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ABSTRACT

This thesis demonstrates how remotely sensed satellite acquisitions can be used to
addresses some of the natural catastrophes resulting from anthropogenic activities.
Examples from both land and water systems are used to illustrate the breath of this
toolbox. The effects of global climate change on biological systems and the wellbeing of
everyday people are becoming less easy to ignore. In addition, our oceans are facing
multiple large-scale stressors, including microplastics as a recently recognized threat,
which place at risk the resources which a large percentage of the world’s population
depends on for their livelihood. The cause of many of these changes stem from
anthropogenic activities, but lacking understanding of complex ecosystems limits our
ability to make definite conclusions as to cause and effect. The difficulty to collect on-
the-ground data sufficient enough to capture processes working over scales of hundred of
kilometers up to the entire globe is often a limitation to research. Remote sensing systems
help ameliorate this issue through providing tools to better monitor environmental
changes over large areas. The examples provided in this thesis focus on (Section 1)
tropical peatland fire characteristics and burning in Southeast Asia as a significant
contributor to greenhouse gas emissions and (Section 1) spread of river-based plastic
pollution in coastal ocean systems.

Section | specifically focuses on fires within Indonesia, which holds more than half
of all known peatlands in the tropical zone and are estimated to represent a carbon pool
of 82-92 gigatons. A brief description of recent development activities within Indonesia
is presented in Section | of the Introduction, followed by meteorological processes
responsible for extended drought periods in the region, and the situation of current fire
control within the country. Chapter 1 presents an example of the large improvement in
fire detection, as well as measurement of fire front characteristics, provided by a state-of-
the-art thermal remote sensing. Chapter 2 goes into detail describing how an active
satellite sensor system is able to provide much quicker and more accurate estimates of
burned area for the tropics than other existing methods dependent on passive satellite
sensor systems. Both these methods provide powerful tools for development of an
improved system to monitor fire over Indonesia. The goal of such a monitoring system
would be to reduce fire emissions from this large country, which according to global
climate models play an important role in global climate change.

Section Il focuses on aquatic plastic pollution flowing from a freshwater system into
the coastal oceans. A background of the issue of plastic pollution along with the current
status of plastic debris in both oceans and inland river systems is presented in Section 1l
of the Introduction. Chapter 3 describes development and comparison of two different
modelling efforts to display how plastic particles being emitted from a major river are
accumulating along the nearby coastline. The goal of this work is to present how remote
sensing data could be used to in conjunction with ocean current modelling to create a
comprehensive particle tracking monitoring system.



ZUSAMMENFASSUNG

Diese Arbeit zeigt, wie aus der Ferne wahrgenommene Satellitenaufnahmen dazu verwendet
werden konnen, sich einigen Naturkatastrophen, die aus anthropogenen Aktivitaten
resultieren, zu widmen. Anhand von Beispielen aus Land- und Wassersystemen wird der
Umfang dieses technischen Werkzeugkastens dargestellt. Die Auswirkungen des globalen
Klimawandels auf biologische Systeme und das Wohlbefinden des Menschen lassen sich
nicht mehr ignorieren. Dartiber hinaus sind unsere Ozeane mehreren groRen Stressfaktoren
ausgesetzt, einschlieflich Mikroplastik als eine seit kurzem anerkennte Bedrohung, welche
die Ressourcen gefahrden, von denen der Lebensunterhalt eines groflen Teils der
Weltbevolkerung abhéngt. Die Ursache vieler dieser Verdnderungen liegt in anthropogenen
Aktivitaten, aber mangelndes Verstandnis fiir komplexe Okosysteme begrenzt unsere
Fahigkeit, eindeutige Riickschlusse auf Ursache und Wirkung zu treffen. Die Schwierigkeit,
Daten vor Ort zu sammeln, die ausreichen, um Prozesse zu erfassen, die iber Hunderte von
Kilometern bis hin zum gesamten Globus arbeiten, ist oft eine Einschrankung der Forschung.
Fernerkundungssysteme tragen dazu bei, dieses Problem zu beheben, indem sie Werkzeuge
zur besseren Uberwachung von Umweltverinderungen in groRen Gebieten bereitstellen. Die
Beispiele in dieser Arbeit konzentrieren sich auf (,,Section 1) Feuermerkmale und
Brandflachen der tropischen Torfgebiete in Sudostasien als signifikanter Beitrag zu
Treibhausgasemissionen und (,,Section 11°) Ausbreitung von Fluss-basiertem Plastikmll in
kistennahen Meeressystemen.

Section | konzentriert sich speziell auf die Brénde in Indonesien, welches mehr als die
Hélfte aller bekannten Torfgebiete in der tropischen Zone besitzt und auf einen
Kohlenstoffpool von 82-92 Gigatonnen geschatzt wird. Eine kurze Beschreibung der jlingsten
Entwicklungstatigkeiten in Indonesien wird in Section | der Einleitung vorgestellt, gefolgt
von meteorologischen Prozessen, die fur ausgedehnte Durreperioden in der Region
verantwortlich sind, und der Situation der aktuellen Feuerkontrolle innerhalb des Landes.
Chapter 1 zeigt ein Beispiel fiir die groBe Verbesserung der Branddetektion sowie die
Messung der Brandfronteigenschaften, die durch eine moderne thermische Fernerkundung
erreicht werden konnen. In Chapter 2 wird ausfihrlich beschrieben, wie ein aktives
Satellitensensorsystem in der Lage ist, schnellere und genauere Schatzungen der verbrannten
Flache fir die Tropen zu liefern als andere existierende Methoden, die von passiven
Satellitensensorsystemen abhangen. Beide Methoden bieten leistungsstarke Werkzeuge fir
die Entwicklung eines verbesserten Systems zur Brandiberwachung von Indonesien. Ziel
eines solchen Uberwachungssystems wire es, Brandemissionen aus diesem groRen Land zu
reduzieren, das nach globalen Klimamodellen eine wichtige Rolle im globalen Klimawandel
spielt.

Section Il konzentriert sich auf die Verschmutzung von Wasserplastik, die von einem
SlRwassersystem in die Kustenmeere flieBt. Ein Hintergrund des Problems der
Plastikverschmutzung zusammen mit dem gegenwaértigen Status von Plastiktrimmern
sowohl in Ozeanen als auch Binnenflusssystemen wird in Section Il der Einleitung
dargestellt. Chapter 3 beschreibt die Entwicklung und den Vergleich von zwei verschiedenen
Modellierungsbemiihungen, um zu zeigen, wie sich Kunststoffpartikel, die von einem grof3en
Fluss emittiert werden, entlang der nahen Kdistenlinie ansammeln. Das Ziel dieser Arbeit ist
zu zeigen, wie Fernerkundungsdaten in Verbindung mit Meeresstromungsmodellierung
verwendet werden kénnen, um ein umfassendes Teilchenverfolgungsiiberwachungssystem zu
schaffen.
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Introduction

Environmental changes are increasing rapidly around the globe. In some areas, these
changes manifest themselves as increased fire susceptibility due in part to prolonged
droughts, or in other areas as polluted fish harvests. Anthropogenic activities are
hypothesized to be a root cause of many of these changes, but our still lacking
understanding of complex ecosystem function and interconnections limits our ability as
ecologists to make definite conclusions as to cause and effect. Often these limitations are
due to spatially restricted observations of processes occurring over very large areas. This
thesis aspires to provide tools to better monitor results of anthropogenic activities,
specifically tropical peatland burning in Southeast Asia as a significant contributor to
greenhouse gas emissions and spread of river-based plastic pollution in coastal ocean

systems.

Climate change

Climate change poses one of the largest potential threats to our current existence on this
planet (IPCC, 2014). By destabilizing the global weather system, changes are being
forced concurrently on multiple ecosystems across the planet (Hulme, 2005). Changes in
precipitation rates, relative humidity, solar radiation, wind speed and evapotranspiration
are expected to regionally play a dominant role in addition to changes in surface
temperatures (Hulme, 2005). Shifts due to climate change in the geographic range of
many terrestrial and marine species have been well documented (IPCC, 2014).
Furthermore, it is projected that the majority of coral reef systems worldwide will be
severely threatened by frequent thermal stress events that result in bleaching events and
reef die-off (Donner, 2009). Whether these ecosystems are resilient enough to adapt to
rapid changes remains a topic of intense study, and with the continued course that
mankind is following, we are performing the experiments rather dangerously on the very
system that we depend upon. Large fluctuation cycles in the global climate have occurred
an estimated seven times over the last 650,000 years. The end of the last ice age occurred
over 11,000 years ago, marking the beginning of the relatively stable modern global
climate and concurrent to when human civilizations began to flourish. Historical global
climate fluctuation cycles are hypothesized to be primarily due to processes such as slight
shifts in the Earth's rotation around the Sun or the separation of the equatorial ocean

current through the formation of Central America.



Current climate change however is accepted as extremely likely (95-100%
confidence interval) to be driven in large part by anthropogenic emissions, notably
carbon dioxide, methane, nitrous oxide and fluorinated gases (IPCC, 2014). Based on the
Fifth Assessment Report of the IPCC (IPCC, 2014), global greenhouse gas emissions in
2010 amounted to a total of 49 Gt CO2-eq (gigatonnes of carbon dioxide equivalents),
which consisted of 76% CO», 16% CH4, 6% N2O and 2% f-gases. A little over one
seventh of CO> emissions (or about one tenth of total emissions) are estimated to come
from human-induced forestry and land use changes, which includes deforestation, land
clearing for agriculture, and degradation of soils. Agriculture, forestry and other land use
is estimated to account for 25% of total emissions, which incorporates emissions from
forest and peat fires as well as peat degradation (IPCC, 2014). Vegetation burning
releases CO2, CH4, N2O to the atmosphere as well as aerosols such as black carbon
(IPCC, 2014). FAO estimates (FAO, 2013; IPCC, 2014) of annual emissions from
forestry and land use between the years of 2001 to 2010 were 3.2 Gt CO2-eq/yr, of which
0.3 Gt CO2-eq/yr is attributed to biomass fires (including peatland fires) and 0.9 Gt CO2-
eqg/yr to degradation of peatlands through primarily drainage. The fires which swept
across Indonesia in 2015 are estimated to have alone released 1.75 Gt CO2-eq into the
atmosphere (World Bank, 2015). Peat fires in particular can produce very high levels of
carbon emissions (Gaveau et al., 2014; Muraleedharan et al., 2000; Page and Hooijer,

2016) and are the focus of Section I.

Oceans

The world’s oceans, as well as the estimated 10-12% of the globe’s population dependent
on ocean resources for their livelihood (FAO, 2014), face severe issues. Climate change
IS regarded as a driving factor in many changes to the oceans. Studies based on coastal
tide gauge records over the past century together with satellite altimetry measurements
since the 1990’s reveal that the oceans are currently rising at an average rate of 2.8-3.2
mm/yr (Church and White, 2011). This is hypothesized to be due to factors such as rising
heat content of ocean water together with melting of land glaciers and ice caps as well
as the major ice sheets in Antarctica and Greenland. Changes in ocean heat budgets
together with the introduction of massive amounts of freshwater have a direct effect on
large ocean current systems. These currents are dependent on forcing through the
transport of dense, cold water into the deep oceans. This in turn has numerous effects on

global wind and weather systems tied to heat exchange processes with the ocean.



Furthermore, increased atmospheric CO- levels also enact a chemical change within the
oceans. Similar to any gas-air interface, the ocean and atmosphere are continually in a
state of maintaining equilibrium. Increased CO: levels in the oceans, commonly known
as ocean acidification, results in reductions of available carbonate levels that many hard-
shelled marine species depend upon for growth of shell and other calcified structures.
One of the most striking examples of the effects of ocean acidification together with
warming water temperatures is from massive coral bleaching events in places such as the
Great Barrier Reef. Coral reefs are further threatened by abandoned fishing gear,
popularly given the name of “ghost nets”, which become entangled in reefs and continue
to kill reef animals (Donohue et al., 2001). Small plastic particles have been found in
some areas of the oceans to be as numerous as planktonic food item (Di Mauro et al.,
2017), which get ingested by these animals (Cole et al., 2015) and can eventually led to
food that lands on our dinner plates (Karami et al., 2018). Among the litany of increasing
issues facing our oceans, plastic debris has been a recognized threat since the 1970’s that
only recently has begun to gain the attention of international legislation bodies. A deeper
analysis of the history and current status of plastic pollution within the oceans is

presented in Section I1.
Section I: Fire, peat and forest biomass

I.1. Developing world

Having only recently achieved the status of a newly industrialized country, Indonesia
continues to make a large portion of its national product by selling raw materials, such
as timber and agricultural goods. High demand supports excessive production practices,
especially in agricultural sectors, which often comes at accompanying high
environmental prices. Asian countries in particular are often criticized for their lack of
care for the environment with respect to their industrial production goals.

Indonesia has experienced difficult political upheavals over the past century,
beginning hopeful enough with its independence in 1945 from Dutch colonial rule
following Japanese military occupation. Political unrest following independence led to
the New Order regime under Suharto, which spanned five presidential terms from 1966
to 1998. A focus of the regime was economic growth through intense foreign investment,
supported by the US, with little regard to curbing corruption and allowance of political

opposition. One project undertaken towards the end of the New Order, in 1996, was the



Mega Rice Project in Kalimantan, the southern region of Indonesian Borneo. The project
aimed to convert unproductive peat swamp forest into fertile agricultural areas for rice
production. This came in answer to Indonesia’s increasing interest in food self-
sufficiency for a growing population and transmigration policies aimed to enhance
development of less populated islands (Goldstein, 2016). Over two years, the Ministries
of Public Works and of Transmigration, Forestry and Agriculture coordinated to
excavate thousands of kilometers of drainage canals and clear vegetation from one
million hectares of peat swamp forest. Circa 40,000 farmers from Java and Bali were
moved and granted a small plot of cleared land on which to cultivate rice, but Javanese
rice cultivation practices proved non-functional in the acidic peat soil environment
(Goldstein, 2016). The canals served very well to drain the water table of the peatlands,
exposing carbon stores built up over millennia to oxidative microbial activity and
desiccation (WWEF-Indonesia Sebangau Project, 2012). These waterways also served to
open up new forest regions to both industrialized logging and illegal tree harvesting
activities through providing easier transport of timber from remote areas to processing
and shipping locations (Barber and Schweithelm, 2000; WWF-Indonesia Sebangau
Project, 2012). Some of the highest nationwide deforestation rates between 2000 and
2012 were observed over peatlands in Kalimantan (Margono et al., 2014). Palm oil
production is an important part of the Indonesian economy (33.5 million tonnes produced
in 2014, or $627 million USD of annual export earnings), and many of the drained and

cleared peatlands have been converted to agricultural concession.
1.2. El Nifio-Southern Oscillation

El Nifio-Southern Oscillation (ENSO) refers to the irregular periodic fluctuation of sea
surface temperatures over the Eastern and Central Tropical Pacific Ocean (termed El
Nifio/La Nifa) together with the oscillation of air pressure systems over the eastern and
western Tropical Pacific (termed Southern Oscillation). The neutral ENSO phase is
characterized by a low-pressure air system in the West Pacific over Indonesia and a high-
pressure air system in the East Pacific offshore of South America (Figure 1). These
pressure systems represent the two outer edges of the atmospheric Walker Cell usually
positioned over the Equatorial Pacific, with warm, humid air rising up into the
troposphere over Southeast Asia (thus the low air pressure system) and cool, dry air

falling onto the equatorial Eastern Pacific offshore of the American continents (thus the



high air pressure system). This pressure gradient provides for surface winds traveling
westward along the equator, strengthening the North and South Equatorial Currents and
supporting upwelling of cool, deep ocean water along the South American coastline,
especially in front of Peru. This upwelled cool water extends westward across the
equatorial Pacific. The atmospheric pressure systems provide for wet, rainy conditions
over much of Southeast Asia and dry conditions along the coastline of Peru and Ecuador
(Trenberth, 2002).

Neutral conditions El Nifio conditions La Nifia conditions

¥ Wind W Surface air pressure | W sea Surface Temperature (°C)
<15 24 >32

Figure 1: Overview of meteorological and sea surface conditions over the Pacific Ocean during neutral
conditions years as well as during El Nifio and La Nifia events. Sea surface temperature, from the GHRSST
Level 4 GISST dataset that combine both in sifu and remote sensing measurements from eight satellite
systems, over the Pacific Ocean is displayed along the top, ranging from dark purple for temperatures 15
°C and below to deep red for temperatures in excess of 32 °C. A strengthened warm pool through equatorial
waters during the strong 2015/16 El Nifio can be observed extending to the coast of Central and South
America. Increased cold water upwelling along the South American coastline and an extended cold-water
tongue can be observed during the most recent La Nifia event. Purple and red boxes correspond to those in
the graphic below, which depicts changes in air pressure system along the equatorial axis (gray arrows and
dashed lines) and in thermocline position (dark blue band). Positions of low and high-pressure systems at
the Earth’s surface are also indicated.

Semi-periodically the Walker Circulation weakens through eastward movement of
the Southeast Asian low-pressure system along the Tropical Pacific, which results in
slowed or even reversed winds along the equator (Tomczak and Godfrey, 1994). This
produces what is called a warm ENSO phase, also known as El Nifio (Figure 1), and is
characterized by both weakening of equatorial currents as well as the western Tropical
Pacific warm water pool extending further east along the equator (out to 120°W). EI Nifio
events are also termed negative ENSO phases in reference to the Southern Oscillation

Index (SOI), a comparison of the relative air pressure between Darwin in northern



Australia and Tahiti in the mid-Pacific Ocean, both of which have been measured since
the 1800s (Halpert and Ropelewski, 1992). The Equatorial Southern Oscillation Index
(EQSOI) has been implemented in modern times, which is more appropriately based on
air pressures over Indonesia and the Equatorial Pacific offshore of South America. The
term Southern Oscillation was first introduced by Gilbert Walker (for whom the Walker
Cell is named) in 1924 (Walker, 1924), who together with other researchers such as Jacob
Bjerknes (Bjerknes, 1969, 1966) is credited with identifying the relationship of sea
surface temperatures in the Equatorial Pacific with air pressure system oscillations.

La Nifa (also termed either cold or positive ENSO phase) can be considered the
opposite of an EI Nifio, in that the low-pressure system over Indonesia and the high-
pressure system offshore of South America both intensify (Figure 1). This leads to
stronger winds blowing eastward along the equator, which strengthens the equatorial
currents, induces stronger upwelling of cool, nutrient-rich deep water off the South
American coastline, and pushes the West Pacific warm water pool closer to Southeast
Asia. Both ENSO phases are responsible for global changes in temperature, as well as
anomalous weather patterns, in particular variations in rainfall amounts (Ropelewski and
Halpert, 1987; Trenberth, 2002). One of the strongest EI Nifio events recorded in recent
history occurred in 1982/83, causing an estimated $10 billion to $13 billion USD in
weather-related damage across the globe and up to 2,000 deaths (FAO, 1997; WHOI,
1986). This together with a massive coral reef bleaching event (estimated 16%
worldwide) in conjunction with the 1998/99 EI Nifio (Normile, 2016) has greatly
increased interest from both the scientific and global economic community to understand
ENSO mechanisms and its effects on global climate.

Based on historical reanalysis of the last century, the strongest ElI Nifio events
occurred 1982/83, 1997/98 and 2015/16 (Huang et al., 2016). Links between recent
variations in ENSO events and global climate change have been hypothesized, with an
increase of up to 60% in the amplitude in ENSO variability over the last 50 years after
detrending for other meteorological events (Zhang et al., 2008). The complete
mechanisms responsible for variation in the Walker Cell circulation are not yet well
understood, thus connection between ENSO with global climate change remains
primarily speculation dependent on correlation studies. El Nifio events are associated
with below average rainfall over Indonesia and parts of Australia (Halpert and
Ropelewski, 1992; Trenberth, 2002). For Indonesia, this translates to an extended dry

season before onset of the monsoon rains (Ropelewski and Halpert, 1987), which creates
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drier than usual conditions and thus increasing the risk of large fire events (Siegert et al.,
2001). An EI Nifio event temporarily reduces the GDP of Indonesia (Cashin et al., 2015).
Given that current climate models predict that ENSO events will occur more often and
with increased severity in the decades to come, both fire risk assessment and improved

fire management should be a priority for the Indonesian government.
1.3. Current fire control in Indonesia

Burning remains the easiest and cheapest method to clear land for planting in Indonesia
(Simorangkir, 2006), and fires often burn uncontrolled into neighboring forest and
drained peatland areas. An in-depth discussion of fire control history in Indonesia and
associated global greenhouse emissions is presented in both chapters 1 and 2. The most
recent large fire event in 2015 cost the country over $16 billion USD or 1.9% of their
GDP (World Bank, 2015). The emissions released through these fires, over a mere three
weeks, gained Indonesia the title of fifth largest carbon-emitting country worldwide.
International pressure has long been mounting on Indonesia to implement better fire
management practices, as exemplified by the ASEAN (Association of Southeast Asian
Nations) Agreement on Transboundary Haze Pollution and the UNFCCC (United
Nations Framework Convention on Climate Change) initiative to reduce emissions from
deforestation and forest degradation, increase the role of conservation and sustainable
management of forests, and enhance forest carbon stocks in developing countries (coined
the name REDD+). Indonesia’s current presidential administration under Joko Widodo
responded in 2011 by introducing legislation which placed a moratorium on new palm
oil concession licenses. Despite this, new concessions not listed in the Indonesian
Ministry of Environment and Forestry’s Right to Cultivate (Hak Guna Usaha, HGU)
license registry are easily identified from satellite images. Furthermore, this did little to
hinder the catastrophic air pollution resulting from the 2015 fires. Marlier et al. (2015)
list direct suggestions to help protect regional public health, including limiting the use of
fire by timber and oil palm industries through improving monitoring systems and
strengthening infrastructure of local-level management as well as enforcement of
existing fire bans. A likely limiting factor for improved fire management practices could
be the funds that the government can allocate for this activity. If this is indeed the case,
it underlines the importance of developing a low-cost system that still allows for very

efficient and accurate monitoring of fire and emission estimates over the entire country.



Remote sensing can cover very large areas for low costs relative to those needed for on
the ground monitoring of the same area. There are multiple satellite missions which
provide their data for free, offering the benefit that a large portion of the costs are being
shouldered by entities such as the European Space Agency (ESA) and the National
Aeronautics and Space Administration (NASA).

1.4. Remote sensing systems to improve fire control and provide rapid burned area

estimates

Section 1 of this thesis presents two examples of remote sensing systems for monitoring
fires and burned area in Indonesia, which are both built upon freely available satellite
data. Chapter 1 is based upon passive sensor data, a type of sensor system that is
characterized by measuring sunlight reflected by the Earth’s surface or other types of
emissions such as thermal radiation from fires (Figure 2). Chapter 2 introduces the
benefits of an active sensor system, that of synthetic aperture radar (commonly known
as SAR), characterized by the sensor producing a radio wave signal whose echo is then
recorded after bouncing off the Earth’s surface. Echo is here defined to include the effects
of signal reflection, refraction and scattering upon encountering a surface. How the
microwave signal is echoed provides information on surface properties such as

roughness and moisture content.

Passive sensors Active sensors
= Detect reflected sunlight e ® Produces radio wave
and other emissions, such A signal and detects echo
as heat A TT \ from surface
= Signal blocked by clouds & JIAN 7 I’ | \\ = Signal is reflected,
smoke dependent on /I I\ )( | || \ refracted or scattered by
/ﬁff radiation wavelength / II /\7\ vl \\ the Earth's surface
P // / * Multispectral sensors II Iy \\ X\ lI \* Cloud and smoke
/ // l/ cover spectral range from / /IV VA \\ independent due to
VLT 400-1,400 nm VI S \ longer wavelength

Figure 2: Comparison of passive and active satellite sensor systems used in land and water remote sensing.
A passive sensor detects reflected sunlight off various surfaces and other emitted radiation (such as thermal
infrared from fires), the signal of which can be blocked by clouds and smoke dependent on light wavelength.
Active sensors produce a radio wave signal that echoes off the Earth’s surface, independent of cloud/smoke
cover, and provides information such as surface roughness or moisture. Light/microwave paths are
demonstrated with hatched lines, note that processes such as atmospheric reflection and scattering are
purposely not displayed to retain a simple overview.
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Passive satellite systems include the Landsat, Sentinel-2 and FireBird satellite
missions (Table 1). They are all in low Earth orbit (referred to as LEO), meaning that
they are flying at an altitude between 160-2,000 km. Landsat presents the longest
continuous global imaging data available to the public, offering images from 1972 until
present. Both Landsat-8 and -7 are multispectral sensors, meaning that they measure light
using a small number of spectral bands (multispectral refers to number of available bands
being on the order of 3 to 30). The concurrent operational constellation provides a revisit
time of 8 days, although Landsat-7 data quality is reduced due to a scan line correction
failure. ESA’s Sentinel-2 mission provides finer pixel ground spatial resolution, down to
10 m, and covers a greater number of spectral band ranges in the VNIR (visible and near-
infrared) as compared to the Landsat satellites. With the current two satellite
constellation, acquisition revisit time has been lowered to 5 days. The satellites in the
FireBird mission from the German Aerospace Center (in German “Deutsches Zentrum
flr Luft- und Raumfahrt” or DLR) are specifically designed for very accurate and precise
detection of high temperature events, such as fires or volcanos. The bi-spectral infrared
(IR) sensor onboard allows for much finer pixel ground resolution detection, which is

discussed further in chapter 1.



Table 1: Overview of relevant satellite system parameters. Abbreviations are as follows: DLR German
Acrospace Center, USGS US Geological Survey, NASA National Aeronautics and Space Administration,
ESA European Space Agency, IR infrared, VNIR visible and near-infrared, MWIR mid-wave infrared, TIR

thermal infrared, SWIR short-wave infrared.

Mission Curr_e_n tly Sensor Launch | Spectral bands Grou_n d Orbit
(agency) orbiting system date (central wavelength) spatial altitude
satellites resolution
VNIR: 5 bands
(0.44,0.48,0.56,0.65,0.87um)
Februa SWIR: 3 bands VN;%/?HV\”R
Landsat-8 | OLI/TIRS "y (1.37,1.61, 2.20 ym) ' 705 km
2013 ) TIR 100 m,
TIR: 2 bands Pan 15m
Landsat (10.90, 12.00 pm)
(USGSs/ Panchromatic band (0.59 um)
NASA) VNIR: 4 bands
(0.49, 0.56, 0.66, 0.84 pm) VNIR/SWIR
April SWIR: 2 bands 30 m,
Landsat-7 | ETM* | 1909 | (165,222 ym) TR60m, | /O°KM
TIR: 1 band (11.45 pm) Pan 15 m
Panchromatic band (0.71 ym)
VNIR: 10 bands
Seninel. 532‘2 (044, 049, 0.56, 067,071, | 0 0
S2A, S2B MSI ' 0.74,0.78,0.84,0.87,0.95um) . 786 km
2 (ESA) March . 60 m
2017 SWIR: 3 bands
(1.38,1.61,2.12 um)
bi July VNIR: 3 bands
FireBird TET-1, ] 2012, (0.51, 0.64, 0.86 uym)
(DLR) BIROS lste\f,t\lrfFL June | MWIR: 1 band (3.8 um) 160m | 500km
’ 2016 TIR: 1 band (8.9 uym)

Sentinel-1, the system utilized in chapter 2, is an active SAR sensor (Figure 1).
Emitted microwaves (specifically C-band in the case of the Sentinel-1 satellites, defined
as wavelengths between 7.5 — 3.75 cm) move unhindered through thick cloud and smoke
cover, clearly demonstrating the promise of such a technology for being able to detect
burned area concurrent to when fires are actively producing heavy emissions. Sentinel-
1A was launched April 2014 and was followed two years later by Sentinel-1B. By
comparing before and after acquisitions, change in signal strength can be translated into

estimates of lost biomass.
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Section 11: Plastic in waterways and the oceans

I1.1. Plastic production and waste

Plastic mass production began in the 1940s and 50s, when polymers such as polystyrene
(PS), polyvinyl chloride (PVVC), polyethylene (PE), polypropylene (PP) and polyethylene
terephthalate (PET) where developed enough to allow creation of commercial products.
Since this time, global production has increased exponentially to reach 332 megatonnes
(Mt) in 2015 (PlasticsEurope, 2016), of which about half comes from Asia and circa 20%
from NAFTA and EU each (Andrady, 2017). Controlling for population growth reveals
that per capita plastic consumption has increased non-linearly within the last years
(Andrady, 2017), expanding from 100 kg in 2007 to 140 kg in 2015 for North America
and Western Europe (Lebreton et al., 2012). It is estimated that more than one third of
plastic production goes into the creation of disposable packaging (Derraik, 2002; Galgani
et al., 2017; Thompson et al., 2009), as can also be observed in the common uses listed
in Table 1. This packaging is usually discarded within one year of production, accounting
for a large portion of the 11.5 Mt of plastic dumped into landfills in 2006 (Jambeck et
al., 2015; Lebreton et al., 2012).
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Table 2: Overview of primary plastic types, listing their common abbreviated name (Abbr.), the monomer
atomic structure, some of its common uses, and market demand in megatonnes (Mt; PlasticsEurope, 2014)
as well as percentage of global plastic production (Geyer et al., 2017).

Type Abbr. Atomic structure Used in Demand
(Mt, %)
Polyethylene PE Packaging: plastic 13.7
{E_E} bags & films, (36%)
VA A membranes,
containers, bottles
Polypropylene PP Packaging and 8.8
CHs labeling, textiles, (21%)
lab equipment,
" banknotes
Polyvinyl- PVC H Cl Construction, 4.8
chloride %C—C% packaging, (12%)
| insulation,
H H, imitation leather
Polyurethane PUR Foam seating, 3.4

R'—O—ﬁ—H—Rz—H—lCli—O insulation, seals, (< 10%)
O O n

gaskets, adhesives,
surface coatings

cups and bottles,
trays, tumblers,

Polystyrene PS Packaging, food 3.3
Q containers, lids, (< 10%)
?_
H n disposable cutlery

I—0O—T

Polyethylene PET Synthetic fibers, 3.2

terephthalate Q Y thermoforming (< 10%)
Oj < > {0—(CH2)2 applications,

beverage and food

packaging
Polyamide/ PAG Thread, ropes, 0.9
Nylon 6 TR—%—H filaments, nets, (< 5%)
0 5 garments, surgical
sutures
Acrylonitrile ABS Auto components, 0.7
butadiene N electronics, (< 5%)
styrene 'é protective carrying
S cases, appliances,
k ' toys, sports
" equipment

Within the EU, landfills have been banned from eleven countries but remain the top
waste management practice for more than half of the remaining countries
(PlasticsEurope, 2016). Worldwide, plastics make up 10-15% of municipal waste by
weight (Andrady, 2017). Of the estimated 8,300 Mt of plastic to have been produced
between 1950 and 2015, 6,300 Mt have become plastic waste (Geyer et al., 2017).
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Worldwide, only 9% of this waste was recycled, 12% was incinerated or pyrolyzed and
the remaining 79% has accumulated in landfills and the natural environment. In many
developing countries, proper waste management infrastructure is lacking (Geyer et al.,
2017; Jambeck et al., 2015), leaving individuals with the choice to either burn their
waste, often with lacking emission filters and the accompanying high health risks, or to
discard it in impromptu landfills and nearby waterways. What is even recognized as
waste can vary widely, exemplified with anthropogenic debris objects less than 5 mm
long not being recognized by the state of California as waste.

Plastic waste can be categorized based on object diameter, with particles <5 mm
being termed microplastics and objects larger as macroplastics (Galgani et al., 2013).
Microplastics especially have been a focus in recent legislation initiatives (G7 Germany,
2015; GESAMP, 2016; UNEP, 2016). Primary microplastics are introduced to the
environment through sources such as hygiene products (facial scrubs, toothpaste,
cosmetics), surface abrasion (through replacement of sand in sand blasting) and
production pellets (also known as nurdles). Secondary microplastics are the product of
macroplastic degration within the environment due to processes such as solar radiation,
wind and abrasion. A third recognized source of microplastics to the environment comes
from synthetic textiles, especially during washing. Up to 0.1 mg micrometer plastic
fibers are released per gram of washed textile during each machine wash (Hernandez et
al., 2017). Waste water treatment plants, including in developed countries, are often not

sufficiently equipped with facilities to capture microplastics out of effluents.
11.2. Plastic debris in the oceans

It is estimated that each year between 10 and 20 Mt of plastic debris enter the ocean
(UNEP, 2014), of which 5— 13 Mt are thought to stem from land-based sources (Jambeck
et al., 2015). Plastic products are prized in industry and consumer goods for their
lightness and durability, but it is exactly these characteristics which pose a problem once
plastics are introduced as debris into marine systems. Global sampling efforts for marine
plastic focus primarily upon the surface, either through visual surveys of macroplastic or
net-trawl sampling for microplastic. The most commonly found plastics from these
surveys are PE, PP and PS (Zhang, 2017), reflecting relative production numbers (Table
1) and their buoyancy, with virgin plastic densities being less than that of seawater.

Estimates of the amount of plastic pollution currently floating in the oceans are wide
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ranging. The most recent global estimate of floating microplastic debris within the
oceans stands at 236 thousand tonnes (van Sebille et al., 2015), greatly exceeding
previous estimates of Cozar et al. (2014; 7 to 35 thousand tonnes) and Eriksen et al.
(2014; 36 thousand tonnes). All estimates of plastic load within the oceans are at least
two orders of magnitude less than the estimates mentioned above of the amount of plastic
entering the ocean each year (van Sebille et al., 2015). These estimates are based on
collective in situ surface water trawl samples over multiple expeditions throughout the
world’s oceans. In a recent study, Kooi et al. (2016) determined that buoyant surface
microplastic particles have a much more complex vertical distribution than before
perceived, being able to be mix down to 5 m dependent on wind conditions, which can
pose the potential for underestimating concentrations by up to 2.5 times when solely
relying on surface trawls. Plastic particles in the environment furthermore change their
buoyancy characteristics with time through biofouling, leaching, flocculation and
accumulation, all of which to date have proven difficult to study in realistic field
conditions. Given the large sources of uncertainty in collecting accurate and precise field
samples of plastic concentrations, it is not surprising that global estimates of plastic load
within the oceans have proven to be quite difficult.

The environmental and health issues posed by plastic, in particular microplastic
debris, in the ocean and inland waterways are discussed in more detail in Chapter 3.
Marine macroplastic are further estimated to incur costs up to $13 billion USD in
environmental damage (UNEP, 2014). Especially derelict fishing gear, such as the above
mentioned ghost nets, were early identified as a hazard which required monitoring by
any means possible. These ghost nets continue to catch and kill marine life long after any
fisherman could glean a benefit therefrom (Sheavly and Register, 2007). Ghost nets can
be large, a tangle of ropes and meshes up to many meters in diameter, and are able to
jam a propeller or clog a ship’s motor if inadvertently taken into the coolant system
uptake. This poses a safety hazard and financial problem for both industry, private and
military shipping activities. Infrequent monitoring activities began with ship-based or
aerial visual surveys, but have since grown to include ocean current modelling efforts
(such as van Sebille et al., 2015) or remote sensing methodologies. Pichel et al. (2007)
were one of the first to demonstrate that remotely sensed water parameters could be
implemented together with a good mechanistic understanding of regional hydrological
processes to assess likelihood of macroplastic debris accumulation along a North Pacific

convergent front. This methodology has proven difficult to implement in other regions
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of the ocean, a potential clarification being the relationship between the utilized water

parameters and hydrological features is regionally unique.
11.3. Rivers are a significant source

Rivers have been identified as one of the main sources of plastics to the ocean. Jambeck
et al. (2015) estimated that between 4.8 and 12.7 Mt of plastic were discharged from
rivers into the ocean in 2010 alone. Lebreton et al. (2017) offer a more conservative
estimate of annual riverine discharge of plastic ranging from 1.2 to 2.4 Mt. The Lebreton
et al. estimates are based on a global river hydrologic model that also accounts for
population along the river, waste management practices within the country and seasonal
fluctuations in river discharge. Based on their modelling, the top 20 polluting rivers
account for two thirds of the global riverine plastic input and are mostly located in Asia.
Freshwater systems have historically received less attention as compared to marine
studies, with very few studies having focused on large river systems despite their
apparent importance in the question of marine plastic monitoring (Lechner et al., 2014;
Mani et al., 2015). Rivers have been identified in as important source pathway and as
such, should be the focus of remediation activities to avoid the continued release of
microplastics into the ocean (GESAMP, 2016).

11.4. How remote sensing data can help

Sampling in situ from a boat remains the surest method of obtaining ground truth points
for measuring plastic concentrations at a particular location in an inland waterway or the
ocean. This collection method is both highly costly and inherently limited to
characterizing the relatively small area along a transect line. The movement of plastic in
limnological and marine systems is highly variable in both space and time. It is thus of
notable interest to determine a method in which point sampling on the ground can be
upscaled to cover a much larger area. Pichel et al. (2007) demonstrated that water
parameters, which have an established history of remote sensing, together with
understanding of the underlying hydrological mechanisms can successfully be used to
model plastic accumulation in the aquatic environment. Water parameters can be used to
identify a specific body of water and track how it moves through time. River plume water
Is most often less dense than coastal ocean waters and can be observed to remain as a

separate water body long after having left the river mouth. With knowledge of plastic
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concentration within river water as it flows into the ocean, it stands to reason that this
plastic can be then tracked by using the river plume as a proxy. Chapter 3 of this thesis
examines the microplastic being emitted by the largest river in Italy, the Po, and utilizes
two different modelling tools to track how that microplastic debris is spreading and
accumulating along the coastline. The goal of such a methodology would be to develop
the basis for a monitoring system for environmental groups and government agencies

responsible for either clean-up or source reduction activities.

Aims of the thesis

The goal of this thesis is to demonstrate how remote sensing systems can be used as a
tool to gain large scale coverage information of natural catastrophes resulting from
anthropogenic activities. While the research areas of fire in Southeast Asia and plastic in
aquatic environments are disparate issues, common aspects exist in the difficulties
confronting development of functioning monitoring systems, especially the problem of
geographical scale and available financing. Regular on the ground or in situ monitoring
measurements are costly, as well as at times dangerous, and are often unfeasible to cover
the entire effected area. In the case of fire monitoring in Indonesia, proper infrastructure
is lacking in many remote regions of this massive nation and the funds for providing
large-scale measurements of fire characteristics and greenhouse gas emissions are
lacking. Chapter 1 of this thesis deals with presenting a new fire monitoring system that
allows for much improved identification of fire sources and burning characteristics, such
as propagation speed. Chapter 2 presents a new state of the art remote sensing
methodology for more quickly assessing burned area through being able to function
independent of smoke or cloud-cover during and post fire events. The Indonesian
government has already taken concrete legislation steps to limit logging and oil palm
plantation expansion, but enforcement evidently remains difficult in remote areas.
Remote sensing offers a method for cutting the financial costs of regularly controlling
these activities over the entire country.

In the case of aquatic plastic debris monitoring, in situ monitoring points are very
costly to acquire and are representative only for a particular location at a specific time.
Aguatic systems are constantly in flux, making the spatial-temporal relationship of
plastic transportation and accumulation complex and difficult to capture based on
measurements made from a single boat over time scales from weeks to months. Remote

sensing techniques to upscale point measurements to large-area regions offer an
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opportunity to at least partially overcome this issue. Chapter 3 explores implementation
of a remote sensing methodology to monitor accumulation of river-sourced microplastic
debris along a coastline and compares the results to a more accepted form of microplastic
tracking, namely that of ocean current modelling. These chapters serve to demonstrate
how remote sensing data can be used as a monitoring tool in systems where collection of
large-area representative in situ samples is for various reasons unfeasible. The
monitoring systems presented here are of importance for contributing understanding of
our impact on globally ecosystems that we depend on as a species for our continued well-
being.
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Results

Section I: Fire, peat and forest biomass
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Chapter 1. Detection and characterization of low temperature peat fires during the

2015 fire catastrophe in Indonesia using a new high-sensitivity fire monitoring
satellite sensor (FireBird)

Atwood EC, Englhart S, Lorenz E, Halle W, Wiedemann W, Siegert F (2016) Detection
and characterization of low temperature peat fires during the 2015 fire
catastrophe in Indonesia using a new high-sensitivity fire monitoring satellite
sensor (FireBird). PLOS ONE 11(8): e0159410.

A pdf of the article is available at:

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0159410

The open-access journal PLOS ONE is acknowledged for granting permission to
reproduce this article in the present dissertation.
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Abstract

Vast and disastrous fires occurred on Borneo during the 2015 dry season, pushing Indone-
sia into the top five carbon emitting countries. The region was affected by a very strong El
Nifio-Southern Oscillation (ENSQO) climate phenomenon, on par with the last severe event
in 1997/98. Fire dynamics in Central Kalimantan were investigated using an innovative sen-
sor offering higher sensitivity to a wider range of fire intensities at a finer spatial resolution
(160 m) than heretofore available. The sensor is onboard the TET-1 satellite, part of the
German Aerospace Center (DLR) FireBird mission. TET-1 images (acquired every 2-3
days) from the middle infrared were used to detect fires continuously buming for aimost
three weeks in the protected peatlands of Sebangau National Park as well as surrounding
areas with active logging and oil palm concessions. TET-1 detection capabilities were com-
pared with MODIS active fire detection and Landsat burned area algorithms. Fire dynamics,
including fire front propagation speed and area bumed, were investigated. We show that
TET-1 has improved detection capabilities over MODIS in monitoring low-intensity peatland
fire fronts through thick smoke and haze. Analysis of fire dynamics revealed that the largest
burned areas resulted from fire front lines started from multiple locations, and the highest
propagation speeds were in excess of 500 m/day (all over peat > 2m deep). Fires were
found to occur most often in concessions that contained drainage infrastructure but were
not cleared prior to the fire season. Benefits of implementing this sensor system to improve
current fire management techniques are discussed. Near real-time fire detection together
with enhanced fire behavior monitoring capabilities would not only improve firefighting
efforts, but also benefit analysis of fire impact on tropical peatlands, greenhouse gas emis-
sion estimations as well as mitigation measures to reduce severe fire events in the future.
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Introduction

The fires that swept across Indonesia during the latter half of 2015 were catastrophic on many
levels. Costs incurred from the fires to the Indonesian government are estimated to be in excess
of USD 16 billion [1], signifying 1.9% of the national gross domestic product. Greatly reduced
air quality in Southeast Asia is a consequence of major forest fires [2-4], and the resulting
smoke cloud, coined the 2015 Southeast Asian Haze, spread across several countries, including
Brunei, Indonesia, Malaysia, Singapore, Southern Thailand, Vietnam, Cambodia and the Philip-
pines. The islands of Sumatra and Borneo were especially heavily impacted, with poor air quality
causing a state of emergency to be declared in six Indonesian provinces. On Borneo, the prov-
ince of Central Kalimantan was severely affected with Pollutant Standards Index (PSI) of fine
particulate matter (PM, 5) hitting recorded highs in excess of 1,500, far exceeding levels deemed
hazardous for human health [5-7]. Borneo contains many tropical peatlands [8], and burning
of peat swamp forests has been found to damage biodiversity [9], ecosystem structure [10] and
local livelihood opportunities [11]. Initial emission estimates from the 2015 peat fires amount to
1.75 billion metric tons of CO, equivalents [1], placing Indonesia as the world’s fifth highest car-
bon dioxide emitting country above other nations such as Japan and Germany [12,13].
Worldwide, tropical peatlands are estimated to cover an area ranging from 39-66 million
hectares (ha), representing between 10-16% of global peatland resources [14,15]. Indonesia
contains more than half of all known peatlands in the tropical zone, with an area ranging from
16-27 million ha [8,16] and translating to a peat carbon pool of 82-92 gigatons (GT) [14]. For
millennia, Borneo has been primarily covered with tropical peatlands [8,16]. In recent decades,
peat swamp forests in this region have been degraded through both industrial and illegal log-
ging [6.17], industrial plantation activities [18,19] and infrastructure from failed development
projects such as the Mega Rice Project [20,21]. Peatlands naturally have a high water table,
lying at or just below the forest-covered surface [16]. Drainage infrastructure, such as canals,
can contribute to lowering the water table [21-23], which is then compounded by drought
periods coinciding with climatological events such as El Nifio-Southern Oscillation (ENSO)
[6,24-26]. The reduced water table allows drying of the peat layer, often for the first time in
centuries [16], and thus becoming more susceptible to catching fire [21,22]. Fire is often uti-
lized as a cheap, effective method to clear and maintain land for both agricultural and planta-

tion development [27]. On Borneo, slash-and-burn techniques often result in fires spreading
into surrounding un-slashed peat swamp forests [22]. Peatland fires are characterized by low
intensity burning, which can spread into peat deposits up to 0.5 m below the surface [21,28],
and can burn for long periods of time, often being very difficult to extinguish [22]. Smoldering
peatland fires produce large amounts of particulate matter, CO and other gas compounds

22,29]. Peatland and forest fires in Indonesia during the 1997/98 ENSO event are estimated to
have released 0.2-0.4 Pg C, accounting for at least 10% of the global total carbon emissions due
to forest fires [30]. Conservation efforts have included the creation of national parks to slow
the peatland degradation process, including the Sebangau National Park established in 2004
through a combined effort of the World Wildlife Foundation (W WF) and the Indonesian Min-
istry of Environment and Forestry (MoEF). Fires occurred both within the park and in neigh-
boring regions from September-October 2015, although the extent of damage incurred
remains to be clarified.

Many questions remain regarding better fire management practices to help avoid cata-
strophic fire events in Indonesia such as those in 1982/83, 1997/98 and recently in 2015.
Remote sensing systems have been utilized for over three decades to support monitoring efforts
[31-33]. Techniques using spectral bands in the visible and near infrared (VNIR) and the
shortwave infrared (SWIR) are limited by smoke and haze coverage while fires are burning
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[34], and thus the field has focused on sensors in the midwave and thermal infrared (MWIR &
TIR) to detect active fires. The latter class of sensors include NOAA-AVHRR [35-37], GOES-
VAS [38], ERS-ATSR [39,40], TRMM-VIIRS [41], and MODIS on the EOS Terra and Aqua
satellites [42]. These sensors offer a pixel resolution from 1 km down to 375 m, and most satu-
rate at a relatively low brightness temperature of ca. 300-340 K, with the exception of a single
MODIS band (channel 21, 3.9 um low-gain) which saturates at 500 K. Low sensor saturation
inhibits proper detection of very large fire events [43]. While MODIS is best able to overcome
this limitation, the 1-km pixel resolution hinders detection of initial fire fronts or separation of
multiple small fires.

The Technology Experiment Carrier (TET-1) is one of two experimental satellites in the
German Aerospace Center (Deutsche Luft- und Raumfahrt, DLR) FireBird mission. The
onboard sensor saturates at 900 K, improving its ability to successfully detect high-tempera-
ture events (HTE) ranging from smoldering low intensity fires to large-area high intensity
fires [43]. This, together with the sensor’s 160-m spatial resolution, may result in improved
active fire monitoring and allow measurement of fire dynamic behavior previously not
possible.

In this paper, we explore whether TET-1 can provide improved fire detection capabilities
than hereto existing systems, thus providing the basis for an improved early-detection fire
management system. Focus is paid to peat fire dynamics (propagation speed, area burned) over
different ground and vegetation types, as well as fire occurrence in and around concession
areas. Finally, we provide a first estimate of the damage incurred to the Sebangau National
Park and surrounding regions during the 2015 wildfires derived from detection algorithms for
both active fire (MODIS, TET-1) and burned area (Landsat).

Materials and Methods
Study area and available metadata

The Sebangau National Park and surrounding areas sit upon peat layers reaching at least 9 m
deep [16]. The park is home to many endemic and endangered species, including the clouded
leopard, sun bear and Orang-Utan (critically endangered). Botanic biodiversity within the park
comprises 106 different known species, which encompasses many orchid as well as medicinally
useful plants. Prior to establishment of the park, the area was systematically logged through
both industrial and illegal activities [6,44]. Neighboring the eastern boundary of the park is the
location of the former Mega Rice Project. This project was initiated by the Indonesian Govern-
ment in 1995 but subsequently ended three years later when recognized as a failure [20]. Dur-
ing this period, over 4,000 canals were constructed with the primary goal to establish land for
agriculture but also succeeded in providing transport infrastructure for logs out of the forest.
Through accelerating waterflow from the peatlands, this infrastructure contributed to lowering
the water table and resulted in serious degradation of an area more than 1 million hectares in
size [21,45]. Recent conservation efforts by the World Wildlife Foundation (WWF) include
reforestation as well as building dams, with the goal to encourage a return to historical water
table levels, thus preventing drying out of the peat layer [45] and reducing risk of fire [21.22].

The study area (Fig 1) was selected to cover the Sebangau National Park as well as neighbor-
ing oil palm concessions and degraded areas, and extended over 2,430,390 ha. Datasets for peat
depth, primary forest cover and known plantation concessions were accessed from Global For-
est Watch [46]. Peat depth data, covering both Indonesia and Malaysia, were made available by
the Indonesian Ministry of Agriculture. Based upon these data, we separated the study area
into regions of thin peat coverage over sand and the available peat depth classes: 0-1m, 1-2m
and more than 2 m.
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Fig 1. Study area and fire dynamic Areas of Interest (AOI) overview. Landsat-8 OLIimage (false color: R, band 9 1.36-1.38 ym; G,
band 5 0.85-0.88 um; B, band 4 0.64-0.67 um; source USGS/NASA) from Aug. 19", 2015, overlain with TET-1 active fire classifications
derived from seven acquisition dates (displayed in red to yellow). The AOI for each fire dynamic measurement areais indicated in light grey
and study area location in Central Kalimantan, Bomeo, is indicated in the inset.

doi:10.1371/journal. pone.0159410.g001

Unburned forest coverage, defined as having not burned within the last 30 years and created
using a Landsat time series covering 2000-2012 [44], was used to make an initial separation of
vegetation types. Additional land cover classification maps covering the time period 1990-
2013 produced by MoEF were downloaded from Greenpeace [47]. The land cover data allowed
further separation of previously burned areas into “swamp scrubland”, covered by bushes and
brush, and “swamp”, covered primarily by grass and sedges. Unburned forest was termed “sec-
ondary swamp forest” to match the categories provided in the land cover dataset. Visual sepa-
ration of unburned forest into mixed swamp, low pole and tall interior forest types was
accomplished based on previous studies in the area [16], and analysis of Landsat-8 OLI imag-
ery from August 2015 and Landsat-5 TM imagery from June 1991.
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Fig 2. Oil palm plantation concessions and conservation areas. Landsat-8 OLlimage (false color: R, band 9 1.36-1.38 ym; G, band 5
0.85-0.88 pm; B, band 4 0.64-0.67 um; source USGS/NASA) from Aug. 19", 2015, overlain with oil palm plantation concession
classification, Sebangau national park boundary and Landsat burned area classification.

doi: 10.1371/journal.pone.0159410.g002

Oil palm plantation concessions for the study area were made available by the MoEF and
accessed from Global Forest Watch [46]. These data indicated which concessions either hold
or are in the process of obtaining a Right to Cultivate license (Hak Guna Usaha, HGU). Further
visual analysis of Landsat-8 OLI imagery revealed several new cultivation areas, which were
incorporated into the current analysis (Fig 2). Plantations which were planted were grouped as
“Plantation”. Areas designated as a concession but being used for small-holder agriculture
were grouped as “Small-plot agriculture”. Concessions that showed a spectral signal of bare
ground or recently burned, but not yet planted, were grouped as “Recently cleared”, while
those with indications of plantation infrastructure (such as drainage canals) but were still pri-
marily covered with forest or scrubland were grouped as “Drained, not cleared”. Lastly conces-
sions that were provided in the MoEF dataset but, based on Landsat imagery, did not appear to
have any oil palm plantation infrastructure were grouped as “Concession area not converted”.
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Remote sensing systems

TET-1is based on an improved version of the BIRD (Bi-spectral Infrared Remote Detection)
satellite structure and was launched July 2012, which together with the BIROS (Berlin InfraRed
Optical System, launched June 2016) satellite will comprise the DLR FireBird mission. In addi-
tion to offering a testing platform for space technology through the DLR On-Orbit Verification
program, TET-1 strives to provide better detection capabilities to quantitatively analyze HTEs
such as active fires and volcanoes. TET-1 is a microsatellite, measuring 65 x 55 x 88 cm in size
and weighing 120 kg, in a Low Earth Orbit (LEO) at circa 500 km altitude. [ts orbit time is 90
minutes, translating to a revisit time of maximum 5 days at latitude 40° north, although given
the satellite’s off-nadir tilt and depending on location a target could be acquired on two conse-
cutive days. The satellite is equipped with pushbroom sensors in the TIR (8.5-9.3 ym) and
MWIR (3.4-4.2 um), as well as three additional sensors in the VNIR (0.46-0.56 pm, 0.56-

0.72 pm, 0.79-0.93 um). Image swath width is 162 km for the TIR/MWIR bands and 202 km
for the VNIR bands, and the ground sampling distance (GSD), or image pixel resolution, is on
average 160 m. The onboard sensors not only enable the use of a bi-spectral method to provide
subpixel fire radiative power estimates, the refined sensor sensitivity and a fine spatial resolu-
tion allow for improved detection and monitoring of a wider range of fires [43,48].

The MODIS (Moderate Resolution Imaging Spectroradiometer) instrument, onboard both
the Terra and Aqua satellites, provides multispectral detection capabilities comprising 18
bands in the VNIR (0.41-1.38 um), 10 bands in the SWIR/MWIR (1.64-7.32 ym) and 8 bands
in the TIR (8.55-14.23 pum). The satellites are orbiting at 705 km, with Terra imaging at 10:30
am on its descending node and Aqua imaging at 1:30 pm on its ascending node. Each platform
delivers daily coverage of the entire globe. Data are provided at spatial resolutions of 250 m (2
bands), 500 m (5 bands), and 1 km (29 bands). Since their launch in 1999 and 2002, both satel-
lites have proved a valuable resource for monitoring the atmosphere [49], land cover [50,51],
vegetation [52], snow coverage [53], sea ice [54,55], sea surface temperature [56,57], and ocean
color [58-60]. The MODIS Active Fire Product [42] and Burned Area Product [61,62] have
both been extensively used to monitor fire occurrence worldwide [12]. Most bands saturate at
brightness temperatures of 330-400 K, with the exception of the 3.9 pm low-gain band (chan-
nel 21) which saturates at 500 K. Quantification of very large fire events is hindered by a low
sensor saturation temperature [43], and while MODIS has until now offered the highest sensor
saturation range, the 1 km pixel resolution still limits detection capabilities of small fires and
fire dynamics. The Burned Area Product has known issues detecting fire activity in Central
Kalimantan [63 ], resulting from the algorithm being based on a 16-day cloud-free mosaic
which is difficult to obtain in the tropics [61]. The MODIS Burned Area Product was therefore
not considered in this study. An initial comparison of the MODIS Active Fire Product (hot-
spots collection MCD14) and TET-1 imagery suggests that TET-1 can provide improved detec-
tion of small fire fronts (Fig 3a and 3b) as well as better signal detection through thick smoke
and haze (Fig 3c and 3d).

The Landsat mission provides one of the longest continuous global imaging records avail-
able, covering from 1972 until present, and now delivers multispectral images in the VNIR,
SWIR and TIR at a spatial resolution of 30 m. The current operational constellation consists of
Landsat-7 ETM+ and Landsat-8 OLI, which when taken together provide a revisit time of 8
days. It should be noted that the Landsat-7 ETM+ dataset is reduced due to the Scan Line Cor-
rector failure since 2003, which results in gaps of no data within images. Landsat satellite imag-
ery has been used extensively for detecting area burned following a fire event, but such analyses
can be hampered by heavy cloud and haze cover [34,64]. The recently launched European
Space Agency (ESA) Sentinel-2A mission in June 2015 also provides fine resolution (down to
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Fig 3. MODIS imagery and hotspot data compared with TET-1 imagery overlay. (a) MODIS Aqua true color (R, band 1 0.62-0.67 pm;
G, band 4 0.55-0.57 pm; B, band 3 0.46-0.48 pm; source NASA) image from Sept. 24", 2015, superimposed with same day MODIS
hotspot data (red dots; source FIRMS collection MCD14). (b) The MODIS image overlaid with same day TET-1 gray-scale acquisition
(source DLR FireBird Mission). MODIS hotspot data appear to under-detect low intensity fire fronts visible in TET-1 imagery (intensity of
detected fire pixels indicated by yellow gradient). (c) MODIS imagery from Oct. 21, 2015, superimposed with same day MODIS hotspot
data. (d) The MODIS image overlaid with TET-1imagery, which shows MODIS hotspot active fire detection being inhibited by thick smoke
and haze.

doi:10.1371/jounal .pone.0159410.g003

10 m), multispectral imagery in the VNIR and SWIR, and is expected to enable high quality
analyses of land cover [65]. During the study period, Sentinel-2A provided a revisit time of 10
days over the study area. Both Landsat and Sentinel-2 images were considered to estimate
change in burned area prior to and following the fire event. An overview of the all remote sens-
ing datasets analyzed is provided in Table 1.

Satellite image processing

Taking into account both day and nighttime images, the TET-1 revisit time over the study area
is between 2 and 3 days. At-sensor radiance images falling within the study area during the
period of interest were supplied by the DLR Institute of Optical Sensor Systems in Berlin. Only
the MWIR band was utilized in this study. Images did not always cover the full spatial extent of
the study area. Further post-processing of images included image georeferencing to a Universal
Transverse Mercator (UTM), zone 49 South, projection using ENVI 5.0 (Exelis Visual Infor-
mation Solutions GmbH) and subsequent additional geocorrection in ArcMap 10.2.2 (ESRI
Inc.).

MODIS hotspot data (MCD14) were accessed through the Fire Information for Resource
Management System (FIRMS). To compare MODIS and FireBird sensor systems, hotspot data
were post-processed to overlap temporally with the TET-1 imagery data, meaning data from
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Table 1. Overview of Remote Sensing Image Data.

Sensor Acquisition date Image ID

TET-1 2015-09-24 FBI_TET1_20150924T051034_20150924T051134_L1B_C_EL
2015-10-05 FBI_TET1_20151005T050624_20151005T050738_L1B_C_MH
2015-10-13 FBI_TET1_20151013T051039_20151013T051153_L1B_C_EL
2015-10-15 FBI_TET1_20151015T171847_20151015T171956_L1B_C_EL
2015-10-18 FBI_TET1_20151018T170832_20151018T170941_L1B_C_EL
2015-10-21 FBI_TET1_20151021T051425_20151021T051549_L1B_C_EL
2015-10-23 FBI_TET1_20151023T172140_20151023T172259_L1B_C_EL

MODIS hotspots 2015-06-01 to 2015-12-31 MCD14

Landsat 2015-08-19 LC81180622015231LGNOO
2015-11-23 LC81180622015327LGNOO
2015-12-01 LE71180622015335EDCO0
2015-12-09 LC81180622015343LGNOO

Sentinel-2A 2015-12-23 S2A_OPER_MSI_L1C_TL_SGS_20151223T061706
2015-12-26 S2A_OPER_MSI_L1C_TL_SGS_20151226T094222

doiz10.1371fjournal.pone 01594 10.1001

days without TET-1 images were removed. Since on a given day TET-1 imagery did not always
extend over the entire study area, the MODIS hotspot dataset was further clipped to ensure
identical spatial coverage from both sensor datasets.

Relatively cloud and haze free (< 60% cloud-coverage) Landsat images over the study area
from the period June 2015 through January 2016 were accessed from the U.S. Geological Sur-
vey (USGS) GloVis server. Images from the Sentinel-2 mission were also considered, but only
images with heavy doud-coverage (> 60%) over the study area from two months post fire
event (November and December) were available and thus only used to qualitatively evaluate
the Landsat burned area product. Both Landsat and Sentinel-2A images were atmospherically
corrected using ATCOR-2/3 software (developed by Dr. Rudolf Richter, now licensed by ReSe
Applications Schlipfer) [66].

Classification of active fires and burned areas

Hierarchical object-based image analysis (OBIA) is a recently developed technique that evalu-
ates spectral band information combined with spatial context and pattemn recognition algo-
rithms [67]. This approach has been found to outperform traditional pixel-based classification
methods when working with fine spatial resolution remote sensing imagery [68,69]. TET-1 and
Landsat images were classified with eCognition software (Trimble Navigation Ltd.) using a
hierarchical OBIA approach. To classify active fire pixels from TET-1 MWIR images, a ruleset
was developed based on image-specific object values such as scene mean and standard devia-
tion, mean difference to neighbors, abrupt boundary transition values and proximity to very
bright objects. Water reflection pixels were removed based on a river+ocean mask produced
from OpenStreetMaps (access date: Nov. 17", 2015). An accuracy assessment was performed
comparing the hierarchical OBIA results with a separate evaluation conducted by an indepen-
dent analyzer. The assessment was based on a stratified random sampling scheme to control
for the much lower coverage of fire pixels within an image, where 100 points were randomly
assigned within each category (fire and non-fire, making a total of 200 assessment points per
image), and an adjusted (weighted) error matrix was calculated based on area-normalized pro-
portions [70,71].

Landsat images were used to classify recently burned areas both prior to and following the
TET-1 imagery time series. A Landsat-8 OLI image from August 19, 2015, with only 2%
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cloud-coverage, was dassified using an OBIA ruleset based on the Normalized Burn Ratio
(NBR) and the product of a spectral unmixing analysis for recently burned areas, similar to
methods developed by Hoscdilo etal. [34] and Hoscilo et al. [72]. No clear images were available
from November 2015 to January 2016 (46-58% cloud-coverage), and analysis was therefore
limited to cloud and haze free areas within the image. Classification of recently bumed areas
from two separate Landsat-8 OLI images (Nov. 23'd and Dec. 9™, 2015) plus one Landsat-7
ETM-+image (Dec. 1%, 2015) were combined to create a coverage estimate of recently burned
areas. Areas of no data due to cloud coverage in all three images but clearly within a burn area,
defined as being completely enclosed, were included in the post fire event classification. Despite
these efforts, this method is likely underestimating the amount of recently burned area,
spotlighting a limitation of Landsat imagery in capturing recently burned areas due to being
dependent on cloud and haze free conditions.

Comparison of TET-1, MODIS hotspots and Landsat imagery

Active fire detection capabilities were compared between TET-1 imagery and MODIS hotspot
data. Both datasets were spatially clipped to include the study area, and only hotspot data taken
on days with TET-1 acquisitions were used. As mentioned, TET-1 imagery did not always
completely cover the study area on a given day, which was controlled forin the MODIS hotspot
data by subsetting both spatially and temporally.

The Landsat recently burned area dassification was compared to a MODIS hotspot burned
area estimate. Each MODIS hotspot was assumed to represent a square 1-km pixel. Down-
loaded MODIS hotspot data were reduced to overlap the same time period covering all Landsat
images (2015-08-19 to 2015-12-09), then spatially clipped to the study area and dissolved to
remove overlapping pixel areas.

AOI (Areas of Interest) selection and measuring fire front propagation
speed

Fire AOT’s were selected for further analysis dependent upon existence of a sufficient time
series, defined as a series of active fire pixels from the TET-1 imagery covering at least three
separate dates (see Fig 1). Areas were considered both within the Sebangau National Park as
well as in neighboring degraded regions and oil palm plantation concessions. For each fire
AOQL fire front propagation speed was measured by comparing the location of a fire front from
one date to the next. Fire front propagation lines were placed so that they lay as perpendicular
as possible to the advancing fire line and all notable fire propagation directions were being
assessed. To obtain fire propagation speeds, the distance between fire fronts from one date to
the next was divided by the number of intervening days.

Area burned within each fire AOI was quantified from the digitized TET-1 classification
results as well as the Landsat classification results. When ground types were different within an
AOL the AOI was classified using the predominant ground (or vegetation) type covering the
area. Within the AOI, each fire propagation line was dassified based on the ground (or vegeta-
tion) type lying below the vector’s middle point.

Results
TET-1 classification and comparison with other sensors

The accuracy assessment of the OBIA active fire analysis was found to have an adjusted overall
accuracy of 93% or higher for each TET-1 image. In comparing active fire detection capabilities
of TET-1 and MODIS (Table 2), the TET-1 data were clearly outperforming the hotspots data.
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Table 2. Comparison MODIS and TET-1 Active Fire Detection.

Sensor

Revisit time (days)

Spatial resolution (m)

Detected active fire pixels

Estimated area (ha)

Percent study area

MODIS hotspots 0.5 1,000 x 1,000 1,090 109,000.00 4.5%

TET-1 2-3 160 x 160% 88,074 225,469.44 9.3%

“Ground resolution varied from 148 m to 169 m between images.

doi:10.1371/journal. pone.0153410.1002

Table 3. Comparison MODIS and Landsat Bumed Area Detection Capabilities.

Sensor Revisit time | Spatial resolution | Detected burned area | Detected active fire Estimated burned Percent study area
(days) {m}) pixels pixels area (ha) burned

MODIS 0.5 1,000 x 1,000 N/A 13,225 496,124.68 20.4%

hotspots®

Landsat” 8 30 x 30 7,606,239 N/A 684,561.47 28.2%

N/A, detection methed not applicable to the dataset.
“MODIS hotspot data cover the same period of time as the before and after Landsat images.
BAnalysis based on comparison of detected bumnt area from pre-fire (2015-08-19) to post-fire (2015-10-23, 12-01 and 12-09) images.

doi:10.1371/journal. pone.0159410.1003

During the time period of Sept. 24™ to Oct. 23", the MODIS hotspot algorithm detected 1,090
active fire pixels when controlling for consistent spatial extent. This translates to an active fire
area estimation of 109,000 ha. During the same time period, TET-1 detected 88,704 active fire
pixels which translate to an active fire area estimation of 225,469.44 ha.

The Landsat recently burned area OBIA analysis, comparing changes from 2015-08-19 to
2015-12-09, resulted in a burned area estimate of 684,561.47 ha, while the MODIS hotspot
algorithm, when controlling for concurrent spatial and temporal coverage, detected 13,225
active fire pixels and after being dissolved translated to an estimated burned area of
496,124.68 ha (Table 3). As mentioned previously, the Landsat images from November/
December 2015 had between 40-60% cloud-coverage, which created areas of “No data due to
cloud cover” within the final classification. Areas which were clearly enclosed by burned areas
were induded in the Landsat burned area estimate, amounting to 22,314.81 ha or 3.3% of the
total estimate.

Fire front analysis and area burned within each AQI

Comparing TET-1 active fire pixels over successive dates revealed interesting differences in fire
propagation dynamics. Ring fires were found to be either symmetric (Fig 4) or asymmetric (Fig
5). In both figures, the outer fire front from each TET-1 image within the time series is dis-
played as a colored fire isochrome with the respective image acquisition date indicated. Often-
times fire ring propagation would begin by spreading symmetrically in all directions only to
encounter areas where fire propagation would be either slowed or even remain stationary. Pre-
vious fire scars (pink/purplish areas) and changes in logging infrastructure (rails and canals)
are evident from the Landsat imagery from 1991 and 2015 (Figs 4a, 4b and 5a, 5b). The TET-1
MWIR data from different points within the time series are also presented (Figs 4c—4f and 5¢—
5f). It is evident from both figures that fire propagation speed over previous fire scar areas is
either greatly slowed or the fire becomes no longer detectable. Other reasons for reductions in
fire propagation speeds, such as observed along the southern border of the Fig 4 fire or the east-
ern border of the Fig 5 fire, are likely due to differences in vegetation or ground type and are
discussed in more detail below.

PLOS ONE | DOI:10.1371/journal.pone.0159410  August 3, 2016
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(c) TET-1 MWIR 2015-09-24 (d) TET-1 MWIR 2015-10-05

-
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(e) TET-1 MWIR 2015-10-15 (f) TET-1 MWIR 2015-10-23

Fig 4. Symmetricring fire front (FO3) time series. (a) Landsat-5 TM imagery (false color: R, band 5 1.55-1.75 pm; B, band
40.76-0.90 um; G, band 30.63-0.69 um; source USGS/NASA) from June 30", 1991, showing historical logging railway
infrastructure and burn scars (purplish region) along southern image edge. (b) Landsat-8 OLIimagery (false color: R, band 9
1.36-1.38 um; G, band 5 0.85-0.88 um; B, band 4 0.64-0.67 um; source USGS/NASA) from Aug. 19", 2015, overlain with
TET-1 detected fire front time series from six acquisition dates. Recently burned area prior to fire eventis located along the
westem fire edge. Original TET-1 midwave infrared (MWIR; source DLR FireBird Mission) imagery is shown for (c) Sept. 24",
(d) Oct. 5™, (e) Oct. 15™, and (f) Oct. 23", 2015.

doi:10.1371/journal. pone.0159410.9004
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(c) TET-1 MWIR 2015-09-24

(e) TET-1 MWIR 2015-10-21 (f) TET-1 MWIR 2015-10-23

Fig 5. Asymmetric ring fire front (F02) time series. (a) Landsat-5 TM imagery (false color: R, band 5 1.55—
1.75 um; B, band 4 0.76-0.90 um; G, band 3 0.63-0.69 um; source USGS/NASA) from June 30", 1991,
showing historical logging railway infrastructure. (b) Landsat-8 OLIimagery (false color: R, band 9 1.36—

1.38 um; G, band 5 0.85-0.88 um; B, band 4 0.64-0.67 um; source USGS/NASA) from Aug. 19", 2015,
overlain with TET-1 detected fire front time series from six acquisition dates. Recently burned area prior to fire
eventis located along the northeastern fire edge. Original TET-1 midwave infrared (MWIR; source DLR
FireBird Mission) imagery is shown for (c) Sept. 24", (d) Oct. 15™, () Oct. 21%', and (f) Oct. 23", 2015.

doi:10.1371/journal.pone.0159410.g005
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Table 4. Propagation Speed and Fire Dynamic Measurements.

Area | N Fire Ground type Vegetation Fire propagation speed (m/day) TET-1 active fire area | Landsat burntarea
D form type Average | S.D. | Minimum | Maximum (ha) (ha)
FO1 | 3 | LineP peat1-2m MS 141.17 | 122.86 4.09 442.67 860 1,305
F02 | 9 | RingAS peat >2m TI+LP 128.82 | 112.30 5.63 514.50 3,044 3,914
F03 |12 | RingSY peat>2m TI+LP 166.35 | 141.03| 26.91 765.50 5,093 6,415

F04 | 6 | RingSY peat >2m LP+MS 172.28 | 126.93 7.00 388.67 925 990

FO5 | 7 | LineM peat+sand LP+MS 128.96 | 134.23 4.62 490.00 3,309 9,308
FO6 | B | LineM peat>2m LP+MS 163.92 | 167.26 | 10.60 854.50 5,827 9,948
FO7 | 8 | LineM peat >2m LP+MS 223.16 | 327.32| 35.89 1696.00 4,295 9,478
FO8 | 5 | LineP peat+sand LP+MS 141.79 |125.03| 29.62 488.50 1,632 3,447
F09 | B8 | LineM peat >2m LP 191.85 | 267.57 | 16.52 1054.50 5,425 15,992
F10 | 4 | LineP peat 1-2 m LP+MS 87.94 | 43.17| 45.80 175.67 659 1,790
Fi1 | 4 | LineP peat 1-2 m LP+MS 143.69 |107.68| 12.79 360.00 1,431 2,150
F12 | 4 | LineP peat+sand LP+MS 204.81 |229.67| 17.33 978.50 2,027 2,931

F13 |5 | LineP peat 1-2m LP+MS 191.64 |178.20| 38.63 533.00 1,738 5,611

F14 |15| LineM peat 1-2 mand LP+MS 207.50 |330.64 8.14 1903.50 7,502 23,367

>2m

F15 Line M peat >2m Cc 139.569 | 166.14 5.21 503.50 1,961 4,070
F16 | 5 | LineM peat >2m o] 258.54 | 233.82| 46.63 828.50 1,447 4,456

N, number of fire propagation time series lines measured per AOl; S.D., standard deviation; Line M, line fire front started from multiple sources; Line P, line
fire front started from a point source; Ring SY, symmeitrical ring fire form; Ring AS, asymmetrical ring fire form; MS, mixed swamp forest; LP, low pole forest;

TI, tall interior forest; C, concassion.

doi:10.1371/joumal. pone.0159410.1004

Fire propagation speed descriptive statistics for each AOL along with active fire area esti-
mates from TET-1 images and burned area estimates from Landsat images, are presented in
Table 4. The highest fire propagation speeds measured were in excess of 500 m/day. One can
see from the standard deviation and the spread between maximum to minimum measurements
that fire propagation speed was highly variable over all areas. This variability is likely partially
due to wind patterns and fuel load, both of which could not be integrated into this study. The
most common fire form observed was a long fire line discerned to have started from either a
single (6 AOIs in total) or multiple points (7 AOls in total), the second most common form
was a fire ring spreading from a central location (the remaining 3 AOIs). The predominant
ground and vegetation type for each AOI is also indicated. The three highest averages (Area ID
F07, F14, F16) as well as the three highest maximum fire propagation speeds (F07, F09, F14)
were all measured over peat greater than 2 m deep. The three areas found to have burned the
most (F06, F09, F14) all resulted from fire lines that appeared to have been started from multi-
ple sources.

Fire propagation speed over different ground and vegetation types

Descriptive statistics showing the comparison of fire propagation speeds over different ground
types is presented in Table 5. Differences in fire propagation speed between different ground
types were not found to be statistically different (Mann-Whitney U-test or Wilcoxon Ranked-
Sum Test, p>0.05), although certain trends can be observed. The highest average and maxi-
munm fire propagation speeds occurred over peat greater than 2 m deep. Average fire propaga-
tion speed reduces successively as the peat layer depth decreases to a thin peat layer lying over
sand.

PLOS ONE | DOI:10.1371/journal.pone.0159410  August 3, 2016
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Table 5. Fire Propagation Speeds over Peat and Sand Ground Types.

Ground type Propagation speed (m/day)

N Average S.D. Minimum Maximum
peat+sand (depth unknown) 14 97.63 87.62 20.50 361.00
peatO-1m 30 134.94 131.90 4.62 490.00
peat1-2m 77 161.53 172.53 4.09 978.50
peat>2m 202 187.01 237.82 5.21 1903.50

N, number of fire line measurements; S.D., standard deviation.

doi:10.1371fjournal.pone.0159410.1005

Table 6. Fire Propagation Speeds over Different Vegetation Types.

Vegetation type Propagation speed (m/day)

N Average S.D. Minimum Maximum
Planted plantation 5 125.99 146.43 14.76 415.00
Secondary swamp forest 199 185.72 243.34 4.09 1903.50
Swamp scrubland 118 151.12 145.46 5.21 828.50
Swamp (grass & sedge) 1 207.33 N/A N/A NA

N, number of fire line measurements; S.D., standard deviation.

doi:10.1371fjournal. pone 0159410.1006

Fire propagation speeds over various vegetation types is presented in Table 6. Differences
were only tested for the vegetation classes which contained more than 10 fire line measure-
ments (secondary swamp forest and swamp scrubland), but no significant differences were
found (Mann-Whitney U-test or Wilcoxon Ranked-Sum test, p>0.05). The slowest propaga-
tion speeds were observed in the planted plantation class. Although the quickest propagation
speed was observed over the swamp land cover class, it should be noted that this class is repre-
sented by only a single measurement. The highest maximum propagation speed (1,903.50 m/
day) was observed over previously unburned secondary swamp forest.

Fire prevalence in relation to different levels of concession usage

Occurrence of fire under different levels of concession usage is presented in Table 7. The two
largest usage categories by area were “Plantation” and “Concession area not converted”, and
both these areas were also found to contain the highest active fire area estimates (5,297 haand
1,717 ha respectively). By normalizing area coverage, accomplished by dividing the active fire

Table 7. Oil Palm Plantation Fire Occurrence.

Current status Total parcels Area (ha) Number with HGU TET-1 active fires (ha; % by area)

Inside Border 160m Within 500 m
Plantation 25 129,140 7 5,297;4.1% 1,309;1.0% 4,246; 3.3%
Small-plot agriculture 11 54,435 1° 1,717;3.2% 82; 0.2% 300; 0.6%
Recently cleared 19 8,606 3 468;5.4% 188; 2.2% 573;6.7%
Drained, not cleared 7 1,994 0 270; 13.5% 173; 8.7% 652; 32.7%
Concession area not converted 10 77,703 12 6,459;8.3% 456; 0.6% 1,544; 2.0%

HGU, Cultivation Right on Land (Indonesian: Hak Guna Usaha).
#Plots granted with only local permits.

doi:10.1371fjournal. pone.0159410.6007
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area with the total area within a concession category, one observes that fires occurred most fre-
quently in concession areas that are “Drained, not cleared” (13.5% within the area, 8.7% along

the border, and 32.7% within 500 m of the border). Fires were found to occur least often in the
small-holder agricultural areas (3.2%), and plantation areas (4.1%).

Discussion

Over the study period, TET-1 detection of active fire pixels consistently outperformed the
MODIS hotspot algorithm. Even when accounting for differences in image pixel resolution (1
MODIS pixel is equivalent to circa 39 TET-1 pixels), the MODIS hotspot data detected less
than half the active fires as compared with TET-1. These results are consistent with findings in
other studies [43]. The MODIS hotspots burned area estimate, based on hotspot active fire
detections converted to burned area, was also outperformed by the Landsat OBIA burned area
analysis, which estimated 38% more newly bumed area despite the data being of lower quality
due to haze and cloud cover. The assumption that a MODIS hotspot point represents a com-
plete square kilometer of burned area is tenuous and likely presents an overestimation of
burned area detection. This only further supports the conclusion that Landsat should be the
preferred passive detection system for burned area estimates following a fire event, however
analyses of fire dynamics are very limited with this sensor given revisit time and cloud, haze
and smoke coverage. Potential issues presented by comparing an algorithm detecting a
dynamic process (such as active fire) with an algorithm detecting the product of a process
(burned area) are discussed below. Fire detection issues with haze and cloud cover for both
Landsat as well as MODIS are not unknown [34,64], and Fig 3 displays excellent examples of
thick haze hampering the ability of the MODIS sensor to detect active fires. While MODIS,
with a high saturation temperature of 500 K in one of the MW IR bands and global coverage
every day, has been and continues to be the workhorse of global fire detection, the coarse 1-km
spatial resolution detracts from the sensor’s capability to capture small fire events and fronts
[43]. The improved ability of the TET-1 sensor to capture these dynamics is displayed well in
Fig 3band 3d, where multiple smaller fire fronts are detected which were not present in the
MODIS hotspot data.

TET-1 was intended primarily as an experimental satellite platform, and as such this study
was conducted under certain limitations. An atmospheric correction of the MWIR band was
not possible using ATCOR (pers. comm. R. Richter). Radiance in the MW IR spectrum is pri-
marily affected by aerosols and water vapor in the atmosphere, and working with non-atmo-
spherically corrected data most likely increases issues with false positive detection. We
controlled for issues with sun glint from water and bright land cover types, such as bare soil
with high quartz sand content, through utilization of a water mask and focusing analyses on
TET-1 image time series that displayed similar patterns over 3 separate dates. Synergy of atmo-
spherically corrected TIR and MWIR band data would enable better quantification of charac-
teristics such as fire radiative power [43], and further research is currently being conducted to
address the need for an appropriate atmospheric correction for data from this sensor. TET-1
has been joined in 2016 by BIROS, which will lower time between acquisition dates and provide
an opportunity to reduce false positive detections through image comparison. Additionally, an
operational bi-spectral method product based on the MWIR and TIR bands is in development,
which will enable subpixel analysis of fire temperature and area. A measurement of fire temper-
ature, an indicator of fire intensity, could enable earlier estimation of fire emissions from a par-
ticular area.

Derivation of burnt area estimates from active fire detection algorithms have been found to
be prone to error [31], primarily due to available active fire detection systems producing only a
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snapshot of a continuously moving fire front. Our estimates of actively burning area from
TET-1 (225,469.44 ha) were not surprisingly much less than those from the burned area Land-
sat analysis (684,561.47 ha). Under the current FireBird satellite constellation, TET-1 acquisi-
tions were only possible every 2-3 days. We often observed jumps in the detected fire pixels
from one image to the next, which were assumed to be due to quickly spreading fire within that
period of time. A similar trend appeared when comparing the AOI active-burning area
detected by TET-1 with the newly burned area detected by Landsat (Table 4), where TET-1
was found to be underestimating the area by up to 69%. The two area estimation methods
came the closest to one another for the F04 fire (925 ha and 990 ha respectively), which could
be expected since it was a relatively small fire with few large jumps observed in the TET-1 time
series. This issue will be lessened by expanding the FireBird constellation and thus shortening
the period of time between image acquisitions, but it should be noted that products from algo-
rithms for detecting active fires should be expected to be fundamentally different than algo-
rithms for detecting burned area after a fire event.

Measured fire propagation speeds were highly variable both between and within different fire
AQr’s (Table 4), and the highest propagation speeds observed were in excess of 500 m/day.
Average fire propagation speeds measured are on par with those estimated for cleared tropical
rainforest (202 m/day) [73], but are much higher than estimates by Usup et al. [22] for peat fires
in the same region (0.3-0.9 m/day). Distributions of the fire propagation speeds were highly
skewed, as indicated by the median being often smaller than the arithmetic average, but even
when considering only the median, a two orders of magnitude reduction in the propagation
speed was not revealed. Possible causes for the propagation speed discrepancy could be the
study by Usup et al. [22] being conducted during a less severe ENSO event, thus under different
peat moisture content conditions, and over a different vegetation type than present in many
AQF’s analyzed in this study. The observed fire ring forms resemble those predicted by Usup
etal. [22], where surface peat fire fronts move in an erratic pattern determined by distribution
of favorable ignition conditions and can burn into deeper peat layers. Fire fronts were found to
slow or even stop when encountering an area that had been recently burned (excellent examples
can be observed around the pink/purple areas in Figs 4b and 5b). This is not surprising as above-
ground biomass is reduced through fire, with tropical forest taking many decades to recover
[74], thus the observed slowed propagation speed could be due to lower fuel availability.

No significant difference was found in fire propagation speed over unburned secondary
swamp forest and swamp scrubland that burned sometime within the last 30 years. The MoEF
land cover classification is based on 30 m x 30 m resolution Landsat data but created using a
manual delination approach that utilized a minimum mapping unit of 6.25 ha [44,75,76]. TET -
1 pixels correspond to an area of 2.56 ha, thus the two datasets are within the same order of
magnitude of one another. Despite this, these data are likely not detailed enough to sufficently
capture the relationship between different fuel loads available in various forest types such as
tall interior, low pole and mixed swamp forest. Fire propagation lines were observed to slow
when moving from tall interior peat swamp forest to low pole or mixed swamp forest. These
forest types are evident in Fig 5a, where logging railways together with the bright-green tex-
tured area in the image center indicate tall interior forest containing valuable timber species.
To the East of this area, low pole/mixed swamp forest is indicated through very little logging
infrastructure and less green textured area. In Fig 5b, a seeming fire propagation boundary
occurs along the same area as this forest type boundary. This can also be observed in Fig 4b
along the northwestern and eastern edges of the F03 fire ring. The northern edge of this fire
burned into an area appearing to be tall interior forest (logging infrastructure), but despite this
the fire front quickly slows after 2 weeks of burning. Low pixel brightness temperature, a proxy
for fire intensity, along these edges can be observed in the original TET-1 images (Fig 4d-4f),
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and may be indicative that the fire is slowly spreading through the deeper peat layer. From the
November/December Landsat images, this area appeared to still contain many patches of par-
tial green, providing supporting evidence for a low intensity fire front. This, together with the
fire front’s persistence for more than 2 weeks, suggests that the deep peat layer had begun to
slowly burn, but without ground truth measurements, a conclusive determination is outside
the scope of this study.

It is interesting to note in Table 5 that fires propagating over peat+sand were never found to
burn slower than 20 m/day. The minimum propagation speeds in the other ground type catego-
ries (peat depths 0-1 m, 1-2 m, and > 2 m) were higher than those found by Usup et al. [22],
although are closer to peat fire propagation speeds measured in Russia (2.4 m/day) [77] and
Canada (2.9 m/day) [78]. Quickly spreading surface peat fires were likely mixed with deeper
peat fires for each category during the analysis, which together with factors such as differing fuel
availability and weather conditions, could explain the large variation in the data. The analysis
was limited to what is possible to measure using a remote sensing system and there is a dire need
to build upon the work of Usup etal. [22] in order to provide further in situ measurements of
peat fire propagation speeds in Central Kalimantan over different ground and vegetation types.

Another potentially important factor not included in the analyses was water table level, as
peat with low moisture content has a much higher risk of catching on fire [22]. Conservation
efforts within the Sebangau National Park have included installing dams to help slow run-off
and thus retain more water in the peat swamp forest [45]. Whether these dams have a dampen-
ing effect on fire dynamics could be observed during the 2015 fires (Fig 6). Three different fire
fronts were measured (F10, F11, and F12), one of which had the lowest average fire propaga-
tion speed measured (F10, 87.94 m/day, see Table 4). The F10 and F11 fires occurred over
peat > 2m deep, and the slow propagation speed of the F10 fire is likely due to the deeper peat
layer catching fire. The F11 fire appears to be a quick-moving surface peat fire front. Installed
WWE dam locations are also presented in Fig 6. It can be observed that the East and West

boundaries of the F10 and F11 fires correspond to dam installation locations, while the central
portions of these fires contain little to no dams. The F12 fire occurred over thin peat coveringa
quartz sand layer (peat+sand). From the fire front time series, this fire appears to have begun
as a quick-moving surface fire and then slowing (similar to the F10 fire). The centrally located
dams for the F12 fire did not appear to have the same dampening effect observed for the F11
and F10 fire. This may be due to the shallowly located sand layer, which presents different
groundwater porosity conditions than peat. The TET-1 data alone can simply offer qualitative
observations on dam effectiveness, and conclusions should only be made after extensive in situ
sampling, but the opportunity to use observed fire dynamics to focus successful field campaign
efforts post-fire event can be highlighted by this example.

From the analysis of fire occurrence in different concession areas (Table 7), it is evident that
fires occur most often in plots with installed drainage infrastructure but have not yet been
cleared. Since fire is the technique of choice to quickly and cheaply dear slashed areas [27], the
frequent occurrence of fire within the “Drained, not cleared” areas is not surprising. This con-
cession class also had the highest percentage of fire occurrence along its borders and within
500 m thereof, supporting the hypothesis that most peat swamp fires originate from anthropo-
genic sources [18]. Interestingly enough, small-plot agriculture areas had some of the lowest
percentages of fire occurrence. Fires were often first detected in previously burned areas which
then spread into surrounding primary forest. Indonesia has a long history with oil palm planta-
tion management [18], including actions to control concession growth through a moratorium
upon issuing new licenses in 2011 [79]. Low-intensity peatland fires can contribute heavily to
emissions [29,78,80], and reducing their occurrence as well as their size will play an important
factor in Indonesia’s plan to reduce emissions 26% by 2020.
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Fig 6. Fire front dynamics of AOI F10, F11 and F12 in relation to installed dams. Landsat-8 OLI imagery (false color: R, band 9 1.36—
1.38 ym; G, band 5 0.85-0.88 um; B, band 4 0.64-0.67 um; source USGS/NASA) from Aug. 19", 2015, overlain with TET-1 detected fire
front time series from six acquisition dates. Location of dam installations shown by purple squares.

doi:10.1371/journal.pone.0159410.g006

Efficient and effective fire management is difficult on many levels [6], and a key component
for improvement will depend upon the best fire occurrence monitoring system possible. Early
detection of small fires, before they have the chance to become fire fronts many kilometers
long, will greatly improve firefighting response efficiency. Fig 7 shows a TET-1 image series as
fires first detected on Sept. 24™, 2015, thereafter spread and connect with one another over the
following 2 weeks to become fire fronts over 10 km long. Relying solely upon the MODIS hot-
spot data, one would have missed detection of the small fires in September. The hotspot dataset
then detects less than half of all fires in the October image. The image displays the F06, FO7
and F09 fires, which were estimated to have burned an area ranging from 15,547 ha (using
TET-1) to 35,417 ha (using Landsat). The most common fire form observed over the entire
study area were fire lines (13 out of 16 fires examined), all of which either started as a single
point source or from multiple sources. This emphasizes how early detection of small fires
before they have the chance to grow into large fire fronts will be very important for improving
fire management efficiency as well as effectiveness.
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Fig 7. Rapid fire front growth during 2 weeks and comparing MODIS hotspot fire detection with TET-1. TET-1 midwave infrared
(MWIR; source DLR FireBird Mission) images from Sept. 24" and Oct. 15", 2015. Location of image extent within study area indicated in
the inset. MODIS hotspot data for date concurmrent to TET-1 imagery indicated in each image (red dots; source FIRMS collection MCD14).

doi:10.1371/journal.pone.0159410.g007

Conclusions

This study demonstrates the improved fire detection capabilities of TET-1 compared to com-
monly accepted fire monitoring systems, and how this sensor allows better measurement of
temporal and spatial fire dynamics than heretofore possible. TET-1 fire detection capabilities,
given the sensor’s higher saturation temperature and finer spatial resolution, are clearly
enhanced compared to those of the MODIS system. The MODIS hotspot data have and will
continue to provide valuable information on global fire occurrence, playinga very important
role in global monitoring of fire activity and analyses of decadal changes in fire occurrence.
The FireBird mission offers an opportunity to build upon this system with a more sensitive fire
monitoring system capable of providing more detailed, locally-based information on fire
occurrence and previously not possible fire dynamic measurements. Early fire detection
through smoke and haze provides valuable information for fire control management. The costs
incurred, both financial as well as social, by the fall 2015 fire catastrophe present clear motives
for improving current fire control management systems.

Another goal of this study was to provide a first estimate of the damage incurred to the
Sebangau National Park during this event. Our calculations of active fire and area burned
within the study area range between 225,469.44 ha (TET-1) and 684,561.47 ha (Landsat).
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This discrepancy is due to differences in detection methodology, where TET-1 is providing
snapshots of active fires while Landsat is providing a combined estimate of where fires
burned. Both systems used in synergy with one another would support a monitoring system
capable of accurately estimating area burned as well as measuring fire dynamics closer to
real-time than previously possible. Monitoring of fire damage extent using sensors working
in the VNIR and SWIR, such as those used in the Landsat and recently joining Sentinel-2
missions, provide estimates of burned area at fine spatial resolution (down to 10 m) but are
limited by the requirement of waiting for relatively cloud and haze free images [34,64]. The
longer the period of time between a fire event and acquisition of a clear image, the more vege-
tation regrowth and resettlement inhibits accurate detection of burn scars [64]. Fire dynamic
measurements revealed maximum propagation speeds in excess of 500 m/day and that fires
tended to spread most quickly over peat > 2m deep. Based on peat fire propagation speeds
measured in other regions, we conclude that this group was likely a mix of quick-moving sur-
face peat fire fronts and slow-burning, low intensity sub-surface peat fires. Changes in vegeta-
tion type were observed to co-occur with fire spreading boundaries. We also found that fires
occurred with the highest frequency in concession areas containing drainage infrastructure
but were not yet cleared prior to the fire event. Fires were observed to often begin in areas
previously burned and then spread into neighboring primary forest. While these observations
were statistically inconclusive, this demonstrates how the TET-1 sensor offers a wealth of
data for further fire dynamic investigations. Conservation efforts, such as the installation of
dams, likely helped to minimize spread of fire in some areas, but enhanced fire monitoring
systems would provide an integral tool for improving firefighting management.

TET-1 has been joined in 2016 by BIROS, expanding the FireBird constellation and thus
reducing time between acquisition dates. Issues with determining burned area from active fire
detection data, where fast-moving fire fronts produce a discontinuous time series of events,
will be lessened through decreasing the time period between detection events. Future expansion
of the FireBird fleet is in discussion, which would enable near real-time fire detection. This
would support firefighting activity organization through focusing efforts on fires while they are
still small and more easily contained. In this study we have demonstrated not only how a Fire-
Bird sensor can improve hereto existing monitoring systems, but also how detected fire
dynamic data can be used to help design measures to reduce risk of fire. This information will
be useful for government agendies, fire managers and monitoring groups concerned with pre-
venting such catastrophes in the future.
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1 | INTRODUCTION
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Abstract

Fires raged once again across Indonesia in the latter half of 2015, creating a state
of emergency due to poisonous smoke and haze across Southeast Asia as well as
incurring great financial costs to the government. A strong El Nino-Southern Oscilla-
tion (ENSO) led to drought in many parts of Indonesia, resulting in elevated fire
occurrence comparable with the previous catastrophic event in 1997/1998. Syn-
thetic Aperture Radar (SAR) data promise to provide improved detection of land use
and land cover changes in the tropics as compared to methodologies dependent
upon cloud- and haze-free images. This study presents the first spatially explicit
estimates of burned area across Sumatra, Kalimantan, and West Papua based on
high-resolution Sentinel-1A SAR imagery. Here, we show that 4,604,569 hectares
(ha) were burned during the 2015 fire season (overall accuracy 84%), and compare
this with other existing operational burned area products (MCDé4, GFED4.0,
GFEDA4.1s). Intersection of burned area with fine-scale land cover and peat layer
maps indicates that 0.89 gigatons carbon dioxide equivalents (Gt CO.e) were
released through the fire event. This result is compared to other estimates based on
nonspatially explicit thermal anomaly measurements or atmospheric monitoring.
Using freely available SAR C-band data from the Sentinel mission, we argue that the
presented methodology is able to quickly and precisely detect burned areas, sup-
porting improvement in fire control management as well as enhancing accuracy of
emissions estimation.

KEYWORDS
burned area, carbon, El Nino, emissions, fire, Indonesia, Synthetic Aperture Radar

Swinfield, 2016), or economic costs incurred to neighboring coun-
tries (Tacconi, 2016). Peat fires in particular, characterized by smol-

The vast and disastrous fires that swept across Indonesia in 2015
were catastrophic from an economic, public health, ecologic, and glo-
bal climate perspective. Estimated inland costs hover in excess of
16 billion USD (World Bank 2015), representing 1.8% of Indonesia’s
gross domestic product in 2014 (Tacconi, 2016) and exceeding the
value added from the entire nation's palm oil production (12 billion
USD) that same year (World Bank 2016). These estimates do not
include costs that are hard to quantitate, such as loss of biodiversity

and long-term damage to human health (Chisholm, Wijedasa, &

dering combustion (Page & Hooijer, 2016; Turetsky et al, 2014),
produced thick toxic haze which spread over adjacent countries such
as Malaysia, Singapore, and Thailand (Blunden & Armdt 2016;
Chisholm et al., 2016; Tacconi, 2016). Current government estimates
of area burned are 2.6 x 10° ha, equivalent to four and a half times
the size of Bali (Tacconi, 2016; World Bank 2016). Fires are assumed
to be primarily started deliberately and illegally for large-scale devel-
opment of pulpwood and oil palm plantations (Gaveau, Sloan et al.,
2014; Page & Hooiljer, 2016; Siegert, Ruecker, Hinrichs, & Hoffmann,

644 I © 2017 John Wiley & Sons Lid
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2001). Indonesia has often been criticized for its poor fire control
(Abood, Lee, Burivalova, Garcia-Ulloa, & Koh, 2015; Barber & Sch-
weithelm, 2000), to which the government responded in 2011 by
increasing regulations (Austin, Sheppard, & Stolle, 2012). Despite
these measures, uncontrolled fires remain an annual occurrence due
to lack of better regulated buming measures and insufficient law
enforcement (Chisholm et al., 2016; World Bank 2016).

Drainage of peatland areas increases their susceptibility to fire,
which is further enhanced by prolonged drought periods induced by
ENSO episodes (Page & Hooijer, 2016; Siegert et al.,, 2001; Wooster,
Perry, & Zoumas, 2012). In 2015, the region experienced an extended
ENSO-induced dry period on par with years of record-breaking fire
disasters in 1982/1983 and 1997/19%98 (Ballhorn, Siegert, Mason, &
Limin, 2009; Siegert et al., 2001). Fires are able to spread quickly due
to their remote location, aided furthermore by insufficient local fire-
fighting infrastructure (Barber & Schweithelm, 2000; Chisholm et al.,
2016; World Bank 2016). Smoldering peat fires produce very high
levels of carbon emissions (Gaveau, Salim et al., 2014; Muraleedha-
ran, Radojevic, Waugh, & Caruana, 2000; Page & Hooijer, 2016) and
can continue to smelder deep below the surface for months, making
them quite difficult to extinguish (Page & Hooijer, 2016). Lacking fire
control at the start of the 2015 event allowed fires to form buming
fronts over 10 km in length (Atwood et al, 2016; Huijnen et al.,
2016), producing the thick haze that caused not only economic dam-
age but also many pollution-related health issues (Gross, 2015; Tac-
coni, 2016).

Estimates of average annual global CO5 emissions from biomass
burning amount to 7.34 Gt COze per year, with 2.20-3.67 Gt CO.e
coming from tropical deforestation and peatland fires (van der Werf
et al, 2010). Peatlands represent the largest reservoir of soil car-
bon worldwide (Margono, Potapov, Turubanova, Stolle, & Hansen,
2014; Page & Hooijer, 2016), of which an estimated 89 Gt carbon
(Gt C) are stored in the tropics (Page. Rieley, & Banks, 2011).
Southeast Asia is estimated to contain 69 Gt C, with Indonesia
alone holding the largest peat deposit (57 Gt C) in the region (Page
et al., 2011), thus making this country one of the most important
near-surface soil carbon pools in the world (Ballhorn et al, 2009;
Page et al, 2011). Indonesian peatland fires from the 1997/98
catastrophe released between 2.97 and 9.43 Gt CO.e, making up
13-40% of emissions from fossil fuels that year (Gawveau, Salim
et al., 2014; Gaveau, Sloan et al., 2014; Page et al., 2002). GFED
(Global Fire Emissions Database) provides fire emission estimates
of 1.75 Gt CO.e for the 2015 El Nino event, which are based in
part on the MODIS (Moderate Resolution Imaging Spectroradiome-
ter) burned area product. Huijnen et al. (2016) estimated total CO2
emissions the same year at 0.88 Gt CO,e over maritime Southeast
Asia based on Fire Radiative Power measurements from MODIS
coupled with satellite CO measurements and in situ emission factor
measurements. Both these estimates are based on datasets with a
spatial resolution of 27 km or higher (GFED provides 0.25° resolu-
tion and Huijnen et al. (2016) provides 0.50°). Given the impor-
tance of peat fires for emissions estimates, it is imperative that
such a methodology be based on data allowing spatially exact
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estimates of burmed area at high spatial resolution. Furthermore,
both these methods rely heavily on the MODIS hotspots dataset
to identify areas of active fire, which has known issues with fire
detection through optically thick cloud and smoke cover (Roy,
Boschetti, Justice, & Ju, 2008) as well as under-detection of smol-
dering fires (Atwood et al, 2016; Turetsky et al, 2014). Scaling
MODIS active fire detection to burned area estimates in areas with
continual cloud cover has also proved difficult (Giglio, Randerson, &
van der Werf, 2013; Spessa et al,, 2015). This exemplifies the need
for an enhanced, high-resolution, nationwide burned area product
which enables the identification of fire sources and the possibility
of improved fire emission analysis.

Here, we present the first estimates of burned area from the
2015 Indonesian fire catastrophe based on a spatially explicit
direct-detection analysis. at high spatial resolution, and an estimate
of the resulting emissions released by the fires. QOur objectives
were to (1) determine the area burned during the 2015 fire catas-
trophe across the fire prone regions of Sumatra, Kalimantan, and
West Papua, (2) derive resulting emissions released based on addi-
tional data such as land cover, biomass, and peat maps, and (3)
compare our estimates with other bumed area and fire emission
estimates. Our analysis is based on data supplied by the Sentinel-1
mission, which at the time of the 2015 fires consisted of only one
satellite. This mission now operates with two satellites, providing a
6-day repeat cycle and thus offering a good framework for an
improved rapid burned area detection algorithm. We argue that the
presented methodology lends itself well to the development of a
monitoring system that would allow for more accurate assessment
of fire-damaged area and the resulting emissions than currently
existing methods.

2 | MATERIALS AND METHODS

Qur study concentrated on Indonesia's three largest contiguous
areas prone to wildfire: the island of Sumatra, Kalimantan on the
island of Borneo, and West Papua. These regions are characterized
by substantial tropical peat deposits which began to accumulate over
10,000 years ago (Rieley, Siefermann, & Page, 1992). These deposits
can reach 20 m depth and cover up to 19.7 x 10° ha of the study
area (Page, Rieley, Shotyk., & Weiss, 1999). The overlying tropical
forest is home to many endemic and endangered animal and plant
species, as well as supporting commerdally important stocks of tim-
ber. Land cover change in Indonesia remains consistently high, with
nationwide rates of primary forest cover loss surpassing Brazil (Mar-
gono et al., 2014). Processes such as fire, peatland drainage, defor-
estation, and establishment of plantations for palm oil or timber are
the primary contributors to land cover change (Romijn et al,, 2013).
Both Sumatra and Kalimantan have experienced some of the highest
deforestation rates worldwide for over three decades (Hansen et al.,
2009), while the relatively low-populated region of West Papua has
shown much lower rates of primary forest losses up through 2010
(Margono et al., 2014).
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2.1 | SAR dataset

The European Space Agency (ESA) Sentinel-1 mission is a two satel-
lite constellation, each carrying 2 C-band SAR sensor onboard which
offers high spatial resolution data (10 m). Sentinel-1A was launched
April 2014, followed by Sentinel-1B 2 years later. SAR data have the
benefit of being daylight and weather independent, capable of pene-
trating thick smoke and haze, which enables timely detection of
burned areas and thus reducing confounding factors from processes
such as rapid tropical vegetation regrowth (Siegert & Hoffmann,
2000; Siegert, Hoffmann, & Kuntz, 2000). An example of these
issues is shown in Figure 1, where a multitemporal composite SAR
image is compared to MODIS hotspots and a Landsat-8 scene taken
close to the end of the fire event. Burned areas are visible in the
Sentinel-1 composite in orange, forests appear in blue, and oil palm
plantations in light green. The false-color Landsat-8 image shown in
Figure 1c depicts burned area in red, but due to heavy cloud and
smoke cover, the surface reflectance signal is being inhibited in the
upper portion of the image. The first post-fire Landsat image with
<45% cloud cover over this area was acquired in March 2016,
5 months following the fire event. As stated above, this is a consid-
erable amount of time in terms of tropical vegetation regrowth.
Selection of Sentinel-1A data was based on three criteria: data
availability, fire season duration, and regional precipitation. Duration
of the regional fire season was determined based on rapid increase
in the number of MODIS hotspot detections (Active Fire Product
collection MCD14; Giglio, Descloitres, Justice, & Kaufman, 2003),
analyzed separately over the three regions. This time period was
used to select Sentinel-1A images prior to and following the fire

season as closely as possible, with the goal being to capture a clean
and clear signal of burned area free from confounding factors such
as vegetation regrowth. SAR backscatter is highly sensitive to sur-
face water content due to water's dielectric properties (Lillesand,
Kiefer, & Chipman, 2015). Data from the Tropical Rainfall Measuring
Mission Multi-Satellite Precipitation Analysis (TRMM 3B42RT; Huff-
man, Adler, Bolvin, & Nelkin, 2010; Huffman et al., 2007), providing
daily global precipitation rates from 50°N to 50°S at a spatial resolu-
tion of 0.25° x 0.25° were incorporated into the data selection pro-
cess to ensure comparable dry conditions in pre- and postfire
acquisitions. Both length of fire season and onset of the rainy period
for the region below a particular orbit were considered to select pre-
and postfire season acquisitions.

Ground Range Detected (GRD) Level-1 data with mid-swath
incidence angles between 38.85° and 39.26° were used in vertical-
vertical (VV) and vertical-horizontal (VH) polarization over Kalimantan
(ascending) and in VV polarization over Sumatra and West Papua
(descending). The data were processed using the Sentinel-1 Toolbox
implemented in SNAP (Sentinel Application Platform). All Sentinel-1A
scenes were calibrated, radiometric corrected, and multitemporal
speckle filtered. Data were controlled for full-coverage availability of
pre- and postfire acquisitions with similar orbit pass and polarization.
High slope terrain (>15°) had to be excluded for burned area map-
ping due to relief displacement effects on the SAR backscatter signal
(Lillesand et al., 2015). In total, 30,485,500 ha were removed from
the burmed area analysis, representing 23% of the total project area.
Although this is a relatively large percentage, <2% of all MODIS hot-
spot active fire detections were present in this area and thus the
exclusion was assumed acceptable.

(@) S1 composite

FIGURE 1

() Landsat-8 (7/5/4)

(a) A multitemporal false-color SAR composite image (20th Jun.—24th Oct., 2015) from Central Kalimantan comparing change in

backscatter signal from prior to and following the fire season (red: backscatter change from before and after the fires; green: VV backscatter of
the prefire image; blue: VH backscatter of the postfire image). (b) SAR composite overlain with accumulated MODIS hotspots from the same
time period, indicated by yellow dots. (c) Landsat-8 image in false-color (bands 7,5,4) acquired closest to the end of the fire event [Colour

figure can be viewed at wileyonlinelibrary.com]
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2.2 | Burned area classification

An object-based image analysis approach, implemented using eCog-
nition 9.2 (Trimble Navigation Ltd.), was used for segmentation and
classification of burned areas. Objects, also known as segments,
were first generated using a bottom up multiresolution segmentation
to create meaningful objects with respect to the burned areas. Input
for the segmentation included Sentinel-1 backscatter layers from
before (time step 1; t1) and after the fire event (time step 2; t2), as
well as temporal change metrics such as (VH./VHy) and (WVy—
VV,2). Objects were classified based on probabilities of belonging to
the class "burned area”, produced from mean fuzzy logic threshold
values for backscatter and temporal change metric layers, as well as
neighborhood features and hierarchical relationships. Water bodies
were excluded from burned area mapping in order to avoid misclas-
sifications.

2.3 | Burned area validation

A validation analysis was performed comparing the classified burned
area against a ground truth dataset consisting of in situ data and
multispectral imagery over areas with sufficiently low cloud cover-
age. In situ data were collected in collaboration with the German
Corporation for International Cooperation (GIZ) in South Sumatra,
and consisted of GPS locations together with ground and aerial pho-
tos acquired by drone. All available in situ data that met specific cri-
teria were used for the Sentinel-1 burned area accuracy assessment
(Fig. 51). Selection criteria included removal of points located within
5 m of a burned area boundary and taking into account the spatial
inaccuracy of each respective GPS device. This resulted in an in situ
dataset of 138 GPS locations, 1,631 photos, and 145 drone samples.

Multispectral imagery (Sentinel-2 and Landsat-8) was used in
areas distributed over the three islands that were identified as hav-
ing sufficiently low cloud coverage to allow comprehensive burned
area detection (Fig. S2). Only scenes acquired shortly after the fire
season (defined as until December 2015; Table 51) were used to
maintain high confidence of burn scar detection. Within each valida-
tion site of the multispectral validation, a stratified random sampling
was applied using a sample size of 50 (resulting in 1,300 points
total). GPS locations, geo-referenced ground photos and aerial drone
data as well as each of the stratified random multispectral sampling
points were visually categorized into the classes “burned” and “not
burmed”. The GPS locations resulted in an overall accuracy of
77.54%, the photo validation in 84.92% and the drone data in
80.69%. The validation of classified burned areas using multispectral
imagery resulted in an overall accuracy of 83.54%. Combining in situ
and multispectral validation samples, an overall accuracy of 83.85%

and a kappa index of 0.84 was achieved.
24 | Fire emissions

Total fire emissions were derived based on the resultant spatially
explicit burned area maps and consisted of aboveground emissions
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from vegetation fires plus emissions coming from buming of underly-
ing peat layers. Estimation of emissions from vegetation fires was
based on burned aboveground biomass (AGB) coming from two dif-
ferent approaches. The first method followed (1) a continuous
approach, based on continuous AGB estimates (Goetz et al., 2009).
In this study, AGB maps from (i) Avitabile et al. (2016) and (i) the
GlobBiomass project (Schmullius, 2017; http://globbiomass.org) were
utilized. Avitabile et al. (2016) provides a pan-tropical AGB map at
1 km spatial resolution, representative for the 2000s, that was con-
structed from GLAS LiDAR and MODIS optical data. The ESA DUE
‘GlobBiomass’ project aims at developing an innovative synergistic
mapping approach to create AGB maps at fine spatial resolution in
five regional sites for the epochs 2005, 2010, and 2015, and a global
map at coarser resolution for the epoch 2010. The regional AGB
map of Kalimantan, at a spatial resolution of 100 m for the epoch
2010 and derived from ALOS PALSAR K&C mosaic data, was used
to estimate aboveground fire emissions. The most recent map from
2015 could not be used as it depicts the situation after the wildfires.

Emissions were also calculated using (2) a stratify and multiply
approach. Here, vegetation emission estimation was performed by
intersecting classified burned areas with a thematic map of land
cover class or vegetation type (Goetz et al., 2009). In this study, we
utilized the most recent Indonesian Ministry of Environment and
Forestry (MoEF) land cover map from 2013. The MoEF land cover
map is based on Landsat imagery and has a spatial resolution of
30 m. Mean AGB values for each land cover class were determined
from extensive LIDAR studies within the FORCLME (Navratil,
Konecny, Jubanski, Ballhorn, & Siegert, 2016) and BIOCUME (Navra-
til, Englhart, & Siegert, 2016) projects. A detailed list of the specific
AGB values per land cover class together with steps for simplified
emission estimation can be found in Table S2.

The AGB information from the two different approaches was
then intersected with the bumed area classification and converted
to emissions (Gt CO.e) by assuming a carbon content of 50% in dry
biomass and a conversion factor of 3.67 from C to COse. Previous
studies in Indonesia show that forests lose between 92 and 95% of
their biomass when fires occur (Englhart, Jubanski, & Siegert, 2013;
Hashimotio, Kojima, Tange, & Sasaki, 2000; Hiratsuka, Toma, Diana,
Hadriyanto, & Morikawa, 2006). Therefore, we assumed a conserva-
tive fire efficiency factor of 92% within forests. For all other land
cover classes, we used the simplifying assumption of complete AGB
burning and implemented a factor of 100%. Using an AGB estima-
tion map, areas with AGB higher than 100 t/ha were considered
forest.

Peat fire emissions were calculated by intersecting burmed areas,
the land cover or AGB estimation map, and a peat layer provided by
Wetlands International (Wahyunto 2004). To estimate emissions as
accurately as possible, we used the approach suggested by Konecny
et al. (2016), where discrimination between the first fire and second
or more fires is made with regard to burn depth into the peat. The
Konecny et al. study was based on a 220,000 ha dataset, and deter-
mined a peat burn depth of 17 £ 16 cm for the first fire and an
average burn depth of 8 ¢m for all following fires (two or more). This
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estimate of first fire peat burn depth is supported by results from
Simpson et al. (2016) in degraded peatland areas in Sumatra, who
determined an average bum depth of 23 &+ 19 cm over 5.2 ha of
tropical peatland forest after the 2015 fires. The bumn depth esti-
mates from Konecny et al. (2016) translate to carbon loss values of
114 tC/ha for an initial fire and 51 tC/ha for peat areas already
burned at least once, which were implemented in this study. Carbon
loss was converted to emissions (Gt COze) with the molecular
weight conversion factor 3.67. Using the land cover map and taking
into account that all peat areas were historically covered by forest, it
was presumed that bumed areas within forest land cover classes
had burned for the first time and all other land cover classes (planta-
tions, scrubland, savannah & swamp, agriculture) had already been
burned at least once. Nonforest areas lying over peat are the result
of either clearcutting or having been burnt by fire, with the latter
being the low-cost method much preferred in Southeast Asia to
clear land over large areas (Simorangkir, 2006). Using the AGB esti-
mation map, we assumed that areas considered “forest” (based on
AGB higher than 100 t/ha) were bumed for the first time while
areas with lower biomass values had already burned. It should be
noted that under this method, areas able to have sufficiently recov-
ered after a long-past bumn event would be grouped as “first time
burn”.

3 | RESULTS

3.1 | SAR-derived burned area

Comprehensive burned area maps derived from the Sentinel-1A ima-
gery were developed over Sumatra, Kalimantan, and West Papua
(Fig. S3). The SAR dataset over entire Borneo is shown in Figure 2a,

depicted as a multitemporal false-color composite (R, G, B coding as
in Figure 1). As stated earlier, bumed areas are visible in orange, for-
ests appear in blue, and oil palm plantations in light green. The high
spatial detail of the dataset enables recognition of patterns in fire
occurrence such as elevated prevalence along forest edges (Fig-
ure 2b), as well as clear detection of bumt areas surrounding oil
palm plantations (Figure 2d).

The object-based classification approach to detect change from
before and after the fires provided an estimate of 4,604,569 ha
burned by the 2015 fires, with 37% located on peatland areas. The
estimated burned area represents 3.2% of the combined regions of
Sumatra, Kalimantan, and West Papua, and is close to double that
from MoEF (2.6 x 10° ha). Figure 3 shows the detected bured
area density over all three regions. Approximately half of the total
burned area was located in Kalimantan (2,268,352 ha), of which over
one-third (813,152 ha) occurred on peat. Successively less burned
area was detected in Sumatra (1,518,127 ha, with 356,434 ha on
peat) and West Papua (818,090 ha, with 534,616 ha on peat).

The Sentinel-1-derived burned area was compared to other
established burmed area products: MODIS Burned Area Product
(MCDé64A1; Giglio, Loboda, Roy, Quayle, & Justice, 2009), GFED4.0
burmed area (Giglio et al., 2013) and GFED4.1s burned area (Giglio
et al, 2013; Randerson, Chen, van der Werf, Rogers, & Morton,
2012). This comparison is shown in Table 1. Sentinel-1-derived
burmed area resulted in the highest estimation followed by
GFED4.1s, which made up only 66% of the bumed area estimated
from Sentinel-1. MODIS achieved the third highest burned area and
GFED4.0 estimated the lowest amount of burned area (55% and
40% of the Sentinel-1 estimate, respectively). The percentage of
burned area that occurred over peatland areas is lowest for Sentinel-
1 (37%), but represents an area of 1,704 x 10° ha, while the highest

FIGURE 2 Bumed area depiction based on high-resolution, multitemporal false-color Sentinel-1 composite image for (a) Kalimantan. Color
coding is as in Figure 1. SAR image detail depicted for (b) bumed area along forest edges with (c) an aerial photo of such a transition zone, and
(d) around plantations with (e) an aerial photo from a palm oil plantation with adjacent burned forest [Colour figure can be viewed at

wileyonlinelibrary.com]
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FIGURE 3 Distribution of burned area over Sumatra, Kalimantan, and West Papua. Mapped regions are outlined in black, and detected
burned areas are aggregated into 3,600 ha hexagons. White areas depict a burned area fraction <0.5%, whereas yellow to dark red indicates
areas of increasing burned fractions up to 100% [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 1 Comparison from Sentinel-1-derived burned area to existing, operational burmed area products

Data specifications

 Burnd e (10 o)

Sentinel-1
MCDé4; VIRS & ATSR

active fire data
GFED4 & burned area

from Randerson et al. (2012)

MODIS imagery; MODIS 500
active fire observation

Sentinel-1
GFED4.0

GFEDA4.1s

MCDé4

*Conversion from decimal degree to meter at the equator.

percentage over peatland areas from MODIS only represents
1,144 x 10° ha. Differences in burned area come primarily from dis-
crepancies in estimations over Sumatra and especially Kalimantan. A
thick layer of smoke, haze, and cloud cover, which was continually
visible over Borneo during the 2015 fire season, was likely inhibiting
the optical and thermal satellite signal utilized by the other burned
area products.

3.2 | Fire emissions

Calculated burned area was translated into CO2 emissions using: (1)
a continuous approach, based on two separate AGB maps from (i) the
ESA GlobBiomass project and (i) Avitabile et al. (2016); and (2) a
stratify & multiply approach, based on the categorical MoEF land
cover classification map. Emissions from burmed aboveground
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Daily & monthly 465 841 522

Monthly

Monthly

1,828

921 1,352 756 3.029 41%

638 1,055 845 2,538  45%

vegetation and belowground peat layers were calculated separately
for all three maps (Table 2). Using the AGB map from Avitabile, we
estimated aboveground vegetation fire emissions to be
0.86 Gt COe. Based on the MoEF land cover map, an estimated
0.49 Gt CO.e were emitted. The regional GlobBiomass AGB map is
Kalimantan. This calculation produced
0.25 Gt COze in aboveground vegetation emissions, which is compa-
rable to MoEF estimates for the same region (0.26 Gt CO.e) but
almost half that from Avitabile (0.45 Gt CO.e). The two approaches
diverge less when estimating emissions from burmned peat, where
emissions based on MoEF are only 14% less compared with Avita-
bile. Estimates of Kalimantan peat emissions from the GlobBiomass
continuous AGB map are quite similar to those from MoEF. Total
emissions based on MoEF data came to 0.89 Gt CO.e, while those
from Avitabile were 1.29 Gt CO.e.

only available for
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TABLE 2 Emissions from the 2015 fires over the three study regions released by burning of aboveground vegetation and belowground peat

layers

Emissions per region (Gt COze)

Dataset Sumatra
Vegetation emissions GlobBiomass n/a
Avitabile 0.30
MoEF 0.16
Peat emissions GlobBiomass n/a
Avitabile 0.10
MoEF 0.10
Total emissions GlobBiomass n/a
Avitabile 0.40
MoEF 0.26

Kalimantan Papua Summed
0.25 n/a n/a

0.45 011 0.86
0.26 0.07 0.49
0.20 nfa nfa

0.22 0.11 0.43
0.19 011 0.40
0.45 n/a n/a

0.67 0.22 1.29
0.45 018 0.89

Calculations are based on two approaches: (1) continuous, performed using the AGB map from the GlobBiomass project, available only over Kalimantan,
and the Avitabile AGB map; and (2) stratify & multiply, which utilizes the MoEF land cover classification map.

Figure 4 shows the distribution of burned area in dark gray across
MoEF land cover types that either burned for the first time in recent
history (dry land, mangrove, and peat swamp forests) or that had
already burned at least once (plantations, scrubland, savannah &
swamp, agriculture). Associated emissions, following the stratify &
multiply approach, for each burned land cover class are also shown in
Figure 4 in light gray. Within the forest land cover classes, secondary
forest was observed to burn more often than primary forest. In gen-
eral, degraded forests are more susceptible to fire than undisturbed
forests (Ballhomn et al., 2009; Page & Hooijer, 2016; Siegert et al.,
2001) due to processes such as peatland drainage (Hoscilo, Page,
Tansey, & Rieley, 2011; Konecny et al, 2016), reduced humidity
through forest canopy disturbance (Page & Hooijer, 2016) and
increased ground litter from anthropogenic activities (Turetsky et al.,
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FIGURE 4 Burned area and resultant total (vegetation plus peat)
emissions within MoEF land cover classes. Total bumed area per
class are dark gray (left axis; 10° ha) and resultant total emissions
are light gray (right axis; Gt COze). Exact totals are indicated above
each bar. Land cover classes are based on the MoEF classification:
primary and secondary dry land forest (PDLF and SDLF), mangrove
forest (MF), primary and secondary swamp forest (PSF and SSF),
plantation (P), scrubland (S), savannah & swamp (S&S), and small-plot
agriculture (A). Some MoEF classes were merged to enable easier
overview (Table 52)

2014). Burning of secondary forest areas was found to produce pro-
portionally higher emissions as compared to areas that had burned at
least once in recent history. For instance, the scrubland (S) class
burned 18 times more area than in the secondary dry land forest
(SDLF) class but produced proportionally much less (a factor of seven)
emissions. The effect of underlying peat layers on emissions can be
observed when comparing secondary swamp forest (SSF) with savan-
nah & swamp (S&S), where a burned SSF area one-third the size of

that in the S&S class produced an equivalent amount of emissions.

4 | DISCUSSION

A SAR methodology is more advantageous for rapid burned area
detection in Southeast Asia as compared to procedures based on
multispectral data, primarily due to overcoming the need for cloud-
and haze-free images from prior to and following a fire event.
Despite its benefits, the SAR approach utilized in this study has limi-
tations. The burned area classification captures not only fire affected
areas rather all areas with backscatter change above a certain
threshold. While backscatter reduction might also result from pro-
cesses such as flooding, agricultural harvesting, or logging activities,
we assume that the primary cause of backscatter reduction during
the dry season results from fires, the preferred method to cheaply
clear land over large areas in this region (Simorangkir, 2006). Fur-
thermore, fires could have continued to burn during the days
between the last SAR acquisition and the onset of rain, which would
result in a potential underestimation of the total burned area.
Despite these shortcomings, an independent wvalidation of the pre-
sented burned area methodology, performed using a comprehensive
dataset containing field information, and multispectral imagery,
resulted in an overall accuracy of 84%. In this study, only Sentinel-
1A data were available, but with the launched Sentinel-1B, acquisi-
tion period will decrease to 6 days and a much enhanced multitem-

poral dataset can be employed in future burned area assessments.
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The Sentinel-1-derived bumed area is close to double that from
MoEF (2.6 x 10° ha), which uses methods dependent on cloud- and
haze-free multispectral images from before and after the fire events.
The latter methodology is difficult to implement given Indonesia's
often cloudy tropical climate (Hoscilo et al, 2011; Siegert & Hoff-
mann, 2000). MODIS burned area (MCD6&4A1), which is based on
MODIS imagery together with MODIS active fire observations at a
coarse spatial resolution of 500 m, detected approximately half of
the Sentinel-1-derived burned area. GFED4.0 provides burned area
estimates at a spatial resolution of 0.25% and is based on the MODIS
bumed area product (MCDé4A1) in combination with VIRS and
ATSR active fire data. GFED4.1s burned area estimates also have a
spatial resolution of 0.25° and additionally incorporate a small fire
database. GFED4.1s burned area estimates are considerably higher
(3,029 x 10? ha) than GFED4.0 (1,828 x 107 ha), but results in only
46% of Sentinel-1-derived bumed area. It should be noted that all
comparison burned area products are intended for global scale analy-
ses, whereas our presented Sentinel-1 bumed area methodology is
applied for national-scale analyses.

The method presented here offers rapid and direct detection of
burned area at a much improved spatial resolution than previously
available. Comparison with other available burmmed area products,
which are based on coarser resolution data, demonstrates that 30—
60% more burned area is detected using data with higher spatial reso-
lution. Given the high overall accuracy (84%) and kappa statistic (0.84),
we can argue that the presented methodology leads to much improved
bumed area classifications than until now available. Especially given
the enhancement of the Sentinel-1 mission with a second satellite, this
methodology allows burmed areas detections every 6 days. High spa-
tial resolution is essential for fire management as it furthermore allows
fire pattern analysis, such as fire origin detection, which can be used
to help to prevent fires in the future. A key component to improving
fire management is the early and accurate detection of fire events,
allowing proper response to fires while they are still small.

Emissions were estimated using a simplified method based on
high-resolution burned areas. Various models (continuous AGB, land
cover and peat maps) and datasets (SAR, multispectral imagery,
LiDAR, field measurements, and aerial imagery) were used in order
to show the potential of enhanced emission estimations. The stratify
& multiply approach, based on the MoEF dataset, often resulted in
lower overall emission estimates than the continuous approach calcu-
lations based on Avitabile. The MoEF land cover classification is
based on remote sensing data from 2013. The Avitabile AGB map is
a fusion of the Baccini et al. (2012) and Saatchi et al. (2011) data-
sets, and is constructed in large part on data that is representative
for the 2000s. In the past two decades, Southeast Asia has experi-
enced some of the heaviest rates of tropical forest degradation and
deforestation worldwide (Margono et al, 2014; Page & Hooaijer.
2016). When comparing the Avitabile AGB map with that of Glob-
Biomass (based on data from 2009), we observe low biomass areas
being overestimated and thus resulting in fewer areas being classi-
fied as previously burned. The Avitabile data also have coarser spa-
tial resolution (1 km) than the MoEF land cover map (30 m) or the
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GlobBiomass AGB map (100 m). Emissions from the Kalimantan fires
calculated from MoEF and GlobBiomass were quite similar (Table 2;
both 0.45 Gt CO.e), while emission estimates based on Avitabile
were almost 50% higher. Based on our simplified calculations, the
emissions estimation based on the MoEF land cover map is likely
the best nationwide representation of actual emissions from the
2015 fires. The GlobBiomass AGB map probably provides an even
better estimate for emissions from Kalimantan but is current not
available for the rest of Indonesia. Apart from the temporal and spa-
tial resolution differences, whose influence on accuracy is difficult to
quantitate, all input models used for the three simplified emission
estimations have associated estimation errors. A formal uncertainty
analysis of the calculated emissions was well outside the scope of
this project but expected overall error should fall within acceptable
boundaries due to the high accuracy of burned area detection (84%
overall accuracy at higher spatial resolution than hereto available)
together with the errors from biomass estimation (GlobBiomass:
RMSE up to 57 t/ha; Avitabile: RMSE of 15-21%; MoEF: 88% over-
all classification accuracy and mean AGB values for each land cover
class were calculated from LIDAR measured AGB with an RMSE up
to 47 t/ha).

The GFED fire emissions estimate (1.75 Gt CO,e) is almost dou-
ble the emissions derived from our approach (Table 2; 0.89 Gt CO.e
based on MoEF), which primarily lies in the assumption of the mean
peat burmn depth. GFED assumes a mean peat bumn depth of 30 cm
for Indonesia (van der Werf et al, 2010), supported by an initial
LiDAR assessment in Bormeo (Ballhomn et al., 2009). More recent
LiDAR studies over both large- and small-scale areas alternatively
suggest reduced bumn depths (Konecny et al., 2016; Simpson et al.,
2016), and discrimination between peat burn depth in areas burned
for the first time or having already burned at least once in the recent
past (17 and 8 cm, respectively; Konecny et al., 2016). The assumed
peat burn depth has substantial consequences on the emission esti-
mation as the carbon content of peat per m?* can be up to 19 times
that of overlaying vegetation layers (Jaenicke, Rieley, Mott, Kimman,
& Siegert, 2008). Indonesia alone represents 65% of all tropic peat-
lands (Page et al.,, 2011) and is widely recognized globally as one of
the most important near-surface soil carbon pools (Ballhomn et al.,
2009; Page et al, 2011). Huijnen et al. (2016) estimated the total
amount of released fire carbon emissions in 2015 at 0.88 GtCO2e
over maritime Southeast Asia (spatial resolution of 0.5°) which is
similar to our emission estimates, although the spatial extent is quite
different (maritime Southeast Asia compared to Indonesia). The emis-
sion estimation of Huijnen et al. (2016) is based on a combination of
spatially and temporally explicit Fire Radiative Power measurements
from MODIS, coupled with CO measurements made from the
MOPITT satellite instrument. Qur simplified approach for emission
estimations produced estimates on par with Huijnen et al. (2016),
but much less than GFED despite the detected burned area being
much higher. Main differences in estimations likely result from differ-
ences in assumed peat burn depth, available spatial resolutions, or
characteristics of the data which were used for burned area/emis-
sion estimations. Considering drastic changes in emissions estimates
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dependent upon the amount of peat burned, it is clearly advisable to
use the most accurate data possible together with the most precise
methodology for this region in particular. This indicates the vital
importance of utilizing high spatial resolution burned area for fire
emission estimation in combination with accurate peat burn depth
assumptions and as up-to-date as possible remote sensing data,
especially given the rapid rate of land cover change occurring in
Southeast Asian tropical forests.

The methodology presented in this study can be automated, thus
together with modern cloud computing processing it will offer a clo-
ser to real-time, high-resolution burned area product than heretofore
possible. The main advantage of SAR methodology is to be indepen-
dent of smoke, haze, and cloud coverage. The Sentinel-1 burned
area product also offers much finer spatial resolution (10 m) than
those from MODIS or GFED (500 m resolution at the best), which
will allow for analysis of processes such as where fires were started.
This is essential information needed by managers interested in
improving fire prevention, thus the methodology presented here pro-
vides an excellent tool for government agencies responsible for
improving fire regulations to avoid such catastrophes in the future.
Indonesia still fights with implementing large-scale fire control regu-
lations, with fires of varying severity occurring consistently each year
in spite of increased regulations (Page & Hooijer, 2016). Future pre-
vention of large fire disasters in this region is imperative not only for
Indonesia, due to both national interests and maintaining good inter-
national relations with neighboring countries, but also for the global
community given the implications of these fire disasters for the

global climate.
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Abstract

To date, microplastic research has mainly concentrated on open seas, while riverine
plumes remain largely unexplored despite their hypothesized importance as a source of
microplastics in coastal waters. In this work, coastal accumulation of particles emitted
by the Po River over 1.5 years was modeled. We posit that river-induced microplastic
accumulation can be predicted using (1) hydrodynamic-based and (2) remote sensing-
based modelling. Model accumulation maps were validated against sampling at nine
beaches, with sediment microplastic concentrations up to 78.8 particles/kg (dry weight).
Hydrodynamic modelling revealed that discharged particle amount is only semi-coupled
to beaching rates, which are strongly mouth dependent and occur within the first ten
days. Remote sensing modelling was found to better capture river mouth relative
strength, and accumulation patterns were found to be consistent with hydrodynamic
modelling. This methodology lays groundwork for developing an operational monitoring

system to assess microplastic pollution being emitted by a major river.

Keywords: Beach microplastic, river plume, FT-IR, ROMS, Landsat-8, Sentinel-2
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Introduction
Marine plastic litter has long been recognized as an environmental problem (Azzarello
and van Vleet, 1987; Law and Thompson, 2014; Sheavly and Register, 2007) that has
only recently begun to receive international attention at a level adequate to the potential
severity of the threat (G7 Germany, 2015; GESAMP, 2016; UNEP, 2016). Microplastics,
commonly defined as particles <5 mm in diameter (Galgani et al., 2013), are increasingly
proven to be ubiquitous in all water systems. Since first documentation of small plastic
litter within the oceans (Carpenter and Smith, 1972; Colton et al., 1974), these particles
have been detected in high mountain lakes (Imhof et al., 2013), remote inland water
bodies (Free et al., 2014), major river systems (Mani et al., 2015; Moore et al., 2011;
Zhang et al., 2015) and throughout the open ocean (Cézar et al., 2014; Eriksen et al.,
2014; Law et al., 2014). Floating microplastics can be ingested by a wide variety of
marine organisms (Andrady, 2017), beginning at the base of the food chain with
zooplankton (Cole et al., 2015; Desforges et al., 2015), through filter feeding species of
shellfish (Devriese et al., 2015; van Cauwenberghe and Janssen, 2014), bony fish
(Collard et al., 2017; Romeo et al., 2015) and whales (Besseling et al., 2015), as well as
higher trophic level marine mammals (Eriksson and Burton, 2003). A portion of these
particles inherently contain harmful plastic additives such as polybrominated diphenyl
ethers (PBDE), phthalates, nonylphenols (NP) and bisphenol A (BPA), which are known
from both laboratory and field studies to be transferable to living tissues (Hermabessiere
etal., 2017). Furthermore, particle surface characteristics enable continual adsorption of
hydrophobic Persistent Organic Pollutants (POPs) from the marine environment (Ogata
et al., 2009), thus providing a concentrated dose of banned chemical compounds to the
organism which ingests the particle (Rios et al., 2007). Micrometer-sized plastic particles
can translocation to other organs upon ingestion (Collard et al., 2017). Microplastic
particles have been found in commercial canned fish products such as anchovy, herring
and sprat (Collard et al., 2017; Karami et al., 2017a) as well as aquaculture-grown oysters
and mussels (van Cauwenberghe and Janssen, 2014) and commercial sea salt (Karami et
al., 2017b). It is estimated that all plastic waste entering the oceans each year causes an
annual loss of $13 billion USD through environmental damage to marine ecosystems
(UNEP, 2014), and the adverse effects to human health are still a subject of continued
study (Schirinzi et al., 2017; Seltenrich, 2015).

Within the past half century, annual plastic production has increased by over two

orders of magnitude to reach 332 million tonnes being manufactured worldwide
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(PlasticsEurope, 2016). Over one third is used in disposable packaging, which is
discarded within one year following production (Derraik, 2002; Lebreton et al., 2012;
Thompson et al., 2009). Controlling for population growth over the last 60 years reveals
that per capita consumption of plastics has been increasing sharply since the turn of the
millennium (Andrady, 2017). Jambeck et al. (2015) estimated that between 4.8 and 12.7
million tonnes of plastic from land sources entered the oceans in 2010. In contrast, the
most recent global estimate of floating microplastic debris within the oceans ranges
between 96 and 236 thousand tonnes (van Sebille et al., 2015), greatly exceeding
previous estimates of 7 to 35 thousand tonnes (Cozar et al., 2014) and 36 thousand tonnes
(Eriksen et al., 2014). The discrepancy in excess of one order of magnitude between these
estimates indicates the need to further improve in our understanding of relevant
source/sink dynamics. Recent studies have shed more light on the vertical mixing of
buoyant microplastics at the sea surface (Brunner et al., 2015; Kooi et al., 2016), as well
as processes resulting in changes in particle density, such as flocculation and biofouling
(Fazey and Ryan, 2016). Despite these advances, there remains much to still be clarified
about the sources and sinks of plastic litter entering the oceans (Galgani et al., 2017; Law
and Thompson, 2014; Zhang et al., 2017).

Roughly 70 to 80% of marine debris comes primarily from land-based sources
(Wagner et al., 2014), much being passively collected into waterways which eventually
flow to the sea. Mani et al. (2015) found river water concentrations up to 3.9 million
particles/lkm?2 in metropolitan areas along the Rhine. Annual input of plastic particles to
the Great Lakes is estimated at 9.8 thousand tonnes (Hoffman and Hittinger, 2017).
Despite the fact that freshwater systems are equally as severely contaminated as the
oceans (Dris et al., 2015), large rivers have received relatively little attention (Mani et
al., 2015; Wagner et al., 2014). Between 1.15 and 2.41 million tonnes enter the oceans
each year from rivers alone (Lebreton et al., 2017), representing up to 50% of the
Jambeck et al. (2015) land based plastic emissions estimate. Besides rivers, other sources
of land-based plastics to the oceans include atmospheric transport, beaches, harbors,
storm water runoff, aquaculture and fishing activities (Lebreton et al., 2017; Wagner et
al., 2014). Our understanding of the physical processes which determine microplastics
transportation pathways upon being released into coastal seas is still limited. Some
authors suggest that these processes may to some extent be comparable to well-studied
suspended sediment transportation systems (Zhang, 2017), which could offer a more

established framework for modelling microplastic transportation.
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Microplastic transportation pathways are characterized by complex dynamics due to
processes such as movement mechanisms (windage and sinking velocities) and unknown
fragmentation rates (Law and Thompson, 2014). A combined hydrodynamic-Lagrangian
transportation model effort would therefore be surely dependent upon necessary
simplifying assumptions, as well as the quality of the forcing data. Such models, with
different degrees of realism, have been recently utilized to hindcast potential sources of
stranded plastic litter in the Indian Ocean (Bouwman et al., 2016; Duhec et al., 2015),
Aegean Sea (Politikos et al., 2017) and Adriatic Sea (Carlson et al., 2017). To date, little
attention has been placed on local-scale river plume microplastic transport modelling in
coastal seas (Browne et al., 2010; Carlson et al., 2017; Zhang, 2017). It is furthermore
important to note that dispersion pathways computed based on modelling results can
accumulate errors over long distances and times, in part due to model assumptions
diverging from reality. A remote sensing image, on the other hand, offers a real-life
picture of the river plume that inherently includes actual environmental conditions.
While an image provides a powerful technique of displaying the complex coastal ocean
environment, it nevertheless offers restricted information for below the water surface and
only represents the snapshot time period when the image was acquired.

In this paper, we implement and compare two different types of models to assess how
microplastics from a major river is spreading into a semi-enclosed sea and accumulating
along its coastline. Model (1) is a numerical tool based on a state-of-the-art
hydrodynamic model, providing basin dynamical features, linked to a sub-module that
adopts these velocity fields to carry out Lagrangian particle transportation. Model (2) is
based on satellite remote sensing of river plume form and intensity along the coastline.
We hypothesize that both models are able to capture coastal patterns in river plume
emitted microplastic accumulation. Development of a system to model coastal
accumulation of microplastic debris from rivers would represent a very useful tool for
agencies responsible for monitoring and reporting this pollution as well as organization

of clean-up activities and remediation strategies.
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Materials and Methods

The Adriatic Sea separates the Italian peninsula and Balkan coast, extending 800 km
from the connection with the lonian Sea over the Strait of Otranto northwest toward the
Venice Lagoon (Figure 1). The sea is bordered by six different countries, namely
Albania, Montenegro, Bosnia and Herzegovina, Croatia, Slovenia and Italy. The Italian
western coastline is characterized by terraced and alluvial plains in the north that change
to karst cliffs along the Gargano Promontory, in contrast to the rocky eastern coastline
strewn with karst protrusions and many small islands. The prevailing currents flow
counterclockwise from the Strait of Otranto along the Balkan coastline and return
southward with the Western Adriatic Current (WAC) along the Italian coastline
(Artegiani et al., 1997a, 1997b; Carniel et al., 2016). The Adriatic coastline contains a
population of over 3.5 million, of which over 27% is concentrated in the cities of Bari,
Venice, Trieste and Split. Important financial sectors of the Adriatic coasts include
fisheries, tourism and maritime transportation. The North Adriatic sub-basin is defined
as the shallow area north than the 100 m isobath (Figure 1). Tidal fluctuation is usually
small, on the scale of 30 cm, but in conjunction with exceptional river discharges, seiche
and wind events tidal range can reach up to 140 cm and result in flooding events in the

Venice lagoon (familiarly known as “acqua alta”).
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Figure 1: Adriatic Sea overview map, showing bathymetry (contour lines follow 50 m depth intervals)
along with large coastal cities and bordering countries: AL - Albania, ME - Montenegro, BIH - Bosnia and
Herzegovina, HR - Croatia, SI - Slovenia, IT - Italy. Lower left inset shows Po River watershed (yellow
dashed line) with large inland cities, as well as the Brenta (dark green line) and Adige (light green line)
rivers. The Po Delta is displayed in the upper right inset, showing all five major river mouths (Maistra, Pila,
Tolle, Gnocca and Goro) as well as important side channels (Tramontana, Scirocco) and aquaculture areas.

The Po River provides the largest riverine influx to the Adriatic Sea, averaging daily
1500 m3/s with streamflow ranging between 100 m3/s and 11,550 m3/s (Falcieri et al.,
2014). Other large rivers, with average discharge between 90-240 m?/s, flowing into the
North Adriatic are the Adige, Soca (or Isonzo) and Brenta (Cozzi and Giani, 2011;
Falcieri et al., 2014; Figure 1). Being the longest river in Italy, the Po River drainage
area (74,000 km?) encompasses much of the northern region of the country and includes
the cities of Turin, Piacenza, Ferrara and Milan (lower left inset Figure 1). The Po Delta
wetlands are split into two protected park systems, managed separately by the regions of
Veneto and Emilia-Romagna. The unique landscape, consisting of wetlands, forests,
sand dunes and salt pans, supports a high biodiversity of both plant and animal species,
particularly various types of birds, led to the delta becoming a UNESCO World Heritage
Site in 1999. The river splits into many sub-rivers before flowing into the Adriatic Sea,
the main recognized arms of which are the Po di Maistra, della Pila, delle Tolle, di
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Gnocca (or della Donzella) and di Goro (upper right inset Figure 1). Additionally, there
exist many side channels and lagoons which also carry a portion of the river water to the
sea, notable among these are the Busa di Scirocco and di Tramontana. The delta is an
actively changing system with shifting sandbars that can obstruct outflow from a
particular mouth (Simeoni and Corbau, 2009) and thus increase the outflow elsewhere.
The highest river discharge occurs in the spring, associated with high precipitation and
snow-melt runoff, and the lowest in autumn (Falcieri et al., 2014). The Po Delta is
bordered to the north by the Adige and Brenta rivers (respective average discharges of
235 and 93 md/s, see Figure 1), which become incorporated with the Po River plume.
Both wind regime and freshwater influx play a deciding role in North Adriatic
circulation patterns (Bignami et al., 2007; Bolafios et al., 2014; Falcieri et al., 2014).
There are three main recognized wind regimes: Bora, Scirocco and Mistral. Bora events
consist of strong, dry, northeasterly winds that tend to occur more often during the winter
months, which together with low river discharge results in a small Po river plume that
remains close to the coastline (Boldrin et al., 2009; Falcieri et al., 2014). As mentioned
above, a Scirocco event comprises warm, humid, east-southeasterly winds that tend to
occur more often during the spring to fall. This wind regime together with high river
discharge results in a wider plume that can extend far across the Adriatic Basin. Mistral
events are the least powerful of the wind regimes and are defined based on winds coming
from the northwest, which have been found to minorly enhance WAC flow into the

lonian Sea (Bignami et al., 2007).

Sample design

The Po Delta field campaign was conducted from June 4"-25™, 2016, during which both
water and sediment samples were taken. Water sample locations were selected to cover
the main Po river, recognized river mouths and important subsidiary river mouths as well
as the plume, ranging from near-coast water to the plume outer edge (indicated by surface
waters with salinity more than 30 PSU). At each station, microplastic concentrations
were sampled using a specially designed mini-manta trawl (15 cm x 30 cm opening with
integrated flowmeter, 300 um mesh, trawl locations are indicated in Figure 3 of the
Results). One trawl pass per location was conducted alongside the boat for an average of
20 minutes and only when wind conditions were below Beaufort 2. Samples were stored
in glass jars until further processing in the lab. During trawling, in situ measurements

were collected for water clarity (visibility depth with a Secchi disk), sea surface
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temperature (°C) and salinity (PSU). Additionally, 2 L water samples were collected
from the water surface (top 40 cm) for later determination of further water parameters:
chlorophyll-A (Chl-A), suspended particulate matter (SPM) and colored dissolved
organic matter (cDOM, or Gelbstoff). These samples were wrapped in aluminum and
kept cooled with ice until filtering the same day.

Chl-A samples were filtered using Whatman GF/F glass microfiber filters (0.7 pm
pore size), following the IOC and SCOR (1994) protocol. Filters were then wrapped in
aluminum and stored at -20° C for the remainder of the field campaign, after which they
were stored in the lab at -80° C until further processing. Chl-A was extracted with 96 %
EtOH and analyzed with a JASCO FP-8600 fluorometer at an excitation wavelength of
435 nm and an emission wavelength of 670 nm. The fluorometer was calibrated using a
photometer (JASCO V-670) and a Chl-A standard (C6144-1MG, Sigma-Aldrich). After
the first measurements, samples were acidified with HCI and again measured to subtract
phaeopigments from the chlorophylls to get concentration of Chl-A in mg/L following
the JGOFS protocol (UNESCO, 1994).

SPM samples were filtered using pre-weighed Cellulose Acetate filters with 0.45 pm
pore size, air dried and stored in aluminum foil (Lindell et al., 1999). Before weighting
on a Sartorius R 200 D, filters were further dried in a 60-80° C oven for 2 hours and
allowed to cool in a desiccator.

Surface reflectance measurements concurrent to each trawl were taken following the
measurement methodology from Mobley (1999) and Fargion and Mueller (2000). An
ASD FieldSpec Pro spectrometer was fitted with an 8° optic lens and set to measure raw
digital numbers over an averaging of 50 rapid measurements. For each sampling location,
a minimum of five reflectance measurement cycles were taken with the goal to collect
as many cycles as possible during trawling. Each cycle consisted of a downwelling
irradiance measurement over a white reference, an upwelling plus a sky radiance
measurement both made following Mobley geometry (Mobley, 1999), and lastly a
downwelling irradiance measurement to control for potential changes in lighting
intensity conditions over the measurement cycle. Downwelling irradiance was measured
over a 90% Spectralon® white reference panel. Processing of raw digital numbers into
remote sensing reflectance is discussed further below.

Sediment samples were collected from nine beaches in order to serve as a validation
dataset for the hydrodynamic and remote sensing models (sample locations are indicated

in Figure 3 of the Results). Beach sample locations were selected so that three each of
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low, medium and high river plume impact areas would be represented. Estimates of river
impact were based on the hydrodynamic modelling accumulation map (more details
below under Hydrodynamic model). At each location, samples were taken along the
extreme high tide line, following protocols from Moreira et al. (2016) and Turra et al.
(2014). Sampling was only conducted between high tide cycles. The extreme tide line
was defined visually as the area with the largest accumulation of drift material, which
was found to always be a clearly separate line to the last high tide line. Samples were
taken at equal intervals along a 100 m transect line, where first 10 m were walked along
the straight transect line and then turned at 90° for placement along the meandering drift
line. Samples were taken with a 25 x 25 cm quadrat and sampled to a depth of 5 cm. Wet
weight of the samples were recorded and then sieved over 1 mm mesh (matching model
assumptions from the hydrodynamic model, more details below). Additionally, two 1 L
bottles where filled with unsieved sand from the same transect line for later processing

in the lab to convert the wet weight to dry weight.

Microplastic sample processing
Water samples were first fractionated into two size classes: 5 mm — 500 um and 500 —
300 pm. To remove organic matter (which would disturb spectroscopic analysis) from
the microplastic water samples, samples of the size class 500 — 300 pm were treated with
enzymatic purification (Loder et al., 2017) and wet peroxide oxidation (Mausra et al.,
2015). For the latter class (size 5 mm — 500 um), samples with high organic content were
treated solely with wet peroxide oxidation. All potential microplastic particles > 500 pum
were visually pre-sorted, photographed and stored for further analysis with Attenuated
Total Reflectance (ATR) Fourier Transform Infrared (FT-IR) spectroscopy. For a full-
quantitative analysis of the fraction < 500 um, samples were split. One subsample was
filtered onto aluminum oxide membranes (Whatman Anodisc filters) and analyzed with
Focal Plane Array (FPA) based Micro-FT-IR spectroscopy. The rest of the subsamples
were filtered onto glass fiber filters (grade MN 85/90 BF) and analyzed with a newly
developed remote sensing shortwave infrared (SWIR) spectroscopy methodology
(Schmidt et al., in review) using a HySpex SWIR-320m-e sensor (Norsk Elektro Optikk
AS).

Sediment samples along the 100 m transect were pooled. Samples were first
processed by drying at 55°C, and then separated from inorganic material using a zinc

chloride solution (density 1.6-1.8 g/cm?). The supernatant, which included both organic
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material and potential polymer particles, was collected using a self-made mote spoon
(stainless steel, mesh size < 1 mm), rinsed with 98% EtOH and transferred into glass
petri dishes. All potential microplastic particles were visually separated from organic
material under a stereomicroscope (Leica M50 with cold light source Leica KL 300 LED,
Leica Microsystems), photographed (attached Olympus DP26 camera, 5 Megapixel,
Olympus Corp.) and identified to polymer type using ATR FT-IR spectroscopy.
Spectra of all potential microplastic particles > 500 um, from both water and
sediment samples, were recorded with a Tensor 27 FT-IR spectrometer (Bruker Optik
GmbH) from 8 co-added scans within a spectral range from 4,000 to 400 cm-1 and a
spectral resolution of 8 cm™. Background scans were performed after every 10%
measurement. Spectra were identified using the OPUS v7.5 software, correlating
measured spectra against reference spectra from a custom in-house library (containing
polymer spectra as well as spectra from both natural and lab materials used during
sampling and processing, see Ldder et al., 2015). Spectra of all potential microplastic
particles < 500 um were collected using the Tensor 27 FT-IR spectrometer further
equipped with a Hyperion 3000 FT-IR microscope that had a 15x cassegrain objective
and a 64x64 FPA detector mounted. Spectra were obtained in transmission mode and
measurement settings were as published by Léder and Gerdts (2015). Obtained chemical
images were analyzed with the ImageLab v2.26 software and the BayreuthParticleFinder
tool (developed during the project together with Epina Software Lab GmbH), which
automatically highlights potential polymer particles on the chemical image obtained
from the FT-IR measurements of the filter. Given that polymer spectra can diverge,
dependent on factors such as particle size, thickness, color, polymer additives or
adsorbed chemicals, all automatically detected particles were again manually controlled

afterwards.

Hydrodynamic model

Ocean current simulations of microplastic dispersal from the Po river into the North
Adriatic were performed to cover from January 1%, 2015, to June 15", 2016, ending to
coincide with the field sampling in June 2016. A Lagrangian model was implemented to
simulate the dispersion of virtual microplastic particles (VMP) due to currents obtained
from the forecast of a state-of-the-art coupled ocean-waves hydrodynamical model
(Carniel et al., 2016).
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The model covers the northern Adriatic Sea with a horizontal resolution of 500 m
and 12 vertical sigma layers. The hydrodynamical model (ROMS, Regional Ocean
Modelling System; Haidvogel et al., 2008; http://myroms.org) was implemented in a
couple version with a surface wave model (SWAN, Simulating WAves Nearshore
model; Booij et al., 1999; http://swan.tudelft.nl) through the COAWST (Coupled-Ocean-
Atmosphere-Wave-Sediment Transport Modeling System; Warner et al., 2010; Warner
et al.,, 2008) system. Surface forcings were derived from COSMO-I7, a local
implementation of the Lokal Model (Steppeler et al., 2003) developed in the framework
of the COSMO Consortium (http://cosmo-model.org) and run by the Emilia Romagna
Environmental Agency (Agenzia regionale per la prevenzione, I"ambiente e |’energia
dell’Emilia-Romagna, Arpae-ER) Servizio ldro-Meteo-Clima (SIMC). Atmospheric
forcing for the hydrodynamical model was obtained from an operational model run by
the Universita Politecnica delle Marche (UNIVPM) and the Regione Marche. The
UNIVPM — Regione Marche model implementation was chosen because at the time of
simulations it was the only freely available and operationally running forecast model
with a high horizontal resolution. UNIVPM-Regione Marche model outputs were
collected on a weekly/monthly basis and the first day of each forecast processed to
function as current forcing for the Lagrangian model.

To study the dispersal patterns and pathways of microplastic particles released by the
Po River, the Individual Based Model ICHTHYOP (Lett et al., 2008) was implemented.
ICHTHYORP is a 3D Lagrangian model developed to study eggs and larval dispersion in
the marine environment under the influence of currents and thermohaline water
properties; it includes several biological features (such as larval growth and mortality)
which in the case of the present work were not activated. In the model, the VMP behave
as a Lagrangian drifter under the effect of horizontal/vertical advection and dispersion
as well as buoyancy force due to the difference between the particle and surrounding
water density. Particles were assigned a density of 0.91 g/mL to correspond with the
averaged density of virgin polyethylene and polypropylene, which together account for
over 48% of EU demand (PlasticsEurope, 2014) and represent the majority of sampled
microplastic debris (Imhof et al., 2013; Zbyszewski and Corcoran, 2011). VMP were
given the shape of sphere, which would only have influence within the model on sinking
rates, with 1 mm diameter. ICHTHY OP was run offline using only the physical forcing
from the outputs of the UNIVPM-Regione Marche COAWST simulations (i.e. 3D

current field, water column temperature and salinity). For each time step, individual
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displacement of particles was computed with a Runge-Kutta 4 integration scheme
(Runge, 1895). Horizontal dispersion was included with a turbulent dissipation rate of
e=10-7 m?/s?, in agreement with turbulent kinetic energy observations in the Adriatic Sea
(Falcieri et al., 2014). VMP were tracked for a total of 60 days, in excess of Adriatic
particle half-life model estimates (Liubartseva et al., 2016) and drifter mean half-life
observations (Poulain, 2001) of circa 40 days.

Simulations were based on the simplifying assumption of a constant concentration of
10 microplastic particles/m? in the Po waters during the simulation period, as based upon
previous observations from the Po river (van der Wal et al., 2015; Vianello et al., 2015).
The number of VMP released was dynamically calculated using daily average
streamflow measured at Pontelagoscuro (Figure 1) and the above-named concentration.
Given that the river is represented as a point source inside the hydrodynamical model,
VMP were released at the surface along straight 500 m lines located 250 m in front of
each river mouth, with the goal being to mimic a direct discharge from the river itself.
Po river mouths included Maestra, Pila, Tolle, Gnocca and Goro plus the Busa di
Scirocco (given its presence in the hydrodynamic model). VMP were released over the
entire simulation period at hourly intervals from all 6 locations and followed for a
subsequent 60 days. The total number of VMP released at each mouth was defined
following the water discharge distribution among the main branches of the Po River.

Once released, a VMP was considered beached if it passed closer than 250 m from
the coastline. This distance was set by the model spatial resolution, and a more plausible
parameterization of nearshore processes was not possible with the hydrodynamic model
utilized. VMP were tagged with release date and river mouth, so that relative contribution
from each river mouth could later be assessed. Once identified as beached, the VMP was
removed from the dataset. VMP resuspension after beaching was not accounted for in
the model, given the still existing amount of uncertainty surrounding this process
(Hardesty et al., 2017; Zhang et al., 2017). A coastal reference grid was developed for
displaying the distribution of beached particles along the Po Delta shore. To avoid
artificial “shadowing” effects from corners of the hydrodynamic model grid cells located
along the coastline, a smoothed grid was developed based purely on the coastline. This
grid was created with ArcGIS v9.31 software by projecting the coastline 250 m offshore,
separating this into 500 m segments and buffering each segment with 250 m, producing
grid cells variable in both shape and surface but without sharp angles or abrupt changes

in direction. After post processing, distribution maps of estimated accumulation could be
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defined for each day up to the entire simulation period. Beach sediment sampling transect
locations were placed as close as possible to the middle of the modeled accumulation

pixel.

Near-range spectral measurements and remote sensing model

Near-range spectral measurements were used to build remote sensing spectral reflectance
water parameter algorithms calibrated for different satellite platforms. First, raw digital
number measurements from the spectroradiometer of downwelling irradiance plus
upwelling and sky radiance were converted to irradiance, E(z, A) in units of W/(m? nm),
and radiance, L(z,0,¢,A) in units of W/(m2 sr nm), using the software package RS2 version
6.4.0 from ASD Inc. Radiance measurements were visually checked for abnormal
behavior before being converted to remote sensing reflectance (Rrs) following the
methodology detailed by Heim (2005):

L, (0+,4) =1, x Ly, (4)

Res (0:4) = E. (0+,A)
down ’

[sr']

where Rrs(0+,1) is the remote sensing reflectance directly at the water surface (0+) for a
given wavelength (L), Lyp is the above water (upwelling) radiance measurement, rwa is
the proportion of directly back-reflected skylight at the air-water interface (taken here to
be 0.021, following Heim, 2005), Lsy the sky radiance, and Egdown the downwelling
irradiance measurement.

Four separate algorithms for spectral detection of SPM were considered: (i)
Jargensen (1999) based on the CZCS band 3 detecting in the range 540-560 nm, (ii)
Dekker (1993) based on in situ spectrometer measurements at 706 nm, and two different
SPOT-3 ratio-based algorithms from Doxaran et al. (2002) based on (iii) band 3 (780-
890 nm) divided by band 1 (500-590 nm) and (iv) band 3 divided by band 2 (610-680
nm). The ASD Rrs dataset from the field campaign together with the in situ SPM
measurements were used to calibrate each algorithm to the Po river water and for a given
satellite sensor (Figure 2). All considered algorithms were noted to have the form of a
linear regression, which in the original publication were fitted via the regression
coefficients to a particular water body (e.g. a lake or river mouth). Our first step involved
testing how the original algorithms, as they appeared in the publication, performed using
the in situ Rrs dataset and SPM measurements. This was termed “Standard fit”. When

the original algorithm was fitted using reflectance data with a coarser spectral resolution,
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as is the case for all algorithms except (ii), the in situ Rrs data would be transformed
using the sensor-specific Spectral Response Function (SRF) to emulate the required
bands of the satellite sensors that were used in the original publication. In a next step, the
algorithms were calibrated specifically to the Po Delta system using ordinary least
squares. This was termed the “Baseline fit”, as this should be expected to represent the
best performing form of each algorithm. It was necessary to introduce a log transform to
the regressor in algorithms (i) and (ii) to avoid modelling of negative SPM values. In the
final step, the algorithms were calibrated for each satellite sensor used to build the remote
sensing timeseries (Landsat 8 and Sentinel-2). These were termed “Calibrated fit” for
each satellite assessed. In order to accomplish this, the in situ Rrs data would be
transformed using the respective SRF prior to running the regressions. All models were
assessed for quality via the Root Mean Square Error (RMSE) as well as goodness of fit
statistics following the methods of the Ocean Color Group (Campbell and O'Reilly,
2006). This allowed determination of the best calibrated algorithm for a particular
satellite. Both the “Baseline” and “Calibrated” fits were also assessed for data overfitting
using a leave-one-out cross-validation (LOOCV) technique (Michaelsen, 1987).
LOOCYV is particularly useful with low number of field sampling measurements or a lack
of additional validation data (Brovelli et al., 2008; Peduzzi et al., 2012). Differences of
an order of magnitude between the LOOCV-RMSE with the overall model RMSE can
be used as an indication of model overfitting (Andersen et al., 2005).
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Figure 2: Flow diagram of water parameter algorithm calibration process. In situ spectral data (Rrs) were
used to create three fits: standard, baseline and calibrated. Spectral data were transformed to either match
the publication specific algorithm (Alg.) or the targeted satellite, both accomplished using the sensor
specific Spectral Response Function (SRF). SRF used for each step are indicated with (*) for Baseline and
(**) for Calibrated. Baseline and calibrated fits were created using ordinary least squares (OLS) fitting of
transformed spectral data to in situ water parameter measurements. Fits were compared using root mean
square error (RSME), bias, quantile-quantile (QQ) plots and, in the case of the baseline and calibrated fits,
the leave-one-out cross-validation (LOOCV) RSME.

Landsat 8 (L8), a joint mission of the U.S. Geological Survey (USGS) and National
Aeronautics and Space Administration (NASA), is equipped with two push-broom
sensors, the Operational Land Imager (OLI) and the Thermal Infrared Sensor (TIRS),
which provide multispectral images with 30 m spatial resolution at a revisit time of 8
days. The Po Delta study area is located in the overlap region between two Landsat flight
paths, thus reducing the revisit time for this particular study. The European Space
Agency (ESA) Sentinel-2 (S2) mission is a constellation of two identical satellites that
are equipped with a push-broom MultiSpectral Instrument (MSI) sensor. S2 provides
multispectral images with 10 m, 20 m and 60 m spatial resolution depending on the
spectral band. S2 has a revisit time of up to 2-3 days at midlatitudes. Useable images
from L8 and S2 acquired between January 1%, 2015, and June 30", 2016 were compiled.
Other platforms with coarser image spatial resolution (> 375 m) but proving daily
(MODIS) to 3-day (MERIS) acquisitions with much greater Signal-to-Noise Ratio
(SNR) were considered but not implemented given that our goal was to capture the fine
river plume structure as close to the coastline as possible.

Different atmospheric correction algorithms were tested to minimize the introduction

of artifacts to the bands needed for detection of various water parameters. Algorithms
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were compared for each sensor through the in situ Rrs spectrometer measurements, taken
within 2 hours of the satellite overpass, together with the corrected satellite Rrs from the
pixel corresponding to the same location. The atmospheric correction algorithms
considered were ATCOR (ReSe Applications LLC), Sen2Cor (ESA, Science Toolbox
Exploration Platform — STEP) and ACOLITE (Vanhellemont and Ruddick, 2015, 2014).
ATCOR and Sen2Cor depend on the dark-pixel assumption, the former accomplishing
this using a band in the near-infrared (NIR) and the latter using a band in the short-wave
infrared (SWIR). ACOLITE is specially designed for turbid water remote sensing
applications and can be implemented to use only SWIR bands.

The L8 and S2 acquisitions were processed with a hierarchical object-based image
analysis (OBIA) developed with eCognition software (Trimble Navigation Ltd.) to
remove land, clouds, boats, white caps and breaking waves. The masked images were
then used to create SPM concentration maps, which showed how the river plume was
spreading into the surface coastal waters over the examined time period.

For each acquisition date, non-coastline pixels were masked and the remaining
utilized as the basis for creating the coastline exposure map. This was accomplished by
converting pixel values to a similarity ratio using the average SPM concentration from
all five river mouths for that acquisition date. The goal was to display how similar a
given coastline pixel was to a pure river water pixel, which was then used to indicate
influence from river plume waters along the coastline. Data were binned into hexagons
to allow for combination of images with differing geo-registration as well as spatial
resolution, at diameters of both 30 m and 100 m. This was accomplished using the
“hexbin” package within the R software package (R Core Team, 2016). The first
diameter represents the minimum allowable resolution and the second to match the
sediment sampling scheme as well as easier visualization of the entire Po Delta coastline.
Gaps in the dataset, produced through masking areas such as cloud cover or breaking
waves, were filled in the time series using a combination of Nearest Neighbor Filtering
and temporal linear interpolation. This was done again in R using the packages “raster”,
“rgdal”, “rgeos”, “sp” and “spacetime”. The timeseries was then summed to create a
composite image of river plume influence along the Po Delta coastline for the entire
modelled time period.

Po river level gauge measurements were obtained for the modelling period from
Arpae-ER, taken at Pontelagoscuro. Land-based wind measurements are publicly

available from the Italian National Institute for Environmental Protection and Research
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(Istituto Superiore per la Protezione e la Ricerca Ambientale, ISPRA) and were
downloaded for the modelling period from Ravenna, the closest wind station to the Po
Delta.

Model validation

SPM values between L8 and S2 images were compared using standardized differences
to check for any inherent bias between the different sensors. Modelled accumulation
values from both the remote sensing time series as well as the ocean current particle
tracking were compared to beach sediment microplastic concentrations to assess model
validity as well as identify weaknesses and strengths of each modelling method.
Comparisons were made using both Pearson’s Correlation r as well as Spearman’s Rank
Coefficient p. All calculations were carried out using R software. Model maps were also
compared to one another by unit-base normalizing each map and then comparing

difference values at regular latitudinal intervals along the coastline.

Results

Water parameter sampling

Water parameter field measurements are presented in Table 1. Chl-A measurements fell
within a range expected for a productive river mouth system, and SPM values covered a
moderate range (Arpae-ER monitoring measurements of SPM from Pontelagoscuro for
the time period January 2015 to June 2016 ranged from 12-372 mg/L). Secchi depth
measurements only reached a maximum of 163 cm, all located along the outer edge of
the river plume. Sea surface salinity (SSS) was found at the time of sampling to be a
much better indicator of river water presence, ranging from 0.1 up to 31.9 psu, than sea

surface temperature (SST), which only covered a range from 21.5 up to 26° C.
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Table 1: Measured water parameters during the field campaign. Chlorophyll-A (Chl-A) and suspended
particulate matter (SPM) reported in mg/L, Secchi depth average from before and after trawl in cm, sea

surface temperature (SST) in ° C, and sea surface salinity (SSS) in practical salinity units (psu).
Chl-A SPM Secchi SST SSS
(mg/L) (mg/L) (cm) ) (psu)
Mean / Median 0.011/ 30.2/ 67 /51 22.60/ 10.7/
0.009 21.1 22.53 4.1
Standard deviation 0.008 29.4 36 0.93 12.0
Maximum 0.043 127.9 163 25.99 31.9
Minimum 0.005 7.7 29 21.45 0.1

Microplastic sampling

Water microplastic samples analyzed by ATR FT-IR and SWIR spectroscopy ranged
from 1-75.73 particles/m3 (Figure 3), with the highest concentrations being found along
the outer river plume edge, within the main arm of the river (Po di Pila) and the side
channel Busa di Tramontana. The Maistra and central Tolle river mouths both had very
low concentrations, < 4 particles/m3. Repeated measures from a particular river section,
such as where Po di Tolle separates from Po di Pila or where Po di Tolle splits into 3
channels, indicates large variability from one sampling time to another.

The sediment microplastic samples (Figure 3) ranged from 0.5-78.8 particles per dry
weight (DW) kg. The highest measurement by far was on the northernmost beach, Caleri,
where a total of 3,080 microplastic particles were identified for the entire sample (Table
2). Polystyrene (PS), acrylonitrile butadiene styrene (ABS) and styrene acrylonitrile
(SAN) were found to have similar spectral signatures, thus were pooled into a group
called styrene polymers to avoid potential confusion between these types. The same was
true for the polymer types ethylene vinyl alcohol (EVOH) and ethylene-vinyl acetate
(EVA). Polyethylene (PE), polypropylene (PP) and the styrene polymer group made up
more than 97% of all particles sampled on 6 beaches (Boccasette, Pila North 1, Pila
South, Allagamento, Barricata and Goro). The remaining three beaches had either an
increased contribution from EVOH/EVA or, in the case of Pila North 2, elevated
contributions for the polymer types polyamide (PA) and polyethylene terephthalate
(PET).
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Figure 3: Overview of water microplastic samples (diamonds, blue scale) and sediment microplastic
samples (circles, pink scale) collected during the June 2016 field campaign. A total of 24 water locations
and 9 beach locations were sampled, only beach locations are labelled (black text). Water samples are
reported as particles/m* while sediment samples are reported as particles per dry weight kg (DW kg). River
mouths are labelled in dark blue and aquaculture areas within lagoons are indicated.
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Table 2: Sediment microplastic overview for all 9 beaches sampled, listed north to south. Percent
contribution from each plastic type identified is listed: PE polyethylene, PP polypropylene, PS polystyrene
(! also includes ABS acrylonitrile butadiene styrene and SAN styrene acrylonitrile), PA polyamide, EV?
accounts for EVOH ethylene vinyl alcohol and EVA ethylene vinyl acetate, PEST polyester, PET
polyethylene terephthalate, PVC polyvinyl chloride, PUR polyurethane, PVAL polyvinyl alcohol, SBR
styrene butadiene rubber, C/U accounts for either composite particles or unknown plastic types. Total
microplastic particles found as well as particles/DW kg is also indicated for each beach sampled.

% contribution Tot. | part./
Beach
PE PP | PS! | PA | EVZ | PEST | PET | PVC | PUR | PVAL | SBR | C/U | part. | DW kg
Caleri 450| 86 | 280 |<1 180 | <1 | <1 | <1 | <1 0 0 <1 | 3080 78.8
Levante 622|146 |164 | <1 | 57 | <1 | <1]| <1 | <1 <1 <1 | <1 |2032| 594
Boccasette 42911321429 | 0 | <1 0 0 0 0 0 0 <1 | 182 3.9
PilaNorthl | 270|148 | 548 | 0 | <1 0 <1 0 0 0 0 <1 | 115 2.2
PilaNorth2 | 60.2| 9.7 | 204 |19 | O <1 | 49 0 <1 0 0 <1 | 103 3.6
Pila South 4571189 341 | 0 14 0 0 0 0 0 0 0 440 8.4
Allagamento | 10.0| 5.0 | 85.0| 0 0 0 0 0 0 0 0 0 20 0.5
Barricata 19.2 1138|663 |<1| <1 0 0 0 0 0 0 0 652 14.3
Goro 520|19.0|278| 0 | <1 0 0 0 0 0 0 <1 | 248 5.2

Ocean current model accumulation

Comparing Po average daily outflow with the total daily beached VMP (Figure 4), a
loose connection between the streamflow (hence the number of particles released in the
model) and the beached VMP was evident, as could be expected. High beaching rates in
April, July and October 2015 were observed to follow high river discharge events (which
as part of the model design, positively correlate with the number of VMP released), but
this pattern was not always present. Beaching peaks in August 2015 and January 2016
did not correlate with high river discharge events, hinting that beaching is not only driven
by the amount of released VMP (which was intrinsically associated with high river

discharge within the model) but also by surface currents.
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Figure 4: Average daily outflow of the Po River taken at Pontelagoscuro (magenta line, right axis)
compared with average daily total of beached virtual microplastic particles (VMP, blue line, left axis). VMP
were tracked in the model a total of 60 days, the first day that satisfies this condition is indicated by the
dashed black line.

Of all VMP released, only 18% were found to beach during the entire modelling
time period. The ratio of released-to-beached VMPs for each mouth was highly variable.
Po della Pila, Busa di Scirocco and Po di Gnocca river mouths were found to beach less
than 10% of all VMP released. Po di Maistra and delle Tolle were found to beach
between one fourth and one fifth (26% and 19% respectively) of their released VPM. By
far the highest rate of beaching was determined for the southernmost river mouth, Po di
Goro, with 94% of all released VPM being found to have beached. Figure 5 depicts the
daily percentage of beached VMP per river mouth after release. In Figure 5a, the
percentage of beached VPM from a particular river mouth are compared with the total
VPM beached for each model run day. The northern river mouths (Maistra, Pila,
Scirocco, Tolle and Gnocca) display similar behavior in that the majority of beaching
occurs within the first 3 days  and was then followed by a sudden drop to low values,
remaining close to zero after about 10 days. The Po di Goro mouth, on the other hand,
also displayed high beaching rates in the first 5 days but thereafter a more gradual
decline, reaching zero levels after circa 20 days. Thus, VMP released by the Po di Goro
mouth were able to reach the coastline for a longer period of time (up to 30 days after
release, as shown in panel a) and thus had higher probability to be beached than VMP
released from the other mouths. Figure 5b depicts the percentage of beached VMP per
river mouth as compared to the total VMP released by the same river mouth. Here the

much larger percentage of VPM to become beached from the total released by the Po di
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Goro mouth was quite clear, with over 34% of all VMP released from the river mouth
being beached within the first three model run days. The elevated beaching rates of the

Po di Maistra and delle Tolle were also more clearly depicted.
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Figure 5: Percent beached virtual microplastic particles (VMP) from each river mouth in comparison to (a)
total daily beached VMP and (b) total daily released VMP. Days after release are depicted along the
horizontal axis. Release events after April 15th, 2016, are not included since these were run for less than 60
days.

The ocean current model beaching accumulation map for the entire simulation period
is shown in Figure 6. VMP release points in front of river mouths are indicated by the
red arrows. Higher beached VMP accumulation was evident locally around each of the
river mouth release points (Figure 6a), as well as along the southern coast of the Po Delta
and extending south along the coast after Lido di VVolano. The highest accumulation areas
were modelled to be just south of the Po della Pila river mouth, and near to the Po di
Gnocca and di Goro river mouths. The individual distribution from each river mouth is
depicted in Figure 6b, showing that the VMP beaching rates for all mouths remain quite

local except for the southernmost Po di Goro mouth.
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Figure 6: (a) Distribution map for VMP beaching accumulation over the entire 1.5-year simulation period,
VMP release locations in front of river mouths are indicated by the red arrows. Color scale indicates ten
times the percentage of total particles beached. (b) Beached VMP percentage for each river mouth
separately displayed, color scale indicates percentage of total VMP beached from that particular river
mouth.
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Remote sensing model accumulation

Spectral reflectance Rrs measurements from the spectroradiometer are shown in Figure
7, organized into locations with either “high” or “low” Chl-A and SPM levels. High was
defined as all measurements above the median, low all those below. One and two
standard deviations (68% and 95% respectively) around the median curve are also
displayed in Figure 7, indicating variation in reflectance values over the different types
of water. As expected, a decrease in Rrs around 440 nm with low SPM and high Chl-A
(lower left plot in Figure 7) was observed, which correlates to a known absorption peak
of chlorophyll. Along the same curve, the augmented minimum at 665 nm was assumed
to correspond to a second Chl-A absorption peak and the following maximum close to
700 nm likely to be the product of chlorophyll fluorescence. The low Chl-A, high SPM
curve (upper right plot in Figure 7) showed no decrease around 440 nm, increased
reflectance in all bands from 550-700 nm and augmentation of the reflectance maximum
near 800 nm, all of which are similar to patterns documented by Doxaran et al. (2002)
for the high turbidity waters from the Gironde river, France. These Rrs measurements of
samples with low Chl-A and high SPM content were also found to have the least
variation, as indicated by the small deviations of the 1- and 2-c curves from the median
line. In the case of high Chl-A together with high SPM, variance among individual Rrs
measurements was found to be the highest (lower right plot in Figure 7). Reflectance

between 600-700 nm was even more elevated relative to the maximum around 575 nm,
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but many of the Chl-A spectral signature features (such as a decrease in Rgrs at 440 nm

and the min/max curve between 650-700 nm) were not as clearly evident.
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Figure 7: All spectral remote sensing reflectance (Rrs) data, organized by relative in situ chlorophyll-A
(Chl-A) and suspended particulate matter (SPM) measurements. Grouped into “high” and “low” based on
median of all Chl-A or SPM measurements, respectively. Number of individual reflectance measurement
contributing to each curve is indicated (N), and percent of all observations at one standard deviation (1-o,
68%, dark gray) or two (2-c, 95%, light gray) is also indicated. Median Rgs is indicated by a black line.
Spectral features characteristic of Chl-A and SPM which are discussed in the text are indicated in green and
tan bars, respectively.

An example of improved model fit to the data during the calibration/validation
process is presented in Figure 8. The Dekker algorithm is based on the expected elevation
of the Rrs spectrum around 700 nm, as also observed from our data in the Figure 7 plots
with high SPM. A better fit to the measured values was observed, as is evident through
the reduction of the RMSE and bias by an order of magnitude. The LOOCV-RMSE was
found to be less than an order of magnitude different, suggesting that model overfitting
is not an issue despite low sample numbers. Results of all four assessed SPM algorithms
are presented in Table 3, where the algorithm basis is listed along with the fitted
algorithm and model fit statistics (RMSE, LOOCV-RMSE, bias). Model fit statistics
were found to be reduced by an order of magnitude through the calibration/validation for
both the Jgrgensen and Dekker algorithms, only slight improvement was achieved for
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one of the band-ratio Doxaran algorithms while the other was found to be a non-
significant predictor for the Po River water. An exponential relationship was determined
preferential for the Jargensen and Dekker algorithms to avoid modelling of negative
values. Model fit statistics were relatively unaffected by fitting to coarser spectral
resolution satellite sensor specific bands. Given the observed overlap of the Chl-A
reflectance peak at 560 nm with the SPM signal saturation between 550-700 nm (Figure
7), the Dekker algorithm was selected as preferable to the Jargensen algorithm.
Furthermore, the Dekker algorithm was found to be a significant predictor for both L8

as well as S2 data.

g | [SPM]=2.69 + 3.31"Ry(706) * o | [SPM]=exp(1.92 +0.79*R(706)) ¢
- RMSE =561.16 A RMSE = 40.45
_ | Bias=488.92 _ | Bias=27.67
e 1 S - LOOCV-RMSE =21.72
L] -
S 8 3 8
o o
E £
-
g 8 . £ 8-
w w
o _ o
= T
.
L] P
R 4 . . . . 8 -
s, 2t a) Standard fit (b) Baseline fit
T T T T T T T T T T T T T T
05 10 15 20 25 3.0 35 05 10 15 20 25 30 35

R_rs x 100 (per sr) at 706 nm R_rs x 100 (per sr) at 706 nm

Figure 8: Comparison (a) published SPM Dekker algorithm with (b) baseline fit algorithm. Scaled spectral
signal at 706 nm wavelength (Rgs in sr™!) is depicted along the horizontal axis, measured in situ SPM (mg/L)
along the vertical axis, and modelled values with the black line. /n sifu measured values are the black points.
Algorithm is listed in upper left of each plot, along with model root mean square error (RMSE), bias and
leave-one-out cross-validation RMSE (LOOCV-RMSE, right plot only).

Table 3: Calibrated algorithms for suspended particulate matter (SPM). Algorithm spectral basis and
publication is indicated in the first column, standard fit algorithm in the second column together with model
fit statistics: root mean square error (RMSE) and bias. Baseline and satellite specific algorithms are listed
in the following columns, with fitted algorithm listed followed by fit statistics (RMSE, leave-one-out cross-
validation RMSE, bias) in parentheses. Relationships that were found to be non-significant (o> 0.05) during
fitting are indicated with N/A. The satellite sensor band used is also indicated, e.g. Landsat 8 band 3
centered at 560 nm is indicated by b3 5.

(Dekker, 1993)

(661.16; 486.92)

(40.45; 21.72; 27 67)

Algorithm basis Standard fit Baseline fit Landsat 8 Sentinel-2
Band at 555 nm 0.09+56.19"bsss | exp(1.47+0.60"bsss) | exp(1.46+0.60"b3ss0) | exp(1.45+0.60"b3se1)
(Jgrgensen, 1999) (1564.91; 148.22) |(40.66; 29.98; 27.67) |(40.64;29.35; 27 67) | (40.65; 29.63; 27 .67)
Band at 706 nm 2.89+3.317bros exp(1.92+0.79"bres)  |exp(1.82+0.66bdsss) | exp(1.91+0.78"bb7os)

(40.50; 22.91; 27 67)

(40.45; 21.65; 27.67)

(Doxaran et al., 2002)

(83.15; 50.92)

SPOT bands XS3 (cen. 835 nm) |exp(3.01+3.13"  |exp(2.37+3.25" exp(2.39+3 57"
and X81 (cen. 545 nm) XS 3535/ X5 1545) XS3a35/ X5 1545) NIA bBs4a/b3sa1)
(Doxaran et al., 2002) (27.37; 21.06) (26.29; 29.62; 16.43) (26.42; 29.79; 16.49)
SPOT bands XS3 (cen. 835 nm) |exp(2.56+5.317
and X32 (cen. 645 nm) X83s35/XS52645) N/A N/A N/A
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A total of 26 useable images from L8 and S2 (12 and 14 respectively) were compiled
covering the modelling time period (Figure 9). Useable images from two out of the total
eighteen considered months could not be obtained. River level and wind speed, overlain
with wind regimes, are also shown in Figure 9. Peaks in river outflow were observed
during the spring months, with secondary peaks occurring during fall. The highest
observed peaks in daily wind speed occurred in January, March and November 2015,
which all corresponded to northeast (Bora) wind events. Scirocco (southeast wind)
events were observed to have less strong wind speeds. Half of all Mistral events were
found to occur either preceding or following other wind events. Both Mistral and
Scirocco events were found to have occurred less frequently than Bora events. Of the
compiled useable satellite images, five instances each of Bora/low discharge and
Mistral/low discharge were captured, as well as three instances of Scirocco/high
discharge and one instance of Bora/high discharge conditions.

[Satellite| Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun [Total |

L8 1 0 1 2 1 0 0 0 1 1 1 0 1 0 1 1 0 1 12
S2A = = = = = = 1 2 3 1 0 1 1 1 1 0 1 2 14
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Figure 9: Temporal satellite image coverage from January 2015 to June 2016, together with daily river
level at Pontelagoscuro (Po River gauge, dark blue line) and daily wind speed measured at Ravenna (wind
speed, gray line). Total images from each satellite (Sentinel-2: S2; Landsat 8: L8) are listed in the table as
well as depicted by gray bars overlain on the river gauge timeseries. S2 images first became available July
2015. Wind regimes (here defined as daily wind > 6 m/s) are indicated with colored lines in the bottom
plot: Bora (NE winds, in light blue), Scirocco (SE winds, in orange) and Mistral (NW winds, in green).
River gauge data provided by Arpae-ER. Wind data were provided by ISPRA, gaps are due to the
anemometer malfunction during the latter portion of study period.

An S2 image acquired on June 15, 2016, was taken the same day as in situ sampling,
which allowed optimal comparison of Rrs measurements made by spectroradiometer
from the boat with atmospherically corrected Rrs values from the satellite. Three in situ

measurements could be achieved within two hours of the S2 overpass, with one
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measurement from the middle of the Po della Pila mouth being taken directly following
the satellite acquisition. The image was corrected separately using ATCOR, Sen2Cor
and ACOLITE, and the pixel value from the same location as in situ sampling was
compared with in situ Rrs measurements. Variation of the eight neighboring
atmospherically corrected pixels was also considered. No L8 images could be acquired
concurrent to in situ field sampling, thus comparisons with ATCOR and ACOLITE
corrected pixel values had to be completed using in situ measurements from two days
prior and one day posterior to the satellite acquisition. All atmospherically corrected Rrs
values were found to capture the same overall spectral signature characteristics observed
from the in situ Rrs measurements, performing quite well for the offshore clearer
Adriatic water sampling location. Underestimation of Rrs values were observed for the
highly turbid Po della Pila waters. For the purposes of this study, Sen2Cor was
determined to be the optimal atmospheric correction algorithm for S2 data and
ACOLITE for L8 data.

Examples from satellite image masking and implementation of the calibrated Dekker
SPM algorithm are shown in Figure 10. High/low river discharge was classified as daily
average river gauge levels over/below the median gauge level for the entire modelling
period (-4.6 m). From the acquisition with high discharge, the strong effect of a wind
event on river water transportation was quite evident. In the case of high discharge
together with southeasterly Scirocco winds ((Figure 10b), plume water can be observed
being pushed northward of the Po di Pila mouth. With northwesterly Mistral winds
(Figure 10c), the plume shape appears to be more heavily influenced by river outflow,
with high river discharge producing a plume extending further into the Adriatic. But in
the case of northeasterly Bora winds (Figure 10a), the high discharge plume was kept
closer to the coastline while primarily spreading high SPM waters towards the south. A
somewhat different pattern was observed for the acquisitions concurrent to low
discharge. The Bora wind event on September 29, 2015, was observed to again retain the
plume close to the southern coastline (Figure 10e). Plume form under low discharge and
Scirocco wind was only demonstrated with one acquisition (Figure 10f). SPM signal
from the river water on this date were quite low, making the plume difficult to detect,
but through utilizing a different stretch the plume could be observed to extend further
into the Adriatic. The Mistral wind together with low discharge (Figure 10g) was
observed to retain river plume close to the coastline, but much smaller than was observed

with high discharge.
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Figure 10: Combined effect of different wind regimes (Bora, Scirocco or Mistral) with different river
discharge conditions on river plume transportation along the Western Adriatic. River discharge is termed
“high” (panels a,b,c) or “low” (panels e,f,g) depending on daily discharge relative to the median water level
(-4.6 m) over the entire simulation period. Wind events were classified based on wind direction (indicated
by wind compass in each column, pointing in the direction that wind is blowing) and strength (excess of 6
m/s winds). Suspended Particulate Matter (SPM) values, ranging from low in blue to high in red, depict
river plume shape. Masked pixels are depicted in dark blue, land in light gray (outside of area of interest in
dark gray).

Results of the remote sensing composite hexagon binning processing are presented
in Figure 11, with red indicating coastal areas of high river water influence and green
areas with less. Strong river water influence was detected around all five river mouths
(Maistra, Pila, northern and central Tolle, Gnocca and Goro) as well as the Busa di
Tramontana and di Scirocco. The southern arm of the Po delle Tolle was observed to
have a lesser influence, while the northern section of coastline between river mouths
presented very low rates of river water influence. Coastline sections near to the Po della
Pila mouth and southward were observed to have higher rates, with the highest influence
evidently being along the coastal section just north of Po della Pila. An area of very high
river water influence (red) was detected between Po della Pila and Busa di Tramontana,
which corresponds to an additional river mouth flowing out from the lagoon that was
first observed during the field campaign.

92



0 1 2 3km

\ Collective
\ o exposure
\ >uf P High
)
v Gnocca
Z
\\-é “Goro W Low

Figure 11: Composite hexagon (100 m) map of SPM time series, colored by summed daily similarity values
to river water. High rates of river plume influence (red) are observed at all five major river mouths and the

two Busa, Tramontana and Scirocco, around Po di Pila. Low river plume influence (green) can be observed
along the northern coast of the delta.

Model validation results

Standard difference comparison between L8 and S2 images revealed a slight sensor bias,
in that detected L8 SPM values tended to be slightly (< 2 mg/L) less than detected S2
SPM values. This amount represented less than 2% of the SPM range measured in the
field (Table 1) and was thus taken to be negligible. No significant relationship was found
when comparing the in situ beach sediment microplastic concentrations to the nearest
hydrodynamic model grid cell (p > 0.10 for Pearson’s r and Spearman’s p). Removal of

beach locations that were under more influence from beach tourism and nearby
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aquaculture (namely Caleri, Levante, Boccasette and Barricata) resulted in a stronger
correlation: Pearson’s r = 0.79 and Spearman’s p = 0.80 (p < 0.07 in both cases).
Comparison of in situ beach sediment microplastic concentrations with the nearest
remote sensing model 30 m hexagon revealed a moderate negative correlation, with
Pearson’s r =-0.58 (p = 0.05). No significant correlation was found at the 100 m hexagon
resolution. Focusing the comparison to beaches with lesser influence from beach tourism
and nearby aquaculture did not reveal an improved correlation. Removal of the styrene
polymer group from the in situ beach sediment microplastic concentrations was also
considered, given that styrene polymers is both highly buoyant in its foamed form and
thus very susceptible to windage during transport as well as potential higher
susceptibility for further particle fractionation during beach sediment lab processing.
Despite these considerations, removal of one of the top three contributing polymer
groups to in situ beach sediment microplastic concentrations was not found to provide
any further model improvement.

Comparison between the two models is depicted in Figure 12, where the normalized
remote sensing exposure map is shows directly next to the hydrodynamic model
accumulation map (Figure 12a). General tendencies for lower normalized values along
the coastline north of Pila di Maistra and south of Lido di VVolano were similar between
the two model results. Strong river mouth signal from Pila, the southern Tolle, Gnocca
and Goro were also evident in both maps. Dissimilates were most evident for the river
mouths Maistra, Tramontana and Scirocco, where a strong signal was registered by the
remote sensing model but not by the hydrodynamic model. In Figure 12b, the difference
comparison of the normalized values (hydrodynamic normalized values, HDnorm, Minus
remote sensing normalized values, RSnorm) are displayed as a histogram aligned along
the latitudinal axis. The comparison was made along the full overlap extent of both maps
and the distribution is indicated in Figure 12b with the gray shaded areas (one and two
standard deviations). A slight positive bias is observed, meaning that the HDnorm Values
tend to be higher than the RSnorm values, with 95% of all values lying between -0.07 and
0.49. Areas of exceptional variation, indicated by bars lying outside the shaded gray area,
were notably the coastline located between Pila and Scirocco and between the northern

and central Tolle mouths.
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Figure 12: (a) Remote sensing hexagon-binned (100 m) exposure map (left) next to hydrodynamic model
accumulation map (right), both datasets have been unit-based normalized (green low to red high). (b)
Difference normalized hydrodynamic model (HDnorm) to normalized remote sensing model (RSnorm),
aligned along the latitudinal axis. Percentage all observations (obs.) at one standard deviation (1-c, 68%,
dark gray) or two (2-c, 95%, light gray) is indicated.

Discussion

Some of the highest in situ water microplastic measurements were found along the outer
edge of the Po river plume, which suggests that either microplastic concentrations in the
open Adriatic are at least comparable with those from the river, or that there are local
accumulation processes occurring along the front between fresh river water and much
higher salinity ocean water. Given that rivers are considered one of the main sources of
plastic debris to the ocean (Jambeck et al., 2015; Lebreton et al., 2017) together with
evidence that the Adriatic Sea is a highly dissipative system (Horvat, 2015), the latter
hypothesis is more likely. Furthermore, the concentrations found in this study are an
order of magnitude higher than values measured by Suaria et al. (2016) in the open
Adriatic Sea. Using the median in situ measured microplastic concentration from this
study together with average Po river discharge (1500 m3/s) and estimates of microplastic
particle count to weight in the Adriatic (1.68 to 3 mg/particle; Suaria et al., 2016; van der

Wal et al., 2015; Vianello et al., 2015), a rough estimate of floating microplastic released
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by the Po River ranges between 1.7 and 3.1 tonnes per day. This translates to between
636 and 1,135 tonnes/yr, coming close to the estimates of 1,349 tonnes/yr by Liubartseva
et al. (2016).

Very low in situ water microplastic concentrations were found for the Po di Maistra
and delle Tolle mouths, as well as the Busa di Scirocco. Two of these river mouths,
namely Maistra and Scirocco, were observed to also have low river plume influence from
the remote sensing accumulation map. Maistra is expected to have the smallest outflow
of all river mouths (Correggiari et al., 2005), and was thus also found to have the smallest
impact from the ocean current accumulation modelling (Figure 5). The low in situ water
microplastic concentration measurement from Po delle Tolle is less easily clarified, as
this mouth was found to have a substantial influence by both the ocean current and
remote sensing accumulation models. There was also a discrepancy between the
measured in situ concentrations from the middle Tolle mouth and before the Tolle arm
divides into three. This suggests that further accumulation processes may be occurring
within the Tolle sub-arm which have not been captured by the model , and thus warrants
further investigation than was feasible within this study.

The top three contributing polymer types from the sediment microplastic
concentrations were PE, styrene and PP, in step with general trends observed in both the
Po River (van der Wal et al., 2015) and the Mediterranean Sea (Suaria et al., 2016) as
well as coastal (Zhang, 2017) and global oceans (Andrady, 2017). PE and PP make up
between 45-50% of total global plastic production (PlasticsEurope, 2016). Higher
occurrence of other plastic types, especially the heavier polymers such as EVOH, PVAL,
PET (polyethylene terephthalate) and PVC (polyvinylchloride), were found at Caleri,
Levante and Pila North 2 (Figure 2 and Table 2). Caleri in particular was found to have
the most extreme microplastic concentration, exceeding the measurement by Munari et
al. (2017) of 21.68 particles/DW kg at VVolano , just south of the Po Delta. It is important
to note that a possible explanation for this could be different sampling locations, as this
study sampled the extreme high tide line in contrast to the most recent high tide line. Our
measurements were lower than those made in the Venice Lagoon (672-2175
particles/DW Kkg; Vianello et al., 2013), although again it should be noted that smaller
size classes were under investigation. It further has been suggested that the lagoon serves
as neither a sink nor a source of anthropogenic litter (Carlson et al., 2017). The two
northernmost beaches surveyed in this study (Caleri and Levante) were located close to

either a public parking lot or a harbor. Heavier particles are known to be transported
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more slowly than particles which are less dense than surrounding seawater (Cable et al.,
2017), which include the plastic types EVOH, PVAL, PET and PVC in their virgin form.
This suggests that the higher concentration rates more likely result from local sources,
rather than longer distance transportation by the Po river plume or other Adriatic
currents.

The ocean current modelling results suggest that surface currents play a more
deciding role in determining beaching rates, with the number of particles being released
by the river only semi-coupled to beach accumulation. Surface currents in the northern
Adriatic is determined by wind regime and freshwater influx, the Po river being the main
contributor (Falcieri et al., 2014). VMP tracks from different river mouths revealed
beaching rates of up to 18% for all modelled river mouths, with the exception of the
southernmost mouth of Po di Goro. This is a result of the Goro freshwater plume likely
being held closer to shoreline by the other plumes, thus allowing plume water to interact
with the coastline for a longer period of time. For the other river mouths, VMP beaching
was found to occur within 10 days following release, and beaching rate estimates
suggests that over 80% of the microplastic particles being released by the Po River are
being dispersed to the open Adriatic system.

Coastal exposure modelling using SPM derived from remote sensing images was able
to well capture the signal of sediment heavy river plume waters spreading along the
coastline (Figure 10 and Figure 11). Plume exposure was found to be highest locally
around the five main river mouths (Maistra, Pila, Tolle, Gnocca and Goro), as well as by
side channels (Scirocco, Tramontana). Different amounts of river plume exposure were
determined for the three arms of the Tolle river mouth, with the highest signal coming
from the middle arm and the lowest from the southern arm. Evidence of an extra river
mouth with strong outflow between Tramontana and Pila from the remote sensing
analysis follows observations made while collecting the field data. The Po della Pila
mouth is supposed to transport over 60% of the entire river discharge (Correggiari et al.,
2005), but based on the SPM exposure map, this river mouth appears to be on par with
the effects from the Po delle Tolle and Busa di Tramontana. A persistent sand bank was
observed at the opening of this river mouth both in the remote sensing images and during
sampling in the field. In images taken during high SPM events, it is clear that flow out
of Po della Pila is being split into a northern and southern portion after encountering this
sand bar. If flow is indeed being slowed out of Po della Pila by the presence of this sand

bar, this would provide a mechanism for why flow is so high out of the Busa di
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Tramontana and the unnamed outlet just south of Tramontana. Although this can only be
definitively tested with in situ hydrodynamic measurements, the potential of using
remote sensing SPM images for identifying fine-scale river mouth dynamic patterns is
nevertheless well demonstrated here. The time series was able to capture multiple
acquisitions of Bora wind events with low river discharge and one instance with high
river discharge. In all events, the river plume is observed to stay closer to the Italian
coastline with Bora wind, following results and model predictions made by Falcieri et al.
(2014). This is in stark contrast to the situation observed with Scirocco plus high
discharge, where the river plume can be observed to extend further east and north than
for either of the Bora event images (Figure 10). River plume form during Mistral events
appear to be more strongly controlled by river discharge than wind regime. The
relationship between wind regime and freshwater outflow on northern Adriatic
circulation patterns is complex, but remote sensing images of the river plume can
certainly serve as a useful tool for testing hypotheses.

Validation of both accumulation models against all in situ measurements did not
produce a significant relationship. This is likely due to additional microplastic processes
(such as biofouling or flocculation) and sources, outside of the Po river water, which
were not included in either model. Another factor to acknowledge is the assumption of
beaching occurring after a particle passes within 250 m of the coastline, representing a
massive simplification of nearshore currents that was necessary with the given modelling
tools. A slightly significant correlation was found between the ocean current
accumulation map and in situ samples from beaches which were only accessible by boat
and not located next to a large harbor. An inverse relationship between amount of beach
litter and distance to nearest parking lot has already been established in the Adriatic
(Munari et al., 2017), suggesting that beach tourism poses a significant plastic litter
source not included in the models. The Po Delta is a protected area, and while there exists
much beach tourism, so do also laudable volunteer beach clean-up activities from NGOs
(such as the WWEF), the locations of which were necessarily avoided during field
sampling as best as possible. The remote sensing river plume exposure model was not
found to have a significant relationship with the in situ samples but was very useful in
identifying which river mouths were significant outflow contributors during the
simulation period. This information can be useful in the set-up of future ocean current
models of the Po Delta. A number of factors not incorporated into either the ocean current

or the remote sensing model may largely explain the missing correlation. Refuse
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resulting from the major shipping corridors which cross the Adriatic are posited to
account for 20% of all marine plastic litter introduced each year to the sea and the Po
river for only 13.5% thereof (Liubartseva et al., 2016). Windage of particles was not
accounted for in the ocean current model, which can provide drift speeds up to 25%
larger than the current speed (Chubarenko et al., 2016). After particles become beached,
wind transportation may move particles laterally or further inland (Munari et al., 2016).
Microplastic particle aging within the marine environment was also not included,
including processes of biofouling, further fragmentation, flocculation and aggregation,
all which are recognized as important dynamic parameters influencing residence times
and transportation pathways (Zhang, 2017). Seasonality was accounted for in the ocean
current model through changing the amount of VMP released dependent upon Po river
outflow, but the concentration of microplastic particles was held constant during the
entire modelling period. It has been established that river mouth concentrations of
microplastic particles can vary by up to three orders of magnitude at different times of
the year (Lebreton et al., 2017) and that storm water runoff events can significantly
increase river mouth microplastic load (Zhang, 2017). Beaching in this study’s ocean
current model follows simplifying assumptions made in other studies (Lebreton et al.,
2012; Politikos et al., 2017), since the mechanisms controlling onshore-offshore
transport of microplastic particles remain unclear (Critchell et al., 2015; Hardesty et al.,
2017; Hinata et al., 2017; Moreira et al., 2016). Despite this, these mechanisms likely
play a driving role in determining small-scale and temporal variation in sediment
microplastic deposition rates (Carlson et al., 2017; Hinata et al., 2017; Schulz et al., 2017;
Zhang, 2017). Artefacts may also be introduced to the correlation through the in situ
sediment sampling scheme. In an effort to circumvent potential temporal variability, the
extreme high tide line was chosen for the field sampling over the most recent high tide
line. Nevertheless, we only considered one strand line, which was sampled on only one
date and used pooling of subsamples to compensate for small-scale variability.

There remain many uncertainties still in our understanding of the transportation and
accumulation mechanisms of microplastics (Hardesty et al., 2017) and with this study
we offer some insight into these mechanisms. From the hydrodynamic modelling, we see
that particles which do not beach within the first 10 days (over 80% of all VMP emitted
by the Po river) are transported away from the coastline. The hydrodynamic model also
offers a continual track of VMP transportation and could be used to study VMP

distribution in the open sea. In order to do this, changes in microplastic characteristics
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with time should be included into the Lagrangian model physics. The remote sensing
model presents snapshots of surface river plume form at a finer spatial resolution over a
larger area than possible with current ocean current models. River plume exposure during
the modelling period could be well captured but this is difficult to translate to actual
microplastic accumulation rates. Model assimilation of remote sensing data into ocean
current simulation models has begun to gain traction in other oceanographic modelling
areas (Miyazawa et al., 2013; Stroud et al., 2009; Zhang et al., 2014), with up to 40%
improvements in model forecast root square error. Hardesty et al. (2017) have already
suggested the great improvements possible to our understanding of microplastic
transportation pathways through integrating simulation model and empirical
observations.

Deeper understanding of microplastic sources, pathways and accumulation areas is
intrinsic to our ability to mitigate introduction of this pollutant to limnic and marine
systems as well as organize clean-up activities. International agreements are already in
place forbidding deposition of litter into the Mediterranean marine environment (Mistri
et al., 2017; Munari et al., 2016), yet despite these steps this enclosed sea continues to
have particularly high concentrations of marine debris (Cozar et al., 2015; Suaria et al.,
2016). Other modelling efforts within the Adriatic suggest that land-based sources of
marine litter contribute the majority of marine litter entry into the sea each year (Munari
etal., 2017). National borders are not a component of marine plastic debris transportation
pathway mechanisms and finding middle ground in national agendas to support
concerted legislation efforts are difficult. In situ microplastic sampling and sample
processing is costly, thus modelling offers a methodology for upscaling point
measurements to larger areas than could be feasibly sampled (Hardesty et al., 2017). The
idea to use sediment transportation models to deepen our understanding of microplastic
transportation in smaller enclosed waterways has been suggested by multiple authors
(Zhang, 2017, and references therein). Freshwater systems, in particular rivers, have been
slower to receive the same microplastic research attention as attributed to marine systems
(Wagner et al., 2014). Evidence exists that even low-density populations can still create
heavy consumer plastic pollution (Free etal., 2014), underlining the importance of being
able to efficiently and correctly locate source locations so that appropriate remediation
actions can be taken.
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Conclusions and outlook
In this study, microplastic accumulation exposure over one and half years along the
Adriatic coastline was modelled using two different approaches: via a Lagrangian
particle tracking sub-model, fed by modeled ocean currents, and remote sensing of
sediment heavy river plume waters. In situ sampling of both Po river and Adriatic Sea
waters revealed microplastic concentrations up to 76 particles/m3, and beach sampling
revealed concentrations up to 78.8 particlessDW kg. The ocean current approach was
able to identify differing beaching rates between various river mouths and suggested that
particle beaching mostly occurred within the first 10 days of release. Po river emitted
particles that were moved offshore remained offshore, likely due to the continual
freshwater input creating water density boundaries that inhibit westward transport.
Especially the Po di Goro mouth was identified as effecting higher beaching rates over a
much longer stretch of coastline. The sediment remote sensing approach was able to well
represent river mouth relative strength, such as the relatively small contribution from the
southernmost Po delle Tolle river arm or the much larger contribution of Busa di
Tramontana in river outflow. Microplastic accumulation exposure maps were
constructed from both approaches, which were found to be similar to one another but
were not found to have a significant relationship to in situ beach sampling. This
relationship changed when the beaches that were closer to public parking lots and harbors
were removed, suggesting that microplastic sources which were not included in either
modelling approach are also large contributors to beach microplastic accumulation.
Plastic debris has gained recognition as a severe problem at an international level, as
demonstrated through United Nations reports (UNEP, 2016, 2015, 2014) and legislation
regarding microplastics, such as the European Union Water Framework Directive
(Directive 2000/60/EC) and the Marine Strategy Framework Directive (Directive
2008/56/EC). Marine litter, including plastic debris and microplastics, is directly
addressed by the Mediterranean Action Plan (MAP) under the Barcelona Convention,
with goals by the year 2020 to reduce top pollution sources by 80% and instate
monitoring activities through the Horizon 2020 initiative. At the same time, consumption
of plastic goods per capita continues to increase globally (Andrady, 2017), with North
Americans and Western Europeans consuming up to 140 kg plastic goods in 2015, up
40% as compared to eight years earlier (Lebreton et al., 2012). Methods for identifying
marine debris sources and forecasting accumulation areas have already been put forward

as a method to reduce the cost and optimize the effort of remediation activities (Krelling
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etal., 2017; UNEP, 2016). This study demonstrates the strengths and weaknesses of two
separate modelling approaches, providing further tools aiming to answer the suggestion
of Hardesty et al. (2017) to develop multipart solutions which can be applied at both
local and regional scales to effect change.
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General discussion

This thesis demonstrates how remote sensing systems can serve as a tool to provide
monitoring information over large areas. Chapters 1 and 2 concentrate on peatland fires
in Southeast Asia, while chapter 3 focuses on turning boat-based measurements of a river
plume into a coastal microplastic accumulation map. The research fields of fire
occurrence and aquatic plastic pollution are largely unrelated, but both are challenged
with similar issues in being able to effectively monitor large areas which range from
thousands up to millions of square kilometers. Both active burning fires and water
pollution dispersal present dynamic systems that inherently change rapidly over a short
time periods. This is what in part makes collection of representative in situ ground points
often untenable, since it is difficult to collect sufficient samples within a period of time
small enough relative to the rate of change of the process being studied.

For large fire events in Indonesia, collection of more ground measurements is
difficult due to little to no infrastructure in much of this massive country. Together, the
islands of Java and Sumatra hold a little over % of the nation’s population (261 million),
while representing only circa 30 % of the nation’s landmass. Most areas in Indonesia are
not heavily populated, with development efforts in these rural places over the last
decades being sporadic and at times misguided. The current government has shown
concrete signs of support for sustainable development, such as the two-year Peat Prize
competition aiming to develop a more accurate and faster way to map peatlands or the
2011 legislation placing a moratorium on new concession licenses, but enforcement
remains an issue. Fire control managers are more likely to be concentrated in offices in
Jakarta than spread regionally throughout the country. Ground measurements are
additionally dangerous along a quick-moving active fire line. It is difficult for foreign
researchers interested in making ground measurements to respond quickly to an active
fire event due to the difficulties of expediently obtaining a research visa for the country.
Ground measurements are few, usually located only with a specific region, and often
carried out by different groups, thus resulting in not being coordinated with one another.
Thermal remote sensing of fires dates back to the beginning of publicly available global
satellite dataset, such as Landsat (available back to 1972) and MODIS (operational data
available as of 2000). While both these datasets offer the unique benefit of long time
series data, their sensor limitations in comparison to newer technologies are laid out in

chapters 1 and 2.
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Ground measurement of in situ microplastic concentrations in a river plume system
are also limited. With a single four-person team, it is possible to take between six to eight
measurement points within one day. Repeated sampling from one date to another showed
sizeable variation in measurement microplastic concentrations at a particular location
(see Figure 2 in chapter 3). The coastal river plume system is influenced by tidal
fluctuation, changes in wind, wave activity, and shifts over the day in river outflow. We
observed in the field how freshwater river plumes would change their position along the
coastline by over 100 m within less than a half an hour, clearly demonstrating what is
meant by a highly dynamic spatial-temporal system. This could in part be ameliorated
through making concurrent measurements from multiple boats, but this would on the one
hand multiply campaign costs and on the other hand introduce potential new error
sources for measurement differences between the teams. Remote sensing will always
only be able to provide a snapshot of this dynamic system but over a large area, thus
being able to partially overcome the spatial if not the temporal aspects of the system. The
ocean modelling on the other hand is better able to address both the spatial and the
temporal aspects, its only downside being that the modelled currents are only so good as
our understanding of the various forces (wind, tide, freshwater input, waves, bathymetry)
shaping the hydrodynamics. Both these methods, remote sensing and ocean current
modelling, present tools for upscaling in situ point measurements that would alone

present much difficulty properly capturing the dynamic system of a coastal river plume.

Benefits and constraints for fire detection and biomass burning

MODIS continues to be regarded as the main workhorse for worldwide fire detection,
which is partially understandable given its four times daily acquisitions of the globe (both
day and night images by each Aqua and Terra platforms) and a dataset that stretches back
to cover over 15 years. Chapter 1 is not the first study to demonstrate the benefits of more
sensitive satellite sensor systems to detect active fire events, but the new sensor aboard
the TET-1 satellite, providing an improvement in circa double the amount of active fire
detection, provides a strong argument against the continued use of MODIS for active fire
detection over tropical Indonesia. The importance of the tropical peatlands contained
within this country for the global climate are well explained in both chapters 1 and 2,
thus it would be logical to use the most accurate and precise technology available to
monitor this region. TET-1 was joined in 2016 by BIROS and data is available upon
request from the German Remote Sensing Data Center. A multi-platform system reduces
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time between acquisitions, which could help ameliorate the discrepancy to burned area
estimates discussed in chapter 1. A future goal for the DLR FireBird mission should be
increased availability of data on distribution platforms such as those used by the EOS,
Landsat and Sentinel missions. Chapter 1 also makes clear the potential of TET-1 data
for efficiently focusing firefighting activities on fires while they are still small, before
they can form fire lines tens of kilometers long.

Chapter 2 demonstrates the use of an active sensing SAR system, Sentinel-1, to detect
burned areas without the dependency of waiting for a smoke- and cloud-free acquisition.
Fires are stopped in Indonesia by the onset of the rainy season, which is characterized by
months of continual cloud cover over much of the country. Tropical vegetation, such as
sedges and ferns, regrow quickly after fire events and can mask the VNIR burned area
signal (Siegert et al., 2000; Siegert and Hoffmann, 2000), clearly exemplifying the
benefits of utilizing a technology able to detect burned area in close to real-time. The
established SAR methodology from chapter 2 will allow immediate response to the next
large fire event and thus be able to provide much more accurate estimates of burned area
to calculations of emissions impact for the global climate. SAR-based emissions
estimates can in turn be utilized to check emissions estimates from atmospheric remote

sensing methodologies.

Coastal accumulation of microplastic determined with different models

In chapter 3, a remote sensing methodology was used to determine exposure to
microplastics ladened river plume water along a coastline in the northern Adriatic Sea.
The resulting exposure map was found to be similar in pattern to an operative ocean
current model, although some differences could be determined. The remote sensing
model was most useful for determining river mouth flow dynamic patterns that were not
included in the development of the ocean current model. The ocean current model was
able to more fully capture the pathway of microplastic particles leaving the river mouth
and then spreading into the Adriatic Sea, allowing for estimates of beaching rates, time
till beaching, and numeric accumulation estimates along the coastline.

Comparison of both model results to in situ beach sediment measurements proved
unsuccessful, but this likely does not solely stem from issues with the modelling
assumptions. Background microplastic pollution from the Adriatic was not accounted for
in either model. Plastic debris is most probably also being introduced from beach tourism

as well as fishing and aquaculture activities within nearby lagoons. This debris degrades
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into smaller and smaller pieces over time, and can be transported further through wind
along the beach. Such processes were outside of the scope of either model. As
microplastic is transported through an aquatic environment, processes such as biofouling
and flocculation change particle characteristics, potentially causing particles to sink
faster. These processes still contain many unanswered research questions and were thus
also not accounted for in either model. Many of these processes cannot be accounted for
in the purely remote sensing methodology presented here. In the discussion of chapter 3,
model assimilation as a method to allow for incorporating the benefits of both systems
into one was discussed. In this method, remote sensing images of water parameters are
implemented to continually recalibrate the ocean model against reality. This method has
been found to greatly improve ocean current model accuracy (Stroud et al., 2009; Zhang
et al., 2014) and presents an attractive next step for microplastic modelling in front of
the Po Delta.

Direction of future research

Within this thesis, | have demonstrated how remote sensing systems can be used as a tool
to gain large scale coverage information of natural catastrophes resulting from
anthropogenic activities over both land (section I) and water (section Il). Chapter 1 shows
how a cutting-edge fire detection system provides much improved fire area estimation
and enhanced information on fire dynamics that previously possible. The SAR
methodology laid out in chapter 2 indicates great improvement in close to real-time
burned area detection. An often-cited critic of a SAR burned area methodology is that
other processes (such as logging) can be responsible for changes in surface roughness.
By combining the strengths of more accurate fire detection using the FireBird satellites
together with the independence from cloud- and smoke-conditions offered by a SAR
methodology, this critic can be addressed directly. A positively identified fire event
supports the conclusion that SAR-sensed changes in surface roughness are due to burning
processes. The FireBird mission currently flies two satellites, TET-1 and BIROS, and
plans are being discussed between international space agencies to increase that number.
The Sentinel-1 mission also currently contains two satellites and the development
contract of the next two was signed December 2015. More sensor platforms result in
further decrease in time between acquisitions, and thus offer a powerful system to
provide essential information for development of a comprehensive fire monitoring

system to address the recurrent issue of large fire disasters in Indonesia.
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Section 11 of this thesis focused upon the issue of aquatic plastic debris as it leaves a
river to enter the open ocean or become stranded along the coastline. A remote sensing
model of coastline exposure to river-based microplastic provided similar information as
an ocean current, Lagrangian tracking model of coastline accumulation. Weaknesses of
both models were identified: the remote sensing model being unable to provide numeric
accumulation rates and the ocean current model being based on river mouth dynamics
that contradicted that which was observed in the remote sensing SPM images. Model
assimilation, where remote sensing images are used to continually recalibrate ocean
current modelling in the complex nearshore environment, presents a very attractive next
step to overcome these identified weaknesses. An up to 40% improvement in modelling
accuracy of the Po River plume in the North Adriatic would prove useful to many other
research sectors outside of plastic debris monitoring, such as bottom sediment movement
models, shipping navigation or marine species dispersal patterns.

These three chapters provide remote sensing tools to address large environmental
issues resulting from anthropogenic activities. Mankind is facing a point in its history
where we have become powerful enough to influence the global environment that we
depend on for our survival. Exactly how our activities influence the environment are
some of the strongest non-military political strife topics of modern times. One thing is
for certain, millions of people, ranging from places such as South Pacific islands
disappearing under a rising ocean or hurricane ravaged coastlines along North America
or even in a German supermarket feeling unsure if it is still safe to enjoy a can of sardines,
are being forced to realize that our globe is changing and question our role in creating
this new reality. The tools presented in this thesis offer information to help better
understand some of these environmental issues. How (for the optimists) or if (for the
pessimists) mankind can use this information to improve our collective welfare remains

an open question.
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Complementary education

4th ESA Advanced Training on Ocean Remote Sensing, French Research Institute for

Exploitation of the Sea (IFREMER), Brest, France, 7-11 September 2015.

Monitoring the Oceans from Space (online course), FutureLearn, October — December

2016.
Additional qualifications
GIS software ArcGIS, QGIS, R
Remote sensing ERDAS, ENVI, SNAP, eCognition, R, ATCOR, Sen2Cor,
software ACOLITE
Programming R (very proficient), python (specifically with arcpy,
languages proficient), C (basic), Matlab (basic), Latex (basic)
Scientific SCUBA AAUS certified (2003, since then over 300 working dives),

diver NAUI recreational certifications: basic, advanced, nitrox,

rescue, dive master (2000-2003)

128

Munich, November 2, 2018

Elizabeth C. Atwood



