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Abstract 16 

The distribution, abundance and size structure of a penaeid with tropical affinities 17 

(Metapenaeus dalli) was investigated in a temperate, microtidal estuary in south-western 18 

Australia. Sampling was conducted every lunar month for two years at 20 sites across five 19 

regions (nine subregions) in nearshore waters by hand trawl, and at 16 sites across four 20 

regions (eight subregions) in offshore waters by otter trawl. Densities of M. dalli changed 21 

markedly seasonally, with greatest values recorded in nearshore waters from October to 22 

February, and in offshore waters from March to July. These densities also varied spatially, 23 

with the highest recorded in the Lower Canning, Middle Swan, and Upper Melville Water 24 

regions. Spearman’s rank correlation showed a positive relationship between the density of 25 

M. dalli in nearshore waters and surface water temperature in all nine subregions, whilst 26 

densities of M. dalli in offshore waters were negatively correlated with bottom water 27 

temperature in most of the estuary; these correlations reflect the movement of adult prawns 28 

into shallow waters for breeding in summer, as well as the subsequent recruitment and 29 

movement back into deeper waters over the winter months. Mean carapace lengths remained 30 

relatively unchanged over the late autumn and winter months (May to August), before rapidly 31 

increasing with temperature in late spring. The spatial and temporal distribution of M. dalli 32 

differed significantly from those of other crustaceans in the estuary, particularly the penaeid 33 

Penaeus latisulcatus, which was concentrated mainly in the Lower and Upper Melville Water 34 

regions. The distribution of M. dalli was statistically indistinct from that of the apogonid 35 

Ostorhinchus rueppellii, which predates heavily on postlarval M. dalli, and very similar to 36 

those of two scyphozoans, Aurelia aurita and Phyllorhiza punctata, that likely predate on 37 

larval M. dalli. These findings highlight the partitioning of species within the estuary and the 38 

significance of site selection for maximising the post-release survival of hatchery-reared 39 

M. dalli produced by aquaculture-based enhancement programs.  40 
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1. Introduction 41 

Estuaries are highly productive ecosystems, receiving nutrients from a range of sources 42 

including rivers, run-off, tidal water movement, the atmosphere and waste input (McLusky 43 

and Elliott, 2004; Bianchi, 2006). Their high productivity provides important food sources for 44 

many taxa, enabling their juveniles to grow rapidly. In addition, inhabiting these systems can 45 

lower predation risk due to the reduced presence of large predators (Blaber and Blaber, 1980; 46 

Potter et al., 2016). For these reasons, estuaries are often used as nursery areas by fish and 47 

crustacean species (Beck et al., 2001; Tweedley et al., 2016a). The ecological value of 48 

estuaries for fisheries is reflected in the proportion of fishery species that utilise these 49 

productive, sheltered waters. For example, Lellis-Dibble et al. (2008) estimated that species 50 

that use estuaries contributed 46% by mass and 68% by value to commercial fish and 51 

shellfish landings in the United States between 2000 and 2004. Moreover, Creighton et al. 52 

(2015) estimated that, in Australia, such species comprise > 75% of commercial fish catch 53 

and, in some regions, up to 90% of the recreational angling catch. 54 

As estuaries are located at the interface between fresh and marine waters, their 55 

physico-chemical conditions change markedly spatially as well as over a range of temporal 56 

scales, e.g. tidal cycle, monthly, seasonally and inter-annually (e.g. Gallegos et al., 2005; 57 

Sutherland and O’Neill, 2016; Hoeksema et al., 2018; Plenty et al., 2018). Typically, these 58 

conditions are influenced by tidal range and longer-term patterns in weather. For example, 59 

salinity in the Fraser Estuary of British Columbia, Canada, which has a tidal range of 4 m, 60 

varied by almost 30 over a tidal cycle (Geyer and Farmer, 1989). In contrast, the salinity in 61 

permanently-open microtidal estuaries (tidal range < 2 m) changes little over a tidal cycle, but 62 

can change in some locations by > 30 over the course of a year (Tweedley et al., 2016a).  63 

Given the dynamic nature of estuaries and their physico-chemical environments, the 64 

composition of their faunal communities also changes spatially and temporally (e.g. Palma et 65 

al., 2013; Becker et al., 2016). In the temperate estuaries of south-western Australia, the 66 

community structure and composition of the fish fauna show major differences associated 67 

with the longitudinal gradient in estuaries with a permanent connection to the ocean, with 68 
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species ‘preferring’ a particular physico-chemical environment (e.g. Loneragan et al., 1987; 69 

1989; Valesini et al., 2009; Veale et al., 2014; Potter et al., 2016).   70 

Temporal changes in the abundance of benthic macroinvertebrate species have been 71 

related to the timings of spawning and recruitment, and thus are also influenced by physico-72 

chemical parameters such as water temperature and salinity, which affect growth, survival 73 

and reproductive success (Rainer, 1981; Kalejta and Hockey, 1991; Sardá et al., 1995; Platell 74 

and Potter, 1996). It is therefore expected that the pattern of temporal (i.e. seasonal) variation 75 

in species composition would differ between regions of an estuary, because they often 76 

harbour different suites of species (e.g. Loneragan and Potter, 1990; Young and Potter, 2003). 77 

Many penaeid species are associated with coastal and estuarine systems at some stage 78 

of their life cycle, specifically the postlarvae and juveniles of marine-spawning species that 79 

utilise estuarine nursery areas, as well as all life stages of estuarine-spawning species (Dall et 80 

al., 1990; Subramanian, 1990; Rȍnnbȁck et al., 2001; Khorshidian, 2002; Macia, 2004). 81 

Aspects of the spatial distribution of many penaeids in these environments have been 82 

investigated, focusing on the distribution of postlarvae and juveniles from the marine 83 

environment (Vance et al., 1996; 1998; Galindo-Bect et al., 2010) and the habitat (Rȍnnbȁck 84 

et al., 2001; Vance et al., 2002; Taylor et al., 2016; 2017) and substrate preferences (de 85 

Freitas, 1986; Somers, 1987; 1994; Kenyon et al., 2004) of juveniles and/or adults. 86 

Physico-chemical variables have been correlated to the distribution of various 87 

penaeids; for example, water temperature, dissolved oxygen concentration and rainfall were 88 

all correlated with the catch of Metapenaeus macleayi in the Hawkesbury-Nepean River, 89 

New South Wales (Pinto and Maheshwari, 2012). Water temperature was the major factor 90 

influencing the recruitment of Penaeus esculentus in Moreton Bay, Queensland (Kienzle and 91 

Sterling, 2016) and salinity the main driver of the distribution of Penaeus monodon and 92 

Penaeus indicus in the Saadan Estuary, Tanzania (Mosha and Gallardo, 2013).  93 

 Understanding the patterns of abundance and distribution of a species are particularly 94 

important for those species that are targeted by fisheries, and complete their life cycle in 95 

estuaries, as there is unlikely to be recruitment from adjacent marine waters to supplement 96 
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the population if over-exploitation occurs or the population declines for other reasons. The 97 

Western School Prawn Metapenaeus dalli is found along the western coast of Australia from 98 

Darwin in the north to Cape Naturaliste in the south, and also in Java, Indonesia (Racek, 99 

1957; Grey et al., 1983). It typically occurs in shallow, inshore marine waters (< 30 m deep), 100 

however, at the southern limit of its distribution (i.e. south of ~31°S), it is found only in 101 

estuaries and completes its life cycle within these systems (Potter et al., 1986; Broadley et al., 102 

2017; Crisp et al., 2018). Metapenaeus dalli is a short-lived species, with a lifespan of up to 103 

two years and exhibits a highly seasonal pattern of growth (Potter et al., 1986; 1989; 104 

Broadley et al., 2017). This species, together with the Western King Prawn, Penaeus 105 

(=Melicertus) latisulcatus, was the focus of a commercial fishery that closed in the mid-106 

1970s due to sustained low catches, and an iconic recreational fishery that also declined, with 107 

the last significant catches recorded in the late 1990s (Broadley et al., 2017). Because the 108 

population of M. dalli has not recovered despite the large reduction in fishing pressure, a 109 

restocking project was initiated between 2012/13 and 2015/16 to evaluate the feasibility of 110 

aquaculture-based enhancement to rebuild the population of this penaeid in this estuary 111 

(Tweedley et al., 2017a). During this time, about 4.5 million M. dalli postlarvae were 112 

released into the Swan-Canning Estuary (Crisp et al., 2018). 113 

While the general biology of M. dalli in temperate south-western Australian estuaries 114 

has been determined (Potter et al., 1986; 1989; Broadley et al., 2017; Crisp et al., 2018), these 115 

studies did not investigate the patterns of M. dalli distribution and abundance within the 116 

estuary in detail. This type of fundamental information is needed to guide the aquaculture-117 

based enhancement of this species in the Swan-Canning Estuary. For example, the 118 

relationships between the distribution and abundance of M. dalli and physico-chemical 119 

variables in the estuary will help select suitable times and sites for collecting broodstock and 120 

for the subsequent release of hatchery-reared individuals. The development of optimal release 121 

strategies that maximise the survival of cultured M. dalli also requires an understanding of 122 

how the spatial distribution of this penaeid relates to those of potential competitors and 123 

predators.   124 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

6 
 

The aims of this study were therefore to: (i) determine the spatial and temporal 125 

patterns of abundance of M. dalli, and elucidate whether those patterns are correlated with 126 

any physico-chemical variables; (ii) describe the spatial and temporal patterns of abundance 127 

of different size classes of M. dalli; (iii) compare these patterns with those of a potential 128 

penaeid competitor, P. latisulcatus and (iv) identify the fish and invertebrate species that 129 

exhibit similar spatial and temporal patterns of distribution to those for M. dalli, to evaluate 130 

potential key predators, and how their distribution might affect the M. dalli population. This 131 

information is required for adopting a responsible approach to aquaculture-based 132 

enhancement following Lorenzen et al. (2010). 133 

 134 

2. Materials and methods 135 

2.1 Study site  136 

The Swan-Canning Estuary is a drowned river valley system located in south-western 137 

Australia, which is ~50 km long, covers an area of ~55 km2 and remains permanently open to 138 

the Indian Ocean (Brearley, 2005). The estuary comprises a narrow entrance channel that 139 

opens into two basins (Melville and Perth Water) and the tidal portions of the Swan and 140 

Canning rivers, which extend ~29 and 13 km upstream from their entry points into Melville 141 

Water, respectively. Although the majority of the estuary is shallow, i.e. < 2 m in depth, it 142 

reaches a maximum depth of ~20 m in the entrance channel (Valesini et al., 2014). South-143 

western Australia experiences a Mediterranean climate, with hot, dry summers and cool, wet 144 

winters with ~80% of rainfall occurring between June and September (Hodgkin and Hesp, 145 

1998; Hallett et al., 2017). This, combined with the microtidal tidal regime (< 1 m variation 146 

in tide height), results in marked seasonal variations in physico-chemical conditions in this 147 

salt-wedge estuary. Salinities are typically stable and relatively high throughout much of the 148 

estuary during the austral summer (December to February), but during winter, may vary 149 

markedly along the estuary following substantial freshwater discharge, leading to marked 150 

stratification of the water column (Tweedley et al., 2016a). 151 
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The Swan-Canning Estuary flows through the capital city of Perth, which supports 152 

~78% of the 2.6 million people in the state of Western Australia (Australian Bureau of 153 

Statistics, 2015). Despite the estuary being extensively modified by anthropogenic activities, 154 

it is valued highly for its aesthetic, commercial, environmental and cultural importance 155 

(Tweedley et al., 2017b). Recreational fishing is an iconic activity in Western Australia, with 156 

an estimated 711,000 participants in 2014/15 (Ryan et al., 2015), and the Swan-Canning 157 

Estuary is a popular hotspot for recreational fishers, with a 1998/99 survey estimating 30,338 158 

fisher days of effort (Malseed and Sumner, 2001).  159 

 160 

2.2. Sampling procedure 161 

Metapenaeus dalli were sampled during the night at two locations within 20 sites in 162 

the shallow, nearshore waters (< 2 m deep; Fig. 1) and 16 sites in the deeper, offshore waters 163 

(2 – 17 m deep) of the Swan-Canning Estuary on the new moon phase of each lunar cycle 164 

between October 2013 and 2015 (i.e. 26 consecutive lunar months). Each site was allocated 165 

to both a region and subregion (Fig. 1). Sampling in nearshore waters was conducted using a 166 

4 m wide hand trawl constructed from 9 mm mesh. Two people operated the hand trawl, each 167 

holding a pole connected to the wings on either end, with the mouth of the net between them. 168 

The width of the hand trawl net during trawling was, on average, ~2.85 m, but varied slightly 169 

amongst trawls depending on the condition of the substratum, presence of submerged 170 

obstacles and localised wind and wave conditions. A hand trawl of 200 m (swept area of 171 

~570 m2 each) was carried out at each location in each site on each sampling occasion, 172 

covering a total area of 22,800 m2 on any single lunar month. Sampling in offshore waters 173 

employed an otter trawl net (4.4 m headline length, 2.6 m wing-end spread), with 25 mm 174 

mesh in the body, and 9 mm mesh in the cod end. The net was towed at a speed of ~1.6 knots 175 

(~3 km h–1) for five minutes, covering a distance of ~250 m. An otter trawl of ~650 m2 was 176 

completed at each location in each site on each sampling occasion covering a total area of 177 

20,800 m2 over a lunar month.  178 
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After each hand or otter trawl, the contents of the net were emptied into a container 179 

and each M. dalli was counted, sexed, measured and returned alive to the water. The carapace 180 

length (CL), i.e. orbital indent to the posterior edge of the carapace, of each individual was 181 

measured (0.01 mm) using digital vernier callipers. Females were identified by presence of a 182 

thelycum and males by the presence of a petasma. Small individuals, without an obvious 183 

thelycum or petasma, were recorded as juveniles. Female prawns were also inspected to 184 

determine if they were gravid, i.e. had large green ovaries, as described by Crisp et al. 185 

(2017a) and/or possessed a spermatophore. The abundance of each penaeid, stomatopod, 186 

brachyuran, teleost and scyphozoan species collected together with M. dalli were also 187 

recorded, except in the case of Craterocephalus mugiloides, Atherinosoma elongata and 188 

Leptatherina presbyteroides, which were grouped together as ‘Atherinidae’. These species 189 

have similar morphologies and are very abundant, and it was not possible to identify them to 190 

species at night while attempting to return them to the water alive. As with the crustaceans, 191 

all teleosts and scyphozoans were returned to the water as quickly as possible, as per the 192 

conditions in Murdoch University Animal Ethics Committee permit #RW2566. 193 

Salinity, water temperature and dissolved oxygen concentration at the surface and 194 

bottom of the water column were recorded at each offshore site on each sampling occasion 195 

using a Yellow Springs International Model 556 water quality meter. Offshore surface water 196 

quality measurements were used as a proxy for the nearshore sites, as was shown to be 197 

suitable in Crisp et al. (2018). Data were also obtained from the Department of Water and 198 

Environmental Regulation, Western Australia, which records these variables at sites 199 

throughout the Swan-Canning Estuary every week (http://wir.water.wa.gov.au/Pages/Water-200 

Information-Reporting.aspx). A salinity stratification index was calculated by subtracting the 201 

salinity at the surface of the water column from that at the bottom (Crisp et al., 2018). 202 

Monthly rainfall and average maximum air temperature data for Perth airport were obtained 203 

from the Bureau of Meteorology (http://www.bom.gov.au/climate/data/) between January 204 

2013 and December 2015. The Department of Water and Environmental Regulation provided 205 
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monthly discharge data from tributaries entering the Swan-Canning Estuary over the same 206 

period. 207 

 208 

2.3. Statistical analyses 209 

Univariate analyses 210 

The density of M. dalli recorded in each sample from sites in the nearshore and 211 

offshore waters in each of the 13 lunar months in each year (2013/14 and 2014/15) were used 212 

to construct separate Euclidean distance matrices, and subjected to two-way Permutational 213 

Multivariate Analysis of Variance (PERMANOVA; Anderson et al., 2008) tests. These 214 

determined whether densities differed significantly among Lunar Month (13 levels and 215 

fixed), Subregion (8 or 9 levels and fixed; Fig. 1) and whether the interactions between these 216 

main effects were significant. Tests were conducted separately for data collected from the 217 

nearshore and offshore waters in each year. Year was not included as a factor due to the 218 

potentially confounding effect of the ongoing restocking program, which released 1,000, 219 

600,000 and 2,000,000 postlarval M. dalli into the nearshore waters of the Swan-Canning 220 

Estuary during the 2012/13, 2013/14 and 2014/15 breeding seasons, respectively (Tweedley 221 

et al., 2017a). As the densities of male and female prawns were highly correlated (see 222 

Results), they were combined to investigate the variation in total M. dalli density. When a 223 

main effect or interaction term was significant and contributed > 25% to the mean squares, a 224 

pairwise PERMANOVA test was used to identify the pairwise combination of a priori 225 

groups responsible for that difference. Prior to analysis, the extent of the linear relationship 226 

between the log-transformed mean and standard deviation for each dataset was examined to 227 

determine whether transformation was required to meet the test assumption of homogenous 228 

dispersions among a priori groups (Clarke and Warwick, 2001). These analyses indicated 229 

that no transformations were required. 230 

Spearman’s rank correlation tests were employed to elucidate whether the density of 231 

M. dalli was correlated with any of the environmental variables in the water column, (i) 232 

within a subregion over time, and (ii) within a lunar month and across the subregions. These 233 
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variables included water temperature, salinity and dissolved oxygen concentration at the 234 

surface of the water column and the density of M. dalli in nearshore waters, and water 235 

temperature, salinity and dissolved oxygen concentration at the surface and bottom of the 236 

water column, the stratification index and the density of M. dalli in offshore waters. The null 237 

hypothesis of no significant relationship between two variables was rejected when p ≤ 0.05, 238 

however, due to the limited number of subregions and thus replicates for correlations within a 239 

lunar month, p values of 0.05 – 0.1 were also classed as being influential. 240 

Differences in the mean carapace length (CL) of male and female M. dalli recorded in 241 

the nearshore and offshore waters of a region were tested using a non-parametric Kruskal-242 

Wallis test in SPSS v22. Note that a region was only included in the analysis for a given lunar 243 

month if a minimum of 30 M. dalli were caught. To provide a visual indication of the 244 

reason(s) for any pairwise differences in mean CL among regions in a lunar month, the 245 

number of individuals in each 1 mm CL size class in each region/lunar month combination 246 

were calculated. These data were standardised by the percentage contribution each size class 247 

made to the total number of M. dalli in each region in each lunar month and used to construct 248 

a shade plot. A white space for a size class indicates that no individuals were collected at that 249 

CL in a region/lunar month combination, and the depth of shading from grey to black is 250 

linearly proportional to the percentage contribution of that size class to the total catch in the 251 

region/lunar month combination (Clarke et al., 2014b). 252 

 253 

Multivariate analyses 254 

The variation in composition of the fauna was investigated using multivariate analyses 255 

to determine whether the distribution and abundance of M. dalli were similar to those of 256 

potential competitors and predators. The densities of all species caught in the nearshore and 257 

offshore waters (i.e. M. dalli and other penaeid, stomatopod, brachyuran, teleost and 258 

scyphozoan species) were fourth-root transformed to balance the contributions of common 259 

and rare species, by down-weighting the contributions of taxa with high densities. The 260 

resultant data were used to construct separate Bray-Curtis resemblance matrices for the 261 
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nearshore and offshore waters, each of which was subjected to a three-way PERMANOVA. 262 

This test determined whether species composition differed among Year (2 levels; fixed), 263 

Lunar Month (26 levels; with 13 nested within each Year) and Subregion (8 or 9 levels; 264 

fixed) and whether any interactions between the main effects were significant. As all main 265 

effects and the interaction terms were significant (P = 0.001) in both nearshore and offshore 266 

waters, the fourth-root transformed density of each species in each Subregion/Lunar 267 

Month/Year combination was averaged. 268 

These transformed and averaged data were subjected to coherent species analysis 269 

(Somerfield and Clarke, 2013; Tweedley et al., 2015) to determine whether the spatial and 270 

temporal pattern of change in the abundance of M. dalli was statistically indistinguishable to 271 

any other species. Species occurring in less than 10 of the 1,040 (< 1%) and 832 (< 1.25%) of 272 

the total number of samples from the nearshore and offshore waters, respectively, were 273 

excluded from this analysis as they add only random noise to the species similarities (Clarke 274 

and Warwick, 2001; Veale et al., 2014). As M. dalli were virtually absent from the nearshore 275 

waters between April and September, lunar months falling within this period were removed 276 

from this analysis. The transformed and averaged species density data were used to construct 277 

Bray-Curtis resemblance matrices, which were, in turn, subjected to hierarchical 278 

agglomerative clustering with group-average linking (CLUSTER) and an associated 279 

Similarity Profiles (SIMPROF) test employing the type III SIMPROF permutation procedure 280 

(Somerfield and Clarke, 2013). Separate analyses were carried out for the nearshore and 281 

offshore waters. 282 

The ‘coherent species groups’ were visualised by plotting the transformed densities of 283 

each species in each Subregion/Lunar Month/Year combination on a shade plot (Clarke et al., 284 

2014b), with species placed in optimum serial order using the Bray-Curtis resemblance 285 

matrix, constrained by the cluster dendrogram (Clarke et al., 2014a). Thus, species (y-axis) 286 

are ordered according to their abundance across subregions and lunar months in each year, 287 

and species with statistically indistinguishable patterns of abundance are grouped together. 288 

Subregion/Lunar Month/Year combinations (x axis) were ordered from left to right with 289 
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increasing distance upstream in the estuary, and within each lunar month in chronological 290 

order from October 2013 to October 2015. 291 

 292 

3. Results 293 

3.1. Climatic and physico-chemical conditions 294 

Mean maximum air temperatures between January 2013 and December 2015 exhibited a 295 

sinusoidal trend, with the lowest values recorded in July of each year (~18 °C), increasing 296 

sequentially to a peak the following February (~34 °C; Fig. 2a). Total annual rainfall ranged 297 

from 704 mm in 2013 to 578 mm in 2015, with the majority of rain (72 – 86%) falling 298 

between May and September (Fig. 2a). In contrast, very little rainfall occurred during the 299 

austral summer, i.e. December, January and February (a total of 1.2 mm in 2013/14, and 29 300 

mm in 2014/15). Annual flows from the Swan and Canning rivers were markedly greater in 301 

2013 and 2014 (218 and 175 GL, respectively) than in 2015 (78 GL; Fig. 2b). The Swan 302 

River was responsible for between 77 and 86% of freshwater dischage into the Swan-303 

Canning Estuary, with the majority of the flow occurring between July and October (82 – 304 

93%; Fig. 2b). Flows were greatly reduced between December and April, typically < 2 GL 305 

per month (Fig. 2b). 306 

As with air temperature, the temperature of the water column in each region 307 

underwent a pronounced seasonal pattern. Surface water temperature typically ranged from 308 

~15 °C in June/July to ~26 °C in Janurary/February (Fig. 3a). Seasonal differences were 309 

greatest in the Upper Canning Estuary and lowest in Upper and Lower Melville Water and 310 

the Lower Canning Estuary. Temperatures in surface waters were almost always > 20 °C 311 

between October and April and < 20 °C during May-September (Fig. 3a). Temporal patterns 312 

in bottom water temperature mirrored those in the surface waters, but showed less variation, 313 

i.e. temperatures were typically greater in the offshore than nearshore waters in the colder 314 

months between May and September, and the converse applied in the warmer months 315 

between October and March (cf. Fig. 3a,b). 316 
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Surface salinity ranged from 1 in the Upper Canning Estuary during October 2014 to 317 

38.4 in that same region in March 2014 (Fig. 3c). With the exception of October 2013, 318 

salinities in Lower Melville Water were always > 20, whereas in all other regions they 319 

declined to ≤ 10 at certain times. Ranges in salinity varied markedly among the regions, from 320 

16 in Lower Melville Water to 36 in the Upper Canning Estuary. Within a lunar month, 321 

salinities were most similar across regions during summer (January-April), typically differing 322 

by < 5, but differed by as much as ~25 in May and June 2014. The lowest bottom salinity was 323 

9.7 in the Middle Swan Estuary in October 2013, while the highest was 37.7 in the Lower 324 

Melville Water during March 2014 (Fig. 3d). Salinities in the bottom waters varied far less 325 

than the corresponding surface waters, e.g. bottom salinities in Lower Melville Water 326 

differed by only 7 over the two years. The stratification index exceeded 4 in most regions in 327 

October/November 2013, between May and October in 2014 and in August to October in 328 

2015 (Fig. 3e). The water column was most stratified in the Lower Canning and Lower and 329 

Upper Melville Water, and least stratified in the Middle Swan Estuary. 330 

Dissolved oxygen concentrations in the surface waters in each region/lunar month 331 

combination always exceeded 4 mg L–1 (Fig. 3f). Although values were lower in the bottom 332 

waters, typically they also exceeded 4 mg L–1. However, hypoxic conditions (i.e. < 2 mgL–1; 333 

Tweedley et al., 2016b) were recorded in the Lower Canning Estuary in October/November 334 

2013 and August/September 2014, and in four lunar months between August 2014 and 335 

February 2015 in the Middle Swan Estuary (Fig. 3g). 336 

 337 

3.2 Density of Metapenaeus dalli 338 

The mean density (prawns 500 m–2) of male and female M. dalli in the nearshore 339 

waters of the Swan-Canning Estuary varied markedly among lunar months, being 340 

substantially greater between October and February (1 – 5) than other months (< 1), and few 341 

prawns were caught between May and July (Fig. 4a). This marked seasonal pattern was also 342 

present in all four regions of the system. Densities between October and February varied 343 

among regions, being greatest in the Lower Canning Estuary, followed by Upper Melville 344 
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Water and the Middle Swan Estuary (Fig. 4). Slightly greater densities were recorded during 345 

this time of year in 2014/15 than 2013/14. Substantial densities of M. dalli were caught in the 346 

nearshore waters over a longer period in 2014/15 than in the previous year, however, 347 

exhibiting a less pronounced peak in November/December than in 2013/14 (Fig. 4). 348 

The seasonal pattern of M. dalli density was less pronounced in offshore than 349 

nearshore waters. Generally, densities increased from 0.6 in October 2013 to a peak of 27 350 

M. dalli 500 m–2 in May 2014 before declining until March 2015, reaching a peak in May 351 

2015 (42 M. dalli 500 m–2) and subsequently declining again until October 2015 (Fig. 4b). 352 

Similar seasonal patterns were present in the Middle Swan Estuary and Lower Canning 353 

Estuary and, to a lesser extent, in Upper Melville Water. The first two regions recorded by far 354 

the greatest densities, with far fewer M. dalli recorded in Lower Melville Water (Fig. 4). 355 

The mean densities of male and female M. dalli were very similar (Fig. 4), and were 356 

highly correlated in both the nearshore and offshore waters (r = 0.94, n = 20, p ≤ 0.001; and r 357 

= 0.92, n = 16, p ≤ 0.001, respectively). Thus in all subsequent results, the abundances of 358 

males and females were combined. 359 

 360 

3.3. Spatial and temporal patterns of Metapenaeus dalli and relationship to physico-chemical 361 

conditions 362 

Two-way PERMANOVA of the 2013/14 data detected a significant difference in the 363 

densities of M. dalli in nearshore waters of the Swan-Canning Estuary among lunar months 364 

and subregions, and the Lunar Month × Subregion interaction was not significant (Table 1a). 365 

The majority of the variation in density was explained by Lunar Month (61%), with densities 366 

being significantly greater in December 2014 (~5 M. dalli 500 m–2, Fig. 4a), and, to a lesser 367 

extent, October and November of the same year, than between March and August 2015 368 

(< 0.25 M. dalli 500 m–2; Appendix 1a). Densities in January and February 2015 were also 369 

typically greater than those recorded in May-July (Fig. 4a). Among subregions (which 370 

represented 18% of variation in density), the greatest densities were recorded in North 371 
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Melville and Perth Water and the Lower and Middle Canning Estuary and least in the 372 

Entrance Channel (Fig. 5b).   373 

Densities of M. dalli in 2014/15 differed significantly among lunar months, 374 

subregions and the Lunar Month × Subregion interaction, with the two main effects 375 

explaining the majority of the variation in the mean squares for density (Table 1b). 376 

Significantly greater densities were recorded between October 2014 and February 2015 377 

(i.e. austral spring and summer) and October 2015 than the lunar months between March and 378 

September 2015 (Appendix 1b; Fig. 5c). In 2014/15, the subregions with the highest mean 379 

densities of prawns were those in the middle of the Swan-Canning Estuary, i.e. Perth Water 380 

and the Lower Canning Estuary and, to a lesser extent, North Melville Water, South Melville 381 

Water, Middle Swan Estuary and the Middle Canning Estuary (Fig. 5d). 382 

In the offshore waters, two-way PERMANOVA detected a significant difference in 383 

the densities of M. dalli among lunar months, subregions and their interaction in both 384 

2013/14 and 2014/15 (Appendix 2; Table 1c, d). In contrast to the nearshore waters, densities 385 

in 2013/14 were lowest during the austral spring and summer, i.e. September to February 386 

(< 10 M. dalli 500 m–2) and significantly greater between March and July, with the highest 387 

values recorded in May, (~27 M. dalli 500 m–2, Fig. 5e). This seasonal trend was also present 388 

in 2014/15, albeit less marked, which is reflected by the reduction in the proportion of the 389 

variance explained by Lunar Month (21%) compared with 2013/2014 (53%; Table 1c, d). In 390 

both years, mean densities of M. dalli typically increased sequentially in an upstream 391 

direction, with the lowest values recorded in the Entrance Channel and highest in the Lower 392 

Canning Estuary and Middle Swan Estuary (Fig. 5f, h). Differences among subregions were 393 

more pronounced in 2014/15 than 2013/14. 394 

Spearman’s rank correlations demonstrated that the density of M. dalli in seven of the 395 

nine subregions in nearshore waters was positively correlated with surface water temperature 396 

(ρ = 0.45 – 0.67; Table 2a). Significant and negative correlations were also detected for 397 

surface dissolved oxygen concentrations in four regions, while single, significant positive and 398 
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negative correlations were detected in the Middle Swan Estuary and South Melville Water 399 

subregions, respectively (Table 2a). Trends in the correlation between the density of M. dalli 400 

and environmental variables were less clear among lunar months. Density was negatively 401 

related to surface water temperature and salinity during February and March 2014, and for 402 

salinity, also in February 2015 (Table 2b). Density was positively correlated to either one or 403 

both of these physico-chemical variables in November and December 2014, January 2015, 404 

and also some lunar months between April and September of both years. 405 

Surface and bottom water temperatures were negatively correlated to the density of 406 

M. dalli in five and four of the eight offshore subregions (ρ = -0.28 – -0.61 and -0.35 – -0.64, 407 

respectively), and positively correlated in Lower Melville Water (ρ = 0.50 and 0.59, 408 

respectively; Table 2c). Surface salinity was positively correlated to density in Lower 409 

Melville Water, but both surface and bottom salinities exhibited the reverse trend with 410 

density in Perth Water. As with the nearshore waters, the patterns of correlations among lunar 411 

months were less clear than those among subregions. However, surface and bottom salinities, 412 

and to a lesser extent, surface and bottom dissolved oxygen concentrations, were negatively 413 

correlated with M. dalli density in most lunar months between October 2014 and October 414 

2015 (Table 2d).  415 

 416 

3.4 Spatio-temporal variation in size of Metapenaeus dalli 417 

The mean carapace length (CL) of M. dalli in both nearshore and offshore waters 418 

combined increased progressively between October 2013 (~13 mm CL) and February 2014 419 

(~20 mm CL), before declining markedly the following lunar month to ~12 mm CL (Fig. 6). 420 

There was little change in mean CL between March and August 2014, after which CL rose 421 

rapidly to ~19 mm in November 2014 before declining to ~11 mm in April 2015 and staying 422 

relatively constant until October. The results of Kruskal-Wallis tests indicated that mean CL 423 

differed significantly among regions in 19 out of the 24 lunar months (Table 3; note this test 424 

was not done in October 2013 and December 2014, due to small sample sizes of M. dalli). 425 

Over the two years, a relatively consistent pattern in mean CL was present, with little 426 
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difference among regions, due to a similar range of individuals occurring in each region 427 

(Figs 6, 7) during the period of rapid growth, i.e. December/January in 2013/14 and 428 

November 2014. Following the decline in mean CL around March, however, mean CL was 429 

typically smaller in the Middle Swan Estuary and Upper Melville Water, due to larger 430 

proportions of M. dalli of ~10 mm CL and fewer ~18 mm CL (Figs 6, 7). In 2013/14, the 431 

decline in mean CL in all regions occurred during the same lunar month (March 2014), 432 

whereas in 2014/15, the mean CL decline was sequential among regions, starting in the 433 

Lower Canning Estuary in January, followed by the Middle Swan Estuary and Upper 434 

Melville Water in February, and finally in Lower Melville Water in March/April. Although 435 

mean CL declined first in the Lower Canning Estuary, it remained fairly consistent (~13 mm) 436 

between March and September and was significantly greater than that recorded in both the 437 

Middle Swan Estuary and Upper Melville Water during that period (~11 mm; Fig. 6). During 438 

these lunar months, the Lower Canning Estuary contained a greater proportion of M. dalli 439 

> 17 mm CL and a far lower proportion of prawns < 10 mm CL than the other regions (Fig. 440 

7). 441 

 442 

3.5 Coherent species groups 443 

Coherent species analysis of the fauna present in nearshore waters found that the 24 444 

species (occurring in ≥ 10 samples) constituted eight groups and six outliers containing single 445 

species (Fig. 8). A clear serial pattern of progression in species composition was present, with 446 

species segregating themselves along the linear axis of the estuary during the summer 447 

months. Metapenaeus dalli had a statistically similar spatial and temporal pattern of 448 

distribution and abundance to the apogonid Ostorhinchus rueppellii, with these two species 449 

consistently occurring in moderate densities in most subregions, except the Entrance Channel 450 

and South Melville Water (Fig. 8). The next most similar species to M. dalli and O. rueppellii 451 

was the atherinid Atherinomorus vaigiensis, which covered the same spatial extent of the 452 

estuary, but was caught less consistently. The distributions of two scyphozoans, Aurelia 453 

aurita and Phyllorhiza punctata, also overlapped with that of M. dalli, in the subregions 454 

upstream of Melville Water during some lunar months. Other large crustaceans, i.e. the 455 
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penaeid P. latisulcatus and brachyuran Portunus armatus, were restricted to the most 456 

downstream subregions, mainly the Entrance Channel (Fig. 8) and showed little overlap with 457 

the distribution of M. dalli. 458 

In the offshore waters, the 27 species occurring in ≥ 10 samples formed eight groups 459 

and four outliers (Fig. 9). As in the nearshore waters, the distribution of species occurred 460 

along a continuum from downstream to upstream, with some species occurring in a limited 461 

suite of subregions, and others such as M. dalli occurring throughout the entire area. The 462 

spatial pattern of distribution and abundance of M. dalli was statistically indistinguishable 463 

from that of O. rueppellii and similar, albeit not significantly, to the scyphozoans P. punctata 464 

and A. aurita. The lack of a significant match in patterns between these two scyphozoans and 465 

M. dalli in deeper waters was likely due to their occurrence in particular lunar months only 466 

(Fig. 9). Although the distribution of P. latisulcatus and P. armatus extended further 467 

upstream in the offshore than nearshore waters, they had a far more restricted spatial range 468 

than M. dalli. 469 

 470 

4. Discussion 471 

Extensive sampling in nearshore and offshore waters identified major temporal and spatial 472 

patterns of variation in the density and size composition of Metapenaeus dalli, a short-lived 473 

penaeid (< 2 years) with tropical affinities, in the temperate Swan-Canning Estuary located 474 

towards the southern limit of its geographic distribution. Monthly densities differed markedly 475 

between nearshore and offshore waters and among areas of the estuary reflecting changes in 476 

physico-chemical variables, particularly water temperature. Furthermore, the spatial and 477 

temporal distribution of M. dalli in this estuary closely matched those of the teleost 478 

Ostorhinchus rueppellii and two scyphozoans (Aurelia aurita and Phyllorhiza punctata) that 479 

are either known to, or likely, predate on M. dalli, but had minimal overlap with other 480 

abundant crustaceans (Penaeus latisulcatus and Portunus armatus) that are potential 481 

competitors. These findings highlight the partitioning of species within the estuary and the 482 
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significance of site selection in maximising the survival of hatchery-reared M. dalli produced 483 

by aquaculture-based enhancement programs. 484 

 485 

4.1. Spatial and temporal patterns of abundance and distribution of Metapenaeus dalli 486 

Densities of M. dalli in the nearshore waters of the Swan-Canning Estuary changed 487 

markedly throughout each year, with the greatest values recorded in the late austral spring 488 

and summer months (October to February) and very few to no individuals recorded between 489 

late autumn and winter (May to July). Spearman’s rank correlations showed a positive 490 

relationship between density and surface water temperature in the nearshore waters of all nine 491 

subregions, and were significant in seven of the nine. This reflects the movement of adult 492 

prawns from deeper, offshore waters into the shallow, nearshore waters for breeding during 493 

the summer, when water temperatures exceed ~20 °C (Broadley et al., 2017; Crisp et al., 494 

2018). Densities in nearshore waters during the October to February period varied between 495 

regions, with highest densities recorded in the Lower Canning Estuary, followed by Upper 496 

Melville Water and Middle Swan Estuary regions, with very few M. dalli recorded in the 497 

Entrance Channel. Within these months, inter-regional differences in abundance were rarely 498 

significantly related to either water temperature or salinity, suggesting that the selection of 499 

these nearshore regions of the estuary for spawning may be due to other factors.  500 

In microtidal estuaries in Mediterranean climates, the physico-chemical environment 501 

is relatively stable in the summer and autumn, due to a lack of rainfall and fluvial discharge 502 

(Tweedley et al., 2016a), thus providing a conducive environment for the spawning, retention 503 

and survival of eggs/larvae, which is crucial for solely estuarine species e.g. M. dalli in south-504 

western Australia (Potter et al., 2015a; 2015b). Moreover, as M. dalli has tropical affinities, 505 

and the Swan-Canning Estuary is located towards the southern limit of its distribution (Grey 506 

et al., 1983), the movement into nearshore waters to breed when temperatures are highest is 507 

likely result in faster growth, facilitating the attainment of sexual maturity and also providing 508 

a suitable environment for larvae (Crisp et al., 2018). It is thus relevant that while penaeids in 509 

tropical environments spawn throughout the year, those in temperate regions spawn during 510 
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summer (cf. Crocos et al., 2001; Cha et al., 2002). Moreover, Crisp et al. (2017b) determined 511 

that the best conditions for the cultivation of M. dalli larvae, were temperatures of 26–30 °C 512 

and a salinity of ~35, i.e. those occurring in the Swan-Canning Estuary during summer 513 

(Fig. 3).  514 

In contrast to the nearshore waters, densities of M. dalli in the offshore waters were 515 

greatest from autumn to winter (i.e. March to July, peaking in May), and generally lower 516 

throughout the rest of the year. This is due to (i) the recruitment of 0+ individuals that were 517 

spawned in October-March and which have grown to reach a size where they are able to be 518 

caught in the otter trawl (Broadley et al., 2017; Crisp et al., 2018), and (ii) the movement of 519 

1+ individuals from the nearshore waters back into the offshore areas. This conclusion is 520 

supported by the carapace length (CL) distributions for M. dalli (Fig. 7; supplementary 521 

figure), which show that over the winter months, the larger individuals (> 18 mm CL), which 522 

are close to or at the size at maturity (~19 mm CL), are recorded in offshore waters and are 523 

virtually absent from the nearshore waters (Fig. 4a, b). This onshore/offshore migratory 524 

pattern in M. dalli in the Swan-Canning Estuary was also recorded by Potter et al. (1986), 30 525 

years prior to our study. Moreover, this mirrors the movements of Metapenaeus endeavouri 526 

and Metapenaeus ensis in Albatross Bay, Gulf of Carpentaria, Australia, with mature females 527 

moving to depths > 40 m in May and July, respectively, and returning to shallower waters 528 

(< 35 m) during their spawning season, i.e. August to October for M. endeavouri, and 529 

September to December for M. ensis (Crocos et al., 2001). 530 

Densities of M. dalli in offshore waters were negatively correlated with water 531 

temperature in most regions of the estuary, which is due to these densities being greatest in 532 

the months following recruitment of 0+ individuals (May-August), when water temperatures 533 

are coolest. Among regions, densities of M. dalli in the offshore waters were greatest 534 

upstream, in the Middle Swan Estuary and Lower Canning Estuary, that were, in general, less 535 

saline than the other regions. This could be due to spatial partitioning of the system, with the 536 

larger P. latisulcatus preferring marine salinities and thus occurring in the regions further 537 

downstream (i.e. the Entrance Channel and Lower Melville Water). This inverse correlation 538 
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of prawn density with temperature is the opposite of that recorded for another tropical 539 

penaeid at the southern-limit of their distribution, namely Penaeus esculentus in Moreton 540 

Bay, Queensland (Kienzle and Sterling, 2016). 541 

Although dissolved oxygen concentrations were correlated with the abundance of 542 

M. dalli, these are not indicative of a causal relationship, as conditions in the system were 543 

usually normoxic, i.e. dissolved oxygen > 4 mg L–1. For example, of the 416 spot 544 

measurements of dissolved oxygen concentrations at the bottom of the water column, 545 

hypoxia (i.e. < 2 mg L–1) and anoxia (i.e. < 0.5 mg L–1) were detected 47 and 21 times, 546 

respectively. Typically, hypoxic conditions occurred in the Middle Swan Estuary and Lower 547 

Canning Estuary regions (Fig. 3g), and during these times, densities of M. dalli in the 548 

offshore waters were reduced or zero (Poh, Murdoch University, unpublished data). In 549 

contrast, larger than ‘normal’ densities of M. dalli were recorded in the corresponding 550 

normoxic nearshore waters, where the lowest dissolved oxygen concentration recorded in 520 551 

measurements was 4.6 mg L–1 (J. Tweedley, Murdoch University, unpublished data). This 552 

suggests that an onshore movement of M. dalli occurs as a mechanism to avoid of areas of 553 

low dissolved oxygen concentrations. Mobile crustaceans are able to detect low oxygen and 554 

avoid areas of hypoxia (Burnett and Stickle, 2001; Wu et al., 2002) and these species are 555 

often not recorded in faunal communities under hypoxic conditions (McAllen et al., 2009; 556 

Tweedley et al., 2016b). 557 

 558 

4.2. Spatial and temporal patterns in the size of Metapenaeus dalli  559 

Mean CLs differed throughout the year, reaching a maximum between January and 560 

February in 2013/14, and between November and February in 2014/15, due to the growth of 561 

individuals spawned the previous breeding season once water temperatures increase 562 

(Broadley et al., 2017). The appearance of larger M. dalli earlier, and for longer during the 563 

breeding season in 2014/15 than 2013/14, corresponded with much lower freshwater 564 

discharge in 2014/15 than the previous year, and higher than average temperatures in August 565 

and September of 2014 than in 2013 (Fig. 2). This earlier warm weather provides conditions 566 
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conducive for faster growth (see Fig. 5), and M. dalli reached the size-at-maturity (19 mm 567 

CL) sooner in 2014/15 than 2013/14 (Broadley et al., 2017; Crisp et al., 2018). This pattern 568 

of highly seasonal growth of M. dalli was reported in this estuary 30 years earlier (Potter et 569 

al., 1986) and also in the Peel-Harvey Estuary, 80 km further south of the Swan-Canning 570 

(Potter et al., 1989). 571 

In both 2013/2014 and 2014/2015, mean CLs had declined greatly by April, largely 572 

due to the recruitment of the new cohort that were spawned early in the season (~9 – 13 mm 573 

CL), as well as the loss of the 1+ year males (~17 – 20 mm) and females (~24 – 30 mm) 574 

through natural post-spawning mortality and fishing pressure (Broadley et al., 2017). In 575 

2013/14, the mean CLs rapidly declined from February to March in all regions, whereas in 576 

2014/15, mean CLs declined initially in the Lower Canning, but the overall decline was not 577 

as great in the other regions. This reflects the fact that the earliest recruitment occurs in the 578 

Lower Canning region, so mean CLs remain slightly higher in this region as the early recruits 579 

utilise the remaining warm weather to grow in size. In contrast, the Middle Swan experienced 580 

slower declines in mean CLs, and reached a minimum size much later than in all other 581 

regions. This reflects the delayed breeding occurring in this region, as is shown by the delay 582 

in recruitment compared to the Lower Canning (Fig. 4h, j). Carapace lengths changed little 583 

throughout the winter months, indicating the minimal growth over this period as found by 584 

Broadley et al. (2017). Growth resumed in August/September as water temperatures rises. 585 

 586 

4.3. Patterns of distribution of Metapenaeus dalli and other fauna 587 

The spatial and temporal pattern of M. dalli distribution in the nearshore waters of the 588 

Swan-Canning Estuary between October and March was statistically indistinguishable from 589 

that of the apogonid O. rueppellii and similar to those of the atherinid Atherinomorus 590 

vaigiensis and the scyphozoan A. aurita. Typically, the individuals of M. dalli present in 591 

these waters during this time are sexually mature adults (Potter et al., 1986; Broadley et al., 592 

2017) and, due to their relatively large size and tail-flip response (Arnott et al., 1998; Guerin 593 

and Neil, 2015), are probably able to avoid predation by small-bodied teleosts and the 594 
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nematocysts of scyphozoans. However, larval and postlarval M. dalli would be extremely 595 

susceptible to predation by these species. In particular, O. rueppellii has been identified as the 596 

main teleost predator of M. dalli postlarvae (~3 mm total length), accounting for 68% of the 597 

total predation immediately after hatchery-reared larvae were released into the Swan-Canning 598 

Estuary (Poh et al., 2018). This apogonid is a voracious predator, with 300 postlarval M. dalli 599 

found in the stomach of one 45 mm O. rueppellii. Moreover, in the two hours after the release 600 

of 130,000 postlarvae over a nearshore seagrass meadow in the Swan-Canning Estuary at 601 

night, it was estimated that O. rueppellii consumed ≈ 2,000 postlarvae 100 m–2 (Poh et al., 602 

2018) Additionally, 31% of the predation on the hatchery-reared postlarvae was attributed to 603 

A. vaigiensis. Thus, as the distribution of M. dalli overlaps with those of these two teleost 604 

species, the postlarvae and small juveniles of M. dalli do not have a spatial or temporal refuge 605 

from the two main teleost predators responsible for 99% of their total predation. 606 

The similar patterns of abundance and distribution of M. dalli and the scyphozoans 607 

A. aurita and P. punctata in the nearshore waters during the summer are also likely to have a 608 

negative effect on the larval stages of M. dalli. Jellyfish can be voracious predators, with 609 

evidence these scyphozoans can influence mesozooplankton communities (Schneider and 610 

Behrends, 1998; Gueroun et al., 2015). Little is known about the feeding habits of these two 611 

jellyfish in the Swan-Canning Estuary, although some information suggests that their ephyral 612 

and small medusa stages predate on rotifers and copepod nauplii, with the rate increasing 613 

with size (Jafri, 1997). Moreover, scyphozoans have been implicated in the decline of 614 

penaeids in both wild fisheries and aquaculture operations (Purcell et al., 2007). The rates of 615 

P. punctata predation on rotifers and copepods were 18 and 22 prey predator–1 hr–1, 616 

respectively (Purcell et al., 2007). Stoecker et al. (1987) also found that A. aurita selected for 617 

large metazoan micro-zooplankton as a key prey item in their diet. This included copepod 618 

nauplii, which at ~50 – 800 µm, are similar in size to the nauplii of M. dalli at ~300 µm 619 

(Crisp et al., 2016). Because the nauplius, protozoeal and mysis stages of M. dalli are pelagic 620 

(Crisp et al., 2016) and relatively poor swimmers, they would be vulnerable to these 621 

scyphozoans (Costello and Collin, 1995; Ruppert and Barnes, 1994).  622 
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While smaller M. dalli are susceptible to predation by small-bodied teleosts and 623 

scyphozoans, those prawns spawned late in the breeding season (e.g. February and March) 624 

would be most at risk of prolonged predation, because they would be smaller for a longer 625 

period of time due to the cooling water temperatures and slowed winter growth of M. dalli 626 

(Broadley et al., 2017).  627 

The second-most abundant penaeid species in the Swan-Canning Estuary, 628 

P. latisulcatus, which spawns in the marine environment, was not recorded in salinities below 629 

26 and appears to be restricted to the lower reaches of the system where salinities remain 630 

close to those of seawater. In contrast, M. dalli was found throughout the entire range of the 631 

estuary sampled, including in salinities as low as 0.9 and 3.8 in nearshore and offshore 632 

waters, respectively. This is similar to the nearby Peel-Harvey Estuary where the abundance 633 

of P. latisulcatus is positively correlated with salinity and negatively correlated with distance 634 

from the estuary mouth, whereas M. dalli occurred further upstream (Potter et al., 1989; 635 

Potter et al., 1991). The trends in both these estuaries indicate that M. dalli are much more 636 

euryhaline than P. latisulcatus. Our findings of spatial separation between these two species 637 

parallel the distribution patterns of Metapenaeus macleayi and Penaeus plebejus, two marine 638 

spawning prawns in the lower Hunter River estuary of eastern Australia, where juvenile 639 

M. macleayi extend into upstream areas with variable salinities, while P. plebejus are 640 

restricted to the lower estuary (Taylor et al., 2016; 2017). It was suggested that this divergent 641 

pattern was related to salinity tolerance, with M. macleayi being more euryhaline than 642 

P. plebejus, which is relatively stenohaline and halophilic (Ruello, 1973; Taylor et al., 2016). 643 

The minimal overlap in the distributions of M. dalli and P. latisulcatus is a mechanism that 644 

reduces their potential competition (Ross, 1986).  645 

 646 

4.4. Implications for aquaculture-based enhancement 647 

This study, which was conducted over a 26-month period, encompassing two annual 648 

breeding periods and multiple cohorts of this short-lived species, has identified the times and 649 

locations where densities of M. dalli are greatest in nearshore and offshore waters of the 650 
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Swan-Canning Estuary. These data can be used to facilitate the collection of broodstock (i.e. 651 

gravid females), which, in turn, can be used to produce hatchery-reared prawns (Jenkins et 652 

al., 2017) for aquaculture-based-enhancement. Moreover, as penaeids spawn in areas most 653 

suitable for the survival of their larvae (Preston, 1985), the identification of these locations 654 

and measurement of their physico-chemical characteristics can be used to develop a sound 655 

release strategy to maximise the survival of the hatchery-reared postlarvae, which are more 656 

sensitive to environmental conditions than larger more-developed individuals. Examination 657 

of the changes in mean CL demonstrated that prawns grew little over the cooler winter 658 

months in either year and thus any release of cultured M. dalli should occur early in the 659 

breeding season so the larvae can take advantage of the warmer water and grow more rapidly, 660 

making them less susceptible to predation. Having identified key predator species (see Poh et 661 

al., 2018), coherent species analyses showed that, at a regional level, the spatial and temporal 662 

distribution of M. dalli was similar to key teleost (O. rueppellii and A. vaigiensis) and 663 

scyphozoan predators (A. aurita and P. punctata). Thus, there is a need to investigate finer-664 

scale habitat preferences for these species, e.g. sediment and presence of macrophytes, to 665 

determine if releases of M. dalli should occur in a particular habitat to maximise the survival 666 

of hatchery-reared individuals. These results demonstrate the value in understanding the 667 

biology and ecology of the target species in the context of the release environment and using 668 

an integrated approach for aquaculture-based enhancement programs (see also Zohar et al., 669 

2008; Lorenzen, 2010). 670 
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Figure Captions 

 

Fig. 1. Map showing (a) the distribution of Metapenaeus dalli in inshore marine waters (light 
grey) and solely in estuaries (dark grey) in Australia and (b) 20 nearshore and 16 offshore 
sites in Swan-Canning Estuary sampled over 26 consecutive lunar cycles between October 
2013 and October 2015. Dotted lines denote the separation among the five broad regions 
(bold face) of the estuary. Codes for regions and subregions are given in square brackets. 

Fig. 2. Monthly (a) total rainfall (mm, histogram) and average maximum air temperature (°C, 
line) for Perth and (b) freshwater discharge volumes (GL) into the Swan-Canning Estuary 
from the Swan and Canning rivers between January 2013 and December 2015. Climate and 
flow data obtained from the Bureau of Meteorology (http://www.bom.gov.au/climate/data/) 
and the Department of Water and Environmental Regulation 
(http://wir.water.wa.gov.au/Pages/Water-Information-Reporting.aspx), respectively. 
Horizontal line denotes the months in which sampling for Metapenaeus dalli occurred (i.e. 
October 2013 to October 2015). 

Fig. 3. Mean values for (a) surface and (b) bottom water temperatures, (c) surface and (d) 
bottom salinities, (e) indices of stratification and (f) surface and (g) bottom dissolved oxygen 
concentrations recorded in each of the five regions of the Swan-Canning Estuary in each 
lunar month between October 2013 and October 2015. Note two lunar months occurred in the 
calendar month of January 2014. 

Fig. 4. Mean densities (500 m–2) of male and female Metapenaeus dalli in the (a, c, e, g, i, k) 
nearshore and (b, d, f, h, j) offshore waters of the Swan-Canning Estuary each lunar month 
between October 2013 and October 2015 for the system as a whole and for each region 
separately. (a, b) total estuary, (c, d) Lower and (e, f) Upper Melville Water, (g, h) Middle 
Swan Estuary and (i, j) Lower and (k) Upper Canning Estuary. Note no offshore data for 
Upper Canning Estuary for the entire sampling period due to shallow depths and limited data 
from offshore sites in December 2014 due to a boat malfunction. Note two lunar months 
occurred in the calendar month of January 2014. 

Fig. 5. Mean and 95% confidence limits of the densities of Metapenaeus dalli among (a, c) 
lunar months and (b, d) subregions in the nearshore waters of the Swan-Canning Estuary 
2013/14 and 2014/15, respectively and in (e, g) lunar months and (f, h) subregions in the 
offshore waters of the Swan-Canning Estuary 2013/14 and 2014/15, respectively. Subregion 
codes given in Figure 1. Note two lunar months occurred in the calendar month of January 
2014. 

Fig. 6. Mean carapace lengths of Metapenaeus dalli caught in the nearshore and offshore 
waters of each region of the Swan-Canning Estuary in each lunar month between October 
2013 and October 2015. Data for December 2014 not shown due to a boat malfunction. Note 
two lunar months occurred in the calendar month of January 2014. 

 
Fig. 7. Shade plot showing the square-root transformed proportion of Metapenaeus dalli in 
each 1 mm carapace length size class in each region of the Swan-Canning Estuary in January, 
April, July and October of 2014 and 2015. White areas denote the absence of a size class 
from a region/lunar month combination and the shading from grey to black the increasing 
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proportions of that size class. A version of the shade plot showing each of the 26 lunar 
months is given in the supplementary figure. 

Fig. 8. Shade plot showing the fourth-root transformed densities (500 m–2) of each penaeid, 
brachyuran, teleost and scyphozoan species found in each subregion and each lunar month 
between October and March of 2013/14 and 2014/15 in the nearshore waters of the Swan-
Canning Estuary. Dendrogram on y-axis derived by subjecting a Bray-Curtis resemblance 
matrix constructed from the fourth-root transformed density of each species to CLUSTER-
SIMPROF. Coherent groups of species, i.e. those with statistically indistinguishable patterns 
of abundance across the Subregion/Lunar Month/Year combinations and are significantly 
different from those in all other groups, are denoted by the dashed grey lines. Full species 
names given in supplementary table. 

Fig. 9. Shade plot showing the fourth-root transformed densities (500 m–2) of each penaeid, 
stomatopod, brachyuran, teleost and scyphozoan species found in each subregion and each 
lunar month between October 2013 and October 2015 in the offshore waters of the Swan-
Canning Estuary. Dendrogram on y-axis derived by subjecting a Bray-Curtis resemblance 
matrix constructed from the fourth-root transformed density of each species to CLUSTER-
SIMPROF. Coherent groups of species, i.e. those with statistically indistinguishable patterns 
of abundance across the Subregion/Lunar Month/Year combinations and are significantly 
different from those in all other groups, are denoted by the dashed grey lines. Full species 
names given in supplementary table. 
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Table 1. Mean squares (MS), percentage mean squares (%MS), pseudo-f (pf) and 
significance values (p) from two-way PERMANOVA tests on the density of 
Metapenaeus dalli per 500 m2 among lunar months and subregions in the Swan-
Canning Estuary between October 2013 and 2015. Significant differences (P < 0.05) 
highlighted in bold. Grey shading denotes factors that were particularly influential 
(i.e. %MS > 25). 
 

Water depth and Year df MS %MS pf p 
Nearshore      
(a) 2013/14      
Lunar Month 12 101.21 61.11 6.652 0.001 
Subregion 8 29.93 18.07 1.97 0.035 
Lunar Month × Subregion 96 19.27 11.63 1.27 0.085 
Residual 403 15.22 9.19                  
(b) 2014/15     
Lunar Month 12 88.72 36.14 3.79 0.001 
Subregion 8 89.22 36.35 3.81 0.001 
Lunar Month × Subregion 96 44.12 17.97 1.89 0.002 
Residual 403 23.40  9.53                  
 
Offshore      
(c) 2013/14 
Lunar Month 12 33.56 52.80 9.58 0.001 
Subregion 7 19.88 31.28 5.68 0.001 
Lunar Month × Subregion 84 6.616 10.41 1.89 0.001 
Residual 312 3.502    5.51                  
(d) 2014/15     
Lunar Month 12 41.92 20.75 13.28 0.001 
Subregion 7 145.87 72.21 46.22 0.001 
Lunar Month × Subregion 84 11.06 5.47 3.50 0.001 
Residual 312 3.16 1.56           
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Table 2. Rho (ρ) values from Spearman ranked correlations between the density of Metapenaeus dalli (500 m–2) and various water physico-chemical 
variables among (a, c) regions and (b, d) lunar months in the nearshore and offshore waters of the Swan-Canning Estuary, respectively. Significant differences 
(p ≤ 0.05) highlighted in dark grey and those differences where p ≤ 0.10 in light grey. Subregion codes given in Figure 1. S, surface; B, bottom; Temp, water 
temperature; DO, dissolved oxygen concentration; Sal, salinity. Note two lunar months occurred in the calendar month of January 2014. 
 

(a) Nearshore                  
EC NM SM PW MS LC MC UC CA 

S. Temp. 0.03 0.64 0.18 0.66 0.55 0.53 0.67 0.45 0.56 
S. Sal. -0.13 -0.02 -0.33 0.11 0.40 -0.06 0.12 0.04 0.26                  
S. DO -0.08 -0.38 0.03 -0.34 -0.21 -0.30 -0.56 -0.51 -0.11 

(b) Nearshore 
 2013 2014   2015 
  O N D J1 J2 F M A M J J A S O N D J F M A M J J A S O 
S. Temp. 0.03 -0.23 0.45 -0.13 0.15 -0.56 -0.67 -0.44 

N
o

 
ca

tc
h -0.14 

N
o

 
ca

tc
h -0.02 -0.56 -0.10 -0.02 0.55 0.75 -0.08 0.20 0.53 -0.28 0.14 0.55 -0.18 0.02 0.56 

S. Sal. -0.14 0.45 -0.35 0.09 -0.11 -0.70 -0.69 0.06 0.14 0.53 0.65 0.13 0.53 -0.13 -0.35 -0.54 0.26 -0.01 -0.14 -0.41 0.55 0.13 0.51 -0.09 
S. DO 0.66 0.39 0.10 -0.51 -0.33 -0.56 0.37 0.09 0.55 0.64 0.45 0.13 0.64 0.08 0.13 -0.54 -0.15 -0.15 0.14 0.00 0.00 -0.28 0.83 0.03 

(c) Offshore                   
 EC  LM  MB  UM  PW  MS LC MC 
S. Temp. 0.23 0.50 -0.39 -0.28 -0.61 -0.59 -0.52 -0.13 
S. Sal. -0.10 0.47 -0.07 0.23 -0.46 0.10 0.08 0.26                   
S. DO 0.02 -0.35 0.19 -0.08 0.55 0.38 0.07 -0.15 
B. Temp. 0.26 0.59 -0.35 -0.25 -0.64 -0.59 -0.47 -0.13 
B. Sal. -0.13 0.27 -0.18 0.27 -0.45 0.31 0.20 0.22                   
B. DO 0.00 -0.13 0.35 0.20 -0.19 -0.13 0.31 0.03 
Strat. 0.10 -0.28 -0.03 -0.27 0.28 0.28 -0.07 -0.38 

(d) Offshore 
 2013 2014   2015 
  O N D J1 J2 F M A M J J A S O N D J F M A M J J A S O 
S. Temp. -0.69 -0.05 -0.14 -0.45 -0.21 -0.42 0.12 0.00 -0.64 0.35 -0.31 0.31 0.02 0.74 0.69 

Li
m

ite
d

 d
at

a 

0.48 -0.90 0.37 0.38 0.20 -0.35 0.31 0.22 0.30 0.47 
S. Sal. 0.34 0.05 0.95 0.65 0.07 0.06 0.14 0.14 -0.81 -0.61 -0.12 0.21 -0.69 -0.93 -0.69 -0.60 -0.71 -0.54 -0.86 -0.60 -0.73 -0.88 -0.71 -0.59 -0.26 
S. DO 0.07 0.00 -0.18 0.16 0.07 0.47 -0.29 0.36 0.52 -0.35 0.60 -0.05 -0.38 0.07 -0.69 -0.14 0.00 -0.06 0.19 -0.72 -0.91 -0.59 -0.64 -0.19 -0.78 
B. Temp. -0.49 0.33 -0.14 -0.60 -0.29 -0.47 0.29 -0.02 -0.55 -0.92 -0.32 0.45 -0.08 0.52 0.71 0.76 -0.57 0.24 0.36 0.41 -0.16 0.50 0.60 0.84 0.55 
B. Sal. 0.34 -0.10 0.10 0.65 0.24 0.06 0.26 0.19 -0.71 -0.42 -0.12 -0.10 -0.57 -0.76 -0.69 -0.62 -0.52 -0.71 -0.81 -0.69 -0.61 -0.91 -0.45 -0.70 -0.22 
B. DO 0.36 0.10 0.19 0.93 -0.57 0.20 -0.21 -0.49 -0.45 -0.06 -0.12 0.07 -0.38 -0.95 -0.48 -0.19 -0.67 -0.73 -0.69 -0.74 -0.76 -0.74 -0.62 -0.05 -0.78 
Strat. 0.13 -0.76 -0.07 -0.48 -0.28 -0.11 -0.26 0.17 -0.91 0.28 0.00 -0.60 -0.52 0.10 -0.86 0.19 0.19 -0.41 0.76 0.07 0.71 -0.10 0.02 0.16 0.26 

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
Table 3. Overall and pairwise p values derived from Kruskal-Wallis tests on the carapace 
length of Metapenaeus dalli in four regions of the Swan-Canning Estuary in each lunar month 
between October 2013 and October 2015. Significant differences are shaded in light grey. NT 
= no test completed as < 30 individuals caught in a region and Lunar Month/Year 
combination. LM, Lower Melville Water; UM, Upper Melville Water; MS, Middle Swan 
Estuary; LC, Lower Canning Estuary; UC, Upper Canning Estuary. Note two lunar months 
occurred in the calendar month of January 2014. 
 

Lunar month Overall Pairwise 
Year Month LC-UM LC-MS LC-LM UM-MS UM-LM MS-LM 

2013 
O NT NT NT NT NT NT NT 
N 0.001 1.000 0.021 0.002 0.172 0.019 1.000 
D 0.270 

2014 

J1 0.406 
J2 0.095 
F 0.004 1.000 1.000 1.000 0.854 0.002 1.000 
M 0.001 0.124 0.062 1.000 1.000 0.017 0.009 
A <0.001 <0.001 <0.001 0.008 0.001 1.000 0.001 
M <0.001 <0.001 <0.001 0.017 1.000 0.064 0.131 
J 0.003 0.504 0.002 0.360 0.130 1.000 1.000 
J <0.001 <0.001 <0.001 NT 0.028 NT NT 
A 0.008 NT NT NT 0.045 0.011 1.000 
S 0.215 
O <0.001 0.297 0.070 0.010 1.000 <0.001 <0.001 
N 0.480 NT 1.000 0.061 NT NT 0.088 

2015 

J <0.001 <0.001 0.004 NT 0.027 NT NT 
F <0.001 0.002 0.001 <0.001 1.000 0.002 0.014 
M <0.001 <0.001 NT <0.001 NT <0.001 NT 
A <0.001 <0.001 <0.001 NT <0.001 NT NT 
M <0.001 0.002 <0.001 NT 0.036 NT NT 
J <0.001 <0.001 <0.001 NT 0.032 NT NT 
J <0.001 0.018 <0.001 NT 0.117 NT NT 
A <0.001 0.006 <0.001 NT 0.001 NT NT 
S <0.001 <0.001 <0.001 NT 0.565 NT NT 
O <0.001 NT <0.001 NT NT NT NT 
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Highlights 

1. Metapenaeus dalli population in a temperate estuary surveyed monthly for two 
years 

2. Densities greatest in shallows in spring and summer as temperatures increase 
3. Offshore densities greater in autumn and winter following recruitment 
4. M. dalli densities greatest in middle estuary, overlapping with key predators 
5. Distribution of M. dalli differed from two other large marine crustaceans 
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Appendix 1. t-values derived from pairwise PERMANOVA tests on the densities of 
Metapenaeus dalli 500 m–2 in nearshore waters on the Swan-Canning Estuary among 
lunar months in (a) 2013/14, (b) 2014/15 and (c) subregions in 2014/15. Significant 
differences highlighted in grey. Subregion codes given in Figure 1. Note two lunar 
months occurred in the calendar month of January 2014. 
 

(a) Lunar month 2013 2014 
 2013/14  O N D J1 J2 F M A M J J A 

20
13

 

N 1.55 
D 4.55 0.62 

20
14

 

J1 0.17 1.57 4.26 
J2 0.31 1.63 4.65 0.08 
F 0.11 1.56 4.33 0.06 0.15 
M 2.10 1.98 5.70 1.19 1.54 1.40 
A 2.57 2.05 5.89 1.46 1.94 1.70 0.88 
M 3.12 2.14 6.11 1.78 2.42 2.06 2.31 2.10 
J 2.92 2.10 6.03 1.65 2.24 1.92 1.75 1.18 2.23 
J 3.12 2.14 6.11 1.78 2.42 2.06 2.31 2.10 0.00 2.23 
A 2.10 2.00 5.69 1.25 1.58 1.45 0.22 0.41 1.34 0.97 1.34 
S 0.58 1.69 4.89 0.25 0.22 0.35 1.52 2.02 2.62 2.39 2.62 1.55 

  
(b) Lunar month 2014 2015 
2014/15    O N D J F M A M J J A S 

20
14

 

N 0.55                       
D 0.61 0.79 

20
15

 

J 2.65 1.45 2.46 
F 1.54 1.13 1.07 1.37 
M 3.11 1.68 2.98 1.18 2.07 
A 3.95 1.84 4.22 3.31 3.38 0.75 
M 4.33 1.96 4.75 4.56 4.00 1.40 2.37 
J 4.29 1.95 4.68 4.38 3.93 1.33 1.96 0.31 
J 4.37 1.97 4.80 4.71 4.07 1.47 2.76 0.50 0.70 
A 4.22 1.92 4.59 4.16 3.82 1.21 1.52 0.88 0.50 1.31 
S 4.18 1.91 4.54 4.06 3.75 1.14 1.29 1.35 0.88 1.90 0.34 
O 0.38 0.71 0.05 1.36 0.69 1.78 2.18 2.42 2.39 2.44 2.35 2.32 

 (c) Subregion 2014/15 EC NM SM PW MS LC MC UC 

 NM 4.32 

 SM 2.25 1.81 

 PW 3.92 2.80 3.62 

 MS 3.66 1.38 0.39 2.88 

 LC 1.58 0.90 1.39 0.55 1.03 

 MC 3.32 1.20 0.50 2.80 0.13 1.00 

 UC 1.76 3.44 1.47 3.63 2.40 1.43 3.04 
  CA 1.45 3.88 1.84 3.77 2.28 1.50 2.80 0.74 
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Appendix 2. t-values derived from pairwise PERMANOVA tests on the densities of 
Metapenaeus dalli 500 m–2 in offshore waters of the Swan-Canning Estuary among 
lunar months in (a)  2013/14 and subregions in (b) 2013/14 and (c) 2014/15. 
Significant differences highlighted in grey. Subregion codes given in Figure 1. Note 
two lunar months occurred in the calendar month of January 2014. 
 
(a) Lunar months 2013 2014 
 2013/14 O N D J1 J2 F M A M J J A 

20
13

 

N 3.08 
D 7.48 2.79 

20
14

 

J1 5.52 1.20 1.84 
J2 6.24 1.65 1.36 0.51 
F 5.98 1.21 1.96 0.04 0.57 
M 7.31 2.95 0.28 2.04 1.59 2.17 
A 7.09 3.72 1.50 2.99 2.61 3.10 1.22 
M 6.66 4.04 2.15 3.40 3.09 3.49 1.91 0.80 
J 8.82 4.55 2.17 3.85 3.44 4.02 1.85 0.43 0.47 
J 6.62 3.10 0.74 2.29 1.89 2.39 0.47 0.71 1.44 1.22 
A 4.48 0.59 2.43 0.66 1.16 0.66 2.61 3.45 3.80 4.35 2.79 
S 5.86 1.07 2.15 0.22 0.76 0.19 2.35 3.25 3.62 4.20 2.55 0.49 

(b) Subregion 2013/14 EC LM MB UM PW MS LC      
 LM 2.70             

    
 MB 4.01 0.96 

    
 

UM 6.23 2.91 2.06 

 PW 3.47 0.75 0.15 2.05 

 MS 2.90 0.69 0.08 1.71 0.04 

 LC 4.76 2.29 1.55 0.14 1.59 1.38 
  MC 1.60 1.23 2.37 4.49 2.01 1.73 3.47 

          (c) Subregion 2014/15 EC LM MB UM PW MS LC  
 LM 3.27 

 
 

MB 8.15 5.04 
  

 UM 7.11 4.56 0.22 
   

 PW 13.39 10.38 5.34 4.59 
    

 MS 8.97 7.57 4.95 4.63 1.79 

 
LC 14.36 12.21 8.34 7.61 3.97 1.12 

  MC 13.90 11.37 6.96 6.19 2.11 0.34 1.93 
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Graphical abstract

Low. Melville Water Up. Canning EstuaryUp. Melville Water Middle Swan EstuaryLow. Canning Estuary
Regions of the Swan-Canning Estuary, Western Asutrala (salinty ↑     to ↓     )

Competitor:
Portunus armatus

Competitor: 
Penaeus latisulcatus

Predator (post-larvae/juvenile): Ostorhinchus rueppellii

Predator (larvae): 
Aurelia aurita

 

Metapenaeus dalli

Generalized distribution
Predator (post-larvae/juvenile): 

Atherinomorus vaigiensis

Predator (larvae):
 Phyllorhiza punctata

October - February
(austral ‘summer’)

Nearshore (< 2 m deep) Offshore (2-17 m deep)

March - July
(austral ‘winter’)

Nearshore (< 2 m deep) Offshore (2-17 m deep)

Peak abundance of M. dalli
in nearshore waters
Breeding of large adults 
in shallow warm water

Peak abundance of M. dalli in offshore waters

Recruitment of juvenile 
in cooler area of deeper water
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