ISSN 1998-6939. Information Technologies in Education. 2018. Ne 3 (36)

UDC 004:37

Oksana Markova®, Serhiy Semerikov?, Maiia Popel®

! State Institution of Higher Education «Kryvyi Rih National University»,
Kryvyi Rih, Ukraine

?Kryvyi Rih State Pedagogical University, Kryvyi Rih, Ukraine

¥ Institute of Information Technologies and Learning Tools of NAES of Ukraine,
Kyiv, Ukraine

COCALC AS A LEARNING TOOL
FOR NEURAL NETWORK SIMULATION IN THE SPECIAL COURSE
“FOUNDATIONS OF MATHEMATIC INFORMATICS”

DOI: 10.14308/ite000674

The role of neural network modeling in the learning content of special course “Foundations
of Mathematic Informatics” was discussed. The course was developed for the students of technical
universities — future 1T-specialists and directed to breaking the gap between theoretic computer
science and it’s applied applications: software, system and computing engineering. CoCalc was
justified as a learning tool of mathematical informatics in general and neural network modeling in
particular. The elements of technique of using CoCalc at studying topic “Neural network and
pattern recognition” of the special course “Foundations of Mathematic Informatics” are shown.
The program code was presented in a CofeeScript language, which implements the basic
components of artificial neural network: neurons, synaptic connections, functions of activations
(tangential, sigmoid, stepped) and their derivatives, methods of calculating the network’s weights,
etc. The features of the Kolmogorov’s theorem application were discussed for determination the
architecture of multilayer neural networks. The implementation of the disjunctive logical element
and approximation of an arbitrary function using a three-layer neural network were given as an
examples. According to the simulation results, a conclusion was made as for the limits of the use of
constructed networks, in which they retain their adequacy. The framework topics of individual
research of the artificial neural networks is proposed.

Keywords: CoCalc, cloud technologies, neural network simulation, foundations of
mathematical informatics.

1 INTRODUCTION

One of the necessary condition of fundamentalizing of computing education in higher
educational and technical educational institutions is reorientation of basic information training from
study rapid-changing technologies to a stable scientific basis of informatics. The leading role is
played by computer modeling and numerical experiment [8], which simultaneously can be both
methodological basis of informatics and learning methods of computing disciplines.

In the work [10] it is shown that effective way of fundamentalizing of informatic training
students of pedagogical institutions is a Mathematical Informatics — direction of scientific
researches, which, on the one hand is a component of theoretical computer science, where
mathematical models and tools used to modeling and studying information processes in different
spheres of human activity, and, on the other hand, deals with the use of information systems and
technologies for solving applied tasks. As an academic discipline Mathematical Informatics aims at
mastering the basic models, methods and algorithms for solving problems arising in the field of

Oksana Markova, Serhiy Semerikov, Maiia Popel

58

ISSN 1998-6939. IHdopmauinHi TexHonorii B ocBiTi. 2018. Ne 3 (36)

intellectualization of information systems and considers the problem of the use of information, in
particular mathematical models and information technologies for their research.

We have developed a special course “Foundations of Mathematical Informatics” which is
intended for students of technical universities — future specialists in information technologies [9].
The content of the course is a combination of two interrelated components: theoretical and practical.
The theoretical component is aimed to develop the students’ ideas about data structures and
algorithms that are the foundation of modern methodology of software development; methods for
solving engineering and scientific tasks using numerical methods; the basic principles of coding and
modulation of signals during the data transmission, signal processing, increase of noise immunity
during data transfer via communication channels; basic methods of signal acquisition, decoding and
detection errors by using various error-correcting codes; algorithmic aspects of number theory and
their applications in modern cryptography. The practical aspect associated with the acquisition of
skills to analyze, evaluate and select existing algorithms; to use methods and techniques of
developing and evaluating the algorithms, develop new algorithms related to the design of hardware
and software components of computer systems and networks; use existing and develop new
mathematical methods for solving problems related to the design and using of computer systems
and networks; to choose methods of computation that are resilient to errors; to solve linear and non-
linear algebraic equations and their systems; to apply interpolation and approximation; to make a
selection of the method for integration of differential equations; to formulate and solve optimization
problems; to apply the Kolmogorov’s theorem to approximation arbitrary functions by three-layer
neural network; to build the rings for the specified module; to apply the methods of error-correcting
coding to data recovery when their injury; to build block ciphers; to build linear Bose-Chaudhuri-
Hocquenghem codes; to build generating and testing polynomial for encoding and decoding cyclic
codes; to apply Reed-Solomon’s codes for data transmission in computer networks; to apply
methods and tools to ensure the security of programs and data in the design and operation of
computer systems and networks; to consider the requirements of data protection; to create a
software and hardware subsystem of cryptographic protection of data; to use the RSA algorithm and
digital signatures for data transmission in computer networks; to create and manage by key
information for the subsystems of the authentication; to use cloud technology for practical
implementation of the basic methods of Mathematical Informatics.

There are 4 thematic modules in the content of the course.

In the first substantive module “Theory of algorithms” basic concepts and methods are
discussed which related to the analysis of algorithms (a machine with random memory access;
analysis of the sorting algorithm by the inclusion; comparison of functions), algorithmic strategies
(asymptotic analysis of upper and average complexity estimates of the algorithms; compare the
best, average and worst estimates; O-, 0-, ®0 and 6-notations; empirical measurements of the
algorithm’ efficiency; the overhead of algorithms by time and memory; recurrence relations and
analysis of recursive algorithms; comparison of algorithms; the impact of the data structures and
programming features on the algorithm efficiency; methods of algorithm development), algorithms
design (value, classification and characteristics of sorting in the implementation of algorithms;
simple sorting, their advantages and disadvantages; complex sorting and their advantages and
disadvantages; comparison of simple and complex sorting).

In the second substantive module “Numerical methods” covers the basics of computer
simulation (the concept of models and modeling; properties and classification of models; computer
simulation features; statistical modeling features), tasks of linear and nonlinear algebra,
approximation technique, methods of solution 1%-order ordinary differential equations; optimization
technique (random search method, chord method, Golden section method; Fibonacci method,;
simplex search), neural networks and the task of pattern recognition (mathematical model of a
neuron; the use of Kolmogorov’s theorem to approximate arbitrary functions by three-layer neural
network).

59

ISSN 1998-6939. Information Technologies in Education. 2018. Ne 3 (36)

In the third substantive module “Coding theory” the mathematical foundations of coding
theory, basic concepts of the error-correcting coding, linear codes, cyclic codes, Bose-Chaudhuri-
Hocquenghem codes, Reed-Solomon codes, convolutional codes are discussed.

In the fourth substantive module “Basics of cryptography” the basic cryptographic system
(symmetric and asymmetric) and their use for the management of cryptographic keys and digital
signatures are discussed.

Special course final control of knowledge is a credit by the results of the current and the
module control and presentation of individual education and research projects on the artificial
neural networks building [2]. They was chosen due to the fact that, firstly, they are based on
fundamental mathematical apparatus, and secondly, neural network modeling is one of the modern
research directions in the field of mathematical informatics, and thirdly, the results which obtained
during simulation can be applied in all substantive modules of the proposed special course.

2 THE AIM AND OBJECTIVES OF THE STUDY

Therefore, the aim of the study is to develop the individual components of the methodic of
using cloud technologies as learning tool for neural network simulation in the special course
“Foundations of Mathematic Informatics”.

To accomplish the set goal, the following tasks had to be solved:

1. justify the choice CoCalc as a learning tools of the foundations of mathematical Informatics
for students of technical universities;

2. to develop demonstration models of artificial neural networks using various CoCalc
components.

3 LITERATURE REVIEW AND PROBLEM STATEMENT

One of the most powerful cloud technologies tools [1] is CoCalc (formerly known as
SageMathCloud [6]) — a cloud based integrated version of the computer mathematics system Sage,
hosted on Google’s servers. CoCalc is not only the cloud based computer mathematics system, but
also the system of support learning the mathematical and CS subjects. The main components of
CoCalc are:

1) Sage Worksheets — provides the ability to interactively run commands of Sage or
programming (e.g., object-oriented and imperative) languages, such as C++ and HTML,;

2) IPython notebooks (since 2016 — Jupyter Notebook) — timed session in Python programming
language, the part of SciPy, scientific and engineering computing library. CoCalc provides
the ability to multiple users to communicate through IPython note-books in synchronous and
asynchronous modes;

3) the workflow system in LaTeX with full support for sagetex, bibtex, etc.;

4) backup system — full save of all edited project files of the user every 2 minutes;

5) the replication system implies the preservation of each project in three physically separated
data centers [7].

CoCalc provides opportunities of:

— interactive study of mathematics, natural and computer science;

— real time users collaboration;

— training: adding students, creating projects, monitoring of student’s development, etc. using
a cloud based educational materials;

— creating and editing of educational and academic texts using LaTeX, Markdown or HTML,;

— adding your own files, data processing, presentation of results etc.

The presence of the ‘Besides Sage Worksheets’ tool in the composition of Jupyter Notebooks
provides to the users of full access to classical Linux terminal [4].

The main CoCalc unit is a project. The user can create any number of independent projects of
personal workspaces where the user stores resources of different types. The user can also invite
others to collaborate in a joint project to provide open access to files or folders.

60

ISSN 1998-6939. IHdopmauinHi TexHonorii B ocBiTi. 2018. Ne 3 (36)

Each project is executed on the server CoCalc where it divides disk space, CPU and RAM
with other projects. Free service plan provides using only those server resources that are free
currently. In addition, when the user’s project on the free service plan is not used for a few weeks, it
is moved to secondary storage in order to free server resources and his restarting will take
significantly much more time than the user who paid for the service plan.

Project participants can combine their own computing and storage resources to improve the
capabilities of the project as a whole and the reallocation of resources among themselves. To
organize joint work with the resources of the CoCalc project is possible either at the level of
individual resource, in particular of the worksheet, or project as a whole.

Opening of the share access at the level of individual resource is a web publication of the
resource content in a read-only mode for all Internet users, which have link to this resource. The
disadvantage of such publication is that the read-only user has no way to control the worksheet
calculations, even if the author used the standard controls in it. However, if it necessary, the
published worksheet can be copied or downloaded.

Organization of joint work at the level of the whole project is possible without/with the
‘course’ resource type. The first method involves connecting the participants to the project
participants, who will have the ability to work together on existing educational resources of the
project, or add new ones, invite other participants to communicate via text and video chats within
the joint project. The contribution of each participant of the joint project in the solution of its tasks
may be revised in the pages of history of the project or in the pages of his backups [3].

As a cloud subject-oriented environment, CoCalc in its composition contains both a computer
mathematics systems and programming environments. The choice of a particular tool is carried out
through binding to the file type or through the command of programming environment selection. At
the stage of creating new files at project home directory, the user can choose the programming
language. According to the choice, the environment is booting with internal compiler (interpreter).

The easiest way of handling CoCalc files is a Linux terminal mode. So, it is necessary to
compile and run the developed program to test it. Files created as a result of program execution,
become part of the student project in the CoCalc. Another method of executing programs in the
CoCalc is directly on Sage worksheets. To do this, in the beginning of the cell, it necessary to
specify one of the so-called “magic commands” (%magic below provides a full list of them). For
example, %coffeescript executes the CoffeeScript code; the CoCalc is additionally define the
printing function print. CoffeeScript code translates to JavaScript and runs directly in the browser,
so the CoffeeScript program performance does not depend on the computing power of cloud
Servers.

4 METHODIC OF USING COCALC AS A LEARNING TOOL FOR NEURAL
NETWORK SIMULATION

In the special course of the foundations of mathematical informatics using CoffeeScript can
be considered such calculating-intensive tasks as creating and customizing of a neural network.
Given the significant time required for this and the importance of the topic “Neural networks and
pattern recognition” for the special course in general (such as topic which brings together
computing and intelligent content lines), students are offered individual research task —
development of an artificial neural network [5].

Artificial neural network is a mathematical model and also its software and hardware
implementation, based on the principles of functioning of biological neural networks — networks of
nervous cells of a living organism. This concept appeared in the study of processes that occur in the
brain, and when we try to simulate these processes. After the development of the learning
algorithms the models were used for practical purposes: in problems of prediction, pattern
recognition, control problems, etc.

Artificial neural network is a system of interacted artificial neurons, interconnected through
synapses. The input of the artificial neuron receives a set of signals, each of which is an output of
another neuron. Each input is multiplied by weight coefficient of the synapse, all the components
are summed, determining the activation level of a neuron as a scalar product of a vector input on the

61

ISSN 1998-6939. Information Technologies in Education. 2018. Ne 3 (36)

weight vector. The resulting value is measured by activation function, which normalizes the value
in a given range: for polar activation function is [0; 1], bipolar [-1; +1].
Three-layer neural network is most commonly used; it architecture is presented in Fig. 1.

Hidden layer

b4

YNk

Fig. 1. The architecture of three-layer neural network
To develop a neural network, we offer students the following code in CoffeeScript:

$coffeescript

Artificial neural network (based on Phillip Wang's code
https://github.com/lucidrains/coffee-neural-network)

class Synapse # synapse -connects two neurons
constructor: (@source neuron, @dest neuron)->
#initial weight is a random value within [-1;+1]
@weight = @prev_weight = Math.random() * 2 1

class TanhGate # tangential activation function

calculate: (activation)->
math.tanh (activation)
derivative: (output)-> # it’s derive

1 - output * output
class SigmoidGate # sigmoidal activation function

calculate: (activation)->
1.0 / (1.0 + Math.exp(-activation))
derivative: (output)-> # it’s derive

output * (1 - output)

class ReluGate # Heaviside step activation function
@LEAKY_CONSTANT = 0.01
calculate: (activation)->
if activation < 0 then activation *
ReluGate.LEAKY CONSTANT else activation
derivative: (output)-> # it’s derive
if output > 0 then 1 else ReluGate.LEAKY CONSTANT

The first of activation function is bipolar and corresponds to the hyperbolic tangent, the

second is polar and corresponds to the logistic function. The latest activation function describes a
polar stepped function.

62

ISSN 1998-6939. IHdopmauinHi TexHonorii B ocBiTi. 2018. Ne 3 (36)

class Neuron # artificial neuron
constants of learning rate and momentum
@LEARNING RATE = 0.1
@MOMENTUM = 0.05

constructor: (opts={})->
gate class = opts.gate class || SigmoidGate
@prev_threshold = @threshold = Math.random() * 2 - 1
@synapses in = []
@synapses out = []
@dropped = false
@output = 0.0
@error = 0.0
@gate = new gate class()
dropout: ->
@dropped = true
@output = 0
calculate output: -> # calculates the neuron response
@dropped = false
activation = 0
for s in (@synapses_in
activation += s.weight * s.source neuron.output

activation -= @threshold
@output = @gate.calculate (activation) #
derivative: ->

@gate.derivative @output
#calculation of weight coefficients of the output layer
output train: (rate, target)->
@error = (target - @output) * @derivative ()
@update weights (rate)
#fcalculation of weight coefficients of the hidden layer
hidden train: (rate)->
@error = 0.0
for synapse in (@synapses out
@error +=
synapse.prev_weight * synapse.dest neuron.error
@error *= @derivative ()
Gupdate weights (rate)
update weights: (rate)->
for synapse in (@synapses in
temp weight = synapse.weight
synapse.weight += (rate * Neuron.LEARNING RATE *
@error * synapse.source neuron.output) +
(Neuron.MOMENTUM * (synapse.weight -
synapse.prev_weight))
synapse.prev_welght = temp weight
temp threshold = @threshold
@threshold += (rate * Neuron.LEARNING RATE * (@error *
-1) + (Neuron.MOMENTUM * (Qthreshold -
@prev_threshold))
@prev_threshold = temp threshold

The network learning goal is to find the coefficients of neurons interconnections. During the
learning process the neural network is able to identify complex dependencies between the input and

63

ISSN 1998-6939. Information Technologies in Education. 2018. Ne 3 (36)

output data, and perform generalization. It means that in case of successful learning the network
will be able to return the correct result based on the data, which are absent in the training input, as
well as incomplete and/or noisy, partly distorted data.

class NeuralNetwork # neural network
@DROPOUT = 0.3

the constructor arguments is the type of the

activation function, the number of neurons on the

input layer, the number(s) of neurons on the hidden

layer(s), the number of neurons on the output layer

constructor: (gate class, input, hiddens..., output)->
opts = {gate class}
@input layer = (new Neuron (opts)
for i in [0...input])
@hidden layers = for hidden in hiddens (
new Neuron (opts) for i in [0...hidden])
@output layer = (new Neuron (opts)
for i in [0...output])

for i in @input layer
for h in @hidden layers[0]
synapse = new Synapse (i, h)
i.synapses out.push synapse
h.synapses in.push synapse
for layer, ind in (@hidden layers
next layer = if ind==(@hidden layers.length-1)
@output layer
else
@hidden layers[ind+1]
for h in layer
for o in next layer
synapse = new Synapse(h, 0)
h.synapses out.push synapse
o.synapses_in.push synapse

train: (input, output)-> # neural network training
@feed forward (input)
for neuron, ind in (@output layer
neuron.output train 0.5, output[ind]
for layer in @hidden layers by -1
for neuron in layer
neuron.hidden train 0.5

feed the input signal through all network layers feed forward:
(input) ->
for n, ind in @input layer
n.output = input[ind]
for layer in @hidden layers
for n in layer
if Math.random() < NeuralNetwork.DROPOUT
n.dropout ()
else
n.calculate output ()
for n in (@output layer
n.calculate output ()

64

ISSN 1998-6939. IHdopmauinHi TexHonorii B ocBiTi. 2018. Ne 3 (36)

calculation result is on the output layer
current outputs: ->
(n.output for n in @output layer)
cloning data
clone = (obj) ->
return obj if obj is null or typeof (obj) isnt "object"
temp = new obj.constructor ()
for key of obj
temp [key] = clone (objlkey])
temp

As an example, firstly we propose to examine a neural network for Boolean functions of two
variables “OR”. A feature of this example is that the input network served only two polar values 0
and 1, the output is also one of the two values.

Due to the Kolmogorov’s theorem, in order for three-layer neural network reproduced any
function of multiple variables, the dimension of the hidden layer should be at least more than 1 for
twice dimension of the input. For this example, it is possible to reduce the dimension of the hidden
layer from 5 to 2 due to the fact that there are only two possible values:

Creating a three-layer neural network:
2 input neurons, 2 hidden and 1 output
nn = new NeuralNetwork (SigmoidGate, 2, 2, 1)
training sequence consists of pairs "input - output"
pairs = [#for example, for a disjunction
((0,01, 1011,
(to,11, 111,
(t1,01, (111,
(1,11, [11]
]
Training limited by the number of iterations
numiter = 150000
for i in [0...numiter]
err=0

for pair in pairs

nn.train pair[0], pair[1l]

nn.feed forward pair[0]

out=nn.current outputs/()

for k in [0...pair[1l].length]

err+=(out [k]-pair[1][k]) * (out[k]-pair[1l][k])

err=Math.sqgrt (err/4)
if 1%1000==0

print "Epoch ", i, ", error =", err

Network testing #1
for 1 in pairs
nn.feed forward i[0]
print "Input ", i[0], ", calculated ",
nn.current outputs(), ", must be ", i[1l]

65

ISSN 1998-6939. Information Technologies in Education. 2018. Ne 3 (36)

The results of neural network testing is shown in Fig. 2.

:!I «in ©out © ZlHD|1IclQl=
Itepayin 140008 , nomsnka = ©.00421791706837043

Itepauyia 141000 , noMunka = ©.026069135533211935

Itepayin 142008 , nomwnka = ©.01662893256689042

Itepayin 143000 , nomunka = ©.28026623651875215

Irvepayia 144000 , nommnka = ©.0010612101620747125

Itepayia 145000 , nomunxa = ©.2743559388471105

Itepauina 146000 , nommnka = ©,.02865800216671595

Itepauin 147000 , nomunxka = ©.027756609206225383

Ivepayia 148000 , nommnka = 0.0009493239126797@38

Ivepauyia 149000 , nomunka = ©.37406581007087847

Nopgaemo wa exia [0,8] , oTtpumann [0.0010199996254682498] , nosukWo OyTu [0]
Nopaemo wa exia [©,1] , orpmmanu [0.9572457742977656] , nosuuHo Bytr [1]
Nogaemo ua exia [1,8] , ovpumanu [0.9999319400884712] , nosuuMo Oyt [1]
Nopaemo wa exia (1,171 , ovpumanu [0.46649109350708023]1 , nosunwo Byte [1]

Fig. 2. Testing of neural networks for logic functions “OR” (in Ukrainian)

From Fig. 2 we can see that the number of iterations (150000) for network learning is too big,
so that the computing process could be stopped while reducing the error to predetermined value
beforehand. It is necessary to pay attention to the results of a calculation when the input network is
supplied a pair (1; 1) — unlike the previous three tests, the obtained value is significantly differed
from the needful. To resolve this error we offer to choose a different polar function of the

activation — stepped.

The following example shows how to build neural network for random values of input and

output:
Creating a three-layer neural network:
3 input neurons, 7 hidden and 1 output

nn = new NeuralNetwork (SigmoidGate, 3, 7, 1)

generate a new training sequence
data = []
count = 1000 #the number of pairs "input - output"”

for i in [0...count]
x1l = Math.random()*100-60
X2 = Math.random()*100-40
x3 = Math.random () *100-50

data.push ([[x1,x2,x3],

[x1 + x2 - x3]11)

The network architecture corresponds to the Kolmogorov's theorem, but the value at which it
is proposed for training are not polar, as required by the logistic function. Bringing them to the
desired range requires normalization, which is necessary to find limit values for input and output:

find limit
data[0][0][0]

values

maxinput = datal0] [0] [0]

data[0][1][0]

for i in [0...count]
for 7 in [0...data[i][0].length]
if data[i] [0][j]<mininput

66

for

input and output mininput

minoutput = data[0][1][0] maxoutput =

ISSN 1998-6939. IHdopmauinHi TexHonorii B ocBiTi. 2018. Ne 3 (36)

mininput=datal[i] [0] [7]

if datal[i][0][]j]>maxinput
maxinput=data[i] [0] [7]

for j in [0...data[i][1l].length]
if datal[i][1l][]j]<minoutput
minoutput=data[i] [1][]]

if datal[i][1l][]j]>maxoutput
maxoutput=datal[i]

(11031
Network training is performed on the normalized data (Fig. 3):

training sequence, normalized in the range [0; 1]
normdata=clone (data)
for 1 in [0...count]
for j in [0...datali
normdatal[i][O][j
(data[1][0]
for j in [0...datali
normdatali] [1][]
(data[i][1][J]-minoutput)/ (maxoutput-minoutput)
Training to complete iteration limit
numiter = 100000

1[0].1length]

jl-mininput) / (maxinput-mininput)
1[1].1length]

,_,|_4'_4.—|l—‘}_l

for 1 in [0...numiter]
err=0
for pair in normdata
nn.train pair[0], pair[l]
nn.feed forward pair[0]
out=nn.current outputs/()
for k in [0...pair[l].length]
err+=(out[k]-pair[1] [k])* (out[k]-pair[1l][k])
err=Math.sqgrt (err/4)
if 1%1000==

print "Epoch ", i, ", error =", err

Lol fesscript

0, moMened = 1095 |.-.e-- Nid G
; COMEREE

Erapagia Olaldé | AoMEALE =

Moasdms wa -.:- [27
‘-.r.- §F,RRAR LE
AACRD WA A [39.80633118139884, -16. PIGEIRBLEESAIT, - 41, FISIBBELR1 23] | ovpusans 0. 17ITOBEFIGEIIET , nossmHO
TR LT m.|

1361207 ,4%, 259 IMBTISSGEEE] , ompumans 36, I58A7I1SAE231% , nomsssn

Gasems wa Bocly [3F PIPEVLE, - 26, FELOLEOESLS MO, -i'.-.-u.".'.l-'-h..".'l'-.l.'] . OTpuMiim P ATIE01TI02IRIS | SOGEMsD
Td 44 SEATIZBEL S 1

Togaima wa exla [-23, 1141998165 3037, - 28, IRI0ATIGA0NEEE . -0, DESNEETAOEAREINE] | oTpemacw -39, GEBMISIEEISAIRD |
cgnnsd GyTe 8T 150D

Claems ma Bell TIEISITEFRITRT ‘!..‘:ﬂ-i.'.“:‘:l:l-ll': o OTpEMEAR =3 1DISG0RSLIT1AGES | NOwEERD

Syra 3L 9ITITMGE

Megaims wma Belsy LETTBATET, <0, BEESESIBLIOLI04E, 35 RIOOERIILIETT] |, ovpesarm 3T SSS16TEIVLILHIS | mowmned

EyTa -8, FSSNIL18E5

Fedsges wi ookl [5oSI0RA00ITRINED, 15, BERIOTRITEE0), 35, DRSS] |, aTowainn 20, BIDTOAGRORG0IE , nommen

EyTA =4, DETEAGAEEID

Fogadms wa Exls =58, TedA SARTETIATA L A6, PSR THETRESY] | , OTpumans <26, IEIBDEAISSDATIR | SoawwEd
Syre -TdETRARILY "r

Mogasms wa mocl TS 51 XIT46, - 3. GEERETARATITIONL 3. GFIRSELBESASEA]] | ovpumane 5. BRESMASIAIIIAL | nomesssn
EyTa B, 848 I'\l"

re ABEES WA CSERMAIOTERNSLTE, N TEATTTERIANENE, 21, AVIARDRATETIRE] | avpesare GO JEROATEOGESLES | modeiied
ByTH ¥l .5&

Casdms va Bl HEPRRITEREINANTE, 4N, PER BRI MLUL LR, FRSTOLEINNIIRN] |, ofpemaim L 1ITRLPOORB014 | Pddwed

Byra 34 BLBIIEDRITILE0E

Fig. 3. The results of testing the neural network for adding function (in Ukrainian)
While testing a network, perform the reverse process of denormalization:

67

ISSN 1998-6939. Information Technologies in Education. 2018. Ne 3 (36)

#

Network testing #2

for i in [0...count]

nn.feed forward normdatali] [0]
res=nn.current outputs ()
print "Input ", datal[i][0], ", calculated ",
res[0]* (maxoutput-minoutput)+minoutput,
", must be ", datal[i][1]1[0]

In Fig. 3 shows the test results.
While discussing the test results, it is advisable again to pay attention to the values that differ

significantly from the etalons. We first recall that the input values generated randomly in the
following ranges: x;€[-60; 40), x,€[40; 60), Xs€[-50; 50). Analysis of the results shows that, then
closer the input values to the range limits, then greater the difference of the result from the etalons.
This provides an opportunity to do conclusion on the boundaries of application of the constructed
network in which it maintains adequacy.

5
1.

68

CONCLUSIONS

The special course “Foundations of Mathematic Informatics” for students of technical
universities — future IT-experts aimed and directed to breaking the gap between theoretic
computer science and it’s applied applications: software, system and computing engineering. In
this regard, their fundamental foundations are implemented using modern programming
languages and cloud technologies tools.

One of the leading cloud technology learning tools of the special course is CoCalc — the
mathematical software system that provides the ability to support all sections of the special
course in an unified mobile mathematical environment. Despite the fact that Python is the most
often used programming language in CoCalc, a program realization examples represented by the
extension of browser-based JavaScript language, which provides to developed software a higher
level of mobility.

The central theme of the special course is the neural network simulation — a traditional technique
for modeling natural neural networks, which had a significant impact on all stages of the
development of computer and software engineering. The most versatile neural networks
architectures and their application to the problems of modeling the basic logical elements of the
computer system and identifying hidden dependencies are discussed in paper.

The final evaluation for the special course includes the presentation of individual education and
research projects on the artificial neural networks building. The framework project’s topics
involves modeling continuous, discrete-continuous and discrete neural networks for solving
problems of circuit synthesis, time series forecasting, pattern recognition, functions
approximation, dependency identification, medical diagnostics, decision-making under
conditions of incomplete data, data compression, unknown data restoration, clustering,
automated control etc.

REFERENCES

1. Markova, O.M., Semerikov, S.O. & Striuk, A. M. (2015). The cloud technologies of learning: origin.

Information Technologies and Learning Tools, 46(2), 29-44.

2. Permiakova, O.S. & Semerikov, S.O. (2008). The use of neural networks in forecasting problems.

Materials of the International Scientific and Practical Conference “Young scientist of the XXI
century”, KTU, Kryviy Rih, 17-18 November 2008.

3. Popel, M.V. (2015). Organization of learning mathematical disciplines in SageMathCloud.

Publishing Department of the Kryviy Rih National University, Kryviy Rih.

4. SageMath, Inc. (2018). CoCalc - Collaborative Calculation in the Cloud. Retrieved from

https://cocalc.com.

https://cocalc.com/

ISSN 1998-6939. IHdopmauinHi TexHonorii B ocBiTi. 2018. Ne 3 (36)

5. Semerikov, S., Teplytskyi, I. & Yechkalo, Yu. (2018). Computer Simulation of Neural Networks
Using Spreadsheets: The Dawn of the Age of Camelot.Proceedings of the 14th Interna-tional
Conference on ICT in Education, Research and Industrial Applications. Integration, Harmonization
and Knowledge Transfer. Kyiv, 14-17 May 2018. CEUR Workshop Pro-ceedings.

6. Shokaliuk, S.V., Markova, O.M., Semerikov, S.0. & Soloviov, V.M. (Ed.) (2017). SageMathCloud
as the Learning Tool Cloud Technologies of the Computer-Based Studying Mathematics and
Informatics Disciplines. Modeling in Education: State. Problems. Prospects, 130-142.

7. Stein, W. (2014). What can SageMathCloud (SMC) do? Sage: open source mathematics software.
Retrieved from http://sagemath.blogspot.com/2014/05/what-can-sagemathcloud-smc-do.html.

8. Teplytskyi, 1.0. & Semerikov, S.O. (2007). Computer simulation of absolute and relative motions of
the planets the Solar system. Collection of scientific works of the Kamyanets-Podilsky National
University named after lvan Ogienko. Series: Pedagogical, 13, 211-214.

9. Turavinina, O.M. & Semerikov, S.0. (2012). Contents of the learning of the foundations of
mathematical informatics of students of technical universities. Proceedings of the International
scientific and methodical conference on Development of intellectual abilities and creative abilities of
students and students in the process of teaching disciplines of the natural sciences and mathematics
cycle, Sumy State Pedagogical University named after A. S. Makarenko, Sumy, 6-7 December 2012.

10. Turavinina, O.M. (2012). Mathematical informatics in the system fundamen-talization learning the
students of technical universities. Collection of scientific works of the Kamyanets-Podilsky National
University named after lvan Ogienko. Series: Pedagogical, 18, 189-191.

Crarrts mamiimia go penakiii 20.09.2018.
The article was received 20 September 2018.

Mapkosa O. M.}, Cemepukog C. 0.2, IToneas M. B.>

1I[ep>1caBHnﬁ BHIIMHA HaBYadbHHMil 3akinan «KpuBopisbkuiik HamioHATbHHI
yHiBegcuTeT», Kpusnuii Pir, Ykpaina

5 Kpusopisbkuii nep:;kaBHuii negaroriyauii ynisepcurer, Kpusuii Pir, Ykpaina

Incrutyr indopmanilinux texHosorii i 3acodiB HaBuanus HAIIH VYkpainu, Kwuis,
Ykpaina

COCALC HAK [IHCTPYMEHT MHOIAI'OTOBKMX Js1 MOJIEJIOBAHHSA
HEWPOHHUX MEPEX V¥ CHEHIAJBHOMY KYPCI "OCHOBU MATEMATHYHOI
IHOPOPMATUKN"

VY craTTi po3risHYyTa pojb MOJETIOBaHHS HEHPOHHOI Mepeki B HaBYaJIbHOMY HpoIeci
cnemiasibHoro Kypcy "OcHoBu MatemarnuyHoi iHpopmatuku". Kypc OyB po3poOienuit s
CTY/ICHTIB TEXHIYHUX YHIBEPCHTETIB - MalOyTHIX CHeuianicTiB 3 iH(pOpMaliiHUX TEXHOJOTi Ta
CTIPSIMOBAaHWH Ha TIOJOJAHHS PO3PUBY MIX TEOPETUYHOIO iH(POPMATHUKOI Ta 11 MPUKIAJTHUMH
porpamMamMu: IporpaMHOI0, CHCTEMHOIO Ta KOMIT I0TepHOIo0 iHxkeHepieto. CoCalc po3risaaeTses sk
HaBYaJIbHUN 1HCTPYMEHT MaTeMaTU4yHOi 1H(QOpPMAaTUKU B LIJIOMY Ta, 30KpeMa, JJIsi MOJEIIIOBaHHS
HellpoHHux Mepex. [lokazani enemeHTH MeToAuku BukopuctanHs CoCalc mpu BHBYEHHI TeMHU
"HeliponHi mepexi Ta po3mizHaBaHHA oOpa3iB" crenianbHOro kKypcy "OCHOBHM MaTeMaTHUYHOL
iHpopmatuku". Kog nporpamu OyB mpencrtaBnenuii Ha moBi CofeeScript, B sKiif peanizyroThCs
OCHOBHI KOMIIOHEHTH ILITYYHOI HEHPOHHOI Mepexi: HEeWpOHH, CHHANTHYHI 3'€THaHHS, (QYHKII
aKkTuBallii (TaHTeHIlialbHI, CUTMOIJHI, CTYIMIHYACTi) Ta iX TMOXiJHI, METOIU PO3PAXyHKY Baru
Mepexxi Ta 1H. OOroBoproBajHMCsi OCOOJMBOCTI 3acToCyBaHHs TeopemMu Kommoroposa miis
BU3HAYEHHS apXITEKTypH OaraTolapoBUX HEHPOHHUX Mepex. B skocTi npukiaaiB Oyao HaBeJECHO
peamizamiro JU3'TOHKTUBHOTO JIOTIYHOTO €JIEMEHTa Ta HaOMMKEHHS JOBUTHbHOI (yHKIIT 3a
JIOTIOMOTOI0 TPHILAPOBOi HEHPOHHOI Mepexi. 3TiTHO pe3yabTaTiB MOJEIIOBAHHS, 0YyJl0 3p0o0JIeHO
BUCHOBOK WIOZI0 MEX BHMKOPHCTAaHHS NOOYZOBAaHUX MeEpeX, B SKHUX BOHU 30epiraroTb CBOIO
a/ICKBaTHICTh. 3alPONIOHOBAHO OCHOBHI TEMH OKPEMUX JOCIIKEHb MTYYHUX HEHPOHHUX MEPEK.

Kuarouogi cioBa: CoCalc, xMapHi TEXHOJOTIi, MOJEIIOBaHHS HEUPOHHUX MEPEK, OCHOBH
MaTeMaTH4HOI iH)OPMATHKH.

69

http://sagemath.blogspot.com/2014/05/what-can-sagemathcloud-smc-do.html

ISSN 1998-6939. Information Technologies in Education. 2018. Ne 3 (36)

Mapxoga O. M.}, Cemepukos C. A. 2, oneas M. B.°

1,Z[ep>1<aBHm71 BUIIMH HaByajdbHuii 3akiaan «KpuBopi3bkuil HalioOHAJIBHUI
yHiBegcheT», Kpusnii Pir, Ykpaina

KpuBopizbkuii nepxaBHuii neaaroriuauii ynisepcurer, Kpusuii Pir, Ykpaina
3IHCTHTyT iHpopMmaniiinux TexHoJsorii i 3aco0iB HaBuanHs HAIIH VYkpainu, Kuis,
Ykpaina

COCALC KAK HUHCTPYMEHT IIOATOTOBKH s MOIAEJIUPOBAHUA
HEWPOHHBIX CETEM B CIIEHUAJBHOM KYPCE «OCHOBBI
MATEMATHYECKOU HH®OPMATUKHW»

B crartee paccMoTpeHa posib MOJETUPOBaHMS HEHMPOHHOM ceTH B ydeOHOM Ipolecce
cenuanbHOro Kypca "OcHOBbI MaTemarumueckoil mHpopmatuku'. Kypc Obu1 paspabortan uis
CTY/ICHTOB TEXHHYECKHUX YHHMBEPCUTETOB - OyIyHIIMX CIEUUAIUCTOB IO HH()OPMALMOHHBIM
TEXHOJIOTUSIM U HAIlpaBJIeH Ha MPEOJOJICHUE Pa3pbiBa MEXIy TEOPETHUIECKON MH(POPMATUKOHN U ee
INPUIIOKEHUAMHU: IPOrPaMMHOM, CHUCTEeMHOW W KommbtoTepHoM uHkeHepued. CoCalc
paccMaTpuBaeTCs Kak y4eOHBI HMHCTPYMEHT MaTeMaTH4eCKOH WHQOpPMAaTHKH B ILEJIOM U, B
YaCTHOCTH, MJI1 MOJEIMPOBaHWS HEUPOHHBIX ceTed. [lokasaHbl 2JIE€MEHTBI METOIAUKHU
ucnons3oBanusg CoCalc mpu wusydenun Tembl "HelipoHHble ceTH U pacmo3HaBaHUs 00pa3oB"
cnennanbHOro kypca "OcHoBbl Maremarndeckod uHpopmaruku". Kox mporpammsl ObLT
npencrasied Ha s3blke CofeeScript, B KOTOpoi peanu3yrOTCsl OCHOBHBIE KOMITOHEHTBI
MCKYCCTBEHHON HEHPOHHOH CeTH: HEHPOHBI, CHHANTUYECKUE COCTUHEHUs, (DYHKIMH aKTHBALUU
(TaHreHUMaJIbHbIE, CHTMOU/IHHU, CTYIIEHYATbIe) U UX MPOU3BOAHbIE, METO/bI pacueTa Beca CeTH U JIp.
OO6cyxaaniuch 0COOEHHOCTH NMPUMEHEHHs TeopeMbl KonMoroposa 1iist onpeesieH sl apXUTeKTYphI
MHOT'OCJIOMHBIX HEMpOHHBIX ceTeil. B kadecTBe mnpuMepoB ObUIM TNPUBEAEHBI peaIn3alUIo
JTU3BIOHKTUBHOIO JIOTUYECKOTO 3JI€MEHTa M NMPUONIMKEHUS MPOU3BOJIBHON (PYHKLIHU C MTOMOUIBIO
TpexclloifHoi HelipoHHOU ceTH. CorylacHO pe3yiabTaTaM MOJICIMPOBAaHUs, ObUI clelaH BBIBOJA O
IpaHUIaX MCHOJIb30BAaHUS MMOCTPOCHHBIX CETEH, B KOTOPHIX OHU COXPAHSIOT CBOIO aJ1€KBATHOCTb.
IIpennokeHpl OCHOBHBIE TEMBI OTAEIBHBIX UCCIEOBAHUN HCKYCCTBEHHBIX HEMPOHHBIX CETEH.

KiroueBbie caoBa: CoCalc, oGnayHble TE€XHOJIOTMH, MOJAEIUPOBAHHWE HEHPOHHBIX CETEH,
OCHOBBI MaTeMaTHYeCKOH HHPOPMATUKH.

70

