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Zusammenfassung

Viele Datensätze haben nicht die Form, wie es die standard Analyse-Methoden vorausset-
zen. Variablen können das Problem mit sich bringen, dass einzelne Antworten fehlen, (mut-
maßlich) gerundet wurden, oder nur als Intervall vorliegen - auch alle Defizite gleichzeitig
sind möglich. In der Literatur wird in diesen Fällen von “groben Daten” gesprochen.
Neben der Anpassung der Analyse-Methode, ist ein etabliertes Vorgehen das Ersetzen von
groben Daten mit plausiblen Werten, genannt “Imputation”. Je nach Datensituation bzw.
Analysevorhaben, fallen die Imputationsmethoden allerdings unterschiedlich aus. In den
Beiträgen zu dieser kumulativen Dissertation wird die Notwendigkeit, sowie die theore-
tische und praktische Machbarkeit der adäquaten Imputation von groben Daten in einer
Vielzahl von Fällen dargestellt.

Eine Methode zur gleichzeitigen Imputation von fehlenden, gerundeten und Intervall-
Beobachtungen in einer Zielvariablen wird in Beitrag 1 vorgestellt. Ein Modell für die
latente Rundungstendenz und ein Modell für die Zielvariable werden gemeinsam behan-
delt. Dabei trägt jede Beobachtung zu einer gemeinsamen Likelihood bei. Basierend auf
den Maximum-Likihood-Schätzern werden für die groben Werte plausible Werte aus einer
(trunkierten) Verteilung gezogen.

Beitrag 2 behandelt Methoden für den Umgang mit fehlenden Daten in hierarchischen
Datensätzen. Zwei häufig diskutierte Methoden werden analytisch verglichen. Es wird
gezeigt, warum Imputation basierend auf cluster-spezifischen fixen Effekten zu systema-
tisch höheren Varianzen der zufälligen Effekte führt und welche Kenngrößen den Bias in
welche Richtung beeinflussen. Basierend auf einer Simulationsstudie wird der Bias (in den
Simulationssettings) quantifiziert. Desweiteren wird motiviert, warum die angenommene
Funktion des Ausfallprozesses, innerhalb eines Fehlendmechanismus, das Ausmaß des Bias
beeinflussen kann.

Mit Beitrag 3 wird ein R-Paket der Öffentlichkeit frei zugänglich gemacht, mit dem
fehlende Beobachtungen in hierarchischen Daten für eine Vielzahl von Variablentypen im-
putiert werden können. Ebenfalls implementiert ist die Methode zur gleichzeitigen Impu-
tation von fehlenden, gerundeten und Intervalldaten. Teilaspekte dabei sind die technische
Verarbeitung von Intervallinformationen in einer Variable, sowie damit verbundene Meth-
oden zur Handhabung. Bezogen auf gerundete Daten wird eine Heuristik zur Erkennung
von möglichen Rundungsgraden vorgestellt.





Summary

Many data sets do not have the form required by standard analysis methods. Variables can
entail the problem that some responses are missing, (probably) rounded, or only available
in an interval - also all deficiencies can be present simultaneously. In literature, such cases
are called “coarse data”. Beside the adjustment of the analysis method, an established
approach is the replacement of coarse data by plausible values, called “imputation”. De-
pendent on the data situation, respectively the desired analysis, the imputation methods
differ. The contributions of this cumulative dissertation present the necessity, along with
the theoretical and practical feasibility of an appropriate imputation of coarse data for a
variety of cases.

A method for the simultaneous imputation of missing, rounded and interval-observations
in a target variable is presented in contribution 1. A model for the latent rounding tendency
and a model for the target variable are treated jointly. In the process each observation
contributes to a common likelihood. Based on the maximum likelihood estimates, the
coarse data are replaced by plausible values drawn from a (truncated) distribution.

Contribution 2 covers methods for the handling of coarse data in hierarchical data sets.
Two frequently discussed methods are compared analytically. It is shown why imputation
based on cluster specific fixed effects lead to systematically higher variances of the random
effects and which parameters influence the bias in which direction. Via a simulation study,
the bias (under the simulation settings) is quantified. Furthermore, a motivation is given,
why within a missing mechanism, the presumed function about the missing process can
influence the bias.

With contribution 3, an R package is made freely available to the public, allowing the
imputation of missing values in hierarchical data for a variety of variable types. Likewise,
the method for simultaneously imputing missing, rounded and interval data is implemented.
Partial aspects of this are the technical realization of interval information in one variable
along with related routines for their handling. With reference to rounded data, a heuristic
for the detection of possible rounding degrees is presented.
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1 Introduction

Charles Babbage, polymath and inventor of the Difference Engine, a mechanical calculator,
wrote in his 1864 book that he was asked twice “Pray, Mr. Babbage, if you put into the
machine wrong figures, will the right answer come out?”(Babbage, 1864, p. 67). Even if
he was able to give an answer, Babbage admitted “I am not able rightly to apprehend the
kind of confusion of ideas that could provoke such a question.”(Babbage, 1864, p. 67).

This anecdote is instructive in many ways. It shows that the problem of “wrong figures”
in computations together with the demand for correct(ed) results existed already more
than 150 years ago; and it points out misconceptions about the power of machines and the
need to see things from the applicant’s perspective, paired with the competence explaining
the machine’s mechanisms.

1.1 Motivation

Nowadays “wrong figures”, or more general, data where not the exact value is observed,
but a set of observations containing the true value, called coarse data (Heitjan and Rubin,
1991), are omnipresent. When data are collected, the unit of observation might not be able
to be contacted/observed at all, or if it is a person, successfully contacted, he/she might
refuse to participate entirely or to answer specific questions. Even a given answer is not
guaranteed to be a precise, correct answer: they might actually be incorrect or imprecise
(cf. Lynn 2008 for an overview of possible factors confounding the data collection).

Within a data set the extent of coarse data can be considerable. The impacts of using
coarse data are often overlooked in practice (Sterne et al., 2009), but can be severe. Broad-
ening the knowledge and awareness about the impacts of coarse data and how to cushion
negative effects has become a field of research in (applied) statistics and applied sciences.

1.2 Answered and open questions in literature

Statistical literature is providing ideas and practical solutions for different situations in
which coarse data appear. An overall consensus in literature is that ignoring the problem
of coarse data (including the removal of observations with coarse data) is only viable in very
limited settings (Schafer, 1999; White and Carlin, 2010; de Jong et al., 2016; White et al.,
2011; van Buuren, 2012). Approaches generally viable are the adjustment of the analysis
model and the modification of the data. One, nowadays broadly accepted, approach of
data modification is multiple imputation (Rubin, 1987), where (presumably) coarse data
are replaced by “plausible values”. Multiple imputation for selected cases of coarse data is
the topic of this thesis.
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Literature concludes that different desired analysis models (due to different data situ-
ations) require different imputation methods (Meng, 1994). Therefore a major question
in this field of research is, what imputation method to use in the given data and analysis
situation.

Ample research has been conducted when the desired analysis model is a generalized
linear model and when missing values in the target variable of this analysis model shall be
imputed (e.g. Rubin 1987; Schafer 1999; White et al. 2011; van Buuren 2012). A first rather
open question, not considered in this thesis, is the imputation of covariates from the analysis
model (White and Carlin 2010; Grund et al. 2016). Covariates in the analysis model
normally need no distributional assumption, but when they are imputed this additional
assumption has to be made (Bartlett et al., 2015). Literature has a tendency towards that
all variable lacking some observations should be imputed without respect to their position
in the analysis model, but some authors found this approach to be problematic in some
settings (Grund et al. 2016).

A second question is the imputation of coarse, but not missing data (Heitjan and Rubin,
1990). In literature methods have been proposed to impute rounded data (when for exam-
ple a large portion of individuals report a value divisible by 1000) (e.g. Wang and Heitjan
2008; van der Laan and Kuijvenhoven 2011; Zinn and Würbach 2016) or responses given as
intervals (e.g. Law and Brookmeyer 1992; Dorey et al. 1993; Heeringa 1993; Raghunathan
et al. 2001; Royston 2007). For the situation when missing data, rounded data and interval
data are present at once, a gap was found in literature.

A third question is the imputation of missing data when the desired analysis model is a
generalized linear mixed model, considering a hierarchical structure of the data (e.g. Reiter
et al. 2006; van Buuren 2011; Enders et al. 2016; Zhou et al. 2016; Lüdtke et al. 2017).
Literature focused on mainly two different imputation approaches for hierarchical data,
compared them and evaluated their performances. But all articles where limited in their
setting under consideration or relied on simulation studies.

An aspect not to neglect in the science about appropriate imputation methods and in
applied research is the availability of suitable imputation methods: if the scientist is not
willing or able to implement the imputation method it cannot be used and compared in
her/his research (Azur et al., 2011). A lack of imputation routines for coarse data and
missing hierarchical data has been found.
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1.3 Contributions

The thesis provides three contributions to the issues mentioned in the previous section:

full reference cited as

Contribution 1 Jörg Drechsler, Hans Kiesl and Matthias Speidel
(2015): MI double feature: Multiple Imputation to
address nonresponse and rounding errors in income
questions. Austrian Journal of Statistics 44 (2),
59-71.

Drechsler et al. (2015)

Contribution 2 Matthias Speidel, Jörg Drechsler and Joseph Sak-
shaug (2018): Biases in Multilevel analyses caused
by cluster-specific fixed effects imputation. Behav-
ior Research Methods 50 (5), 1824-1840. First On-
line: 24 August 2017.

Speidel et al. (2018)

Contribution 3 Matthias Speidel, Jörg Drechsler and Shahab
Jolani (2018), hmi: Hierarchical Multiple Imputa-
tion. R package version 0.9.13 and
Matthias Speidel, Jörg Drechsler and Shahab
Jolani (2018). R Package hmi: a Convenient Tool
for Hierarchical Multiple Imputation and Beyond.
IAB-Discussion Paper 16/2018. Manuscript
submitted to the Journal of Statistical Software.

Speidel et al. (2018a)
and
Speidel et al. (2018b)

The gap of simultaneous imputation of missing, rounded and interval data was closed
by contribution 1 (Drechsler et al., 2015). Chapter 2, gives a general introduction to the
different types of coarse data including their occurrence and reasons, followed by current
strategies of handling coarse data. Into this literature, the approach from contribution 1 is
embedded. Chapter 3 sets up the notation for linear mixed models and the two imputation
models that are most often considered in literature, followed by a short summary of the
current state of the literature. The main part of this section is covered by contribution 2
(Speidel et al., 2018), which provides more general and analytical results to the research
about hierarchical imputation. Chapter 4 covers the implementation of suitable imputation
routines in statistical software. Beside the deployment of yet unimplemented routines,
contribution 3 (Speidel et al., 2018a,b) provides a new approach on processing interval data.
The declarations about the contributions to each publication are given at the beginning
of these chapters. Chapter 5 ends the thesis with a short conclusion and an outlook on
further fields of study.





2 Imputation for missing, interval and
rounded values

In contribution 1 (Drechsler et al., 2015) a method for simultaneously imputing missing,
interval and rounded data was proposed. The description of this method is embedded into
the literature about the occurrence of such coarse data, and the literature on imputing
them.

Declaration of contributions to the article: Generally speaking, the ideas in the arti-
cle about using imputation for un-rounding rounded responses were written by Jörg
Drechsler and Hans Kiesl based on their work that later was published in Drechsler
and Kiesl (2016), while the parts to impute missing data and values given in intervals
were written by the author, based on ideas of Jörg Drechsler and Hans Kiesl. In more
detail: the author’s contribution was to write the parts about missing data and the
attempts to reduce nonresponse by survey agencies and the implications for the Panel
Study Labour Market and Social Security (PASS), and parts of the statistical details.
For the real data application, the author extended the R code from Jörg Drechsler
and Hans Kiesl to be able to consider missing and interval values and conducted the
adapted analysis. The results after using imputation for all situations are given by
the author, including the evaluation of the Gibbs-samples run during the imputation.
Minor contributions to the conclusion and outlook were made by the author.

2.1 Motivation: occurrence of coarse data

Missing data, interval data or rounded data are found in nearly every real data set. An
empirical evaluation of the frequency and methodological/psychological reasons for their
occurrence are presented. In this thesis coarse data encompasses only missing data, interval
data and rounded data. Others of the manifold types of measurement errors are out of
scope of this thesis. For a handbook on measurement errors see for example Buonaccorsi
(2010) or Biemer et al. (2017).

2.1.1 Missing data

Against the ideal condition, in practice it is unlikely that every unit selected into the
sample will be observed. In the field of survey methodology Groves and Peytcheva (2008)
found in a meta-study response rates between 14 and 72% with an average of 36%. In
accordance with this, Kreuter (2013) stated that unit response rates “[...] in the 30 to
40 percent range [are] common to many household surveys in Europe”(Kreuter, 2013, p.
24). Common reasons for missing data on the unit level (unit nonresponse) are failure to
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locate or to contact the sample unit, refusal or inability of the sample unit to participate,
inability of data collector and sample unit to communicate adequately or technical failure
(Lynn, 2008, p. 37). The consequences of unit nonresponse can be serious. In addition to
the loss of statistical power (Rubin, 1987; de Leeuw et al., 2003), a low unit response rate
can, but do not necessarily leads to, nonresponse bias (Rubin, 1987; Groves, 2006).

A pivotal characteristic of data sets is whether respondents and nonrespondents are
systematically different (Rubin, 1978; Griffin et al., 2011). This holds for both, missing
sampling units and missing data in response variables of a sampling unit (item nonre-
sponse). An early article looking at item nonresponse is Ferber (1966). In the survey
under examination by Ferber, only 37.5% of the respondents returned a questionnaire
without any missing information. Several years later, Denscombe (2009) found item non-
response rates in a survey to be between 0 and 21.3%. The reasons for item nonresponse
are manifold but major issues stated in literature are the sensitivity and complexity of
a question (Shoemaker et al., 2002; Yan et al., 2010). The impact of item nonresponse
is considerable: without further decisions (like dropping units with item nonresponse or
imputing missing values), most desired statistical analyses (like regression) are simple not
doable (Raudenbush and Bryk, 2002). Anticipating Section 2.2: restricting the analysis
to complete observed units reduces the statistical power and might cause a substantial
nonresponse bias (Raudenbush and Bryk, 2002).

2.1.2 Interval data

As mentioned in Section 2.1.1, the sensitivity or complexity of a question increases the
chances of observing nonresponse. When survey participants are asked to provide their
income or other wealth related information both issues are present. Some participants are,
due to sensitivity concerns not willing to provide an exact answer, while others are not able
to remember the exact value and thus report “Don’t Know”. Both issues lead to the fact
that in surveys, income or other wealth related questions are often amongst those with the
highest nonresponse rate (cf. e.g. Heeringa 1993, Loosveldt et al. 2002, or Schenker et al.
2006).

To accommodate the issues of those participants in some surveys individuals who initially
refused to answer or said “Don’t Know” are asked a follow up question to get some range
of the true value. This was for example done in the US-American Survey of Consumer
Finances (SCF) by letting the respondents select a range from a shown range card (e.g. $0
- $5000, cf. Kennickell 1991), leading to interval responses. Asking initial nonresponders
for a range makes it possible to collect at least some information from participants who
initially refused to give an answer, but are willing to provide some range (Drechsler et al.,
2015) or from participants who reported to “don’t know” the precise value, but who can
name an interval covering the real value (Kennickell, 1996). In this way, nonresponse-rates
are reduced (Juster and Smith, 1997; Drechsler et al., 2015). A consequence of interval
data is that most standard analyses, only designed for point precise data, are thus not
doable. For that reason, new analysis models, like the Tobit model (Tobin, 1958) had to
be developed.
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2.1.3 Rounded data

A further, less prevalent behavioral pattern of respondents is the tendency to report a value
that is a multiple of a rounding base. For example Heitjan and Rubin (1990) studied the
reported age of children. The empirical distribution showed that the majority of responses
were multiples of 6 months (see Figure 2.1). The rounding bases considered by the authors
in this case were 6 and 12. A similar pattern can be found for example in the German

Figure 2.1: Part (a) from Figure 1 in Heitjan and Rubin (1990), p. 306, showing the relative
frequencies of reported ages in months of children in Tanzania

Panel Study Labor Market and Social Security (PASS, Trappmann et al. 2010) where the
monthly net income of households was surveyed. In the PASS data a noticeable portion
of respondents reported a monthly net income divisible by 10, 100, 500 or 1000 (e.g. 3000
or 4500). For the first six waves (from 2006 - 2012) of the PASS data, the percentages of
households reporting data with a certain rounding degree are plotted in Figure 2.2. Beside
the fact that the percentages are quite stable across the different years, it is noticeable that
about 15% of respondents reported a value divisible by 1000 and more than 35% reported a
value to be divisible by 100 (but not 1000) which remarkably exceeds the expected numbers
under a nonheaped distribution. A psychological explanation for rounding starts with the
observation that multiples of 10, like 10, 50, 100 or 1000 are cognitive reference points
(Rosch, 1975). Secondly, a trait of many people is to only remember the first digit(s) of
their income precisely and replace the forgotten digits by zeros (Hanisch, 2005). Both
circumstances combined lead to responses which are rounded to multiples of 10, 100, or
1000. The accumulation of individually rounded values, leads to the result of heaped
variables.

Rounding in continuous variables can have considerable impacts on the analysis: amongst
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Figure 2.2: Rounding degrees in the PASS data over multiple waves
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the potentially biased quantities of interest are the moments of a normally distributed
variable (Sheppard, 1898), regression coefficients (Augustin and Wolff, 2004) or the rate of
people in danger of poorness (60% of the median income, Drechsler and Kiesl 2016) (see
Schneeweiss et al. 2010 for a review on this topic).

2.2 General strategies on handling coarse data

The best action regarding coarse data is self-evidently the attempt to avoid observing
coarse data. For literature on prevention of coarse data see for example de Leeuw et al.
(2003) or Biemer et al. (2017). Still, in most cases the occurrence of coarse data cannot
be averted completely, so strategies to handle coarse data had to be elaborated. For unit
nonresponse, nonresponse weighting is a commonly used strategy (Kreuter et al., 2009).
For item nonresponse, which is in the focus of this thesis, very roughly speaking there are
two general distinct strategies on handling coarse data:

1. Modifying the analysis models (like adjusted Maximum Likelihood estimation or
using the EM-Algorithm Dempster et al. 1977)

2. Modifying the data set (like removing coarse observations or using imputation Rubin
1987)

Both strategies have their pros and cons; a few shall be mentioned here. On the one hand,
if available, adjusted Maximum Likelihood (ML) estimates are sometimes seen as a gold
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standard (Enders and Bandalos, 2001; Raghunathan, 2004). On the other hand imputation
is said to be more practical (Raghunathan, 2004) and to be, in some situations, more robust
against model violations than adjusted ML estimates (de Leeuw et al., 2003; Wang and
Hall, 2010; el Messlaki et al., 2010) (but not in all cases - see He and Raghunathan 2009).
Dropping coarse observations is only valid in very special settings (cf. e.g. Enders and
Bandalos 2001; Raghunathan 2004).

This thesis will focus on imputation, a prominent form of data modification.

2.3 Imputation

In an early contribution to the handling of missing data Yates (1933) proposed the idea

to replace missing values by their least square prediction xi · β̂, later known as Yates’
Method (Little and Rubin, 2002). Similar but more general is Buck’s Method proposed by
Buck (1960): for each missing value pattern across p variables, a (multivariate) regression
equation is formulated and subsequently used to replace missing values. A milestone for
contemporary imputation literature was Rubin (1976), where different types of missing
mechanisms have been introduced. Using the notation of Little and Rubin (2002), with
small changes, the basics of imputation are the following:

• Let X be a n × p data set with elements xij being the observation in row i and
column j.

• Let xi be the i-th row vector of X and Xj the j-th column vector. When Xj is the of
special interest (for example when selected as target variable in a regression model),
it shall be noted as Y with elements yi.

• X can be split up into its observed part Xobs and its missing part Xmis so that
X = (Xobs, Xmis).

• Let R be a response indicator with elements rij being 1 if xij is observed and zero
other wise.

• The missing process can be described by a function f(R|X,ψ) where ψ are unknown
parameters governing the missing process.

• Based on the factorization f(R,X, ψ) = f(R|X,ψ) · f(X,ψ), the different missing
processes can be defined:

– Data are called to be Missing Completely At Random (MCAR) if f(R|X,ψ) =
f(R|ψ) holds for all X,ψ (cf. eq. (1.1) in Little and Rubin 2002)

– Data are called to be Missing At Random MAR if f(R|X,ψ) = f(R|Xobs, ψ)
holds for all Xmis, ψ (cf. eq. (1.2) in Little and Rubin 2002)

– Data, neither MCAR or MAR are called to be Missing Not At Random (MNAR).
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• When generalized to coarse data, the definitions are analogue (cf. e.g. Tsiatis 2006,
Chapter 7):

– when the coarsening mechanism is independent of any variables, the data are
Coarsened Completely At Random (CCAR). The less restrictive Coarsening At
Random (CAR) requires that the coarsening mechanism can be modeled with
the observed variables while Coarsening Not At Random is present if the CAR
assumption does not hold.

– Xobs and Xmis represents the precisely observed and coarsely observed data.

– R becomes the coarsening indicator.

If MAR or MCAR is given (latter, an assumption that cannot be tested without further
information or assumptions, cf. e.g. Wang and Hall 2010), valid inferences for Q, the set
of Complete Data Statistics (Rubin, 1988) for X and ψ is possible. The full likelihood is:
(eq. (6.45) in Little and Rubin 2002)

L(Q,ψ|Xobs, R) ∝ f(Xobs, R|Q,ψ) (2.1)

From a theoretical point of view, imputation is not necessary to obtain valid inferences for
Q. Still, the posterior distribution (eq. (10.8) in Little and Rubin 2002)

p(Q|Xobs) =

∫
p(Q|Xmis, Xobs) · p(Xmis|Xobs) dXmis (2.2)

proofed to be useful. This equations shows that it is possible to simulate the posterior
distribution of Q. Firstly, coarse values are replaced multiply (M ≥ 2 times) by “plausible
values” X?

mis from the joint posterior distribution p(Xmis|Xobs). Secondly, based on each

completed data set, an estimate Q̂ for the Complete Data Statistics from the posterior
distribution p(Q|Xmis, Xobs) is calculated. Lastly, the M estimates for Q̂ can be analyzed
using Rubin’s combining rules (Rubin, 1987). This process, called Multiple Imputation
(MI), is based on the (Single) Imputation proposed by Rubin (1978), where missing values
are imputed only once. The expansion from Single Imputation to Multiple Imputation
allowed to incorporate the uncertainty of imputation within the analysis. For the rest of
the thesis by “imputation”, the Multiple Imputation is meant (and not Single Imputation).

Since this starting point, an ongoing question in the literature about imputation is how
a “plausible value” should be derived. Imputation methods shown to be suitable in one
situation might fail in another.

A very crucial quality of an imputation method, elaborated by Meng (1994), is conge-
niality. Roughly summarized: the imputation model has to be consistent with the analysis
model. This means for example that at least every variable used in the analysis model
should be included in the imputation routine and that the assumptions in the imputation
model are compatible with those in the analysis model.

From a method used to provide edited data to external users, imputation broadened to
an “in-house” tool, used by researchers to handle their missing data problem adequately
(Barnard and Meng, 1999).
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Also from the starting point of imputing missing continuous values in cross sectional sur-
veys, two major directions of development of imputation methods can be found. The first
is data structure including adaptations for other variables types (like binary or categorical
data) and adaptations for more complex data formats (e.g. panel studies or hierarchical
data). The second direction is to use imputation not only for missing data but in gen-
eral for coarse data. The idea behind imputing coarse data is the same to the idea of
imputing missing data: When the data are CCAR or CAR, firstly, imputation parameters
can be drawn from their posterior distribution and secondly, coarse values are replaced by
plausible values based on a model combining the observed information and the imputation
parameters.

2.3.1 Regression based imputation

Imputation methods can be differentiated in multiple ways. Some methods, (like mean im-
putation) replace coarse values with deterministic values, while other methods are stochas-
tic, drawing (pseudo) random values following a probability distribution. For regression
based imputations with more than one coarsened variable, two different approaches are
found in literature: joint modeling and sequential regression. In the former a joint distri-
bution of all variables in the data set is assumed to be present (e.g. a multivariate normal
distribution), and from this distribution all coarse values are replaced in one step by a draw
from the joint distribution. Beside the fact that in many settings the class of this joint
distribution is unclear, in multilevel imputation it cannot handle missing data in random
slopes variables (Enders et al., 2016). In sequential regression imputation, this joint dis-
tribution is tried to be approximated by repeatedly imputing every coarsened variable in
Xmis. For each variable a conditional distribution is assumed. So step 1. “drawing plausi-
ble values X?

mis from the joint posterior distribution p(Xmis|Xobs)” (see previous section) is
done by intermediate steps that are repeated multiple times (e.g. 10 times) consecutively:

1. For θ, the vector of imputation parameters, within the imputation model for the
current variable, new values θ? are drawn from p(θ | Xobs), their posterior distribu-
tion given the precisely observed other covariates - which might include previously
imputed values.

2. Draw replacements for the coarse values in the current variable from the predictive
distribution of the coarse data given the precisely observed other covariates and the
drawn parameters from the previous intermediate step: p(Xj,mis | θ?, Xobs).

For example using a linear regression imputation model, in the first step the regression
coefficients β? and the residual variance (σ?)2 can be drawn from a normal distribution for
β? and a χ2-distribution for (σ?)2. In the second step, coarse observations might replaced
by random draws from a N(Xmis · β?, (σ?)2) distribution.
A disadvantage of the sequential regression approach is that convergence is only possible
under the existence of the joint distribution. However, Liu et al. (2014) showed that
the joint distribution will exist under rather general conditions and Zhu and Raghunathan
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(2015) found that even in cases of nonexistence, correctly specified conditional distributions
will lead to consistent estimates.

2.3.2 Other common approaches for imputation of missing data

In the course of time many imputation methods have evolved, each having its specific
strengths and weaknesses. Beside regressions based imputation methods, which are in
focus of this thesis, other common imputation methods shall be sketched briefly. In
(un)conditional mean imputation, missing values in a variable are replaced by the (un)con-
ditional mean of this variable (cf. e.g. Little and Rubin 2002 for a discussion). Data
Augmentation, developed by Tanner and Wong (1987), is a mixture of the EM-Algorithm
and Multiple Imputation: Missing values are replaced by draws from a regression model
that depends on the observed and previously imputed values in this variable. In the first
step of Predictive mean matching, proposed by Little (1988), observations with missing
values are matched to complete observations (through a distance measurement). In the
second step, from the pool of complete donor observations values are selected and imputed
for the missing values.

2.4 Methodology of imputing interval data

Early uses of imputation to replace interval values by precise values was in the context
of survival analysis (Taylor et al., 1986; Muñoz et al., 1989; Taylor et al., 1990; Dorey
et al., 1993). Such imputation models, that need to be congenial with the survival analysis
model, are out of scope of this thesis, focusing on (generalized) linear mixed models. In
the latter context, for the 1983 Survey of Consumer Finances (SCF) interval data “were
later translated into a single value by coders using a set of rules”(Kennickell, 1996, p. 440).
Later, in the 1989 SCF, Kennickell (1991) imputed interval data with an imputation model.
It followed a Gibbs sampling approach, imputing missing values in the income variable
sequentially and repeatedly, by draws from a conditional normal distributions. As both,
refusals and interval answers were considered to be missing, the imputation model was
solely based on precise observations. Furthermore the values, imputed for the interval
responders were not bound by the intervals given, which Kennickell stated to “be an
important line of research for this project in the future”(Kennickell, 1991, p. 6). Later, for
the 1995 SCF Kennickell (1996) used the bounds of interval data as truncation points of
the conditional normal distributions.

In the meantime, Heeringa (1993) imputed interval and missing data in the Health and
Retirement Survey (HRS) following the General Location Model. The model consists of two
steps. First a multinomial model is fit to estimate an interval category the nonresponder
might fall into (e.g. [5000; 9999]). In the second step, for each interval category a separate
imputation model is estimated based on the precise observation falling into this category.
These models are then used to impute precise values for missing and interval responses.
The authors list several statistical and practical problems (like when multiple categorical
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variables are present, sparse cells or skewness within open ended categories).
Bhat (1994) proposed a method for missing values in ordered income categories, where

the income distribution and the response probabilities are modeled jointly, based on a
selection modeling approach.

Raghunathan et al. (2001) described a general sequential regression approach for interval
data with draws from the truncated normal distribution. Schenker et al. (2006) imputed
values by draws from the truncated predictive distribution. Royston (2007) implemented an
imputation model for interval data for Stata. He assumes that the actual values behind the
intervals originate from a normal distribution. From the posterior predictive distribution
of the distribution’s parameters, imputation parameters are drawn. These imputation
parameters and the individual bounds from the interval observed, are then used to sample
imputation values from a truncated normal distribution.

Formally written: suppose for the independent and identically distributed (iid) true
values yi from a variable Y , an indicator Ii indicates whether the value is observed precisely
(Ii = 0) or in intervals (Ii = 1). For interval observations, instead of the true yi an interval
with lower bound yi and upper bound yi is observed. Missing values are handled as interval
data with bounds yi = −∞ and yi = ∞. The likelihood for the regression imputation
parameters ω = {β, σ2} , based on Y and covariates X is:

L(β, σ2|Y,X) =
n∏

i=1

(
(1− Ii) · f(yi, xi · β, σ2) + Ii ·

[
F (yi, xi · β, σ2)− F (yi, xi · β, σ2)

])
(2.3)

with f being the density and F the cumulative distribution function of a normal distribu-
tion with mean xi · β and variance σ2.

Maximizing this likelihood yields to maximum likelihood estimates ω̂ for ω. Let J(ω̂)
be the negative inverse of the Hessian matrix of the log-likelihood of ω̂. These parameters
are used to draw actual imputation parameters ω? = {β?, (σ?)2} from a N(ω̂, J(ω̂))
distribution which approximate draws from f(ω|Y, X) with assumed flat priors for all
parameters. As a last step, each interval value in Y is replaced by a draw from a truncated
normal distribution with mean xi · β?, variance (σ?)2 and bounds yi and yi.

2.5 Methodology of imputing rounded data

A very early contribution to literature about rounding (sometimes called binning) was
Sheppard (1898), where moments of a normal distribution under rounding were reviewed.
In the next decades, handling of rounding in the data was treated by adapting the analysis
model (see e.g. Hanisch 2005 or Schneeweiss et al. 2010 for an extensive review). Later,
Heitjan and Rubin (1990) proposed the idea to use imputation to deal with rounded values
in reported ages. (Presumable) rounded values are replaced by values from the assumed
truncated normal distribution. Schenker et al. (2006) used imputation for missing and
interval answers in income questions without considering rounded responses. Similar ap-
proaches were later used for various topics (Wang and Heitjan, 2008; van der Laan and
Kuijvenhoven, 2011; Zinn and Würbach, 2016).
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Here the method from Heitjan and Rubin (1990) is delineated concisely: The target
variable Y given some covariates X is assumed to be normally distributed:

Y |X ∼N
(
X · β, σ2

)
(2.4)

For a value yi, in general k rounding degrees K, which are whole positive numbers,
are possible. For example K can be an element of the set of possible rounding degrees
{1, 10, 100, 1000}, with k = 4. Which rounding degree respondent i actually “picked”
is assumed to be driven by a value gi of a latent variable G. The more thresholds κ =
{κ1, κ2, . . . , κk−1} the latent variable gi exceeds, the higher the rounding degree K of
respondent i.
G is assumed to be, conditioned on Y and some other variables V , normally distributed:

G|Y, V ∼N
(
γ0 + Y · γ1 + V · γ2, τ 2

)
(2.5)

with some regression coefficients γ0, γ1, γ2. Under the assumptions of Y and V being
independent for given X and G, and X being independent given V , the distribution for Y
and G, given X and V , is a bivariate normal: distribution

Y,G|X, V ∼N
((

X · β
γ0 +X · β · γ1 + V · γ2

)
,

(
σ2 γ1 · σ2

γ1 · σ2 τ 2 + γ1 + γ21 · σ2

))
(2.6)

In contribution 1 (Drechsler et al., 2015) G is modeled based on a cumulative logit model
with some covariates.

The set of parameters to be estimated is given by Ω = (β, σ2, γ1, γ2, κ1, . . . , κk−1). Note:
γ0 was fixed at 0 and τ 2 at 1 to keep the model identifiable.

For each individual i, let si denote the possibly rounded value which is observed and
might differ from the real value yi. S = (s1, . . . , sn) is the vector of actually observed values.
The likelihood function for Ω given S and covariates X and V (assuming independent
observations) is

L(Ω|S,X, V ) =
n∏

i=1

f(si|xi, vi,Ω)

∝
n∏

i=1

∫∫

A(si)

f(g, y|xi, vi,Ω)dydg,

(2.7)

where A(si) is the set of (gi, yi) that are consistent with an observed si. This is when
the assumed rounding mechanism Ki · byi/Ki + 1/2c matches si, with gi and κ leading
to the estimated Ki. For example when si = 1500, a proposed yi = 1668 and proposed
rounding degree Ki = 500 match. Whereas for the same rounding degree yi = 1790 would
not match.

Given these assumptions, the imputation of heaped values is done in three steps:

1. maximizing the likelihood from equation (2.7) leading to maximum likelihood esti-

mates Ω̂ and J(Ω̂), the negative inverse of the Hessian matrix of the likelihood with

Ω̂ plugged in.
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2. Draw imputation parameters Ω? ∼ N(Ψ̂, J(Ω̂)).

3. For each rounded observation i, draw proposal values for (gi, yi) from the bivariate
normal distribution of equation (2.6) using imputation parameters Ω?.

4. If the proposal values for (gi, yi) fit together with observed si, the proposal for yi is
used as an imputation value, otherwise, they new proposal values are drawn.

For the sake of completeness, two other works on imputing variables affected by heaping
shall be mentioned. First: Marcus et al. (2013) modeled heaped data following a gener-
alized beta of the second kind function. Second: the function correctHeaps from the R

package simPop by Templ et al. (2017) use imputation to unheap data (by either a log-
normal, normal or uniform distribution) rounded to multiples of 5 or 10. Both approaches
do not use further information from covariates, what limits the application to settings of
Coarsening Completely At Random.

2.6 Contribution to literature: the simultaneous
imputation of missing, heaped and interval data

2.6.1 Extension of the likelihood: adding responses in intervals

To the best of the author’s knowledge, no article covered the simultaneous imputation of
missing, heaped and interval data. Contribution 1 (Drechsler et al., 2015) closed this gap.
The approach by Heitjan and Rubin (1990) for imputing heaped data was expanded to
additionally impute intervals and missing values together with heaped data, based on a
common likelihood.

The likelihoods for interval data (eq. (2.3)) and rounded data (eq. (2.7)) are combined.
The likelihood to consider all types of coarse data mentioned is:

L(Ω|S,X, V ) ∝
n∏

i=1

{
(1− Ii) ·

[ ∫∫

A(si)

f(g, y|xi, vi,Ω)dydg
]
+

Ii ·
[
F (yi, xi · β, σ2)− F (yi, xi · β, σ2)

]}
(2.8)

with F being the cumulative normal distribution function and f its density; the indicator
function Ii is 1 if observation i is observed in an interval and 0 if not. Missing data are not
considered to be rounded, but are seen as an interval observation with bounds −∞ and
+∞.

2.6.2 Real data application

In contribution 1 (Drechsler et al., 2015) the approach for simultaneous imputation of
missing values, rounded values and interval data was applied to the first six waves of the
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Figure 2.3: Copy of Figure 1 from Drechsler et al. (2015), p. 60, showing the questiontree
used data collection process for the PASS data
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German Panel Study Labor Market and Social Security (PASS) data, starting with the year
2006. Initial nonresponders to the monthly income question have been asked if they are
willing to provide an interval of their income starting with “above or below 1000 euros?”.
If they provide an answer, it is tried to narrow down the intervals a bit. The process
is sketched in Figure 2.3. At each step, the respondent can chose to stop, leading to 13
different income intervals. 76.96% of the initial nonresponder provided an interval answer,
dropping the nonresponse rate from 4.56% to 1.05%. As already shown in Figure 2.2, a
large portion of the respondents reported a net income divisible by multiples of 100 or
1000. As potential rounding degrees governed by G (cf. eq. (2.5)) the values 1, 5, 10, 50,
100, 500 and 1000 were considered. The authors used a set of 10 covariates (for example
the household size or the income from savings) for the income imputation model. The
complete data statistics Q of interest was the rate of people in risk of poverty, defined
as the fraction of observations having an income below 60% of the median income. This
rate was calculated for three different situations: 1) complete cases analysis ignoring the
coarseness of the data, using all non-missing values as they are 2) using the un-rounding
imputation method by Heitjan and Rubin (1990) ignoring interval and missing data, 3)
using the method proposed in contribution 1 (Drechsler et al., 2015) addressing rounded,
missing and interval data simultaneously. The results showed no clear trend with respect
to the location of the poverty rates based on complete data analysis compared to the
imputed data sets. In general the differences between complete case analysis and the
imputation methods were larger than the differences within the imputation methods. Still
some differences between both imputation methods were noticeable, indicating that for the
income information the CCAR assumption does not hold and thus they should be treated
adequately.

2.6.3 Model evaluations

The article included a detailed demonstration of model evaluations: For the evaluation
of the income model each observation yi with smallest rounding degree 1 (e.g. 1767) was
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imputed 1000 times based on an untruncated N(xi · β?, (σ?)2) distribution, with β? and
(σ?)2 being the imputation parameters based on the ML-estimates from equation (2.8).
On the basis of these 1000 artificial observations, which should approximate the posterior
distribution, the empirical α/2 and 1 − α/2 quantiles (with α = 0.01, 0.05, 0.1) were
calculated. For each observation the relative frequency of being within those bounds, the
coverage rate, was derived. The averages of the coverage rates were reasonable close to the
expected numbers, with one exception where only 93.76% of the observations where within
the 99% interval.

The rounding model was evaluated by using the individuals’ estimates for the rounding
tendency and the true income. In each of the 100 imputations, 100 times those estimates
are used to generate artificially heaped data, leading to 10000 data sets. In each data
set the relative frequencies of rounding to the degrees 1, 5, 10, 50, 100, 500 and 1000
were calculated and lastly averaged. The calculated frequencies based on those re-rounded
data were quite close to the frequencies observed in the actual data, with slightly more
individuals who have been rounded to the nearest multiple of 100.

2.7 Conjectures for future research

Three conjectures, beyond the content of contribution 1 (Drechsler and Kiesl, 2016), which
are worth future verification/falsification, about the biases in poverty rates shall be given.

1. If the median changes due to rounding, this immediately changes the poverty thresh-
old and thus the poverty rate. Withal this effect is minor to the second effect:

2. If the poverty threshold lies close below (resp. above) a common rounding value, it
could happen that a noticeable portion of individuals having a precise value below
(resp. above) the threshold round to a value above (resp. below) the threshold. This
would result in an underestimation (resp. overestimation) of the poverty rate. For
example if the threshold is 1800, all individuals between 1500 and 1800 “choosing”
a rounding degree 1000 will round to 2000 and thus will be counted as “rich” even if
they should be counted as “poor”.

3. Both conjectures combined: A poverty threshold slightly below a popular rounding
value will lead to an underestimation of the poverty rate; a threshold above a popular
rounding value to an overestimation.





3 Biases in multilevel models after fixed
effects imputation

After the first direction of generalization of imputation (coarse data; cf. Chapter 2) this
chapter covers the second direction of generalization: the more complex data structures,
which was the topic of contribution 2 (Speidel et al., 2018). The chapter starts with a
brief summary of linear mixed models. Subsequently two frequently discussed methods
for hierarchical imputation are described: the cluster specific fixed effects imputation (also
called dummy imputation) and the multilevel imputation. After a review of literature
evaluating both methods, the major contributions of Speidel et al. (2018) are shown. The
chapter ends with an outlook.

Declaration of contributions to the article: The majority of the article was written by
the author. The following parts were joint work by the author and Jörg Drechsler:
the literature overview, the Multilevel modeling and Imputation models sections, the
appendices A, C and F. The real data application and the overall technical implemen-
tation in R was done by the author with valuable input by Jörg Drechsler and Joseph
Sakshaug regarding methodological issues and code. The evaluation and explana-
tion of the variance ratios in the Simulation section was sole work by Jörg Drechsler.
Joseph Sakshaug provided thorough improvements in grammar and spelling of the
whole article. The improvements, requested by the reviewers, were done by the au-
thor.

3.1 Motivation

Many data sets have in common that some sort of clustering (e.g. students in classes
or repeated measurements for the same individual) is present (cf. e.g. Hox and Roberts
2011). In such cases the analysis has to be executed cautiously: clustered observations
tend to be homogeneous (cf. e.g. Osborne and Neupert 2013, p. 188), which is against
the independence assumption of classical linear regression models. For such hierarchical
or multilevel data, special analysis models had to be developed.

Early articles on multilevel modeling are Rao (1959) and Elston and Grizzle (1962),
mainly focusing on the implications for variance estimates. Analysis methods have been
developed to explicitly model the cluster effects (a detailed history of the multilevel analysis
literature can be found for example in Raudenbush and Bryk 2002, chapter 1). In this
development linear models have been expanded to linear mixed models.
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3.2 Linear mixed models

There are various names for linear mixed models (lmm) and several ways of parametriza-
tion. Here the notation from contribution 2 (Speidel et al., 2018) is used. Alike for linear
models, for linear mixed models a linear relationship between the target variable Y and
some covariates X and Z is assumed. Identical to linear models, the effect of X on Y is
modeled by a global fixed effect β. The crucial difference are the C clusters, all having a
vector of cluster specific effects uc, with c = 1, . . . , C being the index for the clusters.
These cluster specific effects model the effect of Z on Y . Often Z is a subset of X (cf. e.g.
Snijders 2015 or Resche-Rigon and White 2018). By xic and zic the i-th row vector of X
and Z in cluster c is denoted; with i = 1, . . . , nc being the index for the units belonging
to cluster c, and nc being the number of observations in cluster c. The standard form and
assumption of multilevel models is:

yic =xic · β + zic · uc + εic

uc ∼N(0, Σ),

εic ∼N(0, σ2)

(3.1)

In literature, models with Z being a column of 1s, are called random intercepts models.
If further (non-constant) variables are present in Z, the models are called random slope
models. In more general settings, not considered here, more than two levels or cluster
specific error variances are possible.

3.3 Methodology of imputing hierarchical data

Even if missing values in the target variable of hierarchical data sets generally lead to
unbiased and efficient estimates (cf. e.g. Carpenter and Kenward 2013), there can be
reasons, like balancedness or completeness of the data set (van Buuren, 2011), why such
missing values shall be imputed. As mentioned in Section 2.3, when it is decided to impute
coarse values, the imputation model should be congenial to the analysis model. For the
imputation of hierarchical data this means that they should incorporate the hierarchy
of the data adequately. Using the notation from contribution 2 (Speidel et al., 2018),
two methods, often discussed in literature, are presented: the cluster specific fixed effects
imputation and the multilevel imputation.

3.3.1 Imputation of hierarchical data using dummy variables

A very simple way to incorporate the hierarchy from the data into the standard linear
regression model is to include cluster specific dummy variables.

For each cluster c (without the reference cluster) a cluster specific dummy variable Ic is
defined being 1 for the observations belonging to cluster c and 0 otherwise. Each covariate
in Z (the set of covariates which are assumed to have a cluster specific effect) are then



3.4 State of literature 21

interacted with each of these cluster specific dummy variables. For individual i in cluster c
the model equation is:

yic =x̃ic · β + zic · uc + εic

εic ∼N(0, σ2)
(3.2)

with x̃ic = xic\zic (to keep the model identifiable). The essential difference to the multilevel
model equation (3.1) is that uc is assumed to be fixed, and not a realization from a normal
distribution. Following the usual presupposition of uninformative priors, the imputation
parameter for the residual variance is drawn from an inverse chi-squared distribution; the
other imputation parameters (β and u) are drawn from a normal distribution. In the final
step, imputed values are drawn from a normal distribution conditional on the imputation
parameters and the values of the variables X and Z. All details are described in the section
Cluster specific fixed effects imputation of contribution 2 (Speidel et al., 2018).

3.3.2 Imputation of hierarchical data using a multilevel model

An imputation model, truly congenial to the linear mixed model equation (3.1), should
follow the same assumptions. This mainly means that the random effects u are assumed
to follow a N(0,Σ) distribution. Generally, a Gibbs sampler is needed in order to get
imputation parameters, as their posterior distribution is not available in closed form (cf.
e.g. Gelman and Hill 2006). Under the assumption of flat priors, iterative draws from the
following conditional distributions (the comprehensive formulas are written in the Multi-
level imputation section in contribution 2 - Speidel et al. 2018) allow to approximate the
posterior distribution:

• β?, the global fixed effects for the imputation model are drawn from a normal poste-
rior distribution.

• u?c , the cluster specific random effects are (multivariate) normally distributed.

• (σ?)2, the residual variance is based on a χ2 distribution.

In the final imputation step missing values in Y are imputed by drawing:

yic ∼ N
(
xic · β? + zic · u?c , (σ?)2

)
. (3.3)

3.4 State of literature

Summarizing the literature review from contribution 2 (Speidel et al., 2018), it can be
said that the usage of imputation for hierarchical data sets is relatively new, and so is the
related field of research. The essentials regarding the imputation model are:

• Ignoring clustering at all, generally leads to biased results (Reiter et al., 2006; Enders
et al., 2016; Zhou et al., 2016).
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• Including dummies to incorporate the hierarchy tends to be better than ignoring
clustering at all (van Buuren, 2011).

• Dummy imputation leads to conservative inferences for the regression coefficients
(Reiter et al., 2006; Andridge, 2011).

• Dummy imputation can lead to biased random effect variances (van Buuren, 2011;
Drechsler, 2015).

• Multilevel imputation tends to be a good choice (Taljaard et al., 2008; Drechsler,
2015; Zhou et al., 2016; Lüdtke et al., 2017), even if the normal assumption for the
random effects is violated (Yucel and Demirtas, 2010).

• In some situations multilevel imputation can face some shortcomings (Grund et al.,
2016).

• In some situations ignoring the clustering or dummy imputation can be sufficient
(Zhou et al., 2016; Lüdtke et al., 2017).

3.5 Contribution to literature

The articles mentioned in the literature review section 3.4 are subject to two important
limitations: They only consider random intercept models (Reiter et al., 2006; Andridge,
2011; van Buuren, 2011; Drechsler, 2015; Enders et al., 2016; Zhou et al., 2016; Taljaard
et al., 2008; Lüdtke et al., 2017) or they only rely on simulation studies (Reiter et al., 2006;
van Buuren, 2011; Enders et al., 2016; Zhou et al., 2016; Taljaard et al., 2008; Grund et al.,
2016).

Thus, two central aspects of contribution 2 (Speidel et al., 2018) to literature was that

1. findings regarding the comparison of cluster specific fixed effects imputation and
multilevel imputation were analytically generalized.

2. the findings hold for settings with arbitrarily many cluster specific variables. This
includes findings about the impact on random slopes, which have been called for in
literature by Drechsler (2015); Lüdtke et al. (2017) or Grund et al. (2016).

Regarding the content of contribution 2 (Drechsler et al., 2015) it was analytically derived
why the variance of the random effects in the analysis model is positively biased when a
cluster specific fixed effects imputation model, instead of a multilevel imputation model, is
used. Formulas reveal the relevant parameters governing the bias. A simulation study was
conducted to quantify the bias and an application to real data gave further insights about
the differences of the imputation methods.
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3.5.1 Analytic comparison

The distribution of the random effects itself cannot be derived in closed form. Therefore the
conditional covariance matrices (conditioned on all other parameters in the model, denoted
by a dot) of the cluster specific effects are compared. For the fixed effects imputation the
covariance matrix of all cluster specific effects uc in cluster c has the form:

V ar
(
ufixc |.

)
=
(

1/σ2 · Zobs′

c Zobs
c

)−1
, (3.4)

For the multilevel imputation, the form is:

V ar
(
umulti
c |.

)
=
(

1/σ2 · Zobs′

c Zobs
c + Σ−1

)−1
. (3.5)

with Zobs
c being cluster c’s observations in the random effect covariates matrix Z having

no missing value in Y .
For simplicity it can be defined A := 1/σ2 · Zobs′

c Zobs
c and B := Σ−1 leading to:

V ar
(
ufixc |.

)
= (A)−1

V ar
(
umulti
c |.

)
= (A+B)−1.

(3.6)

Findings from analytic comparison

It was shown that the fixed effects imputation covariance matrix is Loewner larger than
the multilevel imputation matrix:

V ar
(
ufixc |.

)
= (A)−1 >L (A+B)−1 = V ar

(
umulti
c |.

)
(3.7)

This means that the variance for any cluster specific effect is larger after fixed effects
imputation than after multilevel imputation. Given unbiased variance estimates after
multilevel imputation this inevitably yields positively biased random effect variances after
fixed effects imputation. The finding V ar(ufixc |.) >L V ar(u

multi
c |.) is equivalent to following

ellipsoid equations inequality:

z′ · V ar(umulti
c |.)−1 · z > z′ · V ar(ufixc |.)−1 · z (3.8)

for any vector z 6= 0. Figuratively speaking this means that the ellipsoid of the random
effects after cluster specific fixed effects imputation always fully encloses the multilevel
imputation-ellipsoid. When the ellipsoids are interpreted as confidence regions, the set of
random effects (inspected jointly) after cluster specific fixed effects imputation will vary
more in every possible direction than the random effects after multilevel imputation do.

The next analytical finding is the multiplicative difference between both covariance ma-
trices. It also does not provide the size of the bias, but it reveals in which situations, the
fixed effects imputation covariance matrix approaches the multilevel covariance matrix.
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The multiplicative difference is:

V ar
(
ufixc |.

)
=

(
I +

[
Zobs′

c Zobs
c

]−1
· σ2 · Σ−1

)
· V ar

(
umulti
c |.

)
(3.9)

Equation (3.9) shows that higher random effects variances in Σ will decrease the bias,
whereas higher residual variances σ2 will increase it. The third influential component is
Zobs

c . With an increasing number of observations, the bias will decrease. An insight, not
found in literature so far, is that different missing functions, within the MAR setting, will
influence the shape of Zobs

c and thus the amount of bias. A parameter not appearing in
the equation, and thus not influential on the bias, is C, the number of available clusters.

3.5.2 Simulation study

To check the theoretical findings and to quantify the bias, a simulation study was con-
ducted. Artificial data were generated under the assumptions of a linear mixed model (see
equation (3.1)) with varying cluster sizes, residual variances and missing functions. The
missing function generated about 50% MAR item nonresponse (and in one setting MCAR
as a special case). The fixed effects and multilevel imputation models included cluster
specific intercepts and cluster specific slopes, so did the multilevel analysis model.

For no key figure examined (not shown here), a major problem after multilevel imputa-
tion was found. Regarding the fixed effects imputation, the theoretical findings have been
confirmed:

• There is no bias in the point estimates of the global fixed effects regression coefficients,
but overestimation of the random effects variances.

• Higher residual variances σ2 increase the bias.

• Larger cluster sizes reduce the bias.

• The missing function indirectly, by shaping Zobs
c , influences the bias.

For the last point, a general explanation is missing, but for the setup of the simulation
in contribution 2 it was explained how the main diagonal elements of Zobs′

c Zobs
c changed

in relation to the missing pattern. A further finding without theoretical basis was the
close relation between random effects variances and the variances of the global fixed effects
regression parameters together with the pattern introduced by the missing functions. As
an explanatory approach, it was shown how the different global fixed effects covariates
can be written as either random intercepts or random slopes variables. Conjectures about
the relation between fixed effects and random effects variance are given in the Section 3.6.
A noticeable consequence of the overestimation of fixed effect variances is the increased
chances of type II errors (false negative).

Regarding the sizes of the observed relative empirical biases, it can be said, dependent
on the setting under consideration, that the median of the relative empirical bias of the
random intercepts variance was close to 0% at its best, but above 250% at its worst.
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3.5.3 Real data application

Based on two variables from starting cohort 3 of the National Educational Panel Study
(NEPS, Blossfeld et al. 2011) the impact of different imputation methods was shown on
real data. The final subset consisted of 630 students with 29 missing values in the target
variable, giving a missing rate of 4.6%. The estimates based on both imputation meth-
ods couldn’t be compared to the true values as those are obviously unknown, but were
in line with the theoretical findings: the random effects variances estimates are noticeable
larger after cluster specific fixed effects imputation than after multilevel imputation. The
confidence intervals for the global fixed effects largely overlapped with slightly larger in-
tervals for fixed effects imputation. A noticeable larger variance partition coefficient (a
generalization of the intra class correlation) was found after cluster specific fixed effects
imputation.

3.6 Outlook

Three distinct but viable fields of further research are:

• The impact of the missing function on parameters of interest: Currently missing
values are classified whether they are MCAR, MAR or MNAR. But within MAR
or MNAR multiple mechanism are possible having different effects on the disparity
between Y and Y obs.

• The close relation between fixed effects variance and random effects variance: A
heuristic explanation is that a high random effects variance mean that the random
effects vary largely around the fixed effect. In this case it is obvious that the uncer-
tainty (loosely speaking: expressed in the variance) about the location of the fixed
effect is much higher.

• A further generalization of the finding: higher levels of clustering, cross classified
clusters or missing values in the covariate(s) need to be studied. Missing values in
the covariate(s) might be a largish issue as Grund et al. (2016) found (via simulation)
some results after multilevel imputation to be biased. With the presumed gold stan-
dard to be biased, analytic explanations are needed to elucidate this phenomenon.
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Contribution 3 (Speidel et al. 2018a and Speidel et al. 2018b) makes the imputation rou-
tines, presented in the previous sections, available to the public and proposes new ideas
on the implementation of interval data and the detection of rounding degrees in variables
with rounded values. This chapter starts with a short motivation and an overview of exist-
ing software for imputation of coarse data, before the contribution 3 is described in more
detail.

• Declaration about the contributions for the software (Speidel et al., 2018a):
Nearly the entire code was developed and written by the author. The basics
about imputing rounded income was coded by Jörg Drechsler. Jörg Drechsler
gave valuable comments and ideas about issues rising up during the development
of the package. Shahab Jolani helped explaining and functionality and properties
of mids objects and gave valuable comments for the implementation.

• Declaration about the contributions for the article (Speidel et al., 2018b): The
text was mainly written by the author (especially sections 5-7) and Jörg Drech-
sler (especially sections 1- 4). Jörg Drechsler and Shahab Jolani improved vari-
ous passages either directly by modifying them or requesting changes to be done
by the author. Shahab Jolani thoroughly checked the document for accurate
argumentation, and a good, concise structure.

4.1 Motivation

As shown in the previous sections, the kind of coarse data discussed (missing values in
hierarchical data sets, rounded and interval data) are a relatively new field in literature
and therefore suitable software to deal with them is sparse. As mentioned by Andridge
(2011), Azur et al. (2011) or Speidel et al. (2018), software limitations, respectively the
sparseness of suitable software, is likely to be a reason why inadequate models are proposed
and used instead.

By the development and deployment of the R-Package hmi, Speidel et al. (2018a) con-
tributed to the availability of hierarchical and interval imputation in one of the most
popular programming languages (TIOBE software BV 2018; Institute of Electrical and
Electronics Engineers 2017).

4.2 Existing software for imputation of coarse data

Existing software for the imputation of interval data:
In R for the survival analysis setting, the packages MIICD (Delord, 2017) and icenReg
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(Anderson-Bergman, 2017) provide tools to impute interval data. Since they are based on
the survival analysis modeling approach, these methods differ systematically from those
presented in Section 2.4. To the best of the author’s knowledge, such general methods
for imputing interval data are only available in SAS (cf. Royston 2007) and IVEware

(Raghunathan et al., 2016).

Existing software for the imputation of rounded data:
A function designed to correct for rounded data can be found in the R package simPop

(Templ et al., 2017). It is only able to impute multiples of 5 or 10 and does not take into
account any covariates, making it only usable when CCAR can be assumed. To the best
of the author’s knowledge, a general implementation of the method by Heitjan and Rubin
(1990) is not present yet.

Existing software for the imputation of missing hierarchical data:
Tools providing multilevel imputation methods can be found in MPlus (Asparouhov and
Muthén, 2010), REALCOM-IMPUTE (Carpenter et al., 2011) and the external SAS macro
MMI IMPUTE (Mistler, 2013). All these tools rely on the joint modeling approach with the
drawbacks mentioned in Section 2.3.1 - mainly the inability to impute missing values in
covariates.

In R, the packages mice (van Buuren and Groothuis-Oudshoorn, 2011), micemd (Au-
digier and Resche-Rigon, 2018), pan (Schafer, 2016), and jomo (Quartagno and Carpenter,
2018) provide multilevel imputation methods, but with some limitations. mice and micemd

provide only multilevel methods for continuous, binary and integer variables, but not for
(ordered) categorical or semi-continuous variables. pan and jomo also rely on the joint
modeling approach. Beside the stand alone software blimp (Enders et al., 2017) to the
best of the author’s knowledge, no software provides imputation methods for generalized
linear mixed models1. A unique feature of hmi is the joint implementation of single and
multilevel missing data imputation methods regarding many types of variables (including
ordered categorical and semi-continuous variables) and a single level method for simultane-
ously imputing missing, rounded and interval data. The software is described in a technical
report (Speidel et al. 2018b); a draft, congruent with this technical report was submitted
to the Journal of Statistical Software.

4.3 Content of hmi

Contribution 3 (Speidel et al. 2018a,b) closes the gaps mentioned in the previous section
by providing and describing the R-package hmi, which is based on the sequential regression
approach. Core features of the package are:

• The implementation of imputation methods for missing data in both, single level and
multilevel settings for many types of variables.

1With generalized linear mixed models, variables Y from the exponential family can be modeled using a
linear predictor l = X · β + Z · u and a link function f such that E(Y ) = µ = f−1(l).
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• The implementation of the method for simultaneous imputation of rounded, interval
and missing data from contribution 1 (Drechsler et al., 2015) including its technical
side aspects.

• Convergence checks after multilevel imputation.

• Compatibility with mice.

Following Donald Rubin’s wish for “simply-used appropriate software for creating multiple
imputations and analyzing multiply-imputed data”(Rubin, 1996, p. 486), a further feature
of hmi is a generally easy handling of the software. For example the user can only provide
her or his desired analysis model as model formula (and possibly a family argument -
for example to specify Poisson analysis model) together with the coarse data to hmi. The
packages figures out the appropriate imputation methods for each variable, tries to build
imputed data sets congenial to the given analysis model and by default returns pooled
results following the given analysis model. Several input parameters allow detailed control
about the imputation process (not shown here - see Section 5.1 in Speidel et al. 2018b).
Functions to facilitate the setup are provided as well.

4.3.1 Imputation methods

After the checks on proper inputs, hmi extracts from the analysis model (if given) which
variable is the target variable, which variables are fixed effects covariates, which are random
effect covariates and what variable is the cluster indicator (if a multilevel analysis model
was given). If the user specified the imputation methods for the variables this specification
is used, otherwise classification heuristics (not shown here - see Section 5.5 in Speidel et al.
2018b) are used to determine a suitable imputation method. Table 4.1 lists the supported
types of variables and the corresponding imputation routines. Following the sequential
regression approach, the variables are imputed step by step using the previously imputed
variables as covariates - until after a given number of cycles convergence is expected to be
achieved. The final state of all imputed values at this stage is saved as one imputation run.
Then the data are reset and a next imputation runs restarts with the first cycle. mice

(van Buuren and Groothuis-Oudshoorn, 2011) is used for most single level missing data
imputation methods. The multilevel missing data imputation routines are own implemen-
tations: MCMCglmm (Hadfield, 2010) returns parameter draws for generalized linear mixed
models which are used as imputation parameters, subsequently used in combination with
the observed covariates to draw plausible values for the missing values.

The method the simultaneous imputation of rounded, missing and interval observations
presented in contribution 2 (Drechsler et al., 2015) is an own implementation. A relevant
side aspect of providing this method is the technical implementation of interval obser-
vations. The packages survival (Therneau, 2018) and linLIR (Wiencierz, 2012) store
interval informations in two separate columns. This approach was not feasible for the hmi

package; instead, hmi stores lower and upper bounds in a character separated by a semi-
colon (e.g. "1234.56;3000") and declares them as class interval. Several functions are
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Table 4.1: The supported variable types and corresponding imputation models

Variable type Imputation model
(single level setting)

Imputation model
(multilevel setting)

Binary Logit model Multilevel logit model

Categorical CART (classification
and regression trees)

Multilevel
multinomial model

Ordered categorical Ordered logit model Multilevel
ordered logit model

Continuous Linear model Multilevel linear model

Semi-continuous Combination of
logit and linear model
cf. Rubin 1987

Combination of multi-
level logit and multi-
level linear model

Count Poisson model Multilevel
Poisson model

Rounded continuous
(including intervals)

Only single level: Method from contribu-
tion 1 (Drechsler et al., 2015)

delivered with the package to generate interval objects, to perform calculations on interval
objects, to plot and tabulate them, to split an interval up into its lower and upper bounds
and to switch between the formats of linLIR and hmi. A further novelty related to the
imputation of variables affected by heaping, is a function suggesting potential rounding
degrees for a given variable Y : divisors (positive integers, dividing a number without rest)
appearing in Y twice more often than expected are rounding degree candidates. Starting
with the highest, a candidate is considered to be an actual rounding degree if 1. it is a
divisor of at least two other divisors in the data and 2. at least 20% of the data are divisible
by this candidate; with observations divisible by a larger actual rounding degree not being
counted.

4.3.2 Output

hmi uses the mids (multiply imputed data set) format introduced by the mice package.
This format includes for example the original data set, the imputed data and the arithmetic
means and variances of the imputed variables across the cycles and imputation runs. The
usage of this format in hmi allows users, familiar with mice, to use all functions they know
from the mice package on objects created by hmi. Two elements, not found in objects
created by mice, but included in objects created by hmi are gibbs and pooling. The
former element contains the chains from the Gibbs-samplers from multilevel imputation
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methods. It will be described in Section 4.3.3 in more detail. The latter element contains
the outcome from pooling analysis results which are run based on the imputed data, the
model formula and family given to hmi by the user. Details about the pooling can be
found in Section 4.3.4

4.3.3 Convergence checks

In evaluating the behavior of the imputation runs, convergence in two areas has to be
achieved. First: when imputation parameters are based on a Gibbs-sampler, these sam-
ples should have converged to actual draws from the joint posterior distribution. For all
variables based on a Gibbs-sampler, these Gibbs-samples are stored as element gibbs in
the output of hmi. One possibility to monitor convergence is Geweke’s test on stationarity
(Geweke, 1992). Roughly speaking, the test compares the mean of the first 10% and the
last 50% of a Gibbs-samples chain. After adequate transformations, under the null hy-
pothesis, the difference between these means is asymptotically normally distributed. The
test is implemented in the package coda (Plummer et al., 2006) and will be automatically
run on every chain in gibbs, when the function chaincheck, delivered with hmi, is called.

Secondly: across the different cycles the distribution of the imputed data should dif-
fer only randomly and not systematically to justify the assumption that the draws of
the missing data are based on the joint posterior distribution. Plotting the means and
variances/standard deviations of the imputed data across the different cycles gives an im-
pression about how stable the distribution is. Also a good mixing across the different
imputation runs (i.e. similar means and variance for all imputation runs) should be seen.
A graphical tool, delivered by mice, for monitoring is available by calling plot on mids

objects which will plot the chain means and standard deviations. Section 4.4 includes an
example of monitoring convergence.

4.3.4 Pooling

When the imputation is completed, and a model formula was given to hmi, the function
checks whether it is a single or multilevel model and calls the single or multilevel pooling
routines from mice using model formula (and familiy if given). Finally, hmi returns this
result in the element pooling. Currently the pooling routines from mice are limited to
fixed effects parameter and their variances; pooling of random effect covariance matrix
elements are not supported. For pooling of variance parameters or other complete data
statistics Q, hmi provides the function hmi pool which takes as arguments a mids object
and a function, e.g. called analysis function, defined by the user. The only input
parameter of this function (analysis function) is a (yet not initialized) completed data
set. By completed data set, a data set is meant where the coarse observations are replaced
by the imputed observations. The body of the function defines the desired analyses. This
can be a regression analysis or anything else. Finally the complete data statistics are
returned in a vector. Internally, hmi pool now passes every of the M completed data sets
to the given function (analysis function), stores the resulting vectors of complete data
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statistics Q estimates and finally averages the estimates for Q over the M resulting vectors.
Therefore, the use of hmi pool is limited to complete data statistics Q which sensibly can
be averaged.

4.4 Examples of application

For a short illustration for some of the package’s functionalities, the hierarchical data
set Gcsemv regarding 1905 students in 73 schools is used. Beside school and student ID,
the data set contains the variables gender (0 = boy, 1 = girl), coursework (score of a
coursework) and written (score in a written questionnaire). Harvey Goldstein and the
Centre for Multilevel Modelling (CMM) from the University of Bristol granted the data
to be included into the hmi package. A description of the data can be found in Creswell
(1991) and Goldstein (2011).

After loading the package and the data, a function from hmi is used to create a list of
types in order to check hmi’s variable classification:

library("hmi"); as.data.frame.interval <- hmi:::as.data.frame.interval

data(Gcsemv)

list_of_types_maker(Gcsemv)

$school

[1] "categorical"

$student

[1] "categorical"

$gender

[1] "binary"

$written

[1] "cont"

$coursework

[1] "cont"

The classification gave correct results, so the wrapper function can be called without spec-
ification of the list of types argument. As model formula a linear mixed model with
random intercepts and random slopes for the gender is specified.

set.seed(123)

Gcsemv_mids <- hmi(data = Gcsemv, model_formula =

written ~ 1 + gender + coursework + (1 + gender|school))

When the imputation runs were completed, the performance shall be first examined by
checking the Gibbs-sampler chains on convergence:

chaincheck(Gcsemv_mids, thin = NULL)

12 out of 695 chains (1.73%) did not pass the convergence test.

For alpha = 0.01, the expected number is 6.95.
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Figure 4.1: Copy of Figure 1 from Speidel et al. (2018b), p. 38: chain means and standard
deviations of imputed example data
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The output shows that a larger number than expected did not pass the stationarity test;
but the graphical inspection (not reported here) showed no worrisome patterns. As sec-
ond performance examination, the chain means and standard deviations of the imputed
variables across the 10 iterations and 5 imputation runs shall be plotted:

library("mice")

plot(Gcsemv_mids, layout = c(2, 2))

The resulting Figure 4.1 showed good mixing and no systematical trend.

Regarding the pooling, for brevity, only the pooled results which are delivered by default
are shown:

summary(Gcsemv_mids$pooling)

estimate std.error statistic df p.value

(Intercept) 21.4285513 1.54661329 13.855145 228.08527 0

gender1 -5.4004356 0.59328192 -9.102647 153.58281 0

coursework 0.4042744 0.01919767 21.058509 64.10292 0

To illustrate some properties and functionalities of interval objects developed for this
package, five artificial observations with an income as interval variable and a precise age
variable are generated.



34 4. The R package hmi

income <- generate_interval(lower = c(3000, 2500, 500, 4017, 6000),

upper = c(4000, 5000, 1000, 4017, Inf))

age <- c(35, 39, 43, 50, 52)

df <- data.frame(income, age)

# gives

income age

1 3000;4000 35

2 2500;5000 39

3 500;1000 43

4 4017;4017 50

5 6000;Inf 52

A function for plotting interval objects is implemented in the package. In Figure 4.2 an
example is given:

hmi:::plot.interval(income ~ age, data = df)

Figure 4.2: The income interval variable plotted against the precise age variable
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4.5 Outlook

For the future development of hmi potential steps and milestones on the methodological
side are:
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• to further generalize the imputation models by allowing more levels of clustering or
heteroscedastic variances

• to include imputation routines for variables on the second level (e.g. the teacher’s
age or the cluster mean of a covariate)

For a better usability, a major task is the improvement of the run time. A continual task,
that already started, since users from universities in Germany and the USA started working
with hmi, is to collect and incorporate user feedback. Looking at the R Project in general,
the promotion (and on the long run, a default implementation) of interval data is overdue.





5 Concluding Remarks and Outlook

In contribution 1 (Drechsler et al., 2015), it was shown how different types of coarse data
(missing, rounded and intervals), frequently occurring for example in income variables, can
be imputed simultaneously, based on one likelihood. Contribution 2 (Speidel et al., 2018)
analytically proofed the superiority of the multilevel imputation over the cluster specific
fixed effects imputation with respect to the random effects variance matrices. Contri-
bution 3 (Speidel et al. 2018a and Speidel et al. 2018b) makes both theoretical sound
imputation methods for hierarchical data and responses in intervals available to a broad
audience. The contributions boosted the reasons to impute missing hierarchical, rounded
or interval data in three ways: by rising the awareness of the problem, by presenting
solutions and by providing suitable software. Naturally, all contributions have room for
improvements: feedback from empirical studies, (further) generalization of the methods
involved or improvements in functionality.

Aside these improvements, an interesting field for future research would be an “up-
date2.0” of CCAR, CAR and CNAR.

• For example it could be the case that one variable has a very small influence on
the coarsening probabilities in another variable. Even if theoretically the coarsening
process changed from CCAR to CAR, practically the impact of methods based on
the CCAR assumption would be neglectable. A broad, systematical evaluation of
violations of assumptions is missing.

• As shown in contribution 2, within CAR, different missing functions are leading to
different results. A framework for different CAR mechanism has to be developed.

• The topic of mixed coarsening mechanism is seldom discussed in literature (exceptions
are for example van Buuren et al. 1999 or Gong 2012). Traditionally, the assumptions
about the coarsening mechanisms are made for all observations in a variable, but
actually it seems plausible that for a first fraction of a variable, some observations
are coarsened completely at random, for a second fraction CAR and for a third
fraction CNAR is present.
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Lüdtke, O., A. Robitzsch, and S. Grund (2017). Multiple imputation of missing data in
multilevel designs: A comparison of different strategies. Psychological Methods 22 (1),
141–165.

Lynn, P. (2008). The problem of nonresponse. In E. D. de Leeuw, J. J. Hox, and D. A.
Dillman (Eds.), International Handbook of Survey Methodology, Chapter 3, pp. 35–55.
Lawrence Erlbaum Associates, London: Taylor & Francis.

Marcus, J., R. Siegers, and M. M. Grabka (2013). Preparation of data from the new
soep consumption module: Editing, imputation, and smoothing. Data Documentation,
DIW 70, Berlin.

Meng, X.-L. (1994). Multiple-imputation inferences with uncongenial sources of input.
Statistical Science 9 (4), 538–573.

Mistler, S. A. (2013). A SAS macro for applying multiple imputation to multilevel data.
Proceedings of the SAS Global Forum.
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Taylor, J. M. G., A. Muñoz, S. M. Bass, A. J. Saah, J. S. Chmiel, and L. A. Kingsley
(1990). Estimating the distribution of times from HIV seroconversion to AIDS using
multiple imputation. Statistics in Medicine 9 (5), 505–514.

Taylor, J. M. G., K. Schwartz, and R. Detels (1986). The time from infection with hu-
man immunodeficiency virus (HIV) to the onset of AIDS. The Journal of Infectious
Diseases 154 (4), 694–697.



46 Bibliography

Templ, M., B. Meindl, A. Kowarik, and O. Dupriez (2017). Simulation of synthetic complex
data: The R package simPop. Journal of Statistical Software 79 (10), 1–38.

Therneau, T. M. (2018). A Package for Survival Analysis in S. version 2.42-3.

TIOBE software BV (2018, 05). TIOBE index for May 2018. https://www.tiobe.com/

tiobe-index/ (retrieved on 2018-06-01).

Tobin, J. (1958). Estimation of relationships for limited dependent variables. Economet-
rica 26 (1), 24–36.

Trappmann, M., S. Gundert, C. Wenzig, and D. Gebhardt (2010). PASS: a household panel
survey for research on unemployment and poverty. Schmollers Jahrbuch. Zeitschrift für
Wirtschafts- und Sozialwissenschaften 130 (4), 609–622.

Tsiatis, A. (2006). Semiparametric Theory and Missing Data. New York: Springer.

van Buuren, S. (2011). Multiple imputation of multilevel data. In J. J. Hox and J. K.
Roberts (Eds.), The Handbook of Advanced Multilevel Analysis, Chapter 10, pp. 173–196.
Milton Park, UK: Routledge Academic.

van Buuren, S. (2012). Flexible Imputation of Missing Data. United States: Taylor &
Francis Group.

van Buuren, S., H. C. Boshuizen, and D. L. Knook (1999). Multiple imputation of missing
blood pressure covariates in survival analysis. Statistics in Medicine 18 (6), 681–694.

van Buuren, S. and K. Groothuis-Oudshoorn (2011). mice: Multivariate imputation by
chained equations in R. Jornal of Statistical Software 45 (3), 1–67.

van der Laan, J. and L. Kuijvenhoven (2011). Imputation of rounded data. Statistics
Netherlands Discussion Paper no. 201108, Statistics Netherlands.

Wang, C. and C. B. Hall (2010). Correction of bias from non-random missing longitudinal
data using auxiliary information. Statistics in Medicine 29 (6), 671–679.

Wang, H. and D. F. Heitjan (2008). Modeling heaping in self-reported cigarette counts.
Statistics in Medicine 27 (19), 3789–3804.

White, I. R. and J. B. Carlin (2010). Bias and efficiency of multiple imputation compared
with complete case analysis for missing covariate values. Statistics in Medicine 29 (28),
2920–2931.

White, I. R., P. Royston, and A. M. Wood (2011). Multiple imputation using chained
equations: Issues and guidance for practice. Statistics in Medicine 30 (4), 377–399.

Wiencierz, A. (2012). linLIR: linear Likelihood-based Imprecise Regression. R package
version 1.1.

https://www.tiobe.com/tiobe-index/
https://www.tiobe.com/tiobe-index/


Bibliography 47

Yan, T., R. Curtin, and M. Jans (2010). Trends in income nonresponse over two decades.
Journal of Official Statistics 26 (1), 145–164.

Yates, F. (1933). The analysis of replicated experiments when the field results are incom-
plete. The Empire Journal of Experimental Agriculture 1 (2), 129–142.

Yucel, R. M. and H. Demirtas (2010). Impact of non-normal random effects on inference
by multiple imputation: A simulation assessment. Computational Statistics & Data
Analysis 54 (3), 790–801.

Zhou, H., M. R. Elliott, and T. E. Raghunathan (2016). Synthetic multiple-imputation
procedure for multistage complex samples. Journal of Official Statistics 32 (1), 231–256.

Zhu, J. and T. E. Raghunathan (2015). Convergence properties of a sequential re-
gression multiple imputation algorithm. Journal of the American Statistical Associa-
tion 110 (511), 1112–1124.

Zinn, S. and A. Würbach (2016). A statistical approach to address the problem of heaping
in self-reported income data. Journal of Applied Statistics 43 (4), 682–703.





Attached contributions

The contributions 1-3 are attached into this thesis at the following pages:

• Contribution 1: p. 50-62

• Contribution 2: p. 63-79

• Contribution 3: p. 80-136



AJS

Austrian Journal of Statistics
April 2015, Volume 44, 59–71.

http://www.ajs.or.at/

doi:10.17713/ajs.v44i2.77

MI Double Feature: Multiple Imputation to

Address Nonresponse and Rounding Errors in

Income Questions

Jörg Drechsler
Institute for Employment Research

Hans Kiesl
OTH Regensburg

Matthias Speidel
Institute for Employment Research

Abstract

Obtaining reliable income information in surveys is difficult for two reasons. On the
one hand, many survey respondents consider income to be sensitive information and thus
are reluctant to answer questions regarding their income. If those survey participants
that do not provide information on their income are systematically different from the
respondents (and there is ample of research indicating that they are) results based only
on the observed income values will be misleading. On the other hand, respondents tend
to round their income. Especially this second source of error is usually ignored when
analyzing the income information.

In a recent paper, Drechsler and Kiesl (2014) illustrated that inferences based on the
collected information can be biased if the rounding is ignored and suggested a multiple
imputation strategy to account for the rounding in reported income. In this paper we
extend their approach to also address the nonresponse problem. We illustrate the approach
using the household income variable from the German panel study “Labor Market and
Social Security”.

Keywords: heaping, measurement error, multiple imputation, nonresponse, poverty rate.

1. Introduction

Reliable information on individual and household income is difficult to obtain. Most admin-
istrative data sources contain only specific sources of income such as income from earnings or
program participation and often only cover a subset of the population (self-employed are usu-
ally not included). Thus, most agencies rely on household surveys to collect information on
total income. However, inferences based on the collected income information might be biased
for two reasons: First, income is considered sensitive information and many survey partici-
pants are reluctant to answer questions on their personal income. Second, most respondents
do not remember their exact income, especially if they are asked to provide an estimate for
their total income including income from earnings, assets, transfers, etc. Respondents often
round their income in this case, implicitly incorporating their uncertainty regarding the true
value.
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Income

[0, 1000[
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[1000, 1500[ [1500, 2000[ [2000, 3000[
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[3000, 4000[ [4000, 5000[ [5000,  ∞ [

Figure 1: Implied income intervals based on partial income information collected from re-
spondents unwilling to provide their exact income.

Nonresponse can bias inferences if the respondents are systematically different from the non-
respondents. For example, it seems plausible to assume that younger survey respondents are
less concerned with confidentiality violations and the protection of sensitive information (“gen-
eration Facebook”) and thus, their response rates to income questions will be higher. Since
income usually increases with age, individuals with lower income will be over-represented
among the respondents in this case and the average income of the population will be under-
estimated if only the observed income values are used.

To reduce the risk of nonresponse bias, many surveys try to obtain at least partial income
information for those survey participants that are unwilling or unable to provide exact income
information by asking whether the income lies in certain pre-specified intervals. Often sub-
sequent questions further narrow down the interval in which the true income falls. Figure 1
provides an example how (partial) income information is collected in the German panel study
“Labor Market and Social Security” (PASS) (Trappmann, Gundert, Wenzig, and Gebhardt
2010). Respondents are first asked for an estimate of their total household income. If they
are unwilling or unable to provide this information, the interviewer provides a first threshold
(1, 000 euros) and asks whether the income is above or below that threshold. Depending
on the answer to this question the survey participant is asked to choose from three specific
intervals (if the respondent reported an income below 1, 000 euros for the first question) or
a new threshold (3, 000 euros) is provided and the respondent is asked again whether his or
her income is above or below this threshold. If the respondent provides an answer to the sec-
ond threshold question, three different income intervals are offered for both response options
and the respondent is asked to pick the interval in which his or her income falls. Figure 1
illustrates the decision steps and the corresponding income intervals that are implied by the
responses to each of the questions. The interview process could terminate in any of the nodes
of the decision tree. For example, a respondent might refuse to provide the exact income
information but might be willing to provide the information that his or her income is larger
than 1, 000 but less than 3, 000 euros. However, he or she might be unwilling to further specify
whether the income is in the interval [1, 000, 1, 500[ or [1, 500, 2, 000[ or [2, 000, 3, 000[.

Asking those respondents that are unwilling to provide their exact income for information
regarding the interval in which their income falls is a successful strategy to reduce the nonre-
sponse rate. For example, in wave six of the PASS survey, 76.96% of the respondents who are
unwilling or unable to provide their exact income provided some information on the interval
in which their income falls, reducing the initial nonresponse rate from 4.56% to 1.05%.

Following this procedure, the collected income information consists of exact information for
those respondents that are willing to answer the exact income question and interval informa-
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Table 1: Percentage of reported monthly household income values that are divisible by a given
round number in the PASS survey for the year 2008/2009.

Income divisible by 1,000 500 100 50 10 5
Relative frequency (%) 13.97 23.94 61.57 69.58 80.71 84.13

tion of different lengths for those individuals that answer (some of) the interval questions.
Directly obtaining valid inferences from this type of data is not straightforward, especially
if refusal to answer any of the income questions should also be taken into account. In this
paper we will present an imputation approach that simplifies the analysis of the collected
income data. The multiple imputation methodology is not only used to impute the miss-
ing values; plausible exact income values are also generated for those respondents that only
provided interval information regarding their income. The obtained imputed income data
can be analyzed as if the exact income would have been obtained for all respondents. The
additional uncertainty implied by the fact that only partial information is available for some
of the respondents is correctly reflected through the multiple imputation procedure.

The negative effects of nonresponse are well known. However, the impacts of heaping, i.e.,
rounding to certain numbers such as multiples of 5, 10, 100, etc., are less studied. Round-
ing is a common phenomenon in surveys. Most quantitative variables such as questions on
expenditure or subjective beliefs (How likely is it that...) show some form of rounding (Man-
ski and Molinari 2010). But also questions on timing of events (Huttenlocher, Hedges, and
Bradburn 1990) or smoking behavior typically are affected (Wang and Heitjan 2008). In a
recent experimental study Ruud, Schunk, and Winter (2013) demonstrated that the amount
of rounding increases with the level of uncertainty the respondent feels regarding the quantity
he or she is asked for. Regarding questions on income the level of uncertainty is usually very
high. Most respondents do not know their income from earnings to the exact euro amount
(especially if the earnings before taxes is requested) and exact values for other sources such as
monthly income from savings are even more difficult to provide. Thus, it is not surprising that
questions on income usually show a large degree of rounding. Table 1 provides the percentage
of the reported monthly income values that are divisible by a given round number obtained
from the PASS survey for the year 2008/2009 (see Section 4 for a description of the survey).
It seems that most of the reported data are rounded to some extent. More than 60% of the
reported income values are divisible by 100 and only about 15% of the data are not divisible
by 5.
Drechsler and Kiesl (2014) illustrate that heaping in income data can cause substantial bias
in important measures such as the poverty rate. They also suggest a strategy for dealing with
the problem and demonstrate its merits through simulations and real data applications. The
basic idea is to model the rounding behaviour given the reported income value and then to
replace the reported value by multiple plausible candidates for the true value that would have
been observed if the respondent had not have rounded his or her income. A related idea has
been proposed by Heitjan and Rubin (1990) for heaped age data and has later been applied
in a number of papers to model the smoking behaviour based on reported cigarette counts
(Heitjan 1994; Wang and Heitjan 2008; Wang, Shiffman, Griffith, and Heitjan 2012). The
major advantage of the approach is that the imputed values can be treated as true values in
any analysis following the imputation, i.e., it is not necessary to develop adjustment methods
for each type of analysis separately. The analyst only needs to repeat the analysis of interest
on each imputed dataset using standard analysis techniques. The final inferences are obtained
using standard multiple imputation combining rules (Rubin 1978, 1987).

In this paper we extend the approach by Drechsler and Kiesl (2014) in order to address
(partial) nonresponse and heaping simultaneously. We review the approach of Drechsler
and Kiesl (2014) in Section 2 and discuss the necessary extensions to incorporate the interval
information and to adjust for nonresponse in Section 3. In Section 4 we illustrate the approach
based on data from the PASS survey. The paper concludes with some final remarks.
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2. Strategies to adjust for rounding errors

This section discusses the imputation approach suggested by Drechsler and Kiesl (2014) which
itself is based on an idea by Heitjan and Rubin (1990). In their paper Heitjan and Rubin
(1990) proposed to use multiple imputation to correct for heaped reported age values of young
children in Tanzania. The section borrows heavily from Drechsler and Kiesl (2014) and we
refer the reader to this paper for a more detailed discussion of the methodology.

To obtain imputed income values that are adjusted for potential rounding, we need two mod-
els: one for the true income and one for the rounding behaviour. Following common practice,
we model the conditional distribution of the household income Y given some covariates X by
a log-normal distribution (see, for example, Clementi and Gallegati (2005) for a motivation
for this model):

log(Y )|X ∼ N(X ′β, σ2). (1)

We only consider rounding to the nearest multiple of c, which corresponds to the rounding
function fc : x 7→ c · bx/c + 1/2c and which we call rounding of degree c . Other rounding
models could be considered: for example, Heitjan and Rubin (1990) suggest a model in which
some age values are truncated and not rounded. However, we feel that rounding to the
nearest multiple of c is the most plausible rounding strategy for income data. In our model,
no rounding at all will be called rounding of degree 0. We assume that there are p possible
degrees of rounding c1 < ... < cp. Typically, the set of ci’s consists of values such as 0, 1,
5, 10, 50, 100. For a given household, our model for the degree of rounding is an ordered
probit model, i.e., we assume a normally distributed latent variable G which may (linearly)
depend on the logged income log(Y ) and some covariates Z (where some or all components
of Z might be in X and vice versa):

G| log(Y ), Z ∼ N(γ0 + γ1 · log(Y ) + Z ′γ2, τ2)

Rounding of degree c1 occurs, if G < k1; rounding of degree ci (1 < i < p) occurs, if
G ∈ [ki−1, ki[; rounding of degree cp occurs, if G ≥ kp−1. The p − 1 threshold values k1 <
k2 < ... < kp−1 are unknown model parameters.

We assume that given X, log(Y ) and Z are independent, and analogously, given Z, G and X
are independent. Under these assumptions log(Y ) and G have the following bivariate normal
distribution given X and Z:

log(Y ), G|X,Z ∼ N(µ, Ω), where

µ =

(
X ′β

γ0 +X ′γ1β + Z ′γ2

)
, (2)

Ω =

(
σ2 γ1σ

2

γ1σ
2 τ2 + γ21σ

2

)
. (3)

To impute true income values based on these models, it is necessary to derive the likelihood
for all the unknown parameters Ψ = (β, σ2, γ1, γ2, k1, ..., kp−1) (we need to fix γ0 at 0
and τ2 at 1 to make the ordered probit model identifiable). Let si be the observed income of
household i. It can be shown that this likelihood is given as (see Drechsler and Kiesl (2014)
for details)

L(Ψ|s, x, z) =
∏

i

f(si, xi, zi|Ψ)

=
∏

i

f(xi, zi) ·
∏

i

f(si|xi, zi, Ψ) (4)

∝
∏

i

∫∫

A(si)

f(g, log(y)|xi, zi, Ψ)d log(y)dg,

where A(si) is the set of (g, log(y)) that are consistent with an observed si.
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Maximizing this likelihood will provide the parameter vector Ψ necessary for the imputations.
To approximate a draw from the posterior distribution of f(Ψ|s, x, z) under the assumption
of flat priors for all parameters, we can draw from

Ψ∗ ∼MVN(Ψ̂ML, I(Ψ̂ML)),

where Ψ̂ML contains the maximum likelihood estimates of Ψ, and I(Ψ̂ML) is the negative
inverse of the Hessian matrix of the log-likelihood with Ψ̂ML plugged in.
To impute exact income values, Drechsler and Kiesl (2014) suggest a simple rejection sampling
approach:

1. Draw candidate values for (log(yi)
imp, gi) from a truncated bivariate normal distribution

with mean vector (2) and covariance matrix (3) (using parameters from Ψ∗), where
the truncation points are given by the maximal possible degree of rounding given the
observed income si (for example, for an observed income value 850 with possible degrees
of rounding 1, 5, 10, 50, 100, 500, and 1,000, log(yi) is bounded by log(825) and log(875)
and gi has to be in ]−∞, k∗4[).

2. Accept the drawn values if they are consistent with the observed rounded income, i.e.,
rounding the drawn income value according to the drawn rounding indicator gives the
observed income si, and impute exp(log(yi)

imp) as the exact income value.

3. Otherwise draw again.

Repeating this procedure m times provides m imputed datasets that properly reflect the
uncertainty from imputation.

3. Extensions for (partial) nonresponse

As discussed in the introduction, many agencies ask respondents who refuse to answer the
exact income question whether they would be willing to provide information in which given
interval their income falls. This partial information can be used to improve the inferences
regarding the income variable. In this paper we suggest to use this partial information when
setting up the likelihood and then to impute plausible true income values for each reported
income interval. The approach is related to the approach to account for rounding described
in the previous section with the only difference that the interval in which the true income
must fall is known in advance and does not need to be estimated from the observed data.

Let ri, ri ∈ {0, 1, ..., R+ 1}, be a random variable that identifies to which income response
group individual i, i = 1, ..., n belongs. Let ri = 0 represent exact income information (which
might still be affected by rounding) and let ri = 1, ..., R identify the R different income
intervals that could be selected from the predefined intervals provided by the agency. For
example, according to Figure 1 R = 13 in the PASS survey. Finally, let ri = R+ 1 represent
refusal to provide any income information at all. Let Iri be an indicator function that equals
1 if individual i belongs to income response group r and equals 0 otherwise. Let lr and ur be
the upper and lower bound of the income interval for response group r. We set l0 = y = u0

and lR+1 = −∞ and uR+1 = +∞. All other bounds are defined by the income intervals
provided by the agency. We extend the definition of si to also include all reported income
intervals, i.e., si is a single value for all individuals that reported the exact income, but is an
interval for all individuals that only provided the information in which interval their income
falls. The extended likelihood that also takes the interval information into account is given
by
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L(Ψ|s, x, z) =
∏

i

f(xi, zi) ·
∏

i

f(si|xi, zi, Ψ) (5)

∝
∏

i

{(
∫∫

A(si)

f(g, log(y)|xi, zi, Ψ)d log(y)dg)I
0
i

·
R+1∏

r=1

[F (log(uri ), µi = x′iβ, σ
2)− F (log(lri ), µi = x′iβ, σ

2)]I
r
i }.

Once estimates for all parameters are obtained by maximizing the likelihood in (5), imputation
of the plausible values for the true income Y is straightforward. The first imputation step is
similar to Section 2: Approximate a draw from the posterior distribution of the parameters
by drawing from a multivariate normal with mean equal to the maximum likelihood estimates
of the parameters and variance equal to the negative inverse of the Hessian matrix of the log-
likelihood. The second step depends on the type of data that is imputed. The true income
for all exact reporters is imputed as described in Section 2 to account for potential rounding
in the reported income values. The true income for the interval respondents is imputed by
drawing from a truncated normal distribution Nt(µ, σ

2) with µ = X ′β∗, σ2 = (σ∗)2, where
β∗ and (σ∗)2 are the drawn parameters from step one. The truncation points are given by
the bounds of the reported income interval. Finally, imputations for those respondents that
refused to provide any information regarding their income are obtained by drawing from a
normal distribution with parameters µ = X ′β∗ and σ2 = (σ∗)2.

4. Application to the panel study Labor Market
and Social Security

We illustrate the application of our approach using data from the German panel study “Labor
Market and Social Security” (PASS). To enable a comparison of our extended approach with
the approach of Drechsler and Kiesl (2014) that only focuses on rounding, we use the same
models for the income and rounding behaviour and also use the poverty rate to evaluate
which impacts the adjustments have on important measures that are regularly computed
from income data. The poverty rate is defined as the percentage of persons with an income
less than a fixed percentage of the median income. For example, in the European countries
the poverty rate is defined as the proportion of persons with an income less than 60% of the
median income.

Before presenting the results, we provide a description of the data and a short summary of
the imputation models borrowed from Drechsler and Kiesl (2014). The interested reader is
referred to this paper for more details.

The PASS survey started in 2006 and conducted yearly ever since, aims at measuring the
social effects of labour market reforms. The survey consists of two different samples, each
containing roughly 6,000 households. The first sample is drawn from the Federal Employment
Agency’s register data containing all persons in Germany receiving unemployment benefit
for long time unemployment. The second sample is drawn from the MOSAIC database of
housing addresses collected by the commercial data provider, microm. This sample is rep-
resentative for the resident population in Germany. The stratified sampling design for this
sample oversamples low-income households. The major benefit of this combination of two
different samples lies in the fact that control groups for the benefit recipients can easily be
constructed. The panel contains a large number of socio-demographic characteristics (for
example, age, gender, marital status, religion, migration background), employment-related
characteristics (for example, status of employment, working hours, income from employment,
employment history), benefit-related characteristics (for example, benefit history, amount of
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Table 2: Covariates included in the income model.

variable characteristics

household size 5 categories (household sizes> 4 set to “5 or more”)
deprivation index range: 0–21
living space range: 7–903 square meters
type of household 8 categories
amount of debt 7 categories
income from savings yes/no
age of respondent range: 15–99
amount of savings 8 categories (not available for wave 1)
unemployment benefits yes/no
weight range: 24.95–186,000

benefits, participation in training measures), and subjective indicators (for example, fears and
problems, employment orientation, subjective social position). A detailed description of the
survey can be found in Trappmann et al. (2010).

To model the true income, we assume a log-normal distribution for income conditional on
a set of covariates X. Details about the covariates included in the model are contained in
Table 2.

All variables are standardized, some sparsely populated categories in X are collapsed and
influential outliers are removed to ensure convergence of the maximisation procedure (see
Drechsler and Kiesl (2014) for details). For the rounding behaviour, we assume that the
tendency to round only depends on the true income.

4.1. Evaluation of the model assumptions

Since the proposed rounding adjustment strategy is purely model based, an evaluation of
the model assumptions is essential. We follow the approach of Drechsler and Kiesl (2014) to
check whether the model assumptions are reasonable. They suggest to use posterior predictive
simulations (Gelman, Carlin, Stern, and Rubin 2004, Chap. 6) for the evaluations since the
true income and the rounding behaviour are never observed which complicates the evaluation.

The income model

For the income model evaluation we generate a very large number of imputations for the
true income based on the parameters obtained from maximizing the likelihood in (5) at the
last iteration of the sequential regression imputation procedure (see Section 4.2 for details).
The rounding behaviour is completely ignored here, i.e., imputations are generated for all
observations based on the marginal income model described in (1). The obtained imputations
can be seen as samples from the posterior predictive distribution of the income for each
observation according to the model. To evaluate the model fit we can check whether these
posterior distributions cover the observed income values from the original data. Of course
many of the observed income values are subject to rounding, so we limit the evaluation to
those records for which we can be sure that the reported value is only rounded to the next
euro (i.e., all records for which the reported value is only divisible by 1). If the imputation
model is correct, the true (observed) income should be covered in the region between the
empirical α/2 quantile and the 1 − α/2 quantile of the imputed values with a probability of
1 − α. Thus, as a measure for the model fit we calculate the fraction of unrounded income
values from the observed data that are covered by this interval computed from the imputed
values and compare this fraction to the expected coverage rates. Results based on m = 1, 000
imputations are presented in Table 3. The empirical coverages are generally close to the
nominal coverages: except for wave 2 and 5 the empirical coverages never differ more than
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Table 3: Percentage of true income values from the PASS survey that are covered in the
defined regions of the posterior distribution of the imputed income values.

Expected Empirical Coverage (in %)
Cov. (in %) wave 1 wave 2 wave 3 wave 4 wave 5 wave 6

99.00 97.65 93.76 97.31 97.19 95.43 96.87
95.00 95.06 91.63 93.34 93.57 92.69 93.66
90.00 91.91 89.00 89.72 89.31 88.55 89.53

Table 4: Percentage of income values that are divisible by a given round number (but not
by any of the larger numbers) in the observed PASS data, the unrounded data, and the
re-rounded data.

Income divisible by 1 5 10 50 100 500 1,000

Observed income (%) 14.94 4.05 11.58 7.74 37.34 10.29 14.06
Unrounded income (%) 80.05 9.98 7.97 1.00 0.79 0.11 0.10
Re-rounded income (%) 9.67 2.93 12.10 9.49 45.79 10.08 9.94

2.2 percentage points from the nominal coverages. The largest differences are observed for
the expected 99% coverage rate for wave 2 (difference of 5.24 percentage points) and wave 5
(3.57 percentage points). But even for these waves the nominal coverages never differ more
than 1.5 percentage points from the expected 90% coverage rate. Overall the results indicate
a reasonable fit for the income model.

The rounding behaviour model

To evaluate the quality of the rounding behaviour model, we repeatedly re-round the imputed
(unrounded) income variable based on the obtained likelihood parameters and compare it
to the originally observed data. Specifically, we repeatedly (m = 100) generate unrounded
income data that are consistent with the original data according to the joint model for income
and rounding behaviour. Then, we repeatedly round each of the obtained exact income
variables (100 times for each of the generated income variables) according to the rounding
probabilities based on the parameters from the rounding behaviour model. Since we have no
direct measure for the rounding behaviour we use a proxy for the evaluation. We compare
the share of the income values that are divisible by values that are typically used as rounding
bases. Table 4 lists these shares for the original data, the re-rounded data (computed as
the average across the 10,000 generated datasets) and the unrounded data (computed as the
average across the m = 100 replicates). Each column reports the percentage of records for
which the given number represents the maximum possible rounding base, i.e., these records
would not be divisible by any of the larger rounding bases listed in the table. The results are
pooled across all waves of the PASS data for readability. Similar results were obtained when
looking at each wave individually.

As expected the percentages differ substantially between the observed income and the un-
rounded income. Most of the values (80.05%) in the unrounded data (second row in the
table) are only divisible by one and the percentages decrease quickly as the rounding base
increases (note that we assume that values in the unrounded data are always rounded to the
nearest euro). This is different for the observed data (first row). Only 14.94% of the data
are only divisible by 1 and 37.34% of the records have a maximum rounding base of 100.
The divisibility of the re-rounded data (third row) is reasonably close to the observed data.
Again, most records are in the category with a maximum rounding base of 100, although
the percentage of records that fall into this category is slightly overestimated (45.79%). This
overestimation leads to a slight underestimation of the percentage of records that are only
divisible by one (9.67%). For most of the remaining categories the percentages based on the
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re-rounded data are fairly close to the percentages based on the observed data: the difference
in percentage points is less than 1.2 for the rounding bases 5, 10, and 500. The percentage
of records with maximum rounding bases of 50 and 1,000 differ somewhat more between the
observed and the re-rounded data (1.75 and 4.12 percentage points respectively). Overall the
results indicate a reasonable fit of the rounding behaviour model.

4.2. Results

We compare three different approaches to estimate the poverty rates from the six waves of the
PASS survey that are available so far. In the first approach we treat the reported income as
the true income and only use the information from those respondents that answered the exact
income question. To keep the results consistent with the second approach described below,
we also exclude the respondents that provided an answer to the exact income question but
did not provide an answer for at least one of the covariates listed in Table 2. This approach
assumes that the reported income is never rounded and implies that the respondents to the
exact income question are not systematically different regarding their income from those that
only provide income intervals, completely refuse to provide any information regarding their
income, or have missings in the list of covariates, i.e., this approach assumes that the income
information is missing completely at random (MCAR) in the terminology of Rubin (1976).
In the second approach we use the methodology of Drechsler and Kiesl (2014) to account for
the rounding but still only use the data from respondents who provided an answer to the
exact income question and all the covariates, i.e., we still assume MCAR. The final approach
is the extended approach described in this paper which also takes the information from the
interval respondents into account and imputes the missing information in the covariates and
missing income information for those survey participants that completely refused to provide
any information regarding their income. We note that this approach uses more information
to estimate the parameters in the imputation model and only assumes that the income infor-
mation is missing at random (MAR), i.e., the missingness can be explained by the covariates
included in the imputation model.

We apply the models described above separately for each year (the variable amount of savings
is not available in the first wave of the survey and is thus excluded from the income model in
that year). For the third approach the imputation routine for the true income is incorporated
into a sequential regression multivariate imputation (SRMI, Raghunathan, Lepkowski, van
Hoewyk, and Solenberger (2001)) procedure to impute missing values in any of the covariates.
With the SRMI approach missing values in any of the variables are imputed by iteratively
drawing from the conditional distributions of each variable given all the other variables. The
process of iteratively drawing from the conditional distributions can be viewed as a Gibbs
sampler that will converge to draws from the theoretical joint distribution of the data if this
joint distribution exists. This is not guaranteed in practice. However, Liu, Gelman, Hill, Su,
and Kropko (2013) show that consistent results can still be obtained if the conditional models
are correctly specified.

To improve the quality of the imputations we included some additional variables in the impu-
tation models for the covariates. We treated the first 100 iterations of the Gibbs sampler in
each wave as the burn-in phase to ensure convergence and stored every 5th iteration after the
burn in phase as one imputed dataset. Traceplots of all variable means and variances and the
Heidelberger&Welch diagnostic (Heidelberger and Welch 1983) indicated that all Gibbs sam-
plers converged after 90 iterations and autocorrelation plots showed no significant correlation
after 3 iterations.

Table 5 presents the poverty rates for the different waves. The estimated poverty rate is based
on the disposable income, i.e., the reported income is adjusted for the number of household
members and the age of the household members as suggested by the OECD (see, for example,
Eurostat (2014a)). The first column contains the number of cases for the available case
procedures of approach one and two. The second column contains sample sizes if all missing
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Table 5: Estimated poverty rates from the PASS survey (with 95% confidence intervals re-
ported in brackets).

Wave nobs nimp Original data Rounding adjustment Nonresponse and
rounding adjustment

Wave 1 10,214 12,791 17.29 16.35 16.60
(15.81;18.77) (15.14;17.55) (15.48;17.71)

Wave 2 7,311 8,428 16.91 16.98 16.39
(15.79;18.03) (15.69;18.27) (15.15;17.63)

Wave 3 8,169 9,534 14.27 15.40 15.66
(12.28;16.27) (13.91;16.90) (14.35;16.97)

Wave 4 6,538 7,845 14.89 14.61 14.81
(13.44;16.35) (13.40;15.81) (13.61;16.02)

Wave 5 8,623 10,232 16.34 15.75 15.82
(14.81;17.87) (14.41;17.10) (14.35;17.29)

Wave 6 8,267 9,508 15.95 16.27 15.78
(14.49;17.42) (14.81;17.72) (14.47;17.09)

or partially observed values are imputed. The results based on the original data without any
adjustments are presented in the third column while the results for the multiply imputed
true income accounting for rounding are included in column 4. The fifth column contains
the results based on all data. All imputation results are based on m = 10 imputations. The
95% confidence intervals reported in brackets are based on bootstrap variance estimates. We
used the normal approximation to compute the confidence intervals based on the estimated
variances.

Generally, the impacts of the different adjustment methods are modest. Given the large
amount of uncertainty in the estimates, the 95% confidence intervals mostly overlap. Still,
there is some evidence that the impact from rounding is stronger than the impact due to
(partial) nonresponse in most years. While the differences between the poverty rates based
on the unadjusted point estimates and the estimates that account for the rounding (column
three compared to column four) range from −1.13 to +0.94 percentage points, the differences
between the adjusted estimates and the estimates that also account for the nonresponse
(column four and column five) only range from −0.26 to +0.59 percentage points. The
nonresponse adjustments only have a stronger impact in waves 2 and 6 in which the poverty
rate hardly changes between the näıve direct estimate and the adjusted estimate. The smaller
impact of the nonresponse is to be expected given that only 13–20% of the records are imputed
to adjust for nonresponse compared to approximately 85% of the records that are imputed
for rounding adjustments. Still, the differences in the poverty rates albeit small indicate that
income is not missing completely at random and ignoring the nonresponse results in biased
inferences.

5. Conclusions and Outlook

Obtaining reliable income information from surveys is notoriously difficult. Income is con-
sidered sensitive information and survey respondents often find it difficult to remember their
exact income. In this paper we suggested a strategy to address two common potential sources
of bias: nonresponse and rounding. Our multiple imputation approach tackles both problems
simultaneously and provides a simple tool to incorporate interval information when making
inference based on the collected data. The application to the PASS survey showed that ad-
justing for these two factors can have a direct impact on politically important measures such
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as the poverty rate. We found that rounding has a higher impact on the results than nonre-
sponse at least for our study. The changes in the poverty rates that we found in our empirical
evaluation are modest although an increase of the poverty rate by 1.4% as observed for wave
3 of the PASS survey would likely cause some political discussions. We believe that the main
reason for the relatively small changes lies in the robustness of the poverty measure which
is based on the median of the income distribution. It would be an interesting area of future
research to evaluate the impacts on less robust measures such as the income quintile share
ratio (see, for example, Eurostat (2014b)) which computes the ratio of the 80% and the 20%
quantile of the income distribution as a measure of income inequality.

Of course the adjustments proposed in this paper are based on several assumptions and it
is important to critically review these assumptions. First, the correction methods are based
on models and the underlying model assumptions need to be evaluated. Alternative models
for the income distribution have been suggested in the literature. For example, Graf and
Nedyalkova (2013) suggested to model the income distribution using the generalized beta
distribution of the second kind. However, it is not straightforward to incorporate covariates
in this model. Furthermore, we feel that our model evaluations in Section 4.1 indicate a good
fit of the log-linear model for the conditional income distribution. Second, we assume that the
income information is missing at random (MAR), i.e., the nonresponse can be explained by the
variables included in the imputation model. This is a crucial assumption in most imputation
models and this assumption can never be tested based on the observed data. We believe that
the covariates in our model such as age of the respondent, deprivation index, or household
size should help to explain the nonresponse in the data. However, if the MAR assumption
does not hold, results from our imputation strategy will be biased and imputation models
such as the non-ignorable models proposed in Little and Rubin (2002, Chap. 15) need to be
considered. Finally, nonresponse and rounding might not be the only sources of bias in the
data. Several studies found that individuals with low earnings tend to overreport their income
while individuals with high income tend to underreport their income (see, for example, Pischke
(1995)). Incorporating this additional measurement error into the adjustment strategy would
be an interesting area of future research.
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Abstract When datasets are affected by nonresponse,
imputation of the missing values is a viable solution. How-
ever, most imputation routines implemented in commonly
used statistical software packages do not accommodate mul-
tilevel models that are popular in education research and
other settings involving clustering of units. A common strat-
egy to take the hierarchical structure of the data into account
is to include cluster-specific fixed effects in the imputation
model. Still, this ad hoc approach has never been compared
analytically to the congenial multilevel imputation in a ran-
dom slopes setting. In this paper, we evaluate the impact
of the cluster-specific fixed-effects imputation model on
multilevel inference. We show analytically that the cluster-
specific fixed-effects imputation strategy will generally bias
inferences obtained from random coefficient models. The
bias of random-effects variances and global fixed-effects
confidence intervals depends on the cluster size, the relation
of within- and between-cluster variance, and the missing
data mechanism. We illustrate the negative implications of
cluster-specific fixed-effects imputation using simulation
studies and an application based on data from the National
Educational Panel Study (NEPS) in Germany.
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Introduction

Missing values are a common problem in survey data, which
can lead to bias if the nonresponse is not properly taken
into account by the analyst. A widely accepted strategy to
deal with this problem is imputation, which is based on the
idea that missing values are replaced with plausible values
to produce a completed dataset on which standard analy-
sis models can be applied by the analyst with no, or a less
severe, nonresponse bias.

A procedure to take the uncertainty from imputation
directly into account is multiple imputation (MI). With MI,
values are not imputed just once, but M ≥ 2 times. This
leads to M datasets that need to be analyzed, each with
the same method leading to M estimates of the parame-
ters of interest and their standard errors. The final inference
is obtained by using simple procedures to combine the
different results (Rubin’s combining rules, Rubin 1987).
For applications of (multiple) imputation in educational
research see, for example, the overview by Peugh and
Enders (2004).

From a theoretical perspective, it is essential that the
imputation model is congenial to the model used by the ana-
lyst to ensure unbiased results based on the imputed data.
Broadly speaking, congeniality means that the model speci-
fications of the imputation model and the analysis model are
compatible, i.e., they should be based on the same modeling
assumptions (see Meng 1994 and Kenward and Carpen-
ter 2007 for more details). For example, if the analyst is
interested in explaining the performance of students in a
competence test and uses socio-economic status as one of
the predictors, but this predictor is not used when imputing
missing values in the competence test, the imputation model
and the analysis model would be uncongenial. Therefore, an
imputation method should always be developed keeping in
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mind the assumed analysis model to be carried out on the
imputed data.

These considerations also hold for hierarchical datasets.
These are datasets in which individual measurements are
grouped; for example, students observed within the same
class or repeated measurements on the same individual.
Such hierarchical datasets might be analyzed using multi-
level models (see Goldstein 1987 or O’Connell andMcCoach
2008 and the short review provided in the section “Multi-
level modeling” of this paper). Thus, to ensure congenial-
ity, multilevel models should also be used at the imputation
stage. However, most of the statistical software packages
that are commonly used for imputation such as SAS,
SPSS, or Stata, do not provide imputation methods explic-
itly designed for hierarchical data. To our knowledge, the
only tools that allow for multilevel imputation models
are the external SAS macro MMI IMPUTE developed by
Mistler (2013), some multiple imputation routines in MPlus
(Asparouhov and Muthén, 2010), the standalone software
REALCOM-IMPUTE (Carpenter et al., 2011), which also
offers interfaces for MLwiN and Stata, and the R packages
mice (van Buuren et al., 2015), pan (Schafer, 2016), and
jomo (Quartagno & Carpenter, 2016).

However, mice is limited to two levels of hierarchy
and continuous dependent variables while all other imputa-
tion routines rely on the restrictive joint modeling approach.
Joint modeling, which assumes a joint density for all vari-
ables with missing data, is especially problematic if the
model of interest is a random slopes model, since unlike the
sequential regression approach implemented in mice, the
joint modeling approach cannot deal with missing data in
the slope variables (Enders et al., 2016, see also Drechsler
2011 for a general discussion of the pros and cons of the
joint modeling approach).

Due to the sparseness of suitable software, using cluster-
specific fixed-effects imputation has been recommended in
the literature (Diaz-Ordaz et al., 2016; Graham, 2009). This
approach is carried out by including dummy variables, rep-
resenting the cluster membership of the observations, into
the data (see section “Cluster-specific fixed-effects impu-
tation”). This imputation strategy is also endorsed on the
FAQ website for the multiple imputation module in Stata
(StataCorp, 2011). Since the cluster-specific fixed-effects
approach is easy to implement using standard imputation
software, it has been used for the imputation of missing val-
ues in hierarchical datasets (see for example, Brown et al.,
2009; Clark et al., 2010; Zhou et al., 2016). Research about
imputation in hierarchical settings has only been undertaken
in recent years with the earliest papers on this topic focusing
only on the impacts on global fixed-effects (the regres-
sion coefficients) inferences (Reiter et al., 2006; Taljaard
et al., 2008; Andridge, 2011). In educational research, it is
often the random effects themselves (or derivatives, such

as the intra-class correlation) that are of particular inter-
est when measuring the school effect (Lenkeit, 2012; Nye
et al., 2004; McCaffrey et al., 2004b). The impacts on ran-
dom effects were addressed in later papers but the authors
either only focused on random intercept models (Drechsler,
2015; Lüdtke et al., 2017; Zhou et al., 2016), or the eval-
uations were limited to running simulation studies without
analytical derivations to identify which factors influence the
bias observed in the simulation studies (van Buuren, 2011;
Enders et al., 2016; Grund et al., 2016). In random intercept
models, it is assumed that within a cluster, the average inter-
cept deviates from the global intercept by a cluster-specific
random value. For example, this could mean that in a class
the students score on average four points higher on a math
test than the average population of students. This is in con-
trast to a random coefficients model where the effect of a
covariate, x on y, randomly deviates from the global effect;
for example, if the performance x in a previous test has a
higher effect in a class than on average.

To our knowledge, the impact on random effects if fixed-
effects models with cluster-specific slopes are used for
imputation has not yet been studied analytically, despite the
demand for such research (Drechsler, 2015; Lüdtke et al.,
2017; Grund et al., 2016). Our paper closes this research
gap by comparing cluster-specific fixed-effects imputation
and multilevel imputation and generalizing the evaluations
to all types of random coefficient models. We derive analyt-
ically why the variance of the random effects in the analysis
model is positively biased when a cluster-specific fixed-
effects imputation model, instead of a multilevel imputation
model, is used. Further, we find that beyond the three factors
governing this bias that were already identified in Drechsler
(2015) (for the special case of random intercept models),
the bias also depends on the mean and variance of the
observed data (which are governed by the missing data
mechanism). We present support for these findings using
simulation studies and a real data application.

The remainder of the article is organized as follows:
Section “Related research” summarizes the findings from
previous studies, highlights their limitations, and describes
our contributions to fill these research gaps. Section
“Multilevel modeling” summarizes the ideas behind mul-
tilevel modeling and introduces the relevant notation. The
different imputation methods are described in section “Impu-
tation models”. The following section compares the dif-
ferent imputation strategies analytically and derives which
factors influence the bias in random effects-based infer-
ences. The theoretical findings are confirmed using exten-
sive simulations in the “Simulation study” section. In the
“Real data application” section, we compare the results
of the imputation methods on educational research data.
Finally, in the “Conclusion” section we provide a summary
of our findings with some practical guidance and provide an
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outlook for further research on the topic of hierarchical data
imputation.

Related research

As mentioned previously, research about imputation in hier-
archical settings is relatively sparse. Reiter et al. (2006)
illustrated that ignoring clusters in the imputation process
can lead to biased analysis results for clustered sampling
designs. They also illustrated that including cluster-specific
fixed intercepts for each cluster in the imputation model will
lead to conservative inferences for the global fixed effects
in the analysis model, increasing the chances of type II
errors. In substantive research, this could mean that some
covariates are found to have no significant effect on the
target variable, while in reality there is one, which would
have been found if a proper imputation would have been
conducted. Taljaard et al. (2008) compared several imputa-
tion routines in a cluster randomized trial setting (clustered
randomized trials are typically analyzed using multilevel
models but sometimes imputed based on a cluster-specific
fixed-effects approach). They found that simple imputation
routines (such as cluster mean imputation) can be a suit-
able choice, but is inferior in performance compared to
a congenial (multilevel) imputation. Andridge (2011) also
focused on cluster randomized trials. She showed analyti-
cally and empirically that the MI variance estimator for the
global fixed effects will be conservative if cluster-specific
fixed-effects imputation models are used. All three papers
leave two kinds of research gaps. First, they limited their
evaluations to random intercept models; and second, they
all dealt with situations in which the random effects are
only nuisance parameters. Thus, none of them evaluated
the impacts of cluster-specific fixed-effects imputation on
random effects inferences. However, as illustrated in the
Introduction, these inferences are often of major interest in
education research.

The first paper that also evaluated the impacts on ran-
dom effects inferences is van Buuren (2011). In a simulation
study, the author evaluated the consequences of ignoring the
hierarchical structure completely or incorporating dummy
variables for the clusters in a random intercept model. He
found that ignoring the hierarchy in the data causes biases in
random effects inferences and even biases the global fixed
effects if missing values occur in the explanatory variables.
A further finding was that incorporating dummies for the
clusters in the imputation model improves the inferences for
the global fixed effects but the estimated variances of the ran-
dom effects can still be biased. Still, this work was limited to
random intercepts and did not explain the results analytically.

Recently, several theoretical articles, comparing imputation
methods in a multilevel setting, have appeared. Drechsler

(2015) theoretically explained the bias found in the simu-
lations of van Buuren (2011) and illustrated that the bias
depends on the cluster size, the missing data rate, and the
intra-class correlation (ICC), which, in random intercepts
models, is the proportion of variance between clusters rela-
tive to the total variance. Like van Buuren (2011), he only
focused on random intercept models. Lüdtke et al. (2017)
again only focused on random intercept models. They com-
pared a single level imputation (which ignores the cluster-
ing of the data), a cluster-specific fixed-effects imputation
(incorporating cluster-specific intercepts), and a multilevel
imputation with respect to the bias in the intra-class corre-
lation. They derived their results analytically and included
a simulation study. Generally, they favored the multilevel
imputation, but in some settings the single level imputation
performed acceptable as well. The dummy imputation could
be appropriate when the clusters and ICC are large and
when the focus is on the regression coefficients only. The
first paper to also consider random slopes was published by
Grund et al. (2016). The authors evaluated the performance
of two multilevel imputation strategies and listwise dele-
tion under various settings. They found that the multilevel
imputation methods worked well, as long as the missing
data only occur in the dependent variable. If missings occur
in the covariates, then random effects variances would be
biased, an issue we will discuss later. The authors did not
consider the dummy variable approach as an alternative to
the multilevel imputation model.

Enders et al. (2016) mainly compared joint modeling
(imputing all variables in one step) and sequential regres-
sion (imputing the variables step by step) in a setting of
random intercepts and random slopes. Besides these impu-
tation techniques, they also evaluated the performance of
single-level imputation and including dummy variables for
cluster-specific intercepts, but not cluster-specific slopes.
They found that joint modeling and sequential regression
produced similar results in random intercepts models. Joint
modeling performed better when contextual effects (clus-
ter means, etc.) were incorporated into the analysis model,
while the sequential regression approach performed best
in random slopes settings. The poor performance of the
dummy variable and joint modeling approach in the random
slopes context is not surprising since, except for the sequen-
tial regression approach, the authors only considered models
that ignore the cluster-specific slopes. Finally, Zhou et al.
(2016) proposed an approach to impute a binary variable for
rare events in a multilevel setting. The idea is to generate
synthetic populations and then to draw plausible values for
the missing values from the posterior predictive distribution
based on these populations. Via simulation based on a ran-
dom intercept model, they compared their approach with a
single-level imputation, an imputation model with intercept
dummies for strata and clusters, and a random intercepts
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imputation model. Results indicated poor coverage rates
for single-level imputation. The fixed- and random- effe-
cts imputation models and their approach worked mostly
well with some shortcomings, and random slopes were not
considered.

To summarize, while all these articles cover imputation
strategies for hierarchical data, they are subject to three impor-
tant limitations: They only consider random intercept mod-
els (Reiter et al., 2006; Andridge, 2011; van Buuren, 2011;
Drechsler, 2015; Enders et al., 2016; Zhou et al., 2016; Tal-
jaard et al., 2008; Lüdtke et al., 2017), they only rely on
simulation studies to evaluate the impact of different impu-
tation approaches (Reiter et al., 2006; van Buuren, 2011;
Enders et al., 2016; Zhou et al., 2016; Taljaard et al., 2008),
or they do not evaluate the cluster-specific fixed-effects
imputation approach as an alternative to the multilevel
imputation model (Grund et al., 2016). Our contribution
to the literature is that we analytically generalize the find-
ings regarding the cluster-specific fixed-effects imputation
compared to the multilevel imputation model by consider-
ing a setting with (arbitrarily many) cluster-specific variable
dummies. We also show which factors govern the potential
bias from cluster-specific fixed-effects imputation.

Multilevel modeling

With hierarchical data, each individual belongs to one of J

clusters. Assuming that individuals within the same clus-
ter are relatively homogeneous, it makes sense to extend
the standard linear regression model to account for this. For
example, school classes can be homogeneous if the school
district lies in an area with many pupils from a specific
socio-economic group. As the literature has identified, the
socio-economic background tends to be influential on many
educational issues (American Psychological Association,
2017), and analyses about the students’ educational abilities
have to take this homogeneity into account. The multilevel
model (or linear mixed model as it is often referred to in
statistics) is an extension of the linear model and has been a
common analysis model for hierarchical data for many years
(see, for example, Hedeker and Gibbons 1997 or Verbeke
and Molenberghs 2009). A multilevel model incorporates
cluster level random effects in addition to the global fixed
effects to take the data hierarchy into account. The general
multilevel model is given by:

yij = Xijβ + Zijγj + εij ,

γj ∼ N(0, �),

εij ∼ N(0, σ 2
ε ) (1)

where yij is the value of the target variable Y for individ-
ual i = 1, . . . , nj in cluster j = 1, . . . , J , with nj being

the size of cluster j . Xij is a (1 × P) vector containing
the variables for which a constant effect across all clusters
is assumed (generally this will include a 1-column for the
intercept). β is the (P ×1) vector containing the global fixed
effects. Zij is a (1 × K) vector containing the variables for
which it is assumed that the effects vary between the clus-
ters. Often Z is a subset of X, meaning that a variable can
either have only a global fixed effect or both a global fixed
effect and random effects, but will never be modeled as
having random effects only. γj is a (K × 1) vector contain-
ing the cluster-specific random effect(s) for cluster j . They
allow the effect(s) of Z to vary between the clusters and are
assumed to follow a multivariate normal distribution with
zero-mean and covariance matrix �. This modeling strat-
egy implicitly assumes that the observed clusters represent
a random selection from a larger population of clusters. The
assumption is met if 1,000 schools in the U.S. are sampled
from the existing 100,000+ schools, but when characteris-
tics are measured on all 50 U.S. states, including random
effects for the states, it is not appropriate, as the states are
the basic population and not a sample from it. For later use,
we define γ to be the J × K matrix containing all random
effects γ = (γ ′

1, . . . , γ
′
J )′. Finally, εij is the error term and

σ 2
ε its variance.
To give an example in which situation the multilevel

modeling approach could be used in educational research,
consider the following model that analyzes the relationship
between the score in a math test in year 1 and in year 3 of
schooling:

scoreyear3ij = β0 + scoreyear1ij · β1

+γ0j + scoreyear1ij · γ1j + εij (2)

This modeling strategy would imply that there is a global
average score β0 (say 10) that students have in year 3 if their
score in year 1 was 0. For each additional point scored in
year 1, the expected score in year 3 increases by β1 (say
0.8) points, on average. Now, for each cluster, these effects
are assumed to vary randomly around the global effects. For
example, it could be the case that in school 27 the expected
average score is higher (say 11.5, implying γ0,27 = 1.5) but
the effect of the test in year 1 is lower (say 0.6, implying
that γ1,27 = −0.2).

Imputation models

Imputation methods based on the multiple imputation
approach generally consist of two steps: First, a set of
model parameters is drawn from their posterior distribu-
tions given the data. In the second step, missing values are
replaced by repeated draws from the specified distribution
given the parameters drawn from step one. This section
describes these two steps for the two imputation models
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to be compared: the cluster-specific fixed-effects imputation
and the multilevel imputation model.

Cluster-specific fixed-effects imputation

The easiest way to extend the standard linear (multiple)
imputation procedures to account for the hierarchy in the
data is to incorporate individual fixed effects for each
cluster. In this case, the parametric model is given by:

yij = Xijβ + Zijγj + εij , εij ∼ N(0, σ 2
ε ), (3)

The only (yet crucial) difference to Eq. 1 is that γj is
no longer assumed to be a realization from a normal dis-
tribution, but rather assumed to be fixed. In practice, this
implies that a dummy variable for each cluster is included
in the model and each variable in Z is interacted with this
dummy. Let Ij = I (yij ∈ clusterj ) be the indicator func-
tion that equals 1 if yij belongs to cluster j , and equals zero
otherwise. The model to be estimated is given by:

yij =
P−T∑

p=1

Xijpβp +
J−1∑

j=1

K∑

k=1

ZijkIj γjk + εij ,

εij ∼ N
(
0, σ 2

ε

)
, (4)

where p = 1, . . . , P is the index for the P variables in X

and k = 1, . . . , K is the index for the K variables contained
in Z. Without loss of generality, we assume that X is sorted
so that those T variables in X, that are also included in Z,
are included in the last T columns of X. These variables
need to be dropped (in addition to the reference categories
for the dummy variables) to keep the model identified.

Since this is a standard linear regression model, with the
usual assumption of uninformative priors (Bartlett et al.,
2015), the draws for the first step of the imputation come
from the following posterior distributions:

σ̃ 2
ε ∼ χ−2

(
nobs − d,

[
nobs − d

]
· σ̂ 2

ε

)
,

δ̃ ∼ N

(
δ̂,

[
V obs′

V obs
]−1 · σ̃ 2

ε

)
, (5)

where χ−2 is an inverse Chi-squared distribution, nobs

is the number of individuals over all clusters for which
the outcome Y is observed, and d = (J − 1) ·
K + P − T is the number of coefficients that need to
be estimated. δ = {γ11, . . . , γ(J−1)K, β1, . . . , βP−T } is
the collection of parameters to be estimated and V =
{Z1I1, . . . , Z1IJ−1, Z2I1, . . . , ZKIJ−1, X1, . . . , XP−T } is
the matrix of explanatory variables. V obs is the subset of V

containing those observations for which the outcome Y is
observed. Note that we assume that all explanatory variables
are fully observed or that missing values in these variables
have been imputed in previous steps, as missing values in

an explanatory variable can cause biases in some parame-
ter estimates (Grund et al., 2016). Lastly, σ̂ε

2 and δ̂ are the
ordinary least squares estimates for σ 2

ε and δ.
In the second step, missing values are imputed by ran-

domly drawing values from

Y imp ∼ N(V impδ̃, σ̃ 2
ε ), (6)

where Y imp and V imp denote the subset of Y and V for
which Y is missing.

Multilevel imputation

Since the posterior distribution of the parameters of the
multilevel model is not available in closed form, a Gibbs
sampler is required for the first step of the imputation (see
for example Gelman and Hill (2006) for details). Assuming
uninformative priors, draws from the following conditional
models need to be iterated until convergence (for readabil-
ity we use |. to indicate conditioning on all other parameters
and the data at each step of the Gibbs sampler):

The global fixed effects for the imputation model are
drawn from the normal posterior distribution:

β̃|. ∼ N(β	, �	) with

β	 =
(
Xobs′

Xobs
)−1

Xobs′ (
yobs − Zobs γ̃

)

�	 = σ̃ε
2 ·

(
Xobs′

Xobs
)−1

(7)

The residual variance is based on the posterior χ2 distri-
bution with nobs − 1 degrees of freedom

σ̃ε|. ∼

√√√√√
J∑

j=1

nobs
j∑

i=1

(
yobs
ij − Xobs

ij β̃ − Zobs
ij γ̃j

)2

χ2
nobs−1

(nobs − 1)
(8)

The variance of the random effects is drawn from the pos-
terior Wishart distribution with J + K degrees of freedom

�̃|. ∼ Wishart (�	)−1
J+K with

�	 = (
γ̃ ′γ̃ + Sp

)−1
, (9)

where Sp = K · �̂obs is the prior for the random effects
variance and �̂obs is the estimated random effects variance
based on the observed data.

The cluster-specific random effects are (multivariate)
normally distributed

γ̃j |. ∼ N(γ 	
j , 
j )

γ 	
j =

(
Zobs′

j Zobs
j + σ̃ε

2 · �̃−1
)−1

Zobs
j

(
yobs
j − Xobs

j β̃
)


j = σ̃ 2
ε ·

(
Zobs′

j Zobs
j + σ̃ 2

ε · �̃−1
)−1

(10)
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In the second step, missing values in Y are imputed by
drawing from:

yij ∼ N
(
Xij β̃ + Zγ̃j , σ̃

2
ε

)
. (11)

Theoretical juxtaposition of the two imputation
models

Both imputation models have an important common feature:
they allow one to incorporate cluster-specific effects. The
main difference is that cluster-specific fixed-effects impu-
tation assumes that the cluster effects are fixed quantities,
whereas in multilevel models it is assumed that the clus-
ter effects are random deviations from the global effect and
these deviations follow a known distribution.

Including many dummy variables for the cluster-specific
fixed-effects imputation can result in a large amount of
parameters to be estimated (cf. Enders et al., 2016). On the
other hand, one drawback of the multilevel imputation is
its computational complexity resulting in relatively long run
times and the task to monitor convergence of the imputa-
tion runs. It is well known (see, for example, Wooldrige
2010) that both models provide consistent estimates of the
global fixed effects in a multilevel analysis model. However,
as illustrated by Reiter et al. (2006) and Andridge (2011),
the estimated variances of these global fixed-effects esti-
mates will be biased after a cluster-specific fixed-effects
imputation.

Furthermore, because the cluster-specific effects are
modeled differently within the imputation, we also expect
that the inferences of the random effects will be affected in
the analysis model. Since the variance components are often
of major interest in multilevel modeling, we will focus on
the impact on the estimated covariance matrix of the random
effects.

Directly quantifying the impact is difficult since the dis-
tribution of the random effects cannot be obtained in closed
form. Thus, we follow the approach of Drechsler (2015) and
compare the covariance matrix of the cluster-specific effects
conditioning on all other parameters in the model. Since for
the cluster-specific fixed-effects approach the conditional
cluster-specific effects in one cluster are independent of
the other clusters this conditional covariance matrix can be
computed based solely on the information from the cluster.
For cluster j , the matrix is given by (see Appendix A for
details):

V ar
(
γ

f ix
j |β, V obs

)
= σ 2

ε ·
(
Zobs′

j Zobs
j

)−1

=
(
1/σ 2

ε · Zobs′
j Zobs

j

)−1
, (12)

where γ
f ix
j = {γ1j , . . . , γKj }′ is the collection of cluster-

specific fixed effects, β = {β1, . . . , βP−T } is the collection

of global fixed effects, V obs is the observed data, and Zobs
j

is the subset of records inZj for which Y is observed, where
Zj contains those variables in cluster j for which cluster-
specific effects are assumed (in the example above Zj is a
matrix with a column of 1s for the intercept and the score of
students in year 1 from class j). As noted above, the same
conditional covariance matrix for the multilevel model is
given by (Goldstein 2011 p. 69)

V ar
(
γ multi
j | . . . , V obs

)
= σ 2

ε ·
(
Zobs′

j Zobs
j + σ 2

ε · �−1
)−1

=
(
1/σ 2

ε · Zobs′
j Zobs

j + �−1
)−1

.

(13)

The analytic comparison of Eqs. 12 and 13 is the main part
of this section and key to this article. In the appendix, these
equations are compared in detail regarding their Loewner-
ordering (a mathematical concept to compare matrices),
their additive and multiplicative difference, and their repre-
sentations as ellipsoids (a multidimensional generalization
of two-dimensional ellipses). Here we want to limit ourselves
to themajor findings. The first major finding (see Appendix B
for details and proofs): V ar(γ f ix |.) is Loewner larger than
V ar(γ multi |.) and therefore the variances of the estimated
random effects are always larger for the cluster-specific
fixed-effects imputation. Assuming a correctly specified
analysis model, this implies that after cluster-specific fixed-
effects imputation, the estimated variances on the second
level of the multilevel analysis model will always have a
positive bias. The second major finding (see Appendix C):
The multiplicative difference between the two variances
(14) allows one to draw many conclusions regarding the
causes of bias induced by the fixed-effects imputation:

V ar
(
γ

f ix
j |.

)
=

(
I +

[
Zobs′

j Zobs
j

]−1 · σ 2
ε · �−1

)

·V ar
(
γ multi
j |.

)
(14)

On the one hand, the difference depends on the ratio of
the two variance components σ 2

ε and �. Higher random
effects variances in � will decrease the bias, whereas higher
residual variances σ 2

ε will increase it. Intuitively this makes
sense. If the residual variance σ 2

ε (i.e., the variance on the
individual level) is small relative to the cluster level vari-
ance �, this implies that all the variation is between the
clusters and thus the multilevel model coincides with the
cluster-specific fixed-effects model. Both imputation mod-
els will lead to similar results in this case. However, if the
individual level variance is large relative to the cluster level
variance, results based on a cluster-specific fixed-effects
analysis model will differ from the results obtained from
a multilevel analysis model and we would expect to see a
similar effect if cluster-specific fixed-effects and multilevel
models are used at the imputation stage.
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Besides the ratio of the two variance components, the dif-
ference also depends on the matrix of explanatory variables
in cluster j . Under rather general conditions, the difference
decreases with increasing cluster size since the main diag-

onal elements of
(
Zobs′

j Zobs
j

)−1
decrease as nj increases

(see Appendix D). Again, this is plausible, since the shrink-
age effect of the multilevel model generally decreases with
increasing cluster size and thus the differences between the
two models also decreases with the size of the cluster. An
implication that is easily overseen is that the difference will
implicitly also depend on the missing data mechanism since
Zobs

j only contains those records for which Y is observed.
If, for example, the missingness in Y is positively corre-
lated with Z, i.e., the probability for Y to be missing is
higher for larger Z, the matrix Zobs′

j Zobs
j will look different

than if the missingness is negatively correlated with Z. We
will address this issue in the next section. We also note that
Eq. 14 reveals that the bias does not depend on the number
of available clusters since the number of clusters J does not
appear in the equation.

The thirdmajor finding: The ellipsoid of the random effects
after cluster-specific fixed-effects imputation always fully
encloses themultilevel imputation-ellipsoid (see Appendix E).
One interpretation is that the confidence region for the joint
distribution of the conditional parameters for γ

f ix
j |. fully

encloses the confidence region for γ multi
j |. for any signifi-

cance level α. This allows us to make a more general state-
ment compared to the first finding: the set of random effects
(inspected jointly) will vary more in every possible direction
(regardless of their covariance) after cluster-specific fixed-
effects imputation. Thus, we would generally overestimate
the variability on the second level of our multilevel model.
This directly implies that the ”classical” intra-class correla-
tion ICC = σ 2

0 /(σ 2
0 + σ 2

ε ), with σ 2
0 being the variance on

the second level, will be positively biased in a random inter-
cepts setting (the fraction increases as σ 2

0 increases while σ 2
ε

remains constant).

Simulation study

To evaluate whether the identified differences between the
two models also lead to substantial bias in the inferences
obtained from the imputed dataset, we run extensive simu-
lation studies in R (R Core Team, 2016). The simulations
(repeated 1000 times) consist of four steps:

1. Data generation
2. Inducement of nonresponse
3. Multiple (M = 50) imputation based on both the

cluster-specific fixed-effects and multilevel imputation
models described above

4. Running amultilevel analysismodel on the imputed dataset

In the following, we will describe each step in detail.

Data generation

To limit the number of parameters that need to be evaluated,
we assume the model of interest has, besides the random
intercepts, just one random slope variable. We do not expect
any further insights from the inclusion of further random
coefficients.

For the simulation, we assume that the analysis model
is correctly specified, i.e., the analysis model matches the
data generating process. Of course, this assumption is often
not met in practice; however, it is moot to discuss poten-
tial biases from imputation if the analysis model would
already be biased in the absence of any missing data. For
simplicity, we only include two explanatory global fixed-
effects variables—W1 varying at the individual level (e.g.,
the test score in year 1) and W2 varying at the cluster level
(e.g., the teachers age)—in our random coefficients analy-
sis model. These two variables were generated according to
the following models:

W1 ∼ N(1, 2 · In)

W2 ∼ N(3, 1.5 · IJ ), (15)

where In and IJ denote the identity matrices (a matrix with
1s on the main diagonal and 0s elsewhere) of dimension n

and J , where n is the number of individuals and J is the
number of clusters. In other words, we have n independent
draws from a normal distribution with mean 1 and standard
deviation 2 and J independent draws from a normal distri-
bution with mean 3 and standard deviation 1.5. Our random
coefficient model is given as:

Y = Xβ + Zγ + ε, with ε ∼ N(0, In · σ 2
ε ), (16)

where X = {1, W1, W
∗
2 , W1 · W ∗

2 }, Z = {1, W1}, and W ∗
2 is

the cluster level variable W2 “blown-up” to have the same
length as the other variables by repeating each entry j nj

times, where nj is the cluster size for cluster j and j =
{1, . . . , J }. So the model has an intercept, two fixed-effects
covariates, and their interaction as global fixed-effects vari-
ables in the model. Besides the fixed-effects variables, the
model contains a random intercept and a random slope vari-
able. The values of the global fixed effects are set to β =
{2, 1, 1.5, −0.3} and the random effects are generated as

γ ∼ N(0, �) with

� =
(

σ 2
0 σ01

σ10 σ 2
1

)
=

(
0.7 −0.3

−0.3 0.8

)

(17)

We keep the cluster sizes equal for all clusters, but alter them
across different simulation settings between 15, 25, and 50.
The number of clusters is fixed at 30 and is not altered fur-
ther as the number of clusters does not affect the bias (see
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previous section). We run the simulation for different val-
ues of the residual variance σε (1.0, 1.5, and 2.0), allowing
us to examine the bias under different intra-class correla-
tions. Furthermore, because the missing data mechanism
(described in detail below) influences the bias, the simula-
tion results are presented under five different models for the
nonresponse.

The nonresponse model

Step two in the simulation design is the inducement of miss-
ing values. In our simulation, the missingness is limited to
Y , and the missingness mechanism is modeled based on a
logistic function of W1. Since we identified the missing-
ness mechanism as influential for the amount of bias, we
need a model that allows for some flexibility regarding the
influence of W1 on the probability of Y to be missing. We
decided to use the following model:

P
(
Yij = NA|W̃1ij , s

)
= MR · (1 − s)

+2 · MR · s · logit
(
W̃1ij

)−1
(18)

where MR denotes the desired missing rate, which we
fix at 0.5. W̃1ij is the standardized version of W1ij , i.e.,
W̃1ij = (W1ij −W̄1)/

√
var(W1ij ). The parameter s governs

the influence of W1 on the probability of Y to be missing.
Figure 1 illustrates the missing data probability functions
for different settings of s. Using this model has several
implications:

– To obtain a valid probability model, the range of s needs
to be bounded by
{max(−1, [1 − 1/MR]), min(1, [1 − MR]/MR)}. As
we set MR = 0.5, s is bounded by {−1, 1}.

– s = 0 implies Missing Completely At Random
(MCAR, see Rubin 1976).

– s > 0 (s < 0) implies a positive (negative) correlation
between x and the probability to be missing and thus
Missing At Random (MAR, see Rubin 1976).

– Larger values of |s| imply a stronger influence of W1 on
the probability of Y to be missing.

– If W̃1 is symmetrically distributed around 0, the
expected missing rate over all records in a dataset is
equal to MR.

– Records with W̃1 values close to 0 will be missing with
a probability equal to MR.

– The record with the smallest (resp. largest) possible W1

value will have a probability for Y to be missing close
to (1 − s) · MR (resp. (1 + s) · MR).

In our simulations, we alter s within {−1, 0.5, 0, 0.5, 1} to
evaluate the impact of the missing data mechanism. When-
ever less than six observed records remain in one of the

clusters, the missing data generation is repeated for this
cluster to ensure numerical stability.

Parameters of interest

As discussed above, we assume that the analysis model of
interest is a random slopes model that is congenial to the
data generating process. Point estimates of the global regres-
sion parameters β should not be biased by a cluster-specific
fixed-effects imputation procedure, so we do not focus on
them. Instead, we look at the variances of the global fixed-
effects and the random-effects variances σ 2

0 and σ 2
1 , often

reported in educational research to evaluate how much of
the total variance in the outcome variable is explained by
the cluster level units. Both imputation methods are pro-
grammed using own code following the description in the
section “Imputation models”. The functions for the multi-
level imputation will be incorporated in the R package hmi
by Speidel et al. (2017) in the future. All parameter estima-
tions for the multilevel analysis model are computed using
the function lmer from the R-package lme4 by Bates et al.
(2016).

Results of the simulation study

We discuss the impacts on the random effects first before
describing the implications for the variances of the fixed
effects. We only present results for the cluster-specific
fixed-effects imputation. Results for the original data
(before values were deleted) and for imputation based on
the multilevel model did not show any significant bias and
we omit them for brevity. In order to make the differences in
the estimations θ̂run, run = 1, . . . , 1000 for θ = {σ 2

0 , σ 2
1 }

easily comparable, we look at the empirical relative bias:

θ̂run − θ

|θ | , θ �= 0. (19)

If, for example, the true value is 0.7 and the estimate 0.71,
the empirical relative bias is (0.71 − 0.7)/|0.7| ≈ 0.014,
which is an overestimation of 1.4%. An unbiased method
has an empirical relative bias of 0. As the simulations work
empirically, not even the estimates on the original data
will yield an empirical relative bias of exactly 0. There-
fore, a small relative empirical bias is tolerable. As a rough
guideline, we refer to Grund et al. (2016). They consider rel-
ative biases of ±5% for global fixed effects and ±30% for
variance parameters to be noteworthy.

Implications for the random effects

Figures 2 and 3 show the relative empirical biases for the
random intercepts and random slopes variances for all com-
binations of the cluster size, residual variance, and missing
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Fig. 1 Illustration of missing data probabilities for different settings of s (=relationship between w1 and missing data probability) from strong
positive (s = 1.0) over missing completely at random (MCAR; s = 0.0) to strong negative (s = −1.0)

Fig. 2 Relative bias for the estimated variance of the random intercept. The cross marks the median empirical bias of the estimates on the original
data as a reference. 10 points (out of 45k) larger than 7 are not shown for readability of the figure
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Fig. 3 Relative bias for the estimated variance of the random slope. The cross marks the median empirical bias of the estimates on the original
data as a reference. 3 points (out of 45k) larger than 2 are not shown for readability of the figure

data mechanism. A boxplot centered around 0 indicates
empirical unbiasedness.

In most settings, the random effects variances are overes-
timated. In some settings they are (practically) unbiased, but
never underestimated. The amount of bias decreases with
increasing cluster size, but increases with increasing resid-
ual variance. These results are in line with our derivations
in the previous section. The bias for the random intercepts
is generally larger than the bias for the random slopes (the
median relative bias of the random intercept is almost three
for s = −1, σε = 2, and cluster size equal to 15, whereas
the median relative bias of the random slopes never exceeds
0.5). We also see that the bias depends on the missing data
mechanism. We find a decreasing bias with increasing s for
the intercepts and a U-shaped effect for the slopes. It is dif-
ficult to explain the process behind these results in general
because the bias is governed by distributional properties of
Zobs , the random effect variables of those individuals with

an observed target variable value (see Eq. 14). We provide
some explanations for the observed relationship between the
missing data mechanism and the bias for our specific setup
in Appendix F.

Implications for the global fixed effects

We do not expect to see any bias in the point estimates of
the global fixed effects since both the cluster-specific fixed-
effects imputation model and the multilevel imputation
model provide unbiased point estimates of the true pop-
ulation parameters. This was confirmed in our simulation
study (results not shown for brevity). However, as Reiter
et al. (2006) and Andridge (2011) point out, the variances
of the global fixed effects should be overestimated if the
cluster-specific fixed-effects imputation approach is used.
Our simulation study also confirmed this finding. Figure 4
contains variance ratios for all global fixed effects for all
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Fig. 4 The variance ratio of the global regression parameters (=median of estimated variances of β̂ divided by the empirical variance of β̂)

simulation setups. The variance ratios are computed by
dividing the median estimated variance by the true variance
of the point estimates across the 1,000 simulation runs. Most
of the ratios are greater than 1 indicating that the variance is
generally overestimated leading to conservative point esti-
mates and an increased chance of type II errors. The few
cases in which the variance ratios are less than 1 seem to
be artifacts, since the variance ratios for the original data
before deletion (not reported) are even smaller in these
cases, indicating a general bias in the analysis procedure.
However, beyond confirming results previously discussed
in the literature, the figure also illustrates that there is a
close relationship between the biases in the random effects
variances and the biases in the global fixed-effects vari-
ances. As with the random effects, the biases in the variance
ratios decrease with increasing cluster size and increase
with increasing residual variance. As discussed above, these
results are to be expected as the multilevel imputation and
cluster-specific fixed-effects imputation become more sim-
ilar with increasing cluster size and decreasing residual
variance. The effect of the nonresponse mechanism s on the
bias needs some further explanations. Note that the nega-
tive relationship between s and the bias for the regression
coefficients of the intercept and W2 follows the relation-
ship found for the random intercept variances, whereas the
U-shaped relationship for the regression coefficients of W1

and the interaction between W1 and W2 mimics the rela-
tionship found for the random slopes variances. This can be
explained if we note that we can express the random slopes
model in Eq. (16) in a different way:

Yij = αj + βjW1ij + εij , with εij ∼ N(0, σ 2
ε )

(
αj

βj

)
∼ N

([
γ α
0 + γ α

1 W2j

γ
β

0 + γ
β

1 W2j

]
, �

)
. (20)

Rewriting the model like this is helpful because it illustrates
that there is a relationship between the random intercepts αj

and the coefficients γ α
0 and γ α

1 , and likewise a relationship

between the random slopes βj and γ
β

0 and γ
β

1 . Relating this
notation to the notation in Eq. 16, γ α

0 and γ α
1 are the regres-

sion coefficients for the intercept and W2, while γ
β

0 and γ
β

1
are the coefficients for W1 and the interaction between W1

and W2. This explains why the biases for the variance of the
coefficients of the intercept and W2 follow a similar pattern
as the bias of the random intercept variance. Likewise, we
better understand the relationship between the biases for the
variance of the coefficients of W1 and the interaction term,
and the bias of the random slopes variance. To our knowledge,
this topic has not been addressed in the literature so far and
determining the exact relationship between the two effects ana-
lytically would be an interesting topic for future research.
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Table 1 Estimates of the variance parameters for National Educa-
tional Panel Study data

parameter available case analysis fixed-effects imp. multilevel imp.

σ 2
0 0.0228 0.0310 0.0232

σ 2
1 0.0869 0.1167 0.0844

σ01 -0.0441 -0.0596 -0.0449

σ 2
ε 0.1056 0.1058 0.1057

Real data application

In this section, we evaluate whether our theoretical and
simulation-based findings are relevant in an applied setting.
An appropriate field of research where random effect vari-
ances are of particular interest is the evaluation of teacher
effectiveness (see e.g., Lenkeit 2012, Nye et al., 2004, or
more generally McCaffrey et al., 2004b). Thus, we use data
from the Starting Cohort 3 of the National Educational Panel
Study (Blossfeld et al., 2011). The NEPS, run by the Leibniz
Institute for Educational Trajectories, is an extensive study
in Germany that aims to measure the reasons and impacts of
educational decisions over the entire life course. To achieve
this goal, surveys are conducted in a multi cohort sequence
design in which six different cohorts are followed for sev-
eral years. The cohorts are selected to cover the entire life
span starting with an infant cohort, a kindergarten cohort, a
cohort of pupils in elementary school, etc. The final cohort
is an adult cohort that represents adults aged 23 to 64 by
the time of the first interview. The six starting cohorts were
recruited between 2009 and 2012 containing more than 60,000
target persons. 5th grade students comprise the Starting Cohort

3. Many performance related items have been administered
to these students, including two math competence tests in
years 2010 and 2012. Because the aim of this real data
application is not to draw conclusions from sophisticated
educational analyses, but to show the impact of the impu-
tation methods, we consider a simple model for students’
achievements in math competence tests:

math7ij = β0 + γ0j + math5ij · (β1 + γ1j ) + εij , (21)

where variable math5 is the 5th grade test score and math7
the test score in grade 7. We conditioned on those students
who had the same teacher in both years and only missing
values in math7. This resulted in n = 630 students overall
and 29 students having missing values in math7 (→ miss-
ing rate of 4.6%). We multiply (M = 50) imputed math7
using both methods (the cluster-specific fixed-effects impu-
tation and the multilevel imputation) and estimated the
multilevel model from Eq. 21 with lmer. To isolate the
teacher effect, several additional control variables would
normally be included on both levels of the model in practice
(see, for example, McCaffrey et al., 2004a). Since including
more variables will not provide additional insights regarding
the implications of the two imputation strategies, we keep
the model simple for illustrative purposes.

Because we only focus on those observations for which
missingness is limited to the dependent variable, we can
use available case analysis as a benchmark, since available case
methodswill provide unbiased estimates in this case (assum-
ing the model is correctly specified). The estimations of the
random effects variances in Table 1 are in line with the findings
from the theoretical section and the simulation study: after
the cluster-specific fixed-effects imputation the variance
estimates are recognizably higher while the estimates based
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comparing the variance partition coefficient (VPC)
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multilevel imputation

Fig. 5 The variance partition coefficient (VPC) for the range of x = math5 in the NEPS data
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Table 2 Point estimates and confidence interval (CI) properties of the
global fixed effects for National Educational Panel Study data

parameter point
estimate

0.025%-
quantile

0.975%-
quantile

CI-length

βaca
0 0.3830 0.3123 0.4537 0.1414

β
f ix

0 0.3808 0.3027 0.4589 0.1562

βmulti
0 0.3823 0.3105 0.4541 0.1437

βaca
1 0.2914 0.1563 0.4266 0.2703

β
f ix

1 0.2967 0.1473 0.4461 0.2988

βmulti
1 0.2924 0.1550 0.4298 0.2748

on multilevel imputation are very close to the benchmark
values based on available case analysis. The overestimation
after cluster-specific fixed-effects imputation is substantial
considering that less than 5% of the data were imputed. As
mentioned above, a commonly computed measure for the
impact of the clustering on the total variance is the intra-
class correlation (ICC). For models with more than only
random intercepts, the ”classical” ICC = σ 2

0 /(σ 2
0 + σ 2

ε ) is
no longer sufficient to summarize the contribution of the
clusters to the total variance. Goldstein et al. (2002) pro-
posed the variance partition coefficient (VPC). The VPC
is a function of the predictor variable x and the variance
components and shows the ’importance’ of the clusters for
different values of x:

vpc = σ 2
0 + 2 · σ01 · x + σ 2

1 · x2

σ 2
0 + 2 · σ01 · x + σ 2

1 · x2 + σε

(22)

Figure 5 shows the VPCs based on the available cases, the data
after the cluster-specific fixed-effects imputation and after the
multilevel imputation. One can see that the clusters would
be viewed as being more ’important’ under cluster-specific
fixed-effects imputation than under multilevel imputation.

Results for the global fixed effects are presented in Table 2.
The point estimates are almost identical for all methods.
Considering the uncertainty of the estimates as expressed
by the 95% confidence intervals, the difference between the
inferences based on the three different analysis strategies
is small, since the confidence intervals overlap to a large
extent. The last column of the table shows that the confi-
dence intervals for the global fixed effects are larger for
the cluster-specific fixed-effects imputation, which is also
in line with theoretical expectations.

Conclusion

Contributing to the discussion about suitable imputation
methods for hierarchical data, we present theoretical and

empirical evidence to the supposition that the cluster-
specific fixed-effects imputation is highly likely to bias
variance parameter estimates in a multilevel analysis model.
A simulation showed that the bias can be severe. Even
though the simulation study was limited to random inter-
cepts and random slopes, the theory holds for any number of
random effects variables (starting from only random inter-
cepts models and ending with models where each variable
is treated as random). Therefore, we generally advise using
multilevel imputation models. Even if there are only ran-
dom intercepts, including a random slope variable should do
no harm (”Consider all coefficients as potentially varying”,
Gelman and Hill 2006, p. 549).

The high variance in the cluster-specific effects under
a cluster-specific fixed-effects imputation also negatively
affects the coverage rates of the global fixed effects and
increases the probability of false conclusions. In a real
data application, we showed that even for a small missing
data rate (less than 5%) the results can substantially dif-
fer. This is a further reason to use multilevel models for
imputation.

A shortcoming of the multilevel imputation is the rela-
tively high runtime. While the cluster-specific fixed-effects
imputation took between 0.15 and 4 s (median 0.28) in our
simulation settings, the multilevel imputation took between
1.5 and 5.2 min (median 2.2). This can be a severe draw-
back if many variables need to be imputed in a dataset. A
second technical shortcoming of the multilevel imputation
is the need to monitor convergence, which is not needed for
the cluster-specific fixed-effects imputation as all posterior
distributions can be obtained in closed form.

As Eq. 14 showed, both imputation methods will pro-
duce similar (if not identical) results in three conditions:
large cluster sizes, large differences between the clusters,
and small residual variances. We cannot provide general
thresholds for these parameters to be ”large” or ”small,” but
if the researcher sees one (or better yet, as our simulation
showed: more) of these conditions met, s/he might consider
using a cluster-specific fixed-effects imputation instead of a
multilevel imputation model for convenience. This is espe-
cially relevant if there are many variables to impute and not
enough time to conduct multilevel imputations.

In this paper, we limited our analysis to missing val-
ues in the target variable as a starting point. Still, it would
be worthwhile to investigate the impacts of missing values
in the covariates. Grund et al. (2016) conducted a simu-
lation study for this scenario and found some results after
multilevel imputation to be biased. With the presumed gold
standard to be biased, analytic explanations are needed to
elucidate this phenomenon. Further research on higher level
models, comprising more than two levels, or cross-classified
clusters would also be beneficial.
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Appendix

To simplify all of the following equations, we define A :=
1/σ 2

ε · Zobs′
j Zobs

j and B := �−1. This allows us to write:

V ar
(
γ

f ix
j |.

)
= (A)−1

V ar
(
γ multi
j |.

)
= (A + B)−1. (23)

Appendix A

Following Drechsler (2015) we write φ′ = (γ ′, β ′) for the
set of cluster-specific and global effects in Eq. 4. R =
(Zind , X) is the n× ([J − 1] ·K +P −T ) matrix of regres-
sion variables, with Zind being the n × ([J − 1] · K) matrix
of intercept and slope dummies. Generally, for linear mod-
els it holds that φ|μ,R, σ 2

ε ∼ N(μ,� = σ 2
ε · [R′R]−1).

Let μ′ = (μ′
1, μ

′
2) be partitioned so that μ1 contains the

expected values for γ and μ2 contains the expected values
for β. We partition � in a similar way so that �11 consists
of a (J −1)·K×(J −1)·K matrix containing the covariance
matrix of the cluster-specific effects. Likewise, �22 is the
(P −T )×(P −T ) dimensional matrix containing the covari-
ance matrix of the global effects.With this partitioningwe have
(

γ f ix |μ,R, σ 2
ε

βf ix |μ,R, σ 2
ε

)
∼ N

([
μ1

μ2

]
,

[
�11 �12

�21 �22

]

= σ 2
ε ·

[
(R′R)11 (R′R)12
(R′R)21 (R′R)22

]−1
)

(24)

Since the joint distribution of the effects is multivariate
normal it holds that the conditional variance of the cluster-
specific effects given the global effects is

V ar(γ f ix |μ,R, σ 2
ε , βf ix) = �11 − �12[�22]−1�21

(25)

In order to simplify this equation we use Harville (1997,
Corollary 8.5.12 p. 100) which shows that for a nonsingular

matrix 1/σ 2
ε

[
(R′R)11 (R′R)12
(R′R)21 (R′R)22

]
and its inverse σ 2

ε ·
[

(R′R)11 (R′R)12
(R′R)21 (R′R)22

]−1

= � =
[

�11 �12

�21 �22

]
, partitioned

in the same way, it holds that �11 = σ 2
ε · [(R′R)11]−1 +

�12[�22]−1�21. Replacing this expression of �11 in Eq. 25
yields V ar(γ f ix |V obs, βf ix) = σ 2

ε · [(R′R)11]−1.
Multiplication rules for block matrices yield σ 2

ε · {([Zind,

X]′[Zind, X])11}−1 = σ 2
ε · {Z′

indZind}−1. For a cluster j

this means that V ar(γ
f ix
j |V obsβf ix) = σ 2

ε · (Z′
jZj )

−1.

Appendix B

Here we show that the conditional variance of each of the
cluster-specific fixed effects in the cluster-specific fixed-
effects imputation model is larger than the conditional
variance of the corresponding random effect in the multi-
level imputation model, i.e., diag[V ar(γ f ix |.)] > diag

[V ar(γ multi |.)]. To start our proof, we look at the additive
disparity of V ar(γ f ix |.) and V ar(γ multi |.).

V ar(γ multi
j |.) + � = V ar(γ

f ix
j |.) ⇔

� = V ar(γ
f ix
j |.) − V ar(γ multi

j |.) ⇔
� = A−1 − (A + B)−1 (26)

To show that diag[V ar(γ f ix |.)] > diag[V ar(γ multi |.)],
we need to show that � is positive definite since the main
diagonal elements of positive definite matrices are always
positive (Harville 1997, corollary 14.2.13 p. 214).

According to the definition of the Loewner order a Her-
mitian matrix M2 is Loewner larger than a Hermitian matrix
M1 (M2 >L M1) if the difference M2 − M1 is positive defi-
nite. It also holds that ifM2 >L M1 thenM−1

1 >L M−1
2 (see

e.g. Siotani 1967 eq. 3 p. 246 or Horn and Johnson 1990 the-
orem 7.7.4 p. 471). So to show that � is positive definite we
need to show that A−1 >L (A + B)−1 or equivalently that
A+B >L A. The last statement is trivially fulfilled because
the difference A + B − A = B is positive definite (because
B is the inverse of the positive covariance matrix � and the
inverse of a positive definite matrix is also positive definite
Harville 1997, corollary 14.2.11 p. 214).

Appendix C

To further understand which factors influence the difference
between V ar(γ f ix |.) and V ar(γ multi |.) it is informative to
identify the multiplicative factor H for which it holds that:

H · V ar
(
γ multi
j |.

)
= V ar

(
γ

f ix
j |.

)
. (27)
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Simple matrix manipulation reveals that

H(A + B)−1 = (A)−1 ⇔
H(A + B)−1 · (A + B) = (A)−1(A + B)

H = (A)−1A + (A)−1B

H = I + (A)−1B

H = I +
(
1/σ 2

ε · Zobs′
j Zobs

j

)−1
�−1

(28)

Appendix D

If Z is a n0×p data matrix then observing additional n1×p

data Znew results in the (n0 + n1) × p data matrix Z	 =(
Z

Znew

)
. According to the multiplication rules for block

matrices (see e.g., Harville 1997 section 2.2) it holds that

Z	′
Z	 = (

Z′ Z′
new

) (
Z

Znew

)
= Z′Z + Z′

newZnew.

(29)

Given the results inAppendixB it follows that
(
Z	′

Z	
)−1

<L

(
Z′Z

)−1. This shows that
(
Zobs′

j Zobs
j

)−1
decreases as nobs

j

increases.

Appendix E

The (1 − α)-confidence region for a p × p covariance
matrix can be represented as a p-dimensional ellipsoid (see
e.g., Press et al., 2007 or Scheffé 1999). An ellipsoid for a
matrix � is the set of points z �= 0 that fulfill the equa-
tion z′ · �−1 · z = c with c being a constant scalar. The
value of c can be used to define the (1 − α)-confidence
ellipsoid. Therefore we give c a subscript δ := 1 − α and
write cδ . If cδ increases the ellipsoid becomes larger (cov-
ers more area/volume). So a larger cδ means a higher level
of certainty. We will show that for any value of z the ellip-
soid equation for V ar(γ multi |.) will give a higher critical
value cδ than for V ar(γ f ix |.), i.e., z′ ·V ar(γ multi |.)−1 ·z =
cmulti
δ > c

f ix
δ = z′ · V ar(γ f ix |.)−1 · z ⇔ δmulti > δf ix .

To make this point clearer let us assume δmulti = 0.99 >

δf ix = 0.90. This would imply that only 1% of the data
drawn based on V ar(γ multi |.), but 10% of the data drawn
based on V ar(γ f ix |.), are expected to exceed the point z.
So for any value of δ the fix-ellipsoid fully encloses the
multi-ellipsoid. And if an ellipsoid E2, representing matrix
M2, fully encloses another ellipsoid E1, representing matrix
M1, one can say that values drawn from M2 vary more in
every possible direction than values drawn from M1. The
proof for our case is simple. It uses the result fromAppendix
B: V ar(γ multi |.)−1 >L V ar(γ f ix |.)−1 which is equivalent

to z′ · V ar(γ multi |.)−1 · z > z′ · V ar(γ f ix |.)−1 · z for any
z �= 0.

Appendix F

Here we want to provide explanations why the random
intercepts variance bias is negatively correlated with s (=
relationship of W1 and P(y = NA|W1)) and the ran-
dom slopes bias shows a U-shaped pattern for our specific
data setting. As mentioned in the analytical section, the
properties of Zobs

j (the observations of Zj for which Y is
observed after nonresponse was generated) influence the
(Zobs′

j Zobs
j )−1 part of the multiplicative difference between

V ar(γ multi |.) and V ar(γ f ix |.) (see also Equations 27 and
28 in Appendix C).

In our random slopes setting Z = (1, W1). This implies

that
(
Zobs′

j Zobs
j

)−1
becomes

(
nobs j ·

nobs j∑
i=1

[
W 2

obs 1ij

]
−

[nobs j∑
i=1

Wobs 1ij

]2)−1

·
( ∑nobs j

i=1

[
W 2

obs 1ij

]
− ∑nobs j

i=1 Wobs 1ij

− ∑nobs j

i=1 Wobs 1ij nobs j

)

(30)

The main diagonal elements in the second term of the prod-
uct together with the determinant (first term of the product)
in Eq. 30 govern the bias in the random intercepts and ran-
dom slopes. We can simplify (30) further by noting that the
determinant can be rewritten as (for readability we will drop
the indices i, j , and 1 from here):

nobs · ∑(
W 2

obs

) − (∑
Wobs

)2 = n2obs · var(Wobs), (31)

where var(Wobs) = 1/nobs ·∑(
Wobs − W̄obs

)2
. The proof

is straightforward if we notice that this empirical variance
can be rewritten as

var(Wobs) = 1/nobs ·
{∑(

W 2
obs

)−1/nobs · (∑
Wobs

)2}

= 1/nobs · ∑(
W 2

obs

) − 1/n2obs · (∑
Wobs

)2

⇒ n2obs · var(Wobs)= nobs · ∑(
W 2

obs

)−(∑
Wobs

)2

(32)

After this simplification, it can be seen that the main
diagonal elements of (Zobs′

j Zobs
j )−1 are

∑ (
W 2

obs

)
/(

n2obs · var[Wobs]
)
and (nobs · var[Wobs])−1.

We will start with the second component, the contribu-
tion to the random slopes bias. When the expected nobs

remains constant (as in our setting), the bias solely depends
on var(Wobs). Note that as |s| increases, it will be more
likely that those Y -values with W1 values in the tails of
the distribution of W1 will be deleted (see Fig. 1). For
symmetric distributions such as the normal distribution that
we use in our setting this implies that var(Wobs) will
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Fig. 6 Simulation of how
∑ (

W 2
obs

)
/
(
n2obs · var[Wobs ]

)
changes as s takes different values

decrease and var(Wobs)
−1 will increase and thus the bias

in the variances of the random slopes will increase. This
explains the U-shaped pattern seen in Fig. 3. Regarding
the contribution to the random intercepts bias, we find that
s has a negative relationship to the bias for our data set-
ting. But whether

∑(
W 2

obs

)
/
(
n2obs · var[Wobs]

)
is large

or small highly depends on Wobs . We simulated this ratio
for our data setup for various values of s. Figure 6 dis-
plays this ratio. The negative relationship between s and∑ (

W 2
obs

)
/
(
n2obs · var[Wobs]

)
is in line with our empirical

findings regarding the bias for the variance of the random
intercepts (see Fig. 2). However, unlike the U-shaped rela-
tionship between s and the bias for the variance of the slopes
that should hold for any random slopes model with a sym-
metric distribution of the slope variable, we emphasize that
the relationship between s and the variance of the random
intercepts is specific to this data setting and might well be
reversed in other data settings.
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Grund, S., Lüdtke, O., & Robitzsch, A. (2016). Multiple imputation of
missing covariate values in multilevel models with random slopes:
a cautionary note. Behavior Research Methods, pp 640–649,
https://doi.org/10.3758/s13428-015-0590-3.

Harville, D. A. (1997). Matrix algebra from a statistician’s perspective.
Springer.

Hedeker, D., & Gibbons, R. (1997). Application of random-
effects pattern-mixture models for missing data in longitudi-
nal studies. Psych Methods, 2(1), 64–78. https://doi.org/10.1037/
1082-989X.2.1.64.

Horn, R. A., & Johnson, C. R. (1990). Matrix Analysis, reprint
edn. Cambridge University Press, http://amazon.com/o/ASIN/
0521386322/.

Kenward, M. G., & Carpenter, J. (2007). Multiple Imputation: Cur-
rent Perspectives. Statistical Methods in Medical Research, 16(3),
199–218. https://doi.org/10.1177/0962280206075304.

Lenkeit, J. (2012). How effective are educational systems? A value-
added approach to measure trends in pirls. Journal for Educational
Research Online, 4(2), 143–173. http://www.j-e-r-o.com/index.
php/jero/article/view/317/157.
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Abstract

Applications of multiple imputation have long outgrown the traditional context of dealing

with item nonresponse in cross-sectional data sets. Nowadays multiple imputation is also

applied to impute missing values in hierarchical data sets, address confidentiality concerns,

combine data from different sources, or correct measurement errors in surveys. However,

software developments did not keep up with these recent extensions. Most imputation

software can only deal with item nonresponse in cross-sectional settings and extensions

for hierarchical data – if available at all – are typically limited in scope. Furthermore, to

our knowledge no software is currently available for dealing with measurement error using

multiple imputation approaches.

The R package hmi tries to close some of these gaps. It offers multiple imputation routines

in hierarchical settings for many variable types (for example, nominal, ordinal, or continuous

variables). It also provides imputation routines for interval data and handles a common

measurement error problem in survey data: Biased inferences due to implicit rounding of

the reported values. The user-friendly setup which only requires the data and optionally

the specification of the analysis model of interest makes the package especially attractive

for users less familiar with the peculiarities of multiple imputation. The compatibility with

the popular mice package ensures that the rich set of analysis and diagnostic tools and

post-imputation commands available in mice can be used easily once the data have been

imputed.

Zusammenfassung

Anwendungen von Multipler Imputation sind längst über den klassischen Kontext der Be-

handlung von fehlenden Beobachtungen in Querschnittsstudien heraus gewachsen. Heut-

zutage wird Multiple Imputation auch verwendet um fehlenden Werten in hierarchischen

Datensätzen zu imputieren, um Vertraulichkeits-Interessen zu begegnen, um Datensätze

aus verschiedenen Quellen zu kombinieren oder um Messfehler aus Erhebungen zu korri-

gieren. Die meiste Imputationssoftware kann allerdings nur mit fehlenden Beobachtungen

in Querschnittsdaten umgehen und Erweiterungen für hierarchische Daten - sofern über-

haupt vorhanden - sind typischerweise in ihrem Umfang begrenzt. Unserem Kenntnisstand

nach, ist aktuell keine Software für den Umgang mit Messfehlern, basierend auf Multi-

plen Imputationsmethoden, vorhanden. Das R-Packet hmi versucht einige dieser Lücken

zu schließen. Es bietet Multiple Imputationsroutinen in hierarchischen Settings für viele

Variablentypen (zum Beispiel nominal, ordinal oder stetige Variablen). Zudem stellt es Im-

putationsmethoden für Intervalldaten bereit und behandelt ein übliches Messfehlerproblem

in Befragungsdaten: Verzerrungen aufgrund impliziten Rundens der berichteten Werte. Der

nutzerfreundliche Aufbau, der nur die Daten und optional eine Spezifizierung des Analyse-

models benötigt, macht das Paket besonders attraktiv für Nutzer die weniger vertraut mit

den Besonderheiten von Multipler Imputation sind. Die Kompatibilität mit dem populären

Paket mice stellt sicher, dass der reichhaltige Satz an Analyse- und Diagnosewerkzeugen,
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und Befehlen für das Imputationsergebnis aus mice, einfach angewandt werden kann, so-

bald die Daten imputiert wurden.

JEL classification: C38; C83

Keywords: hierarchical data, multiple imputation, multilevel models, measurement error,

heaping, R
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1 Introduction

Forty years after Donald Rubin’s seminal paper (Rubin, 1978) which introduced the concept

of multiple imputation, the approach has been shown to be useful in many contexts going

far beyond the classical item nonresponse in cross sectional surveys for which it was origi-

nally proposed (Reiter/Raghunathan, 2007). Today, multiple imputation is used to deal with

nonresponse in hierarchical data sets (Carpenter/Kenward, 2013: chap. 9), address confi-

dentiality concerns by disseminating synthetic data instead of the original data (Drechsler,

2011), concatenate files from different data sources (Rubin, 1986; Rässler, 2003; Reiter,

2012), address measurement error in self-reported health information (Schenker/Raghu-

nathan/Bondarenko, 2010), handle changes in the coding of variables in longitudinal stud-

ies (Clogg et al., 1991; Schenker, 2003), or impute plausible values for coarse data (Tay-

lor/Schwartz/Detels, 1986; Heitjan/Rubin, 1990; Raghunathan et al., 2001). As discussed

in Heitjan/Rubin (1991) coarse data are data for which the true values are not observed in

a precise way. This includes missing data as a special case, but also rounding, grouping,

censoring and interval data. Examples of applications of multiple imputation for coarse

data include Gartner/Rässler (2005); Jenkins et al. (2011); Drechsler/Kiesl/Speidel (2015).

While classical imputation methodology as discussed for example in Rubin (1987) or van

Buuren (2012) is sufficient for some of these applications, adjusted methodology is re-

quired for others. However, although all major statistical software such as SPSS, Stata,
SAS, or R offer multiple imputation routines today, the available methodology is typically lim-

ited to the classical methodology for cross-sectional surveys. Some software also provides

methods for dealing with hierarchical data structures, but as we will illustrate in Section

2.6, current implementations are limited in scope. With the exception of the recently imple-

mented software package synthpop (Nowok/Raab/Dibben, 2016) which was specifically

developed for generating synthetic data sets for disclosure protection, no software exists to

our knowledge for applications such as the coarse data problem discussed above, which

require modifications of the traditional multiple imputation framework.

The R package hmi closes some of the gaps of currently available software by offering four

important contributions:

1. It offers imputation routines for hierarchical data using multilevel (mixed-effects) mod-

els for all variable types based on the sequential regression approach, which unlike

the joint modeling approach can also handle item nonresponse if random slope mod-

els need to be estimated (see Section 2.4 for details)

2. It provides routines for dealing with rounding in reported values based on the method-

ology proposed in Heitjan/Rubin (1991).

3. It offers routines for imputing plausible values if it is only known (for some of the

observations) that the exact value lies in certain intervals, for example if the data are

censored. Currently, such imputation routines are only available in Stata.

4. It allows to deal with item nonresponse, interval information and rounding within

the same variable simultaneously following the approach described in Drechsler/

Kiesl/Speidel (2015).

IAB-Discussion Paper 16/2018 7

86 5. Attached contributions



The package also offers imputation tools for “classical” missing data problems by call-

ing imputation routines available in the popular multiple imputation package mice (van

Buuren/Groothuis-Oudshoorn, 2011). Since the objects generated using hmi are struc-

tured similar to objects generated using mice (both are mids objects), the rich set of anal-

ysis and diagnostic tools and post-imputation commands available in mice can be used

easily once the data have been imputed. Furthermore, the package provides imputation

routines for semi-continuous variables, that is, variables which have a spike at one value

(typically zero), but can be considered continuous otherwise. These imputation routines

are available in several software packages, but are not offered in mice.

To facilitate the usage of the package for less experienced users, the selection of suitable

imputation models is highly automated, that is, the user only needs to provide the data.

The package will identify the most appropriate imputation models for each variable with

missing values using decision rules described in Section 5 of this paper. Additionally, the

user can specify the substantive model he or she wants to run on the imputed data set. In

this case hmi will use the same set of predictors and the same functional form as the sub-

stantive model for all imputation models in an effort to make the congeniality assumption

more plausible. As discussed in Meng (1994), congeniality between the imputation model

and the substantive model is important to avoid biased inferences based on the imputed

data. We illustrate in Section 2.3 that specifying the substantive model is especially impor-

tant if multilevel models will be fitted at the analysis stage since this will ensure that the

hierarchical structure of the data will also be taken into account at the imputation stage.

The package is available at https://cran.r-project.org/package=hmi.

The remainder of the paper discusses the main contributions of the package and provides

detailed illustrations on how the package can be used. Specifically, Sections 2 to 4 ad-

dress multiple imputation for hierarchical, interval and rounded data. Each section starts

by illustrating the inferential problems caused by the various data deficiencies followed by

a brief review of the required multiple imputation methodology for addressing the said prob-

lem. Limitations of currently available software and our contributions are also discussed.

Section 5 describes the hmi package in detail: all mandatory and optional arguments, the

internal checks, the handling of the model formula, the types of supported variables, and

the implemented convergence checks will be presented. In Section 6 we provide real data

applications to illustrate the implementation of the different features of the package. We

end with a conclusion.

2 Multiple imputation for hierarchical data sets

Hierarchical data sets are data sets in which individual records are nested within groups.

Typical examples include students in the same class or repeated measures of the same

individual. In such settings, the assumption of independent observations, needed for the

classical linear regression model, does not hold since records belonging to the same group

tend to be more homogeneous than records belonging to different groups. To account for

these cluster effects, multilevel models (also referred to as random effects or mixed effects

models depending on the field of study) are often employed. In the following, we provide a
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brief summary of the methodology behind multilevel modeling starting with multilevel linear

models for continuous variables. Then, we discuss extensions to multilevel generalized

linear models for any variable type from the exponential family. A more detailed introduc-

tion can be found in any textbook on multilevel modeling, for example in Raudenbush/Bryk

(2002). The brief overview will form the basis for our discussion of appropriate imputa-

tion strategies for hierarchical data and details about their implementation and available

software in Sections 2.3 to 2.7.

2.1 Multilevel linear models

Paraphrasing from Speidel/Drechsler/Sakshaug (2017), multilevel linear models assume a

linear relationship between the continuous target variable Y and some covariates X and

Z. The effect of X on Y is governed by some global fixed effects β; the effect of Z on Y by

some cluster specific random effects γ. Often Z is a subset of X, meaning that variables

that are assumed to have a random effect are also included as fixed effect variables in the

model.

The standard multilevel model has the form

yij =xijβ + zijγj + εij ,

γj ∼N(0, Σ),

εij ∼N(0, σ2),

(1)

with j = 1, . . . , J being the index for the clusters, i = 1, . . . , nj being the index for the units

belonging to cluster j, and nj being the number of observations in cluster j. The parameter

β contains the global fixed effects, similar to the regression coefficients in classical linear

regression models. The parameters γj are the cluster specific random effects, which are

assumed to follow a normal distribution with zero mean vector and variance matrix Σ.

These random effects and the normality assumption for them is a key difference to the

classical linear regression model. The parameter εij is the error term which is normally

distributed with zero mean and variance σ2, which is constant for all clusters.

Multilevel linear models can be generalized to more than two levels and residual variances

being heteroscedastic across the clusters. Since hmi can only handle two levels of hierar-

chy and homoscedastic residuals at the moment, we do not cover these extensions here.

The interested reader is referred to Raudenbush/Bryk (2002) or Snijders/Bosker (2011) for

more details on these topics.

2.2 Multilevel generalized linear models

The step from multilevel linear models to multilevel generalized linear models (mglm) is

analogous to the step from classical linear models to generalized linear models (glm). Both

enable model estimation for variables from the exponential family using a linear predictor

l and a link function f such that E(Y ) = µ = f−1(l). The major difference between

mglm and glm is that the linear predictor in mglm also has random effect variables Z with
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regression coefficients γ = {γ1, . . . , γJ} leading to l = Xβ+Zγ+ε. These random effects

and their covariance matrix Σ also have to be considered when estimating the model.

The link function is defined according to the type of variable that is modeled. For example

for continuous variables the identity link is used and for count data the log-link. In general

no closed form solution for the parameter estimates exist, so Markov Chain Monte Carlo

(MCMC) methods or other iterative procedures are required for estimation (Gelman/Hill,

2006; Hadfield, 2010).

2.3 Dealing with missing values in hierarchical data

Hierarchical data are not spared from nonresponse and multiple imputation can be a con-

venient strategy to address this problem. Several researchers have shown that ignoring the

hierarchical structure at the imputation stage will lead to biased inferences when analyz-

ing the data (Reiter/Raghunathan/Kinney, 2006; van Buuren, 2011; Enders/Mistler/Keller,

2016; Zhou/Elliott/Raghunathan, 2016; Lüdtke/Robitzsch/Grund, 2017). Furthermore, ac-

counting for the clustering by adding indicator variables for the clusters (fixed effects mod-

eling) will still introduce bias if the analysis is based on a multilevel model (Taljaard/Don-

ner/Klar, 2008; Andridge, 2011; Drechsler, 2015; Speidel/Drechsler/Sakshaug, 2017). To

avoid this bias due to uncongeniality between the imputation and the analysis model, all

manuscripts suggest using multilevel models also at the imputation stage.

2.4 Multiple imputation using multilevel models

With multiple imputation missing values are imputed multiply (M ≥ 2 times) to be able to

take the uncertainty from imputation into account. The imputed values are random draws

from the distribution of the missing data given the observed data. Let D = {Dobs, Dmis}
denote the data D separated into an observed part (Dobs) and a missing part (Dmis) and

let θ contain the parameters which govern the distribution of D. To obtain approximate

draws from f(Dmis | Dobs) multiple imputation repeatedly applies the following two steps:

1. Draw a new set of parameters θ? from their posterior distribution given the observed

data: f(θ | Dobs).

2. Draw replacements for the missing values from the predictive distribution of the miss-

ing data given the observed data and the drawn parameters from the previous step:

f(Dmis | θ?, Dobs).

Valid inferences based on the imputed data can be obtained using the generic inferential

procedures first described in Rubin (1978). For further details regarding the general prop-

erties of multiple imputation we refer to any textbook on multiple imputation, for example

Rubin (1987); van Buuren (2012); Carpenter/Kenward (2013).

As pointed out above, if the model to be estimated on the imputed data is a multilevel

model, a similar model specification should be used at the imputation stage to ensure

unbiased results. Thus, for continuous variables the imputation model should follow the
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model specification given in Equation (1) and the two generic multiple imputation steps

described above consist of the following two steps:

1. Draw a new set of parameters θ? = {β?, γ?, Σ?, (σ?)2} from their posterior distri-

bution.

2. Generate imputed values by drawing from

yimp
ij = ximp

ij β? + zimp
ij γ?j + εij

? ε?ij ∼ N(0, (σ?)2), (2)

where the superscript imp identifies all records for which Y is imputed. Unlike in the clas-

sical linear regression case, no closed form solutions exist for the posterior distribution

of the parameters. Thus, Markov Chain Monte Carlo methods or other approximations

(Jolani, 2018) are generally required to update the parameters. We refrain from providing

the details of the iterative procedure here for brevity. The interested reader is referred to

Goldstein (2011) for a detailed description of Gibbs sampling methods for hierarchical data

and to Carpenter/Kenward (2013: chap. 9) and Drechsler (2015) for applications in the

missing data context.

2.5 Joint modeling vs. sequential regression for multilevel multiple imputa-
tion

Two general strategies exist for imputing missing values if more than one variable is af-

fected by nonresponse: joint modeling and sequential regression. The joint modeling

approach specifies a joint distribution for all variables with missing data (potentially con-

ditioning on fully observed variables) and draws imputed values based on this distribution.

For example, if all variables to be imputed are continuous, a multivariate normal distribu-

tion is typically specified for those variables affected by nonresponse. A major drawback

of the joint modeling approach in the multilevel context is that it cannot be used if miss-

ingness also occurs in the random slope variable(s) (Carpenter/Kenward, 2013; Enders/

Mistler/Keller, 2016). Furthermore, the specification of a joint distribution can be difficult, if

different variable types need to be modeled.

The sequential regression approach (also known as chained equations or fully conditional

specification) does not require modeling the joint distribution directly. Instead, conditional

distributions are specified for each variable to be imputed. The variables are imputed

sequentially, conditioning on the other variables in the data set. However, some of the

predictors in the imputation model might themselves contain imputed values. Thus, the

model estimates will change if these imputed values are updated. To account for this, the

procedure of sequentially imputing each variable has to be repeated several times, until the

draws from the conditional distribution converge to draws from the implicitly specified joint

distribution (see Raghunathan et al. (2001) for further details on the sequential regression

approach).

A downside of the approach is that convergence is only guaranteed if this joint distribution

exists. However, Liu et al. (2014) and Zhu/Raghunathan (2015) show that the joint distri-

bution will exist under rather general conditions and even if this is not the case, inferences
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based on the imputed data will still be consistent as long as the conditional distributions

are correctly specified.

2.6 Existing imputation routines for hierarchical data and their limitations

To our knowledge the only R (R Core Team, 2016) packages allowing hierarchical multiple

imputation are jomo (Quartagno/Carpenter, 2018), mice (van Buuren/Groothuis-Oudshoorn,

2011), micemd (Audigier/Resche-Rigon, 2018) and pan (Schafer, 2016). Currently, mice is

limited to continuous variables for hierarchical settings and cannot impute other variable

types using a multilevel model. micemd also provides multilevel imputation functions for bi-

nary and integer variables, but not for categorical variables with more than two categories.

A downside of jomo and pan is the fact that they rely on the joint modeling approach, with

the drawbacks mentioned in the previous section.

Imputation routines based on multilevel models have also been developed for other statis-

tical software packages: For SAS the external macro MMI_IMPUTE (Mistler, 2013) can be

used. Mplus (Asparouhov/Muthén 2010) and the stand alone software REALCOM-IMPUTE
also offer some multilevel multiple imputation routines. All of these imputation routines also

use the joint modeling approach. To our knowledge, the only other software allowing multi-

level imputation based on the more flexible sequential regression approach is the recently

released standalone software blimp (Enders/Keller/Levy, 2017).

2.7 Our contribution for the imputation of hierarchical data

As mentioned in the introduction, hmi is designed to provide multilevel imputation routines

for many relevant variable types, including semi-continuous variables based on the flexible

sequential regression approach. Furthermore, it also offers single level models for all types

of variables, for situation where a multilevel model is not applicable.

If an analysis model is specified, the package will automatically use the same set of pre-

dictors and the same functional form as the substantive model for all imputation models

to avoid introducing bias in the analysis, because relationships which are important to the

analyst are not reflected in the imputation models. If no analysis model is given, all vari-

ables are imputed using single level models by default. However, if desired, the user can

manually specify which imputation models should be used for each variable.

For single level imputation, the package relies on the imputation routines implemented in

mice. Own code is used for all multilevel imputation routines. The draws from the posterior

distribution of the parameters of the multilevel models are obtained using MCMC methods

implemented in the MCMCglmm package (Hadfield, 2010).

If multilevel imputations are employed, the package also stores the model parameters at

each iteration of the MCMC chains, to enable the users to monitor the convergence of

the chains. The users can either extract this information to run their own convergence

diagnostics or they can rely on the checks implemented in the package. Per default the

package runs Geweke’s stationarity test (Geweke 1992) on each chain, plots those chains
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that failed the test and provides some summary information on the number of chains which

failed the test (see Section 5.8 for details).

3 Multiple imputation for interval data

Interval data (sometimes called bracketed response) comprise all data for which an interval

covering the true value is given instead of the exact value. According to this definition both,

grouped and censored data can be treated as interval data. With grouped data, a set

of precise observations is grouped into a single response group. For example in cancer

research the number of positive lymph nodes might only be collected in categories 0, 1-

3, 4-9 and 10+ (Royston, 2007) or age might only be reported in five year intervals for

confidentiality reasons. Grouped data can also arise if surveys aim to maximize response

rates for sensitive or difficult questions. For example, in the Survey of Consumer Finances

(SCF) range cards are shown to respondents who refuse to provide information regarding

their exact income, asking them to pick one of the ranges depicted (e.g. 0-5,000 $) or

to pick a category following a decision tree (Kennickell, 1991). A similar procedure is

implemented in the National Health Interview Survey (NHIS), where initial nonresponders

to the question regarding the yearly income are asked whether their income is above or

below 20, 000 USD and in a next step a range card with 44 income categories is shown

(Schenker et al., 2006). The German Panel Study Labour Market and Social Security

(PASS) also asks initial nonresponders consecutive questions about intervals covering the

true income (Trappmann et al., 2010). These approaches help to collect at least some

information for respondents initially refusing to provide an answer (Drechsler/Kiesl/Speidel,

2015) or selecting “don’t know” for the exact income question (Kennickell, 1996).

Censoring refers to the situation in which values above (or below) a given threshold are not

observed. The only information available is that the true value must be above (or below)

the known threshold. Censoring from the left typically arises in situations in which technical

equipment will not detect the measure of interest if its concentration is below a certain limit.

For example, in the study presented in Pilcher et al. (2007), the number of HI viruses in

human blood is only measurable once it is above a given threshold of detection. Censoring

from the right often occurs in public use files, in which top coding is applied to reduce the

risk of re-identification. This is for example done in the US-American Current Population

Survey (CPS) (Larrimore et al., 2008). An example of right censoring in biology is the time

to seed germination as the time it takes for a seed to germinate can be longer than the

duration of the study (Scott/Jones, 1990).

3.1 Analyzing interval data

Obtaining valid inferences if only interval information is available for (parts of) some of the

variables can be complex. The most common strategy is to adjust the likelihood accord-

ingly. For example, in linear regression models, the well known tobit model (Tobin, 1958)

can be used to account for censoring in the dependent variable. This approach can easily

be extended to other forms of interval data but iterative procedures are typically required
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to find the maximum likelihood estimates in this case. Since most software packages do

not offer routines for dealing with interval data beyond the tobit model, some applied re-

searchers rely on naive approaches for analyzing the interval data: A common approach is

to ignore the interval information completely, using only those observations for which exact

information is observed. This approach is always inefficient, since available information is

not used. It can also introduce bias, if those units that only provide interval information dif-

fer form those units which provide exact information. In fact, Heeringa/Little/Raghunathan

(1997) showed that the tendency to only report intervals for income increases with income.

Thus, results solely based on the exact reports are likely to be biased.

To simplify the analysis for applied researchers, imputation approaches can be used to

generate plausible values given the interval information. This offers the advantage that the

analysts no longer need to find appropriate ways for incorporating the interval information.

They can rely on standard analysis models using the plausible values for inference. How-

ever, just like in the standard nonresponse context, care needs to be taken to ensure that

valid inferences can be obtained from the imputed data.

For example, a naïve imputation approach which is sometimes applied in practice uses the

midpoint or the upper bound of each reported interval as the imputed value (Law/Brookmeyer,

1992; Dorey/Little/Schenker, 1993). The data are then analyzed treating the imputed val-

ues as the true exact values. These approaches are valid only in very limited settings since

they will generally underestimate the variance in the imputed data (Law/Brookmeyer, 1992;

Kim/Xue, 2002).

To fully account for the uncertainty resulting from the fact that only intervals instead of

exact values are observed initially, multiple imputation approaches are required which gen-

erate imputations by drawing from the conditional distribution of the exact values given the

interval information (and additional information from other variables available in the data

set).

Imputation approaches have been used for several data sets to facilitate the analysis for

the user. For example, since 1995 the Survey of Consumer Finances generates imputed

income values by drawing from truncated normal distributions using the bounds of the

reported intervals as truncation points.

An application of the joint modeling approach for imputation of interval data is discussed

in Heeringa (1993). The author imputed interval and missing data in the Health and Re-

tirement Survey (HRS) using the general location model. One major disadvantage of the

general location model is that the multivariate normal distribution needs to be estimated

for each cell of the table spanned by crossclassifying all categorical variables. Thus, the

approach can only be used if the number of categorical variables is very limited to ensure a

sufficient number of observations for estimating the normal distribution within each cell. A

second problem can be sparse cells in the interval variable, making the imputation model

unreliable. The author noticed this problem especially for the largest income category

which typically included only few, very wealthy individuals. The true income distribution in

this category also might be very skewed, violating the normality assumption.
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For settings with ordered income categories affected by item nonresponse, Bhat (1994)

proposed an imputation method modeling the income distribution and the response proba-

bilities jointly using a selection modeling approach.

Raghunathan et al. (2001) describes a general sequential regression approach for inter-

val data. Plausible values are generated by drawing from truncated normal distributions.

The parameters for the model are estimated using those observations for which an exact

value is available. New parameters for the truncated normal model are drawn using sam-

pling/importance resampling (SIR, Rubin 1988). This approach is also implemented in the

multiple imputation software IVEware (Raghunathan et al., 2016). The software was also

used to impute plausible values for interval answers in the National Health Interview Survey

(NHIS), (Schenker et al., 2006).

Royston (2007) implemented an imputation model for interval data for Stata. He extended

the approach of Raghunathan et al. (2001) by also using the information from the respon-

dents that only provided an interval when estimating the parameters of the imputation

model. To obtain parameter estimates the joint likelihood of the income of the exact re-

porters and the income of the interval reporters is maximized under the implicit assumption

that the conditional distribution of the true income given the covariates in the model is the

same for both groups. Instead of using SIR, draws from the posterior distribution of the pa-

rameters are only approximated by drawing from a multivariate normal distribution centered

around the maximum likelihood estimates of the parameters. Compared to the approach

of Raghunathan et al. (2001) this strategy offers the advantage that it uses all available

information and that it can also be used if only interval information is available.

A similar approach was later used by Drechsler/Kiesl/Speidel (2015) for simultaneous im-

putation of interval, rounded, and missing data. For interval data without rounding, the

approach simplifies to the method described by Royston (2007) and is separately imple-

mented in hmi.

Several (multiple) imputation approaches have also been proposed for the special case of

survival data (Taylor/Schwartz/Detels, 1986; Muñoz et al., 1989; Taylor et al., 1990; Dorey/

Little/Schenker, 1993). In survival analysis censoring is a common problem since for those

units that entered a certain state of interest (for example unemployment) previous to the

start of the study or are still in that state at the time the study is terminated, the true time

of entry or exit is unknown. Imputation routines for survival data differ systematically from

the imputation routines for interval data in other data sets since survival models need to

be used for imputation to ensure congeniality between the imputation and the analysis

model. Multiple imputation routines for this special type of data are implemented in the R
package icenReg (Anderson-Bergman, 2017). Imputations in icenReg can be based on

proportional hazards, proportional odds or accelerated failure time models. Since icenReg
already provides a convenient tool for dealing with survival data, we did not implement

these routines in hmi and we limit the description of the imputation methodology in the

next section to applications outside the survival analysis context. The interested reader is

referred to Grover/Gupta (2015) or Anderson-Bergman (2017) for details regarding impu-

tation routines for survival data.
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3.2 Methodology of multiple imputation for interval data

Let y = {y1, . . . , yn} be the realizations of the variable of interest– possibly transformed to

fulfill the normality assumption of linear regression models – for which only interval infor-

mation is available for some or all of the n observations in the data. Let x = {x1, . . . , xn}
be the realizations of any other variables X available in the data set which might help to

predict the values of y. We assume that

Y |X ∼ N(Xβ, σ2) (3)

If exact values would be observed for all records, the likelihood of the model parameters

would be

L(β, σ2|y, x) =
n∏

i=1

f
(
yi, µi = x′iβ, σ

2
)

(4)

with f being the density of a normal distribution.

If only interval information is available for some of the respondents, we need to introduce

some additional notation. Let Ii be an indicator function that equals zero if exact information

is available and equals one if only interval information is available for individual i (the

interval information includes missing data as a special case with interval bounds −∞ and

+∞). Let yi and yi be the lower and upper bound of the interval for unit i. The extended

likelihood that also takes the interval information into account is given by

L(β, σ2|y, x) =
n∏

i=1

(
(1− Ii)f(yi, x

′
iβ, σ

2) + Ii
[
F (yi, x

′
iβ, σ

2)− F (yi, x
′
iβ, σ

2)
])
, (5)

with F being the cumulative distribution function of the normal distribution. Maximizing

this likelihood will provide estimates for the parameters θ = {β, σ2}. To approximate a

draw from the posterior distribution of f(θ|y, x) under the assumption of flat priors for all

parameters, we can draw from

θ? ∼MVN(θ̂, I(θ̂)), (6)

where θ̂ contains the maximum likelihood estimates of θ, and I(θ̂) is the negative inverse

of the Hessian matrix of the log-likelihood with θ̂ plugged in.

Plausible values for interval respondents can be imputed by drawing from a truncated nor-

mal distribution Nt(µ, σ
2) with µ = x′β?, σ2 = (σ?)2, where β? and (σ?)2 are the parame-

ters drawn form the approximate posterior distribution as described above. The truncation

points are given by the bounds of the reported interval. Imputations for those respondents

that refused to provide any information are obtained by drawing from a normal distribution

with parameters µ = x′β? and σ2 = (σ?)2.
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3.3 Our contribution for the imputation of interval data

To our knowledge, imputation routines for interval data following the procedures described

above are currently only available in Stata. For the special case of survival data imputa-

tion routines following a completely different methodology are available in the R package

icenReg by Anderson-Bergman (2017). The hmi package is the first R package to offer

general imputation routines for interval data beyond the survival data context. The pack-

age also provides a new solution for storing information on lower and upper bounds of the

interval information in one variable together with a set of functions for handling interval

data.

The idea is to store the bounds in a character variable separated by a semicolon. Such an

interval object can be generated using generate_interval or split into its lower and upper

bounds by split_interval. See Section 5.5 for details and Section 6.2 for examples.

4 Multiple imputation for data affected by heaping

Another form of coarse data are data for which the reported values are implicitly rounded.

The rounding can either be identical for all individuals (for example if individuals round

off their age), or subject to different rounding degrees. Many individuals rounding to the

same value lead to heaps in the empirical distribution of the data. Therefore, this form of

rounding with unknown rounding degrees is often referred to as heaping in the literature.

It typically occurs, if the respondent is unwilling or unable to provide an exact value and

instead reports a value which is a multiple of some common rounding base to implicitly

express his or her uncertainty regarding the estimate. In many cases, multiples of 10, 100,

or 1,000 are used. In other situations, the respondent uses a higher level of aggregation

(such as years instead of months or weeks instead of days) for the estimate. For exam-

ple, Heitjan/Rubin (1990) studied reported ages for young children in Tanzania and noted

several heaps at certain values, such as 6 or 12 months. Huttenlocher/Hedges/Bradburn

(1990) found heaps at multiples of seven for questions which asked how many days ago an

event took place. Wang/Heitjan (2008) identified several heaps at multiples of 20 in ques-

tions regarding cigarette consumption because the common pack of cigarettes contains 20

cigarettes.

Table 1 taken from Drechsler/Kiesl/Speidel (2015) illustrates the problem using reported

monthly household income in the German panel study Labour Market and Social Security

(PASS) (Trappmann et al., 2010) for the year 2008/2009. The table provides the percent-

age of the reported monthly income values that are divisible by a given round number. It

seems that most respondents tend to round their income. More than 60 percent of the

reported values are divisible by 100 and less than 16 percent of the values are not divisible

by 5. Czajka/Denmead (2008) report similar problems for the American Community Survey

and the Current Population Survey.

The major problem with heaping is that inferences will be biased if the reported values are

treated as face value (Hanisch, 2005). For example, Drechsler/Kiesl (2016) illustrate that
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Table 1: Percentage of reported monthly household income values that are divisible by a
given round number in the PASS survey for the year 2008/2009.

Income divisible by 1,000 500 100 50 10 5
Relative frequency (%) 13.97 23.94 61.57 69.58 80.71 84.13

Source: PASS data, own calculations

important policy measures such as the poverty rate can be substantially biased if heaping

in the reported income is not taken into account.

4.1 Analyzing rounded data

Starting with Sheppard (1898) several methods have been proposed to account for round-

ing at the analysis stage (see for example Hanisch 2005 or Schneeweiss/Komlos/Ahmad

2010 for a review). However, most of the rounding literature assumes symmetric rounding

intervals that can be derived directly from the reported value. For example, if distance is

reported in kilometers, it is assumed that the true distance must be in the interval reported

distance ± 500 meters. However, this does not generally hold for heaping. As illustrated

below, the rounding interval can not be inferred directly with data affected by heaping.

Instead of accounting for the rounding at the analysis stage multiple imputation method-

ology can be used to account for the rounding at the data processing stage. A multiple

imputation strategy to obtain plausible values for the true values based on the reported

values accounting for the uncertainty from rounding was first proposed by Heitjan/Rubin

(1990) for age data affected by heaping. Related approaches were later used for self-

reported cigarette counts (Wang/Heitjan, 2008), rounded unemployment durations (van

der Laan/Kuijvenhoven, 2011) and self-reported income (Drechsler/Kiesl/Speidel, 2015;

Drechsler/Kiesl, 2016; Zinn/Würbach, 2016).

4.2 Methodology of multiple imputation for data affected by heaping

There is an important difference between interval observations treated in Section 3 and

rounded observations: With interval observations the interval in which the true value must

lie is known. This is not the case for rounded observations. For example, if the reported

income is 1,800, we do not know whether this is the exact true value, or if the true value

has been rounded to the closest 5, 10, 50, or 100. To account for this uncertainty, we also

need to model the rounding process.

The methodology presented in this section is based on the ideas first discussed in Heit-

jan/Rubin (1990). We summarize the main ideas of the approach here borrowing heavily

from Drechsler/Kiesl (2016). For further details we refer to Heitjan/Rubin (1990) or Drech-

sler/Kiesl (2016).

To be able to account for the heaping in a variable, two models need to be specified: one

model for the variable of interest and one model for the rounding behavior. Let Y be the

variable of interest. Similar to Section 3 we assume that the conditional distribution of Y
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given some covariates X is given as

Y |X ∼ N(Xβ, σ2) (7)

To model the rounding behavior, an ordered probit model can be specified, i.e., a nor-

mally distributed latent variable G is assumed which may (linearly) depend on Y and some

covariates Z (where some or all components of Z might be in X and vice versa):

G|Y,Z ∼ N(γ0 + Y γ1 + Zγ2, τ
2). (8)

The thresholds of the ordered probit model separate the different degrees of rounding. For

example, if the assumed possible degrees of rounding are 1, 10, 50, and 100, an ordered

probit model with four categories would be estimated.

Based on these model assumptions, the joint distribution of Y and G can be specified.

The set of parameters to be estimated is given by Ψ = (β, σ2, γ1, γ2, k1, ..., kp−1), where

k1, ..., kp−1 denote the thresholds of the probit model assuming p possible degrees of

rounding (note that γ0 is fixed at 0 and τ2 at 1 to make the ordered probit model identi-

fiable). For each individual i, i = 1, . . . , n, with n being the sample size, let si denote the

rounded value which is observed instead of the true yi, and s = (s1, . . . , sn). The like-

lihood function for Ψ given si and covariates xi, zi (assuming independent observations)

may then be written as

L(Ψ|s, x, z) =
∏

i

f(si|xi, zi,Ψ)

∝
∏

i

∫∫

A(si)

f(g, y|xi, zi,Ψ)dydg,
(9)

where A(si) is the set of (g, y) that are consistent with an observed si. The parameter

vector Ψ can be estimated by maximizing L(Ψ|s, x, z) using numerical methods.

To generate imputations of Y , the first imputation step (drawing a new set of parameters

from their joint posterior distribution) can again be approximated by drawing from

Ψ? ∼MVN(Ψ̂, I(Ψ̂)), (10)

where Ψ̂ contains the maximum likelihood estimates of Ψ, and I(Ψ̂) is the negative inverse

of the Hessian matrix of the log-likelihood with Ψ̂ plugged in.

For the second imputation step (generating imputed values for Y ) a simple rejection sam-

pling approach is implemented:

1. Draw candidate values for (yimp
i , gi) from a truncated bivariate normal distribution

using parameters from Ψ?, where the truncation points are given by the maximal pos-

sible degree of rounding given the observed value si (for example, for an observed

income value 850 with possible degrees of rounding 1, 10, 50, 100, and 1,000, yi is

bounded by 825 and 875 and gi has to be in ]−∞, k?3[).
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2. Accept the drawn values for yi as imputation value if they are consistent with the

observed rounded value, i.e., when rounding the drawn value for yi according to the

drawn rounding indicator gi gives the observed value si.

3. Otherwise draw again.

4.3 Our contribution for the imputation of data affected by heaping

The R package simPop (Templ et al., 2017) provides a function for generating plausible

values if heaps only occur at multiples of 5 or 10. However, no other rounding degrees

can be considered and no covariates can be incorporated into imputation model. hmi
provides a more general imputation routine for variables affected by heaping following the

methodology presented above. With hmi flexible degrees of rounding can be specified

and covariates can be incorporated in both, the model for the rounding process and the

imputation model. The package will declare variables to be affected by heaping if certain

criteria are met, but it is also possible for the user to manually decide, which variables are

affected. For details how to register variables accordingly see Section 5.1 and the Rounded

continuous variables paragraph in Section 5.5.

It is also possible to use hmi for dealing with situations in which missing observations, in-

terval observations and rounded observations occur simultaneously. This will typically be

the case for surveys asking for income or other sensitive questions. Since nonresponse to

the income question tends to be high, it is common practice to ask respondents whether

their income lies in certain intervals if they are unwilling or unable to provide exact income

values. In this situation three potential outcomes are possible: the respondent remains un-

willing to provide any information at all and thus the income value is missing. Alternatively,

the respondent might not provide an exact value but might be willing to indicate an interval

in which his or her income lies. Finally, the respondent might report a supposedly exact

value, which considering Table 1 will still be a rounded estimate of the true income in many

cases. To deal with such a situation the likelihood function in Equation (9) needs to be

extended to also account for the interval information:

L(Ψ|s, x, z) ∝
n∏

i=1

{
(1− Ii)

∫∫

A(si)

f(g, y|xi, zi,Ψ)dydg+

Ii

[
F (yi, µi = x′iβ, σ

2)− F (y
i
, µi = x′iβ, σ

2)
]}

(11)

Imputed values for the interval data can be obtained by drawing from a truncated distribu-

tion as described in Section 3. See Drechsler/Kiesl/Speidel (2015) for an application and

for further details regarding the imputation procedure. To our knowledge, hmi is the only

imputation routine which is able to simultaneously impute rounded, missing and interval

observations.
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5 Software

The main function of the package hmi is the wrapper function called hmi. It performs all

input checks, data preparations, calls of different imputation functions depending on the

type of variable to be imputed and generates the output. In the simplest case the user just

passes her or his data to hmi. In this case all variables with missing values are imputed

based on a single level imputation model including all other variables in data as predictors.

Under this scenario, the package works similar to other multiple imputation packages in R
such as mice or mi (Su et al., 2011). The full flexibility of the package is unleashed, if the

user additionally passes her or his (multilevel) analysis model to hmi and/or makes further

specifications.

5.1 Input

These are the arguments which can be specified with hmi:

data: The (partially observed/rounded) data set specified as a data.frame. Data

in the matrix format are converted into a data.frame. For multilevel imputation the

data have to be in the long format, meaning that observations belonging to the same

cluster have to be stacked in rows and a cluster indicator needs to be available. Data

in the wide format have to be converted to the long format using for example the

packages reshape2 (Wickham, 2007) or tidyr (Wickham/Henry, 2018).

model_formula: This argument requires a formula representing the desired analysis

model which should be run once the data have been imputed. If model_formula is

specified, hmi will try to set up imputation models which are in line with this model.

In the multilevel case model_formula is used to identify fixed effects and random

effects covariates and the cluster indicator. See Section 5.3 for details.

family: A family object supported by glm (resp. glmer). This argument is not

needed in the imputation process, it only facilitate the automated pooling (see Sec-

tion 5.9) when the dependent variable in model_formula is not continuous. For

example, for count data the appropriate call would be family = "poisson". Setting

the family argument will ensure that the correct model is used when hmi calculates

the appropriate multiple imputation inferences for the specified analysis model.

additional_variables: With this argument the user can specify variables (sep-

arated by +, e.g. "x8 + x9") which should be included in the imputation mod-

els beyond those variables already included in the analysis model as specified in

model_formula. Instead of using additional_variables the user might extend

the model_formula and run a reduced analysis model with hmi_pool (or use the

analysis tools provided by mice).

list_of_types: If users are not satisfied with the automatic classification of the

variable types by hmi (see Section 5.5), they can specify a list containing their own

classifications. For example a user might want to treat a variable as continuous while
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it was identified as count data (imputations would then be based on a linear regres-

sion model in this case instead of the Poisson model which is the default for count

data). The explicit specifications in list_of_types are binding for hmi and overrule

all other implicit specifications in any other attribute. For example, only missing val-

ues will be imputed in a variable specified to be continuous even if rounding degrees

and/or a rounding formula are specified for this variable. To change this, the variable

would need to be explicitly specified as rounded continuous in list_of_types. The

list contains elements, named like the variables. Each element is a character of one

keyword (e.g. list_of_types = list(x1 = "cont", x2 = "categorical")) to

denote the imputation routine that shall be used for this variable. See Section 5.5 for

all supported keywords and Section 5.6 for more explanations about the pre-definition

of the variable types and Section 6.1 for an real data example.

M: The number of imputed data sets that should be generated. The default value is

5.

maxit: Similar to mice, maxit defines the number of cycles of the sequential regres-

sion imputation procedure that should be run before one imputed data set is stored

(see also Section 2.5). The default value is 10, unless only one variable needs to

be imputed. In this case the number of iterations is set to 1 as no updating of other

variables is required.

nitt: An integer defining the number of iterations that should be used for the Gibbs

sampler whenever a variable is imputed using multilevel models based on the MCMC

routines implemented in the package MCMCglmm (Section 2.4). Higher values imply a

higher chance of convergence, but also increase the runtime of the imputation pro-

cess. Convergence can be checked after imputation using the function chaincheck
(see Section 5.8 for details). By default 22,000 iterations are run.

burnin: An integer defining the number of MCMC draws of the MCMCglmm routines to

be discarded as burn in. Higher values increase the chance of drawing values from a

chain that has converged, but burnin has to be strictly lower than nitt. Furthermore

a sufficient number of draws (say 1,000) should remain after discarding the burn in

order to be able to effectively test convergence of the chain after the imputation run.

The default value is 2,000.

pvalue: By default hmi tries to include all variables as predictors in the imputation

model. This can lead to unstable parameter estimates if the number of predictors

is large. As a consequence imputations can vary erratically generating implausible

imputed values way outside the observed range of values. A strategy to limit this

problem is to exclude insignificant variables from the imputation model via a variable

selection procedure (this strategy is also implemented in the multiple imputation soft-

ware IVEware). If specified, the package hmi uses a backward selection procedure

to identify the final imputation model: In the first step a (multilevel generalized) linear

model is estimated using all variables as predictors. In the next step a new regres-

sion model is estimated such that the variable with the highest p value above pvalue
is removed. This is repeated until each variable included in the model have a p value

smaller or equal to pvalue or until only one variable remains in the model. Excluding
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insignificant variables stabilizes the imputation process in most situations, but will

typically bias the (conditional) correlation between imputed and excluded variables

towards zero in any analysis performed on the imputed data. Therefore we advise to

use this option conservatively, that is, we recommend generating imputations using

the default value (i.e., pvalue = 1, which means no variables are removed). Lower

values – say, 0.5 or 0.2 – can be specified, if the imputations based on the default

setting show unacceptably large variances. We also note that variables are automat-

ically removed if their effect cannot be estimated, that is, if the estimated coefficient

is NA.

mn: Estimating cluster specific parameters based on very few observations can lead

to unstable estimates. As an ad hoc approach the user can specify a minimum num-

ber (mn) of observations a cluster should contain. The smallest clusters with less

then mn observations will then be collapsed with the second smallest cluster until all

clusters have at least mn observations. As this approach violates the assumption of

independent normally distributed cluster effects and the individual effects of the col-

lapsed clusters will no longer be reflected in the imputed data, this approach should

be used with caution. The default value is 1, leading to no collapsing.

k: Categorical variables with many categories can lead to unstable estimates since

a large number of dummy variables needs to be included in the imputation model

and some categories might be sparsely populated. To avoid such problems, k gives

the maximum number of categories a categorical variables is allowed to have when

used as covariate in an imputation model. Variables with more than k categories

will be excluded from all imputation models. By default the number is ∞, leading

to no removal. A less restrictive solution to avoid unstable estimates is to prevent

the inclusion of insignificant dummy variables in the imputation model by setting an

appropriate values for pvalue. In some situation it could be acceptable to classify

ordinal variables with many categories as continuous in list_of_types.

spike: This argument accepts a single numeric value or a list for which the names of

the list entries match the names of semi-continuous variables (variables which have a

spike at one value of the distribution but can be considered continuous otherwise). By

setting spike to be an integer, the user can specify at which value the spike(s) might

be found in the variable(s). In many cases, a spike will be found at zero, for example

if a household survey asks for the taxes payed or a business survey asks for the

number of employees hired in the previous year. However, there could be situations

in which a spike occurs at a different value. For example, responses regarding the

monthly net income will typically have a spike at the social security transfer level. In

cases of different spikes for different variables, the parameter spike should be a list.

For example, if x2 has a spike at 0 and x7 has a spike at 416 (which is minimum

amount of social security payments in Germany), the attribute would need to be

specified as spike = list(x2 = 0, x7 = 416). The function list_of_spikes_-
maker can be used to generate such a list with suggested spikes (returning the mode

for all variables for which more than 10 percent of the values are equal to the mode).

This list can be adopted according to the needs of the user and then passed to hmi
via the spike attribute. If spike contains a list, the names in the list implicitly define
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which variables should be treated as semi-continuous, that is, there is no need to

additionally register the variables as semicont in list_of_types. However, if a

different variable type is explicitly provided in list_of_types for this variable, the

variable is treated according to this type since explicit specifications in list_of_-
types dominate any implicit specifications through any of the other attributes. The

Semi-continuous variables paragraph in Section 5.5 describes the heuristic used to

decide whether a variable should be treated as semi-continuous if neither a numeric

value nor a list is specified. It also provides details how semi-continuous variables

are imputed.

rounding_degrees: If the user wants to generate plausible values for variables af-

fected by heaping following the methodology described in Section 4, she or he can

specify the rounding degrees which should be included in the model. The argument

can either be a single numeric vector or a list for which the names of the list entries

match the names of the variables affected by heaping. In this case each element

of list contains a numeric vector specifying the various rounding degrees. For ex-

ample if the age of children is reported in months, heaps might occur at multiples

of 1, 6, or 12 while the monthly income might be rounded to multiples of 1, 10,

100, or 1,000. If plausible values should be generated for both variables, the user

would need to specify rounding_degrees = list(age = c(1, 6, 12), income
= c(1, 10, 100, 1000)). The function list_of_rounding_degrees_maker gen-

erates such a list with individually suggested rounding degrees for each variable

found to be affected by heaping. This list can be adapted by the user according to

his or her needs. See the Rounded continuous variables paragraph in Section 5.5

for details regarding when a variable is considered to be heaped and what rounding

degrees are used in which scenarios. In Section 6.3 a data example on imputing

variables affected by heaping is given.

rounding_formula: For heaped continuous variables the user can specify a formula

for the rounding process, that is he or she can specify, which predictor variables

should be included in Equation (8). The standard formula notation should be used

but no dependent variable needs to be specified. To give an example, the formula

specification could be ~y + x2 + x15, where y represents the variable affected by

rounding and x2 and x15 are two other variables from the data set. Again, the ar-

gument can either be a formula or a list with element names identical to the names

of the heaped variables. In the letter case each list element must contain a formula

for the rounding process. The function list_of_rounding_formulas_maker gener-

ates such a list. This list can be adapted by the user according to his or her needs.

The default formula is ~., meaning that all variables are included as main effects in

the model for rounding. We note that maximizing the likelihood in Equation (9) is

tricky since the boundaries of the integrals also need to be estimated. If the rounding

model is too complex or if too many rounding degrees are specified, the iterative pro-

cedure for maximizing the likelihood might not converge. The function hmi will issue

a warning whenever the optimizer did not converge or when the Hessian matrix of the

maximum likelihood procedure cannot be inverted (which is typically a strong indica-

tion of numerical problems of the estimation procedure). In such cases, we generally
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recommend to either drop predictors from the rounding_formula or discard some

of the specified rounding_degrees.

pool_with_mice: As long as pool_with_mice is set to be TRUE, which is the de-

fault, hmi internally uses the functions from mice to obtain the final results for the

analysis model specified in model_formula. The results are returned as an addi-

tional attribute called pooling within the output object. Note that the output object

generated by hmi differs from the output generated by mice in this case. This can be

avoided if pool_with_mice is set to FALSE. Currently, the synergy of hmi and mice
supports the automatic calculation of the final inferences for (generalized multilevel)

linear analysis models. The default pooling of (ordered) categorical variables, is not

supported, except for categorical variables in the single level case. A more flexible,

but somewhat inconvenient function for pooling is hmi_pool, which is delivered with

this hmi package (see Section 5.7 for details).

5.2 Checks and preparations

The package hmi runs several initial checks before starting with the actual imputation:

All inputs are checked to ensure correct formating (e.g., data must be set up as a

data.frame, many other attributes must either contain a list or a vector of numeric

values, etc). See ?hmi or the previous section for details on the attribute specifica-

tions.

If any of the variables included in data has more than 90 percent missing values, the

program asks the user whether he or she wants to keep this variable or to quit the

program to adjust the data accordingly.

Variables which are completely missing will cause a warning; they do not con-

tain any information and will not be imputed.

Observations with missing values for all variables will also cause a warning for

the same reasons.

Variables included in model_formula which are not in data will cause an error. Note

that hmi currently only supports two levels of hierarchy in the multilevel imputation

models. Thus, only one cluster ID can be specified in model_formula.

If a multilevel model is specified in model_formula but less than three clusters are

found, the user is asked to run a single level imputation or to process the data in a

different manner.

If a multilevel model is specified in model_formula and the cluster variable contains

missing values, the user is asked whether those should be removed (recommended),

categorically imputed (not recommended) or the imputation process should be can-

celed.

If nm is specified, clusters with less than nm observations are collapsed (see Section

5.1 for details).
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The following additional preparing steps are taken for each imputation model during the

imputation process:

If more than one constant variable is included in the imputation model, only one is

kept to avoid multicollinearity. For the same reason one variable is dropped from mul-

tilevel imputation models of unordered categorical variables, whenever two predictor

variables are highly correlated (ρ > 0.99).

If a value for k is specified, categorical variables with more than k categories are

removed from the current imputation model (see Section 5.1 for details).

If a value for pvalue is specified, variables with p values larger than pvalue are

removed from the current imputation model in an iterative procedure (see Section

5.1 for details).

During the first imputation cycle, interval variables are treated as factors whenever

they appear as covariates in one of the imputation models, until they have been

imputed themselves: Once they have been imputed, the plausible values are used

as predictors instead of the interval information. If there are many unique intervals in

an interval variable, the user may consider setting a limit for the maximum number of

allowed factors using the attributes k.

5.3 model_formula

In the single level case, the model specified in model_formula has to follow standard

formula conventions for lm in R (see ?formula). For multilevel models the notation used by

lmer (lme4 package by Bates et al. 2015) must be used. The notation for multilevel models

as implemented in lme4 closely follows the notation for single level models with the main

difference that random effect variables are added in parentheses. The cluster identifier is

also included within the parentheses separated from the random effect variables(s) by a

vertical bar. To illustrate, a possible model specification might be y ~ x1 + x2 + x3 *
x4 + (1 + x2|ID). In this model an intercept, four main effects and one interaction are

specified as fixed effects. The intercept and x2 also have random effects. The variable ID
contains the cluster identifier.

If interactions are specified in model_formula, they are also used as predictors in the

imputation models of all other variables in an effort to achieve congeniality. Note that the

package currently does not follow the sophisticated approach suggested by Carpenter/

Goldstein/Kenward (2011) for dealing with interactions in the analysis model, instead it

uses passive imputation meaning that after each iteration the interaction term is updated by

multiplying the current imputed versions of the main effects (cf. e.g. Seaman/Bartlett/White

2012).

5.4 Imputation cycles

In the first cycle of the sequential regression imputation routine, the variables are sorted

and imputed by increasing number of missing observations following the approach of
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Raghunathan et al. (2001). In this cycle only those variables with no missing values or vari-

ables that have been previously imputed are used as predictors in the imputation model. If

all variables have missing values, the variable with the lowest missing rate will be imputed

by taking random samples from the observed cases of this variable. In all other imputation

cycles, all variables are included as main effects in the imputation model, unless pvalue
is specified. If model_formula is specified, the imputation model follows this model as

closely as possible. This implies that the imputation and analysis model coincide when the

dependent variable in the analysis model needs to be imputed. If, on the other hand, a

covariate in the analysis model needs imputation, this variable takes the place of the de-

pendent variable in the imputation model and the actual dependent variable in the analysis

model becomes an independent variable in the imputation model. For example, if the anal-

ysis model is y ~ 1 + x1 + x2 + (1 + x1|ID) and the covariate x1 needs imputation,

the imputation model becomes x1 ~ 1 + y + x2 + (1 + y|ID).

Depending on the situation the imputation model can either be a single or multilevel model.

If model_formula contains a single level model, or when no analysis model is specified,

the imputation model always will be a single level model. However, specifying a multilevel

model in model_formula generally implies that a multilevel model will also be used for all

imputation models. In the first cycle it can happen that the random effect covariate(s) have

missing values. In such cases single level models are estimated until the random effect

covariates(s) have been imputed. If the cluster ID has missing values, we recommend to

remove the missing cases from the data set. In case the user opt against this, the missing

cases are imputed using a single level model for categorical variables.

The number of cycles is defined by maxit unless only one variable contains missing val-

ues. In this situation, imputed values will be drawn from the correct distribution in the very

first iteration (because all predictor variables are fully observed), and thus the number of

iterations can be set to 1. The default number of imputation cycles, for situations with more

than one missing variable, is 10. For a more cautious approach the user might set maxit
to a larger value. After maxit cycles, the imputed values are stored, building a completed

(imputed) data set. Then the process starts again, until M (default value: 5) imputed data

sets have been generated.

5.5 The different supported types of variables

Different variable types (continuous, binary, etc.) require different imputation routines. For

example, for binary variables it is not desirable in most cases to get imputed values different

from 0 or 1. And factor variables with levels "A", "B" and "C" need an imputation routine

different from the routines for binary and continuous variables.

The package hmi distinguishes nine different types of variables. The following section

describes the internal strategies to assign a type to each variable and how the imputation

model works for that type. Users not satisfied with these default choices can specify the

types of variables in advance by setting up a list_of_types. Section 5.6 explains how

this is done.

IAB-Discussion Paper 16/2018 27

106 5. Attached contributions



5.5.1 Binary variables (keyword "binary")

Variables are considered to be binary if there are only two unique values in the observed

data. This includes for example 0 and 1 or "m" and "f". This default classification might

fail for small data sets or if a third possible category is unobserved. For example, in a small

health survey it could happen that non of the respondents reported to have had two (or

more) Bypass surgeries. So here a count variable would falsely be classified as binary.

(Multilevel) logistic regression models are used to impute binary variables.

5.5.2 Continuous variables (keyword "cont")

Any numeric vector that is not one of the other types is considered to be continuous. Im-

putation models are based on (multilevel) linear regression models described in Section

2.4.

5.5.3 Semi-continuous variables (keyword "semicont")

If a variable is not defined explicitly (via list_of_types) or implicitly (via an entry for this

variable in spike), a variable is identified as semi-continuous by hmi if more than 10 percent

of the observations share the same value (this value is then called spike), but the remainder

of the observations can be considered continuous. To which spike the variable is tested,

depends on the specifications in spike: if it is explicitly or implicitly defined, the value in

spike is used (i.e. the numeric values of spike or the list element in spike for this variable

- dependent on how spike is specified). If those elements are empty, hmi uses the mode

(most frequent observation) of the variable, irrespectively of the 10 percent threshold. This

threshold is only relevant if the variables are not explicitly or implicitly specified as semi-

continuous. In theses cases, the mode, or spike if it is a numeric value, is used to check

whether the 10 percent threshold is exceeded or not.

The approach for imputing semi-continuous variables implemented in hmi follows the ideas

presented in Rubin (1987) and Raghunathan et al. (2001). The variable is imputed in two

steps. In the first step a temporary indicator variable is generated that equals 0 if the ob-

served value is equal to the spike and 1 otherwise. Missing values in this indicator variable

are then imputed using (multilevel) logit models. In the second step, missing observations

with an imputed value of 1 for the temporary indicator variable are imputed based on a

(multilevel) linear regression imputation model, using only those observed cases of the

semi-continuous variable that are not equal to the spike. The missing observations with

an imputed value of 0 for the temporary indicator variable are replaced by the value of the

spike.
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5.5.4 Interval variables (keyword "interval")

Variables where some observations contain only interval information (e.g. [2000; 3000]) are

called interval variables. The technical implementation requires a specification for interval

data. To our knowledge there is no general technical standard for handling interval data in

R. The packages survival (Therneau, 2018) and linLIR (Wiencierz, 2012) provide func-

tionalities to handle interval data. Both packages generate auxiliary objects in which the

information for the lower and upper bound are stored separately. We did not follow this ap-

proach for our package since it would require an inconvenient workflow to link both interval

bounds (for all interval variables) appropriately. Instead we define a new class interval
for interval variables. Technically each observation in such an interval variable is coded as

"l;u" with l and u denoting the lower and upper bound of the interval. Both bounds can

either be numerical values, NA, -Inf or Inf. Two examples would be "1234.56;3000" and

"-1234.56;Inf".

We also implemented functions to run basic calculations on interval data (+, -, *, /, %%,

exp, log, ˆ, sqrt, floor, ceiling, and round), to generate interval data based on one

(as.interval) or two vectors (generate_interval), or to split interval data into their lower

and upper bounds (split_interval). How to use these functions is illustrated in Section

6.2.

For interval variables, the imputation routine described in Section 3 is used. As mentioned

in Section 5.2, interval variables are treated as factor variables during the first imputation

cycle - until the variable itself has been imputed. Once plausible values have been gener-

ated for this variable, these imputed values will be used instead of the interval information

in the following cycles whenever the (former) interval variable is used as a predictor in one

of the other imputation models.

5.5.5 Rounded continuous variables (keyword "roundedcont")

Whether a variable is treated as “rounded continuous”, (i.e., when the variable is affected by

heaping), depends on the information contained in the attributes list_of_types,

rounding_degrees and rounding_formula.

list_of_types is always binding. If there is an entry in list_of_types for the

variable, it will be imputed using imputation routines appropriate for the specified

type irrespective of the information provided in any of the other attributes. Thus, if

the variable is registered as roundedcont in list_of_types, it will be treated as

affected by heaping irrespective whether potential degrees of rounding are specified

in rounding_degrees or not. Vice versa, if the variable is registered to be of any

other type, its missing values will be imputed using imputation methods appropriate

for this variable type, but the heaping in this variable will be ignored even if rounding

degrees are specified for this variable.

If no explicit method is specified for the variable in list_of_types, hmi checks

whether
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rounding_degrees or a rounding_formula are specified for it, implying that the

variable should be treated as rounded continuous.

If no explicit or implicit classification is found, hmi classifies the variable internally.

The classification tests for rounding degrees 1, 10, 100, 1, 000 or, if given, the gen-

eral vector in rounding_degrees. A variable is classified as “rounded continuous”

if more than 50 percent of the values in this variable are divisible by the specified

rounding degrees (ignoring rounding to the nearest integer).

Variables classified to be rounded continuous (including variables having heaps, missing

values and intervals at the same time) are imputed following the methodology described in

Section 4. Which rounding degrees are used for generating plausible values depends on

the provided specifications:

For variables explicitly or implicitly specified to be rounded continuous, the informa-

tion provided in rounding_degrees is decisive. If rounding_degrees contains a

vector, the values of this vector are used for all variables specified to be affected

by heaping. If it contains a list and this list has an element for the variable under

consideration, the rounding degrees specified in this list element are used. If the list

element or rounding_degrees is NULL, the heuristic explained in Appendix A.1 is

used for suggesting rounding degrees.

For variables classified by hmi as rounded continuous, the rounding degrees 1, 10,

100, 1000 or, if given, the general vector in rounding_degrees is used.

5.5.6 Count variables (keyword "count")

Except for variables which are identified to be semi-continuous all variables containing no

more than 20 different integers are treated as count data per default. Variables with more

than 20 integers are considered to be continuous to avoid treating continuous variables for

which only integers are reported in the data (such as income data) as count data. The user

can override these rules by simply specifying a variable with more than 20 different integers

to be count or a variable with less than 20 integers to be cont in the list_of_types.

Imputations are generated based on a Poisson model for this variable type. MCMCglmm is

used to obtain the required draws of the model parameters from their respective posterior

distributions for both, single and multilevel models.

5.5.7 Categorical variables (keyword "categorical")

Unordered factor variables (or variables with more than two categories - if they are not one

of the previous types) are considered to be categorical variables.

To impute these variables in a single level setting hmi uses the cart approach implemented

in mice. The approach constructs a classification tree based on the observed data and
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then samples imputed values from suitable leaves of this tree for individuals for which the

variable is missing.

In the multilevel setting, we use the categorical specification in MCMCglmm to obtain draws

of the model parameters from their posterior distribution based on a multilevel multinominal

regression model. Imputations for the missing values are generated using own routines

implemented in hmi.

5.5.8 Ordered categorical variables (keyword "ordered_categorical")

If a factor variable is ordered, hmi treats it as "ordered_categorical". Missing values in

this variable are imputed based on an ordered logistic (for single level models) or ordered

probit regression (for multilevel models). For single level models mice is used to generate

the imputations. For multilevel models MCMCglmm is used to obtain the required draws of

the model parameters from their posterior distribution and imputations are generated using

own routines implemented in hmi.

5.5.9 Intercept variable (keyword "intercept")

A variable for which all observed records share the same value is considered a constant

variable and thus registered as an intercept variable. Missing values in this variable are

replaced by the value observed for the other records.

If the user defines a model_formula containing an intercept variable (even if it is only

implicit like in y ~x1 + x2) and there is no intercept variable in the data set, hmi tem-

porarily includes such a variable for the imputation process. This can be suppressed by

using y ~0 + x1 + x2 or y ~-1 + x1 + x2. Vice versa, as mentioned in Section 5.2, if

model_formula contains constant variables in addition to the intercept, these variables are

automatically removed from the imputation model to keep the model identified.

5.6 Pre-definition of the variable types

The package hmi tries to make an educated guess, which imputation model is most suit-

able for which variable. Still, we encourage users to explicitly specify which imputation

model should be used for each variable or at least to check whether the imputation models

suggested by the package are reasonable. Imputation models for each variable can be

specified using list_of_types. This attribute expects a list in which each element of it

has the name of a variable in the data frame. The named element has to contain a single

character string denoting the type of the variable (the keywords from the previous section).

The user can pass her or his data to the function list_of_types_maker to see which

imputation model would be suggested by hmi for which variable. Calling this function can

also be useful to obtain an object which already contains a list with entries for all variables

in the data set. This object can then be modified as required. Examples for generating and

modifying this list are shown in Section 6.1.
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We emphasize again that the specifications provided in list_of_types will dominate any

other specifications. For example, if the attribute rounding_degrees contains specific

degrees of rounding for variable x11, but this variable is specified as continuous in list_-
of_types, the variable will be treated like any other continuous variables, meaning that only

the missing values in this variable will be imputed based on a (multilevel) linear regression

model. No adjustments will be performed to deal with the heaps in the data.

5.7 Output of hmi

The package is build to allow a seamless integration into mice. Most importantly, the out-

put generated by hmi can be treated like a multiply imputed data set generated with mice,

that is, all the tools available in mice for analyzing and modifying the imputed data sets can

be applied directly. The technical details regarding the structure of the hmi output are de-

scribed here, practical examples are shown in the Monitoring convergence and Analyzing

the imputed data paragraphs of Section 6.1.

Similar to mice, hmi returns a so called mids-object (multiply imputed data sets). These ob-

jects contain the original data set, the imputed values, the chain means and variance of the

imputed values, and several additional elements (see van Buuren/Groothuis-Oudshoorn

2011). The fact that hmi returns a mids-object enables users familiar with mice to use

functions designed for mice-outputs without switching barriers. For example, running the

generic plot()-function on a mids-object calls the function plot.mids showing the means

and standard deviations of the imputed values for all variables over the different imputa-

tions and cycles, regardless whether the mids-object came from mice or hmi. Another

example is the complete-function delivered by mice which returns the imputed data set.

The function hmi returns two additional elements within the mids-object which are not avail-

able from mice: gibbs and pooling. The former allows checking the convergence of the

gibbs-sampler chains generated by MCMCglmm (a convenient tool for checking convergence

is available through the function chaincheck, see Section 5.8 for details). The later gives

the pooled results (that is the final inferences based on the combining rules for multiply

imputed data) from passing the model_formula to the pooling functions from mice (see

Section 5.9 for details).

5.8 Convergence checks

For every imputed variable, the function plot.mids (delivered by mice) shows the mean

and standard deviation of the imputed values across the maxit iterations and M impu-

tation cycles. See Figure 1 in Section 6.1 as an example. This tool helps to evaluate

whether draws based on the sequential regression approach converged to draws from

the underlying joint distribution of the missing data given the observed data (see van

Buuren/Groothuis-Oudshoorn 2011 for more details on this convergence measure).

If multilevel models are used for imputation (or if a Poisson model is used in general) addi-

tional convergence tests are necessary since the posterior draws of the model parameters
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are obtained using a Gibbs sampler in these cases. Thus, we need to ensure that the

Gibbs sampler actually converged before the parameters were drawn. Detailed informa-

tion about all the MCMC chains from all models is available through the element gibbs.

This is a multidimensional list. The first dimension distinguishes the different imputation

runs. The elements in this layer are therefore called "imputation1", "imputation2",

. . ., "imputation[M]". The second layer is for the cycles with names "cycle1", . . .,

"cylce[maxit]". The next layer is for the variable that has been imputed. For example,

an element named "x1" stands for the imputation of "x1". The last layer distinguishes

between "Sol" and "VCV". The names are adopted from MCMCglmm where the elements

"Sol" and "VCV" in the output represent the point estimates (of the fixed effects and cluster

specific effects) and the variance parameter estimates (the elements of the random effects

covariance matrix and the residual variance), receptively. hmi only exports the fixed effects

point estimates from "Sol" due to workspace considerations: MCMCglmm estimates nitt
cluster specific effects for every random effects variable in every cluster. This would imply

that if the user wants to run nitt = 5000 iterations for a random intercepts and slopes

model with only one fixed effects variable on a data set with 60 clusters, the dimension of

the resulting matrix would already be 5000×(2+2 ·60). If such a matrix would be saved for

two variables and the imputation procedure is based on maxit = 10 iterations and M = 20
imputations, the final output would already contain 20×10×2×5000× (2+2 ·60) ≈ 2 mil-

lion elements. Thus, to keep the size of the generated output manageable even if several

variables are imputed based on multilevel models and/or the number of clusters is large,

convergence can only be monitored for the fixed effects and the variance components.

To facilitate the convergence evaluations, the user can apply the function chaincheck to

the output provided by hmi. The function implements the stationarity test proposed by

Geweke (1992) and plots the results. The null hypothesis of the stationary test is that the

expected values behind the means x̄A and x̄B of the first 10 percent and last 50 percent

of the chain (after discarding the burn in) are equal. The test statistic for this test is T =

(x̄A − x̄B)/
√
σ̂(x̄A)2 + σ̂(x̄B)2, where σ̂(x̄A)2 and σ̂(x̄B)2 are the estimated variances of

the arithmetic means of the first 10 percent and last 50 percent of the chain after discarding

the burn in. T asymptotically follows a standard normal distribution. So if |T | exceeds the

1 − α/2 quantile of the standard normal distribution, the null hypothesis can be rejected.

The test is implemented in the function geweke.diag from the R package coda (Plummer

et al., 2006) and chaincheck calls this function. Beyond the mids-object generated by

hmi the user can also pass the desired significance level alpha for the test statistic and

the desired burnin (expressed as a percentage of the total length of the chain) to the

chaincheck function. By default (plot = TRUE), chaincheck will plot all chains for which

the null hypothesis was rejected. Each plot contains the information which parameter and

which variable, in which cycle and imputation is depicted. Furthermore, the test statistic

T is shown. Note that no adjustments are made for the multiple testing problem and

thus a certain number of tests will show significant results (“chain did not converge”) by

chance (Type I error). For example in a setting with maxit = 5, M = 5, two variables to

impute and an imputation model with 2 fixed effects and two random effects variables and

a significance level of alpha = 0.01, the number of expected false positives is 5 · 5 · 2 ·
(2+4+1) ·α = 3.5. The function chaincheck will print the actual and expected number of
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failed test. Note that the test is only meant to highlight potentially convergence problems.

The provided plots can then be used to decide, whether the identified chains really indicate

problems of the Gibbs sampler.

For large numbers of chains and thus larger numbers of expected false positives, it might

be more convenient not to plot the chains failing the convergence test. This can be done

by setting the function parameter plot = FALSE. We note that users are free to use their

own convergence diagnostics since results from all the chains are available in the gibbs
attribute of the mids-object generated by hmi.

High autocorrelation can increase the number of false positives. The parameter thinning
allows to increase the thinning of the Chains to reduce auto correlation (the default value

is 1). As a rule of thumb, the number of values in the chain should not fall below 1000.

By setting thinning = NULL, the number of remaining values is set to be approximately

1000. Note that setting a value for thinning will not affect the imputation procedures. The

parameters will only affect which chain values are used when computing Geweke’s test.

If the Gibbs sampler apparently did not converge, (currently) a new call of hmi has to be

initiated with an increased number of iterations for the Gibbs-sampler (parameter nitt).

5.9 Pooling

The functions with and pool from mice are flexible tools for analyzing and pooling multiply

imputed data sets. hmi uses these functions to obtain the final results for the analysis model

specified by model_formula and family. The results can be accessed in the mids-object

through its element pooling. Currently, mice only pools global fixed effects of multilevel

regression model. In some situations, other parameters such as the variance components

from the different levels of the hierarchical model might be relevant for the user. Therefore

hmi delivers the function hmi_pool as a flexible alternative to the functionality available in

mice. The function needs two inputs:

1. the multiply imputed data set (the mids object created with hmi or mice) and

2. a predefined analysis function which takes a completed data set as input, and returns

a vector with the desired complete data statistics (e.g. the regression coefficients or

random effects variance estimates).

hmi_pool calculates the parameters defined in the analysis function on each of the com-

pleted data sets in the mids-object and averages them, that is hmi_pool will only provide

point estimates but not their associated estimated variances. The pooling is only valid

when averaging is reasonable. For example it would be invalid to pool factor loadings from

factor analysis where the signs of loadings have no meaning (comparable to whether "m"
or "f" is the reference category in a regression model). Examples how to use hmi_pool
are given in the Analyzing the imputed data paragraph in Section 6.1 and on the help page

?hmi_pool.
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6 Application examples

To illustrate the generation of plausible values for multilevel data, interval data and variables

affected by heaping three step-by-step examples from three real data sets are given.

6.1 Multilevel data

To illustrate the main functionality of the package hmi, we use the data set Gcsemv con-

taining information on the General Certificate of Secondary Education (GSCE) in the UK.

The data set, which was collected in 1989 and contains 1905 students in 73 schools, is

one of the data sets used in Goldstein (2011). It is freely available on the website of the

Centre for Multilevel Modelling (CMM) at the University of Bristol under the following URL

http://www.bristol.ac.uk/cmm/media/team/hg/msm-3rd-ed/gcsemv.xls. It is also

included in the package hmi to allow users to replicate the examples given in this section.

We thank Harvey Goldstein and the CMM for allowing us to incorporate the data into the

hmi package. The variables contained in the data set are described in Table 2. A more

detailed description of the data can be found in Creswell (1991).

Table 2: Variables included in the Gcsemv data.
variable description
school School ID
student Student ID within this school1

gender Gender (0 = boy, 1 = girl),
written (Numeric) score in a written questionnaire
coursework (Numeric) score for a coursework

Source:
http://www.bristol.ac.uk/cmm/learning/mmsoftware/data-rev.html#gcsemv

6.1.1 Before starting imputation

If the package has not been installed previously, the very first step is to install the hmi
package via install.packages("hmi"). Once the package has been installed it can be

attached to the current session, and the Gcsemv data can be loaded. The code for these

two steps is:

library("hmi")
data(Gcsemv)

A short summary of the data shows (among other information) that the data set has 202

missing values in the written exam covariate and 180 missing values in the coursework

covariate. Thus, the missing rate in those variables is 10.6 percent and 9.4 percent respec-

tively. There are no rows with missing values in both variables, so the number of incomplete

observations in total is 382 or 20.0 percent.

1 the student ID is not unique since students in different schools can have the same ID
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summary(Gcsemv)
school student gender written coursework

68137 : 104 77 : 14 0: 777 Min. : 0.625 Min. : 9.259
68411 : 84 83 : 14 1:1128 1st Qu.:37.500 1st Qu.: 62.963
68107 : 79 53 : 13 Median :46.875 Median : 75.926
68809 : 73 66 : 13 Mean :46.798 Mean : 73.435
22520 : 65 27 : 12 3rd Qu.:55.625 3rd Qu.: 86.111
60457 : 54 110 : 12 Max. :90.000 Max. :100.000
(Other):1446 (Other):1827 NA’s :202 NA’s :180

A list containing the suggested variable types for each variable in the data set can be

obtained by:

list_of_types_maker(Gcsemv)
$school
[1] "categorical"

$student
[1] "categorical"

$gender
[1] "binary"

$written
[1] "cont"

$coursework
[1] "cont"

If the user is not satisfied with the suggested types, he or she might save the list, modify

it, and pass the modified list to hmi. For example, if coursework contained the average

grade of every student and the user prefers to treat that variable as ordered categorical, he

or she can type:

modified_list <- list_of_types_maker(Gcsemv)
modified_list$coursework <- "ordered_categorical"

The modified list would then be passed to hmi by setting the attribute list_of_types =
modified_list.

6.1.2 Running the imputation

The next (optional) step is to set up the model_formula, i.e. the final model of interest

which should be estimated based on the multiply imputed data (see Section 5.3). In the
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example given below, interest lies in the influence of gender and performance in previous

coursework on the written exam. The intercept and the effect of gender are allowed to vary

across the schools. They are added as random effects in the model_formula.

model_formula <- written ~ 1 + gender + coursework + (1 + gender|school)

Now the data and model_formula can be passed to the wrapper function hmi. The results

are saved in an object called dat_imputed. Note that for full reproducibility a seed for the

pseudo-random number generator is specified. Since no value is specified for the number

of imputations, the default number of M=5 imputed data sets will be generated. hmi will

provide a progress bar during the imputation process.

set.seed(123)
dat_imputed <- hmi(data = Gcsemv, model_formula = model_formula)
Imputation progress:
0% 20% 40% 60% 80% 100%
|----|----|----|----|

6.1.3 Monitoring convergence

Before running any analysis models on the newly generated mids-object, it is always a

good idea to check the convergence of all imputation routines. Some examples of how to

do this based on the output generated by hmi are presented in this section.

Diagnostic plots regarding the convergence of the sequential regression procedure can be

obtained for example by plot(dat_imputed). The command will plot the arithmetic mean

and standard deviation of the imputed values for each imputed variable across the maxit
cycles separately for each of the M imputations. In the given example calling the plot
command will produce graphs for the variables "written" and "coursework" since these

are the only two variables which have been imputed previously. Each graph contains five

different lines for each of the M = 5 imputations. Each line consists of ten points for each

of the maxit = 10 iterations.

plot(dat_imputed, layout = c(2, 2)))

Convergence (potentially after some burnin iterations) can be assumed if the following two

points are fulfilled:

1. There is no inherent trend in any of the lines.

2. The lines from the different imputations mix well, i.e. there is sufficient overlap be-

tween the different lines.
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Figure 1: Mean (left) and standard deviation (right) for the imputed variables in the Gcsemv
data across 10 iterations for 5 imputations.
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Examining the plots in Figure 1, both requirements seem to be met.

Given that the model specified in model_formula is a hierarchical model, multilevel models

have also been used as imputation models. Since these models can only be estimated

using MCMC methods, formal checks regarding the convergence of these models are also

required. The function chaincheck runs convergence tests using the Geweke statistic for

each chain of the MCMC method and plots traceplots for all those parameters for which the

test indicates a failure of convergence (see Section 5.8 for details on the test). The function

also provides the information how often the null hypothesis is rejected and compares this

number to the expected number of false rejections due to type I error.

chaincheck(dat_imputed, thin = NULL)
12 out of 695 chains (1.73%) did not pass the convergence test.
For alpha = 0.01 the expected number is 6.95.

For the given example the traceplots for the fixed effects in the models which did not pass

the stationarity test show no problematic pattern (one traceplot is shown in Figure 2 the

others are omitted for brevity). But the plots for the variance parameters show signs of

autocorrelation (one chain is shown in Figure 3). For highly autocorrelated chains it is

more likely that the mean of the first 10 percent of the chain differs from the mean of the

last 50 percent of the chain and thus the null hypothesis of the Geweke test (which basically

assumes equivalence of the two means) is rejected. Note however, that autocorrelation

would only be a problem, if multiple draws from the same chain would be used. Since

only one value from a chain is used for each imputation in hmi, autocorrelation within a
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chain is generally irrelevant for hmi. Therefore it can be concluded, that for the package’s

purposes, all parameters in all imputation models show good convergence properties.

Figure 2: Traceplot of one fixed effects parameter which formally did not pass the station-
arity test.
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Figure 3: Traceplot of a variance parameter showing signs of high autocorrelation.
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6.1.4 Analyzing the imputed data

In this section different possibilities for obtaining valid inferences based on the imputed

data are shown. In general, valid inferences can be obtained by analyzing each completed

data set separately and combining the results according to Rubin’s combining rules (Rubin,

1987).

The package mice offers the functions with and pool to obtain final inferences based on

the imputed data sets for a broad class of analyses. These functions can also be used

with objects generated by hmi since they only require a mids-object as input. We refer

to van Buuren/Groothuis-Oudshoorn (2011) for more details how to use these functions.

Note that hmi also calls these functions internally if a model is specified in model_formula
and pool_with_mice = TRUE (which is the default). The regression results are directly

available through the element pooling from the mids object. This element is not available

in mids objects generated by mice; it is a special feature of hmi. It will not be included if

pool_with_mice = FALSE.

summary(dat_imputed$pooling)
est se t df Pr(>|t|)

(Intercept) 21.4285513 1.54661329 13.855145 228.08527 0.000000e+00
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gender1 -5.4004356 0.59328192 -9.102647 153.58281 4.440892e-16
coursework 0.4042744 0.01919767 21.058509 64.10292 0.000000e+00

lo 95 hi 95 nmis fmi lambda
(Intercept) 18.3810747 24.476028 NA 0.1306011 0.1230109
gender1 -6.5724822 -4.228389 NA 0.1642805 0.1534680
coursework 0.3659238 0.442625 180 0.2666766 0.2441485

However, pool can only be used with estimation commands that return a list of coefficients

and their variance matrix. Thus, for example, no information is returned regarding the

variance components on the different levels if pool is used to provide the results of a

multilevel analysis. However, the estimated variances on the different levels can be of

interest in some applications. For this reason hmi offers the option to pass an analysis

function setup by the user to the function hmi_pool which will run the specified analyses

on each imputed data set and return the final point estimates but not their variances. Thus,

this function can be used in situations in which the variance of the point estimates cannot

be estimated (or is not of interest to the analyst), but averaging the point estimates from

the different data sets is still a valid approach.

In the following example, the user is interested in the global fixed effects and the elements

of the random effects covariance matrix of the multilevel model from the running example.

To obtain the final results, she or he would first need to specify the analysis function:

#The input of the function is a complete data set
#(which will be provided by hmi_pool later).

analysis_function <- function(complete_data){

# Generate an empty list for storing the results of interest
parameters_of_interest <- list()

# Specify the analysis model of interest
my_model <- lmer(written ~ 1 + gender + coursework + (1 + gender | school),

data = complete_data)

# Specify, which parameters from the model should be returned.
# The fixed effects:
parameters_of_interest[[1]] <- fixef(my_model)
# The covariance matrix of the random effects:
parameters_of_interest[[2]] <- VarCorr(my_model)[[1]][ , ]

# Turn the list into a vector to simplify labeling:
ret <- unlist(parameters_of_interest)

# Optionally: label the output:
names(ret) <- c("intercept", "gender", "coursework",
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"sigma0", "sigma01", "sigma10", "sigma1")

#Return the results.
return(ret)

This function can then be passed to hmi_pool to obtain the final point estimates for the

specified parameters. As the analysis_function in this example calls lmer from the

lme4 package, this packages has to be loaded in advance.

library("lme4")
hmi_pool(mids = dat_imputed, analysis_function = analysis_function)

intercept gender coursework sigma0 sigma01 sigma10 sigma1
21.4285513 -5.4004356 0.4042744 42.3474332 -2.7057949 -2.7057949 3.1604561

The final results for the global fixed effects are identical to the results obtained with mice,

but the output now also contains the final point estimates of the covariance matrix of the

random effects.

6.2 Interval data

To illustrate the usage of the provided functions for interval-objects and the imputation of

interval data, hmi includes three versions of a subset of the 2015-2016 Income File of the

National Health and Nutrition Examination Survey (NHANES) (Centers for Disease Con-

trol and Prevention (CDC) and National Center for Health Statistics (NCHS), 2015-2016).

The data set nhanes_sub (accessible by typing data(nhanes_sub) once the package is

loaded) contains the data in their original format (compared to the version available on the

NCHS website the data have been slightly modified, for example by coding some variables

as factors or collapsing several nonresponse categories into a single category). In the

data set nhanes_mod some variables have been changed to the internal interval variable

format, which is required if plausible values should be imputed for these variables. Finally,

nhanes_imp contains a multiply imputed data set in which missing and interval information

has been replaced with plausible values following the methodology outlined in Sections 2

and 3. These data sets are included for illustrative purposes so that users of the package

can compare different versions of the data sets to get a better understanding of how this

imputation function works. Table 3 lists the variables present in the nhanes data sets.

As an illustrative example, the required steps to prepare the variable ind310 for generat-

ing plausible values, that is, the transformation of the categorical variable from nhanes_-
sub to the interval variable in nhanes_mod, are presented here (the interval variable for

ind235 was generated in a similar fashion). Separate lower and upper bounds are de-

fined for each observation (based on the description of https://wwwn.cdc.gov/Nchs/
Nhanes/2015-2016/INQ_I.htm); subsequently they are merged to an interval object by

the function generate_interval
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Table 3: Variables included in the nhanes data sets.
variable description
inq020 Income from wages/salaries (1 = Yes, 2 = No)
inq012 Income from self employment (1 = Yes, 2 = No)
inq030 Income from Social Security or Railroad Retirement (1 = Yes, 2 = No)
inq060 Income from other disability pension (1 = Yes, 2 = No)
inq080 Income from retirement/survivor pension (1 = Yes, 2 = No)
inq090 Income from Supplemental Security Income (1 = Yes, 2 = No)
inq132 Income from state/county cash assistance (1 = Yes, 2 = No)
inq140 Income from interest/dividends or rental (1 = Yes, 2 = No)
inq150 Income from other sources (1 = Yes, 2 = No)
ind235 Monthly family income (13 categories/an interval object)
ind310 Total savings/cash assets for the family (8 categories/an interval object)
inq320 How do you get to the grocery store? (10 categories)

Source: https://wwwn.cdc.gov/Nchs/Nhanes/2015-2016/INQ_I.htm

#generate an empty vector of length n
data(nhanes_sub)
low <- array(dim = nrow(nhanes_sub))
up <- array(dim = nrow(nhanes_sub))

#fill in the lower bounds depending on the reported savings category
low[nhanes_sub$ind310 == 1] <- 0
low[nhanes_sub$ind310 == 2] <- 3001
low[nhanes_sub$ind310 == 3] <- 5001
low[nhanes_sub$ind310 == 4] <- 10001
low[nhanes_sub$ind310 == 5] <- 15001
low[nhanes_sub$ind310 == 6] <- 0
low[nhanes_sub$ind310 == 7] <- 20001
low[nhanes_sub$ind310 == 8] <- 0

#fill in the upper bounds depending on the reported savings category
up[nhanes_sub$ind310 == 1] <- 3000
up[nhanes_sub$ind310 == 2] <- 5000
up[nhanes_sub$ind310 == 3] <- 10000
up[nhanes_sub$ind310 == 4] <- 15000
up[nhanes_sub$ind310 == 5] <- 20000
up[nhanes_sub$ind310 == 6] <- 20000
up[nhanes_sub$ind310 == 7] <- Inf
up[nhanes_sub$ind310 == 8] <- Inf

#generate the interval variable
ind310interval <- generate_interval(low, up)

#inspect the first few entries in the generated object
head(ind310interval)
"20001;Inf" "3001;5000" "0;3000" "3001;5000" "0;3000" "3001;5000"
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Once the variables are registered as interval variables, the data set can be passed to

the hmi wrapper function. hmi will automatically generate plausible values for all variables

registered as interval variables. For the imputation of the missing and interval data

in nhanes_mod, we increased the number of iterations to 50, as diagnostic plots showed

that the sequential regression procedure did not converge after the default number of 10

iterations.

set.seed(123)
nhanes_imp <- hmi(nhanes_mod, maxit = 50)

6.2.1 Some useful functions for interval data

The package hmi also includes some useful functions to analyze and manipulate interval

data. This section provides a short summary of some of the functions available.

table.interval: Variables stored in interval format are interpreted as a vector of charac-

ters or a factor by most R functions including the table command. Without table.interval,

table would order the intervals alphabetically, which can be arbitrary. The function

table.interval offers improved sorting options. By default, it orders the intervals first

by the value of their lower bound and if they are equal, by the value of the upper bound.

If the attribute sort is set to "mostprecise_increasing", the intervals are first ordered

by their length (from small to large) and if the lengths are equal, by the value of the lower

bound (from small to large). Using the table command on an interval variable will auto-

matically invoke table.interval if hmi is loaded.

table(nhanes_mod$ind310)

0;3000 0;20000 0;Inf 3001;5000 5001;10000 10001;15000
5426 128 814 588 450 237

15001;20000 20001;Inf
110 2218

plot.interval: To inspect interval variables graphically, the generic plotting function plot
can be used, which will call plot.interval. For example, Figure 4 containing the results

for the savings variable from nhanes_mod is generated using the following code:

plot(nhanes_mod$ind310, ylab = "Savings", sort = "mostprecise_increasing")

The figure shows the interval values for ind310 sorted first by the interval lengths and then

by the lower bound. A second option is sort = "lowerbound_increasing" sorting the

intervals first by the lower bound and then by the upper bound. If no argument is specified

for sort, the intervals are sorted by their appearance in the data. For each observation the
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Figure 4: An interval-data scatter plot.
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plot draws a line from its lower to its upper bound (plus a small margin to make very small

intervals and point precise observations visible). As the lines for observations sharing the

same interval are grouped together, they form an area. Thus, the width of the area is an

indicator for the relative frequency of this interval. Note that in the example the upper bound

for the highest savings category and for the nonrespondents is∞ which cannot be plotted.

Therefore the upper limit of the y-axis by default is the highest finite bound observed (plus

a small margin). The axis bounds can be manually altered by the parameters xlim and

ylim.

center.interval: This function simply returns a numeric vector containing the midpoint

of the reported interval for each observation (for example 1,500 if the interval is "0;3000").

Intervals including Inf or -Inf will return Inf or -Inf, unless the interval is "-Inf;Inf"
or the parameter inf2NA was set to be TRUE. In those cases NA will be returned for these

intervals. This function can potentially be useful for some descriptive statistics, but we

caution the user that treating the midpoint of the reported interval as if it were the originally

reported value is rarely a good idea.

midpoints <- center.interval(nhanes_mod$ind310)
table(midpoints)
x

1500 4000.5 7500.5 10000 12500.5 17500.5 Inf
5426 588 450 128 2371 110 3032

idf2interval and interval2idf: Interval variables are also accepted in some other R
packages. For example, the package linLIR by Wiencierz (2012) provides methods for
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regression models with interval variables. However when using this package, the data

containing the interval information need to be coded as idf (imprecise data frame). To

ensure that users can switch easily between idf and interval objects, we implemented

idf2interval and interval2idf which convey an object from one format to the other.

Technically, idf objects can contain multiple interval variables, so when transforming an

idf object to fit to the interval setting, the (multiple) interval variables from idf are stored

as variables in a data.frame.

idf <- interval2idf(nhanes_mod$ind310)
intervaldf <- idf2interval(idf)

split_interval: This function is basically the inverse function of generate_interval. It

returns a two column matrix containing the lower bound for each reported interval in the

first column and the upper bound in the second column:

bounds <- split_interval(nhanes_mod$ind310)
head(bounds)

[,1] [,2]
[1,] 20001 Inf
[2,] 3001 5000
[3,] 0 3000
[4,] 3001 5000
[5,] 0 3000
[6,] 3001 5000

Finally, we note that basic arithmetics (+, -, *, /, %%) and transformations (log, exp, ˆ,

sqrt, round, floor, ceiling) can be applied to interval data (for example to change the

currency for the reported values):

log_savings_in_euro <- log(nhanes_mod$ind310 * 0.8)

6.3 Variables affected by heaping

To briefly illustrate how to generate plausible values for a variable affected by heaping, we

use the selfreport data from the mice package. The data set contains 2060 records and

15 variables, merged from multiple Dutch data sets. The left panel of Figure 5 shows a

histogram of the self reported weight (variable wr in the data set). Heaps at multiples of 5

and 10 are clearly visible and thus, it seems plausible to assume that many respondents

round their true weight to the closest 5 or 10 kilograms. Counting the number of records

that are divisible by 5 and 10 reveals that almost 40 percent of the records are divisible by

5 and approximately 20 percent of the reported values are divisible by 10:
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Figure 5: Selfreported weight from the selfreport data as originally observed (left) and after
generating plausible values accounting for potential rounding of the reported values.
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library("mice")
data(selfreport)
sum(selfreport$wr %% 5 == 0)/nrow(selfreport)
0.3800971

sum(selfreport$wr %% 10 == 0)/nrow(selfreport)
0.1941748

Note that these fractions are slightly below the thresholds setup in the heuristic for sug-

gesting rounding degrees as implemented in list_of_rounding_degrees_maker. The

heuristic would identify 5 as a rounding degree if 40 percent of the data would be divisible

by this value and register 10 as a rounding degree if 20 percent of the data are divisible by

this value (see Appendix A.1 for details). For this reason, explicit rounding degrees must

be provided in this example when calling hmi. For the purpose of a short runtime, only two

variables are used for imputation in this illustration: the self reported weight (wr) and the

self reported height (hr):

set.seed(123)
selfreport_imputed <- hmi(selfreport[, c("hr", "wr")],

rounding_degrees = list(wr = c(1, 5, 10)))

By default, every variable in the data set is included in the model for the rounding behav-

ior, that is, into the model specified in Equation (8). The model can be adjusted using

rounding_formula. For example, if only the weight variable (and the intercept) should be
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used in the rounding behavior model, this could be achieved by setting rounding_formula
= ~wr. The right panel of Figure 5 shows the histogram after imputation. The heaps in the

data have disappeared.

7 Conclusion

With hmi we provide comprehensive, but easy to handle tools for multiple imputation for

hierarchical data sets. The package supports imputation methods for all common types

of variables. Furthermore, imputation tools for interval and heaped variables are provided.

Several internal features of the package ensure that sensible default settings are selected

automatically. Thus, even inexperienced users will find the package convenient to use

since all they need to provide is their data and potentially the analysis model they want to

run on the imputed data. The final results (according to the given analysis model) will also

be returned by default. Still, the package offers great flexibility since almost all settings

can be defined manually if desired. Multiple imputation point estimates for analyses not

supported in mice can also be obtained using an additional function provided with the

package.

Currently, hmi still has some limitations which we hope to address in future releases of

the package: Most importantly, the package does not provide any tools for imputing vari-

ables from the second level of the hierarchical model, that is, variables which are constant

within clusters. A convenient tool for imputing such variables is available in mice. Fur-

thermore, the multilevel imputation models are currently limited to two levels of hierarchy

and homoscedastic error terms. Finally, ensuring that all Gibbs samplers of the multilevel

imputation models have converged is currently left to the user. In future versions of the

package, we hope to implement some routines that will automatically ensure that all chains

run long enough to ensure convergence.
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A Appendix

A.1 Suggestion for rounding degrees

If the user registers a variable as potentially being affected by heaping (by setting the

variable type to roundedcont) but does not provide rounding_degrees for this variable,

hmi tries to make an educated guess, regarding the possible degrees of rounding which

should be used when modeling the heaping. The following heuristic is used to suggest the

rounding degrees:

1. For a given continuous variable all possible rounding degrees (factors or divisors

in mathematical terms), are derived for each observation. To give an example, the

factors of 10 are 1, 2, 5, 10. We will call 1, 2, 5 subfactors of 10.

2. For each possible factor identified in step 1, the number of observations divisible by

this factor is tabulated.

3. A rough estimate (based on the assumption of a discrete uniform distribution between

0 and∞) for the expected number of observations being divisible by a factor s is n/s,
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where n is the number of records in the data set. For example, the expected number

of observations being divisible by s = 5 for a data set containing 10,000 records is

n/s = 2000. If the observed number of individuals being divisible by factor s is at

least twice the expected number, s is a “candidate rounding degree”.

4. Starting with the highest candidate rounding degree, each candidate has to fulfill two

conditions to be stored as an actual rounding degree.

At least 20 percent of the data have to be divisible by this candidate; obser-

vations which are also divisible by larger rounding degrees which has been

previously identified to be an actual rounding degree are not considered. The

removal of these records ensures that the currently considered candidate actu-

ally contributes to the heaping. For example when 40 percent of the data are

divisible by 100, at least 40 percent of the data have to be divisible by 50. By

requesting that at least 60 percent of the data are divisible by 50 (if 100 has

been identified previously as an actual rounding degree) it is ensured that the

fact that a large proportion of the data is divisible by 50 is not only a spurious

effect because many observations are rounded to the closest 100.

The considered candidate must be a subfactor of at least two other factors

found in the data. This prevents that a rounding degree only “explains itself”.

For example 4, 000 would not be considered to be an actual rounding degree

if 27 percent of the individuals reported a value of 4, 000, but no one reported

8, 000 or 12, 000 etc. This condition ensures that lower (and thus more general)

rounding degrees such as 1000 are favored.
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