), and C-type 

(cubic). 

The heavy rare earth elements oxides Ln2O3(C-type, space group of Ia3, no. 206) are known 

to adopt cubic structures (Figure 2.1), whilst the remaining rare earth elements oxides 

generally crystallize in either C-type structure, or B-type structure (monoclinic 

crystallography) [1].  All of the rare earth elements oxidize readily, but to a varying extent 

and oxidation state.  In the presence of air for instance, cerium (Ce) oxidizes to ceria (CeO2) 

which possesses a fluorite structure (Figure 2.2).  On the other hand, Praseodymium (Pr) 

occurs naturally as Pr6O11, whilst terbium (Tb) is found as Tb4O7.  Both of these oxides 

transform into PrO2 and TbO2 under oxygen pressure.  The three aforementioned dioxides are 

crystallized as cubic fluorite face-centered structures.  However, the rest of the lanthanide 

oxides are found in nature as sesquioxides (Ln2O3) [2].  It is worth mentioning that most of 
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rare earth oxides are thermally stable and expected to be highly active against H2O and CO2.  

The most common oxidation state they have is that of a trivalent state, but they can also 

switch to either divalent or a tetravalent oxidation state.  

 

Figure 2.2: Adopted cubic fluorite structure of the lanthanide dioxide (LnO2), CeO2, PrO2 

and TbO2. 

The geometric, electronic and mechanical properties of rare earth sesquioxides, and the phase 

transition pressure from cubic (C-type) to hexagonal (A-type) have been extensively 

investigated by means of first-principle calculations’ predominantly based on the density 

functional theory (DFT)- formalisms [3].  Richard et al. [3] calculated and validated their 

theoretical findings on structural and mechanical properties along with the pressure at which 

phase transition from cubic to hexagonal occurs against corresponding experimental values. 

Favorable agreement was obtained between the theoretical and empirical studies for the 

investigated properties.  Their study reported that inclusion Hubbard parameter U in the 

methodology resulted in a noticeable correction to the structural properties.  The calculated 

bulk moduli B, its pressure derivative B′, and the phase transition pressures are depicted in 

Table 2.1. 
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Table 2.1: Bulk modulus B, its pressure derivative B′, and the phase transition pressure for 

the complete series of Ln2O3.  Reproduced from ref. [3].  Results are reported for two DFT 

functionals, i.e., LDA and GGA + U. 

Compound Method A-phase C-phase PC→A 

(GPa) B (GPa) B′ B (GPa) B′ 

La2O3 LDA 

GGA + U 

155.2 

142.8 

4.34 

4.39 

133.9 

124.4 

4.15 

4.18 

0.0 

Ce2O3 LDA 
GGA + U 

166.8 
142.0 

4.45 
4.29 

148.5 
135.5 

5.62 
4.00 

-2.6 

Pr2O3 LDA 
GGA + U 

170.6 
152.3 

4.38 
4.00 

148.2 
157.9 

4.46 
4.00 

-3.9 

Nd2O3 LDA 
GGA + U 

173.5 
155.1 

4.43 
3.62 

150.5 
122.0 

4.38 
5.45 

-3.7 

Pm2O3 LDA 
GGA + U 

176.2 
156.1 

4.50 
4.01 

153.8 
129.0 

4.50 
4.00 

-2.7 

Sm2O3 LDA 
GGA + U 

177.4 
147.0 

4.42 
4.49 

153.4 
138.3 

4.22 
4.29 

-1.0 

Eu2O3 LDA 
GGA + U 

177.7 
134.3 

4.39 
4.00 

156.1 
143.1 

4.33 
4.17 

0.5 

Gd2O3 LDA 
GGA + U 

178.1 
160.7 

4.32 
4.39 

158.3 
144.7 

4.42 
4.24 

-0.7 

Tb2O3 LDA 
GGA + U 

179.5 
159.9 

4.22 
4.53 

158.6 
139.0 

4.31 
4.67 

-0.3 

Dy2O3 LDA 
GGA + U 

180.9 

160.4 

4.24 

4.64 

159.9 

148.9 

4.37 

5.14 
1.5 

Ho2O3 LDA 
GGA + U 

180.9 

179.1 

4.63 

3.71 

161.6 

152.0 

4.50 

4.48 
3.4 

Er2O3 LDA 
GGA + U 

180.4 

173.6 

4.64 

4.51 

161.2 

157.2 

4.46 

3.98 
5.7 

Tm2O3 LDA 
GGA + U 

178.5 

168.4 

4.56 

4.65 

161.6 

157.7 

4.40 

4.36 
7.0 

Yb2O3 LDA 
GGA + U 

177.8 

178.7 

4.61 

4.33 

161.6 

160.9 

4.52 

4.27 
7.5 

Lu2O3 LDA 
GGA + U 

198.8 

179.9 

4.33 

4.29 

179.4 

163.0 

4.30 

4.29 
7.7 

 

This dissertation in Chapters 4 and 6 investigates the cubic crystallographic type of the rare 

earth oxide with a special focus on Cerium (Ce) and Terbium (Tb).  
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2.2 Structural Characteristics of Stoichiometric and Non-

Stoichiometric Cerium Dioxide 

The oxidation of cerium metal is known to result in the formation of many different phases of 

cerium oxide ranging from CeO2 (IV) to Ce2O3 (III).  The oxidation processes of these two 

extreme oxidations are exothermic by −1796 and −1089 kJ mol−1 respectively at temperature 

of 298 K.  Between these two phases, partially oxidized phases (CeO2-y), prevail depending 

on the temperature and oxygen pressure. Ceria (CeO2) exhibits a fluorite structure 

crystallized as a centred cubic face (f.c.c.) with the space group of Fm-3m (a = 0.541134 nm, 

JCPDS 34-394), comprising of a cubic close-packed combination of metal atoms with 

tetrahedral holes filled by oxygen atoms.  Reduced CeO2-y forms by releasing oxygen atoms 

from the cluster leaving oxygen vacancies behind.  The Kröger-Vink notation governs the 

process of creation of vacancies as expressed [4], 

 

2𝐶𝑒𝐶𝑒 + 𝑂𝑂  →  𝑉𝑂¨ + 2𝐶𝑒𝐶𝑒
ˊ +

1

2
𝑂2                                                                       2.1 

 

Where Ce and O denote cerium and oxygen atoms, respectively, and VÖ signifies oxygen 

vacancy. 

On the basis of the notation above, the exact nature of the resultant phase relies on the 

amount of the oxygen released from CeO2.  X-ray diffraction (XRD) was employed to 

determine the structural parameters of reduced CeO2−y oxides, but this technique exhibits 

some limitations due to the low scattering power of oxygen.  In order to overcome this 

limitation, the most common approaches to discover the structural phases in the Ce2O3-CeO2 

phase diagram are neutron or electron diffraction techniques [5-7].  As Table 2.2 portrays, at 

temperatures over 685 °C and low oxygen pressure, CeO2 exhibits several forms of non-

stoichiometric oxidation states (CeO2−y).  With y ranging from 0 to 0.286, a disordered 

structure of fluorite-related system termed as the α phase evolves [5, 6].  All phases in this 

oxidation range adopts a fluorite-type structure but with an ordered arrangement.  Formed 

phases include  [7-10] Ce6O11 (the β phase, monoclinic) [10], Ce11O20 (the δ phase, triclinic) 

[11], and Ce7O12 (rhombohedral) [11, 12].  When y increases to exceed 0.286, a new phase 

termed as the σ phase emerges.  The σ phase exists as a body-centred cubic (b.c.c.) structure.  

The C-type sesquioxide Ce2O3 formed in the bixbyite structure (space group Ia-3) is the 
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compositional final member of the σ phase which is related to the f.c.c. - structure of CeO2.  

The lattice parameters of the C-type Ce2O3 are nearly twice that of CeO2.  This is attributed to 

the two cation groups being nearly identical, with oxygen anions residing in all tetrahedral 

sites in the f.c.c. structure, whereas only three-quarters exist in the b.c.c. structure in an 

ideally ordered array.  Due to the high reactivity of the cubic sesquioxide structure (C-type 

Ce2O3) [13] with atmospheric oxygen, the final crystal structure, called the θ phase, is formed.  

This phase is well known as the A-type  Ce2O3 which is crystallized in a hexagonal structure 

form, belonging to the P32/m space group (a = 0.389 nm, c = 0.607 nm; JCPDS 23-1048) 

[14]. 

 

Table 2.2: Stoichiometric and non- Stoichiometric structural properties of CeO2. 

Material oxidation extent, y Temperature (ºC ) Thermal treatment Structural phase 

CeO2-y 0 ˂ 685 - Fluorite structure 

with a face-

centred cubic 

(f.c.c) 

CeO2-y 0 ˂y ˂ 0.286 ˃ 685 - α phase 

(disordered 

fluorite structure)   

CeO2-y 0.166 ˃ 685 Thermally treated β phase (ordered 

fluorite, 

monoclinic 

structure)   

CeO2-y 0.181 ˃ 685 Thermally treated δ phase (triclinic 

structure) 

CeO2-y 0.285 ˃ 685 Thermally treated Rhombohedral 

structure 

CeO2-y ˃0.286 ˃ 685 - σ phase (C-type 

Ce2O3, body-

centred cubic  

 

2.3 CeO2-Included Solid Solutions 

It is well known that fluorite structure of CeO2 has the capability of forming solid solution 

systems with a wide array of oxides.  The lattice dimensions of the solid solution typically 

obey the Vegard’s rule; i.e., a linear relation between lattice constant and solute concentration.  

It must be emphasized that the term ‘dopant’ should be utilized for cases involving the 
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introduction of a foreign cation in the ceria lattice, as opposed to situations in which two 

oxides are mixed [4].  

Kim [15] reported an empirical equation clarifying the relationship between the lattice 

parameters of the solid solution, along with the ionic radius and the cation charge of the 

dopant introduced into the CeO2 and fluorite-like oxide structures.  

 The relation is expressed as,  

𝑎 = 0.5413 + ∑ (0.0220∆𝑟𝑘𝑘 + 0.00015∆𝑧𝑘)𝑚𝑘                                                  2.2 

where a in nm signifies the unit cell constant of the solid solution containing CeO2, ∆𝑟𝑘 =

𝑟𝑘 − 𝑟𝐶𝑒 (𝐼𝑉) in nm corresponds to the variance between the Kth dopant’ and Ce (IV) ionic 

radii, ∆𝑧 = 𝑧𝑘 − 𝑧𝐶𝑒 (𝐼𝑉) in nm denotes  the charge variance of the Kth dopant and Ce (IV) 

and mk signifies the molar focus of the Kth dopant.  Kim indicated that the solubility of either 

oxide material into the fluorite crystallographic structure of CeO2 relies on the elastic energy 

per ion present into the unit cell due to the variance in ionic radius.  Therefore, a greater 

magnitude of ∆ rk drives a higher elastic energy and a lower solubility limit.  The greatest 

soluble cations possess a radius that corresponds to the matching radius, rm, the one results in 

Vegard’s slope=0.  According to Kim’s equation, rm has to have a value of 0.097 nm for 

tetravalent dopant cations, 0.1038 nm for trivalent dopants, and 0.1106 nm for divalent 

dopants.  Similar amounts were reported in previous works [16, 17].  Below, Figure 2.3 

displays the measured and computed lattice parameters of fluorite-structure CeO2 solid 

solutions formed with different rare earth oxides.  
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Figure 2.3: Experimental and calculated lattice parameters of fluorite-structure CeO2 solid 

solution containing variant rare earth sesquioxides.  Reproduced from ref. [15].  

Building on the aforementioned discussions, the dopant concentrations display a clear impact 

on the structural properties of CeO2-included solid solutions (i.e. lattice dimensions).  Thus, 

Chapter 4 in this dissertation investigates the influence of introducing certain loads of 

transition metals such as hafnium (Hf) and zirconium (Zr) into the structure CeO2- on the 

reduction energy and structural properties of CeOx systems.  

 

2.4 CeO2- Metal oxide Solid Solutions 

CeO2-ZrO2 mixed oxides have received significant attention in literature because of their 

wide deployment in the so-called three ways catalysts (TWCs).  As such, the structural 

properties of CeO2-based solid solutions have been thoroughly investigated.  The difference 

in ionic radius of Zr4+ (0.084 nm for a 8-fold coordination) [18] and that of Ce4+ (0.097 nm)  

is only 15%. 

Yashima and coworkers previously conducted studies on the CeO2- ZrO2 solid solution 

annealed in a Na2B2O7-NaF atmosphere.  They studied the properties of the system below 

1000 ºC using XRD analysis, displaying the entire equilibrium phase diagram of the CeO2-
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ZrO2 solid solution.  Analysis of their phase diagram reveals three crystalline structures 

depending on the temperature [19], namely cubic phase with CeO2 high percentage and 

tetragonal or monoclinic phases with ZrO2 high percentage.  The balanced compositions of 

the tetragonal, monoclinic and cubic phases, as can be seen from Figure 2.4, occurs at x= 

0.112, 0.009 and 0.84 in CexZr1-xO2 [19], respectively at temperature of 1055 ºC.  

 

Figure 2.4: Phase diagram study of CeO2-ZrO2 system with different CeO2 concentration as 

a function of temperature.  Reproduced from ref. [20]. 

 

Detailed interpretation of the phase diagram is that a monoclinic crystalline phase belonging 

to the P21/c space group is obtained for ZrO2 and CexZr1−xO2 system at x values lower than 

0.12.  With the increase of CeO2 concentration in the system, the am (m refers monoclinic) 

value approaches that of bm and the angle βm lessens indicating a distortion of the monoclinic 

phase and all approaching those of the tetragonal structure [21, 22].  It must be noted that the 

phase boundary of x= 0.12 is substantially affected by some parameters such as preparation 

of the sample and the grain size.  These two parameters in turn  affect the nucleation, growth, 

and kinetics of the transformation [22].  The three tetragonal phases denoted as t, tʹ and tʺ 

[20-24] are crystallized when the oxygen content becomes higher than 0.12.  The t phase is 
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stable at elevated temperature and for lower CeO2 concentrations.  As the CeO2 content 

increases, the other two metastable phases of tʹ and tʺ are formed.  For the t and tʹ form, the 

c/a ratio is slightly higher than 1, whereas for the ratio of the tʺ phase belonging to the 

P42/nmc space group equals 1. 

 

According to the vacancy formation energy in a CeO2 cluster calculated via DFT, for systems 

with dopant amounts of ∼ 3 mol%, tetravalent dopants such as Ti, Zr, and Hf (IVb in the 

periodic table) can insert into the bulk of CeO2.   On the contrary, other elements such as C, Si, 

Ge, Sn, and Pb (IVb in the periodic table) are segregated on the surface [25].  It is found that 

the vacancy creation energy of 4.035 eV per vacancy calculated by LDA functional and 3.097 

eV per vacancy obtained by PBE functional reduce with increasing dopant size, reaching the 

best size that matches the Ce4+ ions. 

CeO2-HfO2 samples have been the subject of extensive structural investigations.  Findings 

obtained from these studies revealed similar structures to that observed for CeO2-ZrO2 system.  

On the basis of XRD studies [26] for samples annealed at 1400 °C for 48 h and cooled down 

slowly, stable CexHf1-xO2 solid solutions with x > 0.85 (CeO2-rich materials) are crystalized 

with cubic fluorite structure.  Meanwhile, when x < 0.15 (HfO2-rich materials) solid solutions 

are formed with monoclinic structure.  The samples characterized by a combination of XRD 

and Raman analysis [27] adopted the metastable tetragonal phases (t′ as well as t″).  

 

2.5. Influence of the reduction energies of CeO2 

It is of significant importance to investigate the redox properties of a catalyst by calculating 

its reduction/oxidation energy.  This in turn helps to predict the capability of that material in 

performing catalytic oxidation reactions.  This investigation is carried out by calculating the 

vacancy formation energy Evac needed to remove oxygen from the system for oxidation and 

hence creating a vacancy.   An improvement by lowering the reduction energies of oxides is 

achieved via replacing the cations of the catalyst with others [28-30].  DFT investigations 

undertaken by Hu and Metiu [28] studied the influence of the addition of various cations to 

CeO2 catalyst on its reduction energy. In this study, authors survey the effect of adding some 

dopants such as Pt, Ru, Zr, Ta, Mo, and W dopants in CeO2 (111) on the neighboring oxygen 

or distant ones (see Figure 2.5).  For the neighboring oxygen atoms, the calculated energies of 
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oxygen vacancy creation caused by the added cations (added dopants) were found to be 

almost identical.  By contrast, the effect of these dopants has not been recorded on the 

reduction energy of the distant oxygen.  Figure 2.5 displays the removal of oxygen atoms 

from different position in the CeO2 (111) slab as a result of introducing dopants. 

 

 

Figure 2.5: Side and top views of CeO2 (111) slab, doped with a dopant. (a) Removal of 

oxygen neighboring in the doped slab. (b) Removal of furthest oxygen in the doped slab. 

Reproduced from ref. [28]. 

 

In another instance, first-principle calculations reported by Yang et al. [31]  surveyed the 

impact of introducing Zr into a CeO2 system on the redox properties of CeO2. They reported 

that the reduction energy to remove a neighboring oxygen atom reduced by 0.6 eV in 

reference to undoped-CeO2.  In separate work, Yang and his collaborators [32] evaluated the 

vacancy formation energy of Pd –alloyed CeO2.  They concluded that introducing Pd atoms 

into the ceria system lowered the vacancy formation energy from 3.0 eV to 0.6 eV. 

 

To acquire an accurate understanding about the role of trivalent and tetravalent cations such 

as Zr4+, La3+, and Eu3+ incorporated into the ceria lattice, DFT calculations by Vinodkumar et 
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al. [33] concluded that alloyed ceria materials exhibit a better efficiency than unalloyed ceria 

for soot oxidation and this is attributed to an enhancement in the oxygen defects, specific 

surface area, and redox properties.  Under the exposure of air under tight contact conditions, 

trivalent-alloyed CeO2 were proven to be more efficient than tetravalent -alloyed ceria for 

soot combustion.  Finally, Eu3+-doped CeO2 has been demonstrated to be catalytically more 

active than La3+-doped CeO2 and this was ascribed to higher surface area and an increase in 

oxygen vacancies.   

                    

Kim et al. [34] assessed the thermodynamic characteristics of Ce1-x Zrx O2-y solid solutions.  

As Figure 2.6 displays, the CeO2-y and Ce0.81Zr0.19O2-y solid solution systems have been 

investigated in terms of the influence of the reduction extent on their redox properties.  The 

figure shows that the reduction energy of ceria-zirconia solid solutions is much lower than 

that of pure ceria. 

 

 

Figure 2.6 : Variation of oxidation enthalpies (∆H) per O2 with the reduction extent (y) in 

Ce0.81Zr0.19O2-y and CeO2 systems.   Reproduced from ref.[34]. 
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2.6 Well-Known Catalytic Applications of CeO2 

2.6.1 Three Way Catalysts (TWCs) in Automotive Cars  

The most popular application of cerium dioxide is TWCs in which CeO2 or CeO2-based 

materials act as supporters to convert some harmful gases such as CO, HC and NOx emitted 

from the automotive vehicles into more benign forms.  In this process, CO and HC are 

oxidized to be converted into CO2 and H2O respectively, whereas NOx is reduced into N2.  In 

this catalytic technology, the oxidation reactions are supported by some noble elements 

namely Pt and/or Pd, whereas Rh is required to efficiently catalyze the reduction of NOx [35].  

Non-stoichiometric ceria (CeO2-y) is a good store for oxygen during lean-to-rich transients 

and hence playing a crucial role to further reduce NOx molecules.  In contrast, stoichiometric 

ceria (CeO2) is an excellent provider of the oxygen atoms needed to oxidize CO and HC 

during rich-to-lean transients [4].  The TWC was initially pioneered during 1970s-1980s, 

fabricated from a combination of CeO2 and noble metals on doped Al2O3 support.  

Improvements on this design were achieved in the mid-1980s by developing the CeO2 

concentrations and optimizing the CeO2 distribution on the support alloyed Al2O3. 

Nonetheless, the formation of undesirable CeAlO3 and the unwanted reaction between CeO2 

and the noble elements is significantly diminished.  However, this version of TWS could not 

control the cars pollution because of poor thermal stability.   The final generation of TWCs 

convertor is the advanced TWCs that are based on CeO2-ZrO2 solid solution rather than pure 

CeO2 [36].  This version enjoys a high efficiency to remove the pollutant emissions.  As 

stated earlier, introducing ZrO2 into the CeO2 lattice enhances the oxygen storage capacity 

(OSC) of the system needed in the redox cycles, and hence improves the efficiency of the 

catalyst and reduces emissions at the onset of the engine.   

 

2.6.2 Dehalogenation by CeO2-Based Materials 

CeO2 and CeO2-based materials have been employed as economic alternatives to RuO2 -

based catalysts to oxidize and decompose HCl, a harmful by- product produced by industrial 

processes such as polycarbonates production from dehydroxylated organics and organic 

chlorination reactions.  The chlorine molecule Cl2 is found to be the predominant industrial  

output for HCl removal [37].  CeO2 -based catalysts were noted to be active in O2-rich feeds 

(O2/HCl ˃ 0.75), whereas the deactivation of the catalysts was explored in O2-poor feeds 
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(O2/HCl ˂ 0.25).  High Cl coverage hinders the formation of oxygen vacancies. Hence in 

order for the original activity to be restored, the samples should be exposed to an excess of 

oxygen, indicating a reversible deactivation due to the chlorination [38].  Lastly, CeO2-ZrO2 

solid solution as improved catalyst exhibits a prolonged stability (700 h on stream) as well as 

lessening the chlorine uptake with reference to undoped CeO2 [39]. 

 

2.6.3 Oxidation of Volatile Organic Compounds 

CeO2 and CeO2-based compounds have served as oxidizing agents for volatile organic 

compounds VOCs based on the Mars-van Krevelen Mechanism.  In general, the Mars-van 

Krevelen-type mechanism governs the reaction in which CeO2 acts as the oxygen provider, 

whilst at the same time being re-oxidized by the gas phase oxygen [40, 41].  High surface 

area CeO2 materials have been well known as promoters for noble metals (Pd, Pt, and Au).  

CeO2 is now being deployed as a low-temperature catalyst in the decomposition of VOCs.  

This is because of the increase of metal dispersion and CeO2 participation in the reaction [42, 

43].  Figure 2.7 illustrates Mars-Van Krevelen Mechanism of CeO2 (110) surface towards 

oxidizing CO.    

 

Figure 2.7:  Schematic illustration of the CO oxidation over CeO2(110) surface via Mars ‒ 

Van Krevelen mechanism [44]. 
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Methane (CH4), as one of VOCs, is known to pose a number of issues such as its potential 

impact on the global warming and its major contribution to ozone depletion [45, 46].  The 

combustible nature of CH4 adds further challenges in any process aimed at tackling its 

removal/conversion.  The catalytic efficiency of a CeO2-ZrO2 solid solution synthesized by 

urea hydrolysis toward methane was demonstrated to depends on the Ce:Zr fraction.  The 

most active composition was observed in Ce0.75Zr0.25O2 and gradual drop in the activity was 

recorded when Zr content decreased due to the phase change and modification of redox 

properties.  Although these systems have been recognized to possess high thermal stability 

traits [35, 36], they suffer from a general catalytic deactivation during light off experiments.  

Liotta and coworkers suggested that the strong electron transfer between Ce3O4 and CeO2 

resulted in enhanced redox properties and improved methane oxidation [47].  This 

enhancement has also been observed with CuO/CeO2 catalysts by optimizing the CuO 

dispersion, metal loading, and the electronic interaction with ceria; Resulting ultimately in an 

improved catalytic activity for the system.  Despite the excellent efficiency of the CuO/CeO2 

solid solution, a noticeable decrease of the activity was observed due to the existence of H2O 

[48].  In a Ce0.9−xCu0.1CaxO2−y system, a remarkable improvement was observed following the 

introduction of Ca as a result of the formation of oxygen vacancies.  This system losses its 

activity over time due to the migration of Ca atoms to the surface, thereafter forming calcium 

a carbonate species [49].  Finally, the incorporation of La in LaxCe1−xO2−y/2 solid solutions led 

to the enhanced reducibility of ceria and, at the same time, an increase in the formation of 

oxygen vacancies and surface super oxide ions.   In fact, these solid solutions were explored 

to be crystalized in very small sizes as the ratio of Ce/(Ce + La) was kept in the range from 

1.0 to 0.2 [50].   

The addition of noble metals such as Pt to different compositions of CexZr1−xO2 catalysts has 

been previously investigated as a means to produce thermally stable structures.  Among the 

investigated systems, Pt/Ce0.67Zr0.33O2 was found to be the most thermally stable and the best 

active catalysts at 1000 °C.  Also, Pt/Ce0.67Zr0.33O2 catalysts were found to be much more 

active than that of Pt/Al2O3 [4].  Several important catalyst systems, along with a summary of 

their synthesis and other operational information (BET surface area, gas hourly space 

velocity (GHSV) and temperature), are tabulated in Table 2.3.  
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Table 2.3 :  Summary of the most important catalysts used for VOCs Catalytic Combustion. 

                      

 

Catalyst 

 

 

Synthesis 

technique 

 

BET 

surface area 

(m2 g−1) 

 

     VOC 

 

 

GHSV  

(mL g−1 h−1) 

 

VOC 

concentration 

 

T50
b 

(°C) 

 

 

Ref. 

Ce0.75Zr0.25O2 Sol-gel 108.4 methane 60000 2% 545 [51] 

5wt% Cu/CeO2 hydrothermal 22.6 methane 27000 1% 540 [52] 

1wt % Cu/CeO2 thermal 

decomposition 

68.7 methane 54000 1% 540 [52] 

Ce0.85Cu0.1Ca0.05O2−δ Citric acid 

complexation 

combustion 

31.3 methane 30000 1% 478 [49] 

Ce(0.6)-La-O Sol-gel 52.4 methane 13500 0.2% 505 [50] 

Co3O4-CeO2 Coprecipitation 31 methane 60000 0.3% 471 [47] 

2wt%Pt/Ce0.67Zr0:33O2 Impregnation 79 methane 12800 1% 550 [53] 

CeO2 Sol-gel 3 toluene 200000 1000 ppm 430 [54] 

5 wt % CeO2/Al2O3 impregnation 156 toluene 54000 1400 ppm 275 [55] 

Ce0.9Zr0.1O2 Sol gel 56 toluene 20000 1000 ppm 221 [56] 

Ce0.9Zr0.1O2 Sol gel 56 ethanol 20000 1000 ppm 207 [56] 

CuO-CeO2/γ-Al2O3 impregnation 156 propane 2300 5.9% 350 [57] 

Cu0.13Ce0.87O2 combustion 27 acetone 60000 1000 ppm 200 [58] 

MnOx-CeO2 Sol gel 22.2 formalde

hyde 

60000 580 ppm 160 [59] 

MnOx-CeO2 Modified 

coprecipitation 

124 benzene 30000 200 ppm 260 [59] 

3wt%Ag/MnOx-CeO2 deposition 

precipitation 

124.0 formalde

hyde 

30000 580 ppm 70 [60] 

0.5 wt % Pt/CeO2 impregnation 3 toluene 200000 1000 ppm 180 [54] 

1.5 wt % Au/CeO2 deposition 

precipitation 

79 propene 35000 1000 ppm 230 [61] 

0.25 wt % Pt/23 wt % 

CeO2/ 

Al2O3 

Sol gel 95 acetic 

acid 

30000 1000 ppm 175 [62] 

bLight-off temperature at which conversion of VOC is 50%. 
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Figure 2.8 portrays the methane conversion on several catalysts such as PdO/Ce0.64 

Zr0.16Ni0.2O2/γ-Al2O3, PdO/Ce0.72 Zr0.18Ni0.1O2/γ-Al2O3, PdO/Ce0.8 Zr0.2O2/γ-Al2O3 and 

PdO/Ce0.64 Zr0.16Bi0.20O2/γ-Al2O3 as a function of temperature.  Apparently, the increase of Ni 

concentration leads to a reduction in the temperature required for methane conversion.  

Furthermore, a reduction in the BET specific surface area is also evident. 

 

 

 

Figure 2.8: Temperature dependencies of methane oxidation over different catalysts of 

PdO/Ce0.64 Zr0.16Ni0.2O2/γ-Al2O3, PdO/Ce0.72 Zr0.18Ni0.1O2/γ-Al2O3, PdO/Ce0.8 Zr0.2O2/γ-Al2O3 

and PdO/Ce0.64 Zr0.16Bi0.20O2/γ-Al2O3.  Reproduced from ref. [63]. 
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In relation to non-methane gases, Ce1−xZrxO2 (x = 0-0.3) exhibits a very good catalytic 

efficiency towards the oxidation of some of these gases, especially benzene and toluene.  The 

Ce1−xZrxO2 solid solution has been proven to be more efficient than unalloyed CeO2 in the 

combustion of these harmful molecules.  For instance, the Ce0.9Zr0.1O2 solid solution 

demonstrated higher catalytic performance toward oxidizing benzene and toluene than  pure 

CeO2 at temperature of 100 °C lower than light-off temperature, the temperature at which 50% 

of conversion (T50) is done [64]. 

In a similar context, MnOx−CeO2 mixed oxides exhibit excellent catalytic performance for 

the formaldehyde combustion.  The synthesis method of such a mixed oxide is an important 

factor in tuning its catalytic performance.  The improvement is due to the formation of a 

higher oxidation state of manganese and more oxygen on the surface resulting in an 

enhancement in the energy barrier for  the oxygen transfer mechanism [59].   

 

 

2.6.4 Chlorinated Volatile Organic Compounds (CVOCs) 

 

CVOCs are toxic materials that are emitted from industrial waste gases and contribute 

significantly in air pollution nowadays.  These compounds are emitted from thermal 

processes whenever a trace of chlorine co-exists with hydrocarbon entities. Among these 

pollutants are the notorious poly chlorinated dibenzo-p-dioxins and dibenzofurans [65, 66].  

As a result, significant attention has been devoted to control the emission of these pollutants 

via the development of novel and efficient catalysts.  Catalytic oxidative decomposition is 

currently deployed as alternative for the commonly deployed high temperature operations. 

Initially, noble metals such as Pt and Pd catalysts or catalysts supported noble metals have 

been extensively employed to decompose VOCs [67-69].  These catalysts are very active in 

the catalytic destruction of chlorinated VOCs, however, they can be readily poisoned by 

emitted  HCl and Cl2 gases [70].  Transition metal oxide catalysts have now emerged as a 

cost-effective alternative candidate to noble metals to carry out deep catalytic oxidation for 

CVOCs.  Although they are somewhat less active than noble metals, they are preferred 

because of their low price and resistance to HCl/Cl2 poisoning [71]. 
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 Many studies have utilized ceria as an environmental catalyst in the oxidative decomposition 

of Chlorinated volatile organic compounds.  This is predominantly due to some of its 

excellent catalytic properties relating to its capability to exist within the two oxidation states 

of Ce4+/Ce3+ as well as its high oxygen-storage capacity (OSC).  CeO2 has been examined for 

the catalytic combustion of trichloroethylene (TCE) whereby Dai et al. investigated the 

catalytic performance in destroying some chlorinated VOCs.  They concluded that CeO2 

demonstrates an effective catalytic capacity in decomposing Cl-VOCs at low operating 

temperatures.  They found that the catalytic removal of chloroalkanes over the CeO2 catalyst 

is easier than that of chlorinated allylenes [70]. 

Dia et al. [72] studied the trichloroethylene combustion at a broad range of reaction 

temperatures over CeO2 systems.  Figure 2.9 displays the temperature dependencies of 

trichloroethylene oxidation over CeO2 calcined at temperature of 550 °C, 450 °C, 650 °C and 

800 °C.  The Figure clearly depicts that CeO2 calcined at 550 °C achieves 90% 

trichloroethylene decomposition at 350 oC.  Dia et al. attribute the lower efficiency of the 

CeO2 calcined at 650 and 800 °C, in reference to that at 550 °C, to a diminution in BET 

surface area and an increase in crystallite size.  The lower catalytic efficiency for CeO2 

calcined at 450 °C is attributed to a fewer basic sites and active oxygen species. 
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Figure 2.9: Temperature dependencies of trichloroethylene oxidation over CeO2 catalysts 

calcined at different temperature.  Reproduced from [72]. 

 

Chapter 5 investigates the catalytic efficiency of CeO2 towards oxidation of three of 

chlorinated VOCs, namely chloroethene, chloroethane and chlorobenzene. 

 

2.6.5 Total Hydrogenation of Ethyne over CeO2 (111) 

The overall hydrogenation process of acetylene (C2H2) to ethane (C2H6) has been reported 

experimentally.  A plausible hydrogenation mechanism was suggested based on  DFT 

calculations [73].  The entire energy landscape and primary reaction steps along with all 

intermediate configurations are depicted in Figure 2.10.  

-2

18

38

58

78

98

100 150 200 250 300 350

C
o

n
v

er
si

o
n

 /
 %

Temperature / °C

550 °C

450 °C

650 °C

800 °C



26 

 

 

 

Figure 2.10:  Reaction energy diagram for total hydrogenation of acetylene on CeO2 (111) 

catalyst.  Energies are computed as a reference to the energy of H2 and C2H2 in the gas phase, 

and the clean CeO2 (111) slab.  Black line shows the routes of partial hydrogenation of 

acetylene to ethylene through R5, light brown displays the partial hydrogenation via 

dissociative acetylene adsorption, and red line represents the full hydrogenation to C2H6.  The 

asterisk denotes a clean CeO2 (111) surface.  Reactants, intermediates, and products that are 

followed by an asterisk correspond to the adsorbed species.  Reprinted from ref. [73]. 

 

 

Carrasco et al. [73] suggest that geometry optimizations for the adsorption of each of the 

investigated species preferentially occurs over the surface O atoms.  Hydrogen molecule 

adsorption and its subsequent dissociative adsorption on the surface are supposed to be the 

starting steps rather than the adsorption of a gas-phase C2H2 molecule.  As a result, the 

reaction initiates with the molecular adsorption of H2 followed by homolytic dissociative 
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adsorption to leave two H* species and liberate 2.35 eV.  The two H atoms adsorb over two 

closest neighboring surface O atoms to produce two hydroxyl groups and two Ce3+.  This 

primary step necessitates an activation energy of 1.00 eV [74].  The step to separate the two 

closest adjacent H* species resulting in two separated species, (H, H)*→ H* + H*, is 

energetically unfavorable by 0.07 eV.  The reaction continues with the adsorption of an 

acetylene molecule close to one hydroxyl group to form (β-C2H2, H)* (step D in Figure 2.10). 

Subsequently, the radical can easily react with the adjacent hydroxyl groups to produce 

C2H3* and liberate 1.48 eV.  Notably, this process involves only a very small energy barrier 

of 0.09 eV.  In the subsequent step, an adsorbed hydrogen atom migrates to the radical centre 

in the C2H3* forming an ethene molecule.  The fate of the ethene molecule is dictated by two 

competing channels, desorption into the gas phase or subsequent two hydrogenation steps 

toward the formation of an ethane molecule; i.e, full hydrogenation route.     

 

2.6.6 Ceria Surface Reactions with Inorganic Molecules 

2.6.6.1 H2, O2 and H2O 

Hydrogen molecules (H2) have been reported in many studies as a reducing agent for CeO2 

powders at high temperature and at the atmospheric pressure [75, 76].  Results obtained by 

experimental work revealed that H2 cannot adsorb nor react with CeO2 surfaces under UHV 

conditions [77-79].  DFT studies have provided potential energy surfaces for the dissociative 

uptake of hydrogen molecules over CeO2 (111) and CeO2 (110) surfaces via exothermic 

reactions [80, 81].  It has been proven that at low exposure of non-reduced CeO2(111) to D 

atoms at 115 K, surface  O-D are formed [79].   As a consequence of this reaction, Ce4+ states 

are reduced to Ce3+ states.  On the basis of XPS analysis at exposure greater than 50 L of 

water, a high-resolution of O 1s photoelectron suggested that D(g) adsorbed on the surface 

react with OD to produce chemisorbed D2O.  The surface OD group reacts with D on the 

surface to form D2O(g) between 200 K and 600 K.  It is demonstrated that the chemisorbed 

D2O(g) molecules are desorbed at temperature close 200 K, whereas D2 desorbs between 400 

K and 500 K.  Exposing reduced CeO2-y (111) to D(g) formed OD on the surface, but the 

trend of producing D2O at higher exposure lessens with further reduction of the surface. It has 

been observed that the stability of the OD formed on reduced CeO2-y (111) is greater than that 

of pristine CeO2 (111).  For the different CeO2-y (111) configurations, water and D2 were 

found to desorb at 570 K.  From a theoretical standpoint, DFT studies on the adsorption of 

H2(g) on CeO2 surfaces have reported that dissociative uptake  of H2(g)  O sites in  CeO2 (111) 
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and CeO2 (110) surfaces result in the partial reduction of  neighboring Ce cations [82].  

Another theoretical approach of ultra-accelerated quantum chemical molecular dynamic 

simulations demonstrated a mechanisms for the release of water molecules following 

adsorption of H2 molecules  [83].  

The high oxygen storage of ceria renders it a favorable material for wide deployment in the 

TWC  technology in vehicles [84].  As stated earlier, CeO2 acts as an oxidizing agent in fuel-

rich/oxygen deficient periods and as a reducing agent in the oxygen-rich periods.  

Consequently, it is crucial to understand the physisorption and chemisorption reactions of O2 

occurring on CeO2 surfaces.  It has been reported that the oxidation of Ce metal occurs at 

temperature of 300 K leading to a form of Ce2O3 covered by a layer of CeO2 [85-87].  It was 

shown that when the polycrystalline structure is heated to 600 K, XPS examinations of the Ce 

3d and Ce 4d photoelectrons peak showed complete reduction to Ce2O3 [88].  In contrast, 

reducing a CeO2 (100) surface by Ar+ ion sputtering at 300 K displayed partially re-oxidation 

as it is annealed to 600 K in vacuum [77].  These two findings indicate that O redistributes 

between the surface and the bulk below 600 K.  Along the same line of enquiry, DFT 

calculations were used to determine reaction routes for the interaction of O2 with 

stoichiometric and reduced ceria surfaces.  Dissociative adsorption of oxygen molecules over 

the CeO2 (111) surface is predicted to be endothermic with values residing on the range of 

0.91-0.98 eV  [89].  In another DFT+U study, reactions of O2 with the partially reduced 

CeO2-y (111) surface promote superoxo species bonded weakly to its surface O-vacancy (-

0.30 to -0.38 eV) and peroxo species that are more strongly bonded (-2.80 to -3.25 eV) [90].  

In another related study on the partially deficient CeO2-y (110) and CeO2-y (100) surfaces, 

binding of the peroxo species involves an adsorption energy of -2.0 eV [91]. 

 

 

Water is an integral part in different catalytic reactions.  Experimental work on the adsorption 

of H2O on CeO2 (111) and CeO2 (100) demonstrated that H2O can be physoisorbed and 

chemoisorbed or a mixture of both [79, 92-98] depending on the applied temperature.  This is 

consistent with analogous computational results for CeO2 (111).  For instance, Fronzi et al. 

[99] and Marrocchelli and Yildiz [100] concluded in separate work that H2O preferentially 

adopts several physisorbed states on CeO2(111), whereas Watkins et al. [81] states that the 

water fragmentation into H and OH is a feasible process.  Molinari et al. [101] studied the 
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adsorption of water on the most stable surfaces, CeO2 (111), (100) and (110) employing 

DFT-GGA-U calculations.  They reported that H2O molecules readily dissociate on the 

studied surface and that the most stable surface towards the chemisorbed H2O is CeO2 (111) 

surface.  They further concluded that the molecular adsorption of water becomes more 

preferable when the water coverage increases.  Fernandez-Torre et al. used different DFT   

calculations to estimate energy barriers for the steps governing water adsorption where they 

reported very similar energy barriers for the different steps [74].  

Data derived by high-resolution analysis of O 1s XPS photoelectron has been the first 

methodology to recognize molecular water from dissociated -OH on the CeO2 surfaces [79, 

92-98].   As seen from Figure 2.11, the adsorption of H2O on CeO2 (111) and CeO2 (100) 

close to 200 K leads to three O 1s peaks.  The analysis reveals that the lowest binding energy 

at 530.5 eV belongs to the lattice O in CeO2, whilst the highest binding energy at 534.4 eV is 

from molecular water.  This water is believed to be dissociated water (chemisorbed water) 

rather than being multilayer/ physiosorbed water.  The rationale behind this explanation is 

that the multilayer water desorbs between 150 K and 170 K and these spectra were obtained 

above 180 K [102].  The intermediate peak recorded at 532 eV is attributed with -OH despite 

its location also corresponding to chemoisorbed H2O [94] or a mixture of –OH and 

chemoisorbed water [96].  As is clear from Figure 2.11, the O 1s spectra of CeO2 (111) 

suggests that the adsorption energies of the molecular water on the surface and the -OH 

adsorption possess similar binding energies and this finding is in agreement with other 

accounts that conclude a negligible energy difference between the physiosorbed water and -

OH adsorption.  Further analysis of the  O 1s spectra reveals that the H2O is merely 

decomposed on this surface confirming the study performed by Molinari et al. [101].  From 

these results, one can conclude that hydroxyls group on oxidized CeO2 (100) are more stable 

than on CeO2 (111). 
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Figure 2.11: O 1s core level spectra from water adsorbed on oxidized CeO2 (111) and CeO2 

(100) at 180 K. Reproduced from ref. [92].  

 

TPD measurements have been recorded after water adsorption on the fully oxidized CeO2 

(111) and CeO2 (100) surfaces at a temperature of 180 K.  As Figure 2.12 portrays, the water 

mostly leaves CeO2 (111) in a single, sharp peak close 200 K  [79, 92, 94, 95], whereas water 

desorption on the CeO2 (100) takes place from close to 200 K to more than 500 K [92]. 
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Figure 2.12: TPD measurements of water adsorption on fully oxidized CeO2 (111) and CeO2 

(100) at 180 K. Reproduced from ref. [92]. 

 

  

Ceria is well-known to swing between two extreme oxidation states of +4 and +3.  The 

reduction of ceria occurs via the releasing of oxygen atoms from CeO2.  As such, creation of 

oxygen vacancies as a result of CeO2-y (111) surface undergoing a reduction reaction, leads to 

the production of Ce cations with two coordination vacancies and a three-fold hollow 

adsorption sites [103].  Below, Figure 2.13 illustrates the active sites on CeO2 (111) surface. 
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Figure 2.13 : Active sites on CeO2 (111) surface; (a) side and top views of perfect CeO2 

(111) surface; (b) side and top views of reduced CeO2 (111) surface.  

 

A number of experimental [79, 92, 104] and computational [81, 99, 100] studies have reached 

similar conclusions that vacancies created on CeO2-y (111) surface enhance and stabilize the 

decomposition of H2O.  From Figure 2.14 and 2.15, it is evident that the amount of -OH on 

CeO1.7 (111) is greater than that on CeO2 (111).  A survey of literature suggests that the 

reaction between -OH on CeO1.7 (111) leads to release of H2 [79, 92, 94].  The high-

resolution Ce 3d XPS spectra suggest further reduction of Ce from CeO2-y (111) as a 

consequence of water adsorption.   Nevertheless, Henderson et al. [95] did not report any H2 

desorption from the aforementioned face.  The difference between the findings reported by 

Henderson et al. and those reported by other studies are attributed to the substrates on which 

they deposited their CeO2-y (111) films.  Henderson et al. deposited their films on substrate of 

yttrium-stabilized ZrO2 (111) (YSZ), whereas others grew their films on Ru (0001) [92, 94] 

or Cu (111) [93, 105].  Ferrizz et al. [106] suggested that ceria films deposited on YSZ(100) 

exhibited a larger reducibility than films deposited on α-Al2O3(0001).  The reason for the 

improved reducibility on YSZ remains unclear.  However, if an analogous influence is taking 

place on YSZ (111), this promoted reducibility might be indicative of a lower O-vacancy 

formation energy, and hence generating a smaller driving force in order to re-oxidize a 
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reduced surface via water destruction.  Improved reducibility of CeO2 (111) deposited on 

YSZ is most probably the reason why Henderson et al. observed a thermal reduction at 

annealing temperature of 830K, while other researchers could reduce their films at 

temperatures much higher than 830K [107, 108].  It must be noted that H2 desorption 

following adsorption of water on CeO1.7 (111) is contradictory to the desorption from reduced 

CeO1.7 (100) in which the primary desorption route remains recombination to form water with 

only a trivial amount of H2 formation (Figure 2.15).  The energy of vacancy creation on 

CeO2(111) is found to be greater than that on CeO2(100) [109, 110].  Hence, it is expected 

that the driving force to fill the vacancy is greatest on CeO2-y (111) surfaces.   

 

 

 

Figure 2.14: O 1s core level spectra from water adsorbed on reduced CeO1.7 (111) and CeO1.7 

(100) at 180 K.  Reproduced from ref. [92].   
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Figure 2.15: TPD measurements of water adsorption on reduced CeO1.7 (111) and CeO1.7 

(100) at 180 K.  Reproduced from ref. [92]. 

  

Watkins et al. [81] assessed by means of DFT+U method the decomposition pathways of H2O 

and H2 on both the pristine and defective ceria (111) surface.  The H2O physisorption reaction 

is an exothermic process on both configurations (see Figure 2.16); however, physisorption of 

water is more exothermic on the vacancy site.  The dissociation of water on the two studied 

surfaces results in formation two hydroxyl groups, one in the initial water physiosorbed site 

and the other on a surface oxygen ion.  Furthermore, Watkins and co-workers reported a 

potent exothermic chemisorption reaction for H2 on the perfect ceria (111) surface, which is 

ascribed to the low-lying 4f states, and thereafter great electron affinity of ceria.  Lastly, the 

study concluded that the decomposition of water is preferred on the perfect surface of ceria 

(111) due to the formation of a strong hydrogen bond between the OH- and H+ moieties 

created upon decomposition.  
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Figure 2.16: H2O and H2 reactions on the defect and perfect ceria (111) surfaces.  

Reproduced from ref. [81]. 

 

2.6.7 Ceria Surface Reactions with Sulfur dioxide (SO2) 

 

It is understood that trace concentration of sulfur-based molecules in fossil fuels results in the 

production of sulfur oxides (SOx) in the exhaust.   Adsorption of such molecules on ceria has 

a negative effect on its oxygen storage capacity properties in automotive catalytic convertors.   

However, the high affinity for SOx can, in principle, be exploited by trapping sulfur in the 

effluent gases. 

SO2 adsorption on cerium oxide thin films has been investigated by two studies and two 

different conclusions were reached.  Through surface measurements on SO2- CeO2 (111)/Ru 

(0001) system, Overbury et al. concluded that that that SO2 is adsorbed as sulfite ion SO3
2−on 

the stoichiometric surface at temperatures from 100 to 600 K [111].  According to S2p high 

resolution XPS spectra, the SO2 adsorbs via a Lewis acid–base interaction at the basic O2− 

surface sites.  SO2 molecularly desorbs with main desorption peaks close 200 K and 400 K.  

https://en.wikipedia.org/wiki/Sulfur_dioxide
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There was no evidence to suggest that the oxidation process yield SO4
2−  or the reduction 

process yields 𝑆𝑂2− or 𝑆2−, which is in agreement a previous study by Waqif et al. [112].  

Waqif et al. utilized vibrational spectroscopy to study CeO2 powders, observing that only 

𝑆𝑂3
2−  formes after room temperature exposure to SO2 [113].  Sulfate formation occurs 

following exposure at 673K and is encouraged by simultaneous exposure to O2. 

Contradictory to these studies, Rodriguez et al. Observed that SO2 was adsorbed almost 

exclusively as 𝑆𝑂4
2− on stoichiometric, polycrystalline CeO2/Pt (111) [114].  In an attempt to 

elucidate the contradiction, a number of additional experiments were performed in which 

different parameters have been assessed.  The adsorption of SO2 on polycrystalline CeO2 

films deposited on Al2O3 utilizing an SO2 pressure of 2.5 mbar has been studied by Smirnov 

et al. [115].  In their study, they demonstrate 𝑆𝑂3
2− formation at temperature below 473 K and 

𝑆𝑂4
2−   formation above 573 K.  As O2 gas with an identical pressure was introduced 

alongside SO2 exposure, 𝑆𝑂3
2−  formation was suppressed at the low temperatures but 𝑆𝑂4

2− is 

still apparent at the higher temperatures.  Interestingly, the sulfate concentrations are 

enhanced by the introduction of O2 at higher temperatures.  Likewise, Ferrizz and his co-

workers used polycrystalline ceria films deposited on Ta foil by spray pyrolysis to carry out 

TPD measurement.  In their XPS examinations, they utilized a different substrate of Mo (100) 

to deposit CeO2 in an O2 atmosphere synthesized by Ce vapor deposition.  After SO2 

introduction at 298 K, a major SO2 desorption peak was evident at 473K [116].  This is in an 

agreement studies conducted by Overbury et al. [111].  However, by another SO2 desorption 

peaks was noted residing in the range of 800 K -1000 K which were not observed by 

Overbury et al.  As SO2 exposure temperature increases to 573 K, the intensity of peaks 

located at higher temperatures increases, unlike those in the lower temperature range that start 

to decay.  The S2p photoelectron line obtained by XPS suggested that the SO2 adsorbed 

mainly as sulfite at 298 K but some of this transformed to sulfate when the sample was 

annealed.  Increasing the exposure temperature to 923 K resulted in more transformation of 

the sulfate into sulfide.  Analogous findings were reported with the pure SO2 exposure and as 

a mixture with O2. 

Recently, Happel et al. investigated SO2 adsorption on CeO2(111)/Cu (111) [117]. Their S 2p 

XPS analysis suggested that sulfite is the main surface species at 300K.  When the sample 

was annealed, some of the sulfur was reduced to 𝑆0 and 𝑆2−.  There was no sulfate observed 

at any temperature. 
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The physisorption and chemisorption reactions of Sulfur dioxide (SO2) were investigated on 

single crystal metal such as Cu [118, 119], Au [120], and Pt [121, 122]  and on pure CeO2 

(111) [111, 114, 117] , as well as on the  metal supported CeO2 (111) such as Cu-supported 

[123], Au-supported [123, 124], and Pt-supported CeO2 [125].  In these previous 

investigations, SO2 adsorption and dissociation on CeO2 (111) doped with Cu, Au, Pt results 

in different products.  For instance, it was found that SO2 interacts with the surface oxygen on 

CeO2 (111) to produce the sulfite ion 𝑆𝑂3
2−  [111, 117] or sulfate ion 𝑆𝑂4

2− [126].  At higher 

temperatures, 𝑆𝑂3
2− 𝑆𝑂4

2− were found to be desorbed without dissociating as S0 or S2- on the 

catalyst surface.  SO2 weakly adsorbs on Au (111) and desorbs at annealing temperature of 

150 K [120].  SO2 is physiosorbed in two different arrangements, standing up and lying down, 

on the Pt (111) surface [121, 127].  Streber et al. found that the SO2 molecule exists with 

minimal disruption [121].  In contrast, SO2 reacts with Cu (111), Cu (100) [128] and Cu (110) 

faces [119] with some of the SO2 dissociating to elemental S0. In the case of metals-based 

CeO2 (111), the reaction of SO2 occurs spontaneously.  At over 250 K, SO2 has been 

observed as a molecule on Au/CeO2 (111) without decomposing.  On Cu/CeO2 (111), the 

dissociation to S0 is improves by contrast to Cu single crystals.  The activity peaks at Cu 

coverages ranging from 0.5 to 1.0ML, and beyond this the activity decays back [123].  

However, the overall  reaction of SO2 on Pt/ CeO2 (111) catalyst is rather complicated [125].  

At a temperature of 150 K, on the CeO2 (111) surface, SO2 adsorbs as sulfite standing upright 

on the Pt nanoparticles depending on the XPS high resolution of S2p photoelectron line.  This 

is in line with those cases of on metal-free CeO2 (111) [111] and on Pt (111) [121, 127], 

except for the absence of SO2 lying flat on the Pt nanoparticles. 

2.6.8 Formation of H2, SO2 and H2O on Stoichiometric Ceria 

 

In an attempt to assess the hydrogen diffusion characteristics in bulk CeO2, Marrocchelli and 

Yildiz [100] investigated the reaction mechanism of H2O and H2S molecules on the CeO2 

(111).  The presented mechanisms relating to H2, SO2 and H2O on CeO2 (111), initiate with 

adsorption of H2S on the surface (E1) as displayed in Figure 2.17a.  Consequently, two 

configurations are necessary, the first being dehydrogenation (E2), and second 

dehydrogenation (E3).  After this, three possible routes exist that result in the production and 

growth of H2, H2O, or SO2 molecules.  The black line in Figure 2.17a portrays the water-

producing channel.  After the second dehydrogenation step (E3), one of the hydrogens in 

hydroxyl surface is linked with the adjacent OH- radical, (E4), producing an adsorbed water 
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molecule on the surface.  This pathway, initiated by the release of the hydrogen from one OH- 

to the other, necessitates activation energy at 3.20 eV -0.28 eV.  The desorption of H2O as a 

final step entails additional 1.1 eV [100].  The water-forming pathway creates a vacancy on 

the CeO2 (111) surface and exhibits an endothermic process of 0.83 eV, in reference to the 

starting configuration, and an activation energy of 3.20 eV.  Placing a sulfur atom on the 

surface occupies the vacancy, in a process that is associated with trivial exothermicity of -

0.31 eV.  On the other hand, this route is kinetically unfavorable as its activation energy 

amounts to 3.2 eV.  The SO2 producing channel is represented by the red curve in Figure 

2.17a.  Starting from the E3 intermediate, the sulfur atom bound by one covalent bond with 

adjacent oxygen tends to form one more covalent bond with other neighboring oxygen atoms.  

A SO2 molecule is formed in the final step, E5.  This formation pathway takes place by via a 

trivial endothermic energy  and an accessible energy barrier of  0.83 eV [100].  However, 

SO2 desorption is endothermic by 1.96 eV.  This configuration results in two vacancies on the 

ceria surface.  In the final route, a hydrogen molecule is formed.  In this route, two hydrogen 

atoms and two surface hydroxyls combine to form a H2 molecule, weakly linked to Ce cation 

on the surface.  This route necessitates very high activation energy of 4.10 eV, and thus 

represents a bottleneck for the overall mechanism.  Desorption of the hydrogen molecule 

from the surface demands energy of 0.20 eV. 
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Figure 2.17: Energy diagram of the reaction routes forming H2O, SO2 and H2 (a).  

Intermediate structures (b) for the reaction pathways displayed in (a).  These represent the 

adsorption of H2S (E1), first de-hydrogenation (E2), second de-hydrogenation (E3), water 

formation (E4), SO2 formation (E5) and H2 formation (E6).  Reproduced from ref [100]. 

 

 

2.6.9 Ceria Surface Reactions with CO and CO2 Molecules 

 

Ceria powder and nanocrystals are known to effectively reduce CO at high temperature, 

forming CO2 and CeO2-y.  It is very well-known that the function of ceria when used in the 

three way catalysis  is to oxidize CO gas into CO2 [84].  Similar to the case of H2, the 

adsorption of CO has not been reported on CeO2 (111) or CeO2 (100) under UHV conditions 

[129-131].  Many studies have reported that the adsorption of CO on ceria surfaces is as very 

weak with a binding energy at 0.2 eV [132-134].  On the other hand, several studies conclude 

that the formation of carbonate species on the CeO2 (110) is an exothermic process with 

energy ˃ 2 eV.  In another study by Nolan and Watson, the formation of carbonate is found to 

be more exothermic on CeO2(100), -3.2 eV, than that on the CeO2 (110), -1.95 eV [134].  On 

the contrary, Stubenrauch and Vohs’s argued that CO could not be detected in its 
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physiosorbed state over the CeO2 (100) surface at 300 K [129].  They demonstrated that 

0.1ML of CO potentially adsorbed on the CeO2(100) at 100 K completely desorbed at 200 K 

[135].  

 

Senanayake and Mullins [136] explored the weak interaction between CO2 and CeO2 (111) 

and found that at 90 K,  the carbon dioxide was adsorbed on the surface, whilst  complete 

desorption was recorded at 150 K.  This study further reported that a minor quantity of 

carbonate species was produced and continued up to 300 K.  In another instance, Senanayake 

et al. [98] demonstrated the formation of a small amount of carbonate on non-stoichiometric 

ceria (CeO2-y) grown on Au (111) substrate.  These carbonate molecules persisted until 300 K.  

In an attempt to re-oxidize the non-stoichiometric CeO2-y (111) deposited on Cu (111) 

substrate, Lykhach et al. [137] and Staudt et al. [138] observed  a negligible quantity of 

carbonate and carboxylate in the analyzed C 1s and O 1s curves [137].  However, a 

considerable concentration of Ce3+ was oxidized into Ce4+. 

 

Very recent work conducted on the adsorption of CO2 on CeOx (100) has explored a stronger 

interaction of CO2 with the oxidized and reduced surfaces [139].  Figure 2.18 exhibits the 

CO2 TPD from fully oxidized CeO2 (100) and partially oxidized CeO1.7 (100) following CO2 

exposure at 180 K.  In relation to the fully oxidized CeO2(100), the CO2 was seen to be 

desorbed in a group of peaks at 230 K, 410 K, 510 K and 655 K.  The rising part of CeO2 

(100) is indicative of CO2 desorption from the sample holder.  The DFT+U approach was 

utilized to calculate and investigate the most stable sites of CO2 adsorption on CeO2 (100) and 

CeO1.7 (100).  The carbonate species in tri-dentate form have been found to be the most stable 

arrangement as a result of the CO2 adsorption on the surface and the adsorption energy for 

this species amounts to -1.93 eV [135].  Figure 2.18 demonstrates that the carbonate species 

on the reduced CeO1.7 (100) is strongly stabilized at 765 K, whereas CO2 desorption was 

observed at low temperature.  To the best of our knowledge, there are no reports on the 

desorption of CO molecules on the oxidized or reduced surfaces.  This is evidenced by the 

obtained invariant intensity of Ce- 4f peak indicating that CeO1.7 (100) surface has not been 

re-oxidized by CO2.  
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Figure 2.18 : CO2 TPD measurements following exposure at 180 K on fully oxidized CeO2 

(100) (black) and deficient CeO1.7 (100) (blue).  Reproduced from ref. [139].  

 

The adsorption of CO2 on the CeO2 (111) face has been evaluated by Hahn et al. [140] using 

pure DFT and DFT +U approaches.  In their simulation, they found that the most stable 

configuration was a monodentate carbonate species with a weak adsorption energy of nearly -

0.3 eV in both approaches.  Another DFT+U study conducted by Cheng et al. [141] 

investigated the CO2 adsorption on both stoichiometric and non-stoichiometric CeOx (110) to 

reveal a physiosorbed reaction between CO2 molecule and the surfaces with an adsorption 

energy of -0.26 eV.  Carbonate species were not formed in their mechanism. 

 

2.6.10 Ceria Surface Reactions with nitrogen oxide (NO)  

Given the importance of ceria’s catalytic performance to treat NOx   in automobile exhausts, 

the adsorption of nitrogen oxide in its forms as N2O, NO and NO2 on ceria surfaces have 

been investigated.  Ferrizz et al. indicated the non-adsorption of NO at 300 K on the fully 

oxidized CeO2 (111) single crystal or on CeO2 deposited on α-Al2O3 (0001) [142].  Overbury 

et al. further reported that NO does not interact with  CeO2 (100) at160 K or 300 K [77], 
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however,  NO was observed to interact rather weakly at 90 K on stoichiometric CeO2(111) / 

Ru (0001) [143]. 

As clearly seen from Figure 2.19a, NO is physiosorbed below 200 K with small amounts of 

N2O and N2 desorbing in the same temperature window.  The wide temperature range of NO 

desorption between 300 K and 400 K was attributed initially to adsorption of NO on the 

sample holder and on the back of the Ru (0001) substrate.  This weak adsorption on the 

stoichiometric surface is in line with a study by Yang et al. [48] that concluded that there was 

an adsorption of NO over the Ce4+ cation site on CeO2(111) with a physiosorbed energy 

amounted to only -0.1 eV.  The XPS high-resolution N1s spectra showed that at 90 K, the 

nitrogen oxide as [NO2] and N2O physiosorbed on CeO2(111).  These more stable adsorbates 

were not reported in the study by Yang et al. 
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Figure 2.19: TPD measurements following exposure of NO on (a) fully oxidized CeO2 (111) 

and (b) sputter reduced CeO2-y (111).  On the oxidized surface the NO was exposed at 90 K. 

On the reduced surface the NO was exposed at different temperatures as indicated and then 

the sample was cooled to 90 K before the TPD.  Reproduced from ref. [143]. 

 

 

In two different studies conducted by Ferrizz et al. [142] and Overbury et al. [77, 143], NO 

was shown to  adsorbs more strongly on non-stoichiometric CeO2-y and these indications are 

in agreement with work conducted by Daturi et al. [144].  These studies linked the so-called 

“deNOx” catalytic capacity of ceria with the number of vacancies created on the ceria surface.  

Ferrizz et al. reported that after the NO adsorption at 300 K on non-stoichiometric CeO2/α-

Al2O3 (0001), only N2 molecules were formed and desorbed.  The N2 desorption profile is 

dependent on the method by which the reduced surface is synthesized.  A film that was 

prepared in a lower O2 pressure led to a sharp N2 desorption in the range of 300 K to 400 K.  

The desorption of N2 extended from 400 K to 800 K by removing the O from fully oxidized 

films that were formed because of N2 desorption. Overbury et al. revealed a diversity of 

desorbed species and the desorbed product distribution was generally affected by the 
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desorption [143].  As shown in the Figure 2.19b, NO, N2 and N2O molecules are formed 

mainly below 200 K as a consequence of following adsorption at 90 K with the desorption of 

NO and N2 in the range of 200 K to 400 K.  As the adsorption temperature increases to 150 K, 

the low temperature desorption diminishes and only additional N2 desorption is captured at 

350 K.  As the adsorption temperature rises to 400 K, new desorption characteristics appear 

with a considerable amount of N2, in addition to the desorption of NO represented by peaks 

located at 500 K and 740 K. 

 

2.6.11 Ceria Surface Reactions with Hydrocarbons 

 When the cerium oxide surfaces are supported by Rh or Pt, ethylene adsorption and 

dissociation has been observed.  Thermal interaction of ethylene on Rh pure crystal faces 

leads to the formation of gaseous H2 leaving C on the surface [145-147].  It is found that the 

hydrogen molecule leaves from the Rh surface between 300K and 500K.  If Rh is deposited 

on an unreactive material such as α-Al2O3 (0001), ethylene dissociates in an analogous way 

and H2 leaves close 440 K [106].  Ethylene dissociation over Rh/CeO2 (111) surface [148] or 

Rh/CeO2/α-Al2O3 (0001) [106] forms CO and H2 molecules.  CO molecules are formed as a 

consequence to the reaction between the carbon layer deposited on the Rh particles and O on 

the ceria’s substrate.  Over successive cycles of ethylene adsorption the temperature of  CO 

desorption shifts to increasingly higher temperatures in subsequent TPD measurements 

suggesting that it gets more difficult to eliminate O from an increasingly reduced surface 

[106].  Aside from CO and H2 production from decomposition of ethylene  on Rh/CeO2/YSZ 

(100), CO2 species were also present [149].  This indicate that the YSZ (100) substrate 

changes the reactivity of the O in ceria.   In particular, H2O is not recorded in any of these 

Rh/CeO2 materials, suggesting that the H atoms produce H2, leaving the surface instead of 

interacting with O in the ceria producing water molecules. 

 

An analogous trend is seen for ethylene adsorbed on Pt/CeO2 (111) catalyst [150].  The high-

resolution XPS C1s spectra demonstrated the destruction of the ethylene to C on the Pt at 

elevated temperatures, with evidence for C atoms being desorbed.  It has been shown that 

when CeO2 reduces to Ce2O3 via interaction of carbon with the surface O, eliminated carbon 

steadily increases.  In the same vein, Pt nanoparticles on CeO2 (111) surfaces activate the 

dehydrogenation process of the ethylene at a lower temperature compared to Pt (111). 
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Methane on Pt/CeO2 (111) [151, 152] was shown to improve  the dehydrogenation activity as 

well.  It has been observed that methane partly dehydrogenates to CH3 at temperatures close 

100 K.  Moreover, it has been shown that the methane species dehydrogenates to CH when 

reacted on Pt nanoparticles on CeO2 (111).  Supported methane activation was also detected 

for low-surface area Rh, Pt and Pd on CeO2 during methane steam reforming [153]. 

 

2.6.12 Ceria Surface Reactions with Methanol. 

In order for organic molecules to interact with ceria surfaces under ultra-high vacuum (UHV) 

conditions, the presence of a functional group including a heteroatom such as O, N, and S is 

essential. Yet, literature presents several accounts on the interaction of a wide range of non-

functionalized organic molecules with ceria.  For instance, it has been demonstrated that 

ethylene leaves CeO2 (111) surface as a molecule under 150 K [148]. Furthermore, ethylene 

was investigated on Rh/CeO2/YSZ (100) [149], but the authors did not report ethylene’s 

reaction with the vacancy-free ceria surface.  Instead, they focused on the interaction between 

adsorbed ethylene the Rh particles.  Vile et al. studied the selective hydrogenation of alkynes 

to olefins at elevated conversion over polycrystalline ceria powders [154].  Carrasco et al. 

conducted computational studies on the selective hydrogenation of acetylene to ethylene over 

CeO2 (111) using DFT [73].  In this study, β-C2H2 radical species were reported to have 

adsorbed on the surface of oxygen atoms, subsequently converting to C2H3.  Formation of 

this species requires a lower activation energy barrier to convert to gas phase C2H4 with 

reference to the formation of a β-C2H4 radical that would result in more highly hydrogenated 

products. 

 

 

The TPD measurement of methanol adsorption on CeO2 (111) and CeO2 (100) is depicted in 

Figure 2.20 [155].  Methanol and water were reported to be the initial products on CeO2 (111), 

subsequently leaving the surface between 200 K and 300 K (black lines).  This is mainly 

attributed to the reaction between methoxy and hydroxyl co-adsorbed on the surface.  It is of 

significance to note that a competing reaction in this temperature range is the 

disproportionation of hydroxyls to yield water and a vacancy. 
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Isotopic labelling experiments of Ce18O2 (111) proved that water formed close 200 K holds 

lattice O [156].  Methanol desorption between 200 K and 300 K is in agreement with the 

reduction of methoxy exposure when the sample is annealed.  The disproportionation of 

methoxy at ca.560 K is found to facilitate other reaction products at higher temperature. 

 

Figure 2.20: Temperature Programed Desorption following methanol adsorption at 180K on 

oxidized CeO2 (111) and CeO2 (100).  Reproduced from ref. [155] 

 

2.6.13 Catalytic performance of Ceria Surface on Phenol. 

Phenol plays a crucial role as a raw material in many important industrial fields such as the 

chemical, petrochemical and pharmaceutical industries.  Despite the positive use of phenol in 

the aforementioned applications, researchers have also devoted significant effort to develop 

methods by which phenol can be efficiently degraded.  This is because phenol is viewed as a 

harmful contaminant, most notably in wastewater even at a content as low as 0.001 mg/L 

[157].  Furthermore, a phenolic concentration of 50 mg/ L is sufficient to have a bactericidal 

effect on microorganisms.  Lin et al.[157] investigated the catalytic efficiency of CeO2 on 

phenol conversion and total organic carbon (TOC) conversion.  They studied using XRD, O2-
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TPD, and H2-TPR techniques, the catalytic wet air oxidation (CWAO)of a number of CeO2 

samples calcined under different thermal impacts, classified from the highest thermally 

calcined to the lowest thermally calcined, i.e., type A, type B, type C and type D. They 

reported a number of conclusions.  Firstly, CeO2 calcined under different thermal conditions 

displays variable catalytic efficiency in the CWAO of phenol.  The highest thermal impact 

sample (denoted as A CeO2) exhibits a less stable structure, more structural oxygen exchange, 

and more oxidizing capability for the intake of H2 and conversion of phenol.  For the A-type 

CeO2, at phenol content in the range of 400 to 2500 mg/L, oxygen pressures between 0.5–1.0 

MPa, and temperatures exceeding 160°C phenol conversion amounted to ratios, greater than 

90% after 4 h.  The elimination process of total organic carbon enhances with the increase in 

the reaction temperature.  Finally, CO2 selectivity was found to be approximately ≥ 80% after 

4 h reaction. 

 

 

 

As observed from Figure 2.21, the XRD pattern obtained from the abovementioned catalyst 

systems demonstrate that Type A prepared with the highest thermal impact has peaks with 

lowest intensity.  This is indicative of the increased number of defects in its structure.  In 

contrast, the CeO2 catalysts calcined with less thermal impact possesses more structural 

stability. 

 

 

Figure 2.21: XRD patterns of different prepared CeO2 catalysts.  Reproduced from ref. [157].  
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Yao and co-workers [158] classified three types of oxygen in CeO2, namely as capping, bulk 

and shared oxygen.  Below 500 °C, capping oxygen forms due to defects in the CeO2 

structure undergoing an elevated thermal impact [158, 159].  This activity of the capping 

oxygen type is ascribed to its mobility that leads to a facile redox cycle between the two 

extreme cerium oxidation states of +4 and +3.   

 

The O2-TPD technique was employed by Lin et al. [157]  to evaluate the mobility of oxygen 

in a CeO2 crystal.  From Figure 2.22, it is observed that type B CeO2 has only one peak, near 

120°C.  This peak is may belong to the physiosorbed oxygen molecule O2 on the surface. 

There was no evidence for any other type of oxygen on the CeO2 structure in the range of 

investigated temperatures.  However, at temperatures exceeding 120°C, other peaks emerged 

for type A CeO2, regardless of whether it was pre-treated with O2 or not.  These peaks are 

attributed to the depletion of capping oxygen inside the bulk structure.  Furthermore, at 

temperatures higher than 120°C, it is found that CeO2 samples pre-treated with O2 release an 

amount of O2 greater than that without pre-treatment.  This suggests diffusion of O2 in the gas 

phase into the type A CeO2 crystal.  Hence, Lin et al. reach an important conclusion that due 

to the high ability to undergo redox reaction in type A CeO2, it can effortlessly exchange its 

structure oxygen with the O2 in the gas phase.  
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Figure 2.22: O2-TPD of CeO2 catalysts.  Reproduced from ref. [157]. 

 

The high oxidation capability of CeO2 was further investigated by means of the H2-TPR 

technique.  The technique is based on the fact that H2 consumption is indicative of its 

oxidation by the catalyst.  The appearance of the peaks at lower temperatures is indicative of 

the high stability of the catalyst.  Consequently, as displayed in Figure 2.23, the type A CeO2 

performs as the highest oxidizing catalyst among other types (B, C and D).  In relation to the 

peak at approximately 550°C, belonging to type D (regenerated CeO2), this peak is attributed 

to the reduction and desorption of reaction residues, most likely polymers, deposited on the 

CeO2 surface. 
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Figure 2.23: H2-TPR of CeO2 catalysts.  Reproduced from ref. [157]. 

 

 

The catalytic efficiency of type A CeO2 was further investigated by the CWAO of phenol.  As 

Figure 2.24 shows, type A CeO2 exhibits an excellent efficiency for the CWAO of phenol.  At 

400 mg/L phenol content with 0.5 MPa oxygen molecule pressure, the conversion of phenol 

was achieved as 95% after 2 and 3 h reaction times at reaction temperatures of 180°C and 

160°C, respectively.   By contrast, in the absence of a catalyst, the conversion of phenol after 

4 h reaction time was only 20% at a temperature of 180°C and 0.5 MPa oxygen pressure.   

The improvement in phenol conversion is clearly evident in Figure 2.24 with the introduction 

of type A CeO2 for a reaction temperature above 140°C. 
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Figure 2.24: Influence of temperature on the CWAO of phenol with and without addition of 

type A CeO2.  Phenol content amounts to 400 mg/L with oxygen pressure of 0.5 MPa and 

catalyst loading of 2 g/L.  Reproduced from ref. [157]. 

 

 

2.7 Thin Film Applications of Ceria  

A consensus of opinions in the literature suggests that some rare earth elements, most notably 

La, Ce, Zr, and Y or their oxides, induce a net  positive effect on improving the high 

temperature oxidation resistance of alumina- and chromia-producing alloys via an 

enhancement of their reactive-element effect (REE)[160, 161].  Thanneeru et al. [162] coated 

AISI 304 stainless steel (SS) with nanocrystalline ceria and La3+-doped nanocrystalline ceria 

particles with the aim of studying their high temperature oxidation resistance at 1243 K in dry 

air for 24 h.  Results were then compared to those of similar coatings in the absence of micro-

ceria coatings.  The nanocrystalline ceria coatings were observed to enhance the oxidation 

resistance character by 90% compared to those cases of uncoated and micro- ceria coated 

steels. 
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Likewise, Fernandes and Ramanathan [163] reported the effect of surface coatings of Ce, La, 

Pr, and Y oxide gels on the oxidation behavior of a Fe-20Cr alloy at 1000 °C.  Alloying small 

quantities of rare earths (RE) to chromia or alumina forming alloys enhances their high 

temperature oxidation resistance.  Usually, rare earth elements are added or doped with 

oxides to form a protective layer for chromia and alumina alloys.  Different methods can be 

deployed to coat alloy substrates with rare earth oxides, including the sol-gel process.  In 

addition, it is important to mention that the morphology of RE oxide coatings varies with the 

nature of RE.  For instance, the oxidation rate of RE oxide coated Fe-20Cr was considerably 

less than that of the uncoated alloy [163].  

Huiming et al. [164] have studied the impact of nanometric ceria coatings on the oxidation 

behavior of chromium at 900 ºC.  They revealed that the ceria film dramatically enhances the 

oxidation resistance of Cr both in isothermal and cyclic oxidizing experiments.  They 

attributed this improvement to the fact that ceria robustly decreases the growth speed and 

grain size of Cr2O3. 

 

Ceria as a coating material utilized in various electronic and optical applications has been 

extensively studied in the literature with the aim of enhancing and tuning the preparation 

parameters that contribute to achieving optimal characteristic properties.   Ozar et al, [165] 

employed a sol-gel spin coating technique to prepare crystalline CeO2 coatings and 

investigated the optical and electronic properties of such thin films.  Their XPS analyses 

revealed that the films possess a compositional structure of CeO2 and their surface 

topography as examined by scanning electron microscopy (SEM) demonstrated good 

uniformity and homogeneity.  The authors also reported that the CeO2 films exhibit high 

electrochemical stability based on the results of the spectroelectrochemical cyclic 

voltammetry experiments.  Moreover, their analysis of spectroelectrochemical cyclic 

voltammetry experiments confirmed that CeO2 coatings are a good passive counter electrode 

material in terms of inserted/ extracted charge and optical response. 

 

Ta et al. [166] have previously also studied the epitaxial growth of CeO2 films deposited on 

Si (111) by r.f. magnetron sputtering.  The films were fabricated under different experimental 

conditions such as deposition temperature, sputtering power and target-substrate distance.  

They conclude that the three aforementioned experimental parameters affect the growth rate 
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of the deposited films, but the deposition temperature parameter was found to have a stronger 

influence on the improvement of the crystallinity of the deposited layers in the studied films. 

 

The reactive DC magnetron sputtering technique was used by Jain et al. [167] to synthesize 

cerium dioxide thin films deposited onto Si and quartz substrates.  The films were prepared as 

a function of target-substrate distance (dT-S) and characterized by a number of 

characterization techniques such as XRD, atomic force microscopy (AFM) and UV-Vis 

spectroscopy.  The study revealed that, the structural and optical characteristics of the 

deposited films are strongly dependent on the target-substrate distance.  They also concluded 

that the synthesized films exhibit good transmittance characteristics in the wavelengths range 

of 400-1100 nm.  

 

 

2.8 Spinel - Structured Oxides 

Spinel structures have a general formula of AB2X4, in which A and B are cations and X 

represents anions such as O and sometimes F, S, Se, Te.  Three configurations of spinels have 

been recognized according to their cations distributions.  The value of φ in the A1- φ[AφB2- 

φ]X4 form specifies the type of the spinel and for that three types are referred to as normal, 

statistic (completely disordered) and inverse spinels, with φ values corresponding to 0, 2/3 

and 1, respectively [168].    

Spinel oxides have a general form of AB2O4 with a cubic close-packed configuration of 

oxygen ions of the lattice system [169].  The two cations A and B are placed in some or all of 

octahedral and tetrahedral sites in the crystalline lattice [168].  In the spinel oxide system, the 

two cations belong to the same elements but possess different valance states.  Among the 

spinel oxide systems, transition metal cobaltite oxide, MCo2O4 (M=Co, Ni, Cu, Zn, Mn, etc), 

exhibits excellent electrocatalytic characteristics which make them suitable for use in the 

oxygen evolution reaction (OER) [170-176].   Several studies have investigated the synthesis, 

electrocatalytic characteristics, and mechanism for OER of these interesting materials.  For 

instance, some cobaltite spinels such as Co3O4 and NiCo2O4 have been extensively studied in 

terms of their preparation methods, the electrocatalytic properties, physicochemical 

properties and the electrocatalytic mechanism of OER.  Moreover, some studies attributed a 

high catalytic performance for Co3O4 and NiCo2O4 in electrochemical applications, including 



54 

the oxygen evolution reaction because of its high stability in alkaline solutions.  Other studies 

confirmed the lowest anode over potentials and a high mechanical stability for Co3O4 and 

NiCo2O4 [172, 174, 177].  Furthermore, other binary spinel oxides such as copper cobaltite 

spinel, with the formula of CuxCo3-xO4, were evaluated as catalysts to oxidize CO to CO2, in 

alcohol synthesis, in car pollution control, and oxygen evolution [178-182].  Chi and his 

colleges [183] prepared CuxCo3-xO4 spinels with various x values by a hydroxide co-

precipitation technique and characterized them using different methods such as TGA, XRD, 

BET, and SEM.  They concluded that the cation distribution depends on the copper 

concentration x so that with the increase of x from 0.7 to 0.9, more Co3+ ions insert into the 

tetrahedral sites of the system.  Furthermore, the interesting conclusion in their work is that 

the increase of Co3+ ions in the tetrahedral sites leads to a strongly enhanced electrocatalytic 

performance of the spinel system for the oxygen evaluation reaction in alkaline water 

electrolysis.  It is also worth noting that spinel oxides with different valance states show 

electrically conducting or semiconducting characteristics, enabling them to be employed as 

electrode materials, with electron transfer occurring with relatively low activation barriers 

between cations of various valences by hopping process.  In the case of  spinel oxides with 

the same valence states, they require mixing with graphite to improve their electronic 

conductivity [184]. 

 

2.9 Previous Studies Based on Density Functional Theory (DFT) 

From an atomistic point of view, numerous DFT studies have been reported relating to the 

investigation of the bulk and surface properties of a number of refractory-metal oxynitrides 

and rare earth oxides.   These reflect the ability of first-principles calculations in accurately 

predicting the chemical bonding, band structures, and thermomechanical properties in 

agreement with experimental findings.  An earlier study conducted by Weinberger and his 

colleges reported band structure and cohesive properties using ab-initio calculations of 3d, 4d 

and 5d-transition metal carbides and nitrides in the NaCl structure [185].  The elastic 

properties of series of early transition metal nitrides and carbides were investigated by Yadav 

and Singh.  In addition, the bulk-modulus of 3d, 4d, and 5d-transition metal mono-nitrides 

were computed for the NaCl-type (fcc) structure using plasma oscillation theory of 

solids[186]. 
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Fronzi et al. [187] employed an Ab initio atomistic thermodynamics approach to assess 

relative thermodynamic stability and Wulff constructions of the three low index surfaces of 

CeO2, namely, (100), (110), and (111).  Among the different plausible studied surfaces, the 

stoichiometric (111) surface under “oxygen-rich” conditions is predicted to be the most stable 

surface. Under reducing conditions, the stoichiometric (111) face with subsurface oxygen 

vacancies becomes the most thermodynamically stable facet.  However, near to the O-lean 

region, the (111) Ce-terminated surface becomes the most stable surface (see Figures 2.25 

and 2.26).  

 

 

     

 

 

 

Figure 2.25: Calculated surface free energy of different plausible CeO2 (100) and CeO2 (110) 

orientations with regards to the change in oxygen chemical potential ∆µO along with their 

corresponding pressure bar lines at T=600, 900, and 1200 K.  Reproduced from ref. [187]. 
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Figure 2.26: Calculated surface free energy of different plausible CeO2 (100) and CeO2 (111) 

orientations with regards to the change in oxygen chemical potential ∆µO along with their 

corresponding pressure bar lines at T=600, 900, and 1200 K.  Reproduced from ref.  [187]. 

  

The properties of solid solution systems have also been reported using DFT.  Lü, Zhou et al. 

have studied the effects of rare earth elements (Eu and Yb) added to the magnesium solid 

solution on the structural and mechanical properties using first-principles calculations.  They 

calculated and analyzed the lattice parameters, elastic constants, bulk moduli, shear moduli, 

Young’s moduli and anisotropic parameter of these solid solutions[188].  A combination of 

DFT results and Monte Carlo simulations were applied by Grieshammer and coworkers in 

their investigation on the dopant dispersion and its impact on the oxygen ion conductivity of 

ceria alloyed with rare earth oxides [189].  Tekumalla and his coworkers reviewed the 
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mechanical properties of rare earths when alloyed with pure magnesium and other Mg alloys 

[190].  Recently, the electronic and optical properties of rare earth oxides in Gd2O3 and 

Tb2O3 compounds have been studied by means of DFT calculations [191].  Grosse et al. [192] 

investigated the electronic structure of the rare earth sesquioxide and their alloys using DFT 

functional.  In their calculations, the insulating character of Gd2O3 could not be re-produced, 

so they corrected their functional by adding Hubbard parameter within LDA+U approach.   

The authors concluded that that the optical band gap of LaLuO3 layer is higher than that the 

corresponding Gd2O3. 

 

The three well known dioxides in the lanthanide series, CeO2, PrO2 and TbO2 were 

comprehensively investigated by Kanoun and co-workers [193] to simulate their electronic, 

structural, elastic, optical and magnetic properties.  The consensus in literature suggests that 

an accurate description of the electronic system of CeO2 requires the inclusion of the U term 

in the DFT functional.  This is primarily due to the fact that pure DFT incorrectly describes 

ceria as a conducting material.  For PrO2 and TbO2, U implementation and the spin-orbit 

coupling are significant to obtain the proper ferromagnetic insulating behavior of these two 

materials.  The dielectric functions and the reflectivity computed for photon energies up to 12 

eV demonstrated excellent optoelectronic properties for PrO2 and TbO2. 

 

2.10 Gaps in current knowledge: 

 

Having surveyed literature pertinent to chemistry and physics of CeO2, we can now pinpoint 

to some gap in our current knowledge: 

 

• The influence of annealing temperature on microstructure on solar selectivity of the 

CuCo-oxide coatings deserves more experimental investigations.  This has been 

addressed in Chapter 8. 

• It is important to address the impact of critical sputtering parameters (O
2
/A

2
 flow 

ratio) on optical properties of magnetron sputtered CeOx films.  Chapter 7 in this 

thesis presents the results of this study. 
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• Literature presents no theoretical accounts on structural, electronic and optical 

properties of CuCo-oxide and CeO
2
 coatings.  Validation of XPS related 

measurements can be attained by accurate DFT calculations.   

• While there are numerous theoretical and experimental studies on CeO2 bulk and 

surfaces, analogous literature presents no analogous studies on the seemingly equally 

important TbO2 phase.  The findings on bulk and surface properties of TbO2 are 

shown in Chapter 6. 

• As discussed in section 2.6.5, CeO2-assisted hydrogenation of C2H2 into C2H4 and 

C2H6 has been theoretically and experimentally investigated, reactions mechanisms 

for other catalyzed reactions by CeO2 are yet to be reported; examples include 

oxidative decomposition of chlorinated volatile organic compounds and 

hydrogenation of aromatic rings.  Chapter 5 reveals a comprehensive study on the 

catalytic activity of CeO2 toward destruction of some chlorinated volatile organic 

compounds. 

• Likewise, it is important to provide a theoretical benchmarking of the effect of 

dopants on the reduction energies of CeO2 systems.  This theoretical benchmarking 

has been conducted, in detail, in Chapter 4. 

• Elucidate the variation influence of Hubbard value, U on the activation and reaction 

energies of partial and full hydrogenation of CeO
2 

(111).   Chapter 9 investigates the 

effect of Hubbard value, U on the activation and reaction energies. 
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Chapter 3 : Methodology 

3.1 Reaearch Plan and Methodology 

This chapter reports descriptions about the techniques used in the preparation of the studied 

films, namely Ce-oxides and CuCo-oxides, as well as it provides explanation about the 

characterization instruments by which variant electronic, structural, surface morphologies and 

optical properties can be probed.  The physical principles behind these characterization 

techniques have been depicted.  Moreover, this chapter summarizes the deployed theoretical 

methods utilized in this dissertation, especially, the DFT formalism, the transition state theory, 

the software utilized throughout the dissertation, and the ab initio atomistic thermodynamics 

approach by which thermodynamic stability diagram of surfaces can be deeply investigated.  

Figure 3.1 below systemically displays flow chart of the methodology in this dissertation. 

 

 

Figure 3.1 : Flow diagram of the methodology procedure. 
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3.2 Sol-Gel Deposition Technique 

Sol-gel technique is a chemical synthesis deposition technique that has long been used to 

prepare thin film layers of metal oxides utilized as anti-corrosion and to enhance the optical 

properties of the materials.  Sol-gel can be described as a process of material transformation 

of sol holding properties of fluid to gel with properties of solid.  This technique displays 

several advantages including providing a good adhesion between the coating material and the 

metallic substrate, fabricating a thick film to enhance the performance of corrosion protection 

and producing high quality films economically efficient.  

There are two most commonly employed coating methods namely, the dip-coating and spin-

coating methods.  The former is used to coat the double sides of the substrate, while the latter 

is utilized for coating one side of the substrate.  Basically, in dip coating method the substrate 

is withdrawn from the liquid, whereas in the spin coating process the one side of substrate 

surface rotates and then the sol gel is poured on.  All in all, sol gel technique has been widely 

used for thin films studied and characterized to get optimum optical properties for optical 

applications.     

3.3 Magnetron Sputtering 

Magnetron sputtering is a technique that is used for coating many of various materials. 

Presently, it is an established tool in industrial important coatings.  This technique has 

attracted a significant attention and been rapidly developed over the last decade [194].  In this 

process, energetic ions generated in glow discharge plasma bombard the target (or cathode) 

which is located in front of glow discharge plasma.  This process can result, during prolonged 

ion or plasma bombardment of a material, in significant erosions of material.  The ion 

bombardment also causes generating of secondary electrons from the target surface.  

However, there are some limitations with this process that are low deposition rate, substrate 

heating effect, and lower ionization coefficients  [195, 196].  In magnetron sputtering device, 

a magnetic field parallel to the cathode surface is used to keep the secondary electron motion 

in the vicinity of the target[197].   Due to the magnetic field, the probability of ionizing 

electron atom collision will increase; this in turn results in increasing the density of plasma 

near to the target region and finally, leading to the increased ion bombardment of the target 

which then gives higher deposition rate at the substrate.  Therefore, secondary electrons 

emitted from the target play a key role in magnetron sputtering device. 
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Intensive research using magnetron sputtering was done on the study of the properties of 

deposited films[198, 199].  Furthermore, many experimental and theoretical studies have 

been done, especially on the physical properties of magnetron discharge and its dependence 

on process parameters like gas pressure, substrate biasing, electrical power etc.[200]. 

 

3.3.1 Unbalanced Magnetron Sputtering 

Recently, limitations with magnetron sputtering have been overcome by the development of 

magnetron sputtering and, more recently, unbalanced magnetron sputtering.  In an 

unbalanced magnetron the outer ring of magnets is relatively stronger than the central pole.  

As a result of this, not all the field lines are closed between the central and outer poles in the 

magnetron, but some will direct towards the substrate.  Also, some secondary electrons will 

be able to follow these field lines.  Consequently, the plasma is no longer strongly confined to 

the target region but is also allowed to flow out towards the substrate.  Therefore, high ion 

currents can be extracted from the plasma without the need to externally bias the 

substrate[200].  This type of unbalanced magnetron discussed above was termed Type-2.  

There is another type of unbalanced magnetron, namely Type-1.  In this type the central pole 

is strengthened relative to the outer pole.  In this case the field lines which do not close on 

themselves are directed towards the chamber walls and the plasma density in the substrate 

region is low.  This design is not commonly used, because of the resulting low ion currents at 

the substrate [201].  Figure 3.2 shows the arrangement of the positions of the four targets 

used in the system.  This instrument also uses argon gas (Ar2) as a working gas as well as the 

vacuum pump utilized to control the pressure inside the system.  This technique is used to 

synthesize CeO2 coatings deposited on Si substrate.  
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Figure 3.2: diagram of target configuration in closed field unbalanced magnetron sputter ion 

plating (CFUBMSIP) system. 

 

3.4 Characterization Techniques 

3.4.1 X-Ray Diffraction 

X-ray diffraction is one of the structural techniques by which crystalline phases of a solid 

material can be determined.  It is very well-known that each solid system has its own 

characteristic x-ray pattern which represents a fingerprint for its identification.  X-ray 

diffraction is multi use, non-damaging analytical method for identification and quantitative 

determination of the different crystalline materials, well known as phases exist in solid 

compounds and powders. Determination of the present phase of materials is normally 

performed by contrasting the x-ray spectrum of patterns obtained from the studied samples 

with an internationally featured database containing reference patterns of the measured 

phases for the almost materials.  Nowadays, all of the diffractometers connected to computers 

whose codes can utilize routines to measure, record and interpret the unique patterns obtained 
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by single constituents in even highly complex mixtures.  The physical principle governed x-

ray technique is Bragg’s low stating that as a monochromatic x-ray beam with wavelength λ 

is incident on a crystal with a lattice planer distance at certain incident angle θ, reflection for 

the x-rays will occur when the wavelengths of the scattered x-rays interfere constructively.  

The general formula for Bragg’s low is expressed as, 

𝑛𝜆 = 2𝑑 sin 𝜃                                                                                                          3.1 

In which n is the entire number of wavelengths or the order of the diffraction, λ denoted the 

projected wavelength, d corresponds to the spacing between the atomic planes (hkl) in the 

crystal, and θ stands for the incident angle.  The crystallographic phase of the studied samples, 

in this thesis, is characterized by D8 DISCOVER XRD diffractometer manufactured by 

Bruker AXS (Figure 3.3). 

 

 

Figure 3.3: D8 DISCOVER XRD manufactured by Bruker AXS. 
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3.4.2 X-Ray Photoelectron Spectroscopy (XPS) 

To obtain good information about surface properties and an elemental status of a solid 

material, XPS technique is the main instrument that is commonly used to achieve this 

purpose due to the low energy of the used x-ray that can penetrate approximately 5 nm.  The 

interactions between the atoms of any surface and the elements in the environment lead one 

to investigating the nature of these interactions and thereafter reporting all the surface 

characteristics of the system.  The physical principle of this structural surface characterization 

technique (XPS) is the photoelectric effect explored by Hertz in 1887.  The spectra obtained 

by XPS contain photoemission lines belonging each to a specific element defined by its 

characteristic binding energy of its photoelectron, so these lines act as an indicator of the 

chemical elements present on the surface of the studied material.  XPS measures the binding 

energy according to the following relationship; 

𝐸𝐵 = ℎ𝜈 − 𝐸𝐾 −𝑊                                                                                                             3.2 

Where EB is the binding energy of the emitted photoelectron in the atomic system, hν 

represents the incident photon energy, Ek denotes the kinetic energy of the photoelectron and 

W corresponds to the spectrometer work function.  Furthermore, chemical bonding states can 

be provided by XPS.  Kratos Axis Ultra X-ray photoelectron spectroscopy XPS (Kratos, 

Manchester, UK) (Figure 3.4) is operated in this dissertation to obtain the survey and high-

resolution spectra of all coating samples and by which all the compositional and surface 

bonding state can be derived.  



65 

 

Figure 3.4: Kratos AXIS Ultra DLD X-ray photoelectron spectroscopy instrument. 

 

3.4.3 Fourier-Transform Infrared Spectroscopy (FTIR) 

Fourier-transform infrared spectroscopy is an instrument utilized to measure the optical 

properties of a solid such as the absorptance, reflectance and transmittance in the infrared 

range. Moreover, in organic chemistry, the infrared (IR) analysis is used to identify the 

chemical compounds present in the material.  As very well known the atoms within the 

molecules are in movement states and the molecule as a whole in vibration motion.  

Furthermore, it is well documented that the electromagnetic (EM) waves in the infrared range 

are able to transfer molecules to their higher vibrational energy level.  Consequently, if the 

frequency of the photon projected on the molecule matches the frequency of the bond energy, 

absorption occurs for that photon energy resulting in moving to higher vibration energy level.  

PerkinElmer FTIR spectrometer (Figure 3.5) has been used to measure the solar reflectance 

of our coating samples in the infrared region.  



66 

 

Figure 3.5: PerkinElmer Spectrum 100 FTIR Spectrometer, USA. 

 

 

3.4.4 UV-Vis Spectroscopy  

Ultraviolet visible spectrometers (as denoted as UV-Vis spectroscopy) are used to quantify 

the optical properties of a solid material in the ultraviolet and visible wavelength ranges of 

light.  The physical principle of this technique is based on the electron transfers between their 

ground and excited states.in this technique, the material is exposed to incoming light in the 

ultraviolet and visible range resulting in exciting the valance electrons such as p or d in the 

outer orbitals.  For more clarity, electrons will absorb the incident photon energies to transfer 

to higher energy levels of molecules.  

 

The photon energy absorbed by a material is equal to the energy difference between the 

energetic levels between which the transfers are occurred.  The energy difference is expressed 

as;  



67 

𝐸 = ℎ𝑣 =
ℎ𝐶

𝜆
                                                                                                                        3.3 

Where E denotes the photon energy, h stands for Plank constant, ν corresponds to the 

frequency of the photon, C is the speed of light and λ signifies the wavelength of the photon.  

Optical data of all the films were acquired by UV-670 UV-Vis spectrophotometer, JASCO, 

USA double beam spectrophotometer (Figure 3.6).  

 

Figure 3.6: UV-670 JASCO, USA double beam spectrophotometer. 

 

3.4.5 Field Emission Scanning Electron Microscopy (FESEM) 

FESEM is an important technique to provide information about the surface topography of 

materials such as the roughness and smoothness.  This instrument is used by many 

researchers in field such as biology, chemistry and physics to view the nanostructures (1 

millimeter = billion of a nanometer).  In this imaging microscope, electrons released by a 

field emission source are projected on entire or fractioned systems.  To clarify its function, 

electrons are liberated from a source and they are accelerated in a high vacuum column.  

These electrons named primary electrons are concentrated and deflected by electronic lenses 
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to provide a narrow scan beam that hits the material.  As a consequence, secondary electrons 

are emitted from that system.  The secondary electrons will be caught by a detector by which 

an electronic signal is going to be obtained and amplified and then transferred to a scan image 

seen on a monitor.  Cross-sectional images for determining the thickness of the synthesized 

films were obtained in this work by Zeiss Neon 40EsB FESEM imaging (Figure 3.7).  

 

 

Figure 3.7:  Zeiss Neon 40EsB FESEM. 

 

 

3.4.6 Atomic Force Microscopy (AFM) 

Atomic force microscopy (AFM) is an important kind of scanning probe microscopy.  This 

technique is also considered as one of the most commonly microscopes that can provide 

surface topography information with high resolution ability up to the order of fraction of a 

nanometer.  In nutshell, this machine is composed of a sharp probe with micro-measurements, 

scanning the surface of interest.  The probe is fixed to a horizontal holder, whereas its self is 

perpendicular on this holder and the surface wanted to be scanned.  In this method, laser 

radiations are projected on the holder being able to move up and down with probe movement 

and consequently the reflected laser radiation will be picked on a receiver fixed on the holder.  

Thus, the topography of the surface is determined according to the laser beam reflex 

movement.  Figure 3.8 displays AFM used in this dissertation. 
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Figure 3.8: A high resolution atomic force microscopy (AFM). 

 

3.5 Theoretical Background 

 3.5.1 The Many-Body Problem 

Understanding and solving the electronic structure of atoms, molecules or any system are the 

main goal in computational modeling.  It is well known that atoms consist of electrons and 

nuclei, from quantum mechanics perspective; Schrödinger equation is utilized to solve the 

electronic structure for atoms. 

 

The Schrödinger Equation of any time independent quantum system describes as: 

 

Hψ(r) = Eψ(r)                                                                                                   3.4 
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Where, ψ is expressed the wave function, E is the energy of the particle (electrons), and H is 

the Hamiltonian operator that describes the particle's energy as the summation of potential 

and kinetic energy and as given below:  

H = T + V =  
1

2
mv2 + V                                                                                     3.5 

By replacing the classical expressions for kinetic and potential energies with their quantum 

mechanical operators, we will obtain the quantum mechanical Hamiltonian H 

H =
ħ²

2m

∂²

∂r²
+ V(r)                                                                                                3.6 

Where ħ is reduced Plank’s constant (1.05457  10-34 Joule second), m is the mass of the 

particle (electron), V is the potential energy and it refers to the coulomb repulsion between 

each pair of charged particles.  The potential energy term can be written as. 

V = 
1

4𝜋𝜖0
[∑ ∑ (

𝑒2

∆𝑟𝑖𝑗
) + ∑ ∑ (

𝑍𝐼𝑍𝐽𝑒
2

∆𝑅𝐼𝐽
) − ∑ ∑ (

𝑍𝐼𝑒
2

∆𝑟𝑖𝐼
)𝐼𝑖𝐽<𝐼𝐼𝑗<𝑖𝑖 ]                                3.7 

                   

 

Where e and Z represent electron and nucleus charges respectively and r and R are denoted to 

electrons and nuclei positions respectively.  The first term in Equation 3.7 represents 

electron-electron repulsion, the second term stands for nuclear-nuclear repulsion and the last 

term describes electron-nuclear attraction [202]. 

𝐻 = −
ħ2

2𝑚𝑒
∑ ∇𝑖

2
𝑖 − ∑

𝑍𝐼𝑒
2

|𝑟𝑖−𝑅𝑖|
𝑖,𝐼 +

1

2
∑

𝑒2

|𝑟𝑖−𝑟𝑗|
𝑖≠𝑗 − ∑

ħ2

2𝑀𝐼
𝐼 ∇𝐼

2 +
1

2
∑

𝑍𝐼𝑍𝐽𝑒
2

|𝑅𝐼−𝑅𝐽|
𝐼≠𝐽           3.8 

The equation above refers to the Hamiltonian where 𝑚𝑒 and  𝑀𝐼 refer to the electron mass 

and nuclei mass respectively, 𝑟𝑖and𝑅𝐼 are positions of electron and nuclei. 𝑍𝐼 symbolizes the 

charge of nuclei and e signifies the charge of electron.  Due to Coulomb force between 

charged particles, the electrons and nuclei interact with each other.  The first term and fourth 

term represent the kinetic energy of electrons and nuclei respectively, second term is the 

attractive interaction between the electron and nuclei, third term is electron-electron repulsion 

term, and the last term corresponds to the nuclei-nuclei repulsion.  Mathematically, it is quite 

difficult to solve such an equation, so approximations have been emerged  to solve the many-

body problem[203]. 
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3.5. 2 Born-Oppenheimer Approximation 

Born-Oppenheimer approximation is one of the earliest approximations employed to solve 

the Schrodinger equation.  This approximation involves the claim that the nuclei cannot move 

as much as electron due to its heavy mass compared to electron's, in the other words, the 

nuclei move very slowly as compared with electrons.  Accordingly, the term kinetic energy of 

nuclei was cancelled, and the electronic energy relies only on the position of the nuclei.  

Meaning that, this approximation leads to separate nuclear and electronic motions, and now 

the many-body problem is solved.  According to the Born-Oppenheimer approximation, the 

Hamiltonian is given  by [204]. 

 

H = Telec(r) + Tnucl(R) + Vnucl−elec(R, r) + Velec(r) + Vnucl(R)                    3.9 

Where, Telec(r) + Tnucl(R)refer to the kinetic energy operators for electrons and nuclei, 

respectively; Vnucl−elec(R, r)  describes coulomb interaction between electrons and nuclei, 

while Velec(r) + Vnucl(R) represent the repulsive interaction between electrons and between 

nuclei respectively [204, 205]. 

3.5.3 Density Functional Theory (DFT) 

Density functional theory (DFT) is the most frequently quantum mechanical modeling 

approach in material science.  It has extensively been used for studying different properties of 

many condensed matter systems involving complex materials such as molecules, proteins, 

interfaces and nanoparticles.  In other words, electronic structure of atoms, molecules, 

crystals which are considered large and periodic systems can easily be investigated using this 

method [206]. 

3.5.4 The Hohenberg-Kohn Theorems 

Two theorems were expressed by Hohenberg and Kohn in 1964.  They suggested in these 

theorems that the use of wavefunction can be replaced by electron density when determining 

the total energy for a system.  The first theorem supposes that the external field Vext(r) of 

interacting particle can be determined by the ground state density 𝜌𝑜(r) [207, 208], and can 

mathematically express as: 

𝐸[𝜌(𝑟)] = ∫𝜌(𝑟)𝑉𝑒𝑥𝑡𝑑𝑟 + 𝐹𝐻𝐾[𝜌(𝑟)                                                                    3.10 
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In addition, Hohenberg’s and Kohn’s second theorem states that the electron density follows 

variational principle.  Consequently, the lowest total energy of the system has to be equal or 

greater than the ground state energy. 

𝐸0 = 𝐸[𝜌0(𝑟)] ≤ 𝐸[𝜌(𝑟)]                                                                                       3.11 

From the various densities calculated by Equation 3.11, it can be selected the one with lowest 

energy to be the proper solution.  Hohenberg-Kohn energy functional FHK [ρ(r)] in Equation 

3.10 should be approximated and this would be a challenging work in DFT.  The interaction 

energy between electrons Eee [ρ] and the kinetic energy Te [ρ] in FHK [ρ(r)] are given as, 

𝐹𝐻𝐾[𝜌] = 𝐸𝑒𝑒[𝜌] + 𝑇𝑒[𝜌]                                                                                         3.12 

The interaction energy Eee equals the Coulomb repulsion J [ρ] plus the component of Encl 

resulted from self-interaction, exchange and coulomb correlation contributions. 

𝐸𝑒𝑒 = 𝐽[𝜌] + 𝐸𝑛𝑐𝑙[𝜌]                                                                                                3.13 

3.5.5 The Kohn–Sham Equations 

In attempt to approximately the Hohenberg-Kohn energy functional FHK [ρ], Kohn and Sham 

found out a method that separates the kinetic energy functional Te into two kind of energies 

namely as non- interacting reference system Ts and an unknown part Tc.  Because of electron 

interaction in the actual system, Tc includes the correction.  Hohenberg-Kohn functional may 

be expressed as,  

 𝐹𝐻𝐾[𝜌] = 𝑇𝑠[𝜌] + 𝐽[𝜌] + 𝐸𝑥𝑐[𝜌]                                                                            3.14 

The non-interacting electron kinetic energy.  Ts is given as a function of one-particle wave 

function Φ, 

𝑇𝑠[𝜌] = ∑ ⟨𝛷𝑖|−
1

2
𝛻2|𝛷𝑖⟩

𝑁
𝑖=1                                                                                     3.15 

And Exc[ρ] stands for the exchange-correlation energy defined as,  

𝐸𝑥𝑐[𝜌] = 𝑇𝑒[𝜌] − 𝑇𝑠[𝜌] + 𝐸𝑒𝑒[𝜌] − 𝐽[𝜌]                                                                 3.16 

The difference between the kinetic energies of interacting electron system and non-

interacting ones, as well as the repulsion energy between electrons Encl are described by the 

exchange-correlation energy.  Hence, it can obtain an effective single particle problem 

instead of many-body problem.  As a consequence, the electron density of the actual 
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interacting system can be regenerated by specifying the one particle wavefunction employing 

the effective one-particle equation and this results in the Kohn-Sham equation, 

  [−
1

2
𝛻2 + 𝑉𝑒𝑓𝑓(𝑟)]𝛷𝑖 = ∑ 𝛷𝑖𝑖                                                                               3.17 

In which Veff (r) corresponds to the effective potential which includes the external Vext (r), the 

coulomb and the exchange-correlation Vxc (r) potential.  

          

3.5.6 Pure Density Functional Theory Methods 

There is a combination of methods used to approximate the exchange-correlation energy per 

particle 𝐸𝑥𝑐𝑛[(𝑟)].  Finding an appropriate approximation (approach) for this term could be 

of great challenges in DFT.  The Starting point for this approximation is from Kohn and 

Sham approach.  Different approximations are proposed to compute the exchange and 

correlation energy using different DFT methods. 

DFT is grouped into two methods which are pure methods and hybrid methods.  It can be 

concluded from their name, pure DFT methods are used just DFT exchange energy functional. 

Below is a description of some frequently used approximations with pure DFT methods: 

3.5.6.1 Local Density Approximation (LDA) 

It is considered one of the most commonly used approximation in pure (local) DFT to 

calculate the exchange-correlation energy proposed by Hohenberg and Kohn.  It is assumed 

that if the variation of the charge density of some regions of a material was slow, the 

exchange correlation energy at that point can be considered the same as that for a locally 

uniform electron gas of the same charge density.  In this case we can write 𝐸𝑥𝑐 as; 

Exc[ρ] = Exc(ρ(r))                                                                                                         3.18 

Where Exc is the exchange-correlation energy per particle of the homogeneous electron gas.  

In other words, LDA aimed to approximate the electron density of the inhomogeneous gas 

system locally based on the density of the homogeneous electron gas [209].  This 

approximation is very simple, accurate, and forms the essential approximations of most DFT 

codes. It is effective even in systems where the charge density is quickly changing.  However, 

it tends to under predict atomic ground state energies and ionization energies, while over 

predicting binding energies. It is also known to be used in high spin state structures[210].  

Meaning that The main error source in the LDA is in the exchange energy[206]. 
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Local spin-density approximation (LSDA) has the same base as LDA with only one 

difference which is including electron spin that describes as below; 

𝐸𝑥𝑐[𝜌] = ∫𝜌(𝑟(𝜌↑, 𝜌↓))𝜖𝑥𝑐
(𝜌)𝑑𝑟                                                                                     3.19 

3.5.6.2 Generalized gradient approximation (GGA) 

Efforts have been made to move beyond the LDA through the addition of gradient 

corrections to be more accurate for complicated systems. 

GGA is an extension to LDA approximation, used for the exchange-correlation energy which 

can be defined as: 

Exc[ρ] = Exc(ρ(r), ∇ρ(r))dr                                                                                             3.20 

Exc[ρ] is the exchange-correlation energy in a homogeneous electron gas, the approximation 

is LDA but the gradient of electron density at the same coordinate is taken into account 

beside the density.  The GGA approximation designed by Perdew and co-workers.[211, 212].  

LDA approximation fails to predict exact exchange energy when its density experiences swift 

changes in molecules, whereas it becomes easily to overcome this limitation using GGA.  

Finally, various GGA functional were developed such as, Becke (B88), Perdew and Wang 

(PW91), and Perdew, Burke, and Ernzerhof (PBE).  All of these functionals denote to the 

personal authors’ name and the year of publication.  PBE is one of widely used forms 

(functionals) in DFT calculations, belonging to generalized gradient approximation 

(GGA)[213]. 

3.5.7 Hybrid Density Functional Theory Methods 

In hybrid methods, combinations of DFT and Hartree-Fock exchange energies are utilized to 

enhance the performance.  For more clarity, new types of exchange-correlation energy 

approximations used in density functional theory due to GGA, LDA and PBE functional are 

insufficient to treat d and f electrons accurately [203].  To address these limitations new 

functionals have suggested.  Frequently, B3LYP method, which represents Becke, 3-

parameter, Lee-Yang-Parr is the widely used one.  Moreover, B3P91 - uses Becke's exchange 

functional with part of the Hartree-Fock exchange mixed in, and a scaling factor on the 

correlation part. 

 

 

https://en.wikipedia.org/wiki/Gradient
https://en.wikipedia.org/wiki/Density_functional_theory
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3.5.8 The DFT + U Approach 

Density functional theory (DFT) within both of its approximations, LDA and GGA has been 

proven to be disabled to treat the self- interaction errors raised in the d- and f- materials and 

thereafter, resulting in incorrectly describing the electronic and structural properties of such 

groups of materials [214, 215].   The self-interactions can be explained as the d and f orbitals 

are localized on each atomic site leading to coulombic repulsion between the electrons [214].  

To solve this, the DFT +U approach was established. In this method, the self-interaction 

errors are addressed by correcting the DFT energy via introducing an adjustable parameter 

Ueff = U-J where U signifies the Coulomb self- interaction term and J corresponds to the 

exchange self-interaction term.  

In LDA+U method, the valance states except d and f states are treated by the pure DFT 

functional, while for the d and f strongly correlated electron states, Hubbard parameter U is 

necessarily used.  The total energy of a system can be given as [216]; 

 

𝐸𝐿𝐷𝐴+𝑈[𝜌(𝑟)] = 𝐸𝐿𝐷𝐴[𝜌(𝑟)] +𝐸𝐻𝑢𝑏[{𝑛𝑚𝑚ʹ
𝐼𝜎 }] -𝐸𝑑𝑐[{𝑛

𝐼𝜎}]                                                  3.21 

 

In this formalism, ELDA stands for the approximate DFT total energy functional being 

corrected, EHub corresponds to the term that contains the Hubbard Hamiltonian to treat 

correlated states. Due to the additive behavior of this correction, it is of significant 

importance to remove from the (approximate) DFT functional, ELDA, the part of the 

interaction energy to be modeled by EHub.  This is achieved by taking away the term Edc 

(double- counting) that models the contribution of the strongly correlated electrons to the 

DFT energy as a mean-field approximation of EHub  [216].  
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Figure 3.9: The variation of Ce2O3 band gap with Hubbard parameter (U) using LDA+U and 

GWo approaches.   Reproduced from ref. [267].   

 

As Figure 3.9 depicts, band gap of Ce2O3 varies with the of Hubbard parameter U. Practically, 

values of Hubbard parameter are optimized by reproducing the corresponding experimental 

values of the studied materials.  In Chapter 4, for instance, Ueff of 5 eV was considered 

because it reproduces the corresponding experimental lattice parameters and the 

semiconducting nature of all the studied lanthanide sesquioxides except that of Ce2O3.  

However, a higher Ueff value at 6.5 eV was required to acquire the experimentally measured 

band gap of Ce2O3. 

 

3.5.9 Pseudopotentials 

For solid state calculations, a plane-wave basis set is usually the most commonly used basis 

set. It is well –known that core electrons are generally not included in chemical bonding, so it 

is important to rid from the complicated effects of the motion of the core electrons by 

replacing the  non-valance electrons of an atom and its nucleus with an effective potential or 

effective core potential (ECP) [217]. 

3.5.10 Modelling program based on DFT 

The use of computer codes has become indispensable to achieve various kinds of calculations 

in material science.  Different modelling programs based on quantum mechanics, especially 
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density functional theory DFT such as Quantum Espresso, cambridge serial total energy 

package (CASTEP), Gaussian, Dmol3, Crystal and Vienna Ab initio Simulation Package 

(VASP) were released with different operating systems as Windows, Linux, and Macintosh.  

In this thesis, some of these codes used in solid state systems such VASP, Dmol3 and 

CASTEP are operating to calculate different material properties such as electronic, structural, 

mechanical, thermodynamic and optical, as well as investigating the catalytic performance of 

the most stable surface of the materials.  These codes use pseudopotentials and a plane wave 

basis set in their calculations [218].  Generalized gradient approximation (GGA) is used for 

the exchange and correlation energy [219]. Below flow chart illustrates steps of the work 

done by DFT.  

 

 

Figure 3.10: Flow diagram of the computational work by DFT. 
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3.5.10.1 DMol3 

DMol3 is a simulation software that is based on DFT along with plane waves basis sets used 

to obtain model geometry and energy calculations of a gas, liquid and solid systems.  DMol3 

uses two types of functionals namely as local functional including VWN functional of Vosko 

et al. [220] and PWC of Perdew and Wang[221], and nonlocal functionals such as 

PW91[222, 223] , BP [222, 223] HCTH [224], RPBE [225], PBE [222] and BLYP [226].  

The nonlocal functionals were proven to be more accurate because of its dependency on /𝑑𝑟 , 

where, ρ empowers to obtain precise results in terms of energies and geometries 

characteristics.  Furthermore, different basis sets ranging from small sets to large sets are 

supplied by DMol3 code.  These start with the minimal basis set (MIN), double numerical 

(DN), double numerical plus d-functions (DND) which combines the DN basis set with a 

polarization d-function on all-non-hydrogen atoms, double numerical plus polarization (DNP) 

which is considered an enhancement to the DND basis set via including a polarization p-

function on all hydrogen atoms, and triple numerical plus polarization (TNP) where 

additional polarization functions are applied over the DNP basis set on all atoms. 

In relation to the pseudopotentials, DMol3 uses three different methods to process the core 

electrons; namely as density functional semi-core pseudopotentials (DSPP), effective core 

potential (ECP), and scalar relativity.  The scalar relativity core treatment provides the most 

precise results, but at the highest computational expenses.  

DMol3 can carry out restricted and unrestricted DFT calculations, structural optimization, and 

transition state search via a combined LST/QST/conjugate gradient method [227, 228]. 

 

3.5.10.2 VASP 

VASP is one of the DFT code that is employed to carry out quantum-mechanical molecular 

dynamic calculations.  This is achieved by using pseudopotentials or the projector-augmented 

wave basis set [229, 230].  VASP assesses the electronic ground state at each time step of the 

molecular dynamics.  In VASP, ultra-soft Vanderbilt pseudopotentials (US-PP) or the PAW 

method describe the interactions between electrons [231, 232].  These two methods can 

lessen the number of plane-waves per atom significantly at least for transition elements.  

Using VASP, the forces and stress tensor used for the relaxations into their instantaneous can 

be easily calculated.  
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3.5.10.3 CASTEP 

CASTEP is a DFT package utilized to perform geometry optimizations and energy 

calculations. CASTEP uses the plane-wave pseudopotentials method to solve a set of one-

electron Schrodinger (Kohn-Sham) [233].  Furthermore, a plane wave basis set is used to 

expand the wavefunctions.  The ab initio pseudopotentials within norm-conserving [234] and 

ulterasoft [235] describe the electron-ion potential.  In order to obtain the electronic 

wavefunctions, self-consistently and the charge density, CASTEP software utilizes the direct 

energy minimization Schemes. 

 

 

3.5.10.4 PHONOPY 

 

PHONOPY is a code used to calculate phonons in a solid-state system via supercell approach.  

It is commonly combined with other force calculators such as VASP, ABINIT, WIEN2K, etc. 

the ones can calculate forces on atoms in the crystallographic structures.  PHONOPY 

performs phonon calculations through a series of steps summarized as; (1) to relax the 

selected unit cell, (2) Subsequent to the relaxation process, a supercell has to produce after 

which displacement calculations are to be run, (3) using any force calculator, the forces on 

the atoms have to be computed, (4) based on phonon analysis, different characteristic 

properties such as thermal properties and band structure can be extracted. 

 

3.5.11 Transition state theory 

During a path of a chemical reaction, there are some chemical bond between atoms are 

fractured and some new bonds is formulated. As a consequence, energy-elaborating is 

occurred.  Thus, it is crucial to get the system into a state which permits the bond to fission 

by giving a certain energy called the activation energy.  Activation energy produces a 

structure, being unstable, temporary state named as transition state which cannot persist for a 

long time. 
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Figure 3.11: Transition state diagram.  ΔG signifies the activation energy. 

 

In this dissertation, the linear (LST) [227] and quadratic transit (QST) [227] methods within 

Dmol3 code have been employed to determine the transition states (LST/QST method).  In 

LST method, the reactants and products are linked to each other by a set of perfect structures.  

The latter are attained by linear interpolating of the distances between all couples of atoms in 

the reactants and the products by the following formalism; 

 

𝑟𝑎𝑏
𝑖 (𝑓) = (1 − 𝑓)𝑟𝑎𝑏

𝑅 − 𝑓𝑟𝑎𝑏
𝑃 ,                                                                                   3.22 

 

In which 𝑟𝑎𝑏
𝑖 and 𝑟𝑎𝑏

𝑅  signify distances between the inter- nucleus of atoms a and b in the 

reactants and products, respectively, and f correspond to the interpolation parameter having a 

magnitude in the range of [0,1].  The transit course is specified utilizing molecular geometry, 

with the distances of inter atoms bring very near to the perfect values that are easily extracted 

by minimizing the function C written below; 

 

𝐶(𝑓) =  
1

2
∑

(𝑟𝑎𝑏−𝑟𝑎𝑏
𝑖 (𝑓))2

(𝑟𝑎𝑏
𝑖 (𝑓))4𝑎≠𝑏 + 10−6∑ ∑ (𝜁𝑎 − 𝜁𝑎

𝑖 (𝑓))2𝑎𝜁=𝑥,𝑦,𝑧                                 3.23 
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where 𝜁𝑎 correspond to the actual and 𝜁𝑎
𝑖  denotes the interpolated Cartesian site of an atom. 

Reducing function C detects the geometry of the reactants when f = 0 and the geometry of the 

products when f = 1. An estimate of LST maximum has been enhanced by minimizing the 

geometry with accordance to a constant p giving by;  

 

𝑝 =
𝑑𝑅

𝑑𝑅+𝑑𝑃
                                                                                                                 3.24 

 

dR symbolizes the reactant distance from any other geometry of the molecule that is given by 

the following equation 

𝑑𝑅
2 =

1

𝑁
∑ (𝜁𝑎 − 𝜁𝑎

𝑅)2𝑎                                                                                                3.25 

N refers the number of the atoms in the molecule. 

Then the resulting optimum geometry, pm (pm = p opt), is employed to carry out QST 

calculations, in which a quadratic interpolation is achieved via the reactants, products and pm.  

In QST, each path is produced by substituting Equation 3.22 by the quadratic interpolation 

expression; 

𝑟𝑎𝑏
𝑖 = 𝛼 + 𝛽𝑓 + 𝛾𝑓2                                                                                                  3.26 

The QST estimation for the transition state represents the maximum energy along this 

quadratic path.  

 

3.5.12 Ab-initio atomistic thermodynamics 

It is well-known that DFT calculates various properties of a material at ground state, zero 

temperature and zero pressure.  In contrast, the catalytic reactions are occurring in elevated 

practical temperature and pressure.  Thus, considering the realistic conditions when 

investigating the behavior of a catalyst is of significance importance.  Temperature, pressure 

and the surrounding gas phase are the most popular parameters.  In order to expand the 

predictive ability of ab-initio calculations to finite temperature and pressures, ab-initio 

atomistic thermodynamics was expressed [236, 237].  The essential purpose is to explicate 

the DFT results in terms of a thermodynamic potential.  If either of the thermodynamic 
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potentials is already calculated by DFT, then, the other thermodynamics other properties can 

be computed.  It is essential to know that surfaces are supposed to be in equilibrium with their 

underlying bulk and the gas atmosphere.  Also, the individual chemical potentials (µ) are 

known to be equal if two components are in thermodynamic equilibrium.  The bulk of the 

solid and the gaseous atmosphere are basically dealt as reservoir of particles. The most proper 

thermodynamic potential for a known (T,P) is Gibbs's free energy (G).  In addition, the free 

energy per formula unit or per particle is denoted as g.  Homogeneous and infinite reservoir 

has g value similar to the chemical potential µ. 

 

 

For a solid system in a gas atmosphere, the Gibbs free energy of the solid and gas phase as 

one system can be expressed as: 

 

𝐺 = 𝐺𝑠𝑜𝑙𝑖𝑑 + 𝐺𝑔𝑎𝑠 + ∆𝐺𝑠𝑢𝑟𝑓.                                                                                 3.27 

 

 

The contributions are parted into solid, gas and the surface.  If the surface is a single crystal 

surface, then the contribution of the surface will measure with the area A and thereafter 

presenting the express of surface energy γ as: 

 

𝛾 =
1

𝐴
(𝐺 − 𝐺𝑠𝑜𝑙𝑖𝑑 − 𝐺𝑔𝑎𝑠)                                                                                     3.28 

 

In which γ is defined in terms of the finite portion of the total (infinite) system and G 

signifies the total energy which concludes the effect resulted from the solid and the gas phase.  

In Equation 3.28, a deduct process for the effects of G solid, G gas from the total energy G with 

the aim to exclude only the effect of the surface.  If the surface contains NM metal atoms and 

NO oxygen atoms per surface area, then the Equation 3.28 it is possibly given as: 
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𝛾(𝑇, 𝑃) =
1

𝐴
(𝐺(𝑇, 𝑃, 𝑁𝑀, 𝑁𝑂) − 𝑁𝑀𝑔𝑀(𝑇, 𝑃) − 𝑁𝑂𝜇𝑂(𝑇, 𝑃))                                  3.29 

At this point, it is worthwhile noting that a more negative sign for Gibbs free energy will 

suggest a more stable configuration of the system.  In the explanation of a chemical potential 

this translates to μ approximating -∞ in the limit of an infinitely dilute gas, because adding a 

particle will then produce an infinite gain in entropy.  As a result, γ > 0 suggests the cost of 

producing the surface between the solid bulk phase and the homogeneous gas phase.  

Alternatively, when discussing the stability of phases that result from adsorbing species at the 

solid surface, it can be appropriate to pick another zero reference.  The surface free energy of 

the clean surface can be determined via the following formalism,  

 

𝛾𝑐𝑙𝑒𝑎𝑛(𝑇, 𝑃) =
1

𝐴
(𝐺(𝑇, 𝑃, 0, 𝑁𝑀) − 𝑁𝑀𝑔𝑀(𝑇, 𝑃)                                                         3.30 

The Gibbs free energy of a clean surface is importantly calculated to be a reference for the 

relative stability of the surface. 

 

∆𝐺𝑎𝑑𝑠(𝑇, 𝑃) = 𝛾𝑐𝑙𝑒𝑎𝑛(𝑇, 𝑃, 0, 𝑁
′
𝑀) − 𝛾(𝑇, 𝑃, 𝑁𝑂 , 𝑁𝑀) =  

1

𝐴
(𝐺(𝑇, 𝑃, 𝑁𝑂 , 𝑁𝑀) −

𝐺(𝑇, 𝑃, 0, 𝑁′𝑀)−𝑁𝑂µ𝑂(𝑇, 𝑃) − (𝑁𝑀 − 𝑁
′
𝑀
)𝑔𝑀(𝑇, 𝑃))                                          3.31 

The final term stands for a possible difference in the number of metals atoms between the 

reference clean surface and the oxidized surface structural model.  Apparently, the most 

stable surface configuration at certain (T,P) in the gas phase is the one that minimizes the 

surface free energy, or equivalently the one that results in the most positive Gibbs free energy 

of adsorption at the corresponding oxygen chemical potential. 
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Chapter 4 : Thermo-mechanical Properties of Cubic Lanthanide 

Oxides 

 

Paper I 

Miran, H.A., Altarawneh, M., Widjaja, H., Jaf, Z.N., Rahman, M.M., Veder, 

J.P.,Dlugogorski, B.Z. and Jiang, Z-T (2018) Thermo-mechanical properties of cubic 

lanthanide oxides.  Thin Solid Films, 653 . pp. 37-48. 

 

4.1 Abstract 

This chapter investigates the effect of the addition of the Hubbard U parameter on the 

electronic structural and mechanical properties of cubic (C-type) lanthanide sesquioxides 

(Ln2O3).  Calculated Bader’s charges confirm the ionic character of Ln-O bonds in the C-type 

Ln2O3. Estimated structural parameters (i.e., lattice constants) coincide with analogous 

experimental values.  The calculated band gaps energies at the Ueff   of 5 eV for these 

compounds exhibit a non- metallic character and Ueff   of 6.5 eV reproduces the analogous 

experimental band gap of cerium sesquioxide Ce2O3.  We have thoroughly investigated the 

effect of the O/Ce ratios and the effect of hafnium (Hf) and zirconium (Zr) dopants on the 

reduction energies of CeOx configurations.  Our analysis for the reduction energy of CeO2, 

over a wide range of temperatures displays that, shuffling between the two + 4 and + 3 

oxidation states of Ce exhibit a temperature-independent behavior.  Higher O/Ce ratios 

necessitate lower reduction energies.  Our results on Ce-Hf-Zr-O alloys are in reasonable 

agreements with analogous fitted values pertinent to lowering reduction energies and 

shrinkage in lattice parameters when contrasted with pure CeO2.  Structural analysis reveals 

that Hf and Zr atoms in the solid solution are shifted towards the nearest vacancies upon 

reduction.  It is hoped that values provided herein to shed an atomic-base insight into the 

reduction/oxidation thermodynamics of increasingly deployed catalysts for environmental 

applications.  

 

 

http://researchrepository.murdoch.edu.au/view/author/Miran,%20Hussein.html
http://researchrepository.murdoch.edu.au/view/author/Altarawneh,%20Mohammednoor.html
http://researchrepository.murdoch.edu.au/view/author/Widjaja,%20Hantarto.html
http://researchrepository.murdoch.edu.au/view/author/Jaf,%20Zainab.html
http://researchrepository.murdoch.edu.au/view/author/Rahman,%20Mohammad.html
http://researchrepository.murdoch.edu.au/view/author/Dlugogorski,%20Bogdan.html
http://researchrepository.murdoch.edu.au/view/author/Jiang,%20Zhong-Tao.html
http://researchrepository.murdoch.edu.au/id/eprint/40496/
http://researchrepository.murdoch.edu.au/id/eprint/40496/
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4.2 Introduction 

Over the last two decades, considerable attention has been devoted towards better 

understanding of properties that drive the unique applications of rare earth metals and their 

oxides.  Lanthanide (Ln) oxides represent an array of materials that enjoy remarkable 

characteristics, such as high melting points of over 2000 ºC, superior mechanical, thermal, 

optical and magnetic properties [238].  In earth elements, the unfilled 4f orbital is shielded 

from interactions with the adjacent atmosphere by the full octet of electrons in the 5s2p6 outer 

shell [239].  The series of lanthanide oxides (Ln2O3) has emerged as promising materials in a 

wide range of applications, spanning in catalysis, antireflection coatings, ionic conductor 

industries [240-242], etc.  Compounds of Ln2O3 have been in the centre of mounting interest 

as early as 1925 [243-248].  The two forms of cerium oxide (CeO2 and Ce2O3) for instance 

have been the subject of numerous studies aiming to elucidate chemical and physical 

characteristics of their bulk and thin films.  Cerium oxides have been generally deployed as 

catalysts in the preparation of active metal nanoparticles [249, 250], as electrolytes or as 

anode support materials [251].  Naturally, the lanthanide oxides occur in a sesquioxide form; 

however, in the case of Ce, Pr, and Tb oxides, they can also adapt other structural forms.  

Metallic Ce and Pr are readily oxidized into CeO2 (ceria ) and PrO2, respectively, in air, while 

under elevated oxygen pressures, Tb is found as Tb4O7, and eventually transforms into TbO2 

[252].  

 

Interestingly, it was revealed that, the Ln2O3 series exhibit a well-ordered periodicity in their 

physical attributes with the gradual filling of the 4f-electron shell, increasing from La to Lu.  

For example, a periodicity of band gap, Eg  variation was found across this series[253].  The 

lattice structure of the sesquioxides at temperatures lower than 2000 ºC falls into three distinct 

polymorphic forms: (a) A-type which assumes a hexagonal configuration with the P-3m1 

space group symmetry, (b) B-type occurring in a monoclinic structure with the C2/m space 

group symmetry, and (c) cubic C-type with the Ia3 space group symmetry[248, 254].  

 

An early experimental study by Templeton and Dauben [255] measured the lattice parameters 

of several lanthanide oxide samples with purity of > 99.9% (cubic: Mn2O3 type structure) 
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from powder diffraction patterns with high accuracy.  Recently, combinations of structural, 

mechanical, and optical properties, of rare earth oxides thin films produced by various 

synthesis techniques have been experimentally investigated.  For instance, Dubau et al.,[256] 

fabricated a large surface area cerium oxide films with thickness ≤ 30 nm using RF 

magnetron sputtering technique.  They stated that, the structure and morphology of the 

deposited films was strongly affected by the oxygen concentration in the working gas utilized 

for the deposition process.  Furthermore, optical and structural properties of Er2O3 films 

prepared by magnetron sputtering system have been studied by Miritello et al.,[257].  

Likewise, various characterization techniques have been utilized for the bulk and surface 

analysis of Ln2O3.  For instance, FTIR spectroscopy is a widely used characterization 

technique for the investigations of surface chemistry of lanthanide series using probe 

molecules such as H2 and CO [258].   

On the theoretical side, density functional theory (DFT) investigation [259] has elucidated an 

atomic-base insight into structures and electronic properties by of Ln2O3.  Studied 

compounds include the A-type hexagonal structure and CeO2 with the cubic fluorite structure 

(space group Fm-3m).  Hirosaki et al. [242] attempted to screen the dependency of the 

volume per unit formula in A- and C-type structures on atomic numbers establishing an 

inverse relation.   Nonetheless, recent theoretical advances have demonstrated that pure DFT 

methods utilized by Hirosaki et al. [242] are not capable of accurately describing the rather 

electronically highly correlated system of the Ln2O3 series.  A very recent DFT investigation 

has been carried out by Richard et al. [254] with a focus on the pressure-induced C-type → 

A-type phase transition.  This study analyzed the crystalline structure, crystal equilibrium 

volumes, bulk modulus (B) and its first pressure derivative (B`) as well as the electronic 

properties of these two phases.  However, the study did not assess the mechanical stability of 

the Ln2O3 species nor utilized the obtained charge distribution to comment on the relative 

ionicity of the Ln-O bonds.  

 

It has now become apparent that neat DFT methods [260, 261], most notably the generalized 

gradient (GGA) and local density approximations (LDA), are unable to accurately describe 

the electronic structure in Ln2O3.  This is due to several deficiencies in standard DFT 

methods, for example, the lack of self- interaction cancellation, which results in reducing or 

even closing obtained band gaps.  On this regard, GGA and LDA often underestimate 
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corresponding experimental band gaps of Ln2O3 [252, 262, 263].  For example, Ce2O3 is 

incorrectly predicted by pure DFT methods as metallic (LDA) or a semiconductor with a 

small band gap (GGA) [259].  To overcome the severe delocalization of 4f electrons in Ln2O3 

systems by GGA and LDA functionals, an empirical (i.e., ad hoc) Hubbard U approach was 

developed; LDA+U/ GGA+U [264, 265].  Applying the self-interaction-corrected (SIC) or 

hybrid DFT approaches [266] provide accurate predictions for the electronic structures of d- 

and f-electronic systems as well.  However, the DFT+U formalism proves to be a cost-

effective approach choice that adequately overcomes the fundamental shortcoming of plain 

DFT.  The empirical Hubbard U potential characterizing the strength of the on-site Coulomb 

interaction is not a universal value but rather an adjustable parameter, which is practically 

determined by fitting the calculated DFT+U values against analogous experimental data 

[267]. Examples of these fitted values include lattice constants, [248] band gaps [252] and 

reaction energies [268].  

 

Accruing various fundamental solid-state properties, such as phonon spectra, specific heat, 

and thermo-elastic quantities is of fundamental importance when attempting to fine-tune 

characteristics of Ln2O3 toward real-life applications.  From a chemical point of view, 

catalytic applications of lanthanide oxides rely on their remarkable capabilities to undergo a 

redox reaction in which the oxidation state switches from + 4 to + 3.  In hydrogenation 

reactions of alkynes into olefins over CeO2, a crucial step is the stabilization of β-CxHy 

radicals caused by reduction of Ce surface atoms following adsorption of CxHy species [73].  

The formation of partially reduced ceria surface was also a key mechanistic step in the 

reduction of SO2 [269].   It follows that it is of a crucial importance to gain an insight into the 

thermodynamic feasibility pertinent to the redox cycle of the commonly deployed lanthanide 

oxides.  A GGA + U study by Lutfalla et al. [268] has benchmarked the redox energy of 

CeO2 against the corresponding experimental value for different U value, but only at 298.15 

K.  However, industrial applications of Ln2O3-based catalysts typically occur at elevated 

temperatures.   

 

It is well-known that cerium oxide CeO2 plays a crucial role as an oxygen-storage component 

in many technologies, most notably in the three-way catalytic convertors (TWCs) of 

automotive emissions [268].  The catalytic activity of the two stable states of ceria, namely 
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Ce4+ and Ce3+ is linked with their ability to undergo a facile redox reaction.  This in turn 

enables Ce-based catalysts to mimic analogous behavior of noble metals [270].  In this regard, 

Ce-based materials serve as an oxygen buffer in prominent chemical reactions, most notably 

water-gas shift reactions, hydrocarbon oxidation and NOx conversion into nitrogen [271, 272].   

The thermodynamic feasibility of the redox cycle – as will be demonstrated in section 4.4.3 

was shown to strongly depend on the O/Ce ratios as well as on the existence of doped Hf and 

Zr in the alloys of Ln2O3.  

 

The catalytic interaction of various chemical species with the reduced and stoichiometric low 

CeO2 (111) surface has been the subject of many theoretical investigations.  For instance, the 

the DFT + U work by Fernández-Torre, D., et al. [74] addressed the dissociation of molecular 

hydrogen, atomic hydrogen diffusion and clustering on the CeO2 (111) surface.  They found 

that dissociation of H2 occuers at reaction barrier of only 1.0 eV (i.e., 96 kJ/mol).  Diffusion 

of an atomic hydrogen adsorbed on a surface oxygen atom to the third layer was found to be 

noticably endothermic by ~1.8 eV.  Chen, et al. [80] plotted reaction profiles for the 

hydrogen cycle over the two stoichiometric and reduced CeO2 (111) and CeO2 (110) surfaces.  

In our very recent work, we establish thermo-kinetic parameters for the dissociative 

adsorption of three chlorinated volatile organic compounds (CVOCs), namely chloroethene 

(CE), chloroethane (CA) and chlorobenzene (CB) [273] over the CeO2(111) surface.  Our 

findings indicate that direct fission of the Cl-C bonds prevails over surface-assisted 

elimination of HCl molecules.  Likewise, chlorine transfer from the surface into the adsorbed 

cyclic moieties signifies a viable chlorination route.   However, ceria may also play a dual 

role in the destruction/formation of aromatic pollutants as it strongly fixes phenyl radicals; a 

crucial step in the surface-mediate formation of dioxin-type compounds [274, 275].  

 

The unique contribution of this study is comprehensive DFT + U accounts into the electronic 

structures and mechanical properties of C-type lanthanide sesquioxides.  The aim of this work 

is fourfold: (1) to evaluate the effects of the Hubbard U parameter on the electronic and 

structural properties of C-type lanthanide sesquioxides (Ln2O3), (2) to assess the mechanical 

stability of all C-type lanthanide sesquioxides, (3) to elucidate the thermodynamic feasibility 

of CeO2 to undergo a redox reaction at temperatures relevant to catalytic applications, and (4) 

to underpin the effect of adding Hf and Zr impurities on the reduction energies of CeOδ 
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[ δ=2-1.5].  To the best of our knowledge, ∆G(T) values for reduction of any Ln2O3 have not 

been elucidated so far in the literature. 

 

 

4.3 Computational Details 

4.3.1 Structural Optimization 

Density functional theory (DFT) within the generalized-gradient approximation (GGA) 

formalism [276] has been employed to perform structural optimizations for the complete 

series of the rare earth metal oxides with the C-type cubic structure at 0 K as implemented in 

the Vienna Ab initio Simulation Package (VASP) [230].  The PAW-PBE [219]  

pseudopotentials provide atomic environments.  As the next section demonstrates, an 

effective Hubbard term (i.e., Ueff = U – J) has been added to account for the strongly 

correlated Ln f-electrons only, in the title systems.  The structures were relaxed without any 

symmetry constrains at an energy cut-off of 500 eV.  Integration of the irreducible part of the 

Brillouin zone in all structures was achieved via utilizing a 4×4×4 κ-point grid generated by a 

Monkhorst Pack scheme [277].  Furthermore, all atoms were allowed to relax until the final 

energy and the forces on each atom reached 10-5 eV and 10-2 eV/Å, respectively.  Figure 4.1a 

represents the unit cell structure of the C-type lanthanide sesquioxides studied in this work.  

16 formula units constitute the unit cell of Ln2O3 compounds.  Figure 4.1b displays the unit 

cell of Cerium dioxide (CeO2).  Ceria (CeO2) exhibits a fluorite structure with space group of 

Fm-3m, comprising a cubic close-packed combination of metal atoms with tetrahedral holes 

filled by oxygen atoms. 
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Figure 4.1: (a) The unit cell of bulk Ln2O3, light green and red colors stand for Ln and O 

atoms respectively.  (b) The unit cell of bulk CeO2, white and red spheres denote Ce and O 

atoms, respectively. 

 

4.3.2 Charge Distribution Analysis 

Bader’s theory [278] is a method to analyze the charge distributions in a crystalline structure. 

In this theory, the electronic charge density is employed to partition continuous molecular 

charges into individual atomic charges via dividing the space in molecules into volumes (i.e. 

Bader volumes).  Electron density maxima exist in these volumes separated from each other 

by the so-called zero flux surfaces, while the charge density minima are perpendicular to 

these surfaces: 

 ∇𝜌 (𝑟). 𝑛̂ = 0                                                                                          4.1 

in which ρ signifies the electron density per unit surface and n stands for the unit vector 

perpendicular to the dividing surface. 

 

4.3.3 Mechanical Properties 

In order to obtain the elastic constants, a small strain was applied onto the structure.  This is 

followed by calculating the change in energy induced by the stress.  For any small variation 

of strain (ɛ), the total energy E (V, ɛ) can be expanded as a Taylor series [279]: 
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 𝐸(𝑉, ɛ) = 𝐸(𝑉𝑜, ɛ) + 𝑉𝑜∑ 𝜎𝑖
6
𝑖=1 ɛ𝑖 +

𝑉𝑜

2
∑ 𝐶𝑖𝑗𝜀𝑖𝜀𝑗
6
𝑖=1 +                 4.2 

where E(V0, ) corresponds to the energy of the unstrained system with the equilibrium 

volume 𝑉𝑜 The strain tensor matrix is defined as [279]; 

 ɛ =

(

 
 
𝑒1

1

2
𝑒6

1

2
𝑒5

1

2
𝑒6 𝑒2

1

2
𝑒4

1

2
𝑒5

1

2
𝑒4 𝑒3 )

 
 

                                         4.3 

𝐶𝑖𝑗 signifies the elastic stiffness coefficients or elastic constants which determine the response 

of the crystal to an applied stress.  There are 3 tensile and 3 shear components for both stress 

and strain.  The elastic constants comprise a 6 × 6 symmetric matrix [280]. 

 

In relation to cubic lattices (structures), there are three independent elastic constants, namely 

C11, C12 and C44.  Moreover, the mechanically stable phases or macroscopic stability can be 

known through determining the elastic constants.  For a stable cubic structure, these elastic 

constants should satisfy the Born-Huang criteria [276], given by : C44 > 0 , C11 > |C12| and C11 

+ 2C12 > 0.  Furthermore, bulk modulus B and shear modulus G are functions of the elastic 

constants [280]. 

 𝐵 =
𝐶11+2𝐶12

3
            4.4 

 𝐺 =
5(𝐶11−𝐶12)𝐶44

4𝐶44+3(𝐶11−𝐶12)
                     4.5 

Young’s modulus E and Poisson’s ratio ʋ are functions of B and G, expressed by: 

 𝐸 =
9𝐵𝐺

3𝐵+𝐺
                     4.6 

 ʋ =
3𝐵−2𝐺

2(3𝐵+𝐺)
                     4.7 

Young’s module represents the stiffness of a solid material.  The bulk and shear moduli 

evaluate the substance’s resistance against fracturing and plastic deformations, respectively 

[281, 282].  Poisson’s ratio is as a measurement of the stability against shear.  A smaller 

Poisson’s ratio indicates more stability against shear. 
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4.3.4 Calculations of ∆G (T) for Redox Reactions 

We estimate the change in Gibbs energies for the redox reactions based on a statistical 

thermodynamic relations by using the PHONOPY code [283].  We extracted force constants 

and atomic displacements based on a 1×1×1 supercell.  Obtained phonon frequencies ( i ) 

were utilized to obtain G (T) at the equilibrium volume and ambient pressure for the bulk 

configurations.  In this formalism, Helmholtz free energy (F) is computed from the internal 

energy of the system (U at 0 K) and the summation of all vibrational energies as: 

1
( ) (0 K) ln(1 )

2

i

Bk T

i B

i i

F T U k T e





−

= + + −                                                        4.8 

Where ħ is the Blank’s constant and kB correspond to the Boltzmann’s constant. 

Thermodynamic calculations to assess the impact of the oxidation extent (i.e. Ce/O ratio or δ) 

on the reduction energy for the cerium oxide have been carried out.  In these calculations, we 

consider the stoichiometric CeO2 as a 2 × 2 × 2 supercell of bulk ceria comprising 32 Ce 

atoms and 64 O atoms.  The reduced CeO2-y phases have been constructed by randomly 

removing oxygen atoms from the supercell to attain the required y value.  The deployed 

equation for the reduction of CeO2-y phases is thus: 

CeO2 = CeO2−𝑦 +
𝑦

2
O2                                                                                           4.9      

Finally, we turn our attention to theoretically validate the well-known enhancement of the 

redox cycle of ceria upon alloying it with hafnium (Hf) and zirconium (Zr).  

 

4.4 Results & Discussions  

3.4.1 Electronic and Structural Properties of Ln2O3 

Experimental measurements, mainly by XRD, disclose that, the entire Ln2O3 series adapt the 

two space groups of Ia-3 and I213.  Two lattice structures (Ia-3 and I213) for C-type 

lanthanide Ln2O3 sesquioxides have been optimized.  The lattice parameters and atomic 

positions of the entire series were initially obtained from their experimental values [242, 284, 

285].  The lattice parameters of equilibrium states were calculated using GGA+U approach 

with Ueff values of 5 eV, and these would be used to obtain the molar volume (volume per 

formula unit) for each compound at each Ueff.  Figure 4.2 portrays our calculated energy 
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versus volume curves for selected Ln2O3 along with their analogous curves fitted to the 

Birch-Murnaghan’s [286] equation of state.  The obtained results in terms of lattice 

parameters in Å with their space groups, molar volume in Å3 per unit formula and electronic 

band gaps are enlisted in Table 4.1. 

 

Figure 4.2: Calculated (PBE values) and fitted (to the Birch-Murnaghan’s equation of state; 

BM EoS) energies (in eV) versus volumes of unit- cell volume (in Å3) for selected C-type 

lanthanide sesquioxides.  Calculated bulk modulus (B) from the BM EoS are inserted. 
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Table 4.1: The lattice parameters with their space groups, molar volume per formula unit and 

calculated energy band gaps for all the C-type Ln2O3 in equilibrium states. 

Material Reference Lattice 

parameters a 

= b = c (Å) 

Molar volume (Å3 

per formula unit) 

Band 

gab, Eg 

(eV) 

Space Group 

La2O3 (GGA+ Ueff, 

Ueff =5) 

11.08 85.01 3.07 Ia-3 

GGA-PW91 

[242] 

11.392 
  

Experimental 

work 

11.360[287] 
 

5.4[288] 

Ce2O3 (GGA+ Ueff, 

Ueff =5) 

11.08 85.01 1.6 Ia-3 

GGA-PW91 

[242] 

11.41 
  

Experimental 

work 

11.149[288] 
 

2.49[253] 

Pr2O3 (GGA+ Ueff, 

Ueff =5) 

11.00 83.18 

  

3.03 Ia-3 

GGA-PW91 

[242] 

11.288 
  

Experimental 

work 

11.152[288] 
 

3.9[253] 

Nd2O3 (GGA+ Ueff, 

Ueff =5) 

10.90 80.93 3.05 Ia-3 

Experimental 

work 

11.077[288] 
 

4.7[253] 

Pm2O3 (GGA+ Ueff, 

Ueff =5) 

10.81 78.95 3.14 Ia-3 

GGA-PW91 

[242] 

11.065 
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Experimental 

work 

10.990[288] 
  

Sm2O3 (GGA+ Ueff, 

Ueff =5) 

10.74 77.42 3.15 I213 

GGA-PW91 

[242] 

10.995 
  

Experimental 

work 

10.932[255] 
 

5.0[288] 

Eu2O3 (GGA+ Ueff, 

Ueff =5) 

10.71 76.78 3.49 I213 

Experimental 

work 

10.866[255] 
 

4.5[288] 

Gd2O3 (GGA+ Ueff, 

Ueff =5) 

10.59 74.22 3.28 I213 

GGA-PW91 

[242] 

10.812 
  

Experimental 

work 

10.813[255] 
 

5.4[253] 

Tb2O3 (GGA+ Ueff, 

Ueff =5) 

10.54 73.18 3.28 I213 

PAW-PBE 

[217] 

10.744 
  

Experimental 

work 

10.730[289] 
 

3.8[253] 
 

Dy2O3 (GGA+ Ueff, 

Ueff =5) 

10.48 71.93 3.23 I213 

GGA-PW91 

[242] 

10.67 
  

Experimental 

work 

10.667[255] 
 

4.9[253] 

Ho2O3 (GGA+ Ueff, 

Ueff =5) 

10.46 71.52 

 

3.24 I213 

GGA-PW91 10.605 
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[242] 

Experimental 

work 

10.607[255] 
 

5.3[253] 

Er2O3 (GGA+ Ueff, 

Ueff =5) 

10.39 70.10 3.29 I213 

GGA-PW91 

[242] 

10.544 
  

Experimental 

work 

10.547[255] 
 

5.3[253] 

Tm2O3 (GGA+ Ueff, 

Ueff =5) 

10.33 68.89 3.31 Ia-3 

PAW-PBE 

[217] 

10.472 
  

Experimental 

work 

10.488[255] 
 

5.4[253] 

Yb2O3 (GGA+ Ueff, 

Ueff =5) 

10.39 70.10 3.62 I213 

Experimental 

work 

10.439[255] 
 

4.9[253] 

Lu2O3 (GGA+ Ueff, 

Ueff =5) 

10.24 67.10 3.41 Ia-3 

 
GGA-PW91 

[242] 

10.358 
  

Experimental 

work 

10.391[255] 
 

5.5[253] 

 

As Table 4.1 enlists, calculated lattice constants at the selected Ueff value across the C-type 

series reasonably agree with analogous experimental [255, 287-289] and other theoretically-

derived values [217, 242].  This finding is in accords with the literature reported calibration 

of the Ueff  value for Ce2O3 at 5 – 6 eV based on GGA/LDA + U approaches [290, 291].  

Precise description of the electronic structure of Ce2O3 is often referred to as a classical case 

that necessitates a DFT+U treatment [252, 292].  Figure 4.3 plots the band gap of Ce2O3 

versus the Hubbard parameter values.  It is obvious that band gap value of Ce2O3 is sensitive 
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to the deployed Ueff  values.  Figure 4.4 plots electronic density of states (DOS) and partial 

density of states (PDOS) of Ce2O3 using GGA_ PBE + U with the Ueff set 6.5 eV.  This value 

has been chosen because it satisfactorily affords  the analogous experimental value the band 

gap [253].  In fact, setting the Ueff   value at 0 produces a metallic character.  By comparing 

our deployed methodology (PBE+U) with the LDA+U approach, it becomes evident that both 

theoretical frameworks yield essentially the experimentally observed band gap (i.e., 2.7 eV) 

[57] at very similar Ueff values of 6.5 and 6 eV; respectively. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3: Variation of band gaps of Ce2O3 with Hubbard parameters. Dashed line 

represents the experimental value.   
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Figure 4.4: Total and partial density of states DOS and PDOS for bulk Ce2O3 calculated at 

Ueff of 6.5 eV. 

 

It is evident from Table 4.1 that our approach at the Ueff of 5 eV for all Ln2O3 demonstrates 

non- metallic characters.  Figure 4.4 displays DOS and PDOS of bulk Ce2O3 at Ueff of 6.5 eV.  

The plotted DOS, for this material, exhibits that, the topmost valance band is located at the 

Fermi level and is predominantly comprised of the O-p orbital with small contributions from 

Ln-s, Ln-p and Ln-d orbitals.  Conduction band mainly originates from the Ln-f orbital with 

small contribution from Ln-s, O-p, Ln-p and Ln-d orbitals.  All of the Ln2O3 family members 

exhibit an insulating character and this conclusion is consistent with the general consensus of 

opinions from various theoretical studies [252, 254].  Our obtained band gaps also closely 

match those recently obtained by Richard et al. [252] using the  LSDA+U approach.  Values 

of the band gaps in Table 4.1 are also in accordance with the analogous values obtained by 

using the significantly more expensive Hartree-Fock methods such as HSE03/06[259].  Our 

finding herein reconfirms the accuracy of the relatively inexpensive GGA+U approach in 

describing the electronic structure of Ln2O3.  
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Bader’s theory [293] provides an algorithm to break the continuous charge density into 

individual atoms.  Table 4.2 lists Bader’s charges on selected lanthanide elements and oxygen 

atoms.  Values in Table 4.2 show that, all lanthanide atoms in bulk Ln2O3 hold positive 

charges, whereas O atoms are associated with negative charges.  Values in Table 4.2 reveal a 

very comparable ionic character for Ln-O bond in all C-types Ln2O3.  

 

                    Table 4.2: Bader's charges (in e) on lanthanide (Ln) and O atoms. 

Ln2O3 Ln O Ln2O3 Ln O 

La2O3 2.085 −1.378 Tb2O3 2.197 -1.438 

Ce2O3 1.966 -1.366 Dy2O3 2.161 -1.433 

Pr2O3 2.085 -1.392 Ho2O 2.150 -1.428 

Nd2O3 2.096 -1.391 Er2O3 2.218 -1.470 

Pm2O3 2.089 -1.395 Tm2O3 2.213 -1.477 

Sm2O3 2.102 -1.392 Yb2O3 1.553 -1.037 

Eu2O3 1.551 -1.034 Lu2O 2.186 -1.460 

Gd2O3 2.181 -1.441    

 

 

4.4.2 Mechanical Properties of Ln2O3 

Determination of the elastic stiffness coefficients is necessary to assess mechanical stability 

of materials.  As stated in section 4.3.3, for a cubic structure to approach stability, it must 

satisfy the criteria C44 > 0, C11 > |C12| and C11 + 2C12 > 0.  As given in Table 4.3, these elastic 

stiffness constants meet the criteria mentioned above, suggesting that all of the C-type Ln2O3 

are mechanically stable at T= 0 K. 
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Table 4.3: The elastic constants Cij (C11, C12, C44), bulk modulus B, shear modulus G, 

Young’s modulus E, Poisson’s ratio ʋ of lanthanide sesquioxides with cubic structure.  All 

elastic properties except ʋ are in GPa. S: stable. 

Material  C11 

GPa 

C12  

GPa 

C44  

GPa 

B   GPa G  GPa E  GPa ʋ Stability 

La2O3 
 

This work 

LDA 

WC-GGA 

196.22 98.29 79.34 130.93 

133.9[254] 

125.6[254] 

63.57 164.14 0.29 S 

Ce2O3 This work 

LDA 

WC-GGA 

283.94 
 

152.02 
 

135.42 
 

196.00 

148.5[254] 

135.8[254] 

95.28 
 

245.99 
 

0.29 
 

S 

Pr2O3 This work 

LDA 

WC-GGA 

211.42 108.44 85.52 142.77 

148.2[254] 

137.0[254] 

67.63 175.24 0.29 S 

Nd2O3 This work 

LDA 

223.76 109.85 91.04 147.82 

150.5[254] 

73.46 189.06 0.28 S 

Pm2O3 This work 

LDA 

WC-GGA 

200.74 97.69 75.53 132.04 

153.8[254] 

136.0[254] 

63.66 164.55 0.29 S 

Sm2O3 This work 

LDA 

WC-GGA 

EXP. 

216.19 116.07 100.12 149.45 

153.4[254] 

136.5[254] 

142(3)[294] 

71.51 185.03 0.29 S 

Eu2O3 This work 

LDA 

WC-GGA 

EXP. 

132.86 86.35 59.56 101.85 

156.1[254] 

137.0[254] 

115(1)[295] 

36.66 98.21 0.33 S 

Gd2O3 This work 

LDA 

WC-GGA 

EXP. 

265.41 107.76 113.43 160.31 

158.3[254] 

139.7[254] 

134(6)[296] 

96.48 241.09 0.24 S 

Tb2O3 This work 258.48 111.73 110.98 160.65 92.10 231.97 0.25 S 
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The bulk (B), shear (G), Young (E) moduli and Poisson’s ratio ʋ of the selected materials 

have been calculated using Equations 4.4, 4.5, 4.6 and 4.7, respectively.  Among these series, 

Ce2O3 displays the highest young’s modulus of 245.99 GPa indicating that that Ce2O3 is the 

stiffest bulk in the series.  It is also noted from Table 4.3 that Yb2O3 has the smallest Young’s 

LDA 

WC-GGA 

158.6[254] 

143.7[254] 

Dy2O3 This work 

LDA 

WC-GGA 

EXP. 

243.98 105.31 99.10 151.53 

159.9[254] 

145.3[254] 

150[297] 

84.58 213.93 0.26 S 

Ho2O3 This work 

LDA 

WC-GGA 

EXP. 

249.36 103.86 97.77 152.36 

161.6[254] 

145.7[254] 

178[298] 

85.94 217.02 0.26 S 

Er2O3 This work 

LDA 

WC-GGA 

EXP. 

255.41 114.21 105.42 161.27 

161.2[254] 

146.1[254]              

155[299] 

88.05 223.48 0.26 S 

Tm2O3 This work 

LDA 

WC-GGA 

EXP. 

266.90 112.97 106.98 164.28 

161.6[254] 

146.61[254]         

54.5(7.5)[300

] 

92.54 233.74 0.26 S 

Yb2O3 This work 

LDA 

WC-GGA 

EXP. 

160.52 121.57 71.36 134.55 

161.6[254] 

144.5[254] 

181(1)[301] 

34.54 95.46 0.38 S 

Lu2O3 This work 

LDA 

WC-GGA 

EXP. 

312.78 148.36 60.50 203.16 

179.4[254] 

164.8[254] 

 

14(6)[302] 

67.64 182.66 0.35 S 
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modulus of 95.46 GPa.  The highest value of bulk modulus is associated with Lu2O3, i.e., 

203.16 GPa.  This indicates that, Lu2O3 is the hardest oxide in the series.  Overall, calculated 

bulk modulus agrees reasonably with analogous theoretical and experimental values in the 

literature [254, 294-302].  As shown in Table 4.3, our results on the structural parameters of 

the bulk modulus coincide better with LDA-derived values in reference to analogous WC-

GGA values that slightly overshoot the corresponding experimental values.  Values of B 

obtained from fitting energy versus volume curves to the Birch–Murnaghan equation of state 

(Figure 4.2) reasonably match corresponding values B values enlisted in Table 4.3. 

 

4.4.3 The Reduction Energy of Lanthanide Dioxides 

Via sophisticated equilibrium oxidation isotherm measurements, the reduction energy of bulk 

ceria was found to reside in the range of 760 – 800 kJ/mol-O2.  According to the seminal 

work by Gorte and his collaborators [303], the reduction energy of bulk ceria is almost 

insensitive to the oxidation extent of ceria, i.e, the y value in CeO2-y.  When considering a 

ceria supported on modified alumina, the reduction energy varies from a near-bulk value (760 

kJ/mol-O2) at high reduction extent (i.e., y = 0.25) to 500 kJ/mol-O2 at low reduction extent 

(i.e., y = 0.05).  In their series of studies, Gorte et al. [304-308] have illustrated that reduction 

energy of bulk ceria exceeds that of surface ceria by almost 200 kJ/mol-O2.  

 

Estimation of reduction energies for ceria (and its solid solution) follows an equilibrium 

isotherm in which the fugacity of oxygen is in equilibrium with the ceria’s material [309].   

However, these measurements have not elucidated the effect of the temperature on the 

reduction energies.  Herein, we investigate the reduction energy ∆G(T) of the redox reactions 

for CeO2 under a wide range of temperature and at an ambient pressure, in relevance to 

practical conditions encountered in emission systems.  The considered reaction is: 

 

4CeO2 = 2Ce2O3 + O2                                                                                        4.10 
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As a benchmark for the accuracy of our thermodynamic analysis, we estimate enthalpies of 

reaction for the two considered earth oxides.  We calculate enthalpies of formation of the two 

cerium oxides based on the following balanced chemical reactions: 

CeO2 = Ce + O2                                                                                                    4.11 

Ce2O3 = 2Ce +
3

2
O2                                                                                              4.12 

Enthalpies of formation have been estimated by calculating the internal energies per formula 

unit in the ground state for cerium and cerium oxides crystalline lattices.  These calculations 

utilize ground state energy of triplet oxygen molecule at -9.83 eV. 

 

Table 4.4: Heat of formation for the selected dioxides and sesquioxides. 

Material Heat of Formation (kJ/mol). 

CeO2 This work               -859 

 Exp.[310]                 -1090.4 

Ce2O3 This work               -1906 

Exp. [311]                 -1813.1 

 

Table 4.4 lists heat of formation values for CeO2/Ce2O3, in the ground state (T=0 and P=0 

atm).  Our results have been compared with the corresponding measured values at T of 

298.15 K and they are in accord with those values reported in the literature [310, 311].  
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Figure 4.5: The variation of Gibbs free energy change per oxygen molecule for the reduction 

reaction with temperature.  Dashed line represents the experimental value, ref. [303]. 

 

Gibbs values for the oxygen molecule have been sourced from thermodynamic JANAF 

Tables [312] whereas G(T) values for bulk oxides have been determined from phonon 

frequencies as section 4.3 demonstrates.  Figure 4.5 depicts the relationship between the 

differences in Gibbs free energies (per unit formula) and the considered reaction.  The 

calculations were performed at a Ueff value of of 5 eV.  As Figure 4.5 shows, the reduction 

energies for Ce oxide exhibit an endothermic nature and this endothermicity of the reduction 

reaction for cerium oxide slightly reduces with temperature.  The ΔG(T) curve for the 

reaction exhibits a nearly temperature-independent behavior.  Our calculated ΔG for the 

reduction of ceria is in line with the analogous experimental values that scatter in the range of 

700 – 800 kJ/mol-O2 [313, 314]. 
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Figure 4.6: Variation of reduction enthalpies of CeOδ with O/Ce atomic ratio. 

 

It is worthwhile noting that catalytic activity of transitional metal oxides in general does not 

only depend on their ability to undergo a facile redox reaction; the presence of oxygen 

vacancies and kinetics factors are also of a crucial importance.  For instance, alloying of PrO2 

with Ce/Hf/Zr may overcome its oxidation irreversibility.  Clearly, more experimental and 

theoretical work is needed to underpin the catalytic behavior of other Ln2O3.  

 

In Figure 4.6, we assess the influence of the oxidation extent (i.e. Ce/O ratio or δ) on the 

reduction energy for the cerium oxide.  The experimental study by Zhou et al. [303] has 

found that, the reduction energy of pure ceria to vary in a narrow range of 50 kJ/mol-O2 for δ 

values between 1.85 and 2.0.  Our values in Figure 4.6 slightly overshoot the analogous 

measurements by Zhou et al. but they seem to be in a qualitative agreement with 

corresponding ΔH curve by Hao et al. [313].  Based on data in Figure 4.6, the reduction 

energy of ceria energy increases by 26 kJ/mol-O2 upon reduction from δ = 1.9 to δ = 1.8.   

Reduction energy reported by Hao et al. displays a noticeable swing of ~ 150 kJ/mol-O2 

between reduced ceria at y = 0.2 and stoichiometric CeO2.   
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Figure 4.7: 2 × 2 ×2 lattice structures of CeO2, Ce1-xZrxO2, Ce1-xHfxO2 and Ce1-2xHfxZrxO2, x 

= 0.25.  White, red, blue and light blue spheres symbolize Ce, O, Zr and Hf atoms, 

respectively. 

 

 

The reduction energy per O2 of CeO2 has been proven to be affected by adding impurities 

such as Zr, Th, and Hf, which resulted in decreasing the Ce4+/Ce3+ reduction energy [315].   

Effect of introducing various contents of transition metals such as Hf and Zr to CeO2 on the 

reduction enthalpies has been further investigated.  Figure 4.7 displays crystal structures of 

pure CeO2 and CeO2 alloyed with Hf and Zr elements at the atomic concentration of 0.25.  

Figure 4.8 displays the variation of reduction enthalpies per O2 for CeO2 alloyed with Hf and 

Zr elements at different concentrations.  
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Figure 4.8: Reduction enthalpy for CeOδ with different concentrations of Hf and Zr element 

as a function of the atomic ratios at T=0 K and P=0 atm. Reduction enthalpy for Ce1-xHfxOδ 

system; Reduction enthalpy for Ce1-xZrxOδ system; Reduction enthalpy for Ce1-2xHfxZrxOδ 

system.  The Y-axis signifies energies in the unit of kilo joule per mole O2 (kJ/mol-O2). 

 

As the figures show, adding Hf and Zr elements to the stoichiometry of  CeO2 leads to further 

lowering of the reduction enthalpies and this is truly in line with what has been reported in 

the literature [4].  For sake a comparison, our computed reduction energies for Ce1-xZrxOδ are 

plotted and compared with experimental estimates at 973 K.  As Figure 4.9 depicts, there is a 

reasonable agreement between our calculated and limited analogous literature values [316]. 
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Figure 4.9: Reduction enthalpy for Ce1-xZrxOδ solid solution system in the range of O/Ce 

atomic ratios of between 2-1.8.  Experimental values [316] are measured at T= 973 K. 

 

It is well established that introducing Zr or Hf into CeO2 lattice results in reducing its lattice 

dimensions [315, 317].  This could be partly sourced from replacing Ce4+ ions with Zr4+ or 

Hf4+; i.e., smaller radii in reference to Ce4+.  A study by Bishop and his collaborators 

attributed the decrease in the lattice constant, in case of adding Zr4+ , to a noticeable shift of 

zirconium ions towards the closest vacancies if compared with cerium ions [318].  Herein, we 

attempted to computationally investigate the effect of these dopants (Hf4+, Zr4+) on 

stochiometric and non-stochiometric CeOδ lattice volume. 

Figure 4.10 represents the relative change (V/V0) of CeOδ volume (V signifies the volume of 

doped CeOδ with different concentrations of Hf and Zr element at 0 K and V0 refers volume 

of stoichiometric CeO2 at 0 K, as a function of the atomic ratios (δ)).  As can be seen from 

Figure 4.10, for each concentration of Hf or Zr, the lattice parameters decrease as O/Ce ratio 

(δ) increases.  Adding further contents of Zr or Hf lead to more reduction in the lattice 

parameters.  In accordance with the findings from Bishop and his co-worker’s, our analysis 



109 

reveals that Hf and Zr atoms in the solid solution are shifted towards the nearest vacancies 

upon reduction.  

 

Figure 4.10: The relative change (V/V0) of CeOδ volume to the stoichiometric volume for 

undoped and doped CeOδ with different concentrations of Hf and Zr element as a function of 

the atomic ratios.  V/V0 for Ce1-xHfxOδ stoichiometry; V/V0 for Ce1-xZrxOδ stoichiometry; V/V0 

for Ce1-2xHfxZrxOδ stoichiometry. 

 

Figure 4.11 portrays our theoretical values with the corresponding fitted values calculated by 

the empirical equation of Kim [15] applied to fluorite – structure oxide solid solutions ; 

𝑎(Å) = 5.413 + ∑ (𝑟𝑀4+ − 𝑟𝐶𝑒4+)
𝑖
𝑀=1  𝑚𝑀                                                         (47) 

where a signifies lattice parameters in Å, rM
4+ and rCe

4+ correspond to the ionic radii (in Å) of 

M4+ and Ce4+, respectively. m denotes the molar percent of M 4+ in CeOx.  Ionic radii of Ce4+, 
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Hf4+ and Zr4+ amount to 0.97, 0.83 and 0.84 Å, respectively.  From Figure 4.11, it is clearly 

seen that our modelling values are in an excellent accordance with the corresponding fitted 

ones obtained by aforementioned empirical equation.  

 

 

 

Figure 4.11: Variation of lattice parameters with Hf and Zr concentrations doping CeO2 , 

fitted values are from ref. [15]. 
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It is interesting to evaluate the impact of introducing transition metals on net Bader’s charge 

distribution of Ce atoms in the lattice of CeOδ.  Table 4.5 gives the net charge distribution 

values on cerium atoms in the CeOδ doped with different contents of Hf and/or Zr metals.  It 

is evidently observed that an increase in Hf and Zr concentrations lead to the rise of the net 

charge of Ce atoms.  Pauling’s electronegativity is an effective way to explain this matter.  

The Pauling’s electronegativities for Ce, Hf, Zr and O amount to 1.12, 1.3, 1.33 and 3.44; 

respectively.  Our calculations for all concentration exhibit a net charge transfer from Ce to 

Hf and Zr.  The cause of this particular charge transfer direction warrants further 

investigation. 

 

Table 4.5: Variation of charge transfer of cerium with dopants (Hf and/or Zr) contents. 

 

  

 

 

 

 

Material Concentration (x) Charge transfer (e) 

CeO2 0 2.12 

Ce1-xHfxO2 0.0625 2.19 

Ce1-xHfxO2 0.125 2.22 

Ce1-xHfxO2 0.25 2.24 

Ce1-xZrxO2 0.0625 2.20 

Ce1-xZrxO2 0.125 2.24 

Ce1-xZrxO2 0.25 2.26 

Ce1-2xHfxZrxO2 0.0625 2.24 

Ce1-2xHfxZrxO2 0.125 2.25 

Ce1-2xHfxZrxO2 0.25 2.26 
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4.5 Conclusions 

In this chapter, the GGA+U approach was utilized to study and evaluate the geometric, 

electronic and elastic properties of C-type Ln2O3 series.  We found the lattice parameters and 

band gap values for the studied compounds at Ueff = 5 eV to be in a good agreement with the 

experimental data.  An exception to this is Ce2O3 for which a Ueff =6.5 eV reproduces the 

experimental lattice constant and the band gap.  Our findings predict an ionic nature for the 

Ln-O bonds in C-type Ln2O3 compounds.  Studied lanthanide sesquioxides satisfied Born-

Huang criterion for mechanical stability.  Gibbs free energies for the reduction energy 

reaction of CeO2 to Ce2O3 exhibit an endothermic trend.  We have also investigated the effect 

of Hf and Zr on structural, electronic and thermodynamic properties of cerium dioxide.  Our 

findings explain that, adding these metals to the stoichiometric and reduced CeO2 lattice 

reduces their reduction enthalpy, and hence displaying an improvement in potential 

catalytical properties of Hf/Zr-CeO2 doped materials. 
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Chapter 5 : Decomposition of Selected Chlorinated Volatile 

Organic Compounds on CeO2  

 

Paper II 

Miran,H.A., Altarawneh, M., Jiang, Z-T, Oskierski, H., Almatarneh, M. and Dlugogorski, 

B.Z. (2017) Decomposition of selected chlorinated volatile organic compounds by ceria 

(CeO2).  Catalysis Science & Technology, 7 (17). pp. 3902-3919. 

5.1 Abstract 

Chlorinated volatile organic compounds (CVOCs) are toxic chemical entities emitted 

invariably from stationary thermal operations when a trace of chlorine is present.  Replacing 

the high-temperature destruction operations of these compounds with catalytic oxidation has 

led to the formulation of various potent metal oxides catalysts; among them are ceria-based 

materials.  Guided by recent experimental measurements, this study theoretically investigates 

initial steps operating in the interactions of ceria surface CeO2 (111) with three CVOCs 

model compounds, namely chloroethene (CE), chloroethane (CA) and chlorobenzene (CB).  

We find that, CeO2 (111) surface mediates fission of the carbon-chlorine bonds in the CE, CA 

and CB molecules via modest reaction barriers.  As a result of localization of excess electrons 

left behind after creation of oxygen vacancies, analogous fission over an oxygen vacant 

surface systematically necessitates lower energy barriers.  Dehydrochlorination of CE and 

CA molecules preferentially proceed via a dissociative addition channel; however, 

subsequent desorption of vinyl and ethyl moieties requires less energy than the surface 

assisted β C-H bond breakage.  The profound stability of hydrocarbons species on the surface 

contributes to the observed deactivation of ceria at temperatures as low as 580 K under 

pyrolytic conditions.  Adsorption of an oxygen molecule at an oxygen vacant site initiates 

decomposition of adsorbed phenyl moiety.  Likewise, adsorbed surface hydroxyl groups 

serve as the hydrogen source in the observed conversion of CB into benzene.  A plausible 

mechanism for the formation of 1,4-dichlorobenzene incorporates abstraction of a para 

hydrogen in the CB molecule by an O- surface anion followed by chlorine transfer from the 

surface.  Plotted conversion – temperature profiles via a simplified kinetic model against 

corresponding experimental profiles exhibit a reasonable agreement.  The results from this 

study could be useful in the ongoing efforts to improve the ceria’s catalytic capacity in 

destroying CVOCs.  

http://researchrepository.murdoch.edu.au/view/author/Miran,%20Hussein.html
http://researchrepository.murdoch.edu.au/view/author/Altarawneh,%20Mohammednoor.html
http://researchrepository.murdoch.edu.au/view/author/Jiang,%20Zhong-Tao.html
http://researchrepository.murdoch.edu.au/view/author/Oskierski,%20Hans.html
http://researchrepository.murdoch.edu.au/view/author/Dlugogorski,%20Bogdan.html
http://researchrepository.murdoch.edu.au/view/author/Dlugogorski,%20Bogdan.html
http://researchrepository.murdoch.edu.au/id/eprint/38513/
http://researchrepository.murdoch.edu.au/id/eprint/38513/
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5.2 Introduction 

Chlorinated volatile organic compounds (CVOCs) are toxic materials that are emitted from 

thermal processing of fuels whenever a chlorine source is present.  These compounds are 

often of an environmentally persistent nature and induce toxic effects to the wildlife as well 

as to human health.  Many efforts have been devoted to controlling emission of these harmful 

gases by destroying them into smaller fragments.  Thermal oxidation at temperature above 

1000 K has been widely used to ensure destruction of these compounds in stationary emission 

sources.  However, these operations are very energy intensive and may lead to the formation 

of highly toxic by-products such as the notorious polychlorinated dibenzo-p-dioxins and 

furan compounds in post-combustion chambers via complex homogenous and heterogeneous 

pathways [275, 319]. Given the aforementioned drawbacks of thermal oxidation, the search 

for other methods is an urgent demand.  An initial improvement in the field started with 

developing novel and efficient catalysts to oxidize these pollutants.  Noble metals such as Pt 

and Pd catalysts or catalysts supported noble metals were among the first catalysts to be 

employed in minimizing formation of CVOCs.[320-322].  While these catalysts are very 

active in the catalytic destruction of CVOCs, their active sites could be readily poisoned by 

adsorption of HCl and Cl2, the two main chlorine carriers during oxidation of CVOCs [70].  

 

Beside their high costs, facile deactivation of noble metal-based catalysts has limited their use 

in catalytic destruction of CVOCs.  Alternatively, transition metal oxides such as alumina and 

alumina-based materials were utilized as potent and relatively low-cost catalysts in 

destroying CVOCs [323].  However, the use of these oxides in the abetment of CVOCs has 

been gradually phased out based on two compelling grounds.  The presence of Brønsted 

acidic sites on alumina surfaces prominently mediates the conversion of CVOCs (most 

notably,  chlorophenols) into PCDD/Fs in the temperature window of 500 – 700 K [324].  

Decomposition of CVOCs over transition metal oxides forms a carbonaceous film layer, and 

hence results in the blocking of the catalyst surface toward further uptake of CVOCs.  In a 

nutshell, high cost, facile deactivation and the potential for the formation of PCDD/Fs have 

limited the use of noble metal and alumina-based catalysts in destroying CVOCs.  This has 

paved the way for employing rare earth metal oxides and group VI transition metal carbides 

and nitrides as alternative catalysts with collective properties that overcome the drawbacks of 
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other catalysts.  Jujjuri et al.,[325] reported higher selectivity toward formation of 

chlorobenzene from a mixture of 1,3-dichlorobenzene and H2 (i.e., hydrohalogenation) over 

fcc-Mo2C and hcp-W2C at 533 K.  Similarly, Oxley et al.,[326] measured high selectivity into 

benzene from hydrohalogenation of several aryl halides over Mo2C and W2C at 573 – 623 K.  

However, it must be noted that studies by Jujjuri et al. [325] and Oxley et al.,[326] deployed 

high H2/substrate inlet ratios (i.e., 200:1); an operational scenario that is not typically 

encountered in real thermal systems of CVOCs.  The effective performance of group VI 

transition metal carbides and nitrides in the hydrohalogenation of aryl and alkene halides 

stems from their well-documented functionality as highly selective hydrogenation catalysts.  

However, their corresponding performance at low H2/substrate exhibited low dechlorination 

reactivity.  Delannoy et al.,[327] reported low conversion values (i.e., 5-8%) for 

H2(2):chloropentafluoroethane (1) mixture over stoichiometric Mo2C and W2C with 

corresponding rates in the range of 4.7 – 14.7 nmol m-2 s-1 at ~ 625 K.  The obtained 

conversions over these two metal carbides were lower by more than order of magnitude in 

reference to Pd-based catalysts.  Rapid deactivation as result of polymerization substantially 

reduces the catalytic activity of Mo2C and W2C.  Excessive hydrogenation mediated by group 

VI transition metal nitrides and carbides forms carbonaceous deposits that deteriorate the 

catalytic activity via reducing the surface area and poisoning the active sites.  Over Mo2N 

surfaces, we have demonstrated that formation of oligomers (i.e., precursors for green oil) 

commences[328] with surface-assisted condensation of smaller C2 cuts into larger fragments.   

 

CeO2 or CeO2 – supported materials have emerged as alternative materials to expensive noble 

metals and are now being widely used in prominent industrial applications [73, 329, 330] 

spanning hydrogenation [73, 331] and conversion of NOx into dinitrogen [332].  The 

Profound catalytic effectiveness of CeO2 mainly stems from its ability to switch between 

Ce4+ and Ce3+ oxidation states and its high oxygen-storage capacity (OSC) [4].  The 

remarkable physiochemical properties of CeO2 mainly originate from unique electronic 

configuration induced by its partially occupied 4f orbitals [333].  The electronic configuration 

of CeO2 characterizes interaction between strongly correlated 4f electrons and delocalized 

valence electrons.  Such an interaction is sensitive to the increase of the valence or a variation 

of the temperature–pressure conditions. 
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Very recently, mounting experimental evidence has established robust catalytic behavior of 

CeO2 toward dechlorinating and degradation of CVOCs under various operating conditions.  

Via various experimental techniques, Dai et al. investigated CeO2 catalytic performance in 

decomposing several chlorinated C1-C3 species as model compounds for CVOCs [70].  CeO2 

was found to completely decompose tetrachloroethylene and dichloromethane at 533 K and 

433 K, respectively.  These values are significantly lower than the temperatures needed for 

the complete destruction of chlorinated olefins over alumina-based catalysts which typically 

reside above 823 K [320-322].  The major oxidative decomposition products of 

tetrachloroethylene encompass HCl, Cl2, CO, CO2 and C2HCl.  The unclosed chlorine 

balance in gas phase species prompted authors to carefully investigate surface chlorination 

leading to the formation of CeCl3 and CeOCl.  Their XPS analysis reveals the appearance of 

surface-bounded chlorine.  Addition of water reduces the catalytic activity at low loads while 

an enhancement was observed at higher loads.  It was postulated that the introduced water 

releases adsorbed chlorine in the form of HCl, which thereby recovering the catalytic 

performance of CeO2 [334].   

 

Similarly, He et al. [335] studied oxidation of chlorobenzene over CuMnCeOEx catalysts 

reporting the complete oxidation of chlorobenzene into water, HCl and CO2 at around 523 K.  

Generally, based on the experimental results of Dai et al.,[70, 336] and He at el.,[335] the 

performance of CeO2 as an environmental catalysts was superior to those of noble metal and 

transition metal oxide catalysts on two basis; the higher selectivity toward the formation of 

HCl in reference to Cl2, and the lower temperature required for the complete destruction of 

CVOCs.  HCl is an inactive chlorinating agent.  CeO2 destroys CVOCs within the 

temperature window for the heterogeneous formation of PCDD/Fs, 473 – 673 K (i.e., 200 – 

400 oC).  Over other catalysts, CVOCs survive destruction in this temperature interval, which 

may enable their condensation into toxic chlorinated aromatic compounds.   

 

While the aforementioned studies have indicated unequivocally the superior functionality of 

CeO2 in decontamination of CVOCs, the underlying mechanistic steps are largely unknown.  

Due to the significant difference in C-Cl and C-H bond dissociation energies,[337] it is 

intuitively appealing to assume that surface Ce atoms preferentially abstract a chlorine atom 

from the gas phase molecule releasing a carbon-radical center.  The latter could easily be 



117 
 

oxidized by gaseous oxygen molecules or to a lesser extent by adsorption into an oxygen 

surface lattice.  It follows that, direct abstraction of a chlorine atom from CVOCs is a central 

step in the decomposition mechanism.  For this reason, the current study is devoted to 

investigating theoretically the interaction of model CVOC compounds with the most 

thermodynamically stable surface  of CeO2, the 111 termination [187].  In order to assess the 

dependency of the catalytic activity of CeO2 in promoting fission of C-Cl bonds, we consider 

three model compounds (chlorobenzene (C6H5Cl, termed as CB hereafter), chloroethane 

(C2H5Cl or CA for short) and chloroethene (C2H3Cl or CE for short) with distinct C-Cl bond 

dissociation energies (352 – 400 kJ mol-1) [337].  We elect to study model compounds for 

alkanes, alkenes and aromatics exclusively as they are the major products from thermal 

decomposition of major chlorine-containing polymers, i.e., poly vinyl chlorine (PVC) [338].  

To this end, this study has a three-fold aim; firstly to map out the reaction pathways operating 

in the interaction of the three title CVOCs with the CeO2 (111) surface; secondly to assess the 

influence of the commonly present surface oxygen vacancy site on mediating rupture of the 

C-Cl bond; and thirdly to investigate the reactions that led to deactivation/regeneration of the 

surface active sites.  Overall, we found that estimated relatively low activation energies for 

the carbon-chlorine bond session explain the observed low-temperature oxidation of CVOCs 

over CeO2 surfaces.   

 

5.3 Computational Details 

In this chapter, DMol3 code [339] performs all spin-polarized structural optimizations and 

energy calculations based on the Perdew and Wang (PAW) DFT functional within the local 

density approximation (LDA) for the exchange-correlation potential [223].  The 

computational methodology comprises a double numerical plus p function (DNP) basis set, 

thermal smearing of 0.05 Ha and a real space cut-off radius at 3.7 Å.  A κ points sampling of 

1 × 2× 1 was deployed in the integration of the first Brillion zone.  The optimization 

convergence criteria for the total energy change, maximum force, and maximum 

displacement for consecutive cycles amount to 1 × 10−6 Ha, 0.004 Ha Å-1, and 0.005 Å, 

respectively.  A 30 Å vacuum separates images of the slab along the z-direction.   

 

Fronzi et al. [187] demonstrated that the plain DFT-LDA approach (i.e., the employed 

methodology herein within the DMol3 code) satisfactorily reproduces the experimental values 
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of the bulk CeO2, for instance, lattice constant (5.36 Å/5.41 Å), indirect O-2p-Ce-4f band gap 

(2.11 eV/3.00 eV), enthalpy of formation (-11.06 eV/ -10.62 eV) and bulk modulus (222.7 

GPa/230 GPa).  Likewise, the estimated energies for creation of surface and subsurface 

oxygen vacancies obtained by plain DFT methods closely match the analogous values 

obtained by DFT + U methodologies [340].  This should serve as verification for the 

accuracy of our adapted DFT-LDA methodology.   

The main focus of the current chapter is the kinetic parameters underpinning decomposition 

of the selected CVOCs.  In this regard, a recent comprehensive analysis by Capdevila et 

al.[341] has shown that the thermodynamic and kinetic parameters for CeO2 systems respond 

differently to a single U value in reference to hybrid DFT methods.  They have explained that 

while the DFT + U approach satisfactorily reproduces enthalpies of reaction (with U = 4.5 eV, 

PBE) in reference to the HSE06 results, the activation energies at the optimum U value 

become negative.  Using the PBE + U (=4.5 eV) approach has led to the complete 

disagreement between the experimental and calculated activation energies in dissociation of 

formaldehyde over the CeO2 (111) surface [341].  Interestingly, activation energies at U = 0 

(i.e., corresponding to plain DFT methods) were very close to those of the analogous HSE06 

results.  In a nutshell, while applying the DFT + U approach is necessary to reproduce 

thermochemistry and electronic properties of bulk CeO2, its analogous performance in the 

estimation of kinetic parameters has not been thoroughly tested so far.  

 

A 2×1 supercell with three Ce atomic layers (comprising 24 Ce atoms and 48 O atoms) was 

used in all calculations.  A test on one dissociative adsorption structure (the M1 configuration 

in CE) using four Ce layers has changed its binding energies only marginally by 2.8 % if 

compared with the analogous values obtained from three Ce layers.  Figure 5.1 shows 

geometries for the stoichiometric CeO2(111) where three potent adsorption sites can be easily 

distinguished, top surface Ce (Ce), surface O (O1), and a subsurface O (O2).  Over the 

partially reduced CeO2 (111) surface, termed as CeO2 (111)Vo, the surface oxygen vacant site 

(Vo) is highlighted.   

 

DMol3 achieves transition states calculations through the linear synchronous and quadratic 

synchronous transit LST/QST method [227, 228].  While the commonly employed nudged 

elastic band (NEB) method [342] reasonably yield accurate sampling of the potential energy 
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surface (PES), computational resources are equally directed to all minimum energy points 

(MEPs) along the PES not only to geometry of the transition state itself.  The LST/QST 

methodology overcomes this problem by directly focusing on accurate locating the transition 

state.  In this method, linear interpolations of distances between all pairs of atoms (n and m) 

in reactants (rR
nm) and products (rP

nm) firstly produce a series of intermediates (i): 

 

( ) (1 )i R P

nm nm nmr f f r fr= − −                                                                                      5.1 

 

The maximum energy structure along the obtained path provides a first estimate for the 

transition structure.  A single refinement in the direction orthogonal to the LST pathway 

yields a further refined estimate for the transition state geometry.  The resultant transition 

state geometry from the LST pathway is subsequently considered as input for quadratic 

interpolation between reactant and product.   Detailed description of the approach underlying 

the LST/QST methodology can be found in the studies by Govind et al.[227] and Halgren 

and Lipcomb [228].   

 

Computations of vibrational frequencies confirm the nature of located transition structures as 

first-order saddle points via the inclusion of an imaginary frequency along the designated 

reaction coordinate.  In calculating vibrational frequencies, we only consider the molecule 

and the first two atomic layers of the surface.  This approach is justified based on the fact that 

inner atomic layers are not involved in the atomic movements of the transition structures.  

The Electronic Supporting Information enlists obtained vibrational frequencies whilst Table 

5.1 summarizes the negative vibrational frequencies of selected located transition states.   
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Figure 5.1: Stoichiometric and partially reduced CeO2 (111) surfaces.  Oxygen atoms are 

represented as red spheres. 

Adsorption/desorption energies are calculated based on the energy difference between the 

non-interacting and the adsorbate systems.  The non-interacting system is characterized as a 

gas phase species positioned at the middle of the vacuum, separated by at least 7.0 Å from 

both sides of the surface in the periodic image.  

 

We estimate charge transfer and Fukui indices (f-1(r))) for electrophilic attack based on the 

Hirshfeld formalism [343].  f-1(r)[344] is calculated from partitioning of the electron density 

and provide a robust molecular descriptor for the tendency of an atomic site to undergo 

addition reaction by an electrophilic agent.  We employ the composite chemistry model of 

CBS-QB3 [345] as implemented in the Gaussian 09 code [346] to estimate energies and 

activation energies for gas phase reactions (dehydrohalogenation of chloroethane and 

chloroethene, and carbon-chlorine bond fissions). 
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Table 5.1: Imaginary frequencies for located transition strictures (in cm-1). 

Transition 

structure 

Imaginary 

frequency 

Transition 

structure 

Imaginary 

frequency 

TS1 269.3i                 TS15 129.5i 

TS2 828.6i TS16 370.6i 

TS3 1056.9i TS17 187.1i 

TS5 440.4i TS19 39i 

TS6 716.4i TS21 678.4i 

TS8 272.4i TS22 388.5i 

 

 

5.4 Results and Discussion 

5.4.1 Decomposition in the Gas Phase 

Scrubbing chlorine off CVOCs is the ultimate goal in thermal recycling of chlorine-

containing fuel [347].  Establishing the thermo-kinetic parameters for chlorine removal from 

CVOCs in homogenous pathways provides a benchmark for the dechlorination catalytic 

performance.  Figure 5.2 shows the optimized geometries for gaseous CE, CA and CB 

molecules.  We commence our analysis by estimating the C-Cl bond dissociation energies 

(BDE) of the three molecules in the gas phase:  

 

C2H3Cl (CE) → C2H3 + Cl  

C2H5Cl (CA) → C2H5 + Cl  

C6H5Cl (CB) → C5H6 + Cl  
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Figure 5.2: Optimized geometries of the three selected CVOCs.  Values represent BDH in kJ 

mol-1.  Experimental [337] values are in parenthesis.   Green spheres signify chlorine atoms. 

 

Our calculated BDEs for the C-Cl bonds of CE, CA and CB molecules amount to 398 kJ mol-

1, 356 kJ mol-1 and 405 kJ mol-1; respectively.  These values reasonably match their 

corresponding experimental values [337] of 399 kJ mol-1, 352 kJ mol-1 and 400 kJ mol-1.  

BDEs for the investigated C-Cl bonds are significantly lower than their corresponding C-H 

values of 434 kJ mol-1, 407 kJ mol-1 and 472 kJ mol-1, in that order.  In addition to C-Cl bond 

fission, direct elimination of HCl represents a major decomposition pathway for chlorinated 

aliphatic hydrocarbons.  In a previous theoretical study;[348] we investigated the effect of 

various electronic and geometrical factors on the dehydrohalogenation kinetics of the selected 

ethyl halides.  Table 5.2 gives CBS-QB3 calculated values for the activation and reaction 

energies for HCl elimination from CE and CA molecules.  The higher C-Cl BDE in the CE 

molecule when compared with that of the CA molecule translates into higher activation 

energy for the former (306 kJ mol-1 versus 243 kJ mol-1).  The noticeably high activation 

energy for the reaction C2H3Cl → HCl + C2H2 is consistent with the high onset temperature 

for the oxidative decomposition of gaseous trichloroethene reported by Dai et al.,[70] i.e. ~ 

800 K.  Elimination of the two negatively charged chlorine atoms from a 1,2-dichloroethene 

molecule to a chlorine molecule occurs through a sizable activation barrier of 517 kJ mol-1.  

This high barrier coincides with the fact that the main chlorine load in the thermal systems 

exists as HCl rather than Cl2 [319].  We find that BDE for C-Cl bond fission in the 1,2-

dichloroethene molecule marginally exceeds that of chloroethene by only 5 kJ mol-1 in.  This 

discloses that the degree of chlorination is expected to have a little influence on the kinetics 

for HCl elimination from mono-tri chloroethene.  Indeed, we have found previously [349] 

that the kinetics for HCl elimination from various models mimicking ideal and defect 



123 
 

polyvinylchloride (PVC) is largely independent of the length and degree of chlorination of 

the aliphatic chain.  This indicates that the findings presented herein for the CE molecule 

should be also applicable for the trichloroethene molecule, whose oxidative catalytic 

decomposition was investigated by Dai et al [70].  

Table 5.2: Comparison between energy requirements for gas phase dehydrohalogenation and 

an analogous process assisted by the CeO2 (111) surface.  Numbers in parenthesis refer to the 

experimental gas phase values (obtained based on the standard enthalpies of formation of 

species sourced from ref. [337].  All values are in kJ mol-1. 

 

a Based on the overall barrier of the dissociative addition route with respect to the initial 

reactant. 

 

5.4.2 Catalytic Decomposition of Chloroethene and Chloroethane Over the 

Stoichiometric CeO2 (111) Surface 

Molecular non-dissociative adsorption of CE and CA molecules is rather very weak with 

adsorption energies of - 8 and -6 kJ mol-1, respectively.  Mechanistically, two competing 

routes principally underpin reactions of halogenated compounds with metal oxides, namely 

dissociative adsorption, followed by β C-H bond breakage, and direct hydrogen halide 

elimination (with the CE molecule as a model): 
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The β-hydride elimination reaction often constitutes the rate determining step in the course of 

dehydrohalogenation of alkyl halogens and olefins on Pt-based and transition metal oxide 

catalysts.  In the CeO2 (111) structure, the O1-Ce surface bond signifies a Lewis-acid/base 

pair facilitating the occurrence of the dehydrochlorination mechanism.  Our recent study [350] 

on the interaction of a wide range of brominated compounds with α-Fe2O3 clusters has 

indicated that, the dissociative adsorption route largely predominates over the direct 

elimination pathway.  Our conclusion was in accordance with the analogous findings from 

Biswas et al. [351] who investigated the decomposition of chlorinated alkanes over 

dehydrated alumina (α-Al2O3) clusters.  Herein, the decomposition of the CE and CA 

molecules along the dissociative adsorption and direct elimination routes.  

In all calculations, we consider the O1 and Ce sites for the adsorption of the CxHy moieties 

and Cl atoms, respectively.  All our attempts to position hydrocarbon radicals on Ce sites 

converge to O1 sites.  Similarly, it was found that all C2Hx species during hydrogenation of 

acetylene over CeO2 (111) surface occupy O1 sites [73].   

Figure 5.3.a and 5.4 maps out potential energy surfaces for the dissociative adsorption and 

direct elimination routes for CE and CA molecules, respectively.  Fission of the C-Cl bond in 

the CE and CA molecules demands modest activation barriers of 49 kJ mol-1 and 38 kJ mol-1 

via the transition structures TS1 and TS5, respectively.  This trend in activation energies 

positively correlates with the BDE values of the C-Cl in parent molecules (398 kJ mol-1 in CE 

versus 356 kJ mol-1 in CA), i.e., in accordance with the Evans–Polanyi principle.  In 

reference to the very endothermic C-Cl bond scission in the gas phase (refer to Table 5.2), the 

analogous surface-mediated rupture is noticeably exothermic by 178 kJ mol-1 (the M2 

configuration in Figure 5.3.a, CE) and 139 kJ mol-1 (the M6 structure in Figure. 5.3, CA).  

The highly exothermic nature of the bond fission in the stable molecules over CeO2 is often 

O1 Ce

H3C-CH2Cl
Dissociative additionDirect elimination

O1 Ce

ClH3C-CH2

O1 Ce

ClH

H2C=CH2

+

 -H elimination

Fission of O-C bond and desorption
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attributed to its high electron affinity derived by low-lying 4f states [352].  In an alternate 

pathway, direct HCl elimination from the CE and CA molecules proceeds via a sizable 

barrier of 229 kJ mol-1 (TS2) and 156 kJ mol-1 (TS7), respectively.  The analogous gas phase 

reactions barriers overshoot the surface-mediated direct elimination of HCl from CE and CA 

molecules by 34% and 36%, respectively.  Nonetheless, C-Cl bond fission requires 

significantly lower energy barriers when compared with the direct HCl elimination route.  In 

all dissociative structures, the separated Cl atoms reside at ~ 3.0 Å above surface Ce atoms.  

This very weak bonding facilitates removal of Cl atoms as chlorine molecules at a very low 

reaction barrier of only 6 kJ mol-1 as determined by Cen et al. [353].  

 

Figure 5.3: Reaction pathways operating in the interaction of chloroethene and CeO2(111) 

surface (a) and direct elimination of Cl2 from 1,2-dichloroethene (b).  Values in (a) are in 

reference to the initial configuration, M1.  All values are in kJ mol-1. 

Conversion of chlorinated alkanes into chlorine-free olefins (i.e., alkenes) carries substantial 

economic value as the latter are the building blocks for the formation of a wide range of 

commercial polymers, most notably, polyethylene.  Producing pure streams of olefins has 
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been a central theme of catalysis research [354].  Herein, while the main aim of using ceria is 

to decompose chlorinated alkanes, we assess the kinetic feasibility for the formation of 

alkenes over the CeO2 (111) surface via a hydrogen transfer from β(C) to an O1 site.  The 

reaction barrier for the β-hydride elimination step increases from only 190 kJ mol-1 in case of 

the adsorbed ethyl radical (the M6 structure in Figure 5.4) to 279 kJ mol-1 for H transfer from 

the adsorbed vinyl (the M2 structure in Figure 5.3.a).  When considering barriers in reference 

to the entrance route, transition structures for the β-hydride elimination step have barriers of 

only 101 kJ mol-1 (CE) and 51 kJ mol-1 (CA) above the initial physisorbed states, M1 (CE) 

and M5 (CA).   

 

Figure 5.4: Reaction pathways operating in the interaction of chloroethane and the CeO2(111) 

surface.  Values (in kJ mol-1) are in reference to the initial configuration, M5.  

  

The significant variation of the reaction barriers associated with β-hydrogen transfer 

originates from the noticeable difference in the BDE in the parent CE (434 kJ mol-1) and CA 

(407 kJ mol-1) molecules, refer to Figure 5.2.  The two-step dissociative addition and the 
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direct elimination routes afford the same products: C2H2 + HO1-ClCe (CE) and C2H4 + HO1-

ClCe (CA).  Inferred from Figure 5.3.a and 5.4 is that the dissociative addition is expected to 

predominate over the direct HCl elimination route, i.e., 101 kJ mol-1 versus 229 kJ mol-1 (CE) 

and 51 kJ mol-1 versus 156 kJ mol-1 (CA).  Clearly, this finding concurs very well with the 

general consensus pertinent to the importance of the dissociative addition route over the 

direct elimination pathway.  Analogously, the β(C)H transfer reaction often is characterized 

as a bottleneck step in the dehydrohalogenation of halogenated alkanes over transitional 

metal oxides.  We have found that the β(C)H transfer reaction in ethyl adsorbed on α-Fe2O3 

cluster  proceeds through a sizable barrier of 200.0 kJ/mol [350].  A similar trend has been 

observed for the dehydrohalogenation of halogenated alkanes by alumina clusters [351].  As 

will be conveyed in section 5.4.7, the estimated low overall activation barrier for the 

dehydrochlorination of CA and CE molecules is consistent with the experimentally observed 

high conversion of chlorinated alkanes and alkenes reported by Dai et al.,[70, 336] at 

relatively low temperature (i.e., 500 – 600 K).    

To account for the plausible chlorine molecule elimination from di/tri-chlorinated alkanes (in 

reference to trichloroethylene for example), we find in Figure 5.3.b that a surface-mediated 

loss of two chlorine atoms from dichloroethene requires only 46 kJ mol-1.  Thus, while Cl2 

elimination from chlorinated aliphatic in the gas phase is a largely negligible route when 

compared with the dehydrochlorination route (loss of HCl), catalytic decomposition over the 

CeO2 (111) surface favors the Cl….Cl.  This becomes evident when comparing the reaction 

barriers of TS2 (229 kJ mol-1) and TS4 (46 kJ mol-1).  Experimental support for these 

findings stems from the observation of C2HCl (rather than C2Cl2) [70, 336] as the major 

intermediate from the catalytic oxidative decomposition of C2HCl3.  The facile nature for 

surface-assisted elimination of two chlorine atoms from the dichloroethene molecule is 

derived by high electron affinity of surface Ce4+ cations.  

 

The recyclability of the ceria catalyst and the complete destruction of CVOCs rely on the 

removal of the adsorbed CxHy adduct.  Beside the β C(H) fission route, O1-C bond scission 

and desorption of C2H3 and C2H5 radicals constitute another exit channel for the adsorbed 

C2H3
* and C2H5

* species in structures M2 and M6.  The O1-C distances in adsorbed C2H3 

(Figure 5.3.a) and C2H5 (Figure 5.4) signify genuine chemical bonds of 1.320 Å and 1.393 Å, 

respectively.  For example, these distances are within 0.05 Å from the distances in analogous 
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gas phase molecules, for example ethyl vinyl ether (C2H3-O-C2H5) and diethyl ether (C2H5-

O-C2H5), optimized at the CBS-QB3 level of theory.  This has resulted in significant energy 

penalties for the desorption of vinyl and ethyl radicals at 203 kJ mol-1 and 130 kJ mol-1, 

respectively.  Obviously, these two values largely represent adsorption energies of C2H3 and 

C2H5 radicals at an O1 site.  The significant difference in desorption energies from the 

CeO2(111) surface among the vinyl and ethyl radicals (i.e., 95 kJ mol-1) correlates well with 

the BDE in gas phase analogous molecules; for example the BDE for the O-C bond in C2H3-

OC2H5 exceeds that in C2H5-OC2H5 by ~ 80 kJ mol-1 [337].  Fronzi et al. [355] have 

systematically investigated adsorption of CH1-3 radicals on the CeO2 (111) surface.  Their 

calculated adsorption energy for the methyl (CH3) radical at an O1 site amounts to 201.0 kJ 

mol-1.  This value reasonably matches our estimated adsorption energies for the vinyl radical.  

Concluded from Figure 5.3.a and 5.4 is that the reaction barriers for the βC(H) fission route 

significantly exceed the desorption energies for adsorbed vinyl (203 kJ mol-1 versus 279 kJ 

mol-1) and ethyl radicals (130 kJ mol-1 versus 180 kJ mol-1).   

 

The strong adsorption of adsorbed vinyl and ethyl radicals is anticipated to result in rapid 

catalytic deactivation by blocking the O1 active sites.  Additionally, this is expected to enable 

these two radicals to undergo surface-assisted coupling into larger hydrocarbon fragments 

following an analogous mechanism that we developed for condensation of two adsorbed 

vinyl radicals into C4H5 over the γ-Mo2N(100) surface [328].  Once desorbed, the fate of 

alkyl and allyl radicals is dictated by the operational conditions.  Highly reducing conditions 

in the gas phase could convert alkyl into their respective alkanes.  Similarly, under oxidative 

conditions, their reactions with gas phase oxygen molecules under oxidative conditions result 

in their further decomposition into CO/CO2/H2O.  Desorbed alkoxyl radicals could be readily 

oxidized in the gas phase according to well-documented mechanisms [356].   

 

5.4.3 Decomposition of Chloroethene Over CeO2 (111)_Vo Surface 

The removal of O1 atoms in CeO2 initiates its facile redox cycle swinging between Ce+4 and 

Ce+3 states.  The emerged oxygen vacant sites via surface reduction play a crucial role in 

potent catalytic applications of ceria, most notably, conversion of NO into N2, oxidation of 

hydrocarbons and oxidation of CO into CO2 [357].  The concentration of surface oxygen 

vacancies was measured to be as high as 3 × 1020 cm-3 and found to be strongly affected by 
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the grain size of CeO2 [358].  Thus, it will be insightful to compare the energetics for the 

overall decomposition of CVOCs on stoichiometric CeO2 (111) surfaces versus a partially 

reduced configuration, a surface with a surface oxygen vacant site (Vo); refer to Figure 5.1 

for the geometry of the CeO2 (111)_Vo surface.  Figure 5.5 shows the decomposition 

pathways for chloroethene over the CeO2 (111)_Vo surface.  Fission of the C-Cl bond at a Vo 

site requires only 11 kJ mol-1 of activation energy via the transition structure TS8 and results 

in the formation of the M9 configuration in which the dissociated chlorine atom occupies a 

Vo position.  In Figure 5.5, we attempt to provide an elucidation into the lower activation 

barrier for TS8 (over Vo site; 11 kJ mol-1) in reference to TS1 (over O1 site; 49 kJ mol-1).  As 

a result of localization of excess electrons left behind after a creation of an oxygen 

vacancy,[359] calculated f-1(r) index for the three Ce atoms adjacent to the Vo site increases 

to 0.044 when contrasted with the analogous value (0.0355) in the stoichiometric CeO2(111) 

surface.  This demonstrates an increase in the electron affinity for the Ce atoms adjacent to 

the surface oxygen vacant site.  This in turn is reflected by a lower activation barrier and 

higher exothermicity for the C-Cl bond fission.  
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Figure 5.5: Decomposition of chloroethene over the CeO2 (111)_Vo surface.  Values (in kJ 

mol-1) are in reference to the reactant in each step. a ref.[353]. 
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Figure 5.6: Hirshfeld’s atomic charges and f-1(r) indices for stoichiometric and partially 

reduced CeO2(111) surfaces. 

 

The substituted Cl atom at the Vo site causes partial reduction of the three neighboring Ce 

atoms from 1.612 e to 1.402 e.  Likewise, Cen et al.[353] explained that adding a chlorine 

atom to the Vo site resulted in the complete reduction of an adjacent Ce4+ ion to Ce3+.  Cen et 

al., found that removal of the chlorine atom from the Vo site necessitates an energy of 228 kJ 

mol-1 [353].  This strong surface binding of chorine atom at the Vo position contributes to the 

calculated higher barrier (271 kJ mol-1) for its removal as HCl along the transition structure 

TS9.  Finally, C-O1 bond secession liberates the adsorbed vinyl radical in an endothermic 

process of 166 kJ mol-1.  
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5.4.4 Removal of Adsorbed Vinyl and Ethyl Moieties via Surface Hydrogen 

Reactions 

In the previous section we have demonstrated that formation of alkenes and alkynes from 

their respective chloro alkanes and alkenes via HCl elimination is expected to be hindered in 

view of lower desorption energies of vinyl and ethyl radicals when contrasted with the energy 

barriers for the β-C(H) hydride fission route.  Hydrogen transfer from H-O1 sites to adsorbed 

hydrocarbon cuts features a key step in selective hydrogenation of alkynes over ceria [73].  

Hydroxylated CeO2(111) surfaces have been characterized by various techniques including 

Scanning tunneling microscopy (STM) [360] and non-contact atomic force microscope (nc-

AFM) [361].  Dissociation of hydrogen molecules over CeO2(111) surfaces was found to 

require an accessible energy barrier of only 96 kJ mol-1  [74]  and results in the creation of H-

O1 sites.  Pyrolysis and oxidation of halogenated pollutants often proceed in a hydrogen-rich 

environment,[362, 363] and thus it is insightful to investigate the interplay between a 

hydrogen-bearing CeO2 surface and catalytic decomposition of CVOCs.  In this section, we 

assess the energetic requirements for surface hydrogen-assisted removal of adsorbed vinyl 

and ethyl radicals over stoichiometric CeO2 (111) and CeO2 (111)_Vo surfaces.   

 

Figure 5.7.a and b show the energy requirements for surface hydrogenation of adsorbed vinyl 

and ethyl radicals, respectively.  Hydrogen migration from the HO1 site into the CH group in 

the adsorbed vinyl affords an ethene molecule.  However, such step requires a very sizable 

energy barrier of 393 kJ mol-1.  Our calculated barrier for the reaction M12 → M13 is in a 

relative agreement with the corresponding barrier reported by Carrasco et al., [73] for the 

reaction C2H3
* + H* → C2H4 obtained through the NEB method at ~ 350 kJ mol-1.  Hydrogen 

adsorbed at Vo sites exhibits greater mobility than hydroxyl group hydrogen.  As the reaction 

barrier of TS11 revealed (284 kJ mol-1), hydrogenation of adsorbed vinyl into ethene 

commencing from the Vo site demands a lower activation energy by ~ 110 kJ mol-1 when 

contrasted with hydrogenation by HO1 site.  In Figure 5.7.b, formation of ethane molecules 

via hydrogen transfer from a hydroxyl surface group to a Vo site presents lower activation 

energies (296 kJ mol-1 and 250 kJ mol-1) than the formation of ethene.  Bearing in mind that 

surface hydrogen diffusion into a neighboring HO1 site (resulting in water evolution/surface 

reduction) proceeds via only 144 kJ mol-1;[364] it can be concluded that removal of adsorbed 

vinyl via surface hydrogenation is of negligible practical importance.   
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Figure 5.7: Surface hydrogen transfer reactions from HO1 and H-Vo sites to adsorbed C2H3 

(a), C2H5 (b) and C6H5 (c) adducts.  All values are in kJ mol-1. 
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Complete oxidation of adsorbed non-cyclic CxHy radicals (into CO/CO2 and water) over 

metal oxides generally occurs via competing mechanisms that primarily feature the 

elementary-like reactions i) thermal dehydrogenation (direct fission of C-H bonds), ii) 

oxidative dehydrogenation operated by surface O* and HO* (i.e., CxHy* + HO* → CxHy-1* + 

H2O), iii) surface oxidation (i.e., CxHy* + O* → CxHyO
*), and iv) C-C bond cleavage (i.e., 

CHmCHnO
* → CHm* + CHnO

*) [365, 366].  In a series of studies, Janik and co-authors [367-

369] systematically investigated decomposition of methyl and i-propyl radicals over pure and 

doped CeO2(111) surfaces.  Deep catalytic oxidation of these radicals proceeds by successive 

abstraction of H by surface lattice oxygen atoms and addition of oxygen to radical centres in 

adsorbed CxHy radicals.  The final H abstraction along the reaction HCO* → H* + CO* was 

found to be the rate determining step with a reaction barrier of ~68 kJ mol-1.  Involved 

oxygenated intermediates include CH3O
*, CH3OH*, H2CO*, H2COH*, and HCOH*.  

Oxidative decomposition of larger hydrocarbons radicals (greater than C1) was shown to 

follow numerous possible sequences of C-C and C-H bond fission and C-O forming steps 

leading to formation of H2O and CO/CO2.  During degradation of i-propyl radicals over 

ceria,[368] four general pathways co-exist; namely, fissions of C-H bonds, C-C bond 

cleavages; re-oxidizing of the surface and desorption of CO/CO2 and oxygenated 

intermediates.  The nature of the rate-limiting reaction was shown to vary with the redox 

conditions in which C-H bond fission and surface re-oxidation prevail under oxidizing and 

reducing media, respectively.   

 

5.4.5 Decomposition of Chlorobenzene Over CeO2 (111) and CeO2 (111)_Vo 

Surfaces 

Via sophisticated temperature-programmed surface desorption (TPSD) and supplementary 

experimental techniques, Dai et al., [370]. thoroughly investigated decomposition of CB over 

pure ceria and Ru-doped ceria in various operational environments, including Ar and air with 

various moisture content.  The C-Cl bond fission initiates the degradation of chlorobenzene 

over ceria-based catalysts; subsequent decomposition/conversion routes of adsorbed phenyl 

radicals were shown to depend primarily on the combustion medium.  In an inert 

environment, benzene emerges as an important intermediate whereas admitting oxygen into 

the system increases formation of CO2, presumably by oxidizing adsorbed phenyl fragments 

[370].  In this section, we first study fission of the C-Cl/C-H bonds on the CeO2 (111) and 
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CeO2 (111)_Vo surfaces before mapping out the reaction pathways for the removal of surface 

phenyl radicals by adsorbed OH and O2.  We find that molecular adsorption of chlorobenzene 

over a Vo site is slightly more stable when contrasted with its adsorption over the 

stoichiometric surface (-5.2 kJ mol-1 versus -8.5 kJ mol-1).  The very low adsorption energies 

of the three considered CVOCs are manifested by that fact that the geometries of the 

physisored states of CE, CA and CB exhibit to large extent corresponding geometries in the 

gas phase (depicted in Figure 5.2).  Figure 5.8.a and b show that surface-assisted ruptures of 

C-Cl and C-H bonds in chlorobenzene require activation energies of 78 kJ mol-1 (TS15) and 

280 kJ mol-1 (TS16).  Fission of the C-H bond occurs over two O1 sites forming a hydroxyl 

surface group, HO1.  The significant variance in the barriers of TS15 and TS16 stems from 

the sizable energy difference in the BDE for the aromatic C-Cl bond (400 kJ mol-1) versus 

aromatic C-H bond (472 kJ mol-1); refer to Figure 5.1.  Thus, it is expected that 

decomposition of chlorobenzene proceeds solely through dissociative addition driven by 

fission of C-Cl bond.   
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Figure 5.8: Reaction pathways operating in the interaction of chlorobenzene and the 

CeO2(111) surface. (a) and (b) describe direct fission of C-Cl and C-H bonds, respectively. (c) 

illustrates fission of the C-Cl bond over a Vo site.  All values are in kJ mol-1. 

   

Fission of the C-Cl bond over a Vo site (Figure 5.8.c) demands a modest reaction barrier of 

36 kJ/mol accompanied with an exothermicity of 165 kJ mol-1.  Departure of the adsorbed 

phenyl attached to a lattice oxygen atom affords a phenoxy radical with an energy penalty of 

135 kJ mol-1.  This process creates another Vo site available for further uptake of 

chlorobenzene.  
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Conversion of adsorbed phenyl into benzene entails the presence of a hydrogen source.  Dai 

et al.[370] attributed this source to ambient adsorbed hydroxyl groups or to the water 

produced from decomposition of the parent CB.  However, based on the reaction barrier of 

the aromatic C-H bond fission (280 kJ mol-1, TS16), the latter pathway is predicted to be 

highly unfeasible.  Additionally, Figure 5.7 presents high activation energies for the 

formation of benzene through hydrogen migrations either from HO1 site or from a Vo site.  

 

Figure 5.9: Surface reactions of an adsorbed phenol moiety and a surface hydroxyl group, 

HOads (a), and between an adsorbed chlorobenzene and HOads.  All values are in kJ mol-1(b).  

Oxygen atoms in the HOads group is blue coloured to distinguish them from oxygen lattice in 

red. 

 

Dissociation of water over CeO2 was shown to readily yield HO1 and HOads -Ce sites[340].  

FTIR spectra showed that the resultant Brønsted and Lewis acid sites were found to 

correspond to 1396 cm-1 and 1557 cm-1; respectively [371].  Figure 5.9.a depicts a pathway 

for the formation of a benzene molecule via hydrogen transfer from a HOads site to the 
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adjacently adsorbed phenyl adduct.  The emergence of a basic O site and benzene via TS18 

climbs a moderate reaction barrier of 118 kJ mol-1.  The FTIR-TPD experiments by Farra et 

al.[371] have demonstrated an efficient catalytic reactivity of CeO2 in deriving the so-called 

Deacon reaction, i.e., conversion/oxidation of HCl into Cl2 in a process that converts surface 

HOads groups into Brønsted acidic sites.  In Figure 5.9.b, we found that formation of HCl 

through the reaction of an incoming chlorobenzene molecule and a surface HO1 site is 

hindered by 310 kJ mol-1 (TS19).  Concluded from Figure 39 is that surface hydroxyl groups 

do not mediate the initial decomposition of chlorobenzene and their role is limited to serving 

as a hydrogen source for the overall conversion of chlorobenzene into benzene.   

 

Dai at al., [370] attributed the rapid deactivation of pure ceria to adsorbed chlorine blocking 

surface vacant sites in addition to consumption of surface oxygen atoms.  The latter 

observation becomes very evident from the significantly low conversion of chlorobenzene (~ 

20%) even at a temperature as high as 650 K in the absence of oxygen.  Additionally, owing 

to their profound stability, surface phenyl adducts are expected to play a major role in the 

deactivation of ceria.  The O1-C bond in the adsorbed C6H5 moiety is 1.334 Å i.e., it exceeds 

the equilibrium distance in gaseous phenoxy radicals by only 0.070 Å.  This genuine 

chemical bond makes desorption of the C6H5 adduct (from structure M24 in Figure 5.8) to a 

phenyl radical highly endothermic by 198 kJ mol-1.   

 

The very strong interaction of phenyl with the CeO2 surfaces results in its deactivation under 

pyrolytic conditions.  Dai et al., [370] found that the catalytic reactivity could readily be 

recovered by flowing an air stream to replenish surface oxygen sites.  Introduced oxygen also 

acts as an oxidizing agent by decomposing adsorbed phenyl moieties into CO2 and water.  

The sharp increase in the yield of CO2 in air may have partially originated from the oxidative 

decomposition of surface phenyl groups.  Figure 5.10 presents the detailed reaction pathways 

for the initial decomposition steps of the adsorbed phenyl radical introduced by the 

adsorption of a gas phase oxygen molecule at a Vo site.  The reaction of O2 with the adjacent 

phenyl adducts branches into three routes via reaction barriers in the range of 30 kJ mol-1 – ~ 

100 kJ mol-1.  These three pathways lead to the production oxygenated C6 rings, namely 

phenoxy (M38) and o-benzoquinone (M36).  Decomposition of these oxygen-bearing species 

through the well-documented ring contraction/CO elimination explains the notable increase 
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in the yield of CO2 from the oxidative decomposition of chlorobenzene.  Inferred from 

pathways depicted in Figure 5.10 is that the introduced oxygen molecules readily regenerate 

the ceria catalytic activity via oxidizing adsorbed phenyl moieties as well as by re-oxidizing 

the partially reduced Ce cations.  

 

 

Figure 5.10: Reactions initiated from the adsorbed phenyl moiety and an oxygen molecule 

adsorbed at a Vo site.  All Values are in reference to the reactant in each step. Also, all values 

are in kJ mol-1.  Oxygen atoms originating from oxygen molecules are yellow colored to 

distinguish them from oxygen lattice in red. 

 

5.4.6 Formation of 1,4-Dichlorobenzene 

The potential for the formation of higher chlorinated aromatics often represents a serious 

drawback in industrial application of the catalytic decomposition of CVOCs.  The acidic 
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nature of transition metal oxides often plays a dual role in destroying CVOCs into smaller 

fragments on the one hand, and mediating their condensation into polyhalogenated aromatics 

one the other [324].  Under oxidative condition, the two dichlorobenzene isomers 1,4- and 

1,2-dichlorobenzene were the major chlorine-bearing species from oxidative decomposition 

of CB [370].  Formation of dichlorobenzene congeners entails the occurrence of a surface 

chlorination mechanism.  Chlorination by electrophilic substitution is the most widely 

discussed catalytic chlorination mechanism [319].  In a recent study,[372] our predicted 

halogenation sequence of several halogenated aromatics based on the f-1(r) index reproduces 

their analogous isomers distribution in thermal and environmental matrices.  

 

Figure 5.11: Formation of 1,4-dichlorobenzene initiated by hydrogen abstraction by an O- 

surface anion followed by chlorine transfer from the surface to the vacant para-site.  Values 

are in kJ mol-1 in reference to the initial reactant, M39. 
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Farra et al.[371] found that CeO2 serves as an efficient catalyst for the conversion of HCl into 

the potent chlorination agent Cl2.  During the course of HCl oxidation, all lattice O1 atoms 

were replaced with chlorine atoms occupying the Vo sites.  Along the same line of enquiry, 

simulations by Cen et al. [353] predicted that chlorine surface coverage should not exceeded 

1/9 ML under conditions encountered in typical catalytic scenarios, i.e., 5 – 10 vol % O2 and 

< 100 ppm Cl2.  In addition to the most plausible electrophilic substitution; suggested 

chlorination mechanisms encompass direct chlorine transfer from a partially or fully 

chlorinated surface [319].  Figure 5.11 and 5.12 present pathways that account for these two 

plausible mechanisms.  The chlorination mechanism in Figure 5.11 is characterized by para-

hydrogen abstraction by a surface oxygen anion followed by attack of the vacant phenyl 

carbon on a chlorine atom positioned at the Vo site.  Oxygen surface anions could originate 

from a loss of hydrogen from the adsorbed OHads groups (for example via the reaction M29 

→ M30 in Figure 5.9).  Abstraction of the para-hydrogen atom by O- requires only 62 kJ 

mol-1 (TS22).  Abstraction of a surface chlorine followed by desorption of a 1,4-

dichlorobenzene molecule is predicted to be endothermic by 40 kJ mol-1.  The accessible 

energy requirement for chlorination pathway indicates that chlorination of an aromatic ring 

via an oxychloride structure is very feasible.  To the best of our knowledge, this is the first 

mechanistic account for a surface-mediated chlorination pathway of an aromatic molecule.  

 

Figure 5.12 depicts a two-step chlorination mechanism over a pre-chlorined surface, denoted 

as CeO2 (111)_Cl.  This mechanism proceeds via HCl elimination followed by chlorine 

transfer from the surface.  Clearly, the loss of an aromatic H represents a bottleneck for this 

process with a noticeable activation barrier of 276 kJ mol-1.  Nonetheless, such an energy 

demanding pathway might contribute to chlorination in highly chlorine corrosive 

environment in the absence of oxygen, the species that drive the Deacon reaction[371] as 

well as generation of surface O- anions.   

 

5.4.7 Kinetic Analysis 

Our calculations on the three title molecules have consistently demonstrated the role of the Vo 

site in facilitating C-Cl rupture. However, the TPD profile reported by Dai et al.,[370] has 

indicated that the loss of surface lattice oxygen occurs at ~ 820 K, significantly higher than 

the reported temperature interval for the decomposition of the three title CVOCs (i.e., below 
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500 K) [70, 336, 370].  This arises the question on whether the decomposition of CVOCs was 

driven by Vo sites or it merely occurred on surface Ce-O1 bonds, prior to the creations of Vo 

sites.  Nonetheless, it also must be noted that the Vo sites also exist as structural defects in 

stoichiometric CeO2 [373].  An insight into these intriguing competing scenarios could be 

achieved by contrasting our calculated activation energies for the C-Cl bond fissions over the 

CeO2 (111) and CeO2(111)_Vo surfaces with analogous interpreted experimental values.  

Fitting the temperature-conversion profiles reported by Dai et al. (in their Figure 5.1)[70] 

[370]  by a simplified plug flow reactor (PFR) model (for a first-order reaction without 

pressure drop) yields the temperature-dependent reaction rate constant; k(T):[374] 

 

 

𝑒𝑥𝑝
𝑘(𝑇)=

1

𝜏
[ln

1

(1−𝑋(𝑇))
] 
                                   𝑒𝑥𝑝

𝑘(𝑇)=𝐴𝑒
−𝐸𝑎
𝑅𝑇  

           5.2 

                               Experimental profiles 

 

 

 

Where τ stands for the residence time under the experimental conditions of Dai et al.[70] (1.8 

× 10-8 s-1 based on a gas hourly space velocity of 15000 h-1)) and X(T) denotes the measured 

conversion profiles.  Fitting the obtained k(T) values by the Arrhenius equation gives the 

experimental activation energy (Ea) and the pre-exponential A values.  Table 5.3 presents the 

extracted Ea and A values for the catalytic decomposition for trichloroethylene, 

dichloroethene and chlorobenzene.  Extracted Ea values from the temperature conversion 

profiles for the decomposition of trichloroethylene, dichloroethane and chlorobenzene attain 

values of 57 kJ mol-1, 48 kJ mol-1 and 74 kJ mol-1.  These values are in reasonable agreement 

with our activation energies for the C-Cl bond fission in the analogous CE, CA and CB 

molecules of 49 kJ mol-1; 38 kJ/mol and 78 kJ mol-1, in that order.  The fitted experimental Ea 

values largely deviate from the corresponding activation energies for the C-Cl bond fission in 

the CE and CB molecules over Vo sites of 11 kJ mol-1 and 36 kJ mol-1; respectively.  This 

finding reveals that the main decomposition of CVOCs over CeO2 occur over stoichiometric 

Ce-O bonds prior to the creation of surface vacancies at a significantly higher temperature. 

k(T) versus T 
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Figure 5.12: Formation of 1,4-dichlorobenzene over a per-chlorinated CeO2(111)_Cl surface 

Values are in kJ mol-1 in reference to the initial reactant, M42. 

 

 

Table 5.3: Arrhenius parameters obtained from fitting the conversion-temperature profiles to 

a PFR model. 
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Table 5.4: Calculated reaction rate constants (in cm5 mol-2 s-1) for the dissociative adsorption 

of the selected CVOCs over the stoichiometric CeO2 (111) surface. 

 

The surface reaction rate constant can be obtained based on the reaction rate expression 

of:[375] 

 

 

𝑘𝑠𝑢𝑟𝑓(𝑇) =
𝑠

𝜎2
√
𝑅𝑇

2𝜋𝑀
𝑒
−𝐸𝑎
𝑅𝑇                                                                                               5.3 

 

T (K) 

1,2-Dichloroethene Chloroethene Chloroethane  Chlorobenzene 

Cl-Cl elimination H-Cl elimination H-Cl elimination C-Cl bond fission 

300 8.13 ×102 1.76 ×10 -6 4.44 × 103 1.75 × 10-2 

340 9.59 × 103 2.09 ×10-4 4.14 × 104 7.36 × 10-1 

380 6.77 × 104 9.16 ×10-3 2.43 × 105 1.42 × 101 

400 1.56 ×105 4.58 × 10-2 5.16 × 105 5.01 × 101 

440 6.59 ×105 7.38 × 10-1 1.90 × 106 4.43 × 102 

460 1.23 ×106 2.48  3.36 ×106 1.15 × 103 

480 2.20 ×106 7.52  5.66 ×106 2.74 × 103 

500 3.74 ×106 2.09 × 101 9.17 ×106 6.11 × 103 

540 9.65 × 106 1.29 × 102 2.16 ×107 2.55 × 104 

560 1.47 × 107 2.91 × 102 3.17 × 107 4.82 × 104 

600 3.17 × 107 1.26 × 10 3 6.35× 107 1.53 × 105 

640 6.20 × 107 4.57 × 103 1.17 × 108 4.19 × 105 

660 8.41 ×107 8.20 × 103 1.54 × 108 6.63 × 105 

700 1.47 × 108 2.39 × 104 2.56 × 108 1.54 × 106 
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where σ stands for the active site density of surface oxygen, s denotes the sticking coefficient 

(assumed to be 1.0), M is the molecular mass of the dissociated molecule and Ea is taken to 

be our calculated reaction barriers for the corresponding overall barriers for H-Cl elimination 

from CE/CE, Cl-Cl elimination from 1,2-dichlorothene and for C-Cl bond fission in CB.  The 

rate of dissociative adsorption is then expressed as −𝑟(𝑇) = 𝑘(𝑇)𝐶𝑠
2𝑃𝑔𝑎𝑠 where Pgas is the 

partial pressure of the gas phase species and Cs represents concentration of available surface 

sites.  Via thermogravimetric measurements coupled to a conductivity cell, Al-Madfa et 

al.,[376] measured the concentration of surface oxygen atoms (O1) to be ~ 1.6 × 1015 

atoms/cm2.  When considering the upper limit of the surface area of CeO2 reported by Dai et 

al. at 54.2 m2/g,[70] the concentration of O1 sites corresponds to 1.44 × 10-3 mol O1 gCeO2
-1.  

Table 5.4 lists the calculated values of ksurf (T) for the decomposition of the title molecules 

based on a 1.44 × 10-3 mol O1 gCeO2
-1

 site density.  A surface reaction rate or a turnover 

frequency (TOF) for the overall decomposition of the four CVOCs can then be obtained 

based on the inlet concentration of the gas phase species and the degree of surface coverage.  

Upon utilizing 1000 ppm for the initial concentration of the gas phase species (i.e., similar to 

the experimental conditions of Dai et al.[70, 336, 370]) and by assuming a full surface 

coverage, Figure 5.13  plots the TOFs values for decomposition of CE, /CA (via HCl 

elimination) and CB (via C-Cl bond fission) and for 1,2-dichlorothene through Cl2 

elimination from dichloroethene.  No analogous TOFs values were reported by Dai et al.,[70, 

336, 370] and hence we elected to employ our calculated ksurf(T) values to predict 

temperature-dependent conversion profiles via a simplified fluidized bed reactor (FBR) 

model:  

 

𝑑𝐹𝐶𝐸

𝑑𝑊
= −𝑟𝐶𝐸     𝑟𝐶𝐸 = 𝑘𝑠𝑢𝑟𝑓𝐶𝑠𝐶𝑔𝑎𝑠

𝐶𝐸       𝑋 = 1 −
𝐹𝐶𝐸

𝐹𝐶𝐸
°                                                        5.4 

 

 

This model utilizes 1 mol s-1 for the initial molar flow rate of the gas phase species (i.e., 𝐹𝐶𝐸
° ) 

and assumes a full surface coverage (i.e., σ = Cs or θ =1) for a weight (W) of the catalyst at 

100 g.   The model produces conversion – temperature profiles based on the ksurf (T) values 

given in Table 5.4.  Figure 5.14 contrasts the model and experimental conversion-temperature 

profiles. Conversion profile for trichloroethylene is compared against analogous values 
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obtained from Cl-Cl elimination from dichloroethylene.  The conversion profile of 

dichloroethane is contrasted with the corresponding conversion values obtained from H-Cl 

elimination from chloroethane.  The profile of chlorobenzene conversion is contrasted against 

the conversion values obtained from the C-Cl bond fission in chlorobenzene.  

 

Figure 5.13: Reaction rates for the decomposition of the selected CVOCs over the 

stoichiometric CeO2 (111) surface based on 1000 ppm of reactants and a full coverage of the 

active sites. 

Our simplified kinetic model reasonably reproduces the general trend of the experimentally 

obtained conversion profiles.  As Figure 5.14.a and b show, our model overshoot measured 

conversion values [70, 336, 370] by 0.1 – 0.3.  The over prediction of conversion profiles in 

case of dichloroethylene and chloroethane can be rationalized based on the fact that we 

described the overall decomposition of these two molecules based on H-Cl/Cl-Cl elimination 

pathways.  A better agreement could be obtained if the model accounts for the initial C-Cl 

bond fission, a step with lower activation energy (i.e., in case of chloroethane 38 kJ mol-1 

versus 51 kJ mol-1).  As demonstrated in section 5.4.4, desorption of vinyl and ethyl radical is 

expected to predominate over the β(C)H transfer route.  However, the former process may 

encounter a desorption barrier that increases the overall energy penalty for the desorption 

pathway.  Despite our best attempts, we could not locate a genuine transition state for the 
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desorption of vinyl, ethyl and phenyl radicals from the surface.  The described overall decay 

based on the H-Cl/Cl-Cl2 elimination in chlorinated alkanes and alkenes serves as a lower 

estimate for the overall decomposition of chlorinated aliphatics in reference to accounting for 

only the first C-Cl bond fission.  Another source of discrepancy is the plausible presence of 

defects and edge terraces on the surfaces of CeO2; both structural features were not accounted 

for in the model.  

 

 

 

Figure 5.14: Comparison between predicted and experimental conversion values[70, 336, 

370] for the decomposition of chloroethene (a), chloroethane (b) and chlorobenzene (c) over 

the stoichiometric CeO2(111) surface. 
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5.5 Conclusions 

The three investigated CVOCs assume rather weak molecular adsorption modes over the 

CeO2 (111) surface, prior to their exothermic dissociative adsorption.  Activation energies 

interpreted from experimental conversion –temperature profiles reflect very well the 

calculated activation energies for the C-Cl bond fission in CE, CB and CB molecules over the 

stoichiometric configuration of CeO2(111).  The large electron affinity of surface Ce atoms 

facilitates elimination of the two chlorine atoms from the dichloroethene molecule.  

Dehalogenation of CE and CA molecules (i.e., loss of HCl) proceeds through a two-step 

mechanism rather than via a direct elimination pathway.  Surface CxHy radicals bind very 

strongly to O1 sites, resulting in rapid catalytic poisoning in the absence of oxygen.  Removal 

of adsorbed vinyl, ethyl and phenyl radicals by migration of surface’s hydrogen atoms entails 

very high activation energies.  Hydrogen transfer from adsorbed HOads groups to adsorbed 

phenyl adducts results in the formation of benzene; i.e., the major product from the pyrolytic 

catalytic decomposition of CB.  Reactions of oxygen molecules adsorbed at the Vo sites 

recover the catalytic activity of ceria by transforming the adsorbed phenyl into oxygenated 

species (phenoxy, o-benzoquinone) as well as by filling in the oxygen vacant sites.  Several 

contradicting factors seem to contribute to the overall role of vacant oxygen sites in 

promoting versus suppressing the catalytic effect on the decomposition of CVOCs.  While we 

have shown that oxygen vacant sites systematically reduce activation energies required for 

the C-Cl bond fission (in reference to the surface oxygen sites), fragmented chlorine 

molecules block these active sites.  Furthermore, we have found that decomposition of a 

chlorobenzene molecule over a per-chlorinated surface has a very high activation barrier.  

The results from this study shall be helpful to understand the role CeO2-based catalysts in the 

destruction of persistent halogenated pollutants. 

 

 

 

 

 

 



149 
 

 

Chapter 6 : Structural, electronic and thermodynamic properties 

of bulk and surfaces of TbO2 

 

Paper III 

Miran, H.A., Altarawneh, M., Jaf, Z.N., Dlugogorski, B.Z. and Jiang, Z-T (2018) Structural, 

electronic and thermodynamic properties of bulk and surfaces of terbium dioxide (TbO2). 

Materials Research Express, 5 (8). 

 6.1 Abstract 

This chapter reports a comprehensive investigation into the structural, electronic and thermal 

properties of bulk and surface terbium dioxide (TbO2); a material that enjoys wide spectra of 

catalytic and optical applications.  Our calculated lattice dimension of 5.36 Å agrees well 

with the corresponding experimental value as at 5.22 Å.  Electronic density of states 

configuration of the bulk structure exhibits a semiconducting nature. Thermo-mechanical 

properties of bulk TbO2 were obtained based on the quasi-harmonic approximation formalism.  

Heat capacities, thermal expansions and bulk modulus of the bulk TbO2 were obtained under 

a wide range of temperature and pressure.  The dependency of these properties on operational 

pressure is very evident. Cleaving bulk terbium dioxide affords different six terminations.  

Bader charge distribution analysis for the bulk and the surfaces portrays an ionic character for 

Tb-O bonds.  In an analogy to the well-established finding pertinent to stoichiometric CeO2 

surfaces, the (111):Tb surface appears to be the thermodynamically most stable  

configuration in the nearness of the lean-limit of the oxygen chemical potential.  For the 

corresponding non-stoichiometric structures, we find that, the (111):O+1VO  surface is the 

most stable configuration across all values of accessible oxygen chemical potentials.  The 

presence of an oxygen vacant site in this surface is expected enable potent catalytic-assisted 

reactions, most notably production of hydrogen from water.  

  

http://researchrepository.murdoch.edu.au/view/author/Miran,%20Hussein.html
http://researchrepository.murdoch.edu.au/view/author/Altarawneh,%20Mohammednoor.html
http://researchrepository.murdoch.edu.au/view/author/Jaf,%20Zainab.html
http://researchrepository.murdoch.edu.au/view/author/Dlugogorski,%20Bogdan.html
http://researchrepository.murdoch.edu.au/view/author/Jiang,%20Zhong-Tao.html
http://researchrepository.murdoch.edu.au/id/eprint/41596/
http://researchrepository.murdoch.edu.au/id/eprint/41596/
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6.2. Introduction 

Terbium oxide belongs to the lanthanide oxides family and adopts a fluorite-type RO2 (rare 

earth dioxide) structure.  It exists in different oxygen-deficient phases (TbO2-y). This is due to 

the facile accessibility to switch between + 3 and + 4 oxidation states.  Derived by noticeable 

ease in changes in terbium oxide’s stoichiometry, it has enjoyed prominent optical properties; 

especially as ingredients in promising thin film materials deployed in antireflection layers, 

photo-elastic films, in additions to pigments, Fresnel lenses and so on [377].  TbO2 has also 

been deployed as a good supporter for cerium oxide in many catalysis technologies, most 

notably in the s-called three-way catalysts (TWC) [378, 379].  In the latter, ceria act as an 

oxidizing and reducing material for potent pollutants (CO, NOx, HC) emitted by cars, and 

subsequently converting them into harmless gases (i.e., CO2 and N2). With the aim to develop 

a new TWC system, Bernal and his collaborators conducted a study on CeO2 doped with Tb 

and Pt.  Based on oxygen buffering capacity (OBC) and oxygen storage capacity (OSC) 

results, they found that, catalytic performance of Pt/CeTbOx configurations outperform 

Pt/CeO2 solid mixtures in oxidizing mixtures of methane and CO at low operating 

temperature as well as in oxidizing both methane and carbon monoxide [379]. 

 

In another related work, Bernal et al. have experimentally demonstrated that addition of 20 

mol% of terbia to ceria improves its catalytic capability in TWC operations.  This has been 

attributed to profound enhancement in proficiency to diminishing fast oscillations of the 

oxygen partial pressure [378].  The production of solar hydrogen (H2) via metal oxide ((MO) 

has been a central research theme for renewable energy applications.  TbO2 is now being 

utilized in the production technology of solar thermochemical H2 by the two-step solar 

thermochemical water splitting reaction (WS) cycle.  In this new technology, TbO2 is 

thermally reduced into Tb and O2 as a first step, while in the second step Tb is oxidized by 

water splitting reaction resulting in the synthesis of H2  [380].  

 

To this end, the aim of this study is to provide comprehensive structural, electronic and 

thermodynamic account for bulk and surfaces of TbO2 via performing density functional 

theory (DFT) calculations.  Previous DFT studies on TbO2 have only presented its bulk 
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electronic structures [193].  It is hoped that computed properties in this study to provide 

insight into the remarkable catalytic and optical properties of TbO2.  For instance, a profound 

thermodynamic stability for structures with vacant oxygen sites is expected to facilitate 

fission of O-H bond in water, i.e., a central step in the WS cycle. 

 

6.3. Computational details  

6.3.1. Structural optimization of TbO2 

The plane wave DFT code of Vienna ab initio simulation package (VASP) [381] was used to 

carry out all structural optimizations and energy calculations, with the spin polarized PAW-

GGA functional [382].  Spin polarized calculations within DFT are essential to accurately 

describe different characteristic properties of ferromagnetic solid materials, including TbO2, 

such as the structural, electronic and thermodynamic properties.  This is achieved by 

accounting for the magnetism of itinerant electrons in solid state materials [383].  From our 

previous publications [384, 385], surfaces are bulks of metal oxides and halides incur less 

total energies when optimized via spin polarized treatment, in reference to spin unpolarized 

treatment.  A plane wave cut-off energy of 400 eV was used in all calculations.  4 × 4 × 4 and 

4 ×4 × 1 mesh of κ-points sampling generated by the Monkhorst-Pack scheme [277] provided 

sampling for the integration of the irreducible part in the Brillion zones in bulk and surfaces 

calculations; respectively.  All layers were allowed to relax till the energy and force tolerance 

on each atom converged to less than 10-5 eV and 10-2 eV/Å; respectively.  It is essential to 

introduce the on-site coulomb interaction correction (DFT+U) to obtain correct electronic 

description of the strongly localized f electrons in LnO2 compounds [386] system.  The 

deployed U value herein at 6 eV followed the suggestion by Kanoun et al. [193].  To the best 

of our knowledge, literature presents no experimental value for the band gap of TbO2.  Hence, 

we elect to compare the experimental band gap of Tb2O3 with its analogous calculated value 

herein in order to set a benchmark for the accuracy of the adapted methodology.  The adapted 

DFT + U approach satisfactorily reproduces the experimental band gap of Tb2O3.  A U value 

of 6 eV yields the experimental band gap of Tb2O3 at 3.8 eV [387] as Figure 6.1 depicts.  
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Figure 6.1: Total density of state (DOS) for bulk Tb2O3. 

 

The formation energy per oxygen atom of metal oxides is given by [388];  

 

∆𝐸𝑂 =
1

𝑦
𝐸(𝐴𝑥𝑂𝑦) −

𝑥

𝑦
𝐸(𝐴) −

1

2
𝐸(𝑂2)                                                                       6.1 

 

Where ∆𝐸𝑂 is the formation energy, A corresponds to the metal present in the oxide and O is 

oxygen atom. 

 

Based on Equation 6.1 the enthalpy of formation per oxygen molecule of bulk TbO2 (ΔHf) is 

expressed by the following formalism; 

∆𝐻𝑓(𝑂2) = 𝐻(𝑇𝑏𝑂2) − 𝐻(𝑇𝑏) −
𝑦

2
𝐻(𝑂2)                                                                  6.2                                                                                   
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in which 𝐻(𝑇𝑏𝑂2) and 𝐻(𝑇𝑏) denote the bulk TbO2 and bulk Tb energies per unit formula, 

respectively. 𝐻(𝑂2) corresponds to the enthalpy of an oxygen molecule.  

 

6.3.2. Quasi-harmonic approximation for thermodynamic properties 

 

Thermal properties of bulk TbO2 have been calculated using the quasi-harmonic 

approximation method (QHA) as implemented in the PHONOPY code [389].  By deploying 

the density- functional perturbation theory (DFPT) within the VASP code, force constants 

and atomic displacements for a 2 × 2 × 2 supercell of TbO2 were obtained.  These 

calculations deploy 4 × 4 × 4 κ-point grid meshes for the integration over the Brillouin zone. 

The Vinet’s equation of state has been used to fit energy-volume curves [390].  Details on the 

implementation and equations underlying the QHA are reported elsewhere [389].  In a 

nutshell, the QHA treats phonon frequencies of a solid to depend only on volume’s 

displacement rather than on temperature’s variation.  Consequently, the Gibbs free energy is 

minimized for each volume[391, 392] via Helmholtz’s free energy F(T,V) term [393]: 

 

𝐺 (𝑇, 𝑃) =  𝑚𝑖𝑛𝑉 [ 𝐹(𝑇, 𝑉) + 𝑃𝑉]                                                                                      6.3 

 

in which T, P and V signify unit cell’s’ temperature, pressure and volume, respectively.  In 

this formalism, Helmholtz free energy is calculated from the internal energy of a solid at the 

ground state summed over the vibrational energies phonon [389]. 

 

6.2.3. Ab initio atomistic thermodynamics calculations 

Thermodynamic stability phase diagrams for all plausible orientations of TbO2 surfaces have 

been constructed using the ab initio atomistic thermodynamics approach.  Detailed 

descriptions and derivation of this equation can be found elsewhere [394].  In short, surface 

free energies, γ(T, P), at constant temperature T and pressure P is expressed as [385]: 

 



154 
 

𝛾(𝑇, 𝑃) =
1

2𝐴
[𝐺surf(𝑇, 𝑃) − 𝑁𝑇𝑏𝐺𝑇𝑏𝑂2

𝐵𝑢𝑙𝑘(𝑇, 𝑃) − (𝑁𝑂 − 𝑛𝑁𝑇𝑏)𝜇𝑂(𝑇, 𝑃)]                     6.4 

 

Where 𝐺𝑠𝑢𝑟𝑓(𝑇, 𝑃) and 𝐺𝑇𝑏𝑂2
𝐵𝑢𝑙𝑘(𝑇, 𝑃) represent the Gibbs free energies of TbO2’s surfaces and 

bulk TbO2, respectively, at certain temperature and pressure.  NTb and NO signify the number 

of Tb and O atoms in the slab and 𝜇𝑂(𝑇, 𝑃) corresponds to the chemical potential of oxygen 

defined as [385]: 

 

𝜇𝑂 (𝑇, 𝑃) = 𝛥𝜇𝑂 (𝑇, 𝑃
0) +

1

2
𝐾𝑇 ln (

𝑃

𝑃0
)                                                                          6.5 

 

Oxygen chemical potential difference( 𝛥𝜇𝑂 ) values have been sourced from standard 

thermodynamic tables[395]: 

 

𝛥𝜇𝑂 (𝑇, 𝑃
0) =

1

2
[𝐻(𝑇, 𝑃0, 𝑂2 − 𝐻(0, 𝑃

0, 𝑂2)] −
𝑇

2
[𝑆(𝑇, 𝑃0, 𝑂2) − 𝑆(0, 𝑃

0, 𝑂2)]                    6.6                   

 

6.3. Results and discussion 

6.3.1. Bulk properties of TbO2 

The bulk crystalline structure of TbO2, as shown in Figure 6.2, exhibits a face-centered cubic 

(fcc) Bravais lattice with a space group of Fm-3m.  The bulk structure of TbO2 is crystallized 

as a Tb4O8.  Oxygen atoms are located in the cubic closed packed terbium.  It is crucial to 

establish an accuracy benchmark of our adapted methodology by contrasting computed 

values with their analogous experimental estimates.  For this reason, we elect to reproduce 

some electronic and structural properties for bulk TbO2.  Our TbO2 computed lattice 

parameter of 5.36 Å is in an accord with its analogous measured value at 5.22 Å [396]. 
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Figure 6.2: Optimized TbO2 unit cell. Light blue and red spheres signify Tb and O atoms, 

respectively. 

 

6.3.2. Thermo-elastic properties of TbO2 

The coordination nature of a material is changeable when applying external mechanical and 

thermal conditions (i.e. applied pressures).  This has motivated computational materials 

scientists to compute thermal and mechanical properties at different practical pressures and at 

a wide range of temperatures.  To do so, we applied a quasi-harmonic model to derive 

thermo-mechanical properties of bulk TbO2. The dependency of computed properties on the 

size of the deployed supercell size must be established first.   Detailed description of this 

supercell size -dependent benchmarking is reported in many recent studies [397, 398].  Figure 

6.3 displays the difference between quasi harmonic heat capacities 𝛥𝐶𝑄𝐻𝐴 = 𝐶𝑃 − 𝐶𝑉 at 2 × 2 

× 2 supercell (96 atoms).  Computed values of 𝛥𝐶𝑄𝐻𝐴 = 𝐶𝑃 − 𝐶𝑉 at 3 × 3 × 3 supercell (342 

atoms) overshoot analogous values obtained based on a 2 × 2 × 2 supercell (96 atoms) within 

6%.  Thus, we elect to obtain all the thermo-elastic properties of terbium dioxide based on a 2 

× 2 × 2 supercell.  As another benchmark of accuracy, we calculate total free energies against 

terbia unit cell’s volume (see Figure 6.4) reproducing the experimental lattice constant as 

explained in section 6.3.1.  Thus, all values reported herein are based on 2 × 2 × 2 supercell.  
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                     Figure 6.3: Values of ΔCQHA for fluorite-structure.   

 

 Figure 6.4: Calculated free energies in eV as a function of unit- cell volume in Å3 for bulk  

TbO2. 
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Figure 6.5 shows the calculated phonon dispersion of relaxed TbO2 structure at ground state 

(zero temperature and zero pressure).  As Figure 6.6 portrays, bulk modulus curves exhibit a 

T- dependent reducing behavior.  Figure 6.7 presents the variation of pressure-constant heat 

capacities CP with the temperature at various values of pressures for TbO2.  By inspection of 

this Figure, it becomes apparent that CP values vary rather very slightly with the pressure.  

Figure 6.8 displays that, calculated thermal expansions of terbia lattice inversely correlate 

with the applied pressure. Finally, V/V0 (V0 corresponds to the equilibrium volume of TbO2 at 

T and P =0) has been calculated as a function of temperature and pressure.  As expected, the 

V/Vo ratios decrease with the applied pressures as evident in Figure 6.9.  

 

                                  Figure 6.5: Phonon density of states for bulk TbO2. 
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    Figure 6.6: Variation of Bulk modulus of TbO2 with temperature and pressure. 

 

 

Figure 6.7: Heat capacities in J/mol.K per mol of TbO2 at different pressures as a function of 

temperature in K. 
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 Figure 6.8: Thermal expansion of terbium dioxide as a function of temperature and pressure. 

 

               Figure 6.9: Dependence of V/V0 on temperatures and pressures. 
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6.3.3. Optimized geometries of low - index surfaces of TbO2 

Three low-index structures (slabs) were created by cleaving the bulk along (100), (110) and 

(111) directions. (100) orientation exhibits two surface terminations, namely (100):Tb and 

(100):O (Figure 6.10).  On the other hand, the (110) direction displays only one 

stoichiometric surface termination denoted as a (110):TbO (Figure 6.11).  Cutting the bulk of 

TbO2 towards (111) direction affords differently three cases of surfaces.  A trilayers 

termination ordered as O-Tb-O is symbolized as (111).  The second orientation is terminated 

with O atoms only and thereafter denoted as the (111):O configuration.  The final probable 

surface is that one terminated with Tb atoms and signified as a (111):Tb (Figure 6.12).  Two 

of the six ideal surface terminations are stoichiometric at the surface; however; the rest are 

polar planes, having an access of oxygen or of terbium atoms.  Interlayer spacing have been 

computed as d= (dij-d0)/dij 100 %, in which dij is the interlayer spacing between ith and jth 

atomic layers (for the (100) and the (110) surfaces) and d0 is the bulk interlayer spacing.  As a 

special case for (111) surfaces, which their slabs consist of only three trilayers, we consider 

dij as the distance between the last sublayer in the first trilayers and the first sublayer in the 

next trilayers.  
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Figure 6.10: Side and top views of different terminations of TbO2 (100) surface: (a) and (b) 

are TbO2 (100) :O, (c) and (d) are TbO2 (100) :O with 50% surface oxygen vacancies, (e) and 

(f) are TbO2 (100) :O with 25% surface oxygen vacancies, (g) and (h) represent TbO2 

(100) :O with one surface oxygen vacancy, (i) and (j) are TbO2 (100) :O with one subsurface 

terbium vacancy, (k) and (l) correspond to TbO2 (100) :Tb, (m) and (n) symbolize TbO2 

(100) :Tb with one surface terbium vacancy.  Light blue and red spheres denote Tb and O 

atoms, respectively. 
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Figure 6.11: Side and top views of different optimized terminations of TbO2 (110) surface.  

Light blue and red spheres denote Tb and O atoms, respectively.  
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Figure 6.12: Side and top views of different terminations of TbO2 (111) surface: (a) and (b) 

are TbO2 (111), (c) and (d) represent TbO2 (111):O, and (e) and (f) are TbO2 (111):Tb. (g) and 

(h) are TbO2 (111) with 50% surface oxygen vacancies, (i) and (j) are TbO2 (111) with 25% 

surface oxygen vacancies, (k) and (l) represent TbO2 (111) with one surface oxygen vacancy, 

(m) and (n) are TbO2 (111) with one subsurface terbium vacancy, (o) and (p) correspond to 

TbO2 (111):O with 0.5 surface oxygen vacancies, (q) and (r) signify TbO2 (111):O with 0.25 

surface oxygen vacancies, (s) and (t) symbolize TbO2 (111):O with one surface oxygen 

vacancy, (u) and (v) are TbO2 (111):O with one subsurface terbium vacancy,.  Light blue and 

red spheres denote Tb and O atoms, respectively. 



164 
 

 

The analysis of optimized slabs suggested that, the surface structures and their terminations 

experienced noticed relaxations.  For the (110) ideal surface, the Tb-O bond length at the 

surface is 2.29 Å, largely matching their corresponding bulk values (2.34 Å), whereas the 

first interlayer spacing is slightly expanded (~ 3%).  For both non-reduced (100) surfaces, 

(100):O and (100):Tb, Tb-O bond distances (dTb-O)  are contracted with regard to their bulk 

values (2.28 and 2.11 Å for TbO2(100):O and TbO2(100):Tb), namely by -1.7 % and -9.2%, 

respectively.  For (111) surfaces, the (111):Tb slab undergoes a significant reconstruction in 

that it has been cleaved initially to have Tb in the outermost layer whereas the optimized 

configurations is terminated with only O atoms (Figure 6.12).  This behavior mimics the 

analogous observed trend in case of  in its final CeO2 [386].  This is due to the significant 

outward displacement of the oxygen atoms in the second layer.  Upward displacement for 

electronegatively charged atoms was also observed in case of CuCl2, FeCl2 and Co2CuO3 

[394, 399].  Table 6.1 enlists the deviation values of interlayer spacing for all the optimized 

surface structures from their analogous bulk values.  As observed from the table, the relaxed 

structures are experiencing changes in the interlayer spacing.  This is ascribed to the upward 

and downward displacements occurring at the first three layers in all the optimized slaps. 
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Table 6.1: Deviations of interlayer spacing of the topmost two layers in the relaxed slabs in 

reference to their analogous bulk values ∆dij. 

Surface ∆d12 / Å 

 

∆d23 / Å 

 

(100):O -0.055 -0.003 

(100):O+0.50 VO 0.020 -0.160 

(100):O+0.25 VO 0.221 -0.207 

(100):O+ 1 VO 0.056 -0.075 

(100):O+ 1 VTb -0.175 0.073 

(100):Tb -0.444 0.146 

(100):Tb + 1 VTb -0.401 0.079 

(110):TbO 0.028 0.042 

(110):TbO + 0.50 VO -0.069 0.066 

(110):TbO + 0.25 VO -0.023 0.029 

(110):TbO + 1 VO 0.056 0.059 

(110):TbO + 1 VTb 0.028 0.051 

(111) -0.426 0.162 

(111) + 0.50 VO 0.188 -0.080 

(111) + 0.25 VO 0.080 0.026 

(111) + 1 VO -0.067 0.106 

(111) + 1 VTb -0.260 0.148 

(111):O -0.260 0.076 

(111):O + 0.50 VO -0.830 -0.056 

(111):O + 0.25 VO -0.675 0.112 

(111):O + 1 VO -0.244 0.002 

(111):O + 1 VTb 0.098 -0.006 

(111):Tb -0.404 -0.187 

   

Defect surfaces have occupied a growing interest in catalyst-related research [385, 400-402].  

This is due to its capability in reference to their perfect surfaces in lowering the dissociation 

energies of adsorbate species such as volatile organic compounds (VOCs) [403] acting as a 

surface-host for light dissociated fragments. Consequently, this chapter has also included the 
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influences of surface defects on the surface stability via removing O and Tb atoms from the 

first layer in the perfect slabs.  Herein, we consider surfaces with 25%, 50% of removed O 

atoms and one Tb atom in its outermost layer.  Figure 6.10 shows optimized geometries for 

these considered defect surfaces.  For instance the (100):O+0.25 VO denotes a (100):O surface 

with 25% oxygen surface vacancy.  In these defect surfaces, trioxygen (O3) and oxygen 

square planar cluster (O4) have been created by (100):O+1VO and (100):O+1VTb , 

respectively.  

Bader’s theory [404] provides a precise algorithm to calculate partial charge density of 

individual atoms in molecules.  Table 6.2 lists charge density values calculated for selected 

Tb and O atoms in the first two topmost atomic layers in the slabs.  Tb and O atoms carry net 

charges of +2.21 e and −1.10 e in the bulk TbO2 structure.  Charges values of Tb and O in the 

second surface layers of all the slabs approach relatively the analogous charges’ values in 

bulk Tb and O atoms.  Tb and O atoms in the first layers of structures hold charges deviated 

from their corresponding ones in the bulk configuration.  All in all, high positively and 

negatively charged for Tb and O atoms in all the slab structures reveal ionic nature of Tb-O 

bond in the TbO2 surfaces.  This trend of ionic bonding was also observed with Ce-O bond in 

the cleaved corresponding fluorite- structure CeO2 [405].  Our analysis on the charge’s 

distributions demonstrates that, the charge densities on the neighboring Tb atoms become 

more positive as oxygen vacancies are created.  However, it shall be noted that creation of 

vacant oxygen sites requires noticeable activation energies [406, 407]. Estimation of these 

activation energies and their associated random-access memory in case of TbO2 will be 

investigated in a due course. 
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Table 6.2: Calculated Bader’s charges in electron (e) on the Tb and O atoms in TbO2 

surfaces. 

Surface Tb1 Tb2 O1 O2 

(100):O 2.14 2.20 -0.51 -1.11 

(100):O+0.50 VO 2.16 2.22 -0.76 -1.25 

(100):O+0.25 VO 2.16 2.22 -0.23 -0.89 

(100):O+ 1 VO 2.21 2.22 -0.44 -0.63 

(100):O+ 1 VTb 2.22 2.17 -0.86 -0.33 

(100):Tb 1.81 2.20 -1.36 -1.19 

(100):Tb + 1 VTb 1.87 2.21 -1.33 -1.14 

(110):TbO 2.17 2.22 -1.00 -1.21 

(110):TbO + 0.50 VO 2.06 2.18 -1.45 -1.35 

(110):TbO + 0.25 VO 2.16 2.20 -1.23 -1.27 

(110):TbO + 1 VO 2.17 2.22 -1.01 -1.25 

(110):TbO + 1 VTb 2.19 2.23 -0.96 -1.15 

(111) 2.21 2.19 -1.30 -0.86 

(111) + 0.50 VO 2.14 2.20 -1.19 -1.39 

(111) + 0.25 VO 2.18 2.15 -1.16 -1.16 

(111) + 1 VO 2.14 2.14 -1.19 -1.26 

(111) + 1 VTb 2.20 2.20 -1.17 -0.82 

(111):O 2.21 2.24 -0.20 -0.70 

(111):O + 0.50 VO 2.23 2.23 -0.29 -0.94 

(111):O + 0.25 VO 2.16 2.23 -0.05 -0.37 

(111):O + 1 VO 2.16 2.16 -0.24 -0.75 

(111):O + 1 VTb 2.20 2.23 -0.08 -0.20 

(111):Tb 2.04 2.17 -1.42 -1.39 
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6.3.4. Stability phase diagrams for TbO2 surfaces  

In order to assess the stability of the various oxide surfaces when they are in contact with an 

oxygen atmosphere, we applied Equations 6.4 and 6.5 (section 6.3) to plot the surface Gibbs 

free energy against the change of oxygen chemical potential Δμo.   Based on Equation 6.6, we 

calculate the surface Gibbs free energy γ(T, P) as a function of Δμo for a wide range of 

oxygen pressures and temperatures.  The values of Δμo (T,P ) can practically change solely 

between two limits, namely oxygen-lean and oxygen-rich.  These two limits denote the 

experimental accessible conditions of the chemical potential of oxygen in case of bulk TbO2.  

The oxygen-lean limit corresponds to the value of Δμo (T,P) at which bulk TbO2 starts to 

formulate when it is present in an oxygen gas environment, whereas the oxygen-rich limit 

refers to the onset of destruction of oxygen gas (O2) into oxygen atoms.  The O-rich and O-

lean limits take values of 0.0 and -4.5 eV, respectively. These magnitudes are typically 

bounded by 
1

2
∆𝐻𝑓(𝑂2)(𝑝 = 0, 𝑇 = 0 𝐾) < ∆𝜇𝑂(𝑝𝑂2, 𝑇) < 0 [237].  ΔHf (O2) represents the 

enthalpies of formation values per oxygen molecule for TbO2 calculated by Equation 53 and 

it amounts to -9 eV.  Table 6.3 tabulates γ(T, P) values at the two oxygen limits. The γ(T, P) 

values between these two boundaries.  Figures 6.13, 6.14 portray thermodynamic stability 

lines of TbO2 perfect surfaces with respect to the change of oxygen chemical potential values 

Δμo (T,P), along with  pressure bar lines at different temperatures of T of 800, 1000, 2000 and 

2500 K, and with corresponding temperature bar lines at different pressures of P= 1 atm and 

10-12 atm.  It is evident that all considered surfaces exhibit T-dependent trends.  Figure 6.15 

plots surface free energies for the most stable surfaces among all configurations.  The 

(111):O+1VO surface remains the most stable configuration across the accessible range of 

oxygen chemical potential while the (111):Tb surface holds more stability in the vicinity of 

the lean-limit of the oxygen chemical potential.  The stability of the latter surface is in accord 

with the analogous finding pointing to the stability of the (111):Ce surface in case of CeO2 

terminations [187].  Nonetheless, elucidating explanations into the profound stability of the 

(111):O+1VO requires careful considerations.  In fact, it has been shown that several 

structural as well as electronic factors contribute to the ordering of chemical thermodynamic 

stability.  The thermodynamically stability of the (111):O+1VO over other surfaces follow the 

general consensus that reduced surfaces having an excess of electro negatively charged atoms 

such as O [384, 408, 409] often hold more thermodynamic stability in reference to 

stoichiometric surfaces.  However, other structural and electronic factors may also contribute 
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to the thermodynamic stability trend.  These factors include surface relaxation, amount of the 

net charge in the upper layer and the polarity of the surface [384]. 
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Figure 6.13: Calculated surface free energy of different TbO2 (100) and TbO2 (110) surfaces 

as a function of the change in oxygen chemical potential ∆μo with the analogue pressure bar 

lines at different temperatures of T of 800, 1000, 2000 and 2500 K, and with corresponding 

temperature bar lines at different pressures of P= 1 atm and 10-12 atm.   

 

 

Figure 6.14: Calculated surface free energy of different TbO2 (111) surfaces as a function of 

the change in oxygen chemical potential ∆μO. 
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Figure 6.15: Calculated surface free energy for the most stable cases of the three plausible 

TbO2 surfaces as a function of the change in oxygen chemical potential ∆μO. 
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Table 6.3: Gibbs free energy γ (T, P), in eV/ Å2, for all surfaces at oxygen- lean and oxygen- 

rich limits. 

Surface Oxygen- lean limit 

 

Oxygen- rich limit 

(100):O -0.240 0.19 

(100):O+0.50 VO -0.215 0.40 

(100):O+0.25 VO -0.155 0.23 

(100):O+ 1 VO -0.117 0.09 

(100):O+ 1 VTb -0.012 0.20 

(100):Tb 0.037 0.07 

(100):Tb + 1 VTb 0.120 0.08 

(110):TbO 0.365 0.03 

(110):TbO + 0.50 VO 0.390 0.008 

(110):TbO + 0.25 VO 0.500 -0.004 

(110):TbO + 1 VO 0.590 0.01 

(110):TbO + 1 VTb 0.720 0.05 

(111) -0.430 0.031 

(111) + 0.50 VO -0.380 -0.037 

(111) + 0.25 VO -0.237 0.007 

(111) + 1 VO -0.090 0.02 

(111) + 1 VTb -0.005 0.06 

(111):O 0.032 0.20 

(111):O + 0.50 VO 0.105 0.10 

(111):O + 0.25 VO 0.25 -0.01 

(111):O + 1 VO 0.28 -0.72 

(111):O + 1 VTb 0.52 0.11 

(111):Tb 0.57 -0.04 
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6.4. Conclusions and future directions 

First-principles DFT calculations combined with quasi harmonic approximation (QHA) are 

deployed to obtain geometric, electronic and thermo-mechanical properties of terbium oxide 

(TbO2).  The bulk lattice parameter and electronic density of state configuration are in line 

with those reported in the literature.  Our thermodynamic analysis demonstrates that the 

supercell of 2 × 2 × 2 suffice to achieve convergence in the optimum adopted size for 

accurately calculating all the thermos-elastic properties.  We reported the structural and 

electronic properties of the three low-Miller indices surfaces of TbO2 along with various 

surface terminations.  Bader’s charges calculations for the bulk and surface suggested that, 

the three low-index surfaces retain the ionic nature for the Tb-O bond as they are in the terbia 

bulk. Stability phase diagram plots indicated that, find out the terbium-terminated surface 

along the 111 orientation (111):Tb to be the most thermodynamically stable configuration in 

the closeness of oxygen-lean region, whereas the (111):O+1VO exhibits a profound stability 

under a wide range of oxygen chemical potential.  The presence of O surface voids may 

entail excellent catalytic character and the effect of these structural defects on mediating 

chemical reactions warrants further investigations.  
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Chapter 7 : Influence of DC magnetron sputtering reaction gas on 

structural and optical characteristics of Ce-oxide thin films 

 

Paper VI 

Miran, H.A., Jiang, Z-T, Altarawneh, M., Veder, J-P, Zhou, Z-F, Rahman, M.M., Jaf, 

Z.N. and Dlugogorski, B.Z. (2018) Influence of DC magnetron sputtering reaction gas on 

structural and optical characteristics of Ce-oxide thin films. Ceramics International, 44(2018). 

pp. 16450-16458. 

 

7.1 Abstract 

The influence of the reaction gas composition during the DC magnetron sputtering process on 

the structural, chemical and optical properties of Ce-oxide thin films was investigated.  X-ray 

diffraction (XRD) studies confirmed that all thin films exhibited a polycrystalline character 

with cubic fluorite structure for cerium dioxide. X-ray photoelectron spectroscopy (XPS) 

analyses revealed that cerium is present in two oxidation states, namely as CeO2 and Ce2O3, 

at the surface of the films prepared at oxygen/argon flow ratios between 0-7%, whereas the 

films are completely oxidized into CeO2 as the aforementioned ratio increases beyond 14%.  

Various optical parameters for the thin films (including an optical band gap in the range of 

2.25 – 3.1 eV) were derived from the UV-Vis reflectance.  A significant change in the band 

gap was observed as the oxygen/argon flow ratio was raised from 7% to 14% and this finding 

is consistent with the high-resolution XPS analysis of Ce 3d that reports a mixture of Ce2O3 

and CeO2 in the films.  Density functional theory (DFT+U) implemented in the Cambridge 

Serial Total Energy Package (CASTEP) was carried out to simulate the optical constants of 

CeO2 clusters at ground state.  The computed electronic density of states (DOSs) of the 

optimized unit cell of CeO2 yields a band gap that agrees well with the experimentally 

measured optical band gap.  The simulated and measured absorption coefficient (α) exhibited 

a similar trend and, to some extent, have similar values in the wavelength range from 100 to 

2500 nm.  The combined results of this study demonstrate good correlation between the 

theoretical and experimental findings. 

 

http://researchrepository.murdoch.edu.au/view/author/Miran,%20Hussein.html
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http://researchrepository.murdoch.edu.au/view/author/Rahman,%20Mohammad.html
http://researchrepository.murdoch.edu.au/view/author/Jaf,%20Zainab.html
http://researchrepository.murdoch.edu.au/view/author/Jaf,%20Zainab.html
http://researchrepository.murdoch.edu.au/view/author/Dlugogorski,%20Bogdan.html
http://researchrepository.murdoch.edu.au/id/eprint/41216/
http://researchrepository.murdoch.edu.au/id/eprint/41216/
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7.2 Introduction 

Rare-earth oxides have emerged as interesting materials in diverse optical and electronic 

applications. Among this family of materials, Ce-oxide has received particular attention due 

to it exhibiting a number of remarkable properties stemming from its ability to shuttle 

between two oxidation states (+4 and +3) of CeO2 and Ce2O3  [270],  high oxygen storage 

capacity [410] and ability to support deviations in its stoichiometry whilst maintaining a 

fluorite structure[411].  In particular, CeO2 has garnered significant interest for its application 

to the fields of catalysis[412], gas, temperature, radiation and humidity sensing [413], along 

with capacitor devices [414] and field-effect transistors [415].  The desirable properties 

exhibited by Ce-oxide materials also make them promising candidates in other areas, 

including: an alternative to silicon in integrated circuits due to the similarity in lattice 

parameters between CeO2 and silicon [416]; transparent materials in smart window 

technologies due to their ability to insert and extract large charge densities [417] ; and also as 

single and multilayer optical coatings for solar energy applications due to their high refractive 

index [418-420].  

The influence of various synthesis parameters on the resultant properties of Ce-oxide films 

has been demonstrated in several previous studies.  Porqueras and co-authors [421] evaluated 

the influence of oxygen partial pressure on the structural and optical properties of cerium 

dioxide (CeO2) on different substrates using an e-beam PVD method.  Their structural 

analysis demonstrated that all of the structural characteristics apart from stoichiometry are 

sensitive to changes in the oxygen pressure/flow rate.  Whilst their investigations for the 

optical transmittance properties of the samples studied in the visible range of 400 – 800 nm 

displayed remarkable high values, the study did not include a comprehensive investigation of 

the influence of other conditions such as deposited rate and substrate temperature nor did 

assess the loss factors for the selected samples.  In separate work, Debnath et al. prepared 

CeO2 films via an e-beam evaporation process onto glass substrates at a pressure of 6 × 10-6 

Torr and with different film thicknesses from 140 to 180 nm.  The studied films in the 

wavelength ranging from 200 to 850 nm showed excellent transparency properties in the 

visible region, whilst exhibiting low reflectance values in the ultra-violet region.  

Furthermore, the optical band gap of the films decrease with the increase of the thickness 

[422].  Özar et al. [165], employed a sol-gel spin coating technique to prepare crystalline 

CeO2 coatings and investigated the optical and electronic properties of such thin films.  The 

XPS analyses revealed the films possess a compositional structure of CeO2 and the surface 
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topography, examined by scanning electron microscopy (SEM), demonstrated a good 

uniformity and homogeneity.  The authors also reported CeO2 films exhibit high 

electrochemical stability based on the results of cyclic voltammetry and 

spectroelectrochemical experiments.  The experimental analyses of the CeO2 coatings 

indicated a good passive counter electrode material in terms of inserted / extracted charge and 

optical response. 

 

In other instances, magnetron sputtering has been investigated and applied as a promising 

approach to prepare Ce-oxide films.  Sundaram et al. [423] prepared CeO2 coatings on glass 

substrates via r.f. magnetron sputtering  using a number of sputtering power levels and 

oxygen pressures.  They found that at a 100 W sputtering power level the deposition rate 

increased with increasing oxygen/argon flow ratio compared to the sputtering power levels of 

150, 170 and 200 W which showed minimal change to the deposition rate.  In addition, the 

maximum deposition rate was achieved at O2/Ar2 of 0.45 and 0.60.  Further increases in the 

oxygen pressure resulted in decreases in the deposition rate. Jain et al. synthesized CeOx thin 

films deposited onto Si and quartz substrates by reactive DC magnetron sputtering technique 

[167].  The films were prepared as a function of target-substrate distance (dT-S) and 

characterized by a number of characterization techniques such as XRD, atomic force 

microscopy (AFM) and UV-Vis.  The study revealed that the structural and optical 

characteristics of the deposited films are strongly dependant on the target-substrate distance.  

They also concluded the synthesized films exhibit good characteristics of transmittance in the 

wavelengths range of 400 - 1100 nm.  

 

Shi et al. [424, 425] previously investigated the surface morphology, wetting behaviour, 

microstructure, tribological and mechanical properties of CeO2-y films deposited onto Si 

substrates by reactive unbalanced magnetron sputtering using different oxygen/argon flow 

ratios and substrate bias voltages.  Regarding the influence of the substrate bias voltage, the 

CeO2-y coatings possessed a hydrophobic nature with water contact of nearly 100 °C.  The 

preferable phase formation of cubic crystalline CeO2 occurred at bias voltage of -80 V, with 

significant enhancements to the microstructure evident at higher voltages resulting in an 

increase in material hardness, yielding a maximum value of -18.0 GPa.  For Ce-oxide films 

prepared as a function of oxygen/argon flow ratio, all coatings exhibited smooth surfaces 
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with similar wetting characters with a hydrophobic nature.  They also concluded that the 

hydrophobicity lessens with the existence of excess surface lattice oxygen.  Furthermore, at 7% 

oxygen/argon flow ratio, they achieved a maximum hardness, and elastic modulus of -18.1 

and -190.2 GPa, respectively; however; these two mechanical properties decrease with 

subsequent increases to the oxygen/argon flow ratio.   

 

It is apparent from the above discussion that the characteristics of Ce-oxide thin films 

prepared via different techniques vary somewhat significantly depending on the preparation 

technique employed.  This also opens up the interesting prospect of tuning the properties of 

Ce-oxide films for certain applications by exploiting the inherent variability that the synthesis 

parameters have on the resultant film properties.  It is also apparent from prior literature that 

there is scope to improve the optical properties of Ce-oxide coatings.  We propose that this 

can be achieved via a study of the amount of oxygen flow effects on the optical properties of 

CeOx, as prepared by DC magnetron sputtering.  In this instance, DC magnetron sputtering is 

the preferred technique to synthesize the thin film materials because the optimal plasma 

distribution can result in excellent adhesion between the thin films and the substrates.  Herein, 

we investigate the influence of the reaction gas composition using DC magnetron sputtering 

on the structural, chemical and optical properties of the Ce-oxide thin films, with a view to 

achieving an enhanced understanding of the tunable nature of Ce-oxide materials.  

 

7.3 Experimental and modelling 

7.3.1 Thin film deposition process  

CeOx thin films were deposited onto the Si (100) wafers using a magnetron sputtering system 

(Teer coating Ltd, UK).  A pure Cerium (Ce) target (99.9 % purity) of 300 mm × 100 mm ×5 

mm size was used to synthesize the coatings.  Ar2 and O2 gases with purity of 99.999 % were 

used as the working gas and reactive gas, respectively, and the flow rates of these gases were 

controlled by MKS mass flow controllers.  The vacuum chamber was pumped down to a 

background pressure of 4 × 10-5 Pa prior to deposition. The pressure of the working gas was 

maintained at ~0.3 Pa throughout the sputtering process.  The target-to-substrate distance was 

set as 10 cm and the sputtering process was performed without substrate rotation.  In the first 

stage, the substrate was sputter cleaned by argon plasma at a bias of -400 V (frequency 250 
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kHz) for 20 min, in order to remove the surface oxide layer or any contaminant.  Then the 

bias voltage was reduced to -60 V at a frequency of 250 kHz for deposition.  The target 

current applied to the Ce target was fixed at 4.0 A, while varying the sputtering power in the 

range of 700 - 900 W.  As the CeOx films were highly insulating, a pulsed power supply 

(Pinnacle Plus, Advanced Energy Industries, Inc.) was used to drive the magnetron at a 

frequency of 350 kHz.  CeOx thin films were deposited at various O2/Ar2 ratios by adjusting 

their flow rates. The O2/Ar2 was been chosen as 0/35 (0%), 2.5/32.5 (7%), 5/30 (14%), 10/25 

(28%), 15/20 (42%) and 20/15 (56%) with a net flow of 35 sccm.  The deposition time was 

60 min and there was no external heating to the substrate holder during deposition.  The 

sputtering conditions used in the present work are summarized in Table 7.1.  

 

      Table 7.1: Sputtering parameters for the deposition of CeOx coatings. 

No. Sputtering conditions Range 

1 Target-substrate distance 10 cm 

2 Base pressure 4 × 10-5 Pa 

3 Sputtering gas Ar 

4 Reactive sputtering gas O2 

5 Oxygen/argon flow ratio 0 %, 7 %, 14 %, 28 %, 42 % and 56 % 

6 Sputtering pressure ~ 0.3 Pa 

7 Sputtering power 700-900 W 

8 Deposition time 60 min 

9 Substrate temperature Not heated 

 

7.3.2 XRD measurements 

In order to identify the crystallographic phases, present in the deposited films, X-ray 

diffraction (XRD) measurements were carried out using a Bruker Advance D8 X-ray 

Diffractometer with Cu–Kα radiation (λ = 1.5406 Å) integrated with a LynxEye detector.  The 

XRD machine was operated at a power of 40 kV and 40 mA. XRD data was collected over 

the angular range of 20º ≤ 2 θ ≤ 65º with the step size of 0.015º. 
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7.3.3 XPS measurements 

A Kratos Axis-Ultra X-ray Photoelectron Spectrometer (XPS) was utilized to examine the 

elemental and chemical state of the sample films. XPS measurements were performed using 

an Al-Kα monochromatic X-ray source possessing photon energy of 1486.6 eV and operating 

at 150W.  All samples were placed onto a stainless-steel sample holder and then positioned in 

the XPS analyzer chamber which was maintained at an approximate pressure of 3 × 10-9 Torr.  

The binding energy scale was calibrated using the main adventitious carbon component (C-

H/C-C bond) of the C1s spectrum situated at 284.8 eV as a reference [426, 427].  The test 

area for each measurement was defined by a 700 × 300 μm slot configuration.  All survey 

spectra were collected using pass energy of 160 eV, whilst the high-resolution spectra of Ce 

3d, O 1s and C 1s were examined by using pass energy of 40 eV.  CASA-XPS v.2.3.15 

package was used for the determination of chemical composition and deconvolution of high 

resolution spectra.  

 

7.3.4 FESEM imaging 

Field emission scanning electron microscopy (FESEM) is an important characterization 

technique which provides surface morphological information of the materials under 

investigations.  A Zeiss Neon 40EsB FESEM operated at 15 kV was used to determine the 

film thickness through a high resolution of cross-section backscattered electron imaging.  

Samples were prepared by mounting cross-sections in resin and polishing the mounts down to 

reveal the undamaged film against the substrate.  The samples were then coated with 

approximately 3nm Pt to make the surfaces conductive and subsequently imaged using a 

backscattered electron detector to highlight the atomic number difference between the film 

and substrate. EDS was used to verify the elemental differences.  Measurements were taken 

using the FESEM operating software packages.  The thickness of each sample was measured 

at different positions and then the average was calculated and listed in Table 7.2.  
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Table 7.2: Thickness of CeO2 films. 

No. Oxygen/argon flow 

ratio, % 

Thickness of the coating (nm) 

 

1 0 390 

2 7 1330 

3 14 180 

4 28 160 

5 42 150 

6 56 610 

 

 

7.3.5 UV-Vis and FTIR measurements 

A double-beam UV-Vis spectrophotometer (Model: UV-670 UV-Vis spectrophotometer, 

JASCO, USA) provided with a single monochromatic design covering a wavelength range of 

190 to 2500 nm was used to measure the solar absorptance spectra of the CeO2 films.  In 

order to study the reflectance spectra of the prepared films in the infrared region, a PERKIN 

Elmer Spectrum 100 FTIR Spectrometer (USA) was used in the wavelength range of 2.5 to15 

μm.  By using the UV-Vis reflectance data the optical parameters such as absorption 

coefficient (α), extinction coefficient (k) and optical band gap (Eg) can easily be calculated 

[428, 429]. 

 

7.3.6 Density functional theory-based calculations 

Plane wave density functional theory (DFT) with the generalized-gradient approximation 

(GGA) [276] implemented in the Cambridge Serial Total Energy Package (CASTEP) 

software [430] was employed to simulate the structural relaxations and energy calculations  

of fluorite-structured CeO2 at ground state (T and P = 0).  The XRD predicted phase of CeO2 

was modeled using DFT+U approach proposed by Duderave et al. [214], as the Hubbard 

parameter (U) is critical when dealing with strongly electron-correlated systems such as f-

orbital systems.  In our simulation, U of 5 eV could reproduce the measured band gap of 

cerium dioxide.  Structural optimization was performed using plane wave basis sets with a 
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cut off energy of 370 eV to expand the electronic wave functions, while an energy tolerance 

of 2×10-5 eV/atom and an atomic force tolerance of 0.05 eV/Å were utilized.  For the 

integration over Brillouin Zone, a 4×4×4 k-point Monkhorst grids [431] were selected.  The 

computation details also include the spin-polarized PAW-PBE function [219]. 

  

7.4 Results and Discussion 

7.4.1 Structural analysis of Ce-oxide coatings 

In order to conduct a computational modelling investigation into the deposited CeOx 

materials, XRD measurements were undertaken to provide crystalline structural information 

which would be used as inputs for the model.  The XRD patterns of the CeOx films deposited 

using various oxygen/argon flow ratios shown in Figure 7.1 demonstrate a polycrystalline 

character with cubic fluorite structure of CeO2 with space group of Fm-3m (a = 5.410 Å) 

along with (111), (200) and (222) reflection planes (PDF-4 card no. 00-001-0800) at 2θ of 

29.4, 33.4 and 59.3°, respectively.  The cubic fluorite-structure of CeO2 for our coatings with 

preferred (111) peaks, as depicted in Figure 7.1, indicates that these coatings have high 

atomic packing densities resulting in coatings with very low surface energies [432].  The 

intensity of the (111) peak increases with increasing oxygen pressure and reaches to the 

maximum at an oxygen/argon flow rate ratio of 28%.  Further increases in the oxygen partial 

pressure results in a gradual reduction in the peak intensities.  The increase in the intensity of 

the (111) peak may be  due to the increase in the crystallite size and the decrease in its 

intensity is associated with the excess oxygen segregation at the grain boundaries of the CeO2 

structures [433].  Notably, small peaks attributed to the (200) and (222) reflection planes are 

also observed for the 14% and 28% oxygen/argon flow ratios.  The Bragg peaks observed at 

2θ of 26.3°, 36.7°, 39.1° and 43.4°, belong to tetragonal-structured SiO2 (a = b = 4.933 Å and 

c = 6.464 Å) which results from the contributions of coatings and Si substrate. 
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Figure 7.1: XRD pattern of CeOx thin films deposited on the silicon substrate at various 

oxygen/argon flow ratios.  

 

The Debye–Scherrer relation was used to estimate the crystallite size of CeO2 films around 

the (111) reflection plane, 

 

                 𝐷𝑔 =
𝑘 𝜆

𝛽 cos𝜃
                                                                                       7.1 

 where Dg represents the crystallite size, k is the crystallite-shape factor (k = 0.90) [434], λ is 

the X-ray wavelength, β corresponds to full width at half maximum (FWHM) of the most 

dominant peak, and θ is the Bragg angle.  The crystallite size based on (111) plane of the 

films were found to be 84.9, 123.2, 110.0, 100.6, 57.9, 73.5 nm, respectively.  It is obvious 

that the crystallite size of (111) reflection plane increases from no oxygen pressure to 7% 

oxygen/argon flow ratio and beyond this ratio the crystalline size reduces.  We attribute the 

change in the crystallite size to the change in deposition rate associated with varying O2 /Ar2 

flow ratios [435].  
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XPS provides important elemental chemical state information related to the surface of the 

deposited films.  The XPS survey scans of the CeOx coatings fabricated with various oxygen-

argon mixtures are shown in Figure S1 (see Appendix C).  As expected, the survey spectra 

reveal the presence of Ce and O, along with C arising from adventitious carbon (pollutant) 

which is commonly observed in XPS measurements. The relative atomic concentrations of 

the elements in each of the samples as calculated from the XPS survey scans (neglecting the 

contribution from adventitious carbon) are presented in Table 7.3.  Whilst the oxygen content 

initially appears to be in excess to the 1:2 ratio expected for a CeO2 stoichiometry, it is 

important to note the presence of oxygen is also expected to arise from functional groups 

associated with the adventitious carbon also present on the sample (e.g. C-O-C, C-OH, O-

C=O, etc.).  The high-resolution O 1s spectra was deconvoluted in order to determine the 

proportion of lattice oxygen (i.e. Ce-O bonds) present in the sample and the relative atomic 

concentrations are reported in Table S1 (see also Figure S2).  The final column in Table 7.3 

uses the information derived from the O 1s spectra to present oxygen content relating to Ce-O 

bonds. Subsequent examination of the Ce: “adjusted O” ratios demonstrate that at 

oxygen/argon flow ratios between 14-56% yield thin films with compositions consistent with 

the expected CeO2 stoichiometry.  

 

Table 7.3: Details of the elemental compositions of CeOx prepared under different 

oxygen/argon flow ratios as acquired from XPS measurements. 

Oxygen/argon flow 

ratio, % 

Atomic percentage of the elements    

Ce Total O Lattice O  

0 26.1 73.9 44.5 

7 28.9 71.1 46.4 

14 29.8 70.2 57.7 

28 31.5 68.5 57.5 

42 31.3 68.7 57.0 

56 30.7 69.3 57.8 
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The Ce 3d spectra (See Figure 7.2) of the two extreme oxidation states of Ce (Ce4+, Ce3+) are 

generally well understood [436-438].  Typically, the Ce4+ oxidation state is differentiated 

from Ce3+ by the existence of three pairs of spin-orbit doublets, whereas Ce3+ is characterized 

by two pairs of spin-orbit doublets [439].  The presence of the satellite peaks at a high 

binding energy of 916.3 eV confirms the presence of the oxidized phase of CeO2 [439].  By 

contrast, the spectrum of non- oxygen partial pressure displays a photoelectron line peaks at 

binding energies of  884.9 and 903.3 eV indicative of the presence of a mixture of Ce3+ [440], 

and  Ce4+ oxidation states.  Further increases in the oxygen pressure led to a reduction in 

intensity of these peaks such that they are no longer distinguishable when the oxygen/argon 

flow ratio is raised to 14%.  This suggests that all the Ce beyond this oxygen ratio is 

completely oxidized to form CeO2, which is consistent with the stoichiometry inferred from 

the analysis of the elemental composition from the survey spectra.  Notably, XRD 

measurements were unable to discern any Ce3+ in any of the systems, presumably since it is 

present merely as a surface enriched species. 

 

Figure 7.2: XPS High resolution of Ce 3d spectra. 
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The cross sectional FESEM images shown in Figure 7.3 were used to estimate the thickness 

of the sputtered CeO2 films. Several points on each sample were taken to average the accurate 

thickness of these films.  As listed in Table 7.2, the thickness reaches a maximum at 7% 

oxygen/argon flow ratio and reduces beyond this ratio.  This drop in the film thickness is 

believed to be due to the increasing oxygen content leading to a decrease in the energy of the 

resultant sputtered particles.  Consequently, the number of species reaching the substrate was 

reduced, resulting in decreased growth rate [441, 442]. 

 

Figure 7.3: Cross sectional FESEM images of Ce-oxide coatings prepared with various 

oxygen/ argon gas mixtures. 
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7.4.2 Optical reflectance and Urbach energy studies 

The infrared (IR) reflectance spectra of CeO2 films acquired by FTIR spectroscopy is 

displayed in Figure 7.4.  The IR spectra are aimed to detect the chemical functional groups 

present in the deposited materials.  From Figure 7.4, one observes the absorptions due to 

carbon-oxygen single bond in the infrared region of 9017.1 - 9041.6 nm demonstrating the 

presence of (C-O) group in the CeOx films, consistent with the results obtained via XPS.  The 

UV-Vis optical reflectance spectra of CeOx films at different oxygen/argon flow ratios are 

shown in Figure 7.5.  From Figure 7.5, it can be seen that all the films, apart from that with 0 % 

oxygen/argon flow ratio, exhibit antireflection properties in the visible regions.  This 

indicates that increases in oxygen/argon result in better antireflection properties in the visible 

region of the solar spectra.  The increase of the reflectance in the visible  region, for the CeOx 

films prepared without reactive oxygen gas, may be due to its high surface roughness 

resulting  in the loss of intensity of the incident light by scattering [443].  The optical 

absorption coefficient (α) of CeO2 films was calculated using the relationship: 

 

                      𝛼 = 2.3026 
𝐴

𝑑
                                                                                   7.2 

 

where A and d are the solar absorption in percentage and thickness of the films, respectively.  

Figure 7.6 exhibits the variation of the absorption coefficient of CeOx films at various 

oxygen/argon flow ratio as a function of incident photon wavelength.  The variation of 

optical absorption coefficient with the photon energy helps to study the band structure and the 

type of electron transition included in absorption process.  The optical band gaps Eg of the 

studied films were estimated from the calculated absorption coefficient values using the Tauc 

relation [429, 444] ; 

 

                         𝛼ℎ𝜈 = 𝐴(ℎ𝜈 − 𝐸𝑔)
𝑛                                                                           7.3 

 

where, 𝛼 stands for the absorption coefficient, h is the incident photon energy, h is the 

Planck’s constant,  corresponds to the frequency of incident photon, A is the probability 
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parameter for the transition, Eg is the optical band-gap and n is an index that determines the 

type of optical transition involved in photon absorption process.  The index n = 1/2 and 2 is 

for allowed direct and indirect optical transitions, respectively.  In practice, the direct 

transition energy gap (direct band-gap) can be calculated via plotting h against (αh)2 and 

extrapolating the linear portion of the curve to (αh)2 = 0 in the x-axis.  Similarly, the indirect 

energy band-gap can be found by plotting h vs (αh)1/2 and extrapolating the linear part of 

the curve to (αh)1/2 = 0 along the x-axis. 

 

Figure 7.4: FTIR spectra of CeOx films deposited on c-silicon substrate as a function of 

oxygen/argon flow ratios. 
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Figure 7.5: Optical reflectance spectra of CeOx films deposited on c-silicon substrate as a 

function of oxygen/argon flow ratios. 

 

 

Figure 7.6: Variation of absorption coefficient with wavelength for CeOx films deposited on 

c-silicon at different oxygen/argon flow ratios. 
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Figure 7.7 represents the plots of (αhν)1/2 against incident photon energy (hν) of the CeOx 

films synthesized at various oxygen/argon flow ratios.  According to our measurements, the 

indirect optical band-gap of the films increased from 2.28 to 3.05 eV with the increase in 

oxygen flow ratio from 7 % to 14 %.  Further increases in the oxygen content into the system 

results in a reduction in the band-gap to 2.95 eV.  This drop in band-gap energy is due to 

either the excess oxygen reducing the number of grains[445], an alteration to the crystalline 

structure, or alterations to the crystal orientation due to the strong dependence between 

oxygen/argon flow ratio and the lattice structure [446].  This is in agreement with XPS results 

which revealed that at higher levels of oxygen pressure the crystalline structure of Ce2O3 is 

completely oxidized into CeO2.  This finding is also in accordance with our XRD analysis 

confirming the increase of (111) orientation from 0% to 28% leading to increase the grains 

size and beyond this ratio the grain size starts to reduce.  

 

 

Figure 7.7: Plots of (αE)1/2 versus (E) of CeOx deposited on c-silicon substrate at various 

oxygen/argon flow ratios. 
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7.4.3 Optical properties – the dispersion parameters 

 

Studies of refractive index (n) and the extinction coefficient (k) provide important 

information on the dispersion behaviors of optical materials for a certain incident wavelength.  

The refractive index and extinction coefficient calculated using the UV-Vis reflectance data, 

in the wavelength range of 190 – 2500 nm, are shown in Figures 7.8 and 7.9. The complex 

refractive index is given by the following relation: 

 

                      𝑛∗ =  𝑛 + 𝑖𝑘                                                                                              7.4 

 

Where k is the imaginary part of the refractive index known as the extinction coefficient and 

can be calculated via following relation: 

 

                       𝑘 =  
𝛼𝜆

4𝜋
                                                                                                      7.5 

 

 The real part of the refractive index, n is obtained using the reflectance data, R and extinction 

coefficient, k values as: 

 

                   𝑛 =  (
1+𝑅

1−𝑅
) + √

4𝑅

(1−𝑅)2
− 𝑘2                                                                        7.6 

 

Figure 7.8 suggests that all the spectra of refractive index against oxygen gas contents have 

minimal values in the visible range of the solar spectra.  The extinction coefficient plotted in 

Figure 7.9 exhibits comparatively lower values in the ultra-violet and visible range than the 

infrared region.  This in turn indicates the good quality of the Ce-oxide films that have less 

dispersion and absorption in the visible range of the solar spectra. 
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Figure 7.8: Variation of refractive index with wavelength for CeOx films deposited on c-

silicon    substrate as a function of oxygen/argon flow ratios. 

 

Figure 7.9: Variation of extinction coefficient with wavelength for CeOx films deposited on 

c- silicon at different oxygen/argon flow ratios. 
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7.4.4 Dielectric analysis    

     

The complex dielectric function is expressed as, 

                 𝜀(𝜔) = 𝜀1(𝜔) + 𝑖𝜀2(𝜔) = (𝑛(𝜔) + 𝑖𝑘(𝜔))
2                                                 7.7 

where ε1 (ω) and ε2 (ω) corresponds to the real and imaginary part of the complex dielectric 

function, respectively  that are defined by the following relationships [447] , 

 

                 𝜀1 = 𝑛
2 − 𝑘2                                                                                                  7.8 

                 𝜀2 = 2𝑛𝑘                                                                                                         7.9 

 

ε1 (ω) corresponds to the amount of the material that becomes polarized when applying an 

electric field because of creation of electric dipoles in the material, whereas ε2 (ω) represents 

the absorption in the material and hereafter the loss energy [448].  From Figure 7.10, it 

clearly shows that the ε1 spectra exhibit an oscillatory behavior with the photon energy, while 

ε2 spectra shown in Figure 7.11 displays energy dependent reducing trend. However, ε1 and ε2 

curves show small values in the visible range reflecting their least energy loss in this region 

and thereafter suggesting the high quality of the studied films. 
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Figure 7.10: Real part of dielectric constant vs photon energy of CeOx films deposited on c-

silicon at different oxygen/argon flow ratios. 

 

 

Figure 7.11: Imaginary part of dielectric constant vs photon energy of CeOx films deposited 

on c-silicon at different oxygen/argon flow ratios. 
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This power loss occurs as a result of the inelastic scattering process during the charge transfer 

and charge conduction mechanisms [429].  The loss factor is defined as, 

                 𝑡𝑎𝑛𝛿 =  
𝜀2

𝜀1
                                                                                                   7.10                                                                                             

Figure 7.12 illustrates the variation of the loss tangent, of cerium-oxide films fabricated at 

different oxygen-argon flow ratios, with the incident photon energy.  The variation in loss 

tangent exhibits the same trend as ε2. Since the ε2 values are lower than that of ε1, hence the 

energy loss of the CeOx is relatively low. 

 

 

Figure 7.12: Variation of loss angle with wavelength for CeOx deposited on c-silicon at 

different oxygen/argon flow ratios. 

 

The energy loss functions are classified as volume energy loss function, Vel and surface 

energy loss function, Sel  [447].  

                  𝑉𝑒𝑙 = 𝐼𝑚 (−
1

𝜀(𝜔)
) =  

𝜀2

𝜀1
2 + 𝜀2

2                                                                           7.11 
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                  𝑆𝑒𝑙 = 𝐼𝑚 (−
1

𝜀(𝜔) + 1 
) =  

𝜀2

(1+𝜀1)2 + 𝜀2
2                                                              7.12 

 

The energy loss functions that are associated with the optical characteristics of a material via 

real and imaginary parts of dielectric constant of CeOx films are shown in Figure 7.13.  Both 

Vel and Sel mimic the same trend as that of loss tangent data displayed in Figure 7.12.  It is 

also noted that the film with 7% oxygen/argon ratio exhibits the lowest energy loss for a wide 

range of the incident photon energies. 
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Figure 7.13: Variation of energy loss functions, (a) volume energy loss and (b) surface 

energy loss of CeOx deposited on c-silicon substrate at various oxygen/argon flow ratios. 
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7.4.5 Simulation analysis  

Structural optimizations of the CeO2 lattice were executed via computational modeling.  The 

CeO2 system shows a cubic symmetry in Fm-3m space group composed of four formula units 

in a unit cell.  The lattice parameters of CeO2 in the balanced condition amounts to 5.478 Å 

as computed via theoretical predictions.  Our simulated findings of the lattice parameters are 

in accordance with that of the experimentally measured value of a = 5.410 Å (see section 

7.4.1).  In the present unit cell model of CeO2, there are 4 Ce and 8 O atoms. The lattice 

structure was relaxed and is displayed in Figure 7.14. 

 

 

Figure 7.14: Conventional unit cell of Ce-oxide (CeO2) structure. Gray and red spheres refer 

to cerium and oxygen atoms, respectively. 

 

Figure 7.15 depicts the electronic density of states (DOSs) of the optimized CeO2 cluster.  

The electronic characteristics of CeO2 structure were determined by calculating the total 

density of states at the Fermi level. Our results reveal that the CeO2 cluster exhibits a non-

metallic character due to f-orbital of Ce which leads to the semiconducting nature.  The top 

most valance band is stretching from -4.30 to 0 eV (Fermi level) and the conduction band is 

positioned at 3 eV above the Fermi level. 
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Figure 7.15: Total density of states of Ce-oxide (CeO2) clusters. 

 

The computed absorption coefficients of CeO2 films, as a function of wavelength, in the 

range of 100 – 2500 nm is depicted in Figure 7.16.  It is evident that the CeO2 spectrum 

shows a good absorption behavior for the incident photons in the ultra-violet region, whereas 

an opposite trend is observed at visible region.  This reveals that CeO2 is a promising 

transparent material with superior optical properties applied for electrodes in battery 

industries and solar panels.  Furthermore, the absorption coefficient spectrum confirms the 

non-metallic character of CeO2 materials [449].   

 

0

5

10

15

20

25

-40 -35 -30 -25 -20 -15 -10 -5 0 5 10

D
en

si
ty

 o
f 

st
a
te

s 
(e

le
ct

ro
n

/e
V

)

E(eV)



199 
 

 

Figure 7.16: Simulated absorption spectrum of CeO2 clusters. 

 

The dielectric function describes the interaction between the incident photons and electrons in 

a certain material.  The DFT calculated complex dielectric constants of CeO2 films as a 

function of the wavelength in the range of 100 to 2500 nm are shown in Figure 7.17.  The 

calculated dielectric function involves the intra-band impacts from free electrons (conduction 

electron contribution) and intra-band effects (from valance- electron contribution).  As 

observed from Figure 7.17, the dielectric constants (real and imaginary parts) is increased at 

shorter wavelength regions and become almost invariant in the longer wavelength side.  Zero 

value of ε2 indicates that the material is transparent,  while absorption will be represented for 

nonzero values of ε2 [450].  As seen in Figure 7.17, ε2 values sharply reduces to zero at 

wavelengths longer than 500 nm indicating a high-quality transparent material for optical 

applications. 
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Figure 7.17: Simulated real and imaginary parts of dielectric constants of  CeO2 clusters.  

 

The DFT calculated refractive index (n) and extinction coefficient (k) spectra, in the 

wavelength range between 100 and 2500 nm, of CeO2 are illustrated in Figure 7.18.  Both 

refractive index and extinction coefficient spectra exhibit the same trend as the dielectric 

functions because both of them have peak values in the shorter wavelength regions.  The 

simulated and experimental refractive index has analogous behaviors in the wavelength range 

from 100 to 2500 nm.  Moreover, the computed and measured extinction coefficients have 

similar trend in the wavelength range of interest. 
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Figure 7.18: Simulated refractive index (n) and extinction coefficient (k) spectra of  Ce-oxide 

coatings. 

7.5 Conclusions 

 Magnetron sputtered CeO2 films as optically transparent materials, synthesized onto 

crystalline silicon substrates at various oxygen-argon mixture gas, have been rigorously 

studied and characterized by correlating their structural and chemical bonding states.  All 

deposited thin films exhibited a polycrystalline character with cubic fluorite structure for 

cerium dioxide along (111), (200) and (222) orientations.  The XPS survey scans of the CeOx 

coatings revealed that the Ce:O ratio between 14-56% oxygen/argon flow ratios is largely 

consistent with the CeO2 stoichiometry.  As revealed from the high-resolution Ce 3d spectra, 

two oxidation states of CeO2 and Ce2O3 are present in the films prepared at lower 

oxygen/argon flow ratios; whereas the films are completely oxidized into CeO2 as the gas 

ratio is increased.  Reflectance data obtained from UV-Vis investigations were utilized to 

calculate the optical constants such as absorption coefficient (α), the real and imaginary parts 

of the dielectric function (ε1, ε2), the refractive index (n) and the extinction coefficient (k).  

Our analysis indicates that the CeO2 films have indirect optical band gaps residing in the 

range of 2.3 - 3.1 eV.  The simulated electronic density of states (DOSs) of the optimized 

structure of CeO2 films reveals a band gap that agrees well with the experimental optical 

band gap results.  The measured and calculated absorption coefficients display similar trends 
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and, to some extent, a similar range of values in the observed wavelength range.  The 

excellent agreement between the experimental and theoretical results demonstrates the 

validity of our computation models.  The information gleaned from this study will be of 

benefit in applications requiring the tunable structural and optical properties of CeO2 thin 

films. 
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Chapter 8 : Structural and Optical Characteristics of Pre- and 

Post-annealed Sol-gel Derived CoCu-oxide Coatings 

 

Paper V 

Miran,H.A., Rahman, M.M., Jiang, Z-T, Altarawneh, M., Chuah, L.S., Lee, H-

L, Mohammadpour, E., Amri, A., Mondinos, N. and Dlugogorski, B.Z. (2017) Structural and 

optical characteristics of pre- and post-annealed sol-gel derived CoCu-oxide coatings. Journal 

of Alloys and Compounds, 701 . pp. 222-235. 

 

8.1 Abstract 

Sol-gel derived CuCo-oxide coatings synthesized onto aluminum substrates and annealed at 

various temperatures are evaluated as solar selective surfaces by linking their spectral 

selective behaviors with their structural, chemical bonding states, and surface morphological 

topographies.  As the annealing progressed, all the coatings displayed a preferential 

orientation of Cu0.56Co2.44O4 (ICSD 78-2175) phase along (400) reflection plane.  First 

principle calculations via Rietveld refinement of X-ray diffraction (XRD) data indicated, as 

the annealing rises, the residual stress and microstrain developed around the coating surfaces 

are reduced revealing the internal stress release are resulted from reduction of coatings 

defects.   Enhancement of the crystallite size and surfaces roughness of the coatings was 

confirmed via XRD, field emission scanning electron microscopy (FESEM), and atomic 

force microscopy (AFM) analysis.  Optical investigations showed the solar selectivity of the 

coatings remarkably increases from 3.81 to 24 as the annealing temperature reaches 500°C.   

 

  

http://researchrepository.murdoch.edu.au/view/author/Miran,%20Hussein.html
http://researchrepository.murdoch.edu.au/view/author/Rahman,%20Mohammad.html
http://researchrepository.murdoch.edu.au/view/author/Jiang,%20Zhong-Tao.html
http://researchrepository.murdoch.edu.au/view/author/Altarawneh,%20Mohammednoor.html
http://researchrepository.murdoch.edu.au/view/author/Mohammadpour,%20Ehsan.html
http://researchrepository.murdoch.edu.au/view/author/Amri,%20Amun.html
http://researchrepository.murdoch.edu.au/view/author/Mondinos,%20Nicholas.html
http://researchrepository.murdoch.edu.au/view/author/Dlugogorski,%20Bogdan.html
http://researchrepository.murdoch.edu.au/id/eprint/35158/
http://researchrepository.murdoch.edu.au/id/eprint/35158/


204 
 

8.2 Introduction 

Mixed metal oxide based coatings are versatile materials have received great interest in 

recent years  because of their incredible properties such as a large surface to volume ratio, 

increased activity, special electronic properties, catalytic properties, and unique optical 

properties as compared to those of the bulk materials [451, 452] and wide-spread applications 

in lithium-ion batteries, ion exchange, catalysts, and solar energy transformation, and 

magnetic semiconductors for recording devices and magnetic sensors due to their capability 

to interact with ions, atoms, and molecules, not only at the surfaces, but also all the way 

through the bulk of the material [453-459].  The key factors that determine the potential 

applications of mixed metal oxide ceramics include stoichiometry and homogeneity of 

composition, crystal morphology, surface area, and their particle size and shape [460, 461].  

In previous reports, the copper–cobalt oxide thin films deposited on aluminum substrate via 

sol–gel dip-coating route displayed unique optical properties with a spectrally selective 

feature in the visible wavelength of the solar spectrum [456, 462, 463].  Nonetheless, it is 

realized that temperature change in the synthesis route of CuCo-oxide thin films has 

considerable impact on their physicochemical, structural, magnetic and electronic behaviors 

[464].  The CuCo-oxide compounds were found to be stable up to 680 °C, whereupon a phase 

transformation occurs.  The spinel CuCo-oxides lean towards a low crystallized single phase 

together with a moderately inverted spinel configuration and a minor segregation of copper 

and cobalt oxide matrices dependent on the Cu/Co ratio and the annealing temperature [465, 

466].  The gradual rise in annealing temperature contributed to an increase crystalline phases 

of CuCo-oxide systems [467]. 

 

Solar selective surface is an important component of a solar thermal collector aimed to 

accumulate solar radiation and transform it into beneficial heat energy for numerous domestic 

and industrial applications.  An ideal solar selective surface (SSS) should, generally, absorb 

the highest incoming solar radiation in the visible and lowest thermal emittance in the infra-

red range of the solar spectrum.  Industrial SSSs use metal particles based ceramic cermet 

structures synthesized via vacuum, electroplating, sputtering, and electrochemical procedures 

[468, 469].  Recently we reported our work on copper-cobalt oxide thin film coatings on the 

top of highly reflective aluminum substrates using a customized, and yet, cost-effective 

sol−gel dip-coating method [456, 470].  The new coatings demonstrated distinct optical 
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properties with promising prospects for solar selective absorber application.  Details 

regarding the metal oxidation states as well as the mechanical properties of these coatings are, 

nonetheless, rather sketchy and currently lacking even though they are vital for design 

optimization purposes.  

 

An area of application of which these cobalt-based oxides are comparatively less studied is 

optical or solar-based coating whereby optical performance of a surface can be manipulated 

by depositing thin films with varying thicknesses and reflective indices. Incidentally, there 

are certainly many knowledge gaps that need to be filled in terms of fundamental surface 

characteristics of these thin films especially in regard to their morphologies, binding states of 

metal oxides and mechanical strengths.  A technical understanding of these characteristics is 

an essential component in the smart design and engineering context of thin film coatings for 

optical applications.  From an atomistic point of view and apart from the experiment, density 

functional theory (DFT), a quantum mechanics based computational modelling; provide a 

powerful tool to analysis various material properties, such as electronic structure, thermal and 

mechanical properties [37].  Numbers of theoretical studies have been conducted to 

investigate bulk and surface properties, e.g., bonding, band structures, and thermomechanical 

properties etc., of Cu-oxide [471, 472] and Co-oxide [473, 474] based materials.  An earlier 

study given by Soon et al. reported that the band structures and cohesive properties of  copper 

oxide structure [475].  

The physicochemical, optical, magnetic, electrochemical, and thermal properties of these 

coatings have been extensively studied by several groups which are essential to afford 

functionalities and enrich application performances of these materials [467, 476-478].  

Compared to a large volume of available literature, the post annealing structural features of 

CuCo-oxide coatings are rarely studied and, till date there are not any integrated experimental 

reports on temperature dependent structural and optical properties these coatings.  Higher 

degree of thermal stability of a material is an essential condition for its real-world 

applications.  This is also true for metal oxide structures [479].  The particle morphology, 

crystallite size, grain structure, surfaces roughness and local electronic bonding states of the 

metal oxides formed via powder synthesis and coatings deposition could differ significantly 

during thermal treatment and could be essentially different from the regularities established in 

the unannealed coatings.  There are, however, many aspects entailing more in-depth analysis 
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to comprehend the impact of annealing temperatures on the structural, morphological and 

optical characteristics of these coatings.  

 

Assessing the above facts, this work is aimed at investigating the structural, morphological 

and local electronic bonding states, and solar selective profile of CuCo-oxide coatings, 

synthesized before annealing and annealed at 200, 300, 400, 500°C in air for 1 hour, using 

XRD, FESEM, AFM, X-ray photoelectron spectroscopy (XPS), ultra-violet visible near 

infrared (UV–Vis–NIR), and Fourier transform infrared (FTIR) spectroscopic methods.  

Possible charge distribution given by Bader’s charge calculation for cluster of Cu0.75C2.25O4 

matrix will be used to interpret the electronic structure results from experimental 

characterization. 

 

8.3 Experimental 

8.3.1 Deposition of coatings 

Cobalt (II) chloride (CoCl2.6H2O, APS Chemical, >99%), copper (II) acetate monohydrate 

(Cu(OOCCH3))2.H2O, Alfa Aesar, >98%), propionic acid (C2H5COOH, Chem 

Supply, >99%), and absolute ethanol (E. Mark of Germany,  >99%.) were used to synthesize 

CuCo-oxide coating onto highly-reflective commercial aluminum substrates (Anofol, size 2 

cm × 4 cm).  Aluminum substrates were cleaned with a hot mixture of Cr(VI)O and 

phosphoric acid followed by a wash using milli Q water.  The cleaned substrates were dried 

with a flash of N2 gas. 1.502 gm of cobalt (II) chloride (CoCl2·6H2O, 0.25 mol/L), and 1.273 

gm of copper (II) acetate monohydrate (Cu(OOCCH3))2.  H2O were mixed with absolute 

ethanol.  Propionic acid (C2H5COOH) was used to make complex solution with the metal 

ions and to stabilize the solution from unwanted precipitation.  After stirring the mixed 

solution for 2 h, the sol was coated onto aluminum substrates using a dip-coating technique.  

A dipping and withdrawal rate of 180 mm/min and 60 mm/min, respectively was maintained 

throughout the synthesis process which was repeated four times to increase the thickness of 

film with better uniformity.  Finally, the coatings were annealed at 200, 300, 400 and 500 °C 

in air for 1 h.  A constant heating rate of 10 °C/min was maintained throughout. More details 

about the deposition of coatings is reported elsewhere [462].  
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8.3.2 Crystal Phase Structure and Rietveld Refinement 

Rietveld refinement was employed to refine the XRD data as implemented in TOPAS 

program.  We used a pseudo-Voigt peak shape model comprised of Lorentzian and Gaussian 

components.  The difference between the two patterns was minimized through a process of 

least-squares.  A Bruker Advance D8 X-ray Diffractometer equipped with a LynxEye 

detector was used to carry out the XRD measurements.  The XRD machine was operated at 

40 kV and 40 mA at room temperature over a 2  range of 30° to 80° with a step size of 0.01°.  

The X-rays used to characterize the coatings was a combination of CuKα1 (λ = 0.15406 nm) 

and CuKα2 (λ = 0.15444 nm) radiations.  The initial crystal structure including atomic 

positions of CuCo-oxide phases were obtained from ICSD database to model the cubic 

structure in Fm-3m symmetry group.  The background was modelled using a Chebychev 

polynomial background function with order of 6. The lattice parameter, scale, zero error, 

sample displacement and background were refined to estimate the lattice parameter, 

crystallite size (domain size), residual stress, and microstrain of CuCo-oxide coatings before 

and after annealing.  

8.3.3 XPS Analysis 

Chemical analysis of the coatings was performed via Kratos Axis-Ultra photoelectron 

spectrometer.  The Kratos XPS machine uses Al-Kα monochromatic X-ray source with beam 

energy of 1486.6 eV at a power of ~10 mA and ~15 kV.  Square size samples (2 mm × 2 mm) 

were mounted on steel sample holder.  A uniform pressure of 2.9 × 10‒9 Torr was maintained 

in the XPS analyser chamber.  The Cu2p, Co2p, O1s, C1s photoelectron lines were recorded 

with a 2D delay line detector.  The photoelectron energy scale was calibrated using C1s 

(hydrocarbon; C‒H) line at 284.6 eV. CASA-XPS v.2.3.15 software was used for XPS data 

analysis and deconvolution of the curves.  

 

8.3.4 Film Surface Feature via FESEM Analysis 

FESEM is one of the popular techniques to investigate the morphological features of coating 

materials which gives us essential information concerning the growth mechanism, shape and 

size of the coating particles.  The surface morphology of samples was studied utilizing a 

field-emission scanning electron microscope (FESEM, Nova NanoSem 450) operating   at   

low   voltage (10kV)   to   minimize   charging   effects.   FESEM   digitized micrographs  
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were  obtained  with  a  magnification  50,000 to 100,000×. A secondary electron imaging 

(SEI) detector was used for this purpose. 

 

8.3.5 Film Surface Feature via AFM Analysis 

A high-resolution atomic force microscopy (AFM, Nanomagnetic Instrument Co.) was used 

to acquire the two and three-dimensional topographical images of the CuCo-oxide coatings.  

The AFM was operated in tapping mode at the room temperature.  A typical rectangular 

cantilever was employed for the imaging process.  This was accomplished by raster scanning 

the position of the sample with respect to the tip and recording the height of the probe that 

corresponds to a constant probe-sample interaction.  A LabVIEW software was used to 

analyse the micrographs.  

The AFM images are usually quantified by three parameters at the microscopic scale namely, 

the mean roughness (Ra), rms value (Rq), and z scale.  The mean roughness, Ra of an AFM 

image is estimated from the following relation [480], 

𝑅𝑎 = 
∑ |ℎ𝑖−ℎ̅|
𝑁
𝑖=1

𝑁
                                        8.1 

where hi indicates the surface roughness value of the coating at ‘i’, ℎ̅ is the mean surface 

roughness, and N is the number of data points considered for that particular AFM image, but 

the most common parameter used for estimating the changes in surface topography of a 

coating is known as the rms value of the surface roughness, Rq.  The Rq is a measure of the 

height deviations taken from the mean data plane and is defined as [480], 

𝑅𝑞 = √
∑ |ℎ𝑖−ℎ̅|

2𝑁
𝑖=1

𝑁
                                     8.2 

The z scale gives the vertical distance between the highest and the lowest point of the image 

[480].   

 

8.3.6 UV-Vis Reflectance Studies 

Solar absorptance of the coatings was determined using a double-beam UV–Vis 

spectrophotometer (Model: UV-670 UV-Vis spectrophotometer, JASCO, USA) with a 

unique, single monochromator design covering a wavelength range from 190 to 2500 nm.  
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The monochromator consists of a 1200 grooves/mm grating and a photo multiplier tube 

(PMT) detector for the UV-Vis measurements.  

 

8.3.7 FTIR Reflectance Studies 

The solar reflectance of the thin film coatings were measured using a FTIR spectrometer 

(Perkin Elmer Spectrum 100 FTIR Spectrometer, USA) in the wavelength of 2.5 to 15.5 µm.  

The solar absorptance and the thermal emittance of a material can be calculated from 

measurements of reflectance data from the visible and infrared ranges of the solar spectrum 

[481].  The total solar absorptance (α) and thermal emittance (ε) of the coatings were 

estimated via  Beckmann-Duffie method as described in Ref. [481].  The solar selectivity (s), 

the ratio of the solar absorptance (𝛼) to the emittance ( ) [427, 482] (i.e., 



=s ) of the 

coatings was also estimated from the UV-Vis and FTIR data of the coatings.  

 

8.3.8 Theoretical Charge Distribution Analysis via Density Functional Theory 

(DFT) 

The charge calculations for Cu0.7C2.28O4 material were initially performed using density 

functional theory (DFT) as implemented in Vienna ab-initio simulation package (VASP) 

code [230].  The exchange correlated energies were treated by generalized gradient 

approximation (GGA) [483].  To improve the simulated results, we have been required to 

employ the on-site coulomb interaction correction within DFT+U (where U is the Hubbard 

parameter) approach by Dudarev et al. [214], as this approach can reproduce the 

corresponding measured band gap for this material.  We set Hubbard parameters U and J 

within (Ueff =U-J) at 9.5 and 0.95 eV, respectively.  The cut-off energy of 500 eV was used to 

expand the wave function in a form of plane wave. A 4 × 4 × 4 K-points generated by 

Monkhorst Pack scheme [484] was used to integrate the Brillouin Zone of selected cluster.  

All atoms were allowed to relax until their energies reached 10-4 eV.  Bader’s theory [485] 

was employed to investigate the charge distribution with the structure.  Bader’s method uses 

electronic charge density to partition continuous molecular charges into individual atomic 

charges through dividing the space in molecules into volumes.  

 ∇𝜌 (𝑟). 𝑛̂ = 0                                                                                                              8.3 
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where ∇𝜌 (𝑟) is three-dimensional gradient operator for the electron density at a position r 

and 𝑛̂ corresponds to the unit vector perpendicular to the dividing surface.  

 

8.4 Results and Discussion 

8.4.1 XRD Analysis 

XRD patterns of the CuCo-oxide coatings before and after being annealed at 200, 300, 400 

and 500°C are shown in Figure 8.1.  Inspecting the peak intensities and d-spacing values for 

peaks at 38.3° (222), 44.8° (400), 65.2° (440), and 78.3° (622) can be attributed to the 

Cu0.95Co2.05O4 (ICSD 78-2177), Cu0.75Co2.25O4 (ICSD 78-2176), Cu0.56Co2.44O4 (ICSD 78-

2175), and Cu0.37Co2.63O4 (ICSD 78-2174) phases.  All these phases have the cubic crystal 

symmetry and a space group of Fd-3 m (227).  According to the XRD data it is seen that the 

degree of crystallinity of (400) CuCo-oxide phases increases with the rise in annealing 

temperatures.  XRD data revealed that the as-deposited coatings demonstrated as obvious 

feature of amorphous nature.  It was also found that all the annealed coatings had a 

polycrystalline structure with multiple crystal planes orientations of (222), (400), (440), and 

(622) respectively.  As the annealing progresses, all the coatings shown a preferential 

orientation along (400) reflection plane together with a significant peak broadening behavior.  

It is also clearly shown that with the subsequent annealing, intensities of (222) and (400) 

peaks are gradually enhanced while a reverse phenomenon was identified with (440) 

reflection plane.  It is assumed that the peak broadening behavior was instigated from the 

diminution of grain size and the presence of residual stress induced around the crystal matrix.  

Rietveld refinement, of the diffraction patterns of crystallized CuCoO coatings analyzed 

within the Fm-3m space group, produced successful fits with approximated Rwp≈23% and 

Rexp≈20% (See Figure 8.2).  The lattice constant was measured as 0.809 nm at room 

temperature and slightly increased during the annealing.  

https://en.wikipedia.org/wiki/Gradient_operator
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Figure 8.1: XRD spectra of CuCo-oxide coatings before annealing and after being annealed 

at 200-500°C in steps of 100°C. 

 

Debye–Scherrer formula (Equation 8.4) was employed to estimate the grain size of the 

coatings.  The results presented in Table 8.1 show that as the annealing temperature raises, 

the crystallite size and lattice parameters of the coatings increases considerably. 

𝐷𝑔 =
𝐾𝜆

𝛽𝑐𝑜𝑠𝜃
                                       8.4  

where K is a dimensionless quantity known as the crystallite-shape factor (K = 0.90) [486], 𝛽  

is the line broadening at half the maximum intensity (FWHM) measured in radians, and θ is 

the Bragg angle. 
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Figure 8.2: Rietveld refinement of XRD spectra of CuCo-oxide coatings before annealing 

and after being annealed at various temperatures. 

 

Table 8.1: Variation of crystallite size, lattice parameters, residual stress and microstrain of 

CuCo-oxide coatings with annealing temperatures. 

Annealing 

temperature 

(°C) 

Crystallite 

size 

(±20%), Dg 

(nm)  

Lattice 

constant, a 

(nm) 

Along (400) plane Along (440) plane 

Microstrain 
2θ 

Residual 

stress, 

σx (GPa) 

2θ 

Residual 

stress, σx 

(GPa) 

Room 

temperature 
310 0.809 44.74 -1.15 65.12 0.19 0.14 

200.00 330 0.810 44.70 0.05 65.07 0.11 0.12 

300.00 350 0.810 44.71 0.05 65.08 0.08 0.11 

400.00 420 0.811 44.72 0.03 65.09 0.08 0.10 

500.00 530 0.812 44.72 0.02 65.09 0.07 0.08 
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The strain developed within a material can be estimated by evaluating the d-spacing of the 

crystal planes using X-ray diffraction [487]: 

𝜀𝑧 = 
𝑑𝑛−𝑑0

𝑑0
                                  8.5 

where εz is the component of strain normal to the surface, and dn and d0 are the measured and 

strain free d-spacing values, respectively.  For a coating thickness of ~1 μm, the residual 

stress σz is, generally, taken to be zero [488].  Thus, the strain component normal to the 

surface is written as [489],  

𝜀𝑧 = −𝜈(𝜀𝑥 + 𝜀𝑥) =  −
𝜈

𝐸
 (𝜎𝑥 + 𝜎𝑥)                   8.6 

where ν is Poisson's ratio, E is Young's modulus, and σx and σy are the stresses along x and y 

directions, respectively. 

Assuming the coating to be isotropic i.e., σx = σy, and linking Equations 8.5 and 8.6, we attain  

2𝜎𝑥 = −
𝐸

𝜈
 (
𝑑𝑛−𝑑0

𝑑0
)                                8.7 

Equation 8.7 is used to estimate the residual stress developed within the CoCu2O3 matrix at 

various annealing temperatures.  The average E value (100 GPa) [457] has been used to 

realize the tendency of stress changing as the annealing progresses.  It is interesting to note 

that the experimental value of E is very promising with those estimated via first principle 

calculations, demonstrating that the actual stress developed in the coatings is also in good 

agreement. From our analysis, it is clearly shown that the residual stress of CuCo-oxide 

coatings decreases with the rise in annealing temperature (See Table 8.1).  Diffraction 

patterns of cubic CuCo-oxide coatings before annealing and after being annealed at various 

temperatures were analyzed within the Fm-3m space group.  Rietveld refinement of XRD 

data produced successful fits with Rwp ≈ 23% and Rexp ≈ 20% (See Fig. 79).   

 

The lattice constant was measured as 0.809 nm at room temperature and slightly increased as 

the annealing progressed.  The preferential growth in the as deposited coating was observed 

at (440) orientation.  The reorientation of the coating film from (440) to (400) took place at 

200 °C.  The XRD patterns of annealed coatings were dominated by peak broadening and 

sharpening.  The maximum line broadening and peak sharpening occurred to coating 

annealed at 500 °C.  The contribution of crystallite size, lattice constant, residual stress, and 
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microstrain to the peak broadening were identified using the Lorentzian and Gaussian 

components of the fitted peaks.  Table 8.1 show that the crystallite size and lattice constants 

of the coatings are systematically increased as the annealing rises.  On the other hand, the 

residual stress and lattice micorstrain are reduced at higher temperatures which indicates the 

internal stress release in the coating resulted from reduction of defects like dislocations and 

vacancies. 

8.4.2 XPS Analysis 

Figure 8.3 shows the XPS survey scans of CuCo-oxide coatings before and after annealing in 

the binding energy range of 0-1200 eV.  Elemental compositions of the coatings before 

annealing and after annealing as estimated via XPS studies are listed in Table 8.2.  From 

Table 8.2, it is evident that annealing has prominent effect on the elemental compositions of 

metal oxide coatings.  The atomic percentages of Cu and Co are reducing with the rise in 

annealing temperature while the O and C-contents were enriched.  This reveals the 

occurrence of surface oxidation as the annealing progresses.  Since the oxygen content is 

higher at high annealing temperature, the oxidation layer may be thicker and more 

predominant at the surface.  Acquired XPS data were calibrated with respect to the C1s peak 

at a standard binding energy of 284.6 eV to avoid the charge shift.   

 

Figure 8.3: XPS survey spectra of CuCo-oxide coatings before and after annealing. 
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Table 8.2: Elemental compositions of CuCo-oxide coatings before and after annealing in air. 

 

The deconvolution curve of Cu2p3/2 photoelectron line and its satellite, before and after 

annealing, of CuCo-oxide coatings is shown in Figure 8.4.  The curve-fitting results of all 

coatings as deducted from XPS data analysis are enumerated in Table 8.3.  From Figure 8.4, 

it is clearly seen that features arising from Cu2p3/2 photoelectron line lies in the binding 

energy range of 931.7–943.8 eV.  It also indicates that gradual increase of annealing 

temperature does not have significant effect on the copper bonding structure around the 

coatings surface.  Cu2p3/2 feature seen at 931.7-932.6 eV (denoted as ‘i’) is originated from 

tetrahedral Cu+ ions.  The second component detected at 932.5–933.5 eV (denoted as ‘ii’) can 

be assigned as the contribution from the octahedral Cu2+ ions.  The third segment observed at 

933.7-934.8 eV are assumed to be originated from a mixture of Cu+ ions and Cu2+ ions.  The 

absence of a component at the low binding energy side of the Cu2p3/2 peak indicates that 

natural cooling overnight to room temperature inside the closed oven furnace might prevent 

the reduction of octahedral Cu2+ in contrast to the relatively faster cooling outside the furnace. 

Annealing temperatures (°C) 
Atomic percentages of elements 

Cu Co O C 

Before annealing 13.96 24.57 59.32 2.15 

200°C 11.99 25.10 60.25 2.67 

300°C 11.35 23.89 61.54 3.22 

400°C 10.77 17.86 63.67 7.70 

500°C 6.43 12.41 53.04 28.13 
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Figure 8.4: Decoupling of high resolution XPS spectra of Cu2p3/2 peak of CuCo-oxide 

coatings (a) before annealing, and annealed at: (b) 200°C, (c) 300°C, (d) 400°C, and (e) 

500°C. 
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Table  8.3: The deconvolution results of high resolution XPS spectra at Cu2p photoelectron 

line and its satellite. 

 

 

Deconvolution curves of high resolution XPS profile and the corresponding satellite of 

Co2p3/2 photoelectron line, of CuCo-oxide coatings, before annealing and after annealing are 

presented in Figure 8.5. The manifestation of a typical satellite at high energy side of Co2p3/2 

peak reveals the presence of CoII+ ions.  Relatively low intensity of these satellites indicates a 

partial spinel-type lattice arrangement of cobalt ions.  It is also predicted that lower intensity 

of these satellites might correspond to a mixer of CoIII+ and CoII+ ions [462].  The 

deconvolution of Co2p3/2 peak and its satellite result in five curve fitting components.  The 

first components seen at 778.8-779.7 eV are basically arising from the CoIII+ ions in 

octahedral coordination.  The second fitting curve is believed to be a contribution from the 

mixed CoIII+ and CoII+ bonding states.  The third fitting components in the binding energy 

range of 782.2-783.1 eV are the characteristic of CoII+ ions in tetrahedral coordination.  The 

corresponding binding energy positions and the percentage of each component together with 

the satellite positions are set out in Table 8.4.  From the Cu2p3/2 features, it is realized that the 

CuIII+ ions partially substitute the CoII+ ions thus forming a lower degree of crystallization of 

CuII+Co2
III+O4 spinel systems [462, 463].  The satellite peaks above 785.00 eV are well-

known to be the contribution from cobalt oxide bonds.  The gradual increases in annealing 

temperatures, generally, do not have any significant influence on bonding structure around 

the cobalt surface.  

 

Annealing 

temperature  

(°C) 

Binding energy positions and percentage of bonding states 

Cu2p photoelectron line Satellites 

i ii iii iv v 

Before 

annealing 

932.6 eV 

(35.5%) 

933.5 eV 

(20.6%) 

934.5 eV  

(27.0%) 

941.0 eV 

(10.9%) 

943.8 eV 

(6.0%) 

200 
931.7 eV 

(31.8%) 

932.5 eV 

(29.4%) 

933.7 eV 

(22.6%) 

 940.1 eV 

(9.4%) 

942.7 eV 

(6.7%) 

300 
931.8 eV 

(35.1%) 

932.7 eV 

(27.8%) 

934.1 eV 

(16.6%) 

940.1 eV 

(10.9%) 

942.6 eV 

(9.6%) 

400 
932.3 eV 

(49.3%) 

933.3 eV 

(9.33.3%) 

934.7 eV 

(934.7%) 

940.7 eV 

(940.7%) 

943.3 eV 

(943.3%) 

500 
932.2 eV 

(23.2%) 

933.1 eV 

(50.3%) 

934.8 eV 

(11.6%) 

940.9 eV 

(11.3%) 

943.4 eV 

(3.6%) 
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Figure 8.5: Decoupling of high resolution XPS spectra of Co2p3/2 peak of CuCo-oxide 

coatings (a) before annealing, and annealed at: (b) 200°C, (c) 300°C, (d) 400°C, and (e) 

500°C. 



219 
 

Table  8.4: The deconvolution results of high resolution XPS spectra at Co2p photoelectron 

line and its satellite. 

 

 

Figure 8.6 shows the deconvolution of O1s XPS spectra of CuCo-oxide coatings synthesized 

before annealing and after being annealed at different temperatures.  In all five coatings, the 

O1s spectrum displays a prominent peak with a shoulder at the higher binding energy side 

above 530.0 eV.  The curve-fitting of O1s photoelectron line gives out three fittings 

components.  The first components at 528.6–529.6 eV (symbolized as ‘i’) is ascribed to 

lattice O2− ions, while the second components at 529.1–530.1 eV (symbolized as ‘ii’) may be 

due to the surface oxygen originated from OH-like species such as hydroxyl, and carbonate 

groups [476, 490, 491].   The third and final component at 530.7–531.7 eV (symbolized as 

‘iii’) is attributed to the sub-surface O- species.  The apparent are assumed to be the 

distinctive feature of the CuCo-oxide system which differentiates them from O1s on Co3O4 

phase.  However, there is no apparent alteration in the surface compositions of the CuCo-

oxide coatings as they undergo at different annealing temperatures. 

 

Annealing 

temperature  

(°C) 

Binding energy positions and percentage of bonding states 

Co2p photoelectron line Satellites 

i ii iii iv v 

Before 

annealing 

779.7 eV 

(32.7%) 

781.2 eV 

(22.7%) 

783.1 eV 

(21.6%) 

786.3 eV 

(14.0%) 

788.5 eV 

(8.9%) 

200 
778.8 eV 

(32.0%) 

780.3 eV 

(24.4%) 

782.3 eV 

(18.4%) 

785.2 eV 

(14.8%) 

787.6 eV 

(10.4%) 

300 
778.8 eV 

(27.0%) 

780.3 eV 

(33.7%) 

782.5 eV 

(15.9%) 

785.2 eV 

(13.8%) 

787.4 eV 

(9.7%) 

400 
779.0 eV 

((23.7%) 

780.2 eV 

(27.9%) 

782.2 eV 

(16.9%) 

785.6 eV 

(25.6%) 

788.5 eV 

(5.9%) 

500 
779.3 eV 

(33.5%) 

780.7 eV 

(18.4%) 

782.2 eV 

(19.3%) 

785.5 eV 

(20.6%) 

788.3 eV 

(8.1%) 
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Figure 8.6: Decoupling of high resolution XPS spectra of O1s peak of CuCo-oxide coatings 

(a) before annealing, and annealed at: (b) 200°C, (c) 300°C, (d) 400°C, and (e) 500°C. 
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 Table  8.5: The deconvolution results of high resolution XPS spectra at O1s photoelectron 

line and  its satellite. 

 

 

8.4.3 FESEM Analysis of the Coatings 

 

The impact of thermal treatment on the surface morphology of CuCo-oxide coatings was 

investigated via FESEM imaging.  As observed from FESEM images shown in Figure 8.7.a-e, 

the annealing plays a significant role modifying the morphological features of the synthesized 

coatings.  Before annealing the CuCo-oxide coatings were showing mould-like structures; 

after thermal treatment they were transformed into compact and smooth morphologies 

together with the homogeneously distributed particles.  This might be due to the consequence 

of the grain size’s change associated with amalgamation of grains.  It is also expected that 

after consolidation of the grains, agglomerates are formed, and the new grains attain a certain 

specific shape (see Figure 8.7.e).  Some of the particles shown well-defined grain boundaries 

and an average particle size of 25-70 nm were recorded.  It was also confirmed that the 

average particle size of the coatings was monotonically increased with the gradual increase of 

annealing temperature of the coatings.  The overall quality and morphology of the coating is 

quite impressive.  Morphological studies on Cu2O–CoO composites annealed at indicate the 

formation of dense nanostructured particles without any distinguishable landscapes.  

However, upon the increase of temperature to 500 °C, particles were agglomerated to 

irregularly shape larger sizes [492]. 

 

Annealing temperature  (°C) 

Binding energy positions and percentage of bonding states 

of O1s photoelectron line 

i ii iii 

Before annealing 
529.6 eV 

(48.0%) 

529.9 eV 

(42.7%) 

531.7 eV 

(9.3%) 

200 
528.6 eV 

(40.7%) 

529.1 eV 

(49.7%) 

530.7 eV 

(9.6%) 

300 
528.8 eV 

(47.5%) 

529.1 eV 

(38.6%) 

530.8 eV 

(13.9%) 

400 
529.1 eV 

(49.5%) 

529.5 eV 

(34.95) 

531.2 eV 

(15.7%) 

500 
529.3 eV 

(61.5%) 

530.1 eV 

(20.1%) 

531.5 eV 

(18.4%) 
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Figure 8.7: FESEM images of CuCo-oxide coatings (a) before annealing, and annealed at: (b) 

200°C, (c) 300°C, (d) 400°C, and (e) 500°C. 
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8.4.4 AFM Analysis of the Coatings 

Surface topographical features of the CuCo-oxide coatings imaged using AFM technique are 

presented in Figure 8.8.  The estimated surface roughness values together with the image 

surface area of the CuCo-oxide coatings before and after annealing are presented in Table 8.6. 

 

 

Figure 8.8: AFM images of CuCo-oxide coatings (a) before annealing, and annealed at: (b) 

200°C, (c) 300°C, (d) 400°C, and (e) 500°C. 
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Table  8.6: Surface roughness parameters of CuCo-oxide coatings before and after annealing. 

 

The Ra and Rq values of the CuCo-oxide coatings before annealing are found to be lower than 

the annealed ones.  The mean surface roughness, Ra and the rms value of the surface 

roughness, Rq have been improved by 121 and 142%, respectively after the coatings been 

annealed, within an average image surface area of 117 μm2.  This clearly indicates that 

annealing has remarkable impact on the surface topographical features of CuCo-oxide 

coatings.  Annealing results in the occurrence of major grain growth around the coating 

surface which in turn is responsible for the enhanced surface roughness of the coatings.  This 

is because as the annealing progresses, the atoms have adequate activation energy to occupy 

the correct site in the crystal lattice and grains.  It is also assumed that, during annealing, due 

to the higher ionic mobility, and densification of the materials grains were growth on the z 

direction, perpendicular to the substrate surface and surface roughness of the coatings was 

increased.  This is consistent with the crystalline properties of these coatings as seen in 

FESEM and XRD analysis of this manuscript.  The peaks and valleys indicate the 

quantitative surface roughness and absorptance of these coatings.  With close examination of 

images, grain-like particles are more obvious with sizes ranging from 20 to 80 nm which are 

embedded within pores.  These grain-like particles morphologies were also reported by 

Amun et al. [463].  

 

8.4.5 Solar Selectivity Studies 

 

The solar selective properties of CuCo-oxide coatings before and after annealing were 

evaluated on the basis of solar reflectance spectra, acquired using UV-Vis and FTIR 

techniques in the wavelength range of 190-2500 nm and 2.5-15.4 μm, respectively shown in 

Annealing 

temperatures 

(°C) 

Mean 

roughness, Ra 

(nm) 

rms value of the 

surface roughness, 

Rq(nm) 

z Scale (nm) 
Image surface 

area (μm
2
) 

Before 

annealing 
19.4 24.8 210 105 

200 27.8 38.6 530 121 

300 32.1 44.7 704 134 

400 37.0 52.1 820 157 

500 43.0 60.0 910 167 
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Figures 8.9 and 8.10.  Using the UV-Vis and FTIR reflectance spectra, the solar absorptance 

and thermal emittance values of these coatings were assessed by Duffie and Beckman method, 

as described [24].  The corresponding solar selectivity values of the coatings as computed 

using 𝑠 =  
𝛼

𝜀
  are displayed in Table 8.7.  The prepared coatings exhibit low to moderate 

reflectance together with interference peaks in the lower wavelength regions and sharp 

absorption edges that basically form solar selective absorber curve profiles surrounded by 

UV–Vis–NIR range of the solar spectrum.  Gradual increase in annealing temperature, 

generally, has a tendency to shrink the interference peaks and the absorption edges.  

Consequently, the solar absorptance values are improved.  Substantial reductions of the 

interference peak and the absorption edge were identified by the coatings annealed at 400 °C 

and 500 °C and the corresponding absorptance values reached to the maximum.  It is, 

generally, assumed that the reflectance behaviors of CuCo-oxide coatings, in the NIR range, 

is governed by at three aspects [463, 493] thickness of the coatings, inherent properties of the 

coating materials, and the reflective nature of the substrates used to deposit the coatings.  In 

the present case all the coatings having the similar thicknesses, the reflectance profiles are 

governed by the combined effect of solar absorptions/scattering by the coating materials and 

the back-reflections of the near-infrared radiations passed through the coatings by the 

substrate.  Furthermore, high temperature annealing also boosts the crystallinity of the 

coatings material that consequently results increasing the scattering leading to enhance the 

absorption. 
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Figure 8.9: UV-Vis reflectance and absorptance spectra of CuCo-oxide coatings before 

annealing and after being annealed at different temperatures. 

 

 

Figure 8.10: FTIR reflectance spectra of CuCo-oxide coatings before annealing and after   

being annealed at different temperatures. 
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Table 8.7: Solar absorbance, thermal emittance and solar selectivity values of CuCo-oxide 

coatings before annealing and after annealing at different temperatures in air for 1 hr. 

 

 

Following Beckman-Duffie method, using the FTIR reflectance data presented in Figure 8.10, 

the estimated thermal emittance values of CuCo-oxide coatings before and after annealing 

presented in Table 8.7 shows that the thermal emittance values are significantly reduced from 

13.6 to 3.8% with the gradual increase in annealing temperatures.  It is established that the 

solar absorptance and thermal emittance of coatings strongly depend on their corresponding 

band-gap.  Annealing effectively modifies the overall band structure of these coatings and 

thereby the solar selectivity values are also improved.  The selection of substrate materials 

also has a considerable impact on the reflective behavior of coatings.  The longer the near-

infrared wavelength, the more radiation will be transmitted through the coating due to the less 

energy preserved by the optical photons.  As a result, it is easier for them to pass through to 

the coating without being absorbed and then reflected back by the substrate.  This absorber–

reflector tandem concept allows them to behave similar to a semiconducting object.  The 

solar selectivity values of these coatings also depend on the materials used, synthesis 

conditions and techniques, coatings thickness, surface roughness of the coatings, and so on.  

It has been clearly seen that annealing leads to lattice and grain refinements (XRD results), 

modifications in residual stress and microstrain values (XRD data), formation of new 

bonding and changes in chemical bonding states (XPS results), microstructural modification 

(from FESEM studies), variations in surface roughness of the coatings (AFM studies), and 

band structure change (band-gap analysis data).  All these factors substantially affect the 

scattering and the reflection of incident solar radiation and therefore the optical 

characteristics of the coatings are, in turn, are improved.  Consequently, the solar selectivity 

values are boosted.  

 

Annealing condition Solar absorptance (%) Thermal emittance (%) Solar selectivity 

Before annealing 51.72 13.60 3.81 

200 °C 74.45 9.72 7.66 

300 °C 80.90 7.45 10.86 

400 °C 86.30 6.49 13.30 

500 °C 91.22 3.80 24.00 
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8.4.6 Bader’s Charge Analysis 

 

Table 8.8 lists Bader’s charges on Cu, Co and O atoms in bulk CuxCo3-xO4 system. As seen 

from Table 8.8, the Cu and Co atoms in all the stoichiometries hold positive charges while 

the O atoms are associated with negative charges.   Bader charge values also reveal a 

covalent character for Cu-Co bond in all the system that have both of these atoms and ionic 

character for Cu-O and Co-O bonds.  Moreover, our results show that Co atoms loss more 

electrons when Cu is introduced into the system, while O atoms gains electrons less than 

what they did when Cu ratios increases. 

            

Table 8.8 : Bader’s charges on Cu, Co and O atoms in e on CuxCo3-xO4 (x = 0, 0.75, 1.5, 2.25 

and 3) coatings. 

 

 

8.5 Conclusions 

The CuCo-oxide coatings, deposited on aluminum substrates, were investigated for their 

temperature dependent structural and solar selectivity analysis via XRD, XPS, FESEM, AFM, 

UV-Vis, and FTIR approaches.  FESEM, AFM and XRD show increase in the crystalline 

domains of the coatings with increasing annealing temperatures while the residual stress 

systematically decreasing indicating mechanically stable material.  XPS analysis determined 

(i) tetrahedral, octahedral and mixed states of Cu and Co ions, (ii) stable Co/Cu ratio, (ii) 

increasing surface C and O ratio and (iv) no metal-carbon bonding.  Optical studies via UV-

Vis and FTIR reflectance spectrum confirmed an excellent solar selectivity of 24 attained by 

the coating annealed at 500 °C.   

Stoichiometry Charge transfer (electrons) 

Cux Co3-x O4 Cu Co O 

0 3 4 0 1.58 -1.18 

0.75 2.25 4 1.10 1.61 -1.11 

1.5 1.5 4 1.30 1.66 -1.11 

2.25 0.75 4 1.28 1.66 -1.03 

3 0 4 1.12 0 -0.84 
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Chapter 9 : Influence of the variation in the U parameters in the 

DFT + U methodology on activation and reaction energies 

 

Paper IV 

Miran, H.A., Jiang, Z-T, Jaf, Z.N., Rahman, M.M. and Altarawneh, M. Influence of the 

Variation in the Hubbard Parameter (U) on Activation Energies of CeO2-Catalysed Reactions, 

Submitted to Catalysis Letters, August (2018). 

 

9.1 Abstract  

 

Accurate description of thermodynamic, structural and electronic properties for bulk and 

surfaces of ceria (CeO2) necessitates the inclusion of the Hubbard parameter (U) in the 

density functional (DFT) calculations to precisely account for the strongly correlated 4f 

electrons.  Such treatment is a daunting task when attempting to draw a potential energy 

surface for CeO2-catalyzed reaction.  This is due to the inconsistent change in 

thermodynamic/kinetics of the reaction in reference to the variation in the U values.   As an 

illustrative example, we investigate herein the discrepancy in activation and reaction energies 

for steps underlying the partial and full hydrogenation of acetylene over the CeO2 (111) 

surface.  Overall, we find that both activation and reaction energies positively correlate with 

the increase in the U value.  In addition to benchmarking against more accurate theoretical 

methodologies, we suggest that U values are better to be optimized against kinetics modelling 

of experimentally observed profiles of products from the catalytic reaction.  

 

 

http://researchrepository.murdoch.edu.au/view/author/Miran,%20Hussein.html
http://researchrepository.murdoch.edu.au/view/author/Jiang,%20Zhong-Tao.html
http://researchrepository.murdoch.edu.au/view/author/Jaf,%20Zainab.html
http://researchrepository.murdoch.edu.au/view/author/Rahman,%20Mohammad.html
http://researchrepository.murdoch.edu.au/view/author/Altarawneh,%20Mohammednoor.html
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9.2 Introduction 

 

Cerium oxide (CeO2, ceria) and their based materials are essential in many catalysis industries 

[74, 494, 495].  Because of being oxygen - storage ingredients [158], they are utilized in three-

way catalysts (TWCs) technology [496].  In the latter, ceria act as an oxidizing and reducing 

agent for some pollutants (CO, NOx, HC) emitted by cars and subsequently converting them to 

harmless materials.  Another catalytic application of ceria is that the ceria- supported transition 

metals are being presently considered as active catalysts for the water- gas - shift reaction which 

converts CO and water to CO2 and hydrogen [497].  The fact standing behand these and other 

applications of ceria is the two stable and extreme oxidation states [270] namely, Ce4+, Ce3+.  As 

such curium oxide may occupy different possible states between these two extreme states; CeOx. 

 

Accurate electronic, structural and thermo-mechanical properties of materials can now be readily 

acquired by density functional theory (DFT) calculations.  However, plain DFT functional suffer 

from a serious shortcoming in describing the electronic structure of ceria.  Excessive 

delocalization of the 4f electron wrongly result in a metallic behavior for CeO2 in contrast to its 

semiconducting nature observed experimentally (band gap of ceria amounts to 6 eV [498].  To 

force localization and strong correlation in the 4f electrons in ceria, the DFT + U (Hubbard 

parameter) approach has been widely deployed.  Unfortunately, there is a no single U value that 

can reproduce all materials attributes, such as geometries, thermodynamics and density of states.  

The U value for bulk CeO2 is often optimized against its lattice constant, enthalpy of formation 

and band gap.  The U value also displays sensitivity toward the deployed DFT functional.   As 

such, an optimized U value for enthalpy of formation or band gap may not represent the 

optimum value for acquiring thermo-kinetic parameters for ceria-catalyzed reactions.   

Computing accurate activation energies is a central task in computational catalysis.  Previous 

computational studies on catalytic reactions over ceria have mainly deployed the U value 

optimized for bulk’s band gap.   For instance, Chen, et al. [80] reported reaction pathways for the 

reduction of CeO2(111) and CeO2(110) surfaces via interaction with gaseous by H2 molecules 

utilizing a U value of 7.1 eV based on the PW91 functional.  Likewise, in recent study [499], we 

deployed a DFT + U functional to report reduction energies for pure CeO2 and CeO2 alloyed 
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with Zr and Hf at various loading ratios.  We optimized our deployed U value against the 

experimental value for the complete reduction of ceria at 298. 1 5 (2CeO2 → Ce2O3 + 1/2O2).   

 

To this end, the aim of this chapter is to survey the change in reaction and activation energies for 

a set of well-studied systems of reaction when deploying different values of U.  Herein, we limit 

our analysis to energy terms, however, it must also be noted that geometrical as well as 

electronic factors must also be taken into account when locating an optimal U value for a given 

reaction.   

 

 

9.3 Methodology 

Herein, geometry optimizations and energy calculations were carried out at absolute zero via the 

plane wave DFT program of the Vienna ab initio simulation package (VASP) [381].  The 

calculations methodology comprises a spin-polarized PAW-PBE functional [219], van der Waals 

correction by the Grimme functional [500], and a Gaussian smearing. For Ce, it is necessary to 

apply on-site Coulomb interaction correction (DFT+U), to account and correct f electron 

delocalization.  The DFT+U formalisms suggested by Dudarev et al. [214]. has been applied.  

This method was proven to yield band gap, lattice constant and heat of formation in a close 

agreement with the analogous experimental values.  It has been shown including van der Waals 

corrections for species adsorption over ceria surfaces systematically increases adsorption 

energies [74].  Magnetic moment orientation has also been considered, but it is not sensitive to 

pristine CeO2, as it is a nonmagnetic insulator material [501].  Integration over the Brillouin - 

zone was performed using Monkhorst - pack grids of 4 × 4 × 4 and 4 × 4 × 1 κ- points for the 

bulk and surface calculations, respectively [431].  Structural optimization calculations deploy a 

plane wave cut off energy of 400 eV, an energy tolerance of 0.1 meV and atomic force tolerance 

of 0.05 eV/Å.  Nudged elastic band (NEB) utilized in transition state calculations uses the same 

plane wave cut off energy and energy tolerance.  
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9.4 Results and Discussions 

 

The seminal work by Capdevila-Cortada et al. [502] has systematically analyzed the effect of the 

U parameter on the activation and reaction energy for the first hydrogen stripping of 

formaldehyde into adsorbed CHO and OH.  Author finds that the influence of the variation in the 

U value is more evident when there is a reduction in the oxidation state of cerium surface atoms 

upon interaction/dissociative adsorption of gas phase species.  Thus, the change in the U value 

exerts no change in the physisorption energy of formaldehyde over the CeO2 (111) surface.   

Likewise, the change in activation and reaction energy when a small U value is employed was a 

rather very minimal.  Indeed, at small values of U, the f electrons of Ce atoms are still 

delocalized.  However, at higher values of U (3.0 – 6.0 eV), both activation and reaction energies 

vary almost linearly with the U value with a negative slope in both cases.  The DFT (PBE) + U 

reproduces the activation and reaction energy of the computationally demanding hybrid DFT 

functional of HSE06 at U values of 3.33 eV and 4.32 eV; respectively.  This follows the 

consensus that there is no universal U vale that can produce all experimentally observed 

parameters such as band gap and lattice constant.  The authors’ proposed DFT + U methodology 

to locate transition states encompasses benchmarking the thermodynamic of the reaction against 

an accurate theoretical framework (i.e., hybrid DFT functional), accurate accounting for f 

electrons localization, and rescaling the U value according to the perturbation of geometries 

between transition state, reactant and product.  The authors argued that deploying a single U 

value along the entire reaction coordinate may induces significant in the overall kinetics of the 

reaction.  

 

One of the most prominent catalytic applications of ceria is partial hydrogenation of alkyne cuts 

into their corresponding alkenes rather than alkanes.  Carrasco et al. [73] carried out a combined 

experimental and DFT study to on the selective production of C2H4 from hydrogenation of C2H2.  

Catalytic tests were performed various H2/C2H2 inlet ratios in the range of 10-30 within a 

temperature window of 423 – 623 K and a residence time of 0.12- 1.0 s.  The selectivity toward 

ethylene attains a value of 80% and remains unchanged even at higher H2/C2H2 inlet ratios.  In 

order to model the experimentally observed selective formation of C2H4, Carrasco et al. adapted 

the DFT functional of PBE with the inclusion of a fixed U parameter at 4.5 eV for Ce atoms.  
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The underlying surface mechanism incorporates four hydrogen transfer reaction from the -OH 

site to the free carbon atom in the adsorbed C2 adduct: 

 

1 2
* * *

2 2 2 3 2 4

1 2
* * *

2 4 2 5 2 6

OH C H OH C H OH C H  (partial hydrogenation)

OH C H OH C H OH C H  (full hydrogenation)

+ → + → +

+ → + → +

 

 

The authors attributed the occurrence of partial rather than full hydrogenation rests to lower 

activation for subsequent hydrogenation leading to gas phase C2H4 compared to those leading to 

with an adsorbed β-C2H4 adduct.  Barriers for the first hydrogenation step in partial and full 

hydrogenation mechanism were considerably lower than those of the second step (0.09/0.41 

versus 3.65/3.44 eV).  We have also observed a similar trend in our recent study on 

hydrogenation of acetylene over Mo2N (111) surface [503].  The objective of this chapter is to 

assess the influence of the U parameter on the activation reaction energies for these four 

reactions.  The underlying aim herein are two-fold; to revisit conclusions made Capdevila-

Cortada et al. and to assess the influence of the U parameter on the thermodynamic and kinetic 

orderings reported by Carrasco et al. 

 

Table 9.1 and Figures 9.1- 9.4 enlist activation and reaction energies for the two hydrogenation 

steps in the partial and full hydrogenation routes for U values between 3.5 – 6.5 eV.  Values 

obtained with a plain DFT (i.e., U = 0) have also been included for comparison.  Corresponding 

values obtained by Carrasco et al. (U= 4.5 eV) are highlighted.  As displayed in Table 9.1, 

activation energies for the four-hydrogenation reaction increase with the U value.  The first 

hydrogenation step in the partial hydrogenation route incorrectly incurs a negative value when 

the plain PBE functional is applied.  The first hydrogenation step in both routes at all U values 

require considerably higher energy barriers than the first second step.  The activation energy for 

the second step in the full hydrogenation route is more sensitive to the U treatment in reference 

to the three other reactions.  The activation barrier for this step increases from 1.91 eV at U = 0 

to 3.46 eV at a U value of 4.5 eV.   Overall, the variation of the activation energies in reference 

to the deployed U value is very significant.  The effect is more profound on the reaction rate 

constants.  For instance, at 500 K, a difference of only 0.1 eV in the value of the activation 
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energy changes the reaction rate constant by a factor of ~ 10.  Activation barriers as large as 4.0 

eV (~ 92.0 kcal/mol), most likely do not proceed at the relatively low temperature of the catalytic 

tests (423 – 623 K).  Thus, we envisage here that an accurate benchmarking of the exact reaction 

barriers may stem from surveying via kinetics modelling the kinetic feasibility of the reaction at  

a given experimental operation conditions.  

 

Table 9.1: Variation of activation barriers and reaction energies of acetylene hydrogenation into 

ethane over the CeO2 (111) surface.  Corresponding values by Carrasco et al. [73] are 

highlighted. 

 

Reaction U_values Activation barrier (eV) Reaction energy (eV) 

 

R1 

 

C2H2*+H*→C2H3
* 

U=0 -0.81 -1.26 

U=3.5 0.15 -1.65 

U=4.5 0.202  (0.09) -1.42 (-1.45) 

U=5.5 0.205 -1.21 

U=6.5 0.296 -0.99 

 

R2 

 

C2H3
*+H*→C2H4

* 

U=0 3.24 1.71 

U=3.5 3.50 1.95 

U=4.5 3.77 (3.65)  2.17 (2.13) 

U=5.5 3.99 2.38 

U=6.5 4.20 2.59 

 

R3 

 

C2H4*+H*→C2H5
* 

U=0 0.25 -0.63 

U=3.5 0.30 -0.59 

U=4.5 0.39 (0.41) -0.99 (-1.03) 

U=5.5 0.50 -0.77 

U=6.5 0.66 -0.62 

 

R4 

 

C2H5*+H*→C2H6
* 

U=0 1.91 0.46 

U=3.5 3.00 0.88 

U=4.5 3.46 (3.44) 1.32 (1.20) 

U=5.5 3.89 1.75 

U=6.5 4.32 2.17 
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Figure 9.1:  Energy profile for the first hydrogenation step in the partial hydrogenation route of 

acetylene over the CeO2 (111) surface at different U values.  Values of activation barrier (tilted) 

and reaction energy are in kcal/ mol with respect to the initial reactant.  Red cream, gray, and 

white stand for atoms, oxygen, cerium, carbon, and hydrogen, respectively. 
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Figure 9.2:  Energy profile for the second hydrogenation step in the partial hydrogenation route 

of acetylene over the CeO2 (111) surface at different U values.  Values of activation barrier 

(tilted) and reaction energy are in kcal/mol with respect to the initial reactant. 
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Figure 9.3:  Energy profile for the first hydrogenation step in the full hydrogenation route of 

acetylene over the CeO2 (111) surface at different U values.  Values of activation barrier (tilted) 

and reaction energy are in kcal/mol with respect to the initial reactant. 
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Figure 9.4:  Energy profile for the second hydrogenation step in the full hydrogenation route of 

acetylene over the CeO2 (111) surface at different U values.  Values of activation barrier (tilted) 

and reaction energy are in kcal/mol with respect to the initial reactant. 

 

Inspection of the U-reaction energy variation displays an analogous thermodynamic sensitivity.  

Overall, the exothermicity of a given reaction correlates inversely with the U value.  Finding the 

optimum U value for the reaction energy requires benchmarking against very accurate theoretical 

levels most notably, quantum Monte Carlo (QMC) and the random phase approximation (RPA) 

or even the relatively more computationally affordable hybrid DFT methods. 
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9.5 Conclusions  

 

We are now in a position to convey the following concluding remarks and suggestions: 

 

• As shown in previous studies, the variation in the U value induces a significant effect on 

computed activation and reaction energies for catalytic CeO2-assicted reactions. 

• Higher U value tends to reduce the thermodynamic feasibility of the reaction and 

increases its activation energy. 

• In addition to comparison with QMC, RPA and hybrid DFT method, detailed kinetic 

modelling can be utilized as a benchmarking tool in deriving the optimum U value. 

• When feasible, clusters models at more accurate DFT methods (such as B3LYP) may 

give more accurate kinetics and thermochemical parameters for reaction involving CeO2 

than periodic systems.  
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Chapter 10 : Conclusions and Future Research Directions 

 

This dissertation reports connected yet independent investigations onto structural, optical, 

thermo-mechanical and catalytic properties of rate earth metal oxides via synergetic 

experimental-theoretical approaches.  Band gaps and lattice constants for the complete series of 

compounds in the sesquioxides family were reported in the first part of the thesis.  Bader’s 

atomic charges reveal an ionic nature for the Ln-O bonds in all Ln2O3 compounds.  It was found 

that lanthanide sesquioxides obey the Born-Huang’s criterion; and hence they are mechanically 

stable.  In accordance with experimental trends, the Gibbs free energies for the reduction reaction 

of CeO2 to Ce2O3 were found to exhibit endothermic behavior with a value of 740 kJ/mol-O2 at 

the room temperature.  The influence of temperature on the reduction energies of pure ceria was 

also elucidated.  The reduction energy of ceria increases by 26 kJ/mol-O2 upon reduction when 

the O/Ce atomic ratio decreases from 1.9 to 1.8.  The findings illustrate that, adding Hf and Zr 

ions to the stoichiometric and reduced CeO2 lattice reduces their reduction enthalpies.  It has 

been demonstrated that alloying ceria with Zr or Hf leads to significant reduction in volume (in 

reference to pure ceria).  

 

Ceria is a potent catalyst either when deployed as a stand-alone catalyst or when used as a 

support.  In Chapter 4, modelling of experimental results relating to the decomposition of three 

chlorinated volatile organic compounds is performed; those being, chloroethene, chloroethane 

and chlorobenzene.  We find that, the three titled compounds adsorb rather weakly in their 

physisorbed states over ceria.  Activation energies deduced from the experimental conversion–

temperature profiles match the estimated activation energies for the dissociative adsorption of 

these molecule over the CeO2 (111) surface, via fission of their C-Cl bonds.  Hydrogen transfer 

from surface -OH sites to the radical center in adsorbed hydrocarbon radicals (vinyl, ethyl and 

phenyl radicals) liberates their corresponding stable hydrocarbon molecules; albeit via very 

sizable activation barriers.  Pathways for the formation of benzene and 1,2-dichlorobenzene from 

the catalytic oxidative decomposition of 1-chlorobenzene molecule have also been proposed.  

The formation of the latter proceeds via chlorine transfer from an oxychloride structure.  To the 

best of our knowledge, this suggested feasible pathway constitutes the first ever quantum 
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chemistry-confirmed pathway for a surface assisted chlorination pathway of an aromatic 

molecule in the literature.  Dissociative adsorption of gas phase oxygen molecules vacant oxygen 

sites restores the catalytic activity of ceria by oxidizing adsorbed hydrocarbon adducts (for 

example, phenyl into phenoxy, o-benzoquinone).  This process also results in the re-oxidation of 

the surface via filling in the oxygen vacant sites. 

 

Terbium dioxide (TbO2) is a promising material for prominent optical and catalytic applications.  

We found that bulk and surfaces of TbO2 exhibit a semiconducting character based on their DOS 

curves. Thermo-elastic properties such as heat capacities, volume expansions, bulk modules and 

thermal expansions were obtained for a wide range of temperatures and pressures based on the 

quasi-harmonic approximation approach (QHA).  The QHA approach relies on phonon density 

of states calculations at various atomic displacements within a 2 × 2 unit cell model.  Using the 

Ab initio atomistic thermodynamics approach, surface free energies were calculated for all 

possible surface terminations as a function of the oxygen chemical potential.  Two surfaces 

appear to be more stable in the accessible domain of oxygen chemical potential; namely, (111): 

Tb and (111): O+1Vo.  The presence of an oxygen vacancy in the latter is expected to play a 

potent role in catalysis by TbO2.  

    

CeO2 films, prepared by Magnetron sputtering, deposited onto c-Si substrate as a function of 

oxygen/argon flow ratio, were comprehensively studied and characterized in this work by 

various structural and optical techniques such as XRD, XPS, FESEM, FTIR and UV-Vis.  XRD 

spectra of all of the coatings showed a polycrystalline structure with cubic fluorite – structure for 

CeO2 along (111), (200) and (222) orientations.  From the survey scan obtained by XPS test, Ce, 

O, C elements were found in the studied films.  Further analysis on survey scan spectra indicated 

to an increase in the Ce and O atomic percentages as the oxygen/argon flow ratio increases.  At 

the lower oxygen/ argon mixture, high resolution XPS scans of the Ce 3d regions showed two 

oxidation states of CeO2 and Ce2O3 in the films; while Ce2O3 oxidation state gradually vanished 

as the oxygen pressure increased.  UV-Vis data was plotted to display the solar reflectance of the 

selected coating material and thereafter all optical and dispersion properties such as absorption 

coefficient (α), the real and imaginary parts of the dielectric function (ε1, ε2), the refractive index 
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(n) and the extinction coefficient (k) were calculated.  The analysis suggests that the CeO2 films 

have indirect optical band gaps in the range of 2.25 - 3.1 eV.  Plane wave DFT calculations were 

employed to report optical properties calculations of CeO2 cluster at ground state.  The band gap 

extracted from the plot of simulated density of state (DOSs) of the CeO2 cluster is in agreement 

with the corresponding experimental value.  The experimental absorption coefficient (α) and the 

analogous computed value show a similar trend and, to a degree, possess matching values in the 

wavelength range from 100 to 2500 nm.  Overall, the theoretical results are shown to be 

consistent with the corresponding measured values 

 

CuxCo3-xO4 coatings spinal oxides were prepared by sol-gel method and annealed at different 

temperature spanning from 200 to 500 oC with step size of 100 oC.  Several characterization 

examinations were executed with the aim of highlighting their electronic, structural, optical and 

solar selectivity properties.  Results derived by XRD demonstrate that with an increase in the 

annealing temperature, all coatings exhibit Cu0.56Co2.44O4 structural phase (ICSD 78-2175) with 

favored direction along (400) peak.  Solar selectivity of the thin films was observed to be 

significantly enhanced with the rise in the annealing temperatures.  Atomic charge distributions 

were computed for the series of stoichiometries in CuxCo3-xO4 system (x = 0, 0.75, 1.5, 2.25 and 

3). Charge density analysis revealed a covalent character for Cu-Co bond in the entire systems.    

 

Finally, DFT +U, as a cost-effective method to describe the electronic structure ceria, was 

employed to investigate the effect of Hubbard parameter of U on the barrier and reaction 

energies for typical partial and total hydrogenation reactions over ceria surfaces.  Analysis of the 

obtained results demonstrates that the barrier and reaction energies increase with the U value. 

The thermodynamic feasibility of the reactions clearly lessens as the U value increases.  

Nonetheless, accurate benchmarking of the U value still requires contrasting energies with 

analogous values obtained by the very computationally demanding hybrid methods.  
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Herein, potential future directions are discussed: 

• Reactions steps governing catalytic-assisted reactions by ceria are still largely unknown 

for many systems.  For example, this includes: conversion of propyne into propene; 

hydrogenation of benzene into cyclohexane and de-bromination of brominated 

hydrocarbons; and, most notably, brominated flame retardants.  

 

• The shape Dependent Reactivity and Catalysis of Ceria Nanoparticles was investigated 

recently [504] and it was found that oxygen storage capacity (OSC) of ceria is very 

sensitive to the atomic environments of ceria.  For instance, 2D ceria nanoplates, with an 

extended surface to volume ratio, displays higher OSC than bulk CeO2.  Thus, it will be 

insightful to study oxidation of Co into CO2 and No into N2 over nanoparticles and 

nanotubes of ceria.  

 

• While thermodynamics dictates spontaneous occurrence of water splitting over TbO2 

[505], the eventual occurrence of this important chemical phenomena truly rests on 

kinetics factors.  Thus, it is important to study mechanism for hydrogen production from 

water catalyzed by TbO2.  

 

• In Chapter 9, it was shown that kinetics modeling could be used to parametrize the U 

value.  For example, the onset temperature for the occurrence of a chemical reaction at a 

given temperature depends primarily on the activation energy of the initial reaction.  

Kinetics modeling can accurately predict the required activation energy for a chemical 

reaction to commence at a given temperature.  Knowing the activation energy from 

kinetics model will assist in benchmarking the U value against experimentally observed 

profiles of products.   

 

• In Chapter 4, studies were limited to Hf and Zr ions as effective ceria dopants on 

lowering the reduction energies.  In this regard, the effect of alloying with other atoms 

such as Tb can be investigated.  The underlying aim is to acquire Gibbs free energies for 

Tb-Ce-O configurations at elevated temperatures pertinent to catalytic applications. 
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• In Chapter 7, the optical properties and dispersion parameters of Ce-oxide films were 

studied with the aim of evaluating the anti-reflection character of such films in the visible 

range. It is insightful to report potentially enhanced optical characteristic and anti- 

reflection properties of Ce-Oxides when alloying them with other transition metals such 

as Ti, Zr and Hf. 

 

•  In Chapter 8, a noticeable improvement was reported in the solar selectivity for CuCo-

oxide coatings when annealed at different temperatures. As such, investigations into a 

likely improvement in solar selective materials for other spinal oxide would be 

warranted.   
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Appendices 

Appendix A 

 Coating Deposition Techniques 

Recently, great strides have been made in the field of thin films industry due to thin films having 

increasing applications in versatile technologies such as in optical, decorative, electrical, thermal, 

and protective areas.  Thin film layers possess a thickness ranging from nanometers to few 

micrometers which is applied to a surface of material to improve its desired properties. In fact, 

these new obtained properties are different than that of bulk materials or substrate on which the 

film is formed.  A variety of methods have been used for film depositions. In principle they are 

considered as vapor deposition processes.  Depending on the vapor source to be deposited they 

are divided into physical vapor deposition (PVD) and chemical vapor deposition (CVD). Vapor 

deposition refers to a process in which a solid immersed becomes larger in mass due to the 

transference of a material from the vapor onto the solid surface.  PVD is the most widely used 

technique for thin film deposition and a high vacuum is required for almost their types.  If the 

vapor is formed using physical means without chemical reactions, then the process is classified 

as a physical vapor deposition.  In contrast, if the vapor is created using chemical reactions then 

the process is called chemical vapor deposition.  The vapor source is different in each kind of 

PVD process, it can be developed through resistive heating, atomic sputtering, ion plating, 

magnetron sputtering or lasers, or hybrid processes combining all of these sources.  For CVD 

process vapors, they can be achieved from gas, liquid, or solid precursors and a chemical 

reaction is required for the film formation[506].  Below is explanation for some of the main 

CVD and PVD processes: 

 

 Chemical Vapor Deposition (CVD) 

Chemical vapor deposition involves a variety of methods that aim to produce films having high 

purity and desirable properties films and coatings of metals, semiconductors, and amorphous or 

crystalline compounds.  In this process, the substrate is located inside a vacuum chamber to 

which gases are provided.  The main principle of the deposition using this process is that a 

chemical reaction between a volatile compounds of a material to be deposited, with other gases is 



287 
 

287 
 

happened, to produce a nonvolatile solid resulted in the deposition of a solid material on a 

substrate surface [507]. 

Furthermore, an important advantage of using this technique is that it does not require high 

vacuum or any special conditions of electrical power as well as it is with low cost of the 

equipment.  On the other hand, high substrate temperature (higher than 600°C) and the relatively 

slow deposition rate are the main drawback seen with this process. Amendments should therefore 

be applied to overcome these limitations.  There are three classifications of CVD techniques 

namely as the Low-Pressure CVD (LPCVD), Plasma Enhanced CVD (PECVD) and laser-

enhanced (LECVD) chemical vapor deposition. 

 

Physical Vapor Deposition (PVD) 

Physical vapor deposition (PVD) processes have long been used to deposit thin layers on 

substrates. In this process the material to be deposited is physically moved onto the substrate and 

that means there is no chemical reaction occurred.  However, the substantial difference between 

the deposition using this process and chemical vapor deposition process is that it takes place at 

lower deposition temperature.  In other words, the substrate deposition temperature is in the 

range of 150-550 0C and the substrate tends not to be damaged [508].  Moreover, physical vapor 

deposition (PVD) processes are nowadays preferred for industrial applications such as, coating 

tool steel.  In industrial applications the trends have shifted towards PVD in coating different 

components for instance aerospace, automotive, surgical or medical equipment, and cutting tools 

etc. 

Sputtering is the most dominant physical vapor deposition - based process.  It takes place when a 

substrate to be coated is placed in a vacuum chamber containing an inert gas - usually argon - 

then a negative charge is applied to a target source material that will be deposited onto the 

substrate causing the plasma to glow.  As a result of the bombarding particles hitting the target 

material in a vacuum, atoms will be ejected from the target directing to be deposited on the 

substrate [509]. 
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Appendix B 

This appendix includes supporting information for Chapter 5 and reports the Vibrational 

frequencies for the transition states. 

 

TS1 

  -269.3400000                255.54000000                    227.13000000 

  31.04000000                   258.65000000                    231.78000000 

   32.45000000                  259.43000000                    235.77000000 

   34.76000000                  260.74000000                    239.93000000 

   36.13000000                  265.85000000                    242.75000000 

   37.53000000                  267.51000000                    247.73000000 

   39.42000000                  269.05000000                    248.89000000 

   40.91000000                  273.45000000                     250.43000000 

   48.49000000                  275.51000000                     252.90000000 

   48.85000000                  275.65000000                     253.36000000 

   52.63000000                  277.94000000                     253.81000000 

   55.77000000                  279.84000000                    255.01000000  

   60.30000000                  281.95000000                    290.21000000  

   61.51000000                  283.91000000                    292.13000000  

   62.60000000                  285.69000000                      381.52000000   

   62.79000000                  287.21000000                      383.72000000   

   62.88000000                  287.89000000                      393.97000000   
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   63.79000000                  289.01000000                      397.10000000   

   67.44000000                  296.11000000                      397.53000000   

   70.75000000                  299.19000000                      403.03000000   

    73.85000000                 302.87000000                     404.32000000   

    294.44000000               303.58000000                     654.35000000   

    74.63000000                 307.80000000                     680.84000000   

    77.18000000                 308.64000000                     829.08000000   

    80.52000000                 330.91000000                     972.75000000   

    81.04000000                 331.45000000                      214.59000000  

    81.71000000                 333.26000000                       215.88000000 

    82.60000000                 333.67000000                       216.93000000 

    82.91000000                 335.69000000                       220.79000000 

    84.00000000                 336.48000000                       222.18000000 

    88.05000000                 337.92000000                       127.48000000  

    88.39000000                 338.22000000                       127.78000000  

    95.59000000                 351.66000000                       132.57000000  

    96.38000000                 355.15000000                       136.68000000  

    98.02000000                 357.43000000                       138.22000000  

    104.18000000                358.54000000                       148.33000000  

    113.14000000                364.25000000                       151.58000000  

    113.56000000                365.07000000                       161.16000000  

    120.24000000                367.18000000                       163.01000000  

    120.85000000                367.28000000                       166.34000000  
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    125.85000000                370.97000000                       167.56000000  

    125.94000000                 226.46000000                        200.29000000  

    224.16000000               210.13000000                         212.26000000   

TS2 

 -828.5900000     126.67000000          288.53000000   

 16.87000000      127.08000000          289.25000000   

 28.87000000      128.51000000          295.94000000   

 30.51000000      131.30000000          296.59000000   

 32.63000000      137.26000000          298.53000000   

 33.65000000      148.20000000          300.31000000   

 33.96000000      153.86000000          302.72000000   

 34.90000000      155.37000000          303.79000000   

 38.83000000       159.0900000          309.08000000   

 43.05000000      165.82000000          311.15000000   

 44.44000000      166.30000000          312.42000000   

 46.67000000      168.26000000          318.84000000   

 52.84000000      204.55000000          320.25000000   

 62.93000000      207.22000000          323.60000000   

 63.61000000      211.06000000          325.44000000   

 63.68000000      212.34000000          328.73000000   

 65.15000000      215.08000000          342.27000000   

 66.27000000      215.75000000          343.93000000   

 67.87000000      216.50000000          345.30000000   
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 73.85000000      218.74000000          346.73000000   

 74.90000000      222.13000000          348.47000000   

 81.43000000      224.70000000          352.42000000   

 83.38000000      228.66000000          358.23000000   

 84.05000000      233.11000000          360.29000000   

 85.06000000      233.84000000          361.27000000   

 85.66000000      234.42000000          362.72000000   

 86.24000000      238.39000000          364.05000000   

 87.60000000      248.81000000          366.19000000   

 88.29000000      252.06000000          366.57000000   

 90.33000000      266.54000000          368.18000000   

 92.14000000      270.14000000          375.98000000   

 97.08000000      273.17000000          377.78000000   

 97.29000000      273.60000000          378.89000000   

 98.86000000      275.77000000          379.70000000   

 100.3400000       276.43000000          382.05000000   

 100.78000000      279.84000000          382.85000000   

 104.11000000      282.70000000          383.75000000   

 105.79000000     283.15000000          385.83000000   

 108.88000000    286.67000000          386.67000000   

 111.16000000    287.41000000          389.67000000   

 114.09000000     424.21000000   397.36000000   

 114.26000000    425.62000000    409.67000000   



292 
 

292 
 

 423.65000000        428.93000000      413.54000000   

                                          

                                           

TS3 

-1056.910000         119.30000000         264.42000000  

 254.76000000       122.46000000         268.64000000  

 134.0900000         125.22000000         270.29000000  

 68.76000000         125.63000000         270.69000000  

 13.23000000         127.06000000         274.81000000  

 16.13000000         127.37000000         275.65000000  

 19.53000000         132.11000000         277.02000000  

 34.05000000         136.25000000         277.04000000  

 35.11000000         137.90000000         277.68000000  

 36.47000000         147.50000000         278.66000000  

 38.01000000         151.12000000         281.70000000  

 41.31000000         161.70000000         283.62000000  

 48.29000000         165.34000000         285.42000000  

 48.71000000         167.09000000         286.83000000  

 52.61000000         181.38000000         287.67000000  

 55.56000000         201.72000000         288.71000000  

 60.02000000         208.45000000         292.16000000  

 61.52000000         213.41000000         295.35000000  

 62.47000000         215.42000000         296.90000000  



293 
 

293 
 

 62.55000000         217.88000000         299.09000000  

 62.72000000         218.51000000         299.95000000  

 64.23000000         220.00000000         301.40000000  

 73.25000000         223.29000000         307.54000000  

 74.19000000         224.22000000         311.24000000  

 76.23000000         225.63000000         330.65000000  

 79.78000000         226.67000000         331.99000000  

 80.63000000         230.20000000         333.11000000  

 81.59000000         232.05000000         334.02000000  

 82.30000000         239.13000000         335.13000000  

 82.51000000         244.86000000         335.57000000  

 83.11000000         249.11000000         337.52000000  

 87.72000000         250.20000000         338.03000000  

 88.62000000         251.21000000         349.44000000  

 94.96000000         255.92000000         354.15000000  

 96.34000000         256.87000000         354.99000000  

 97.54000000         257.63000000         356.71000000  

 101.76000000        257.75000000         360.94000000  

 106.47000000        260.04000000         361.70000000  

 112.35000000       262.10000000         363.14000000  

 112.97000000      262.62000000          364.55000000  

374.64000000       398.38000000          366.89000000  

381.88000000       401.44000000         371.76000000  



294 
 

294 
 

391.17000000          511.19000000        613.31000000   

393.32000000          571.47000000        3.100560e+003  

395.75000000          1.540560e+003       3.166090e+003    

 

TS5 

   -440.6        167.6              337.1  

      36.9       214.8              338.6  

      37.4       217.7              342.8  

      46.4       219.9              343.3  

      50.4       221.8              344.2  

      51.1       222.4              347.5  

      61.5       224.0              348.4  

      62.2       227.3              349.2  

      62.8       230.0              351.2  

      64.1       233.0              352.4  

      64.5       235.0              353.0  

      66.7       236.3              354.3  

      67.0       239.4              356.7  

      68.9       241.6              357.8  

      71.0       244.4              360.8  

      71.2       249.2              362.8  

      72.1       251.9              367.4  

      77.5       253.7              373.2  



295 
 

295 
 

      77.9       260.1              384.9  

      79.4       261.2              385.2  

      80.4       263.2              391.8  

      81.5       263.4              392.9  

      84.4       264.2              394.0  

      85.0       266.7              491.4  

      85.9       267.7              701.4  

      86.0       269.4              847.5  

      88.4       270.1             1019.7  

      88.6       271.1             1090.0  

     103.2       271.6             1245.6  

     104.6       273.0             1277.7  

     105.7       273.7             1309.9  

     107.4       276.3             1336.9  

     112.0       278.9             2781.7  

     112.1       280.5             2867.0  

     122.0       282.7             3042.4  

     123.9       284.1             3156.5  

     125.1       285.7             3316.8  

     125.8       286.9              308.3 

     128.8       287.2              309.2 

     129.3       289.1              312.3 

     135.1       290.4              329.9 



296 
 

296 
 

     137.8       291.9              164.6  

     138.2       293.5              167.0  

      

TS6 

  -716.4           220.1            339.3    

     0.9           222.1            341.7    

    20.4           222.6            343.5    

    35.4           223.2            344.3    

    37.9           224.9            344.7    

    49.6           229.5            346.0    

    51.2           233.9            348.3    

    53.8           234.5            349.0    

    60.2           236.4            350.5    

    61.9           236.6            351.6    

    62.9           239.5            352.5    

    64.0           241.5            353.1    

    65.2           245.0            355.0    

    66.4           247.9            356.9    

    66.8           248.9            360.3    

    68.8           251.0            361.1    

    71.3           253.5            366.1    

    71.4           260.6            367.5    

    76.7           261.4            369.9    



297 
 

297 
 

    77.0           263.2            382.5    

    79.2           265.0            385.7    

    79.6           267.4            392.1    

    81.2           267.9            392.6    

    84.1           268.0            393.3    

    84.8           269.9            662.8    

    85.3           271.3            736.1    

    86.9           273.1            778.8    

    87.9           273.7            823.8    

    89.1           274.8           1089.5    

   103.4           275.2           1220.3    

   105.1           282.3           1321.9    

   105.5           284.3           1438.6    

   106.8           285.4           2814.0    

   110.0           286.3           2880.0    

   111.3           287.3           2981.4    

   119.5           288.2           3115.1    

   123.7           292.7           306.6 

   124.7           293.2           310.8 

   125.7           295.6           311.5 

   127.9           298.3           316.4 

   129.1           302.6           317.5 

   134.9           302.8           329.6 



298 
 

298 
 

   135.7           303.4            153.8 

             

TS8 

   -227.2          210.7            338.7    

     17.1          211.2            339.7 

     27.1          214.7            341.4 

     31.4          216.2            345.5 

     32.4          220.8            347.7 

     34.0          222.9            353.1 

     36.7          224.8            355.1 

     40.2          227.5            357.7 

     46.4          231.3            370.5 

     48.1          231.8            374.7 

     49.8          235.9            378.3 

     55.4          238.2            381.0 

     57.7          241.9            386.6 

     61.4          245.4            389.0 

     62.5          247.2            391.1 

     63.0          249.0            393.9 

     64.1          253.5            409.5 

     65.3          256.0            413.6 

     73.6          258.3            592.8 

     74.8          259.5            684.5 



299 
 

299 
 

     75.9          260.1            690.5 

     76.5          261.7            937.1 

     79.1          263.9           1255.2 

     80.8          264.6           1453.5 

     81.4          266.2           2994.0 

     83.2          269.1           3060.4 

     84.7          270.2           3083.4 

     87.0          273.1            331.7    

     87.4          275.1            333.8 

     93.8          276.3            334.6  

 

TS16 

 -370.5          114.4              370.0  

   11.9          122.0              374.4  

   27.8          123.6              382.3  

   37.4          124.6              385.9  

   37.5          125.0              387.4  

   50.7          129.1              393.2  

   50.9          129.7              393.7  

   61.4          135.6              395.4  

   62.0          138.0              500.4  

   62.4          138.9              532.7  

   64.2          153.6              571.0  



300 
 

300 
 

   64.8          154.0              594.7  

   66.5          165.1              671.8  

   66.7          167.1              683.6  

   68.9          167.5              763.1  

   70.6          200.3              874.5  

   71.1          213.1              949.3  

   77.1          217.0              978.0  

   78.7          220.5             1017.5  

   79.0          222.5             1086.7  

   79.6          223.6             1181.2  

   81.0          226.0             1278.0  

   84.3          227.9             1306.0  

   84.5          232.6             1355.9  

   85.9          234.3             1404.5  

   85.9          235.4             1433.0  

   88.1          238.6             2977.0  

   88.4          241.1             2990.3  

  102.4          244.7             2994.5  

  103.9          247.3             3001.2  

  105.2          248.2             301.4 

  105.8          255.7             303.4 

  110.3          256.3             304.7 

  111.7          261.1             305.9 



301 
 

301 
 

   271.9        262.6             306.7 

   273.5        264.9             308.6 

   274.3        265.3             313.0 

   277.0        266.2             329.6 

   278.6        267.1             335.6 

   280.2        269.1             336.8 

   281.9        269.6             343.6 

   283.1        270.7             344.9 

   285.0        271.5             345.4 

   285.3       347.6               356.0 

   286.0       348.4               357.1 

   287.4       350.2               357.4 

   289.0       353.2               362.3 

   290.7       354.0               364.5 

   292.4        354.5              299.0   

 

TS21 

-678.4         335.5      223.0 

  35.3         338.5      223.8 

  39.2         339.2      224.7 

  47.5         340.9      225.5 

  49.7         341.4      226.4 

  52.8         343.4      231.8 



302 
 

302 
 

  59.9         346.7      234.3 

  60.2         347.6      235.0 

  62.6         348.2      237.4 

  63.5         353.3      237.8 

  64.4         356.5      241.0 

  65.2         357.4      243.3 

  66.6         360.0      248.8 

  68.4         364.4      250.2 

  70.3         369.2      254.6 

  70.9         373.2      255.4 

  73.4         376.3      256.9 

  76.3         380.7      261.3 

  77.2         388.5      264.8 

  78.8         390.1      265.9 

  79.7         391.8      266.5 

  81.8         393.1      267.3 

  83.7         399.7      269.4 

  84.9         405.8      270.4 

  86.7         425.1      271.0 

  88.7         456.5      271.9 

  88.9         510.9      272.8 

  96.0         568.3      275.3 

  98.7         599.3      277.2 



303 
 

303 
 

 103.0         654.8      281.3 

 105.2         708.2      282.4 

 107.3         781.1      283.5 

 109.5         804.3      285.0 

 112.8         841.8      285.7 

 117.0         920.6      287.3 

 123.5         983.9      289.3 

 124.7        1058.6      290.0 

 125.2        1117.7      291.2 

 128.7        1129.1      294.4 

 130.5        1223.4      296.7 

 130.7        1297.4      298.4 

 133.0        1335.5      302.4 

 137.5        1402.0      305.3 

 140.2        1414.6      305.6 

 140.5        1445.6      306.9 

 155.1        1472.6      318.0 

 

TS19 

-39.9          305.3      234.6  

  30.2          306.9      235.1  

  36.4          310.8      236.3  

  37.5          312.5      238.5  



304 
 

304 
 

  41.7          315.3      239.6  

  48.7          317.6      246.1  

  50.3          322.8      246.8  

  51.0          328.7      255.2  

  60.4          336.3      257.0  

  61.1          340.2      257.4  

  62.3          341.1      259.3  

  63.8          344.9      261.9  

  64.5          346.2      265.6  

  64.9          348.0      266.2  

  66.2          349.1      267.0  

  68.6          351.0      267.3  

  70.6          351.9      268.6  

  71.5          353.0      270.7  

  73.0          353.8      271.5  

  77.4          354.8      271.9  

  78.1          355.7      273.2  

  79.5          357.1      273.9  

  80.5          361.5      276.9  

  82.1          363.0      278.0  

  83.5          364.9      281.7  

  85.0          365.7      284.8  

  85.8          369.9      285.4  



305 
 

305 
 

  88.2          384.4      286.9  

  89.0          387.3      288.4  

  95.1          392.9      290.2  

 103.5          393.9      291.3  

 104.4          394.8      293.7  

 105.6          502.5      294.8  

 106.2          514.6      298.5  

 111.3          531.8      300.8  

 113.4          564.8      303.5  

 120.1          584.4      234.6  

 123.5          604.2      235.1  

 124.8          642.7      236.3  

 126.7          713.8      238.5  

 128.0          763.3      239.6  

 129.7          790.8      246.1  

 132.1          933.5      246.8  

 134.6          962.1      255.2  

 138.6          979.3      257.0  

 140.2         1013.1      257.4  

 141.7         1095.3      259.3  

 153.7         1096.0      261.9  

 154.2         1230.0      265.6  

 165.3         1352.3      266.2  



306 
 

306 
 

 168.1         1366.6      267.0  

 169.5         1412.4      267.3  

 190.1         1449.4      268.6  

 209.7         1464.0      270.7  

 218.0         2987.3      271.5  

 221.4         2991.8      271.9  

 223.6         2998.6      273.2  

 224.3         3005.9      273.9  

 227.1         3007.3      276.9  

 229.9         3234.0      278.0  

                           

 TS17 

-187.4          306.6             167.1 

  9.4            309.7             173.1 

   15.0          310.8             218.9 

   28.1          317.2             221.8 

   33.7          321.2             223.7 

   37.3          324.8             227.2 

   44.0          326.5             228.0 

   47.3          330.7             229.4 

   49.2          333.5             231.3 

   51.7          337.5             233.2 

   59.3          338.1             233.9 



307 
 

307 
 

   61.0          340.0             236.8 

   61.8          343.8             240.6 

   63.5          344.3             244.5 

   64.0          346.4             247.8 

   64.4          347.8             251.0 

   66.8          354.8             253.9 

   68.5          355.5             254.4 

   69.3          360.4             256.7 

   70.9          361.3             261.7 

   74.4          363.1             264.0 

   75.2          369.2             267.1 

   76.1          373.7             268.2 

   77.6          377.4             268.5 

   79.4          386.7             270.0 

   81.9          393.0             271.4 

   83.1          393.8             273.0 

   84.5          398.0             276.7 

   85.1          403.9             278.4 

   87.6          521.4             279.8 

   88.9          525.9             281.8 

   92.2          541.5             285.4 

   97.5          602.4             286.9 

   98.8          652.0             289.1 



308 
 

308 
 

  102.6          709.0             290.8 

  105.4          783.6             295.1 

  108.0          813.3             295.6 

  109.1          864.2             297.6 

  111.7          929.3             301.6 

  112.7          975.9             302.8 

  118.4          991.6             305.1 

  123.6         1076.2             138.4  

  125.4         1089.6             139.4  

  126.7         1195.2             146.7  

  129.6         1302.8             150.7  

  130.8         1313.9             161.5  

  132.3         1375.8             163.2  

  137.7         1382.2             2890.5 

   2980.2        1526.6            2978.3 

 

 

 

  TS22 

 -388.5               323.0         220.6   

  26.6               330.7         223.6   

   38.0              334.6         225.4   

   43.8              335.7         226.9   



309 
 

309 
 

   48.0              338.8         230.5   

   49.9              340.5         232.2   

   59.6              341.9         234.3   

   61.7              342.9         234.6   

   62.6              346.2         236.7   

   64.3              347.0         240.8   

   64.7              350.6         242.7   

   65.3              353.4         249.2   

   66.1              355.7         251.8   

   68.4              356.6         254.8   

   69.0              363.1         257.7   

   70.9              370.3         260.5   

   74.4              373.0         261.2   

   75.8              375.4         262.9   

   78.5              379.1         265.2   

   79.6              381.7         266.9   

   81.3              389.7         268.1   

   82.7              392.7         269.6   

   84.4              398.1         270.3   

   85.2              404.7         272.2   

   86.6              410.1         274.1   

   88.3              418.9         275.6   

   88.9              456.3         276.2   



310 
 

310 
 

   99.6              508.9         278.2   

  100.4              544.4         282.2   

  103.1              574.2         283.4   

  105.0              608.1         284.5   

  108.2              613.3         285.9   

  113.2              696.4         287.7   

  114.9              752.4         289.9   

  118.2              800.4         291.0   

  121.1              802.8         293.5   

  123.9              941.7         296.1   

  128.5              978.0         296.8   

  129.1             1027.7         299.1   

  131.4             1097.3         302.4   

  132.3             1105.9         303.6   

  138.6             1203.6         307.1   

  140.2             1244.6         310.6   

  143.1             1357.5         2982.4  

  153.3             1392.0         2992.3  

  156.0             1421.4         2997.3  

  161.6             1465.9         3004.5  
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Appendix C 

This appendix provides supplementary information for chapter 7. 

Table S1. The deconvolution results of high-resolution XPS spectra at O1s photoelectron line.  

Argon/oxyg

en flow rate 

ratio % 

Photoelectron 

line 

Bonding states Binding 

energy 

(eV) 

FWHM 

(eV) 

 

Percentages of 

the component 

(%) 

0 O1s CeO2 529.0 1.0 60.2 

organic O 531.1 1.9 39.7 

7 O1s CeO2 529.0 1.0 65.3 

Organic O 530.9 2.1 34.6  

14 O1s CeO2 528.9 1.1 82.3 

Organic O 530.9 2.2 17.6  

28 O1s CeO2 529.0 1.0 83.9 

Organic O 530.9 2.0 16.1 

42 O1s CeO2 529.0 1.0 83.0 

Organic O 530.9 2.1 16.9  

56 O1s CeO2 528.9 1.0 83.3 

Organic O 530.9 2.0 16.6 
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Figure S1. XPS survey scan of CeOx coatings at the selected argon/ oxygen flow ratios. 
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Figure S2. Typical fitting curves of O1s XPS spectra of sputtered CeOx films at the selected 

argon/ oxygen flow ratios. 
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Appendix D 

This appendix contains supporting information for Chapter 8 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. S4. 2D AFM images of CuCo-oxide coatings (a) before annealing, and annealed at: (b) 200°C, (c) 

300°C, (d) 400°C, and (e) 500°C. 
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Fig. S5. Average particle size of CuCo-oxide coatings (a) before annealing and annealed at: (b) 200°C, (c) 

300°C, (d) 400°C, and (e) 500°C, estimated from FESEM imaging. 
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