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BOUNDS FOR THE BETTI NUMBERS 
OF GENERALIZED COHEN-MACAULAY IDEALS 

LE TUAN HOA AND ROSA M. MIRO-ROIG 

(Communicated by Wolmer V. Vasconcelos) 

ABSTRACT. Upper bounds for the Betti numbers of generalized Cohen-Macaulay 
ideals are given. In particular, for the case of non-degenerate, reduced and ir- 
reducible projective curves we get an upper bound which only depends on their 
degree. 

0. INTRODUCTION 

Let I be a homogeneous ideal of a polynomial ring S = K[xl, xn] over 
a field K, R = S/I, M := (xI, ..., xn), m = MR and e = e(I) :=e(R) the 
multiplicity of R/I. I is said to have a property P if R has this property P. 

It is a classical question to give upper and lower bounds for the Betti numbers, 
,8i of S/I. A well-known conjecture due to Buchsbaum-Eisenbud says that 
,61(S/I) > (n) for 0-dimensional ideals, and very recently Valla has given sharp 
upper bounds for the case of C.M. ideals (see [V]). The goal of this paper 
is to extend Valla's result to generalized C.M. ideals, i.e. ideals whose local 
cohomology modules Hm(R) are of finite length for all i < dim(R). As in [H], 
the key point is to reduce the computation to the case of C.M. ideals. 

Now we give a brief description of the paper. In ? 1, we fix notations and recall 
some results needed later on. In ?2, in order to prove our main result (Theorem 
2.6), we first reduce to the case of 0-dimensional ideals and then we extend 
Valla's bounds to arbitrary (not necessarily non-degenerate) 0-dimensional ide- 
als. As a consequence and related to Buchsbaum-Eisenbud's conjecture we get 
the upper bound f3 (S/I) < (n7)e for the Betti numbers of any homogeneous 
0-dimensional ideal I. In the last section, applying our results we obtain up- 
per bounds for the Betti numbers of the homogeneous ideal of some special 
projective schemes. In particular, for the case of non-degenerate, reduced' and 
irreducible projective curves, C, we get an upper bound which only depends 
on the degree of the curve C. 
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1. NOTATION AND PRELIMINARIES 

Throughout this paper we make the following conventions: 

= I if m> 0 and =0 ifm<k. 

The following combinatorial formulae will be useful to us: 

(1.1) (;"')) + + c - a - I _ + - 

(1.2) E a() (c+i1)(ca 1)(c+b)a 

(1.3) i 
a) ka+2 

+ (bI+ 
1l)\a1+ I 

If m and i are positive integers, then m can be written uniquely in the form 

m = (m(i)) + 
m(i - 

1)) + + (m(j)) 

where m(i) > m(i - 1) > ... > m(j) > j > 1. This is called the i-binomial 
expansion of m. We let 

m(E) = m(i) + I ) m (i - 1 ) + I M(mj) + I 

(m(i) - 1) + (m(i - 1) - 1) + m(j) - 1) 

and 0(i) = 0. We define r(t)(0) := r and inductively r(t)(k) = (r(t)(k- ))(t) 
If I is a 0-dimensional ideal we denote its Hilbert function by HsI,. 
(1.4) Following [ERV], ?4, we denote by J(e, h) the unique 0-dimensional 

lex-segment ideal in S = K[xl, ..., Xh] with the Hilbert function HS/J(e h) = 

(1, h, (h+1) (h+t12) r, 0,...), where t = t(e, h) is the unique integer 
such that (th+t1) < e < (h+t) and r = r(e, h) = e - (h+t 1) . We set t(e, 0) 

1. 
(1.5) For p = 0, ... , h - 1, denote by Jp(e, h) (resp. Ip) the image of 

J(e, h) (resp. I) in the polynomial ring Sp , .. ., xp] under the canon- 
ical projection. 

For short we also use the notation ep(e, h) = e(Sp/Jp(e, h)). In particular, 
eo(e, h) = 1 . By [V], eq(e, n) = (t-I+q) + r(t)(n-q) for all 0 < q < n -. 

(1.6) Let H = (I1, H(1), ... H(a) , ... ) and L = (I, L(1),5 ...,5 L(b), ... 

be the Hilbert functions of two 0-dimensional homogeneous ideals of some 
polynomials rings, where H(a) # 0 and L(b) :? 0. We write H. > L if 
H(i) >L(i) for i=0, ..., a- 1. 

(1.7) By [ERV], Corollary 2.8, Hshl/Jhl(eh)((n) = (HS/J(e,h)((n))(n) for all 
n> 1. 

The following lemma will be useful to us and it is essentially contained in 
the proof of [ERV], Theorem 3.10. 
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Lemma 1.8. Assume that 1 < h < h'. Then, for all p > 1, we have eh-p(e, h) < 
ehlp(e, h'). 
Proof. Since e(e, h - p) = 0 for p > h, we have only to consider the case 1 < 

p < h - 1. Let S = K[xl, ..., xh] and S' = K[xl, ..., xh,]. By the definition 
of t and t' in (1.4) we have t' = t'(e, h') < t = t(e, h). Hence, by (1.4) and 
(1.6), Hs'/j(e,h')i 'HS/J(e,h)- Moreover e(S'/J(e, h')) = e(S/J(e, h)) = e. 
By repeated application of [ERV], Lemma 3.9, and (1.7) we get eh-p(e, h) < 
ehlp(e, h'), as required. 

(1.9) (See [V], Proposition 2.) Let I be a O-dimensional non-degenerated 
lex-segment ideal of S. Then, for every i = 1, ... , n we have 

n-I 

A3(S/I)= Z (P)e(Sp/Ip). 
p=i-1I 

(1.10) For the basic properties of Buchsbaum as well as generalized C.M. 
rings we refer the reader to the book [SV]. A ring R is called a generalized 
C.M. ring if the length of the local cohomology modules H' (R) is finite for 
all i < dim(R). In this case we set I(R) :ed (dl)l(Hm(R)). R is a 
generalized C.M. ring if and only if there exists a positive integer k such that 
mk is an R-standard ideal. R is called a Buchsbaum ring if m is an R-standard 
ideal. 

2. MAIN RESULTS 

All results of ?2 also hold for ideals of a regular local ring. For the simplicity 
of formulation we restrict our attention to the case of homogeneous ideals in a 
polynomial ring. 

Recall that a homogeneous element x E m is called a superficial element of 
order 1 for m if there exists a positive integer p such that (mq: x) nmP= Mq- 
for q >> 0. For the properties of superficial elements see, e.g., [S]. 

Lemma 2.1. If x E m is a superficial element of order 1 for m, then its image 
in R/(O: x) is a superficial element of order 1 for m/(O: x). 

Let I c S = K[xl, ... , xn] be a homogeneous ideal. Set R = S/I. 

Lemma 2.2. Assume that I is a generalized C.M. ideal and dim(R) = d. Let 
3 = depth(R). Then, for all 1 < i < n we have 

(S/I) ((n-7+ 1) - (n-d+ 1) ) I(R) + fi(S'/ J), 

where J is a O-dimensional ideal of a polynomial ring S' = K[yj, ***, Yn-d] 
with e(J) = e(I). 

Proof. Assume that 3 = 0. Let x (resp. the image of x) be a homogeneous 
superficial element of order 1 for 9X (resp. for m) (see [S], p. 7, for the 
existence of x). Consider the exact sequence 

0 -> (0: x) -* R -* R/(O: x) -O0. 

Note that l((O: x)) < l(H?O(R)) < I(R). Applying the functor Tors(K, *) to 
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the above exact sequence we get 

3i1(S/I) = dimTorS(K, R) <dimTori(K, (0: x)) + dimTors(K, R/(O: x)) 

< ( I (R) + dim Tors(K, R/(0: x)). 

By [HSV], Lemma 1, 

Tors(K, R/(O: x)) _ TorV'(K, R/(O: x + xR)) = fl1(S1/J1), 
where S1 := S/(x)Ji = (I: x) + (x)/(x) c S1 is again a polynomial ring and J1 
is a homogeneous ideal. By Lemma 2.1, the image of x is a superficial element 
of order 1 for R/(O: x). Moreover, the image of x is a non-zero divisor of 
R/(O: x). Hence, e(JI) = e(R/(O: x)) = e(I). Repeating this process we get 

A3 (S/I) < (n) + + (n 
- d + 

I) I (R) + fl (SIJ 

((i21)- ( <t D+)I (R) +fli(s'/ ), 
where J is a O-dimensional ideal of a polynomial ring S' = K[y1, ..., Yn-d] 
with e(J) = e(I). 

If 3 > 0, then in the first 3 steps we have Tors(K, 0: x) = 0, and the result 
easily follows. 

Let 8i (e, n) = 8i (S/J(e, n)) be Valla's bound for the ith Betti number 
of non-degenerate O-dimensional ideals in K[xI, ... , x,] with multiplicity e 
([V], Theorem 4). We set 8i (e, n) = 1 if i = 0 and fih(e, n) = 0 if i < 0. 
We will extend Valla's results to any O-dimensional ideal. 

Lemma 2.3. Let I c K[xI, ... , x,] be a O-dimensional ideal of multiplicity 

e(I) = e. Set l = dimK(I\92) K. Then, for all i = 1, .. ., n, we have 

f3i(S/I) < (J) 8i-j(e ' n - 1). 

Proof. We proceed by induction on 1. For 1 = 0 it follows from (1.9). Assume 
1 > 0; let x E I\9M2 be any linear form. By changing the coordinates we can 
assume that x = xn. Let I' = I/xS, S' = S/xS _ K[xI, ... , xn-,]. Then 
dim(I'\9J'2) 0 K = 1 - 1 and e(I') = e(I). By [HSV], Lemma 1 and the 
induction hypothesis we have the following required result: 

f3i(S/I) < fli(S'/I') + fA (S'/I') 

< , ( j)_I-j(e . (n - 1) - (1 - 1)) 

1=0 
+ , ( 

f 
)l3i-j(ei (n - 1) - (I - 1)) 

=fi3t(e, n - )+ (+ ( * ) + ( ))fij(e, n - I) + fi(e, n) 
j( I 

= Z(J~8i-j(e .nl- ). 
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Lemma 2.4. Let I be a 0-dimensional ideal of S of multiplicity e. Denote 
n* = min(e - 1, n), and define t*, r* after theformulae in (1.4) for e and 
n*. Then, for all i = 1, ..., n,we have 

f3(S/I) ? (t*- I t* + i- I) + (i_ I)r(t*)(nP) 

Proof. Set 1 = dimK(I\9i2) ? K. If n = 1, then I = (xI, ..., xn) and the 
above formula is trivially true. Assume n - 1 > 1 . By Lemma 2.3 and (1.9) we 
have 

P1S/I,) ? ~ 5fli-j(e, n - 1) = Q fli-j(e, n - 1) + 
1=0 1=0 

( min(i-I'1 
- - , l) pz Z 

1=0 Pijl n-l) 

p=i-min(i-1 ,)- I j=i-p- 

Since 7Y-i-p-' (1) " ) < (iP +) and ep = 0 for p < 0 by Lemma 1.8 we 
have 

( n-1- Ip + I 

< (I) n,)i+ ( +i)e Ie( +(e n*) p=0 

= (I) + (2 1)e (eI n*) (i + E1 i (i_ en*-(n-j+(e~ n*). 

Hence, using (1.5), we get 

n-i 

+_ ?i z lr(j1)(tn+-e ) 

q~rnax(I~i-i) 

1+q q~~~max ~ ~mll i-1 ) 

(i( q ) (t*71 ) + (i- q 

q=max(l, i- 1) 
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If / < i, () =O.and if l > i, we have 

q(-) t* - )- +Iil (i) 

So in both cases we obtain 

()+ E (i-1 I t*- 
< E (i- 1)I q ) 

q=max(li )q -I 

= t*+i-2)(t*+n- i) 

t*- 1Jt*+i- y 
which completes the proof of the lemma. 

Remark 2.4.1. If e - 1 > n, then n = n* and we get exactly the same bound 
as Valla's bound for non-degenerate ideals ([V], Proposition 5(i)). Hence, we 
cannot improve Lemma 2.4 unless one involves 1. But / is not defined explicitly 
in our consideration. 

Remark 2.4.2. Since ep(e, n*) = length(Sp/Jp(e, n*)) < e - (n* - p) for all 
0 < p < n* - 1, from the proof of Lemma 2.4 we get another estimation: 

q 1-ni1 1 

For n = n* we get a little more: 

(S/I (i -)(e - (n - q)) = n(e - n) + E q( 
q=i-Iq i 

= (fl)(e - n) (+1) +n() = e 

It is interesting to compare this last result with the conjecture that fli(S/I) > 
(n) 

Lemma 2.5. r(t)(n-q) < (t+t1) for all 0 < q <n. 

From Lemma 2.2 and Lemma 2.4 we get 

Theorem 2.6. Assume that I is a generalized C.M. ideal of ht(I) = h in 
K[x , ..., Xn]; 3 = depth(R). Let h* = min(e - 1, h) and t*, r* be defined 
for e and h* . Then for all 1 < i < n we have 

fif/ I) < (ni+ 
1 

)6 (i+ 
I 

)I(R) 

+ t*+i-2)(t*+h-l) 
I 

- 

(t 1 (t* + i - I )+ (i (t*)(h-) 

, , . . c \ , . . \ \ ,i- .I j 
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Proof. The first inequality follows immediately from Lemma 2.2 and Lemma 
2.4. Further, by Lemma 2.5 we have 

h-i h-I t* + + h* h I 

E ~ ~~ i- I(i-1)h) <( t* 

=pPi 

(-) 

((t;P) (+ 1)) 

ht I i -1At* + hA _ t -A*+h-1 

( 
t*I 

1 t*+h) - t*? 
1 
2)t*+h-1) From that we get the second inequality. 

Remark 2.7. Other bounds are (by Remarks 2.4.1 and 2.4.2) 

iMI) < (n+ 1 -6 h+ 1 I(R) + h) e 

or for e> n -1 

)+ 1 ) (i+ I) ( e + 1J 

Example. For I = (xI ,... xn1) n (xI, ..., xn)2 we have I(R) = n - 1 
t*= 1, r* = 0. Hence, the first bound in Theorem 2.6 equals the bound in 
Remark 2.7 and equals (n)(n - 1) + (nl 1) = (n)((n - 1) + (i + 1)(n - i)/n) . 
Using [EK] we get 

Pi3(S/I) = (7)(n- 1)+ (+ ) = ( )((n- 1)+(n-i)(n-i- 1)/((i+ 1)n)). 

This shows that in this example the bounds given in Theorem 2.6 are not far of 
being sharp. 

In order to get bounds for the Betti numbers in terms of e, n and k where k 
is defined in (1. 10) one can combine Theorem 2.6 with the following bounds on 
I(R) given by the first author in [H], where one can also find better bounds for 
PIu (S/I) . Note that there is already no upper bound for the number of generators 
of I which does not involve k. Following [EVR], ?4, we set v(e, h) = (h+t-) - 

r+r(t) where t and r are defined in (14). 

Lemma 2.8. Let I be an ideal of S such that mk is an R-standard ideal (k > 
0). Then 

(i) I(R) < (n- 1-n'+v(kd-le, n))(n+k-l), where 

n' = min(n - 1, kd-le - 1). 

(ii) I(R) < ((2n - 3)/(n - 1) + ekd- (n - 2)2/(n - 1))(n+k-1). 

(iii) If depth(R) > 0, then I(R) < (d - 1)(kde- 1). 
(iv) If I is a Buchsbaum ideal, then I(R) < h - h' + v(e, h'), where h' = 

min(h, e- 1). 
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3. APPLICATIONS 

As applications of our results we will give upper bounds for the Betti numbers 
of the homogeneous ideal of some projective schemes. 

Example 3.1. Let V be an arithmetically Buchsbaum projective subscheme of 
codimension 2 in pn. Then by [H], Corollary 4.1, I(R) < (1 + 8e)1/2 and 
t* < (-1 + (1 + 8e)1/2)/2. Hence by Theorem 2.6 we get 

ti (S/IV) < (( + +1) - (2 +)) (1 + 8e)1/2 + (t* + ) (t*+ 2i) 
Thus: 

(1) fgi(S/Iv) < ((n21)-3)(1+8e)1/2+(3+(1+8e)1/2)/2 = -n+l) (I + 8e)1/2+ 
3/2 - 5(1 + 8e)1/2/2. 

(2) 132(S/IV) < ((n+l) _1)(1 +8e)1/2+(1+(1 +8e)1/2)/2 = (f3)(1 +8e) 1/2+ 
1/2 - ((1 + 8e)1/2)/2. 

(3) For all n > i > 3, f3i(S/Iv) < (ni+1)(I + 8e)1/2- 

Example 3.2. Let V be an arithmetically Buchsbaum projective subscheme of 
codimension h in pnf. Then, we have the following bounds on the Betti num- 
bers: 

Xl (S/I IV < (n+ 2 h+ ) (d - 1)(e - 1) + (h _-( + 1 

In particular, if d = 2 (i.e., for curves) 

fli(SlIv) < (n (e - 1 e-(1+i. 

Example 3.3. Let C be a non-degenerate, reduced and irreducible curve in pn 
over an algebraically closed field K. From Theorem 2.6 and Remark 2.7 we get 

f3i(S/Ic) < () I(R) + (.e -(i1)- 

Using Lemma 2.8 (iii) we obtain 

f3i(S/Ic) < (.)(k2e- 1)+ (n 1)e (2 4 

By [GLP], one can choose k < max( 1, e - n); hence if e > n + 1 we have 

w h ol d s o n e. - n ) e- 1) n . I - 

which only depends on e. 
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