
On the Depth of the Tangent Cone and the Growth of the Hilbert Function
Author(s): Juan Elias
Source: Transactions of the American Mathematical Society, Vol. 351, No. 10 (Oct., 1999), pp.
4027-4042
Published by: American Mathematical Society
Stable URL: http://www.jstor.org/stable/118037
Accessed: 09/02/2009 06:59

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at
http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless
you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you
may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www.jstor.org/action/showPublisher?publisherCode=ams.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed
page of such transmission.

JSTOR is a not-for-profit organization founded in 1995 to build trusted digital archives for scholarship. We work with the
scholarly community to preserve their work and the materials they rely upon, and to build a common research platform that
promotes the discovery and use of these resources. For more information about JSTOR, please contact support@jstor.org.

American Mathematical Society is collaborating with JSTOR to digitize, preserve and extend access to
Transactions of the American Mathematical Society.

http://www.jstor.org

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Diposit Digital de la Universitat de Barcelona

https://core.ac.uk/display/16200368?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.jstor.org/stable/118037?origin=JSTOR-pdf
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/action/showPublisher?publisherCode=ams


TRANSACTIONS OF THE 
AMERICAN MATHEMATICAL SOCIET:'Y 
Volume 351, Number 10, Pages 4027-4042 
S 0002-9947(99)02278-3 
Article electronically published on April 20. 1999 

ON THE DEPTH OF THE TANGENT CONE 
AND THE GROWTH OF THE HILBERT FUNCTION 

JUAN ELIAS 

ABSTRACT. For a d-dimensional Cohen-Macaulay local ring (R, mn) we study 
the depth of the associated graded ring of R with respect to an rm-primary 
ideal I in terms of the Vallabrega-Valla conditions and the length of It+ /JIt, 
where J is a J minimal reduction of I and t > 1. As a corollary we generalize 
Sally's conjecture on the depth of the associated graded ring with respect to a 
maximal ideal to rm-primary ideals. We also study the growth of the Hilbert 
function. 

1. INTRODUCTION 

Let (R, m) be a d-dimensional Cohen-Macaulay local ring with maximal ideal 
m. Let I be an m-primary ideal of R, and J a minimal reduction of I. We denote 
by G(I) =EDn I>"/ITh+1 the associated graded ring to R with respect I, and call 
it the tangent cone for short. 

In [Abh67] Abhyankar proved that if eo e eo(R) is the multiplicity of R and 
b = dimk(m/m2) is its embedding dimension, then we have 

Abhyankar's bound. eO > b - d + 1. 

Sally in a long series of papers studied the depth of the tangent cone in terms 
of the difference E eO - (b - d + 1) > 0; see [Sal77], [Sal79a], [Sal79c], [Sal8Oa], 
[Sal80b], and [Sal83]. She proved that if 0 then G(m) is Cohen-Macaulay, 
[Sal77], and proposed the following conjecture, [Sal83]: 

Sally's Conjecture. If E = 1, then depth(G(m)) > d - 1. 

This conjecture was proved by Rossi and Valla, [RosV96a], and independently 
by Wang, [Wan97]. Valla in [Val79] extended Abhyankar's bound to m-primary 
ideals I, and proved that the tangent cone G(I) is Cohen-Macaulay if the bound is 
reached. Using the device of Sally's module and Ratllif-Rush closure, several results 
on the depth of the tangent cone of m-primary ideals appeared in [Sal92], [Vas94], 
and [Gue95], [Gue94], [Vaz95]. It is worthwhile to recall that Huckaba, [Huc97], 
following [RosV96a], proved a generalization of Sally's conjecture for m-primary 
ideals. 

Sally studied the case E = 0,1 under stronger conditions, proving that if R is a 
Gorenstein ring then G(m) is also Gorenstein, [Sal80a], [Sal80b]. 

The aim of this paper is to generalize and to present an unified approach to some 
results on the depth of the tangent cone and the growth of the Hilbert function 
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4028 JUAN ELIAS 

appearing in [Sal77], [Val79], both on Abhyankar's inequality, and in [RosV96a], 
[Wan97], and [Huc97], on Sally's conjecture. We also cover some more results 
appearing in [Sal92], [Vas94], and [Gue95l, [Gue94], [Vaz95]. See Corollary 2.8 for 
more details. 

Let us recall that Vallabrega and Valla discovered the conditions under which 
G(I) is Cohen-Macaulay. They proved that, given a minimal reduction J of I, 
then G(I) is Cohen-Macaulay if and only if for all n > 0 the n-th Vallabrega-Valla 
condition holds, [VV78]: 

Vallabrega-Valla condition V2 . In n J = In-, J. 

The key idea of this paper is to consider ideals I for which the Vallabrega-Valla 
conditions V2 hold up to some integer t > 1. The main result of this paper is: 

Theorem 2.7. Let R be a d-dimensional, d > 1, Cohen-Macaulay local ring. Let 
I be an m-primary ideal of R, and J- .. . ,X) a minimal reduction of I. Let 
us assume that there exists an integer t > 1 such that 

* I, J satisfy the condition Vn2 for n = O, ... , t, and 
* length(It+1/JIt) 8 6 < Minfd - 1,1 

Then 

d> depth(G(I)) > d-6. 

If t > eo(I) - 1, then G(I) is Cohen-Macaulay. 

We prove this result by generalizing and extending results of [Sal831, [RosV96al, 
and [Huc97] mainly, to m-primary ideals and considering higher Vallabrega-Valla 
conditions. Notice that the main result of [RosV96a] is the particular case I-m, 
t 1, and [Huc97] is t = 2 and I an m-primary ideal. 

We also prove that the conditions of the above result can be fulfilled, Proposi- 
tion 2.9. This means that for all d, t > 1, and 6 < 1 there exists a d-dimensional 
Cohen-Macaulay local ring such that its maximal ideal m admits a d-generated 
minimal reduction J satisfying both conditions of the main result and depth(G(m)) 
-d -8. 

In ?3 we compute the Hilbert function of ideals under the conditions above, 
Proposition 3.3. Moreover, if length(It+l/JIt) < 2 then the Hilbert function of 
I has a non-decreasing (d - 1)-derivative, Proposition 3.2. We end the paper by 
applying these results to the one-dimensional case. 

Notations. Without loss of generality we may assume that the residue field k 
R/m is infinite. We will denote by HI the Hilbert function of I, 

H-1(n) = lengthR(PIn/I+1), 

n > 0. It is well known that there exists a polynomial (the Hilbert polynomial) 
h1 E Q[Z] such that HI(n) = hI(n) for n > 0, and that can be written in the 
following form 

d-1 

hi(Z) - (-l)ieimI d- i1I 

Let F = {.Fn}?>o be a Hilbert filtration of R, i.e. there exist an m-primary 
ideal K and an integer no such that JFn+? = KJFn for all n > nO. We will denote 
by r(.F, K) the reduction index of F with respect to K: the leas-t integer r such 
fFn+,= KJF for all n > r. 
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We will denote by f the Ratliff-Rush closure of I; see [HLS92] for the main 
properties of Ratliff-Rush closure. RZ(F) - (n>0 FnT`T will be the Rees algebra 

associated to a filtration F -{Fn}n>. If F -{IT}n>o (resp. {I T}72?o) then 
we write Z(.F) = 1Z(I) (resp. Rz(F) - 1Z(I)). We write r = r(I, J) - r({I}nj>(, J) 
for the reduction number of I with respect to J. 

2. THE DEPTH OF THE TANGENT CONE 

Since our purpose is to prove that the tangent cone has at least depth d -1, 
and the conditions of Theorem 2.7 are preserved modulo a superficial sequence of 
I, most of the time we can proceed, -using "Sally's machine", by considering a two 
dimensional local ring R. See [Sal79b], [HM94], Lemma 2.2 for a proof, and see 
also [Ito95], Lemma 1(2). 

FRom now on we will denote by D(I) the R4()-graded module JZ(I)/1Z(I). Notice 
that if we denote by 1*8 'R*((I) the extended Rees algebra associated to I, i.e. 
,R* - R for n < 0, and 7Z* - In for n > 0 then we have, [Bla95], 

D(I) -_ + (). 

Let J be a minimal reduction of I. We will denote by t'n = un- (I, J) the minimal 
number of generators of the R-module 

(D (I) > In 
JTD(I)}J r j7 JIt +In 

n > O. We set Z = zJI, J) _Enl i'n 

We denote by r (I, J) the least integer such that I+-- Jmi.; notice that we 
have r[(I, J) < r({I} n>O, J). We will denote by s(I, J) the least integer such that 
I?+1 c JIn. It is easy to see that s(I, J) < r (I, J). If x is a superficial element of 
I belonging to J, we will denote by r -(I, J) the integer r(I/(x), J/(x)), 
Proposition 2.1. Let R be a d-dimensional Cohen-Macaulay local ring, I an Mi- 

primary ideal, and J a minimal reduction of I. Assume that there exists an integer 
t > 1 such that the pair I, J satisfies the condition V2 for n 0,. , t. Then, for 
all n ,... ,t, 

iin < length In/ I - length (In/JI_n-). 

Proof. Let us consider the following inequalities: 

Un 
I n 

_ 

VJIn-l +InJ 
i/fl~~~~~~~- 

length ( &J) length (In - lemgth 

Since the pair I, J satisfies Vn2 for n = o, ... , t, we get 

JIn-i n In C J n In - JIn-- 

so we have JI -1 n In JIln- and 

Vn < length (,4) - length (JT-1) 

length Q11) -length (Jln-) 

C 
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Let us recall the following result of Huckaba, where e1 (I) is computed for d -1, 2, 
[HM94], Corollary 4.13, and [Huc96], Theorem 3.1. 

Proposition 2.2. Let R be a d-dimensionral Cohen-Macaulay local ring, I an m- 
primary ideal of R, and J a d-generated reduction of I. Then the following condi- 
tions hold: 

(1) If d =1 then el(I) = En.>olength (ln1). 

(2) If d = 2 then e] (I) Z7,>0 length ( a9n*) rid the following conditions are 

equivalent: 
(2.1) depth(G(I)) > 1, 
(2.2) In J n for all n > 1, 

(2.3) e1(I) = n length Jjn with r r(I, J). 

The next result is a generalization to a m-primary ideal and extension to any 
power of [Huc97], Lemma 2.1, and [RosV96a], Lemma 1.1. We -will use this result 
in the proofs of Theorem 2.7 and Proposition 3.2. 

Proposition 2.3. Let R be a d-dimensional, d > 1, local ring. Let I be arn 
rn-primary ideal of R, and let K be an ideal of R such that K C Im and 

length ( < 1. 

Then either m-+l =- KI, or there exists g C I such that for all n > m 

In -n-mK + (gn). 

Proof. Let A = lengthR(Im/K). If A 0 O, then we get the result. Assume A -1, 
and let a1,.. ., ar be a system of generators of I. Notice that r > d > 1. 

If r = d = 1, then I is principal and the result becomes clear. Let us assume 
r > 2. Hence there exists a degree m multi-index 13- (13,..., f3,r) E Nr such that 
aO = ao1 . . . aO- and 

Im _ K + (a). 

After a change of indices we may assume that i31 > 0. Since A -1 we get that 
a: , K, and then we can consider the multi-index iy of degree m such that Y11 is 
the biggest integer such that aa V K. In particular we have It' = K + (a-). If 
'y = (m, 0, .I. ., 0), then we get the claim with g = a. If 11 < m, then we can assume 
that Y2 > 0, so a7+(1'0.0) C a2K C IK and 

Im+1 -IK + aNI C IK + altm 

C IK+a,(K +a-) 

IK + a1K + (aY+(10.-0)) 

C IK c Im+l, 

and then Im+1 - IK. If Im = K + (gi), by induction on n it is easy to prove that 
In = In-mK + (gn) for all n > m. ? 
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The next result is needed to compute e1 (I) under the hypothesis of the main re- 
sult of this paper and to establish some conditions to assure depth(G(I)) > 1. This 
result is an improvement and generalization of [Sal83], Corollary 5.9, [RosV96a], 
Corollary 2.3, and [Huc97], Lemma 2.2. 

Proposition 2.4. Assume that (R, m) is a 2-dimensional Cohen-Macaulay local 
ring, I an m-primary ideal, and J - (x, y) is a minimal reduction of I. Let 
r = r(I, J), s - s(I, J), and r(I/(x), J/(x)). Assume that there exists an 
integer t > 1 such that 

o I, J satisfy the condition Vn for n = O, ... , t and 
* length(It+l/JIt) < 1. 

Then the following conditions hold: 

(1) el(I) length (In+I/JIln). 
(2) r < r, and r = r if arnd only if depth(G(I)) > 1. 
(3) If r < t, then depth(G(I)) = 2. 
(4) If t < r < r, then 

t K s K Kr K r. 

(5) If depth(G(I)) > 1, then s = r = r = r. 

Proof. (1) Since x is a superficial element for I, we have el(I) el(I/(x)). From 
Proposition 2.2 (1) we obtain 

I = lengh ( (I/(X))n+Th 

(F1) ~e(I Elengt V(J/(x))(I/(x))Th) 
el()E length (Fl) 

n= 

lengt 
jln + X(jn+l ) 

Since the pair I, J satisfies VT for n 1,.. ., t, we deduce that 

(In+I: X) -_ (In+1 y) - In 

for n 1 ... ., t -1. If r- < t, then we get 

e1 (I) = , length 

If r > t and Y-1 > n > t, then from Proposition 2.3 we get 

0 < length (J/)(./() W) 

length ( 
in ;;? 

9 (Jln + X (In + 1 x)) 

< le-ngth In+) < 1. 

Hence x(In+l: x) C JIJ? for n = t, ... . -1. Since (In+l cc) =I for n 
1,. . , t - 1, from (F1) and Proposition 2.2 we get (1). 
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(2) From the definitions we get r < r. From (1) and Proposition 2.2 (2) we get 
that r = r if and only if depth(G(I)) > 1. 

(3) Let us assume that r < t. Ftom (1) and Proposition 2.2 (2) we get 

0= length (i-JI )- length (Jln) 

w an 

l 

: e:th (eIit) l 

th (J )) 

+ length 

(I2) 
From 

Proposition 
2.1 

we deduce 
length(In+l /JIn) 

= 
length(In+I /JIn) 

for n 
O,... ., -1, and In+1 = JIn for n > r. Ffom these equalities and by induction on 
n we obtain I' = In for all n > 1. Hence depth(G(I)) > 1, by Proposition 2.2 (2). 
From (2) we get that r-r < t, so the pair I, J satisfies V2 for all n > 0. From the 
Vallabrega-Valla result we get that depth(G(I)) = 2. 

(4) Let us assume t < r < r. If s < t theri we have 

It C JIt-i c J 

Since the pair I, J satisfies the condition Vt2, we get 

It - It n J = jit-l 

and then r < t - 1, which is a contradiction with the assumption t < r. Hence we 
get t < s. By definition, s < r; therefore t <Kr. 

Let us consider the following inequalities: 
t 

0 > - Z a 
r 

Vn 

t-l /I~~n+l n r+l 1 

?f length Jln j - j-length JInh 

by Proposition 2.1 

= 
l ength (Iln 

)+ l engthz ( + ,l ength() - 

n/=t KJIn Tht k\JTn m>i; 
kJTh} 

by (1) and Proposition 2.2 (2) 

by-Props+ olength 2 

by Proposition 2.3. 
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From this we get 

r -t > Elength 

so Tr - t > i~-t. 
(5) If depth(G(I)) > 1, then from (2) we get r = r. On the other hand In = In 

for all n > 0, and so by the definition of s and we get s r r=. El 

Our next result is a generalization of [RosV96a], Proposition 2.4, and [Huc97], 
Proposition 2.3, to modules. 

Proposition 2.5. Let R be a Noetherican ring, and let K C I be ideals of R. Let 
M be a graded 7R(I)-module, of finite length as R-module. Let ,u be the minimal 
number of generators of M/R(K)+M as R-module. Then for all z E I there exist 

E Ki, i-1,... ,,u, such that 

z/- z-1el + + (-1)e/, C AnnR(M). 

Proof Let p be the biggest integer stuch that MVf / 0. For all i = 0,. p we pick 
elements mni,. . ., C Mi such that their cosets in 

zR(K)+M i KiMo + Ki-lM1 + + KM,,-, 

form a minimal system of generators as R-module. We have t - 
_p= 

If z is an element of I, then there exist elements c.k C Ki+-'l such that 

p /l.j 

z Mizn =7 E n E Cim,k 

j-() k=1 

with cik - 0 ifj > i + 1. Let A be the set of pairs a = (i, n) such that i 0,.... p, 
n = 1, . . ., We consider A endowed with the lex-ordering. We set av1 i, and 

2 a - n. 
If we denote by C the ,u x ,u matrix C -(c4)O,GA, then we can write 

(z Id,X11- C)A - 0 

where A is the ,u x 1 matrix A -(m ()McE. Hence we have 

det(z Id/, x - C) C AnnR (M). 

On the other hand, 

det(z Id,X/, -C) = zIl _ z81el + +-(-1)1el, 

where er is the sum of all r x r minors of C correponding to sub-r x r-matrices of 
C symmetric with respect to the diagonal of C. Notice that e1 is the trace of C 
and e/, is the determinant of C. Let us consider E- det((cci)i,_,. ) an r x r 
minor of C. Since 

C C K 

where a is a permutation of {1,.. , r}, we get E E K'. Hence ei C Ki, i = 0,...,, 
and we are done. OI 

In the next result we will apply the last proposition to M D D(I). 
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Proposition 2.6. Let R be a d-dimensional, d > 1, Cohen-Macaulay local ring. 
Let I be an rn-primary ideal of R, and J a minimal reduction of I. Let us assume 
that there exists an integer t > 1 suLch that length(It?1/JIt) < 1. If t < s then 

r < v 4- s. 

Proof. From Proposition 2.3 there exists g C I such that for all n > t 

In+ 
1 

=JIn + (gn+l). 

Notice that r < v + s if arid only if gl}+S+l C JIJ+S. From the definition of s we 
have 

g+1 C fs+l c JIs. 

If we apply the last result to K = J, M = 'D(I), t = v, and z = g, we get that 
there exists h C JI"-1 such that 

(gv - h)ITn (C J+n 

for all n > 0. Hence we have 

gs+i+v - gs9+lh -_ gs+l(gV - h) fE JFs(gV - h) C Jl-t+s, 

so we get g9+s+1 C Jv-F+s . D 

Theorem 2.7. Let R be a d-dimensional, d > 1, Cohen-Macaulay local ring. Let 
I be an m-primary ideal of R, and J (xl,... , Xd) a minimal reduction of f. Let 
us assume that there exists an integer t > 1 such that 

* I, J satisfy the condition V2 for n O,.. ., t, and 
* length(It+1/JIt) = 6 < Min{d - 1, 1}. 

Then 

d > depth(G(I)) > d-6. 

If t > eo(I) - 1, then G(I) is Cohen-Macaulay. 

Proof. If 6 =-length(It+1/JIt) - 0, the pair I, J satisfies V2 for all n > 0. From 
the Vallabrega-Valla result we get depth(G(I)) = d. In particular we may assume 
d > 2 and length(It+1/JIt) 1. We need to prove that 

depth(G(I)) > d-1. 

An easy computation shows that the conditions of the claim are preserved modulo 
superficial elements. Hence we may assume that d 2 (see the beginnig of this 
section). 

From Proposition 2.4 (2), (3), (4), and Proposition 2.6 we may assume that 

t _ s < K K r< <1+ +s_ 

By Proposition 2.4 (2) we only need to prove that v + s < r. Let; us consider the 
following inequalities: 

n>1 

t S 

= 2 Vn + S Vn + 5 V"' 
n=1 n=t+l n>s+l 
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< E (length ( I len 9th ( I )+ E V,, + I length -I) 

by Proposition 2.1 and the definition of s 

= , length ( JI) - length ( + Z ) E n1 
m -_t m 

I 
nt Ji n 

n=tjl 

by Proposition 2.2 and Proposition 2.4 (1) 

< (r -t) - length (-JI + E vn 
n=t in 

n=t+l1 s-i s~~~i 

= (rt) + E Vn- length(I )) 

and by the definition of s we get 

< (r -t) + (t s) = r- s. 

Hence we have v + s < r-, and so depth(G(I)) > 1. 
Let us assume t > eo(I) - 1, and d > 2. Since the conditions of the claim 

are preserved modulo superficial elements, we may assume d 2. Let us consider 
R = R/(x2), I = I/(x2), and J = J/(x2). Since R is a one-dimensional Cohen- 
Macaulay local ring, we have eo(I) - eo(I) -1 > f, by [SV74], Theorem 2.5, and 
[ES76], Corollary 3 to Theorem 2. From Proposition 2.4, (3), we get the claim. D-l 

Next, we will collect some results that can be obtained as corollaries of Theo- 
rem 2.7. 

Corollary 2.8. Under the hypothesis of Theorem 2.7, we denote by 6 the integer 
& lengthp(It+1/JIt), and p - depth(G(I)). Then the following results hold: 

(1) [Sal77], Theorem 2: 
I = m, t = 1, 6 0 O implies p = d, 

(2) [Val79], Theorem 1: 
t = 1, 6 = 0 implies p-d, 

(3) [Vas941, Proposition 2.6(a), and [Gue95], Corollary 2.3(a): 
13 = J12, t = 1, 6 1 implies p > d - 1, 

(4) Sally's conjecture, [Sal83], proved by Rossi and Valla, [RosV96a], and Wang 
[Wan97]: 
I m, t 1, 6 =1 implies p> d-1, 

(5) [Huc97], Theorem 2.4: 
t 2 implies p > d - 1. 
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Proof. For the first three results we only need to recall that 

length(12/JI) -eo(I) - length(I/12) + (d - 1)length(R/I) 

[Val79], Lemma 1. O 

Notice that Corollary 2.8 (3) was proved also in [Sal92], Lemma 2.3, [Gue94], 
Corollary 3.3, and [Vaz95], Corollary 3.1.4, with the assmption r(I, J) = 2. 

In the next result we will prove that t;he conditions of Theorem 2.7 can be 
fulfilled using the techniques developed in [Eli93a]. Let S --k[x, y, z(X,,Z), and 
let (k3, 0) - Spec(S) be the k-scheme defined by S. A curve singularity X is a 
one-dimensional closed Cohen-Macaulay sub-scheme of (k3, 0), i.e. X = Spec(S/I) 
where I -I(X) is a height two perfect ideal of S. 

Proposition 2.9. For all d > 1, t > 1, 8 E- {0, 1}, and E C {d -- 6, d} there exists 
a d-dinmensional Cohen-Macaulay local ring (R, m) such that m has a d-generated 
minimal reduction J, and 

* m, J satisfy the condition V2 for n 0 O, ... 
a length(mt?+/Jmt) 6 < 1, and 
* depth(G(m)) 6. 

Proof. Case 6 = 0. From [Eli93a], Proposition 2.2, we deduce that the union of 
(t+2) generic straight lines through the origin of (k3, 0) is a curve singularity X 
with maximal Hilbert function, i.e. 

f n+2) rl = 0,. ... ,t -1, 

Hx(n){ 
td-2) n >t 

We denote by n the maximal ideal of Ox. Since X has maximal Hilbert function, 
we have that the pair n, (x) satisfies V2 for n = 0,.. ., t, 6 -0, and G(n) is Cohen- 
Macaulay. From this it is easy to see that R = Ox [TI, ... , Td-1 I (T, -,Td_1)' where 
m is a maximal ideal of R, and J (x,T,,... , Td1) satisfy the conditions of the 
claim. 

Case 6 = 1, E - d-- 1. Let us consider the closed subscheme X of (k3, 0) defined 
by the maximal minors of 

0O z 
z y e-2| 

_y Xa) 

with ca < e-2. FRon the Hilbert-Burch theorem we have that I(X) is a height two 
perfect ideal of S, i.e. X is a curve singularity. An easy computation gives us 

n+2, n=1,...,ca, 

Hx (n)= 1 n+1, n=a+l, ... )C-1) 

Hx e, nm> e -1. 

From now on we set e = t + 2 and co - t - 1. Let Y be the curve singularity 
obtained by union of X and ( t ) - (t + 1) generic straight lines through the origin. 
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From [Eli93a], Proposition 2.2, we get 

H( (n+2)) 2 n= 0...,t - 1, 

ly (n)_ a (-I+I)I n=-t,1 

('+') +, n> t-t- 

Notice that I(Y) C (x, y, z)t. Hence if n is the maximal ideal of Oy, then the 
pair n, T satisfies V2 for n = 0, ... ,t, and 

dimk(Rnt+l /Xt) dimk(nt?l/int+I) - dirnk(xnt/Thn+?) 

eO(X) - dimkM(nt/nt+l) 

[Lip71], Remark (a) and (b) to Corollary 1.10. Notice that IHy(t - 1) -Hy(t) 
so G(n) is not Cohen-Macaulay. The local ring R = Oy[T1,...,Tdl11 ..T , 

where m is a maximal ideal of R, and J (i) satisfy the conditions of the claim. 
Case 8 = 1, ? = d. Let X be a curve singularity of (k3, 0) formed by the union 

of (t+l) generic straight lines throughout the origini. The Hilbert function of X is 
maximal: 

(n+2), x =I0...,It - 1, 
Hx (n) - 

(t+'), n >t. 

In particular, G(n) is Cohen-Macaulay. The ring R -Ox [T, I Td - 1 

satisfies the conditons of the claim. 

Example 2.10. It is worthwhile to recall an example given by Gulerrieri, [Gue94j: 
let R = k[x, y, z, u](x,y,z,), k an infinite field. Let I- (x2, y2I Z2I X2I xy + zu) and 
J = (A , y2, Z2, u2). Then the pair I, J satisfies V2 for all n but n 3. This example 
shows us that condition V2 does not imply V2+1; in fact, the examples with = 1 
in the last propostion do not satisfy V2>1. 

3. THE GROWTH OF T HE HILBERT FUNCTION 

This section is devoted to study the growth of the Hilbert function of an m- 
primary ideal under the conditions of Theorem 2.7, and we will apply it to the 
study of Hilbert functions in the one-dimensional case. 

Given a numerical function F: N - N, we will denote by A'F its r-th deriv- 
ative, r > 1, i.e. AF(n) = F(n) - F(n - 1) and by induction A'+1F A(ArF). 
We put &1F = F. 

Lemma 3.1. Let R be a one-dimensional Cohen-Macaulay local ring. Let I be an 
n-primary ideal of R, and let x be a superficial element of I. We denote by 'H 

the numerical function defined by AH(n) length.4 (In/jIn- 1). Then 

HI (n) - HI (n - 1) )-H(n) -Ht(n + 1) . 

Proof. Let us consider the following exact sequence of R-modules: 

xin- I I71 In 
0 -e - > --l> ?' - 0. 

XPn XPn XIn-I 
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We have 

lengthR ( -1) lengthR -j) - lengthR (xI_) 

= eo(I) - lengthR (In) 

eo(I) - HI(n- 1) 

([Lip7l], Remark (a) and (b) to Corollary 1.LO). Hence we have 

HI (n) -HI (n - 1 ) = X (n) -X (n + 1 ) 
for all n > 0. O 

Proposition 3.2. Let R be a d-dimensiornal, d > 1, Cohen-Macaulay local ring. 
Let I be an m-primary ideal of R, and J (X1 ... , Xd) a minimal reduction of 
I, withX .l. . , Xd a superficial sequence of I. Let us assume that there exists an 
integer t > 1 such that 

* I, J satisfy the condition V$2 for n- O, ... , t, and 
* length(It+1/JIt) < 2. 

Then HI/(X1,...,xd) is non-decreasing. 

Proof. Since the conditions of the claim are preserved modulo superficial sequences, 
we may assume d = 1. We set J= (x). 

Let us consider the morphisms 

In-2 X In-I 

In- L rIn 

Since the pair I, J satisfies V2 for nr- ,... , t, we get that these morphisms are 
mono, so 

HI(n - 1) < Hi(n) 

for n < t - 1. 
We need to consider two cases: 

Case 1: 1i(t) < 1. Then by Proposition 2.3 we get 

1 > (X(n) > -(n (m- 1) ? 0 

for all n > t. By Lemma 3.1 we obtain the claim. 

Case 2: X-(t) > 2. We set w = lengthR(It+l/xIt + Jt+2), and consider the 

projection 

It+1 1t+1 

cdt xlt + It+2 

If w - then It+' = xIt, and Hi(n) eo(I) for all n > t, [Lip7l], Theorem 1.9. 
Hence the Hilbert function is non-decreasing. 

If w 2, then the projection is an isomorphism and It+2 C xIt. Hence we have 
that for all n > t the natural projection induces isomorphisms 

jn+1 in+l 

xIn xIn + ITn+2 
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Since G(I)/x*TG(I) is a standard R/I-algebra, and w < 2, we get that X1(n) is 
non-increassing for n > t, [Bla95], [BN96]. From Lemma 3.1 we get that HI is 
non-decreasing. 

Let us assume w - 1. From Proposition 2.3 there exists 9 C I such that the 
coset of g9+?l in In+l/xI?n + In+2 is a generator for n > t. Hence the coset of gn+I 

in In+?/XIn is also a generator, and then the morphism 

in+I g In+2 

XIn Xjn+In 

is an epimorphism for n > t. FRom Lemma 3.1 we get that HI is non-decreasing. L 

We will denote by PI C 7Z[Z] the Poincare series of I: 

PI (Z) - E HI((n) Zn. 

n>0 

It is well known that there exists a polynomial f(Z) E Z[Z] such that 

PI (Z) = (I Z) 
(- Z)d- 

Proposition 3.3. Let R be a d- dimensional, d > 1, Cohen-Macaulay local ring. 
Let I be an m-primary ideal of R, and J = (xI, .. ., Xd) a minimal reduction of I. 
Let us assume that there exists an integer t > 1 such that 

* I, J satisfy the condition V2 for n = 0, ... t, and 
* 6 = length(It'+/JIt) < 1. 

We consider the integer -length(It+l + (x2,... , xd))/(JIt + (x2,. . X,d)) < 1. 
Then 

(1) If 8 = 0, then G(I) is Cohen-Macaulay and there exists u < t such that 

aO + a, Z + . . . + a 

(1 _Z)d 

with ai > 0 for all i < u. 
(2) If 6 = 1, then 

ao + a, Z+ + atZt +Zu 
PI (1 Z)d 

with u > t, ai > 0 for all i < t - 1, and at > 0. If G(I) is Cohen-Macaulay 
then at > 0, and u t + 1. 

In particular, _d-lHI is non-decreasing. 

Proof. FRom [Sin74] and Theorem 2.7 we have 

with Rt R/(x2,. . ,Xd), I - I/(X2, X xd), J J/(X2, ,Xd), and P-T = 

(ao + a1Z + + asZs)/(1 - Z). Notice that a,, HI (n) HI(n - 1) for all 
n > 0. 

If 8 = 0 then the pair I, J satisfies V2 for all n > 0. From the Vallabrega-Valla 
result we get that G(I) is Cohen-Macaulay, and G(I) as well. From this it is easy 
to prove (1). 
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Suppose 6 = 1. From Lemma 3.1 and Proposition 3.2 we have that for all n > 0 

(F2) a,, - HI (n) -H (n- 1) HT (n) - HI (n + 1). 

Since the pair I, J satisfies V2 for n O, . . ., t and 8 # 0, from (F2) we get that 
the morphism, n = O,.., t- , 

In-l In 

XI 

is mono, but not an isomorphismi. Hence a,, > 0 for all n 0 O, . .. , t - 1. 
On the other hand we have that Ht(n) < 1 for all n > t + 1, by Proposition 2.3. 

From this and (F2) we get the first part of (2). The second part of (2) is clear. D 

One-dimensional case. Let R be a one-dimensional equicharacteristic Cohen- 
Macaulay local ring. W;e will denote by b = dimk(m/m2) the embedding dimension 
of R. Recall that Abhyankar proved that eo(R) > b. 

It is a longstanding problem to find conditions to assure that the Hilbert function 
of R is non-decreasing. It is well known that; for b < 2 the Hilbert functio:n HR is 
non-decreasing. The main open problem was the conjecture of Sally: if b - 3 then 
the Hilbert function of R is non-decreasing, [Sal78I. This conjecture was settled in 
[Eli93a]. See [GR83] for examples of one-dimensional local rings with decreasing 
Hilbert functions with b > 4, and [Eli93a], [Eli94c] for further results. As a corollary 
of Proposition 3.2 we obtain that for eo(R) < b + 2 the Hilbert function of R is 
non-decreasing. 

We can summarize the above results: 

Proposition 3.4. Let R be a equicharacteristic one-dimensional Cohen-Macaulay 
local ring of multiplicity eO and embedding dimension b. Then 1 < b < eo, and the 
Hilbert function of R zs non-decreasing in the followzng cases: 

(1) b < 3, or 
(2) b<eo(R)<b+2. 

The first open case for which we don't know if the Hilbert function is decreasing 
is b = 4 and eo = 7. Recall that the first known example with a decreasing Hilbert 
function for b = 4 has multiplicity eo(R) - 32, [GR83]. 

It is well known that if b = 2 or e, then the tangent cone is Cohen-Macaulay, 
[Sal77]. The first case for which the associated graded ring can be non-Cohen- 
Macaulay is b = 3, e = 4. In this case e1 = 4 or 5, [Eli9O], and the Hilbert function 
is determined by this coefficient, [Eli96]: 

* e = 4, H = {1, 3,4, ...}, G(R) Cohen-Macaulay, 
example: R - k[[t4, t5, t611, 

* e -5, H {1, 3, 3,4, ...}, G(R) not Cohen-Macaulay, 
example: R k[[t4, t5, tll]]. 
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