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One kid says to me, “See that bird? What kind of bird is that?” I said, “I haven’t the slightest
idea what kind of a bird it is.” He says, “It’s a brown-throated thrush. Your father doesn’t
teach you anything!” But it was the opposite. He had already taught me: “See that bird?” he
says. “It’s a Spencer’s warbler.” (I knew he didn’t know the real name.) “Well, in Italian, it’s
a Chutto Lapittida. In Portuguese, it’s a Bom da Peida. In Chinese, it’s a Chung-long-tah,
and in Japanese, it’s a Katano Tekeda. You can know the name of that bird in all the languages
of the world, but when you’re finished, you’ll know absolutely nothing whatever about the
bird. You’ll only know about humans in different places, and what they call the bird. So
let’s look at the bird and see what it’s doing—that’s what counts.” (I learned very early the
difference between knowing the name of something and knowing something.)

Richard Feynman
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Abstract

Silvia VITALI

Modeling of birth-death and diffusion processes in biological
complex environments.

This thesis is centered on the theory of stochastic processes and their applications
in biological systems characterized by a complex environment. Three case studies
have been modeled by the use of the three fundamental tools of stochastic processes:
the master equation (ME), the stochastic differential equation (SDE) and the partial
differential equation (PDE). The choice of an approach respect to another is deter-
mined also by the nature of the problem, i.e. the scale at which we are interested
to observe the system, micro- meso- or macro-scopic. The principal approach here
applied to deal with complexity is the characterization of the system by means of
probability distributions describing each a parameter of the model or the introduc-
tion of fractional order derivatives to include non-local and memory effects main-
taining the linearity in the equations. Different mathematical methods have been
applied to obtain analytical solutions of the three original models proposed, related
in particular to the theory of Laplace, Fourier and Mellin transform. In Chapter 1 we
briefly review the theory of stochastic processes to introduce the topics presented in
the following chapters.

Birth-death processes are fundamental in modeling of population dynamics, as
the characterization of relative species abundance (RSA) in ecology. Models derived
from ecological community studies have been also used to describe the evolution
of genomic elements, and in particular, the dynamics of transposable elements. In
Chapter 2 we derive a birth-death process master equation to test if Long Inter-
spersed Elements (LINEs) can be modeled according to the neutral theory of biodi-
versity. According to this theory, the structure of the collection of LINE subfamilies
would be the result of stochastic drift, as opposed to differences in ecological traits
between subfamilies. Our results show that although the neutral model fits well the
overall LINE distribution in humans, significant deviations from it can be observed
by stratifying LINE subfamilies by age groups. This suggests that at specific times
during the evolution of the mammalian genome multiple concurrently active LINE
subfamilies might have been in direct competition. We further investigated how
this competition could have been shaped by the LINE 5’UTR structure and by the
chromatin landscape.

Dealing with biological systems (but not only), the diffusion process is one of
the most important topics for a physicist. Brownian and anomalous diffusions are
widely observed in nature and studied by the use of both phenomenological and
founding models, the last ones trying to explain the origin of the anomaly in the sys-
tem under study. One of the key concepts when speaking about anomalous diffu-
sion is the complexity of the system itself, independently of the particular approach
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of the model in use. Biological systems are complex and stochastic systems by def-
inition at any level: from gene expression and motion of molecules inside the cell
till the ecological description of individuals and their dispersal. However, thanks to
physics, it is well known that this complexity does not arise from something that is
complex at any level. If the problem is decomposed in smaller and smaller bricks it
is possible to see that complexity arises at a meso-macroscopic scale from the same
fundamental interactions treaten by fundamental physics and that stochasticity itself
is generated by the complexity of the system observed. Following this idea, it seems
reasonable that anomalous diffusion can be read in terms of a superposition of sim-
pler processes. In Chapter 3 we derive a model of anomalous diffusion based on a
Langevin approach in which anomalous behavior arise in the asymptotic intermedi-
ate state as a consequence of the heterogeneity of the system, from the superposition
of Ornstein-Uhlenback processes.

Anomalous diffusive behavior can be also described by the fractional general-
izations of diffusion equation by the introduction of fractional derivatives. Frac-
tional derivatives are non-local integral operators that generalize the standard inte-
ger derivative, suitable to describe systems in which memory and non-local effects
are observed. In Chapter 4 we propose an extension of the cable equation, useful
to describe anomalous diffusion phenomena as the signal conduction in spiny den-
drites, by introducing a Caputo time fractional derivative. The same generalization
can be derived within the continuous time random walk framework, building the
model as a superposition of Markovian processes, each characterized by its own
timescale generated by the random geometry of the system. The same model can
be also derived from a generalized grey Brownian motion in which is introduced a
non-stationary distribution of length scales. The fundamental solutions of the most
common boundary problems are derived by the application of the Efros theorem of
Laplace transforms and written in terms of Wright special functions.
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Chapter 1

Elements of stochastic processes

Stochastic processes are at the basis of many research fields that desire a quantitative
description when the complexity of the system forbids a deterministic approach. These
fields range from economy, sociology to biology, chemistry, physics and industry problem
solving itself. Despite the theory of probability have older roots, the origin of stochas-
tic processes as we refer nowadays can be associated to the mathematical description of
Brownian motion, which connected the microscopic description of molecules dynamics
to the macroscopic theories of gas, heat conduction and fluid dynamics. In this chapter,
we try to give a brief summary of the theory of stochastic processes, and its evolution
toward the present time.

1.1 The Brownian Motion

We start recalling the theory of Brownian motion, which is deeply connected to
this thesis work. Brownian motion has been first observed and investigated by
the botanist Robert Brown in the XIX century, who was investigating the origin of
the motion of pollen grains in water. This phenomenon has been described mathe-
matically by Einstein [Ein05] and independently by Smoluchowski at the beginning
of the XX century. Despite its apparent simplicity the work of Einstein contains
as assumptions many of the fundamental concepts which will be rigorously devel-
oped years later and that will become the bases of the theory of stochastic processes
as the Chapman-Kolmogorov equation, the Fokker-Plank equation, Kramers-Moyal
expansions and so on.

The first assumption is the independence of each particle motion respect to the
others as well as the motion of the same particle at different time points until the
time interval is not too small. In this first assumption the concept of Markovianity
and all that follows from it is almost defined.

The second assumption is that in a certain fixed time interval τ the particle moves
of a certain quantity ∆ with a certain probability φ(∆) and that such probability
density does not change with time and it is the same for all the particles. This as-
sumption contains the concept of thermal equilibrium, since the frequency of the
shifts scaled by the timescale can be related to the distribution of the velocity of the
Brownian particle at thermal equilibrium, and of ergodicity, meaning that a particle
observed for enough long time is representative of all the others.

With these assumptions the fraction of particles dn that experiences a shift be-
tween ∆ and ∆ + d∆ is dn = Nφ(∆)d∆, where N is the total number of particles
in the system. We call the local concentration of particles f = f(x, t). The variation



2 Chapter 1. Elements of stochastic processes

in time of the local concentration is generated by the displacement of the particles,
weighted by the frequency of the shift, inside and outside the small volume (length)
around the point x in the time interval τ is:

f(x, t+ τ) =

∫ ∞
−∞

f(x+ ∆, t)φ(∆)d∆ . (1.1)

Expanding the Taylor series until the first order in time and the second order in
space, we obtain:

f + τ
∂f

∂t
= f

∫ ∞
−∞

φ(∆)d∆ +
∂f

∂x

∫ ∞
−∞

∆φ(∆)d∆ +
1

2

∂2f

∂x2

∫ ∞
−∞

∆2φ(∆)d∆ . (1.2)

Because of symmetry considerations over the frequency of the shifts φ(∆) the linear
term vanishes and it corresponds to diffusion equation:

∂f(x, t)

∂t
= D

∂2f(x, t)

∂x2
, (1.3)

where the diffusion coefficient is defined as D = 1
τ

∫∞
−∞

∆2

2 φ(∆)d∆. Particle concen-
tration represents the probability to find a particle per unit volume (or length in this
case), thus the last expression corresponds to a special case of what will be called the
Fokker-Planck equation.

As we will show in details in Section 3.2 Langevin introduced a mesoscopic de-
scription in phase space based on the concept of the mean field of the forces exerted
on the particle. A mesoscopic particle (∼ 100nm) moving in a viscous fluid feels
the macroscopic drag exerted by the fluid and originated by the sum of the many
microscopic interactions (mean field), but also the fluctuation generated by the hits
at the microscopic level with the molecules that compose the medium in which it is
immersed. The concept of thermal equilibrium of statistical mechanics is included
by means of the mean kinetic energy of the particle, which is related to the tem-
perature of the fluid in which is immersed. From this consideration, the powerful
fluctuation-dissipation theorem arises [Kub66]. Solving the equation for the mean
square displacement of the particle the same result obtained by Einstein is found, i.e.
linear scaling with the time of the mean square displacement (MSD), with diffusion
constant defined by particle and fluid physical characteristics:

D =
kBT

6πηa
, (1.4)

where a is the radius of the particle, η the viscosity of the fluid.
Einstein’s and Smoluchowski’s theories were verified experimentally by Perrin,

Smoluchowski himself, Svedberg and Westgren [HS17]. Following the work of Ein-
stein, Langevin, and Smoluchowski in 1914 Fokker and in 1917 Planck derived a
partial differential equation for the Langevin equation which will become the well
known and used Fokker-Planck equation, Kolmogorov and Wiener in 1930s de-
veloped the formalism for a rigorous mathematical treatment of the problem, Ito
and Stratonovich developed two different but not independent approaches to de-
fine stochastic integrals [HS17].

What we can learn from this historical example is extremely deep. First of all
the immense impact in the whole science that had the solution of a problem arose
from the observation of natural phenomena, posed by the licit curiosity of a botanist.
Secondly that over an intuition, as the ones in Einstein, Smoluchowski and Langevin
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solutions, an entire theory could be formally developed, i.e. the theory of stochastic
processes and stochastic differential equations. Third that every scientific theory
needs experimental confirmation to acquire legitimacy.

Einstein’s description in configuration space and Langevin’s approach in phase
space are reconciled by Smoluchowski in the overdamped limit, which correspond
to an infinitely long time limit, and shows that velocity and coordinate variable de-
couples allowing a satisfactory description in the configuration space only. How-
ever, it has been pointed out by [Bod+16] that anomalous diffusion can be associated
to the nonexistence of this limit, which entails long-time correlation appearance.

In this introduction, we try to give a very brief overview of stochastic processes
and their generalization to fractional models.

1.2 Brief introduction on classical methods

A stochastic process describes, in general, the probabilistic time evolution of a sys-
tem, i.e. the evolution in time of a random variable that fully describes the system
under study. For a more rigorous derivation and details we resend the reader to
[Kam81],[Gar90],[Ris89], [Fel71], [Kar19].

Consider a random variable X(t) and measure its value x1, x2, .., xn at the time
t1, t2, ..tn. The joint probability density of this observation, if it exists, is:

P (x1, t1;x2, t2; ..;xn, tn) . (1.5)

The conditional probability density of a set given another set is determined by:

P (x1, t1;x2, t2; ..;xn, tn|y1, τ1; y2, τ2; ..; ym, τm) =
P (x1, t1;x2, t2; ..;xn, tn; y1, τ1; y2, τ2; ..; ym, τm)

P (y1, τ1; y2, τ2; ..; ym, τm)
,

(1.6)
where no particular time ordering of the variables is required at this step.

If the value of a process a time t is totally independent of its values in past or
future:

P (x1, t1;x2, t2; ..;xn, tn) =
∏
i

P (xi, ti) . (1.7)

A Markov process consists in a process in which probability is conditioned only by
the most recent event. If we order the time series t1 > t2 > ... > tn > τ1 > ... > τn
we obtain:

P (x1, t1;x2, t2; ..;xn, tn|y1, τ1; y2, τ2; ..; ym, τm) = P (x1, t1;x2, t2; ..;xn, tn|y1, τ1) ,
(1.8)

through this assumption the joint probability of the first set can be rewritten as:

P (x1, t1;x2, t2; ..;xn, tn) = P (x1, t1|x2, t2)P (x2, t2|x3, t3)...P (xn−1, tn−1|xn, tn)P (xn, tn) ,
(1.9)

i.e. a Markov process is totally defined by the single state marginal probability, or
probability to observe an event B = (xj , tj) independently of the rest, and the one
point to one point probability, or the probability to observe an eventA = (xi, ti) hav-
ing observed in the past B = (xj , tj). The Chapman-Kolmogorov equation explic-
its the independence in the conditioned probability of all the possible intermediate
states for a Markov process:

P (x1, t1|x3, t3) =

∫
P (x1, t1|x2, t2)P (x2, t2|x3, t3)dx2 . (1.10)
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The master equation (ME) is an alternative form of the Chapman-Kolmogorov
equation, in which the evolution of a stochastic system is written in terms of tran-
sition probability between the possible states of the system. The probability den-
sity to observe a state P (x, t) correspond to a time dependent transition probability
Tt−t0(x|x0) from the initial state (t0 = 0) of the system to the state observed:

P (x, t) = Tt−t0(x|x0) , (1.11)

writing the time dependent transition probability in terms of transition probability
per unit time for two generic states W (x|x′), i.e. from x′ to x, and substituting this
relation in the Chapman-Kolmogorov equation it results:

∂P (x, t)

∂t
=

∫ {
W (x|x′)P (x′, t)−W (x′|x)P (x, t)

}
dx′ . (1.12)

In case of discrete states of the system ME is written in terms of a sum:

∂Pn(t)

∂t
=

∞∑
n′=0

{
Wn,n′Pn′(t)−Wn′,nPn(t)

}
, (1.13)

where Wn,n′ is the time independent transition probability from state n′ to n and
Pn(t) the probability of the system to be in the state n at time t. ME transition matrix
represent a short time transition probability and can be computed by any available
method valid for the short time.

Another fundamental property of the ME is that for many systems it can be
proven that the system reaches its stationary configuration at least in the longtime
limit. The evolution in time of a stochastic variable can be approximated by a de-
terministic law that can be derived from the ME. This corresponds to a macroscopic
law, as the drag in the Langevin equation, to which stochastic fluctuations can be
added. When the expectation value (average) of the variable is representative of the
system (linear processes), the deterministic equations can be derived by mean field
approach. A systematic approximation of ME allows separating several orders of the
internal noise in terms of a power series expansion respect to a suitable parameter
of the system. These approaches are also useful to reduce the time of computation
simulating the time-dependent evolution of a system, a similar approach has been
used to simulate LINE dynamics in Chapter 2.

A special kind of ME is the Fokker Planck equation describing diffusion pro-
cesses, which is also used to approximate more complex processes to the second
order moment of transition probability matrix. Define W (x′; r) = W (x′|x) where
r = x′ − x and expand ME in terms of a power series of r, allowed if W is sharply
peaked in r but varies slowly wit x′ and if P varies slowly with x. Each term of
the expansion will result associated to the corresponding order of the moments of
W (x′; r):

ai(x) =

∫
riW (x, r)dr . (1.14)

The truncation at the first two moment correspond to the Fokker Planck equation
with A(x) = a1(x) and B(x) = a2(x).

A special case that result particularly relevant for our purpose is:

∂P (x, t)

∂t
= − ∂

∂x
(A(x)P (x, t)) +

1

2

∂2

∂x2
(B(x)P (x, t)) , (1.15)
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also called Smoluchowski equation, with B(x) > 0. The right term can be written
as a probabilistic flux by introducing a continuity equation for probability, then we
have:

J(x, t) = A(x)P (x, t)− 1

2

∂

∂x
(B(x)P (x, t)) , (1.16)

in which we can distinguish a drift term and a fluctuation or diffusion term. When
A(t) = A0 + A1x, with A1 < 0, and B(t) = B0 the corresponding Fokker-Planck
equation describes the Ornstein Uhlenback (OU) process that will be treated more
in details in Chapter 3.

The Langevin approach is an alternative to Fokker-Planck equation, describing
the evolution of the variable through the physical macroscopic law and adding a
noise term to account statistical fluctuations, i.e. by defining a stochastic differential
equation. Langevin equation will be the basis of the model developed in Chapter
3. For this reason we leave a detailed presentation of the Langevin approach to the
dedicated Section 3.2.

Consider a generic Langevin equation:

ẋ = A(x) + C(x)L(t) , (1.17)

where L(t) is a delta correlated noise term with zero mean and variance σ.
The presence of the noise term introduces a series of challenges to formally de-

fine integrals and function transformation of the variables since the noise term is in
general strongly discontinuous. To deal with this problem the concept of stochastic
integral has been introduced:

Sn =

∫ t

0
G(t)dW (t) =

n∑
i=1

G(τi)[W (ti)−W (ti−1)] , (1.18)

where t has been divided in n intervals, dW = W (ti) − W (ti−1), is the stochas-
tic increment in the time interval associated to some white noise L(t), namely the
Wiener increment, and the function G is calculated in τi ∈ [ti−1, ti], leading to differ-
ent results depending on this choice. The two main approaches are the Ito stochas-
tic integral, for which τi = ti−1 and the Stratonovich stochastic integral, for which
τi = ti−1+ti

2 . These approach leads to different but related results, so we can pass
from a description to the other by proper variable transformation. While Ito calcu-
lus is the most natural choice from a mathematical point of view, Stranotovich results
more suitable from a physical point of view, where ordinary calculus can be applied
in the transformation of the variables.

In relation to the Fokker-Planck equation, the following relation to Langevin
equation in Eq.(1.18) exists. Computing the moments with the Stratonovich integral
the corresponding Fokker-Planck equation reads:

∂P (x, t)

∂t
= − ∂

∂x

[(
A(x) +

1

2
σC(x)

∂C(x)

∂x

)
P (x, t)

]
+

1

2

∂2

∂x2

(
C(x)2P (x, t)

)
. (1.19)

The same results can be infact obtained by transforming the variable x(t) → y =∫
dx
C(x)dxwith ordinary calculus, which is allowed by the implicit use of Stratonovich

approach, to recover a more handling form of the Langevin equation:

ẏ = A′(y) + L(t) , A′ =
A(x)

C(x)
. (1.20)
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1.3 Fractional models

Fractional models arise from the need to give a parsimonious and simple mathemati-
cal description to many anomalous behaviors observed in real systems. In particular
long-time correlation of the variable, or memory, the dependence of the observable
on the age of the system, i.e. aging, and finally the emergence of non-Gaussian distri-
butions. Last but not least the anomalous power law time scaling of the MSD, which
is often a consequence of one or more of the previous features. The three fundamen-
tal approaches used to deal with this new challenges are based on generalizations of
the same tools introduced in the previous sections: generalized ME and continuous
time random walk (CTRW), in which the sojourn time of the particle is a random
variable as well as the length of the jumps; generalizations of Langevin equation
by the introduction of colored noise and/or memory kernels; fractional generaliza-
tions of the Fokker-Planck equation. Particularly relevant for this purpose has been
the introduction of fractional calculus, in which power-law memory kernels natu-
rally arise in the integrodifferential operators, i.e. fractional derivatives and inte-
grals, from the generalization to non-integer values of the Cauchy formula [GM97].
For more rigorous mathematical treatments and details we refer to [Bal+12; KRS08;
BIHS; MLP01; Mur11; GM97]. In Chapter 3 we will show that these approaches are
not always necessary but long time correlations may arise by the superposition of
simpler processes, i.e. OU processes, without memory due to the complexity of the
system itself.

The most recurrent definition of anomalous diffusion is based on the nonlinear
time scaling of the MSD:

〈x(t)2〉 ∼ tα . (1.21)

Following this approach, we distinguish sublinear regimes, i.e. subdiffusion, ob-
served as example in disordered solids and in biological, in porous and in fractal
media; and superlinear regimes, namely superdiffusion, observed as an example
in turbulent plasma, transport in polymers and in many living organisms motion.
Between the most common models applied to describe these phenomena we recall
Levy flights and Levy walks, particular types of CTRW [ZDK15]; fractional Brown-
ian motion (fBm), which can be derived by a generalization of the Langevin equa-
tion [MP08a; Lut01]; the generalized grey Brownian motion (ggBm) [MP08b]; and
the space and/or time fractional diffusion equation [MLP01].

CTRW can be described by a generalized ME, that is defined by the introduction
in the gain-loss expression of a time dependent transition matrix K(x, x′; t− t′), rep-
resenting the probability per unit time to make a transition from x to x′ during the
time t− t′, instead of the time independent transition matrix per unit time W (x|x′):

∂P (x, t)

∂t
=

∫ t

0

∑
x′

{
K(x, x′; t− t′)P (x′, t′)−K(x′, x; t− t′)P (x, t′)

}
dx′dt′ . (1.22)

The main idea behind the CTRW is that the sojourn times, i.e. the time passed be-
tween two jumps of the particle, are i.i.d. random variables as well as the jumps
length. This characteristic generates the issue that we don’t know a priori how many
jumps the particle has performed to reach the point (x, t) starting from (x′, t′). To de-
rive the fundamental ME for CTRW is necessary to define first the conditional prob-
ability density to be in (x, t) after n + 1 steps given the initial condition (x0, t0 = 0).
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This can be derived by the recursive relation:

qn+1(x, t|x0, 0) =

∫ ∞
−∞

∫ t

0
Ψ(x− x′, t− t′)qn(x′, t′|x0, 0)dx′dt′ , (1.23)

where the conditional probability to be in (x, t) after n+ 1 steps is written as integral
form in terms of the conditional probability to be in a generic point (x′, t′) one step
before. Ψ(x− x′, t− t′) represents infact the probability to perform a jump of length
x− x′ in the time interval t− t′. Assuming independence of jump lengths x− x′ and
waiting times t− t′ random variables, the distribution Ψ(x−x′, t− t′) can be written
as the product of the two independent densities:

Ψ(x− x′, t− t′) = λ(x− x′)ψ(t− t′) . (1.24)

The total conditional probability is obtained by summation over all the possible
number of steps performed,

q(x, t|x0, 0) =
∑
n

qn(x, t|x0, 0) . (1.25)

Substituting the recursive relation and the initial conditions it results:

q(x, t|x0, 0) =

∫ ∞
−∞

∫ t

0
Ψ(x′, t′)q(x− x′, t− t′|x0, 0)dx′dt′ + δ(t)δx,x0 . (1.26)

CTRW can describe both Markovian and not Markovian processes depending on the
distribution of waiting times, however, exponential distribution is the only one lead-
ing to a Markovian process. Power law waiting time probability and jump lengths
density defined by an even function with finite moments generate fractional sub-
diffusion, which is non-Markovian and non-Gaussian. Instead exponentially dis-
tributed waiting times with Levy distributed jump lengths with power-law asymp-
totic produces the superdiffusive process Levy flights. These two last processes can
be related respectively to the time fractional and space fractional diffusion equation
fundamental solutions [MLP01].

Lévy flights process is characterized by divergent second and higher moments.
This feature is difficult to be related to experimental data because it is associated with
an infinite velocity of the particle. A solution to this issue has been the introduction
of a constant velocity v for the particles. The resulting process is the Levy walk,
widely applied in many fields of science to model anomalous transport. For an
extensive review, we refer to [ZDK15]. Since the particle remains bounded in the
ballistic cone all the moments remain finite, but long jumps still may characterize
the statistics to allow superdiffusion. The waiting times distribution before jumps,
ψ(t), becomes the waiting times distribution before changing the direction of the
motion. The frequency of velocity changes ν(x, t) is described by:

ν(x, t) =

∫ ∞
−∞

dx′
∫ t

0
φ(x′, τ)ν(x− x′, t− τ)dτ , (1.27)

where
φ(x, t) =

1

2
δ(|x| − vt)ψ(t) , (1.28)
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guarantees that particles remain confined in the ballistic cone. The probability den-
sity P (x, t) is then written:

P (x, t) =

∫ ∞
−∞

dx′
∫ t

0
Φ(x′, τ)P (x− x′, t− τ)dτ , (1.29)

where
Φ(x, τ) =

1

2
δ(|x| − vτ)Ψ(τ) , (1.30)

and Ψ(τ) is the analogous of the survival probability, i.e. the probability that the
particle does not change direction of motion in the time interval τ .

The generalized Langevin equation (GLE) describes non-Markovian and/or non-
Gaussian processes by the introduction of a colored noise ξ(t) correlated through
a dissipative memory kernel K(t), by the second fluctuation dissipation theorem
[Kub66]:

m
∂v(t)

∂t
= −

∫ t

0
K(t− t′)v(t′)dt′ + ξ(t) , (1.31)

where holds the relation:
〈ξ(t)ξ(0)〉 = kbTK(t) . (1.32)

Fractional Brownian motion is a non-Markovian Gaussian process with stationary
increments, showing anomalous time scaling of the MSD. It is defined by [JM10]
as the integral of a fractional Gaussian noise. The corresponding stochastic process
can be described through GLE [Lut01]. The white noise is then substituted by a
power law correlated noise ξH(t) characterized by zero mean, and Hurst exponent
H ∈ [0, 1]:

〈ξH(t)〉 = 0 , (1.33)

〈ξH(t)ξH(0)〉 = kbTγ(t) , (1.34)

where
γ(t) =

Dα

kbT
· t−α , α = 2H . (1.35)

Then we have:

m
dv(t)

dt
= −

∫ t

0
γ(t− t′)v(t′)dt′ + ξH(t) . (1.36)

The corresponding diffusion equation is derived substituting the diffusion coef-
ficient D with a time dependent coefficient of diffusion [Ade76]:

D(t) = kbTL−1 [sγ̃(s)]−1 = Dαt
α−1 , (1.37)

with 0 < α < 1 or 1 < α < 2.
The corresponding FPE becomes:

∂P (x, t)

∂t
= Dαt

α−1 ∂
2

∂x2
P (x, t) , (1.38)

The generalized gray Brownian motion (ggBM), or Erdély-Kober fractional dif-
fusion, [MP08b; MM09; DG+16] is a parametric class that defines Hurst self-similar
with stationary increments processes (H-SSSI), dependent over two parameters, α ∈
(0, 2), β ∈ (0, 1], which allow to describe both sub and super diffusion regimes.
ggBm can be read as a generalization of Gaussian processes since for the special



1.3. Fractional models 9

case β = 1, α ∈ (0, 2) it corresponds to fBm and then to a Gaussian process, finally
if β = α = 1 BM is retrieved. The case α = β ∈ (0, 1) corresponds to time fractional
diffusion, which marginal density probability is governed by the time-fractional dif-
fusion equation.

Self-similarity means that the process X(at) = aHX(t), where H is the Hurst
exponent. Existence of stationary increments corresponds to invariance under time
shifts transformation, X(t+ t′)−X(t).

The ggBm can be defined by the random variables product:

XH,β =
√

ΛβXH(t) , (1.39)

where the random variable Λβ is the Mainardi-Wright function Mβ(λ) with λ ≥ 0
and 0 < β ≤ 1, and the stochastic process XH is an fBM with 2H = α. The marginal
density for XH,β respect to Λ is equivalent to the integral subordination relation:

P (x, t) =

∫ ∞
0
G(x, τ)φ(τ, t)dτ , (1.40)

where G(x, τ) is a Gaussian with variance τ and φ(τ, t) = 1
2tα/2

Mβ( τ
tα/2

), then all the
moments related to this process are finite.

The evolution equation for the ggBM PDF is expressed in term of the time Erdély-
Kober fractional derivative [Pag14]:

∂P

∂t
=
α

β
tα−1Dβ−1,1−β

α/β

∂2P

∂x2
. (1.41)

The fundamental solution of Eq. (1.41) corresponds to the the integral form in Eq.
(4.52),and reads explicitly:

P (x; t) =
1

2tα/2
Mβ/2

( |x|
tα/2

)
. (1.42)

The space-time fractional diffusion is a generalization of the diffusion equation
by the introduction of Caputo time-fractional derivative and Riesz-Feller space frac-
tional derivatives:

tD
β
∗P (x; t) = xD

α
θP (x; t), −∞ < x < +∞, t ≥ 0 , (1.43)

with the real parameters are restricted to the ranges: 0 < α ≤ 2, |θ| ≤ min{α, 2− α},
0 < β ≤ 1 or 0 < β ≤ α ≤ 2. Particular cases are space fractional diffusion when β =
1 and time fractional diffusion when θ = 0, α = 2. Standard diffusion is retrieved
for β = 1 and α = 2. The fundamental solution for Eq. (1.43) [MLP01] is defined by
means of these parameters

Gθα,β(x; t) =

∫ ∞
0

Lθα(x, u)Mβ(u, t)du , (1.44)

where the Levy distribution Lθα(x, u) corresponds to the fundamental solution of
the space fractional diffusion, i.e. β = 1, while the Mainardi-Wright distribution
Mβ(u, t) is the fundamental solution of the special case θ = 0, α = 1, i.e. time frac-
tional diffusion. This integral form is often expressed through the Mellin-Barnes
integral representation or in terms of H-Fox function [MLP01; MPS05]. An alterna-
tive approach to define the stochastic process described by the symmetric space-time
fractional diffusion, i.e. θ = 0, is analogous to one applied for ggBm. The process is
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defined by the marginal density of a product of two independent random variables:

Xα,β(t) =
√

Λα/2,βG2β/α(t), 0 < β ≤ 1, 0 < α ≤ 2 , (1.45)

where G2β/α(t) is a H-SSSI Gaussian process with power law variance t2β/α and
Λα/2,β is an independent constant non-negative random variable distributed accord-

ing to the pdf K−α/2α/2,β(λ), λ ≥ 0. This stochastic process is a generalization of the
Gaussian processes fBm and Bm, and it is uniquely determined by its mean and its
autocovariance structure.

In conclusion, we may consider those operations that act on fractionalization or
stretching of the time variable introduce memory in the system and characterize
non-Markovian processes, this is done by non-Poissonian waiting times distribution
in CTRW, by colored noise in Langevin approach. Instead non-Gaussian behavior is
obtained by the introduction of the fractional component in the space variable, as a
for jumps distribution in CTRW, random length scale in ggBM. The introduction of
time and space fractional derivatives in the diffusion equation instead accounts for
both contemporary, the shape of the fundamental solution and the anomalous time
scaling of the variance (if it exists), because they act on the self-similarity properties
of the solution [MLP01].

There exists often several different approaches to describe a process, depending
on the scale we are observing the system. We may be interested in properties of
the single particle or ensemble trajectories, for which a random walk approach is
enough. We may be also interested in the dynamics of the system in which macro-
scopic forces may enter explicitly in concurrence with microscopic random fluctu-
ations for which Langevin approach is suggested. Finally, we may be interested in
the evolution of the system as an ensemble, the ME or PDE is the cheapest approach.
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Chapter 2

Ecological modeling of Long Interspersed
Elements

Birth-death processes are fundamental in modeling of population dynamics, as the char-
acterization of relative species abundance in ecology. Models derived from ecological
communities studies have been used to describe the evolution of genomic elements, and
in particular, the dynamics of transposable elements. Here we apply this approach to test
if Long Interspersed Elements can be modeled according to neutral theory of biodiver-
sity. According to this theory, the structure of the collection of LINE subfamilies would
be the result of stochastic drift, as opposed to differences in ecological traits between
subfamilies. Our results show that although the neutral model fits well the overall LINE
distribution in humans, significant deviations from it can be observed by stratifying LINE
subfamilies by age groups. This suggests that at specific times during the evolution of the
mammalian genome multiple concurrently active LINE subfamilies might have been in
direct competition. We further investigate how this competition could have been shaped
by the LINE 5’UTR structure and by the chromatin landscape.

2.1 Introduction

Birth-death processes describe phenomena in which changes in the abundances of
the players in the process are involved. These players can be chemical species and
a birth-death process may describe chemical reactions in which one or more species
change their concentration. They can also be a living being, and birth-death process
describes reproduction and death phenomena and may include competition mecha-
nisms between different species.

In general the most appropriate mathematical tool to describe a birth-death pro-
cess is the master equation, which corresponds to a more handling integral form of
the Chapman Kolmogorov equation [Gar90] in the case of Markov processes, fully
determined by the initial conditions of the system:

∂Pn(t)

∂t
=
∞∑
n′=0

{
Wn,n′Pn′(t)−Wn′,nPn(t)

}
, (2.1)

where Wn,n′ is the time independent transition probability from state n′ to n and
Pn(t) the probability to observe the system in the state n, i.e. to observe n individu-
als, at time t.
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It is not always easy to calculate the exact solution of a master equation neither
it is always necessary to write it down explicitly to derive the solution. In general
when detailed balance is satisfied, i.e. Wn,n′Pn′ = Wn′,nPn, the stationary solution of
the process can be derived and correspond to the distribution Pn. The calculation of
the time dependent solution requires more efforts, a standard tool for its derivation
is the generating function: G(s, t) =

∑
n s

n · Pn(t). Approximate (and sometimes
exact) solution can be determined by the introduction of auxiliary descriptions, as
an example by constructing the corresponding Fokker Planck equation, if allowed,
or by switching to a mesoscopic description, i.e. stochastic differential equations
(SDEs). In SDEs approach deterministic description, representing the macroscopic
laws, and random fluctuations, characterizing the stochastic nature of the process,
are independent, thus dissipation-fluctuation arguments must be introduced if the
origin of these two components in the process is the same. For details about these
standard procedures, we refer to the textbooks [Gar90; Kam81] . A more system-
atic approximation method is based on the series expansion of the master equation
treated by [Kam81] in terms of a small parameter Ω−1, if the assumption that for
large Ω jumps become small, i.e. fluctuation becomes negligible, is satisfied.

Birth-death process is not strictly defined as a diffusion process because there is
no diffusion of particles in space, however, the number of individuals can be seen as
the variable that is spanned in time by the system. If the first and second moments
of the process are finite it can be in fact described at least at first order approximation
by a Fokker Planck equation. Mapping a diffusion process described by a standard
Fokker Planck equation type in terms of a birth-death process is always possible
instead, which could be useful to derive the stationary solution if detailed balance
is satisfied. Tough it is not the case study of this Chapter, we recall for the reader
that anomalous diffusion processes with infinite variance are widely described in
the modern literature and applied to real datasets, particularly relevant the case of
Levy Flights [ZDK15].

Following the notation of [Kam81] let’s define the birth-death process:

Ṗn(t) = (E−1 − 1)gnPn(t) + (E+1 − 1)rnPn(t) , (2.2)

where E±1f(n) = f(n ± 1) − f(n) represents the Van Kampen operator for unitary
increments, this class of processes is called one-step processes. The introduction of
Van Kampen operators implicitly means that gn, rn can be eventually expressed as
functions of the variable n. For sake of convenience, we will introduce the present
topic by means of this particular case, however, it can be generalized to arbitrary
increments of size ∆, or a distribution of them.

The operators gn and rn represent the transition probabilitiesW for the birth and
death process respectively: gn = Wn+1,n, rn = Wn−1,n. If detailed balance condition
Wn,n′Pn′ −Wn′,nPn = 0 is satisfied, Pn corresponds to the stationary solution of the
master equation. For the one-step birth death process in Eq.(2.2) it corresponds to:

Pn = P0

n∏
k=1

gk−1

rk
. (2.3)

The state n = 0 is particular relevant in case of birth-death processes, because a
negative number of individuals is not meaningful. From the expression for the sta-
tionary solution, it becomes evident the role of this boundary. From detailed balance
condition it comes out that g0P0 = r1P1. If g0 = 0, i.e. there is not an external influx
of individuals in the system, and there is not a further condition over the state n = 1,
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the system presents an absorbent state zero. Detailed balance is not satisfied and
P0 = 1 is the asymptotic stationary solution: limt→∞ Pn(t) = δn,0.

2.1.1 Linear one-step one-variable birth-death process

Let’s define the master equation for the one variable linear birth-death process, which
will be the bases for the case study presented in this Chapter:

Ṗn(t) = (E−1 − 1)gnPn(t) + (E+1 − 1)rnPn(t) , (2.4)

where gn = b · n and rn = d · n. The parameters b, d represent the procapite birth
death rates respectively. This process has an absorbent state in n = 0, meaning that
the only stable stationary solution is PSn = δ0,n. Nevertheless, it can be interesting to
determine the time-dependent solution of the problem and the survival probability
of the system. The survival probability is the probability that the system does not
reach the absorbent state until time t, and it is related to the first passage problem.
For the present example the probability that the system reaches the absorbent state,
i.e. probability of extinction, is represented by P0(t). Survival probability can be
defined as Ψ(t) = 1−P0(t). The state n = 0 is a natural boundary and it is possible to
calculate the time-dependent probability for each state n = 0, 1, 2, ..with the method
of the generating function.

The generating function can be defined by the following relation:

G(s, t) =
∑
n

sn · Pn(t) , (2.5)

from which probability density can be retrieved:

Pn(t) =
1

n!

∂nG(s, t)

∂sn
|s=0 . (2.6)

The master equation in Eq.(2.2) can be rewritten as the sum of all the allowed
increments:

Ṗn(t) =
∑
k

(Ek − 1)ck(n)Pn(t) , (2.7)

that in the case of Eq.(2.4) correspond to k = ±1, where ck(n) are the correspond-
ing transition probability. By the use of this last notation the time evolution equation
for the generating functions becomes:

∂G(s, t)

∂t
=
∑
n

sn · ∂Pn(t)

∂t

=
∑
k

(s−k − 1)
∑
n

sn
ck(n)

n!

∂n

∂sn
G(s, t)|s=0 .

(2.8)

The transition probability can be expanded as ck(n) =
∑

a c
a
kn

a, considering that
nasn = (s ∂∂s)

asn, the time derivative of the generating function can be written in the
form:
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∂G(s, t)

∂t
=
∑
k

(s−k − 1)
∑
a

cak
∑
n

sn
na

n!

∂n

∂sn
G(s, t)|s=0

=
∑
k

(s−k − 1)
∑
a

cak(s
∂

∂s
)a
∑
n

sn
1

n!

∂n

∂sn
G(s, t)|s=0

=
∑
k

(s−k − 1)
∑
a

cak(s
∂

∂s
)aG(s, t) .

(2.9)

For the birth death process in Eq.(2.4) it reduces to:

∂G(s, t)

∂t
= (1− s)(d− bs)∂G(s, t)

∂s
. (2.10)

This equation can be solved by the standard method of characteristics. The char-
acteristic curves in the (s, t)-plane are determined by

− dt =
ds

(1− s)(d− bs) . (2.11)

By integration, the corresponding expressions for the characteristic curves are
calculated

C =
1− s
d− bse

−(d−b)t . (2.12)

Along any characteristic curve the variation of the considered generating func-
tion is null, then

G(s, t) = Ω(
1− s
d− bse

−(d−b)t) , (2.13)

is solution of the evolution equation for any arbitrary function Ω(C). Assuming
that the number of individuals at time zero is m > 0, the arbitrary function Ω can be
defined to fit the initial condition of the system:

G(s, 0) = sm = Ω(
1− s
d− bs) , (2.14)

substituting a fictitious variable ς = 1−s
d−bs it results Ω(ς) = (dς−1

bς−1 )m.
For a generic time ς = 1−s

d−bse
−(d−b)t the generating function of the linear birth

death process becomes:

G(s, t) =

(
d− bs+ d(s− 1)(1− e−(d−b)t)
d− bs+ b(s− 1)(1− e−(d−b)t)

)m
. (2.15)

Suppose that the population starts from m = 1 the extinction probability corre-
sponds to:

P0(t) =
1− e−(d−b)t

1− b
de
−(d−b)t , (2.16)

while

P1(t) =

(
1− b

d

)2

· e−(d−b)t(
1− b

de
−(d−b)t)2 . (2.17)
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The critical time can be defined as the time for which P0(tc) = P1(tc).

2.2 The neutral model of ecology of Volkov

Ecological theories can be roughly classified into two big groups: theories related
to niche-assembly perspective and theories related to dispersal-assembly perspec-
tive [HA04]. Niche-assembly perspective is based on the occupation of specific eco-
logical niches (space and resources) by each species in the community, the abun-
dance of the species in a community is determined by the consequent subdivision
of the resources, where each species is adapted to be the best competitor in its niche.
Dispersal-assembly theories instead are based on the idea of species turnover, their
presence or absence in a community is produced by random dispersal and stochastic
local extinction. A notable example is the theory of island biogeography in which
equilibrium is determined by a compensation of immigration and extinction events.

By this introduction, it seems that niche-assembly perspective is related to the
concept of adaptation and competition between species that is determined by the
availability of resources, while dispersal-assembly perspective is related to the ran-
dom nature of the phenomena involved and the idea that causality has a deep impact
in shaping a community.

Lotka-Volterra model of prey-predator competition is a very interesting exam-
ple. From deterministic equation associated it results that an equilibrium can be
found for the system in which the number of individuals of the competitors oscil-
lates in time leading to coexistence of the two species. The number of individuals
of a species respect to the other results in a motion over a circular or elliptical orbit.
Including fluctuations in the system and switching back to a stochastic description it
results that these orbits change in time expanding or shrinking. If by chance number
of preys will reach zero, predators will extinguish soon. Vice-versa, if predators ex-
tinguish, the number of preys will continue to increase toward infinite. Mechanism
of competition and the general behavior of the system can be predicted determinis-
tically, however, the end of the story cannot and it is strictly related to the presence
of a random component in the system.

The master equation enters as a powerful mathematical tool to describe dynam-
ical models of ecology in which stochasticity of the process is considered as the
principal explanation for the observed patterns. These processes are birth, death,
speciation, and migration of the individuals in a community. In ecology, the master
equation describes the probability to observe a species with n individuals in a com-
munity (the eco-system), i.e. the relative species abundance (RSA). Mechanisms of
competition can be included in a multivariable problem, where each variable repre-
sents the number of individuals of a species.

Neutral theories belong naturally to dispersal-assembly perspective. They are
based on the principle of species equivalence, i.e. all the species undergo the same
dynamics, thus the shape of the community is determined by the nature of the
stochastic dynamics. Neutrality is generally defined within species of the same
trophic level.

A simple but effective neutral theory of ecology is based on the introduction of an
immigration parameter in the one-step one-variable birth-death process in Eq.(2.4)
[Vol+03]. The master equation of this process reads in its expanded form:

dPn(t)

dt
= bn−1Pn−1(t) + dn+1Pn+1(t)− (bn + dn)Pn . (2.18)
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The immigration parameter Υ has been included in the birth term bn = b ·(n+Υ)
while the death rate remains dn = d · n.

The presence of the immigration term eliminates the absorbent state and detailed
balance condition holds. The stationary solution results:

Pn = P0

n−1∏
k=0

bk
dk+1

= P0

n−1∏
k=0

b · (Υ + k)

d · (k + 1)
, (2.19)

Pn represents the probability to observe a species with n individuals, the zero
class represents the probability to don’t observe a species, then to be compared with
RSA datasets the solution must be normalized cutting off the zero-class.

The stationary solution results a Negative Binomial distribution

Pn =
(1− b

d)S/b

Γ(S/b)

( bd)n

n!
Γ(n+

S

b
) =

(1− x)Υ

Γ(Υ)

(x)n

n!
Γ(n+ Υ) , (2.20)

where x = b/d.

PRSA = 〈Φn〉 = Θ
xn

n!
Γ(n+ Υ) , (2.21)

where Θ = S′

[(1−x)−Υ−1]Γ(Υ)
represents the Hubbel biodiversity parameter.

PRSA represent the RSA of a community since it is the probability to find a species
having a certain number n of individuals.

The appearance of the negative binomial distribution as stationary distribution
is particularly relevant. Negative binomial is able to resemble two typical distribu-
tion used to describe RSAs, Log-Normal and Log-Series, introduced by the works
of Fisher and Preston. Furthermore, the presence of the immigration parameter
works as a density-dependent birth parameter. Let’s define Υ = S/b, bn = n(b+ S

n ).
The presence of parameter S/n gives a possible interpretation to what is called rare
species advantage, i.e rare species have higher spreading capacity respect to the
abundant ones.

In [Vol+03] this theory has been applied to model the relations between com-
munity and metacommunity organization, in particular, applied to the two different
ecosystems of corals in the coral reefs and trees in tropical forests. For details to de-
scribe species turnover or probability of extinction of a single species we resend to
[Vol+03; Aza+06]

As shown in [TZ13] the RSA of an ecological system can be described by a sum
of many distributions to account as an example a niche partitioning, in the case that
birth-death rate and immigration are the same in all the niche, the result returns into
the previously described neutral model for meta-community [Vol+03].

2.3 The ecosystem of Transposable Elements

Discovered in maize by Barbara McClintock during 1940-1950 (Nobel Price 1983),
Transposable Elements (TEs) are also known as selfish DNA or jumping genes. They
are present in DNA of eukaryotic and prokaryotic organisms and often constitute
a large fraction of many genomes (45% of the human genome, 37% of the mouse
genome, more than the 80% in some plants like maize)[MLGP10]. Initially con-
sidered junk DNA, they are now known to play fundamental roles in the mainte-
nance of genomic diversity and in the reshaping of gene regulatory networks [KL97],
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[Fes08], [Kun+10],[Bié10],[RRM11],[Tes+12],[CO13]. Current TEs activity in humans
has been also correlated with several genetic diseases and cancer [GP12],[CB09].

TEs are defined as DNA sequences that can change their position inside the
genome through a process called transposition (or retrotransposition if the process
is RNA mediated). This process can be replicative, i.e. producing another copy that
will insert in another location in the genome (insertion), or not. The replicative pro-
cess determines the invasion of the host genome with the consequent increase of the
genome length. The proteins and all the molecular machinery necessary to trans-
position can, in principle, be autonomously produced by the TE replicating. If this
skill is missing in one element, due to mutation inside its sequence or because the
element cannot produce it at all, it is called non-autonomous but in some cases it
can still transpose using a compatible machinery produced by other elements. After
their first insertion, most of the copies lose the capacity of transposition.

A wide zoology of TE exists and a common nomenclature and phylogenetical
classification based on sequence properties has been created to join many separated
studies. TEs have been grouped into two large classes depending on their trans-
position intermediate (RNA or not). Class I TEs are characterized by reverse tran-
scription via RNA intermediate (copy and paste), similar to the retrovirus behavior.
These can be divided in many subclasses, in particular, we recall LTR (long terminal
repeated) TEs, and non-LTR TEs, LINE and SINE. Class II TEs can transpose directly
through cut and paste mechanism, that is often not replicative[MLGP10] [GP12].
Families and sub-families label smaller taxonomic differences between TEs and are
defined by phylogenetic sequence identity and because they share specific sequence
insertions, deletions or substitutions [Wic+07].

With the improvement of genomic sequencing techniques and the increase of
sequencing data comprehensive of repetitive elements, there has been a growing de-
mand for a comprehensive resource of sequence data and other basic information
about TEs. The first such resource was the widely known ’RepBase’, established in
1992 containing representative sequences and sequence fragments of 53 published
human families of interspersed repeats. Extended in the following years it was suc-
ceeded by ‘Repbase Update’ (RU) in 1997. RU, in addition to compiling known
elements, began the electronic publication of TEs unreported elsewhere [Jur00]. Fur-
thermore an electronic peer-reviewed journal was launched (http://www.girinst.org)
in the same years, still active it is updated monthly. Based on RU many server-
based routine sequence analysis have been created for researchers: ‘Pythia’, CEN-
SOR (http://www.girinst.org/censor/index.php), succeeded now by RepeatMasker
(http://repeatmasker.genome.washington.edu) [Jur00]. Raw sequences of many TE
and the informations over their insertion coordinates in the genome, similarity and
copy numbers are available in such databases and tools.

The dynamics of TEs has been modeled on the basis of their transposition and
excision (elimination from the genome) rates and their fitness effects on the host
[CL89][VFB09] in a germline. The analogy between an ecological system and trans-
posable elements has been proposed in [VFB09]. If a copy of a TE is considered as
an individual, one TE species comprises closely genetically related TE copies that
share the same interaction with their environment. The community of a genome
contains all the copies of TEs irrespective of their subfamilies, families or classes,
and it is analogous to the biotic portion of an ecosystem. The abiotic component is
composed of the genes and various kind of non-coding sequences and the intracel-
lular environment. The species richness can be defined as the number of TE species
within a genome and the relative species abundance of a TE species as the number
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of copies of that element relative to the total number of copies of all the elements
present in that genome.

In the system of TEs, we consider birth (replication), death (excision) and im-
migration (horizontal transfer and mediation in time over possible interactions) as
the random processes shaping the community. Recently the analogy between the
distribution of RSA in ecological communities and the distribution of relative abun-
dance of genetic sequences has been used to describe the dynamics of the popu-
lation of ’genetic species’ in the genome ( long terminal repeat (LTR) retrotrans-
posons, non-LTR retrotransposons, cut-and-paste DNA transposons, rolling-circle
DNA transposons, self-synthesizing DNA transposons, satellites, simple repeats,
tRNA, miRNA, snoRNA) and to test neutrality [SBD13].

The effect over the fitness of the population of TEs copy number has been con-
sidered in many models to study how TEs copies reach fixation in a population and
what kind of mechanisms shape TEs abundances [CL89], [SKR05],[DCB05], [AK06],
[LC05], [LC06], [ALC07]. In these approaches the equilibrium between selection
pressure and birth rate of TEs as well as self-regulation mechanisms are generally
considered to limit the number of insertions. Copies that reach fixation should have
a neutral or eventually positive effect on the genome [BF01]. The phenomenon of
domestication, i.e. the recruitment by the cell of some TEs to carry out tasks related
to their activity as the encoded transposition proteins or regions regulating their ex-
pression in the genome, is widely observed in nature [Vol06][RRM11].

Contrasted patterns and variation in the amount and diversity of TEs may re-
flect some organization due to host specific selection pressure, both at genomic and
population level, or be the result of stochastic forces at the level of the individual
copies. The interdependence between TEs and the host genome and the replication
mechanisms of the Elements suggest a strong parallelism between TEs dynamics in
the genome and species community dynamics in their ecosystem [VFB09],[SBD13].
Both the niche theory, based on the partitioning of resources, space and time of ac-
tion between competing species [CL03], and the neutral theory, in which stochastic
mechanisms as demographic stochasticity, migration, and speciation are the most
important forces shaping the community [HA04], have features suitable to describe
the TEs ecosystem. Despite that, TEs ecosystem contains some peculiarities that dif-
ferentiate it from standard ecosystems [VFB09]. TEs create and continuously shape
their own environment because death copies, i.e. TE copies that lose any transposi-
tion ability, are the major part of the genomic landscape in which new copies may
insert without deleterious effect on the cell functionalities. The selection at the level
of the host induces TEs to evolve traits that constitute a selective disadvantage at the
individual level, as for example a lower transposition rate [HB04][ALC07]. Mecha-
nisms related to the molecular nature of TEs may occur.

Long Interspersed Elements (LINEs) are the most abundant class of TEs in mam-
mals. They belong to the retroelements class, i.e. their replication is RNA mediated,
as will be discussed later. Although some elements are still active in genomes with
a potentially high impact, the number of active copies is very small compared to the
population of inactive elements. In humans only L1Hs LINE Element is currently
active, [al.01],[Wei+01],[MPC15]. Here we focus on the modeling of LINEs genomic
distribution under the hypothesis of competitive neutrality [Lin+15], i.e. the absence
of competitive differences among different types of entity. It means that all the copies
of all elements in the community (the host genome) are characterized by the same
transposition activity, sequence divergence, death rate [VFB09].

LINEs ecosystem in mammals results particularly suitable to be described un-
der the neutral hypothesis. LINEs evolved often on a single lineage, in particular in
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Primates [KSB06], with a subsequent appearance of active Elements, making com-
petition between different Elements negligible. Coexistence of multiple L1 fami-
lies or lineages is documented for ancient LINEs [Smi+95] and currently in mouse
[MH01], where L1 frequently recruited novel 5’UTR sequences [SaB13], suggesting
that simultaneous activity of non-homologous promoters does not introduce a com-
petition between the elements. The genomic environment is unique to each of the
TEs copy. Full-length L1 copies may differ randomly in their level of transposition
activity [Bro+03],[Sel+06], and random processes at the individual level strongly im-
pact the structure of the entire community. This stochasticity supports the neutral
approach to describe the community dynamics.

LINEs retro-transposition

LINEs replication is RNA mediated. Full-length elements contain a pro-
moter region (5’UTR), two protein coding regions (ORF1, ORF2) and a poly-A
tail (3’UTR). The internal promoter allows a retrotransposon to generate au-
tonomous duplicate copies at multiple locations in the genome. RNA poly-
merase II-mediated transcription of a genomic locus from an internal pro-
moter that directs transcription initiation at the 5’ boundary of the element.
The produced RNA is exported to the cytoplasm, in which ORF1 (which en-
codes an RNA-binding protein) and ORF2 (which encodes a protein with en-
donuclease and reverse-transcriptase activities) are translated. Both proteins
show a strong cis-preference; consequently, they preferentially associate with
the RNA transcript that encoded them to produce a ribonucleoprotein (RNP)
particle. After coming back into the nucleus the proteins on RNA can open
a nick in DNA and produce a DNA copy of the template through a process
termed target-primed reverse transcription (TPRT). The resulting new inser-
tion is a low fidelity copy of the parent LINE element with frequent 5’ trunca-
tions, often losing replication capacity.

We start our analysis by developing the most parsimonious model of neutrality
to which deviation from neutrality can be added and test their predictions on ge-
nomic data. We modeled the way LINEs populated mammalian genomes over the
course of evolution as a birth-death process of two interacting species: full-length
(active) and incomplete (inactive) LINE copies. The number of active and inactive
copies of one Element in the host genome is represented by nA and nI respectively.
Active copies can generate new active LINEs by retrotransposition at a rate equal
to bAnA (birth process of active copies). Over the course of time, mutations and the
host selection pressure inactivate active copies at a rate equal to dAnA (death process
of active copies). Some transposition events are incomplete such that the inserted
copy is incapable of autonomous retrotransposition; for example, L1 insertions are
often 5’-truncated (e.g. Figure 6B of [Cri+14]). We refer to the rate at which this
process occurs as bInA. Furthermore, a transcribed incomplete copy can hijack the
retrotransposition machinery of autonomous copies to duplicate in a new location, a
process called trans-complementation that can occur at a rate equal to bAInAnI . This
phenomenon has been observed, for example, in LINE-1 retroElements, although it
should happen at a much smaller rate than retrotransposition in cis [Wei+01]. Then,
the birth rate of incomplete copies is given by (bAI + dA+bI

nI
)nAnI (birth process of
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inactive copies). The host selection may also prevent the fixation of copies that af-
fect negatively its fitness reducing this rate. Finally, when many mutations accu-
mulate, inactivated copies cannot be distinguished from random background ge-
nomic sequences and they essentially disappear from the genome. This can also oc-
cur through excision of large genomic regions as well as structural rearrangements.
we refer to this process as the death rate of the incomplete copies dI . This birth-
death stochastic process can be described via the following two-dimensional master
equation by using the step operators E±f(n) = f(n± 1) [Kam81]:

dP (nA, nI , t)

dt
= (E−nA − 1)bAnAP (nA, nI , t) + (E+

nA
E−nI − 1)dAnAP (nA, nI , t)

+ (E−nI − 1)bInAP (nA, nI , t) + (E−nI − 1)bAInAnIP (nA, nI , t)

+ (E+
nI
− 1)dInIP (nA, nI , t) ,

(2.22)

where the lower index in the step operator indicates the variable within the prob-
ability distribution on which the operator acts. Each term in the sum on the right-
hand side of Eq.(2.23) models one of the biological processes described abundance
in the ecosystem under study. The asymptotic stationary solution P (nI) represents
the RSA (PRSA) of the system, i.e. the probability to observe a species with a certain
number of individuals in a community.

When equilibrium is reached for both active and inactive copies for enough long
time the stationary solution for the RSA is a negative binomial distribution. In fact,
taking nA as a constant the equation for nI reduces to the neutral model of ecol-
ogy described in [Vol+03]. A special case of the model is obtained when excision
and trans-complementation processes are neglected. In the case that equilibrium for
active species does not hold (bA << dA) the asymptotic solution PRSA is again a
negative binomial distribution when the absorbent state for active copies is reached,
with the notable difference that expected values of the parameters is different from
the previous case. If trans-complementation does not produce a relevant contribu-
tion and the system is out of equilibrium the RSA is described by a negative bino-
mial distribution with a number of failure parameter of order one (Υ ∼ 1). Instead,
if the trans-complementation process is relevant the number of failures should be
about Υ ∼ (bI + dA)/bAI >> 1, much larger then one because up to literature trans-
complementation events should be rarer than retrotransposition events in cis.

Negative binomial distribution is able to resemble two typical distribution used
to describe RSAs in ecology: Log-Normal and Log-Series, widely discussed in ecol-
ogy [HA04]. The distribution is normalized to one after removing the probability
to observe zero individuals (the unobserved species). Mathematical details of the
derivation and numerical simulations can be found in the Section 2.4.

We proposed competition between two Elements activated by the same promoter
region as a stochastic process which may determine a deviation from the expected
distribution, generating a bimodal behavior described by a mixture of negative bi-
nomials. The probability Ppoly of a single polymerase to act on two LINE species
activated by the same promoter region with n1 and n2 number of active copies
respectively, is rescaled by the fraction of active copies belonging to that specie:
Ppoly,1 = Ppoly

n1
n1+n2

, and vice-versa. The transposition rates bA, bI and bAI , result
to be rescaled as well by the same factor. Lower birth rate parameters will result
in a lower copy number of LINEs in competition respect to Elements with full rate
available. Neutrality hypothesis is maintained because all LINEs species are equiv-
alent in the model, the accidental activation by the same promoter region introduces
a disadvantage for the species that compete for the molecular machinery, breaking
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temporarily the neutral assumption, until the extinction by chance of one of the com-
petitors. The distribution arising from competition is a mixture of two negative bi-
nomials, where the mixture coefficient is related to the probability that two Elements
compete.

We will show that the neutral model proposed is able to describe the general
trend of the RSA in the 42 Mammalian genomes considered. However, the mixture
model results more attractive to describe LINEs community because allows distin-
guishing host species belonging to different taxonomic orders. Furthermore, the
hypothesis of competition between promoters has been supported by the evidence
that rare LINEs active in the same age presents a higher level of similarity in the
5’UTR respect to the other Elements. By knowledge of the order of activity of many
Elements [Gio+07], the evolution of the RSA through a sliding window method is
also studied. It results that both in Primates that in Murinides a transition can be
observed at the time of radiation. Chromatin state characterization of LINEs copies
in human and mouse has also been considered. It will be shown that in human a
gradual transition to less abundant Elements is observed while in mouse two well-
separated cluster can be identified, one of them associated with LINEs active since
the murine radiation.

2.4 The model

According to what is explained in the previous section we can model the birth and
death stochastic process via the following two-dimensional master equation:

dP (nA, nI , t)

dt
= (E−nA − 1)bAnAP (nA, nI , t) + (E+

nA
E−nI − 1)dAnAP (nA, nI , t)

+ (E−nI − 1)bInAP (nA, nI , t) + (E−nI − 1)bAInAnIP (nA, nI , t)

+ (E+
nI
− 1)dInIP (nA, nI , t) ,

(2.23)

where the lower index in the step operator indicates the variable within the proba-
bility distribution on which the operator acts. Despite that inactive element dynam-
ics is conditioned by the presence of some active copies, their copy number is not
time-correlated because number of active copies will perform a random walk until
extinction while inactive copies accumulate in the genome. Hence we can apply the
mean field approach (see Appendix A for details) to derive the following determinis-
tic equations from Eq.(2.23):{ dnA

dt = bA · nA − dA · nA
dnI
dt = (bI + dA) · nA + bAI · nA · nI − dI · nI

(2.24)

Active copies are described by a pure birth-death process with absorbing state
nA = 0, while inactive copies undergo a birth-death process with an external influx
S = (bI + dA) · nA.

The dynamics of active copies and inactive copies happen at different timescales.
Respect to defective copies, active copies have higher probability to be expressed
in the genome (bA � bAI ), they are more sensitive to mutations, which may lead
to inactivation, and they are more subjected to host selection pressure and defense
mechanisms, like silencing, (dA � dI )[BF01].

Mean field nA is expected to converge to the absorbent slowly because LINEs
can persist in genomes for millions of years [AK06], generating relatively constant
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numbers of new insertions over time. Assuming equilibrium between new inser-
tions and host defenses, dnAdt ≈ 0, the two differential equations can be reduced to
the second one, that take the form:

dnI
dt

= b · nI − d · nI + S , (2.25)

where b = bAInA and d = dI are constant birth and death rates respectively, and
S = (bI + dA)nA can be seen as a constant external influx. The stationary solution
P (nI) of the corresponding master equation considered in [Vol+03] is a negative
binomial and represent the RSA of the ecosystem as shown in Eq.(2.21).

This approach allows a simple and straightforward interpretation of the param-
eters involved in the dynamics however it is necessary to stress a few aspects. The
time variable involved in the equation does not represent an absolute time but con-
tains a common time scale for the eco-genome-system under study. Defective copy
and active copy are in competition for the molecular machinery, then take the param-
eters bAI , bA, bI equal to constants means a perfect cis-preference of the active copies,
which are always able to maintain their machinery for their own with the same rate.
This assumption can be relaxed introducing a competition of the Michaelis-Menten
kind with a weight to mime cis-preference.

The driving process behind the dynamics until trans-complementation becomes
relevant is an accumulation of Poisson type with an expectation value of the order
of the time passed by each state of the active element (T (nA = 1, 2, ...∞)) multiplied
by the rate of birth of defective copies ((bI +dA)nA). The key point to distinguish the
pure influx model from the birth-death with influx model in Eq.(2.25) is the assump-
tion dnA

dt ≈ 0, in order to leave the system on for enough time to reach the stationary
state. The derivation of the analytical solution of the time-dependent most general
process is not straightforward, however numerical simulation can be performed to
check the asymptotic solution to be a negative binomial for some interesting set of
parameters. The study of the time-dependent evolution of the system is beyond the
scope of the present work since we are interested in the characterization of the RSA,
composed by the population of extinct LINEs, and then described by the asymptotic
solution by definition.

The survival probability p(τ) of the active population correspond to the survival
probability of a pure birth-death model, and can then be find in most of standard
textbooks of stochastic processes as example [Kam81].

For the initial state nA(t = 0) = 1 it reads :

p(τ) = 1− 1− e(dA−bA)τ

1− (bA/dA)e(dA−bA)τ
. (2.26)

In the limit of bA << dA the survival probability is approximated by an expo-
nential. This corresponds to a Gamma distribution with unitary shape parameter
(Υ ∼ 1). The expectation number of insertions after extinctions for a pure accu-
mulation process (inactive copies does not replicate themselves or die) can be then
approximated to a Gamma-Poisson distribution, i.e. a Negative Binomial distribu-
tion.

In conclusion, if trans-complementation does not produce a relevant contribu-
tion we expect to observe an RSA following a negative binomial distribution with
a number of failure parameter of order one. This is not the case of the distribution
arising from Eq.2.25 since the number of failures corresponds to the influx parame-
ter, which should be much larger than one because trans-complementation is much
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rarer than regular retrotransposition events (bI >> bAI ).

2.4.1 Mechanism of competition

Consider two LINE species activated by the same promoter region with n1 and n2

number of active copies respectively. The probability Ppoly of a single polymerase
to act on one of the two species in competition, starting the process of transposi-
tion, is rescaled by the fraction of active copies belonging to that species: Ppoly,1 =
Ppoly

n1
n1+n2

, and vice-versa. The transposition rates, bA, bI and bAI , result to be
rescaled by the same factor n1

n1+n2
< 1, determining an asymmetric disadvantage

for the two competing species, if n1 6= n2 when competition starts.
Neutrality assumption is maintained at the bases. When two elements in com-

petition compare occasionally, this mechanism acts directly on the birth rate param-
eters, breaking naturally neutrality assumption. Single lineage and frequent change
of promoter is favored because both species involved are penalized by the compe-
tition, and a new arising species is penalized as much as possible if the other is yet
abundant. After the extinction of the competitor, the winner returns to have the
whole availability of the protein and possibly became abundant.

At the light of these considerations, we expect to distinguish two distributions,
one containing the losers or (rare species) of the competition and information about
the competition process, and one containing the winners (or abundant species) which
is expected to be comparable with the neutral one.

2.4.2 Numerical simulations of the model

To test if the dynamical model can generate a negative binomial type distribution
beyond the given assumption we performed numerical simulations. We used Gille-
spie algorithm [Gil76] for the active copies dynamics, for the inactive copies dy-
namics, we used the tau-leap algorithm [Gil01] in the case of a pure accumulation
process and a hybrid algorithm to simulate the dynamics of inactive copies with
trans-complementation. An hybrid algorithm instead of a Gillespie was chosen to
reduce the time of computation, it consists in the estimation of the expected num-
ber of inactive copies by ODE numerical integration to estimate the expected birth
and death rates in that time interval, and use a tau-leap algorithm to generate the
increment associated to that interval. Oracle comparison to the theoretically correct
Gillespie algorithm was performed (Fig. 2.1).

We generated LINE ecosystems according to the model proposed starting from
a single active copy for each Element. Competition between different elements has
been also introduced according to the model previously described and compared
with the neutral one. In all the simulations performed in red are shown the occupa-
tion states of the active copies and in green the expected number of inactive copies
in the last time step before the extinction of active copies. If the green lines don’t
converge to the same value it means that equilibrium is not reached in the inactive
copies dynamics. The cumulative of the distribution obtained have been qualita-
tively compared with the LINE one in H. sapiens.

We see that when bA << dA (Fig. 2.2) we obtain an RSA compatible with a nega-
tive binomial as expected. In the other case we have bA ' dA (Fig. 2.3) and deviations
from negative binomial distribution are significant. Despite the asymptotic behavior
is a negative binomial when the number of elements is low we may observe fluctu-
ation that can be interpreted as a mixture.
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FIGURE 2.1: Example of oracle comparison of the hybrid algorithm
with the Gillespiel algorithm.

In Fig. 2.4 we simulated the presence of competition for the promoter, a low
probability of arising of competitors is used. At each time step of the simulation a
competitor may arise with the defined probability, species that live longer have a
higher probability to find a competitor but they result advantaged because with a
higher probability their active copies are more than one.

The deviation introduced is not enough to generate bimodality if the competition
starts in a symmetric configuration, we may consider that a competition of this kind
can become relevant when the competing species arises while the other is already
abundant, suppressing the rise of new elements.

2.5 Data sources

LINE abundances were calculated using RepeatMasker annotation
(http://www.repeatmasker.org) for human genome build hg19 and 45 other Mam-
malian species. LINE consensus sequences were downloaded from RepBase [Jur00;
Jur+05] (http://www.girinst.org). Only a subset of the LINE consensus sequences
contain the 5’ UTR, noted in the RepBase associated report, which were selected
for the analysis of LINE 5’ UTR sequence. Chronological ordering of LINEs in hu-
man, Chimpanzee, Rhesus Macaque, mouse and rat was derived from Giordano et
al. [Gio+07]. Chromatin structure data available for mouse [Yue+14] and human
[EK10] were used to assign genomic copies of LINEs to open and closed chromatin
states by knowledge of their coordinates in the reference genome. In the cited ref-
erences chromatin structure assignment was conducted using ENCODE chromatin
models using the ChromHMM method [EK12].

2.6 ABC method implementation and discrimination between
the models proposed

Approximate Bayesian Computation (ABC) is a useful method to find the distribu-
tion of optimized parameters of the tested model and to check directly the validity
of a model respect to another. For each designed model M , priors are assigned to
the parameters of the model. About 5 million simulations are performed in which
a set of parameters θ̃ is extracted from the priors, defining M(θ̃). A dataset is then
built from the defined distribution and compared with the real data, after that θ̃ is
accepted or rejected. The ensemble of accepted θ̃ constitute the posterior of the pa-
rameters. Rejection is done fixing a maximum accepted distance ε between real data
distribution and the simulated one.
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FIGURE 2.2: upper panels: bA, dA, bI , bAI , dI = 0.0, 0.00005, 0.5, 0, 0;
middle panels: bA, dA, bI , bAI , dI = 0.0, 0.00005, 0.5, 0.0, 0.1; lower

panel: bA, dA, bI , bAI , dI = 0.0, 0.00005, 0.5, 0.099, 0.1.
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FIGURE 2.3: upper panels: bA, dA, bI , bAI , dI =
0.001, 0.0011, 0.09, 0, 0; middle panels: bA, dA, bI , bAI , dI =
0.001, 0.0011, 0.09, 0, 0.001; lower panels bA, dA, bI , bAI , dI =

0.001, 0.0011, 0.09, 0.0005, 0.001.
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FIGURE 2.4: Simulations of competition in accumulation model.
Simulation of RSA of size of 104 elements. Simulation of a process
with b = 0.0001, d = 0.0011. At each step of the simulation with
a Gillespiel algorithm a competitor may arise with p = 0.25. The
resulting distribution have means around 10 and 8 log2 of the counts

respectively.
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To define efficient but general priors a preliminary procedure has been performed:
very wide priors are defined and a new prior is built from the union of the posteriors
of all the species tested. In this way the space of parameters is restricted to the most
useful part, saving a lot of computation effort. Then a sampling is done and distri-
bution of optimized parameters is defined for each sample tested. The rejection is
defined by the value of two sample chi square significance , samples with χs > 0.5
are rejected, and by a threshold (0.3) of the absolute difference between the number
of elements in each class n with population 2n. This additional score reduces the
average of the chi square significance to lower values.

The probability of the model given the data is:

P (M |D) = P (D|M)P (M) , (2.27)

in ABC P (D|M) can be approximated by the ration of the number of successes
(number of accepted θ̃) over the number of tentatives.

Then the ratio probability of a model respect to another is:

P (M1|D)

P (M2|D)
= B1,2

P (M1)

P (M1)
, (2.28)

whereB1,2 is approximated by the ratio of positives over tentatives of each model.
The computational cost of ABC method could be relevant, in particular the sam-

pling of the populations per each parameters. The strategy chosen is to collect and
save a large sample of the populations (& 106), each of them generated given a set
of parameters from very wide priors. Then this sample is compared to each RSA
of LINEs elements of the host genome under study, following the ABC procedure
explained previously. The parameters from the priors that pass the test will form the
posteriors. This procedure is repeated a second time generating a new prior from
the union of the posteriors for all the RSA under study. This hierarchical procedure
reduces the space of parameters to the most useful part, enhancing the probability
to get good parameters in the second ABC step. It is interesting that 4 more species,
i.e. Wallaby, Tasmania Devil, Opossum and Platypus, get zero parameters from the
same priors used for the other 42 Mammals. These organisms have in fact a much
lower number of LINE species in their genomes, which could affect the score results,
furthermore they lie quite distant in the phylogenetic tree respect to all the others.
For this reason they have been excluded in the rest of the analysis.

2.7 Results and discussion

The RSA of LINEs in 46 Mammals genomes have been fit by a negative binomial and
a mixture of negative binomial through approximate Bayesian computation method
(ABC) to test neutral and competition models respectively, mean parameters shown
in Tables 2.1, 2.2 and 2.3. From the same priors we described 42 datasets, with the
notable exception of Wallaby, Tasmania devil, Opossum and Platypus, which are the
most isolated species of the group from an evolutive point of view.
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sampleID mean n p chis pos/tot

Alpaca 7.59·103 0.47 6.46·10−5 2.45·10−2 0.0350
Armadillo 8.19·103 0.37 4.72·10−5 5.74·10−2 0.0109

Baboon 6.83·103 0.63 9.53·10−5 9.01·10−2 0.0538
Bushbaby 6.02·103 0.49 8.62·10−5 7.52·10−2 0.1524

Cat 8.18·103 0.44 5.62·10−5 2.19·10−2 0.1116
Chimpanzee 7.41·103 0.65 9.05·10−5 8.74·10−2 0.0385

Cow 7.30·103 0.47 6.75·10−5 4.98·10−2 0.0534
Dog 7.91·103 0.44 5.85·10−5 2.74·10−2 0.0614

Dolphin 7.41·103 0.65 9.05·10−5 8.74·10−2 0.0385
Elephant 8.10·103 0.32 4.20·10−5 1.90·10−2 0.0056

Ferret 7.28·103 0.44 6.39·10−5 1.72·10−2 0.0558
Gibbon 6.86·103 0.62 9.38·10−5 7.42·10−2 0.0490
Gorilla 7.03·103 0.65 9.57·10−5 7.69·10−2 0.0598

Guineapig 8.35·103 0.59 7.29·10−5 1.15·10−2 0.0172
Hedgehog 5.18·103 0.42 8.80·10−5 5.11·10−3 0.0272

Horse 8.83·103 0.55 6.42·10−5 1.34·10−2 0.0006
Human 7.70·103 0.59 7.93·10−5 4.48·10−2 0.0451

Kangaroorat 4.71·103 0.46 1.04·10−4 1.19·10−2 0.0067
Manatee 7.63·103 0.38 5.26·10−5 3.03·10−2 0.0053

Marmoset 6.99·103 0.53 7.95·10−5 7.03·10−2 0.0562
Megabat 7.01·103 0.46 6.87·10−5 6.19·10−3 0.0169
Microbat 6.71·103 0.45 7.11·10−5 1.42·10−2 0.0177
Mouse 6.25·103 0.45 7.47·10−5 5.16·10−2 0.0166

Mouselemur 5.38·103 0.42 8.23·10−5 8.78·10−2 0.0028
Nakedmole-rat 7.50·103 0.49 6.84·10−5 2.54·10−2 0.0110

Orangutan 9.13·103 0.69 7.73·10−5 2.81·10−2 0.0143
Panda 8.24·103 0.39 4.94·10−5 1.26·10−2 0.0016

Pig 7.75·103 0.48 6.49·10−5 3.31·10−2 0.1152
Pika 4.66·103 0.50 1.13·10−4 5.33·10−3 0.0077

Rabbit 7.72·103 0.52 7.02·10−5 6.91·10−3 0.0309
Rat 6.39·103 0.42 6.78·10−5 5.73·10−2 0.0042

RhesuSrheMac3 6.82·103 0.64 9.70·10−5 6.50·10−2 0.0576
RockhyraXproCap1 7.30·103 0.37 5.36·10−5 9.19·10−3 0.0093

SheePoviAri1 4.60·103 0.43 1.05·10−4 4.51·10−2 0.0014
Shrew 5.07·103 0.44 9.34·10−5 6.83·10−3 0.0103
Sloth 8.21·103 0.30 3.89·10−5 1.35·10−2 0.0021

Squirrel 7.16·103 0.52 7.54·10−5 1.97·10−2 0.1219
Squirrelmonkey 6.15·103 0.58 9.86·10−5 1.26·10−1 0.0834

Tarsier 7.34·103 0.51 7.29·10−5 3.82·10−2 0.0623
Tenrec 5.11·103 0.40 8.26·10−5 9.50·10−3 0.0043

Treeshrew 6.80·103 0.50 7.80·10−5 8.26·10−3 0.0173
Whiterhinocero 7.60·103 0.53 7.25·10−5 2.13·10−2 0.0505

TABLE 2.1: Mean parameters obtained by the ABC method fitting the
neutral model.
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TABLE 2.2: Mean parameters obtained by the ABC method fitting the
mixture model part-1.
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TABLE 2.3: Mean parameters obtained by the ABC method fitting the
mixture model part-2.
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FIGURE 2.5: ABC results of neutral model fit of Human
RSA.Comparison of the expected values from the mean parameters
obtained with the ABC (black) to the Preston plot of the RSA and
to the expected values obtained by non-linear least squares method
(blue) on the same histogram(left panel);heat map of the posteriors of
the parameters (right panel), log2 mean value (x axes), influx values

(y axes).

FIGURE 2.6: ABC results of neutral model fit of Mouse
RSA.Comparison of the expected values from the mean parameters
obtained with the ABC (black) to the Preston plot of the RSA and
to the expected values obtained by non-linear least squares method
(blue) on the same histogram(left panel);heat map of the posteriors of
the parameters (right panel), log2 mean value (x axes), influx values

(y axes).

Human and mouse results are shown in Fig. 2.5, 2.6, 2.7 and 2.8.
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FIGURE 2.7: ABC results of mixture model fit of Human
RSA.Comparison of the expected values from the mean parameters
obtained with the ABC (black) to the Preston plot of the RSA and
to the expected values obtained by non-linear least squares method
(blue) on the same histogram(left panel);heat map of the posteriors of
the parameters of the abund elements(center panel), heat map of the
posteriors of the parameters of the rare elements(right panel), log2

mean value (x axes), influx values (y axes).

The probability of the model given the data is P (M |D) = P (D|M)P (M). In ABC
P (D|M) can be approximated by the ration of the number of successes (number of
accepted θ̃) over the number of tentatives for each model. The ABC model selection
score is approximated to the ratio of fraction of successes for the two models because
the a priori probability for the two models is defined equal. For the majority of the
organisms under study the ABC model selection score was comparable for the two
models tested.

Parameters associated to the mixture of two negative binomials allow to sepa-
rate the Host Specie at level of their taxonomic Order, while the pure neutral model
does not produce a good separation, as can be seen in Fig. 2.9. We show here only
the most populated Orders (n > 2). ABC method already penalizes the model with
higher number of parameters because phase-space is larger. Thus the mixture model
is preferred respect the neutral one to describe data. In particular the couples of
parameters Υ1,Υ2 and x1, x2 seems a good representation to discriminate the host
organisms in different taxonomic Orders. Within our description such couples of
parameters are related by the value of the disadvantage due to competition. The
values of the Υ1,Υ2 parameters, all of order one, indicates that a pure accumula-
tion process seems a more suitable model. Despite transcomplementation may take
place, up to this description it is not a very relevant process in shaping the RSA of
the community.

Transposons activity deeply contributes to shaping genomes, thus LINEs abun-
dance could be a good indicator for phylogeny in Mammals where this family is
particularly abundant. This can be noticed clustering in a heat map TEs abundances
in different organisms (results not shown). For this reason it is not straightforward
to determine if the better performance of a mixture model is due to the true existence
of a competition or if a mixture of distribution better describe fluctuations in the RSA
that have been inherited by common ancestors. If competition took place, when it
happened and which Elements were involved? To answer this question data avail-
able from [Gio+07] have been used to order LINE Elements by their age of activity
in human, Chimpanzee, Rhesus Macaque, mouse and rat genomes.

The list has been subdivided into time intervals (windows) containing a fixed
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FIGURE 2.8: ABC results of mixture model fit of Mouse
RSA.Comparison of the expected values from the mean parameters
obtained with the ABC (black) to the Preston plot of the RSA and
to the expected values obtained by non-linear least squares method
(blue) on the same histogram(left panel);heat map of the posteriors of
the parameters of the abund elements(center panel), heat map of the
posteriors of the parameters of the rare elements(right panel), log2

mean value (x axes), influx values (y axes).

number of Elements. The number of Elements in the sliding window can be arbi-
trarily chosen, here we show results for N = 15, which is a compromise between a
zoom in the action period and number of elements included in the ecosystem, for
analysis purposes. Each window represents a picture of the RSA in a different evo-
lution stage. This time dependent ecosystem has been tested respect to the neutral
model and the mixture model with the same ABC method and same prior distri-
butions. It results that in the primates under study neutrality is violated between
the 40-65 interval of the rank, where the mixing coefficient of the mixture model is
higher, and ABC model selection score suggest that a more complex description is
suitable (Fig. 2.10). Similar results can be find for mouse and rat in Fig. 2.11, where
a preference for the mixture model is maintained in all ancient LINEs. The trend for
the birth-death ratio and the influx parameters are reported in Fig. 2.12,2.13.

A transition in time to different expectation values can be identified both for pri-
mates that for mouse and rat in Fig. 2.14, where the parameters of the negative bi-
nomial distributions describing the sliding windows RSA are shown. The reported
couples of parameters are correlated by construction by the mean of the distribu-
tion, which represents the expectation value of LINE copy number in that time. In
primates a transition to a lower average copy number is observed while in rat and
mouse to a larger copy number. This transition can be observed in the pure neutral
model as well as in the mixture model in the component describing the Elements
with high copy number. The group associated to rare Elements results much more
noisy, with parameters much less correlated. The transition is more evident in the
mixture description, for this reason again a mixture model seems more suitable to
describe the system.

To check if LINEs abundances follow phylogeny we clustered hierarchically the
abundance of the Elements that should be involved in competition in human over
the datasets considered (Fig. 2.15). The separation between rare and abundant Ele-
ments is maintained across all mammals included in this study, with the exception of
the White Rhinoceros, which shows the opposite trend. Furthermore species results
mostly clustered by their taxonomic orders.

To test the hypothesis that competition is caused by similarity in the promoter
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FIGURE 2.9: Fit of the RSA of LINEs with a mixture model clusters
different Mammalian Orders. The set of optimized parameters ob-
tained by fitting a mixture model of two negative binomials on 42
mammalian LINE RSAs are able to separate the most represented
Taxonomic Orders: Υ1 respect to Υ2 and 1 − x1 respect to 1 − x2
respectively (upper panels). The couple of parameters for each of the
two negative binomials (middle panels) allows as well a separation of
different Orders, in particular in the case of the parameters describ-
ing the abundant group Υ1, 1 − x1. The parameters describing the
pure neutral model (lower panel) do not clearly discriminate differ-
ent Orders, however a trend similar to the couple of parameters of

the abundant group of the mixture is observed.
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FIGURE 2.10: Statistical comparison of a mixture model of two neg-
ative binomials with respect to the neutral model of [Vol+03] dur-
ing the evolution of the genome ecosystem in three Primates. Data
available from [Gio+07] have been used to rank order LINE Elements
by their age of activity in Homo Sapiens, Chimpanzee and Rhesus
Macaque genomes. The rank has been subdivided into intervals con-
taining a fixed number of contiguous Elements (N = 15), each inter-
val has been used as a sample ecosystem to fit both the neutral model
and the mixture model. (a) The ABC model selection approach was
used to compare the goodness of fit between the two models. The
ABC model selection approach shows that a mixture model provides
a better fit between rank positions 40 and 65 of the time ordered age of
LINEs ("non-neutral time interval"). (b) Estimation of the mixture co-
efficient a during evolution. This coefficient represents the proportion
of species associated to the regime in the mixture model, described
by the negative binomial with a lower mean (i.e. LINE subfamilies
with fewer Elements in the genome). When a is higher, it indicates
the presence of a non negligible group of rare LINE species. (c) The
percentage of LINE copies inserted in euchromatic regions displays a
decreasing trend with time ordered age in human. (d) The copy num-
ber of LINE (euchromatin and heterochromatin insertions) displays a

decreasing trend with time order as well.
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FIGURE 2.11: Statistical comparison of a mixture model of two neg-
ative binomials with respect to the neutral model of [Vol+03] dur-
ing the evolution of the genome ecosystem in mouse and rat. Data
available from [Gio+07] have been used to rank order LINE Elements
by their age of activity in Mouse and Rat genomes. The rank has been
subdivided into intervals containing a fixed number of contiguous El-
ements (N = 15), each interval has been used as a sample ecosystem
to fit both the neutral model and the mixture model. (a) The ABC
model selection approach was used to compare the goodness of fit
between the two models. The ABC model selection approach shows
that a mixture model provides a better fit in the ancient Elements of
the time ordered age of LINEs ("non-neutral time interval"). (b) Es-
timation of the mixture coefficient a during evolution. This coeffi-
cient represents the proportion of species associated to the regime in
the mixture model, described by the negative binomial with a lower
mean (i.e. LINE subfamilies with fewer Elements in the genome).
When a is higher, it indicates the presence of a non negligible group
of rare LINE species. (c) The percentage of LINE copies inserted in
euchromatic regions displays a decreasing trend with time ordered
age in human. (d) The copy number of LINE (euchromatin and het-
erochromatin insertions) displays a decreasing trend with time order

as well.
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FIGURE 2.12: Evolution of estimated parameters for the neu-
tral [Vol+03] and the mixture model [TZ13] in three Primates
(Homo S., Chimpanzee, Rhesus M.) using a ABC method method (
https://pymc-devs.github.io/pymc/ ). (a) Birth-death rate parameter
evolution, x = b/d, obtained for the neutral model; (b) Constant in-
flux parameter evolution, Υ = S/b, obtained for the neutral model;
(c) Birth-death rate parameter evolution, x = b/d, obtained for the
rare species regime in the mixture model; (d) Constant influx param-
eter evolution, Υ = S/b, obtained for the rare species regime in the
mixture model; (e) Birth-death rate parameter evolution, x = b/d, ob-
tained for the common species regime in the mixture model; (f) Con-
stant influx parameter evolution, Υ = S/b, obtained for the common

species regime in the mixture model.
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FIGURE 2.13: Evolution of estimated parameters for the neutral
[Vol+03] and the mixture model [TZ13] in mouse and rat using
a ABC method. The analogous analysis reported in Fig. 2.12
for Primates has been performed for two Rodents (mouse, rat), for
which data were available. (a) Birth-death rate parameter evolution,
x = b/d, obtained for the neutral model; (b) Constant influx param-
eter evolution, Υ = S/b, obtained for the neutral model; (c) Birth-
death rate parameter evolution, x = b/d, obtained for the rare species
regime in the mixture model; (d) Constant influx parameter evolu-
tion, Υ = S/b, obtained for the rare species regime in the mixture
model; (e) Birth-death rate parameter evolution, x = b/d, obtained
for the common species regime in the mixture model; (f) Constant in-
flux parameter evolution, Υ = S/b, obtained for the common species
regime in the mixture model; (g) Estimation of the mixture coeffi-
cient a during evolution. This coefficient represents the proportion
of species associated to the second regime in the mixture model, de-
scribed by the second negative binomial (rare species); (h) Compari-
son of Bayesian Information Criteria (BIC) of the neutral and mixture

models.
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FIGURE 2.14: Space of parameters of LINEs evolution in a pri-
mates and murinides shows evidences of radiation events. The
space of parameters describing sliding window ecosystem of LINEs
in human, chimpanzee, rhesus macaque (left panels) and mouse, rat
(right panels) is shown. x and Υ parameters are correlated by the
expected value (mean) of the distribution. Upper panels refer to the
neutral model, middle panels refer to the group of the mixture model
with highest copy number, lower panels refer to the group of rare
Elements of the mixture model. Black circles indicated the most re-
cent Elements, associated to Primate and Murinide radiation. It can
be noted that two groups can be distinguished and it leads to a lower
average copy number for primates and to higher average copy num-
ber for murinides. This is reflected in the distribution of copies in
chromatine states, but in the case of human this transition is not sig-
nificant as for mouse. As for the discrimination of host species in
different taxonomic Orders, a mixture model seems more efficient to
isolate the different dynamics. The group of rare Elements behave
as a noise for the ecosystem and then does not produce significant

informations to distinguish the two dynamics.
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Artiodactyla Alpaca
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Rodentia Mouse
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Proboscidea Elephant
Sirenia Manatee
Xenarthra Armadillo
Pilosa Sloth
Hyracoidea RockhyraXproCap1
Afrosoricida Tenrec
Perissodactyla WhiterhinoceroScerSim1

FIGURE 2.15: Cluster species abundances in 46 mammalian ref-
erence genomes for LINEs in the non-neutral time interval. The
separation between abundant species (red) and rare species (blue) is
maintained across all mammals included in this study, with the no-
table exception of the White Rhinoceros, which shows an opposite

trend.
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region, We aligned pairwise the available consensus sequences of the 5’UTR in Rep-
Base using ClustalW2 and we calculated the distance between each couple. 5’UTR
regions have been selected for a subset of Elements present in the human genome
with a well characterized 5’UTR sequence, and compared to all the other sequences
available. Significant similarity between 5’UTRs is observed for the following high
and low copy numbers pairs: L1M2-L1M2c, L1MA9-L1M3b and L1M2-L1M3DE
(Fig. 2.16).

Transposons activity should deeply affect the whole structure of the genome.
This may be partially quantified by chromatine state occupation of LINEs copies.
Using chromatin state assignments in human [EK10] and mouse [Yue+14] genomes,
and the coordinates of the respective TEs insertions from Repbase , we assigned
to each LINEs copy a chromatin state, distinguishing between insertions in open
and closed chromatin states, currently known as euchromatin and heterochromatin
respectively. New insertions fixate in the germ line, then We refer to the state as-
signment in embryonic stem cell. Multiply assignment of TEs insertions to chro-
matin states has been treated classifying the combination of states into open, weakly
open and closed chromatin, depending if the states identified belong mainly to one
of these groups. Weakly open chromatin population has been added one time to
open chromatin and after to closed chromatin and we found that this choice did
not change significantly our results. Unknown state has been included into closed
chromatin group.

The average percentage of LINE copies inserted in euchromatic regions in the
sliding window displays a decreasing trend with time ordered age in human (Fig. 2.10)
and mouse (Fig. 2.11). However, in humans it also shows a clear peak within the neu-
tral time interval. The average percentage of copies in euchromatic regions is bigger
for the windows with higher average copy number respect to the one with low copy
number in human and in ancient Elements in mouse. The presence of a higher frac-
tion of rare species within the non-neutral time interval results then in agreement
with the lower average percentage of insertions in euchromatin observed.

This relation is clarified considering the correlation between the number of in-
sertions in euchromatin and the number of insertions in heterochromatin (Fig. 2.17).
The linear correlation between the logarithm of the counts corresponds to a correla-
tion of power law type between the raw counts (any age assignment is considered):

log2(NEu) = c · log2(NHet) + c0 ± ε , (2.29)

NEu = 2c0±εN c
Het , (2.30)

in human we have c = 1.18, c0 = −4.58 and ε = 0.035, which correspond to the
standard error in the estimate. The correlation coefficient is r = 0.96 and the p-value
p ∼ 10−55. The superlinear correlation between the two quantity leads to the inter-
esting result that an higher abundance, i.e. sum of euchromatin and heterochromatin
contributions, is related to an higher percentage of insertion in euchromatin states.
The average trend of Elements abundance in time result in fact slightly decreasing
as well. We suggest that the decreasing trend can be caused by the host selection
pressure which on average select less invasive transposons.

In Fig. 2.11 we observed in mouse genome a plateau in the percentage of euchro-
matin insertions followed by decreasing. However the average abundance drasti-
cally increases at a certain point. This correspond to a transition to a different value
of the coefficient c0 in the correlation plot for mouse as can be seen in Fig. 2.17.
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L1M2c* L1M3de*
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FIGURE 2.16: 5’UTR similarity between competing LINE retro-
transposons in human. In [KSB06] is suggested that different L1
Elements may coexist without competing if the 5’UTR is different,
while a specie will overcome the others if the 5’UTR are very similar
and might compete for the same factors. (a) The available consensus
sequences of the 5’UTR of LINEs in the human genome have been
aligned pairwise, with ClustalW2. (b) In several cases, the minimum
distance is achieved between couple of Elements with similar ages
and having high and low copy number respectively. 5’UTR regions
have been selected for a subset of Elements with a well character-
ized 5’UTR sequence, and compared to all the other sequences avail-
able; the distance statistics and the label of the most similar sequences
are reported in the plot. Significant similarity between 5’UTRs is ob-
served for the following high and low copy numbers pairs: L1M2-

L1M2c, L1MA9-L1M3b and L1M2-L1M3DE.
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For ancient LINE species the correlation between the number of insertions in eu-
chromatin and the number of insertions in heterochromatin is compatible with the
one observed in human, for more recent Elements instead we observe a quite well
separated cluster, which can be evidenced by PCA, associated to lower c0 value.
Given the same number of insertion in euchromatin states, a lower value for c0 cor-
responds to a larger abundance and consequently to a lower percentage of insertions
in euchromatin. The most present LINE family at the beginning of this transition is
Lx, the amplification of Lx in the genomes is coincident with murine radiation ac-
cording to [PVF] and [Fur+94], in fact the other Elements characterizing this group
are mainly mouse and murine specific. This evidence supports the idea of evolutive
adaptation of both the host and Elements.

It is interesting how this considerations are supported by observation of the time
dependent RSA distribution. In mouse we expect to observe some transition in the
RSA distribution, which indeed is observed in Fig. 2.14. Instead we recall that in
primates a transition is observed but to lower average copy number. This could be
the reason why chromatine states distribution in human is not affected significantly,
since further silencing mechanisms where not necessary to preserve the host fitness.

Wewant to stress at this point that mechanism of competition proposed is inde-
pendent of the chromatine state distribution of the Element copies, but act at the
level of the Elements affecting their abundances. Instead chromatin state of the in-
sertions should reflect the interaction of the Element with the host, by mechanisms of
silencing and self regulation, affecting the whole dynamics of the Element. At least
in the case of Murine family a change in transposon dynamics can be associated to
evolutive radiation phenomena. Finally, the concept of neutrality we propose, that
is that all Elements have the same birth death rates, can be relaxed rescaling the time
by a constant the rates can properly adjusted if Elements are active mainly one by
one. In conclusion we may consider that equilibrium between host and Elements
does not hold and they possibly contribute as one of the driving forces to evolution
processes. Furthermore competition with a stochastic origin introduces deviations
from the neutrality proposed between the Elements and support the introduction of
variation in Elements sequences. Our model approximation of the RSA allows to
identify evolutive transition both in primates that in mouse and rat. Then it results
a very interesting approach with promising applications in future studies.
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FIGURE 2.17: Non linear correlation between number of insertion
in euchromatin and heterochromatin states shows host genome
adaptation mechanism. Scatter plot in log2 scale of the number of
insertions in euchromatin respect that in heterochromatin for each
LINE specie in human (left panels) and mouse (right panels). The
number of insertions in euchromatin and heterochromatin states re-
sult correlated by a power law with exponent ∼ 1.2 (upper panels).
The number of insertions in euchromatin and heterochromatin states
result correlated by a power law with exponent. The group of most
recent Elements (in red) is well separated from the others both in Hu-
man and Mouse by PCA (middle panels). This is much more evident

when age variable is included in PCA (lower panels).
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Chapter 3

Langevin approach to generate anomalous
transport in complex environment

In this Chapter we will show that anomalous diffusion can be described in terms of a
superposition of classical diffusion processes within a Langevin approach. In this repre-
sentation the complexity of the system does not arise from the complexity of the process
itself, but from the heterogeneity of the parameters characterizing the process. A suitable
system where to apply this approach is a heterogeneous ensemble of Brownian particles
that differ in their mass and radius. The stochastic dynamical equation of the center of
mass of this ensemble is derived accordingly to three statistically equivalent approaches:
the superposition of Langevin equations, the generalized grey Brownian motion, and a
Langevin-type equation. The case of a test-particle immersed in a heterogeneous sur-
round is studied for modeling anomalous diffusion in biological systems. We analytically
and numerically demonstrated that with proper populations of masses and of frictions,
fractional diffusion emerges.

3.1 Introduction

The very rich dynamics of biosystem movements have been attracting the interest
of many researchers in the field of statistical physics and complexity for its inherent
temporal and spatial multi-scale character. Further, new techniques allowed to track
the motion of large biomolecule in the cell with great temporal and spatial accuracy,
both in vivo and in vitro [HF13; Reg+13; MGP15]. Two main transport mechanisms
were identified: (i) passive motion, determined by the cytoplasm crowding and (ii)
active transport, given by the presence of molecular motors carrying biomolecules
along filaments and microtubules (cytoskeleton) [TN+04; GC06; Jav+14; CGE00].
Diffusion processes have been used to describe many biological phenomena such
as molecular motion through cellular membrane [Wei+11; Jav+13; Kra+16; MJC16],
DNA motility within cellular nucleus [Jav+14], chromosome dynamics and motility
on fractal DNA globules [Tam+15], motion of mRNA molecules in Escherichia coli
bacteria [GC06] and of lipid granules in yeast cells [TN+04].

Standard or normal diffusive (Brownian) motion is uniquely described by the
Wiener process [Ris89] and is associated with a Gaussian Probability Density Func-
tion (PDF) of displacements and linear time dependence of the Mean Square Dis-
placement (MSD). However, biosystems’ diffusion is often non-standard, with non-
Gaussian PDF of displacements non-linear time dependence of MSD.
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Anomalous diffusion behavior can be associated with the polydispersity of the
system, when classical thermodynamics holds and space and time correlations "do
not play a major role", or by long-range spatiotemporal correlations with even "anoma-
lous" thermodynamics [GC04; BG90; MK00]. Several models and interpretations
were proposed in the recent literature [Bur+11; HF13; Met+14; MGP15]. Widely
investigated models of anomalous diffusion are Continuous Time Random Walk
(CTRW) and Fractional Brownian Motion (FBM). Many authors compared these
models with each other and with data, essentially finding some features to be sat-
isfied by the CTRW (weak ergodicity breaking and aging) [He+08; Bur+11; Jeo+11]
and other ones by the FBM (e.g., the p-variation index [Mag+09; KBG11; Bur+12]).
Despite the efforts of many research groups, an exhaustive model explaining all the
statistical features of experimental data does not yet exist and the research is re-
cently focusing on alternative approaches, such as Heterogeneous Diffusivity Pro-
cesses (HDPs) [CCM13; Mas+14; CS14; CM16].

In this framework, we here propose a modeling approach to anomalous diffu-
sion based on the concept of grey Brownian motion introduced by Schneider [SW89;
SAL92] 1 , and later by the generalized grey Brownian Motion (ggBM) [Mur11;
MTM08; MP08b; MM09; PMM12; PMM13].

This is essentially equivalent to have a fluctuating diffusivity, thus giving a pos-
sible stochastic interpretation of HDPs. When the amplitude PDF is the Mainardi
distribution [MMP10; Pag13; Pag14], the gBM-PDF P (x, t) solves the Time Frac-
tional Diffusion Equation (TFDE) [Gor+02a; Gor+02b; MLP01]. The ggBM general-
izes grey noise by considering the FBM BH(t) as fundamental solution for constant
amplitude [BMN68] and correspond to the stochastic solution of the Erdelyi-Kober
Fractional Diffusion Equation (EKFDE) [Pag12]. A further extension of the ggBM is
given by the process introduced by Pagnini and Paradisi in [PP16], where the ampli-
tude distribution is generalized to a combination of Lévy distributions by imposing
the ggBM-PDF to be compatible with the Space-Time Fractional Diffusion Equation
(STFDE) [Gor+02a; Gor+02b; MLP01].

A crucial aspect of ggBM is that single trajectories are driven by a Gaussian pro-
cess with stationary increments, then it is not necessarily related to standard or frac-
tional Brownian motion, and that it is also suitable to describe nonstationary and
aging behaviors. The potential applications of ggBM to biological transport were re-
cently discussed in [MG+16], where the ggBM was investigated by means of several
statistical indices commonly used in the analysis of particle tracking data, showing

1The Schneider grey noise is defined by the measure µα that satisfy in the space of tempered func-
tions S′(R) on R [SAL92]: ∫

S′(R)

ei〈ω,ξ〉dµα(ω) = Eα(−‖ξ‖2α) (3.1)

where Eα(·) =
∑∞
k=0

(·)k
Γ(αn+1)

, with 0 < α < 1, is the Mittag Leffer function, representing the char-
acteristic function of the variable defined by the measure. The Mittag Leffer function is the natural
generalization of the exponential function, as well as the M-Wright distribution can be considered a
generalization of the Gaussian distribution. In the limit α = 1 the grey noise reduces to the white
noise, losing the long time correlation, as the Mittag Leffer reduces to the exponential function. The
generalized grey noise is defined by the expression [MP08b]:∫

S′(R)

ei〈ω,ξ〉dµα,β(ω) = Eα(−‖ξ‖2β) (3.2)

which describes grey noise for the particular combination of parameters α = β. The diffusion process
associated is the generalized grey Brownian motion introduced in Chapter 1, that corresponds to grey
Brownian motion in the case α = β.
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that ggBM approach qualitatively accounts for the weak ergodicity breaking and ag-
ing (CTRW) and, at the same time, for the p-variation test (FBM) characterizing the
dataset. However, the physical interpretation of ggBM approach based on the Gaus-
sian noise is not completely clear. Further, potential applications to transport in a
viscous fluid needs to include at least the effect of viscosity.

To this goal, in this Chapter, we describe the development of a model similar to
the original ggBM, the complexity of the medium is described by proper random
fluctuations of the parameters in the Langevin equation (friction or relaxation time,
diffusivity or noise intensity), thus allowing to get anomalous diffusion from a su-
perposition of simpler process, i.e. the Ornstein-Uhlenback (OU) process.

In the considered system, anomalous diffusion is caused by the heterogeneity
of the mesoscopic surround, which is responsible for long-range correlations, and it
is displayed during an intermediate asymptotic transient regime in the Barenblatt’s
sense [Bar79] requiring an underdamped (white noise) Langevin approach within
the classical thermodynamics framework.

In Section 3.2 the basis and some useful details of the classical Langevin approach
are recalled.

In Section 3.3 the motion of the center of mass of a system composed of non-
identical Brownian particles that differ in their density (mass-to-volume ratio), let’s
call it heterogeneous ensemble of Brownian particles, is studied. The study of the cen-
ter of mass allows for estimating the average concentration and the momentum of
inertia of the ensemble by computing the mean and the mean square displacement,
respectively.

In Section 3.4 is presented the diffusion of a test-particle coupled to the meso-
scopic surround defined by this heterogeneous ensemble, which can be applied to
understand and model anomalous diffusion phenomena.

In Section 3.5 we present the details of the randomized Langevin model for su-
perdiffusion simply based on the free motion of Brownian particles in a complex
viscous medium, and subdiffusion based on the insertion of a harmonic potential in
the system.

In Section 3.6 we show a few examples of the numerical simulations that have
been performed to check the validity of the approach.

3.2 The Langevin equation

The Langevin equation has been introduced by Langevin a short time after Einstein’s
work to describe the Brownian dynamics. The particle motion is defined in terms
of stochastic equations on the basis of thermal energy considerations with the in-
troduction of phenomenological stochastic forces. This description turns out to be
"infinitely more simple" respect to other approaches, as considered by Einstein him-
self. Let’s recall the bases of the Langevin approach, for which we refer to the classic
textbooks [Kam81], [Gar90], [Ris89], that will result useful in the derivation of the
model details later.

3.2.1 The standard Ornstein-Uhlenbeck process

A free Brownian particle in a viscous medium can be described by the classical
Langevin equation, where the velocity evolution is driven by an Ornstein-Uhlenbeck
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(OU) process.

m
dV

dt
(t) = −γV (t) + Γξ(t) , (3.3)

where ξ(t) is a Gaussian white noise, Γ the noise intensity, m the particle inertial
mass and γ = 6πνr the friction coefficient given by the Stokes law, determined by
fluid viscosity ν and particle radius r. Here we limit to the one-dimensional OU
process, but the equations are easily generalized to the three-dimensional case. The
white noise ξ(t) is defined by the following conditions:

〈ξ(t)〉 = 0 ; 〈ξ(t)ξ(t′)〉 = δ(t− t′) . (3.4)

being 〈·〉 the notation for the Gibbs ensemble average. The Gaussianity of the process
is defined by introducing the stochastic integral of the white noise ξ(t) (see, e.g.,
[Kam81]):

W (t, τ) =

∫ t+τ

t
ξ(t′)dt′ . (3.5)

W (t, τ) is defined to be a Wiener stochastic process when the increments dW (t, dt) =
W (t+ dt)−W (t) = dW (dt) with mean and variance given by:

〈dW (dt)〉 = 0 ; 〈dW 2(dt)〉 = dt . (3.6)

As usual, the above equation for the acceleration is completed by the kinematic re-
lation between velocity V (t) and position X(t). The particle system is then fully
described by the random vector (X(t), V (t)):

dX
dt (t) = V (t)

dV
dt (t) = −V (t)

τc
+
√

2DV ξ(t)

(3.7)

The particle dynamics is characterized by the velocity diffusivity coefficient DV

and the relaxation time scale τc:

DV =
Γ2

2m2
; τc =

m

γ
. (3.8)

The formal solution for the OU process V (t) in the Langevin equation (3.7) is
given by:

V (t) = e−(t−t0)/τc

[
v0 +

√
2DV

∫ t

t0

dt′e(t′−t0)/τcξ(t′)
]
, (3.9)

where v0 = V (t0). The corresponding velocity autocorrelation function (VACF)
reads:

Cv(t1, t2) = 〈V (t1)V (t2)〉 =
(
〈v2

0〉 −DV τc
)
e−(t1+t2−2t0)/τc +DV τce

−|t1−t2|/τc . (3.10)

The equilibrium state is reached in the long-time regime: t1, t2 � τc. In this case,
the exponential term with the sum of times t1+t2 becomes negligible, while the term
with the time lag t1 − t2 remains different from zero for small time lags even when
t1 and t2 become large. The equilibrium VACF then reduces to:

Rou(t = |t1 − t2|) = DV τce
−t/τc . (3.11)
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From the above equations, and especially from Eq. (3.11), it is clear that, for the
OU process, the relaxation time scale τc = m/γ, related to both particle inertial mass
and friction, also characterizes the exponential decay of the VACF.

3.2.2 The classical Langevin oscillator

The classical Langevin oscillator describes the motion of a Brownian particle which
diffuses under the influence of an external harmonic force, F (x) = −kx. Where x
represents the displacement of the particle respect to its equilibrium position and the
constant k is the strength of the harmonic force. The associated Langevin equation
reads

m
dV

dt
(t) = −γV (t)−mω2

0X(t) + Γξ(t) , (3.12)

where V (t), X(t) and m represent respectively the velocity, the displacement
and the mass of the Brownian particle, γ = m/τc is the friction of the medium,
ω0 =

√
k/m is the characteristic frequency of the oscillation and Γ is the amplitude

of the white Gaussian noise ξ(t).
We rewrite the equation in term of the relaxation time τc, the coefficient of diffu-

sion of velocity DV = Γ2/(2m)

dX

dt
(t) = V (t)

dV

dt
(t) = − 1

τc
V (t)− ω2

0X(t) +
√

2DV ξ(t) ,
(3.13)

The formal solution of this equation can be obtained through its Fourier trans-
form

−iωx(ω) = v(ω)

−iωv(ω) = − 1

τc
v(ω)− ω2

0x(ω) +
√

2DV ξ(ω) ,
(3.14)

so we have that

x(ω) =

√
2DV ξ(ω)

ω2
0 − ω2 − iω/τc

, (3.15)

and

v(ω) =
−i√2DV ωξ(ω)

ω2
0 − ω2 − iω/τc

, (3.16)

the time-dependent variablesX(t) and V (t) can be obtained by Fourier inversion
of these expressions. Analogously, thanks to the properties of Fourier transforms the
correlation function of velocity at equilibrium , R(τ = |t − t′|), can be calculated as
the inverse Fourier transform of its spectral density, defined as the modulus squared
of the Fourier transformed variable, |v(ω)|2 = Sv(ω). So we have
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R(t) =
1

2π

∫ ∞
−∞

e−iωtSv(ω)dω

=
1

2π

∫ ∞
−∞

e−iωt
( −i√2DV ωξ(ω)

ω2
0 − ω2 − iω/τc

)( −i√2DV ωξ(ω)

ω2
0 − ω2 − iω/τc

)∗
dω

=
1

2π

∫ ∞
−∞

e−iωt
( −i√2DV ωξ(ω)

ω2
0 − ω2 − iω/τc

)(
i
√

2DV ωξ(ω)

ω2
0 − ω2 + iω/τc

)
dω

=
1

2π

∫ ∞
−∞

e−iωt
(

2DV ω
2Sξ(ω)

(ω2
0 − ω2)2 + (ω/τc)2

)
dω ,

(3.17)

which can be solved with the residue theorem considering the poles ω = ±(ω1 +
i/(2τc)), with ω1 =

√
ω2

0 − 1/(4τ2
c ). Finally, the correlation function reads

R(t) = DV τce
− t

2τc

[
cos(ω1t)−

1

2ω1τc
sin(ω1t)

]
, (3.18)

where two regimes must be distinguished. The underdamped regime is charac-
terized by ω0 > 1/(2τc), corresponding to oscillating correlation function, the over-
damped regime is characterized by 0 < ω0 < 1/(2τc) and it is non-periodic. In the
limit case ω0 = 0 we re-obtain the correlation function for a free particle.

3.2.3 Normal diffusion and Einstein-Smoluchowsky relations

By integrating the kinematic equation for the X variable, making the square and the
ensemble average of both terms in the equality, we get the general expression:

σ2
x(t) = 〈(X(t)−X0)2〉 =

∫ t

t0

dt′
∫ t

t0

dt′′Cv(t′, t′′) . (3.19)

When the system is in the stationary, equilibrium state, the above formula reduces
to:

σ2
x(t) =

∫ t

t0

dt′
∫ t

t0

dt′′R(|t′ − t′′|) = 2

∫ t

0
(t− s)R(s) ds , (3.20)

or, equivalently:
dσ2

x(t)

dt
= 2

∫ t

0
dsR(s) . (3.21)

These expressions were firstly studied by Taylor in 1921 [Tay22], which implicitly
formulated the following theorem for the normal diffusion process (OU process).

Given the stationary correlation function R(t) in Eq. 3.11, the correlation time
scale is defined by:

τ =

∫ ∞
0

R(s)

R(0)
ds , R(0) = σ2

v,eq , (3.22)

where τ ≡ τc in the case of the classic Langevin equation. Then, the following crucial
assumption:

0 6= τ < +∞ (3.23)

always determines the emergence of normal diffusion in the long-time regime:

t� τ ⇒ σ2
x(t) = 2DX t ; DX := lim

t→+∞
dσ2

x

dt
(t) = DV τ

2
c = σ2

v,eq τc , (3.24)
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independently from the details of the micro-dynamics.
DX is the long-time spatial diffusivity of the Brownian particle:

DX =
Γ2τ2

c

2m2
, (3.25)

When Maxwell-Boltzmann equilibrium holds we get the Einstein-Smoluchowsky
relation:

DX =
kT

m
τc =

kT

6πνr
. (3.26)

In the case of the harmonic oscillator Eq.(3.22) is equal to zero because the mean
square displacement is confined in space by the harmonic potential and in the long-
time limit it reaches a plateau

σ2
x(t) =

2kT

mω2
0

, (3.27)

so that

DX := lim
t→+∞

dσ2
x

dt
(t) = 0 . (3.28)

3.2.4 Fokker-Planck equation and probability distributions

The solution for the OU process V (t) is described by means of the conditional prob-
ability density function (PDF)G1|1(x, v; t|x0, v0, t0). This conditional PDFG1|1 is also
the fundamental solution of the following Fokker-Planck equation (or forward Kol-
mogorov equation) [Kam81]:

∂G1|1
∂t

− 1

τc

∂(v G1|1)

∂v
= DV

∂2G1|1
∂v2

, (3.29)

where τc and DV are given by Eq. (3.8).
Given the Cauchy problem with initial condition:

G1|1(v, t0|v0, t0) = δ(v − v0) , (3.30)

and boundary conditions G1|1(|v| → ∞, t|v0, t0) = 0, the fundamental solution of
Eq. (3.29) is given by:

G1|1(v, t|v0, t0) =
1√

2πσ2
v(t)

exp

{
−(v − 〈v〉(t))2

2σ2
v(t)

}
, (3.31)

〈v〉(t|v0, t0) = v0e
−(t−t0)/τc , (3.32)

σ2
v(t|v0, t0) = 〈(v − 〈v〉(t))〉(t|v0, t0) = DV τc

(
1− e−2(t−t0)/τc

)
, (3.33)

It is easy to see that a long-time equilibrium distribution emerges after a initial tran-
sient, whose duration is of the order of some units of the relaxation time scale τc.
The stationary, equilibrium solution for the OU process is rigorously defined by the
limit t→ +∞ of Eq. (3.33), and it becomes effective in the time range t� τc:

Geq(v) =
1√

2πDV τc
exp

{
− v2

2DV τc

}
. (3.34)
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We have the following relationships:

σ2
v,eq = 〈(v −mv)

2〉eq = DV τc =
Γ2τc
2m2

=
Γ2

2mγ
, (3.35)

beingmv = 〈v〉eq, where the subscript eq indicates that the average is computed with
the equilibrium PDF. The average velocity mv is zero if there are no external forcing
determining a mean drift velocity.

The velocity distribution of a one-dimensional ideal gas in thermodynamical
equilibrium is given by the well-known Maxwell-Boltzmann velocity distribution:

peq(v) =

√
m

2πkT
exp

{
−mv

2

2kT

}
, (3.36)

being k and T the Boltzmann constant and temperature, respectively. Comparing
(3.34) and (3.36) we get the particular case of the relations (3.35) for the Maxwell-
Boltzmann case:

σ2
v,eq =

kT

m
. (3.37)

This relationship makes evident that friction and velocity diffusivity are related to
each other through the thermodynamical internal energy of the gas, i.e., the mean
kinetic energy of the atoms or molecules in the gas, with important consequences
over the process dynamics as the fluctuation-dissipation theorem:

Γ2

2mγ
=
kT

m
. (3.38)

The amplitude of the noise is then related to the internal energy and to the drag by
the relation Γ2 = 2kTγ. Fluctuation dissipation theorem is treaten in details by Kubo
[Kub66] for classic Langevin and generalized Langevin equation (GLE), physically
this relationship arises because the frictional force and the random driving force of
the motion have the same origin: the random impacts of the moving particle with
the surround.

3.3 Heterogeneous ensemble of Brownian particles

Let κ = 1, . . . , N label the particles of the ensemble and let mκ be the mass of the
κ-particle, then position and velocity of the centre of mass are:

xCM =
∑ mκ

M
xκ , vCM =

∑ mκ

M
uκ , (3.39)

with uκ = dxκ/dt and M =
∑
mκ, and the dynamics is given by

M
dvCM

dt
=
∑

mκ du
κ

dt
=
∑

F κ . (3.40)

Let us introduce capitol letters to denote the stochastic variables, then the stochas-
tic dynamics of the centre of mass is

dXCM = VCMdt , (3.41a)

dVCM =
∑ mκ

M
dUκ , (3.41b)
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and the motion of any Brownian κ-particle of the ensemble is governed by the
Langevin equation

dXκ = Uκdt , (3.42a)

dUκ = −U
κ

τκ
dt+

√
2DV,κ dW

κ , (3.42b)

where dW κ is a Wiener process with zero mean and variance dt, γκ the friction coef-
ficient per unit mass corresponding to the κ-particle and

√
2DV,κ is the strength of

the noise provided by the microscopic scales of the surround and then experienced
by the mesoscale Brownian particle:

1

τκ
=

6πνrκ
mκ

, DV,κ =
kT

τκmκ
. (3.43)

We remind that the friction coefficient is given by the Stokes law γκ = 6πνrκ

where ν is the viscosity of the medium (identically experienced by the mesoscale
Brownian particles) and rκ the radius of the κ-Brownian particle.

By integration of (3.41) through (3.42), stochastic position and velocity of the
centre of mass are

XCM =
∑ mκ

M
Xκ , VCM =

∑ mκ

M
Uκ . (3.44)

Consider

Xκ =
√
DV,κX

κ
0 , Uκ =

√
DV,κ U

κ
0 , (3.45a)

and from (3.42) it holds

dXκ
0 = Uκ0 dt , (3.46a)

dUκ0 = −U
κ
0

τκ
dt+

√
2 dW κ . (3.46b)

Hence the motion of the centre of mass results to be statistically described also by
the stochastic process

dXCM = VCMdt , (3.47a)

dVCM =
∑ mκ

M

√
DV,κ dU

κ
0 =

∑ √
kTγκ

M
dUκ0 . (3.47b)

Particle density is 3m/(4πr3) for spherical particles, in general for any particles
different densities translate into a population of masses ρ(m) and a population of
timescales q(τ). Since mκ are independent identically distributed variables, M dis-
tribution is determined by ρ(m). If the population of masses is an infinitely divisible
density then the distribution of M is the same distribution of m. If all the particles
experience the same friction and differ for their mass only γκ = γ0 = 6πνr0 , ∀κ
and ρ(m) = q(τ). After integration of (3.47) through (3.46), stochastic position and
velocity of the centre of mass are

XCM =

√
DV,0

M

∑
Xκ

0 , VCM =

√
DV,0

M

∑
Uκ0 , (3.48)

where DV,0 = kTγ0.
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Consider the Central Limit Theorem (CLT) in the Lyapunov sense:∑
Y κ →

√∑
〈(Y κ)2〉Y0 , Y0 ∼ N (0, 1) , (3.49)

where Y κ is a Gaussian variable with zero mean and density function pκ(y) such

that 〈(Y κ)2〉 =

∫
y2pκ(y)dy and N (0, 1) is the normal distribution with zero mean

and unit variance. Then the processes∑
Xκ

0 = XG ,
∑

Uκ0 = VG , (3.50)

are two Gaussian processes, because Xκ
0 and Uκ0 are Gaussian processes with clas-

sical scaling according to (3.46), but XG and VG may display anomalous scaling be-
cause of the population of timescales. In fact

〈VG(t)VG(s)〉 = 〈
∑

Uκ0 (t)
∑

Uκ0 (s)〉

=
∑
〈Uκ0 (t)Uκ0 (s)|τκ〉

=

∫
〈Uκ0 (t)Uκ0 (s)|τ〉q(τ) dτ , (3.51)

where the distribution q(τ) modifies the classical scaling displayed by 〈Uκ0 (t)Uκ0 (s)|τ〉.
In Section 3.5.1, it will be explicitly demonstrated that a properly chosen population
of τ in the classic Langevin framework induces the appearance of a Hurst exponent
1/2 < H < 1. The prefactor in (3.48) is a non-negative, time and space independent
random variable, then, by setting

√
DV,0/M =

√
Λ, process (3.48) can be re-written

as
XCM =

√
ΛXG , VCM =

√
ΛVG . (3.52)

that is a stochastic process based on the same constructive approach adopted by
Mura [Mur11] to built up the ggBm [Mur11; MP08b; MM09], i.e., a Gaussian process
times a non-negative random variable.

Furthermore, by plugging (3.42) into (3.41) we can derive the following Langevin-
type dynamics:

dVCM =
1

M

∑{
−γ0U

κdt+
√

2DV,0 dW
κ
}

= − γ0

M

∑
Uκdt+

√
2DV,0

M

∑
dW κ , (3.53)

despite γ0 is a constant, the sum over Uκ may display a time dependent timescale
because of the heterogeneity of the mass, that is consistent with the idea that we
cannot switch to the overdumped limit in transient anomalous diffusion regime. In
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fact: ∑
γ0 U

κ =
∑

γ0

√
DV,κ U

κ
0 =

√
DV,0

∑ Uκ0
τκ

→
√
DV,0

√√√√∑〈(
Uκ0
τκ

)2
〉
V0 , V0 ∼ N (0, 1)

=
√
DV,0

√∑〈(
Uκ0
τκ

)2
〉

√∑〈(Uκ0 )2〉

√∑
〈(Uκ0 )2〉V0

=
1

τeff

√∑
〈(
√
DV,0Uκ0 )2〉V0 =

1

τeff

√∑
〈(mκUκ)2〉V0

→ 1

τeff

∑
mκUκ =

1

τeff
M VCM , (3.54)

where

1

τeff
=

√∑〈(
Uκ0
τκ

)2
〉

√∑〈(Uκ0 )2〉
=

[∫∫ u2
0
τ2 p(u0; t|τ)q(τ) dτ∫∫
u2

0p(u0; t|τ)q(τ) dτ

]1/2

, (3.55)

which is a function of time, i.e., τeff = τeff(t), p(u0; t|τ) are Gaussian densities (3.46),
and

dWCM =
∑

dW κ , 〈(dWCM)2〉 = N〈(dW κ)2〉 . (3.56)

Hence finally

dVCM = −1

τeff
VCMdt+

√
2DV,0

M
dWCM . (3.57)

In the derivation of (3.54), the first line follows from (3.45) and the second from
the CLT (3.49) noting that for any κ-particle the parameter τκ is fixed and then the
process Uκ0 is Gaussian, see (3.46). The third line contains the multiplication and
division by

√∑〈(Uκ0 )2〉 and in the fourth τeff is introduced, DV,0 moved into the
square root and the second equality follows from (3.45). Finally, the last line follows
again from the CLT (3.49) and the last equality from (3.44).

The three processes (3.41), (3.47) and (3.57) are statistically equivalent as dis-
played in Fig. 3.1.

The time-dependence of the drift term 1/τeff shows that anomalous diffusion
emerges in the studied system during an intermediate asymptotic regime [Bar79] and
consequently the need to adopt an underdamped formulation. These two features are
consistent with the relation between them and anomalous diffusion already pro-
vided in the case of the underdamped scaled Brownian motion [Bod+16], and im-
plicitly by the role of friction through a complex potential [San+04].

If the radii are kept random as well the calculation is less straightforward. If
the population of particles with a given radius may feel the whole population of
timescales, thus the random variables γκ, τκ remain independent and the same ap-
proach can be applied without any particular complication for the heterogeneous
population of radii. The price to pay however is that the population of masses have
a different mean value for each particle type, which depends on rκ:

ρκ(m) = q(τ)rκ , (3.58)
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this can be understood intuitively in terms of density, given the same distribution of
density, a larger radius is associated with a larger mean value of the masses.

As a concluding remark on this part, if we relax the fluctuation-dissipation the-
orem and assume that all the particles feel the same noise, both the populations of
masses and radii contribute by means of the timescale τ = m/γ = m/(6πνr) to the
emergence of the anomalous scaling as shown in (3.51), while only the population
of masses contributes to the shape of the probability density functions by means of
the prefactor 1/M = 1/

∑
mκ.

The ggBm proposed by Mura is recovered from (3.52) in the case XG is the
fractional Brownian motion and Λ ∼ Mβ(λ) where Mβ(λ), 0 < β < 1, is the M-
Wright/Mainardi function [MMP10; Pag13].

A physically sound choice of the PDF of m and τ can be done on the basis of
experimental estimation of the PDF of the diffusion coefficient D, here denoted by
f(D). In particular, we consider the generalized Gamma distribution, i.e.,

f(D) =
η

D∗Γ(ν/η)
Dν−1 e−(D/D∗)η , (3.59)

that is based on experimental evidence in cases with random diffusivity. The gen-
eralized Gamma distribution includes as special cases both the Gamma and the ex-
ponential distributions, and allows for the stretched and compressed exponential
distributions in agreement with some experimental data [Jav+13; Hap09; Man+15;
Jeo+16].

We consider the case when the fluctuation-dissipation theorem holds, then rκ =
r0 and from definitions we obtain:

1

τκ
=

γκ

mκ
=

6πνr0

mκ
=

γ0

mκ
. (3.60)

If ρ(m) and q(τ) are the PDFs of m and τ , respectively, then from normalization
condition we have that

ρ(m) =
1

γ0
q

(
m

γ0

)
, q(τ) = γ0 ρ(γ0 τ) . (3.61)

In this framework the diffusion coefficient is

D =
kBT6πνr0

(mκ)2
=
kBTγ0

(mκ)2
, (3.62)

and the corresponding distributions of m and τ in terms of f(D) are

ρ(m) =
1

2m3
f

(
kBT γ0

m2

)
, q(τ) =

1

2γ2
0τ

3
f

(
kBT

γ0τ2

)
. (3.63)

3.4 Test particle in heterogeneous ensemble

The formalism previously derived can be used also to describe the stochastic dynam-
ics of a single mesoscopic test-particle that is immersed into a surround composed
by the studied heterogeneous ensemble of Brownian particles. Let us consider a
system with the following coupling between the surround and the test-particle

dUκ = − 1

τκ
Uκdt− ακ(Uκ − V )dt+

√
2DV,κdW

κ , (3.64a)
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FIGURE 3.1: (color online) Statistical equivalence of the processes
(3.41), (3.47) and (3.57). Panel a) shows the density function of the
center of mass p(xCM; t) and in the inset the variance 〈X2

CM〉; and
panel b) shows the density function p(vCM; t) and the variance 〈V 2

CM〉.
The PDFs of the process given by Eqs. (3.41) and (3.42) are presented
via filled squares (�), Eqs. (3.46) and (3.47) are shown with empty tri-
angles (M) and the process of Eq. (3.57) are the solid line. Different
colors represent different times. Insets: green line refers to Eq. (3.41),
blue line to Eq. (3.47) and red line refers to Eq. (3.57). Simulations
have been performed with ρ(τ) and p(m) given by Eqs. (3.63) and

(3.59) with ν = 4/3 , η = 3/4 , γ0 = 105.

dV =
∑

ακ(Uκ − V )dt , (3.64b)

where Uκ and V are the velocities of the Brownian κ-particle of the ensemble and
the test-particle, respectively. After setting

∑
ακ = A, the velocity of the test-particle

results to be

V = V0 e−At −
∫ t

0
e−A(t−s)∑ακUκds . (3.65)

In the limit A→∞, after multiplication and division by A of the integrand function
and by using the following definition of the δ-function

δ(r) = lim
ε→0

1

ε
e−r/ε , 0 ≤ r <∞ , (3.66)

we have that

V ' −
∑
ακUκ

A
. (3.67)

First by plugging (3.67) into (3.64a) and later by plugging this expression for dUκ

into (3.67), we obtain

dV = −
∑
ακUκ/τκ∗
A

dt

−
∑
ακακ(

∑
ακUκ)

A2
dt+

∑
ακ
√

2DV,κdW
κ

A
, (3.68)

with 1/τκ∗ = 1/τκ + ακ.
In the case ακ = α for all κ, we have that A = αN and V ' −∑Uκ/N , hence

dV = −αV dt+
1

N

∑[
−U

κ

τκ∗
dt+

√
2DV,κdW

κ

]
. (3.69)

We can recognize that the second term in the RHS is the stochastic dynamics of
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the centre of mass of an ensemble of Brownian particles with the same mass and a
population of timescales τκ∗ , i.e.,

dV = −αV dt+ dV ∗CM , (3.70)

where dV ∗CM is given by (3.57) with the proper changes, i.e., by setting in its deriva-
tion mκ = m for all κ and M = mN . Then the motion of the test-particle results
to be forced by the ensemble of the Brownian particles and shows a drift due to the
coupling with the surround.

We observe that in the passive tracer limit α → 0 and αN → ∞ (as for example
the case α ∝ 1/

√
N and N →∞), the motion of the tracer particle reduces to that of

the centre of mass.
From statistical arguments about the symmetry of the density function of veloc-

ities V , by replacing V with −V in (3.67) the stochastic dynamics of the test-particle
results to be

dV =
1

A

∑
ακ dUκ , (3.71)

and if ακ ∝ mκ then A ∝ M such that (3.71) is the analog of (3.47) after the replace-
ment of ακ with mκ. Then, still in the case ακ ∝ mκ, from (3.71) the process analog
of (3.52) follows by changing Uκ =

√
DV,κU

κ
0 (see (3.45)) and it holds

dV =
1

M

∑
mκ
√
DV,κ dU

κ
0 =

√
DV,0

M

∑
dUκ0 , (3.72)

such that, by setting
√
DV,0/M =

√
D, XG =

∑
Xκ

0 and VG =
∑
Uκ0 , we obtain the

following ggBm-like representation

X =
√
DXG , V =

√
DVG , (3.73)

that suggests the application of model (3.73) to study biological systems, in analogy
with the promising application of the ggBm [MG+16]. WhenD ∼Mβ(λ) the particle
displacement density function is [Pag12]

p(x; t) =
1√

4πλ t2H

∫ ∞
0

exp

{
− x2

4λ t2H

}
Mβ(λ) dλ

=
1

2 tH
Mβ/2

( |x|
tH

)
, (3.74)

and in general it displays anomalous and non-Gaussian diffusion and solves a frac-
tional diffusion equation in the Erdélyi–Kober sense [Pag12]. Special cases are the
time-fractional diffusion (β = 2H), the Brownian non-Gaussian motion (2H = 1),
the Gaussian non-Brownian motion (β = 1) and the classical diffusion (β = 2H = 1).

Finally, still in the case ακ ∝ mκ the process analog of (3.57) has the same equa-
tion, i.e.,

dV = −1

τeff
V dt+

√
2DV,0

M
dW , (3.75)

where dW =
∑
dW κ and 〈(dW )2〉 = N〈(dW κ)2〉.

As a concluding remark on this second part, we highlight that, in the case ακ ∝
mκ, the motion of the test-particle is analogous to the motion of the centre of mass
of the ensemble of Brownian particles. It results to be affected by both the popula-
tions of mass and radii by means of the timescale τ = m/γ = m/(6πνr) for what
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concerns the emergence of the anomalous scaling as shown in (3.51), while only the
population of mass contributes to the shape of the probability density functions by
means of the prefactor 1/M = 1/

∑
mκ. Ifmκ are independent identically stable dis-

tributed variables, then the population of mass ρ(m) is an infinitely divisible density
and M follows the same distribution ρ(m).

3.5 Building anomalous diffusion regimes

We showed in Section 3.2 that, when the assumption of Eq. (3.23) is still valid, there
exists a well-defined correlation time scale τc and the emergence of a normal diffu-
sion scaling (〈X2〉 ∼ t) in the long-time limit (t � τc). As a consequence, the emer-
gence of anomalous diffusion is strictly connected to the failure of the assumption
(3.23). When the long time scaling of the MSD is anomalous, i.e.

σ2
x(t) ∝ tφ , (3.76)

the relation between MSD and the VACF, which holds in general because the relation
dX(t)/dt = V (t) is maintained, leads to:

lim
t→∞

1

2

dσ2
x(t)

dt
=

∫ ∞
0

dsR(s) ∝ lim
t→∞

t(φ−1)ds . (3.77)

For φ 6= 1 it is straightforward to show that the assumption of finite and non-zero τc
fails. Depending on the range of φ super-diffusive and sub-diffusive regimes can be
distinguished on the bases of this result.

The super-diffusive regime φ > 1 is consistent with an infinite value of this inte-
gral in the infinite time limit: ∫ ∞

0

R(τ)

R(0)
dτ = +∞ , (3.78)

Instead sub-diffusive regime φ < 1 is characterized by a vanishing integral as in
the case of the Langevin oscillator:∫ ∞

0

R(τ)

R(0)
dτ = 0 , (3.79)

This case occurs only when anti-correlation appears, i.e., there exist time lags τ such
that R(τ) < 0 (e.g., the anti-persistent Fractional Brownian Motion, with H < 0.5).

In the following, we use the fundamental results of the Langevin description to
derive a model for anomalous diffusion. The basic idea is that the observed anoma-
lous diffusion emerges as a linear superposition of independent contributions.

Each contribution is given by a single realization of a classic process associated
with a particular value of the parameter, while the observed process feels the entire
distribution characterizing the parameter. Starting from this consideration it results
that also far from the equilibrium we can write the VACF of the complex process as:

Cv(t1, t2) =

∫
Cv(t1, t2; p1, p2, ...)P (p1, p2, ...)dp1dp2... . (3.80)

Apart from the physical origin of this mechanism, the superposition is driven
by the randomness of some parameters p1, p2, .... These parameters are here treated
as an independent random variable with a given PDF. Here we assume that the
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randomness lies in the parameters DV and/or τc or, equivalently, in the parameters
γ and/or Γ. Each parameter is defined statistically independent from the other ones.
This is not in conflict with the FDT as far as we consider that the single components
are not real but a mathematical counterpart of a complex problem, then FDT can be
satisfied by the real process, defined as the superposition of simpler processes, but
violated by the single components. Moreover in the special cases where FDT can
be violated the single components can be interpreted as real processes. Within this
Chapter, if other parameters characterize the process, for example, the characteristic
frequency of the harmonic oscillator, they are kept not random.

Starting from the basic formulas of the considered stochastic process, the param-
eter PDF driving the linear superposition is here chosen in such a way to determine
the emergence of global (effective) statistical features in agreement with fractional
anomalous diffusion. We impose the emergence of the following global properties:
correlation function with an asymptotic power-law decay, anomalous diffusion in
the MSD (variance increasing with some power of the time), PDF P (x, t) compatible
with fractional diffusion. The first and second considerations are strictly connected
to each other by Eq.(3.20), this relation will become clearer considering its Laplace
transformation in the next section.

Laplace transformation mapping of global properties

Laplace transformations approach allows to simplify calculations and easily check
limits of a function through initial and final value theorems. Given a function f(t)
and its Laplace transform L[f(t)](s) it holds:

lim
t→+∞

f(t) = lim
s→0

s · L[f(t)](s) , (3.81)

and
f(0+) = lim

s→+∞
s · L[f(t)](s) . (3.82)

If the limit does not exist we can eventually find the asymptotic behavior for
t → +∞. Consider the Laplace transform of a measure F , defined by the im-
proper distribution function F{0, x} =

∫ x
0 f(y)dy , with density f(x) (where im-

proper means that it could be not normalized), given by

ω(s) =

∫ ∞
0

e−sxF{dx} = L[f(t)](s) , (3.83)

and introduce two positive variables t, τ , such that:

tτ = 1 , (3.84)

so that t → +∞ when τ → +0, and apply the transformation x = ty. It results that
ω(τs) is the Laplace transform of F (ty) respect to y defined in Eq. (3.83). If such
Laplace transform of F exists, it is unique for any t and its asymptotic behavior for
t → +∞ is uniquely determined by the behavior of its Laplace transform near the
origin, under reasonable conditions, defined by the following theorem [Fel71].

Each of the relation, for ρ ≥ 0,

ω(τs)

ω(τ)
→ 1

sρ
, τ → 0 , (3.85)
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and
F (tx)

F (t)
→ xρ , t→∞ , (3.86)

implies the other as well as:

ω(τ) ∼ F (t)Γ(ρ+ 1) , (3.87)

for τ → 0 or, equivalently, t→∞.
Then considering the relation between F and f , for power law asymptotic be-

havior it follows that:

τω(τ) ∝ f(t) , τ = 1/t , τ → 0 . (3.88)

Then any choice of correlation function and distribution for the parameters of
the dynamics should satisfy the following global properties.

The scaling of the MSD in the long time limit is a power fraction of time:

s · L[σ2
x(t)](s) ∼ 1

sφ
∼ tφ , s→ 0 , (3.89)

then:
lim
s→0

sφ+1 · L[σ2
x(t)](s) = 1 . (3.90)

The MSD at time zero is zero:

lim
s→+∞

s · L[σ2
x(t)](s) = 0 . (3.91)

Laplace transformations of VACF and MSD are related by the following expres-
sion, resulting from Laplace transformation of Eq.(3.20)

L
[
σ2
x(t)

]
(s) =

2

s2
L [R(t)] (s) . (3.92)

Then we may add some conditions on the VACF behavior, perhaps the scaling
of the VACF in the long time limit should be a power law as well, with exponent
−α = −(2− φ):

lim
s→0

2sφ−1 · L[R(t)](s) = 1 , (3.93)

with 0 < ν < 1 or 1 < ν < 2 depending if we are describing super-diffusive or
sub-diffusive regimes respectively. Then it still holds:

s · L[R(t)](s) ∼ 1

sφ−2
=

1

s−ν
∼ t−ν , s→ 0 . (3.94)

The VACF at time zero is R(0) = σ2
v,eq. finite positive number, which imply that

b(τc), as well as h(DV ), must have finite mean in order to describe a finite energy
system:

lim
s→+∞

s · L[R(t)](s) = 〈DV 〉〈τc〉 , (3.95)

where the distribution functions of the parameters b(τc) and h(DV ) are normal-
ized to unity:

L[b(τc)](0) = 1, L[h(DV )](0) = 1 . (3.96)
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Normalization of the distribution function for the timescale can be obtained also
from the VACF of the free particle Langevin equation considering that:

− dR(t)

dt
=

∫ ∞
0

e−t/τcb(τc)dτc , (3.97)

which leads to:

lim
s→+∞

s · L[−dR(t)

dt
](s) = −dR(t)

dt
|t=0 = 1 . (3.98)

In the next Sections we will sometimes adopt, for sake of convenience, the im-
proper notation for which the asymptotic behavior is written as the result of a limit.
In those cases the equivalence wants to represent the asymptotic behavior of the
function and not the value of the limit, which is indefinite.

3.5.1 Population of timescales τc and anomalous time scaling

In principle there exists an infinite number of distribution functions b(τc) that satisfy
the conditions in Eqs. 3.93, 3.95 and 3.96. However it is not straightforward to de-
termine a class of these functions. Here we propose a suitable function as reference
example and we show explicitly that all the required properties are satisfied. We
also comment how the macroscopic forces enter into the calculation modifying the
diffusive regime maintaining the same parameters randomization.

Let’s consider a distribution of time scales of the kind:

b(τc) =
α

Γ(1/α)

1

τc
L−αα

(
τc
τ∗

)
, (3.99)

where L−αα (z) is the extremal Levy density, with 0 < α < 1 and τ∗ = (〈τc〉Γ(1/α)
α ).

The distribution is characterized by 〈τc〉, the mean timescale of the process, which
could be estimated experimentally. This distribution satisfies all the global proper-
ties requested by the theory.

The normalization constant C = α
Γ(1/α) can be obtained imposing L[b(τc)](0) = 1,

with b(τc) = C · 1
τc
L−αα (τc):

L[b(τc)](s) = C ·
∫ ∞
s
L[L−αα (τc)](ξ)dξ

= C ·
∫ ∞
s

e−ξ
α
dξ

x = ξα

= C ·
∫ ∞
s

1

α
e−xx1/α−1dx ,

(3.100)

then:

L[b(τc)](0) = C ·
∫ ∞

0

1

α
e−xx1/α−1dx

= C · Γ(1/α)

α
= 1 .

(3.101)

Within the new equilibrium condition, the VACF at time zero isR(0) = 〈DV 〉〈τc〉.
In order to describe a real process R(0) should have a positive and finite value be-
cause it represents the average kinetic energy associated with the process as well
the temperature of the system. This condition is satisfied if b(τc) and h(DV ) have
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positive finite means. Concerning b(τc) we obtain the consistent relation:∫ ∞
0

τcb(τc)dτc =
α

Γ(1/α)

∫ ∞
0

L−αα

(
τc
τ∗

)
dτc = 〈τc〉 . (3.102)

Superdiffusive case

Anomalous super-diffusion is defined by the MSD growing with a nonlinear power
of the time:

σ2
x(t) ∼ tφ ; 1 < φ < 2 . (3.103)

From the subsection 3.5 we have that the condition given in Eq. (3.23) must fail
going to infinity in the long-time limit. An asymptotic power-law behavior for the
VACF is a typical condition violating Eq. (3.23). To build this asymptotic behavior,
let us first rewrite the velocity VACF of the single OU process, as given by Eq. (3.10),
making the variable dependence more explicit and avoiding the average over the
initial velocities:

〈V (t1)V (t2)|v0, DV , τc〉ξ =
(
v2

0 −DV τc
)
e−(t1+t2−2t0)/τc +DV τce

−|t1−t2|/τc . (3.104)

The dependence from the initial velocity v0 means that the average is conditioned to
the fictitious trajectories with initial velocity given by v0. In the single OU process,
the equilibrium condition is associated with the relationship (3.35): σ2

v,eq = 〈v2
0〉eq =

DV τc. For the single OU process, this relationship follows the equilibrium condition
given by the Gaussian distribution of Eq. (3.34), which is reached by the OU process
in the long-time limit t � τc. On the contrary, in the extended model the Gaussian
law of Eq. (3.34) is no longer the equilibrium velocity PDF, so that Eq. (3.35) is not
valid in general.

It is worth noting that Eq. (3.35) implies that the statistics of v0 at equilibrium
depends on τc. Then, even if the equilibrium of the single OU process fails, let us
assume that, even in the extended global equilibrium condition, the initial velocity
distribution depends on τc: v0 = F (τc, ...). Let us now apply the averaging over the
random parameters (DV , τc) and over the initial velocity v0 to Eq. (3.104):

〈V (t1)V (t2)〉 := 〈〈V (t1)V (t2)|v0, DV , τc〉ξ〉v0,DV ,τc
=

= 〈
(
v2

0 −DV τc
)
e−(t1+t2−2t0)/τc〉v0,DV ,τc

+ 〈DV τce
−|t1−t2|/τc〉v0,DV ,τc

.

In order to get the global equilibrium condition, we must put to zero the first, non-
stationary, term:

〈v2
0(τc)e

−(t1+t2−2t0)/τc〉τc = 〈DV 〉DV 〈τce−(t1+t2−2t0)/τc〉τc ,

where the dependence of v0 on τc has been taken into account. This is the equality of
two integrals and, thus, the choices on the integrand functions are infinite. However,
the simplest and natural choice is given by the following one:

v2
0,eq = DV τc ; 〈v2

eq〉 = 〈DV 〉〈τc〉 , (3.105)

where the equilibrium assumption on the initial velocity distribution has been taken
into account: 〈v2

0〉eq = v2
eq. This expression corresponds to the alternative definition



64
Chapter 3. Langevin approach to generate anomalous transport in complex

environment

of FDT for the present model:

kT

m
= 〈DV 〉〈τc〉 , (3.106)

where m is the mass of the real particle. All the derivation here presented can be
performed also without imposing this equilibrium condition but calculation results
more clear considering this special case without affecting the final result.

When stationarity is imposed we can write the following expression for the VACF:

R(τ) = 〈V (t0 + τ)V (t0)〉 = 〈DV 〉
〈
τce
−τ/τc

〉
=

∫ ∞
0

DV f(DV )dDV ·
∫ ∞

0
τc e
−τ/τc g(τc)dτc .

(3.107)

As a consequence of the fundamental relationship between MSD and VACF,
given by Eq. (3.19) and by Eqs. (3.20,3.21), we must guess a suitable choice for
R(t) in order to get anomalous diffusion as given by Eq. (3.103).

In particular we need that R(t) scales in the long time limit as a powerlaw with
negative exponent, R(t) ∼ t−ν , with 0 < ν < 1, which leads to a fractional scaling of
the MSD, σ2

x(t) ∼ tφ, with 1 < φ < 2 and φ = 2− ν as in Eq. 3.93. This property can
be shown inserting the expression Eq. 3.99 in Eq. 3.107 thanks to the integral repre-
sentation of the extremal Levy density distribution which characterize the fractional
scaling of b(τc)

L−αα (x) =
1

αx

1

2πi

∫ γ+i∞

γ−i∞

Γ(s/α)

Γ(s)
xsds, 0 < α < 1 , (3.108)

hence we have:

R(t) = 〈DV 〉
α

Γ(1/α)

∫ ∞
0

e−t/τcL−αα

(
τc
τ∗

)
dτc

= 〈DV 〉
α

Γ(1/α)

∫ ∞
0

e−t/τc
[

1

α

1

2πi

∫ γ+i∞

γ−i∞

Γ(s/α)

Γ(s)

(
τc
τ∗

)(s−1)

ds

]
dτc

= 〈DV 〉
α

Γ(1/α)

1

α

1

2πi

∫ γ+i∞

γ−i∞

Γ(s/α)

Γ(s)

[∫ ∞
0

e−t/τc
(
τc
τ∗

)s−1

dτc

]
ds

ξ = t/τc

= 〈DV 〉〈τc〉
1

α

1

2πi

∫ γ+i∞

γ−i∞

Γ(s/α)

Γ(s)

[∫ ∞
0

e−ξξ−1−s
(
t

τ∗

)s
dξ

]
ds

= 〈DV 〉〈τc〉
1

α

1

2πi

∫ γ+i∞

γ−i∞

Γ(s/α)Γ(−s)
Γ(s)

(
t

τ∗

)s
ds ,

(3.109)

It is useful to rewrite the expression as:

R(t) = 〈DV 〉〈τc〉
1

α

1

2πi

∫ γ+i∞

γ−i∞

(α/s)Γ(s/α+ 1)Γ(−s)
(1/s)Γ(s+ 1)

(
t

τ∗

)s
ds

= 〈DV 〉〈τc〉
1

2πi

∫ γ+i∞

γ−i∞

Γ(s/α+ 1)Γ(−s)
Γ(s+ 1)

(
t

τ∗

)s
ds ,

(3.110)

which can be solved through the residues theorem considering the poles s/α +
1 = −n or s = n, with n = 0, 1, 2..∞.
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In the first case it can be written as:

R(t) =〈DV 〉〈τc〉
∞∑
n=0

α
(−1)n

n!

Γ(α(n+ 1))

Γ(1− α(n+ 1))

(
t

τ∗

)−α(n+1)

=〈DV 〉〈τc〉
∞∑
n=1

(−1)n

n!

Γ(αn)

Γ(−αn)

(
t

τ∗

)−αn
,

(3.111)

where each term of the serie is obtained by the limit:

lim
s→−α(n+1)

(s+ α(n+ 1))
Γ(s/α+ 1)Γ(−s)

Γ(s+ 1)

(
t

τ∗

)s
lim

s→−α(n+1)
α((s/α+ 1) + n)

Γ(s/α+ 1)Γ(−s)
Γ(s+ 1)

(
t

τ∗

)s
lim

s→−α(n+1)

α((s/α+ 1) + n)

(s/α+ 1)n+1

Γ(s/α+ n+ 2)Γ(−s)
Γ(s+ 1)

(
t

τ∗

)s
lim

s→−α(n+1)

α(−1)n

n!

Γ(α(n+ 1))

Γ(1− α(n+ 1))

(
t

τ∗

)−α(n+1)

,

(3.112)

When t→∞ only the first term survives and we find:

R(t) = 〈DV 〉〈τc〉
Γ(α+ 1)

Γ(1− α)

(
t

τ∗

)−α
, (3.113)

which is enough to obtain the desired scaling of the MSD σ2
x(t) ∝ tφ, with φ = 2−α.

Analogously, considering the poles in the other semi-plane, s = n with n =
0, 1, 2..∞, it can be find that:

R(t) = 〈DV 〉〈τc〉
1

α

∞∑
n=0

(−1)n

n!

Γ(n/α)

Γ(n)

(
t

τ∗

)n
, (3.114)

converge to R(0) = 〈DV 〉〈τc〉, as already shown before.
In the special case α = 1/2, the extremal Levy function corresponds to the Levy-

Smirnov distribution, the whole exercise can be solved analytically and we may con-
sider for simplicity 〈τc〉Γ(1/α)

α = 1 :

b(τc) =
1√

4πτ5
c

e−1/(4τc) . (3.115)

Solving the integral the analytical form of the VACF turns to be:

R(t) =
Γ(1/2)√

4π

(
t+

1

4

)−1/2

, (3.116)

which leads to the following MSD:

σ2
x(t) =

Γ(1/2)√
π

[
4

3

(
t+

1

4

)3/2

− t− 1

6

]
, (3.117)

that satisfies fractional long time scaling and σ2
x(0) = 0 conditions.

In the limit in which α = 1 we recover the classical VACF:
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R(t) = 〈DV 〉
α

Γ(1/α)

∫ ∞
0

e−t/τcL−αα

(
τc
τ∗

)
dτc

= 〈DV 〉
α

Γ(1/α)

∫ ∞
0

e−t/τc
(
τ∗
τc

)α+1

Mα

(
τα∗
ταc

)
dτc

= 〈DV 〉
∫ ∞

0
e−t/τc

(
τ∗
τc

)2

δ

(
τ∗
τc
− 1

)
dτc

= 〈DV 〉
∫ ∞

0
τ∗e−(ty)/τ∗y2δ (y − 1) dy

= 〈DV 〉τ∗e−t/τ∗ ,

(3.118)

where τ∗ is a number and represents the relaxation time of the system.

Subdiffusive case

The most general condition leading to the subdiffusive case in our approach is:∫ ∞
0

R(t)dt = 0 . (3.119)

This is satisfied if the VACF shows an oscillating behavior. This feature cannot be
obtained in the free particle case because the exponential suppression and the distri-
bution function of the timescale present in the VACF are both positive in the whole
support. Then to describe subdiffusive processes the introduction of a further oscil-
lating term is necessary.

To show the potentiality of this approach we consider the Langevin oscillator
with random timescale τc and velocity diffusivity DV as a reference case. We main-
tain the same parameter distributions of the free particle case. we will show that
the presence of the harmonic potential, characterized in this case by a non vanish-
ing characteristic frequency of oscillation, is enough to switch the system from a
superdiffusive to a subdiffusive regime.

The free particle case must be recovered as in Eq.(3.18) when the frequency of the
oscillator vanishes (ω0 = 0).

We consider time independent stochastic timescale, τc, and velocity diffusion
coefficient, DV , distributed in the same way as in the free particle case. The VACF
becomes

R(t) = 〈DV 〉〈τce−
t

2τc

[
cos(ω1t)−

1

2ω1τc
sin(ω1t)

]
〉

=

∫ ∞
0

DV h(DV )dDV

∫ ∞
0

τce
− t

2τc

[
cos(ω1t)−

1

2ω1τc
sin(ω1t)

]
b(τc)dτc ,

(3.120)
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The condition leading to subdiffusion is
∫∞

0 R(t) = 0, so we have∫ ∞
0

R(t)dt = 〈DV 〉
∫ ∞

0

{∫ ∞
0

τce
− t

2τc

[
cos(ω1t)−

1

2ω1τc
sin(ω1t)

]
b(τc)dτc

}
dt

= 〈DV 〉
∫ ∞

0
τc

{∫ ∞
0

e−
t

2τc

[
cos(ω1t)−

1

2ω1τc
sin(ω1t)

]
dt

}
b(τc)dτc

= 〈DV 〉
∫ ∞

0
τcF (τc)b(τc)dτc

= 〈DV 〉
∫ ∞

0
0 · τcb(τc)dτc = 0 ,

(3.121)

since F (τc) = 0 for any value of τc if ω0 6= 0.
This result can be proved solving explicitly the integral F (τc)

F (τc) =

∫ ∞
0

e−
t

2τc

[
cos(ω1t)−

1

2ω1τc
sin(ω1t)

]
dt , (3.122)

the integral can be solved as the sum of cosine and sine Fourier transforms of an
exponential function [Bat54], respectively we have

g1(y) =

∫ ∞
0

f(x)cos(xy)dx

g1(y) =
a

a2 + y2
,

(3.123)

and

g2(y) =

∫ ∞
0

f(x)sin(xy)dx

g2(y) =
y

a2 + y2
,

(3.124)

where we consider for our purposes f(x) = e−ax, y = ω1 = f(ω0|τc), and a = 1
2τc

.
F (τc) then results:

F (τc) =
1

2τc(
1

2τc

)2
+ ω2

1

−
1

2ω1τc
· ω1(

1
2τc

)2
+ ω2

1

= 0, ω0 6= 0 , (3.125)

for any value of τc.
This is the first condition to be satisfied in order to obtain fractional subdiffusion.

Furthermore, we expect that in the long-time limit R(t) ∼ t−ν with 1 < ν < 2 since
we have

lim
t→∞

σ2
x(t) = lim

s→0
s · L[σ2

x(t)](s) ∝ lim
s→0

1

s2
s · L[R(t)](s) , (3.126)

then

lim
t→∞

σ2
x(t) ∝ tφ = t2−ν , 0 < φ < 1, 1 < ν < 2 . (3.127)
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Similarly to the superdiffusive case, the integral in τc in the VACF R(t) can be
solved and written as a residues series, from which asymptotic behavior can be de-
rived.

We have

R(t) = 〈DV 〉
∫ ∞

0
τce
− t

2τc

[
cos(ω1t)−

1

2ω1τc
sin(ω1t)

]
b(τc)dτc , (3.128)

to simplify the integral we first consider its Laplace transform respect to time,
and solve it respect τc. The longtime limit can be then obtained thanks to the final
value theorem of Laplace transformations.

We have

L[eatcos(bt)](s) =
s− a

(s− a)2 + b2
, (3.129)

and

L[eatsin(bt)](s) =
b

(s− a)2 + b2
, (3.130)

in both cases with a = − 1
2τc

and b = ω1 =
√
ω2

0 − 1
4τ2
c

. Then we have

L[R(t)](s) = 〈DV 〉
∫ ∞

0

s

s2 + s/τc + ω2
0

τcb(τc)dτc

= 〈DV 〉
∫ ∞

0

τc
1 + λτc

α

Γ(1/α)
L−αα (τc/τ∗)dτc

= 〈DV 〉〈τc〉τ∗
∫ ∞

0

τ ′c
1 + (λτ∗)τ ′c

L−αα (τ ′c)dτ
′
c ,

(3.131)

with λ = s+
ω2

0
s and τ∗ = 〈τc〉Γ(1/α)/α

To solve the integral over the timescale we consider the following identity, which
is a particular result of the method for integral evaluation extensively explained by
[Mar84],2

2 The method treated in the book allows solving as a series of residues many definite integrals that
involve the product of elementary and special functions depending on a certain number of parameters.
It does not need a specific value assignment of the parameters for the integral evaluation, which is
instead necessary to numerical evaluation.

Let’s consider the integral∫ b

a

φ1(cx
p, y1, .., ym)φ2(γx

q, z1, ..., zn)dx = A(c, γ, y1, ..., ym, z1, ..., zn) , (3.132)

with a, b, p, q real numbers and 0 ≤ a < b ≤ ∞. By using the substitution γxq = t and ycq/p = γ the
integral reduces to the standard form of a Mellin convolution type integral∫ ∞

0

H1(y/t)H2(t)t
−1dt = H(y), y > 0 , (3.133)

with H1(τ) = φ1(τ
−p/q, y1, ..., ym), H2(t) = t1/qφ2(t, z1, ..., zn), H(y) =

qγ1/qA(c, γ, y1, ..., ym, z1, ..., zn).
Applying the Mellin transformation

H∗(s) =
∫ ∞

0

H(y)ys−1dy , (3.134)
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∫ ∞
0

g(xy)h(y)yz−1dy =
1

2πi

∫
L
x−qg∗(q)h∗(z − q)dq . (3.138)

This expression results equivalent to Eq.(3.131) considering x = λτ∗, y = τc, z = 1,
g(τc) = 1

1+τc
, h(τc) = τcL

−α
α (τc), and g∗(q), h∗(q) are the Mellin transforms of the

corresponding functions.
So we have

L[R(t)](s) = 〈DV 〉〈τc〉τ∗
1

2πi

∫ +i∞

−i∞
(λτ∗)−qg∗(q)h∗(1− q)dq

= 〈DV 〉〈τc〉τ∗
1

2πi

∫ +i∞

−i∞
(λτ∗)−qΓ(q)Γ(1− q) 1

α

Γ((q − 1)/α)

Γ(q − 1)
dq

= 〈DV 〉〈τc〉τ∗
1

2πi

∫ +i∞

−i∞
(λτ∗)−qΓ(1− q)Γ

(
(q − 1)

α
+ 1

)
dq ,

(3.139)

where we recall that λ = s+ ω2
0/s. This integral is then written as residues serie

for the poles q = 1 − α(n + 1), in order to obtain the long time limit behavior of the
VACF (t→∞, s→ 0), or for q = 1 + n, to obtain its short time limit behavior (t→ 0,
s→∞).

For the long time limit we obtain:

L[R(t)](s) = 〈DV 〉〈τc〉τ∗
∞∑
n=0

α
(−1)n

n!
Γ(α(n+ 1))(λτ∗)−1+α(n+1)

= 〈DV 〉〈τc〉
∞∑
n=0

α
(−1)n

n!
Γ(α(n+ 1))

(
s+

ω2
0

s

)−1+α(n+1)

τ
α(n+1)
∗ .

(3.140)

it can be proven thatH∗(s) = H∗1(s)H∗2(s). When the functionsH1,H2 belong to the class of function
of the hypergeometric type their Mellin transform can be written in term of products and ratios of
Gamma functions. Then

H(y) = 1

2πi

∫
L
H∗1(s)H∗2(s)y−sds

=

m∑
k=0

Ress=ak{H
∗
1(s)H∗2(s)}y−ak ,

(3.135)

A particular case that can be reconducted to this general approach is
∫∞

0
g(xy)h(y)yz−1dy

∫ ∞
0

{∫ ∞
0

g(xy)h(y)yz−1dy

}
xs−1dx =

∫ ∞
0

{∫ ∞
0

g(xy)xs−1dx

}
h(y)yz−1dy

=

∫ ∞
0

g(ξ)ξs−1dξ

∫ ∞
0

h(y)yz−s−1dy

= g∗(s)h∗(z − s) ,

(3.136)

inverting the Mellin transformation respect to x we obtain again an expression that could be solved
as residues series ∫ ∞

0

g(xy)h(y)yz−1dy =
1

2πi

∫
L
x−qg∗(q)h∗(z − q)dq , (3.137)
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Then we have the asymptotic behaviour:

lim
t→∞

R(t) = lim
s→0

s · L[R(t)](s)

= lim
s→0

s · 〈DV 〉〈τc〉
∞∑
n=0

α
(−1)n

n!
Γ(α(n+ 1))

(
s+

ω2
0

s

)−1+α(n+1)

τ
α(n+1)
∗

= lim
s→0
〈DV 〉〈τc〉

∞∑
n=0

α
(−1)n

n!
Γ(α(n+ 1))

(
ω2

0

)−1+α(n+1)
s2−α(n+1)τ

α(n+1)
∗

= 〈DV 〉〈τc〉αΓ(α)
(
ω2

0

)−1+α
τα∗

(
1

s

)α−2

.

(3.141)

Then limt→∞R(t) ∝ t−ν , ν = 2 − α, then the MSD scales as σ2
x(t) ∼ tφ, with

φ = 2− (2− α) = α
Considering the poles q = n + 1 we obtain the short time behavior, i.e. R(0) =

〈DV 〉〈τc〉.

L[R(t)](s) = 〈DV 〉〈τc〉τ∗
∞∑
n=0

(−1)n

n!
Γ
(n
α

+ 1
)(

s+
ω2

0

s

)−n−1

τ−n−1
∗ , (3.142)

then we have

lim
t→0

R(t) = lim
s→∞

s · L[R(t)](s)

= lim
s→∞
〈DV 〉〈τc〉τ∗s ·

∞∑
n=0

(−1)n

n!
Γ
(n
α

+ 1
)(

s+
ω2

0

s

)−n−1

τ−n−1
∗

= lim
s→∞
〈DV 〉〈τc〉

∞∑
n=0

(−1)n

n!
Γ
(n
α

+ 1
)

(s)−n τ−n∗

= 〈DV 〉〈τc〉 ,

(3.143)

that corresponds to the variance of the velocity.
The shape of the PDF P (x, t) in the long-time limit should be determined by the

stochastic process ξ(t), which is a Gaussian white noise, and by the random variable
DV as in the free particle case, with the fundamental difference that the tails of the
distributions scale with a power law of time with exponent smaller than one, leading
to a subdiffusive regime.

3.5.2 Population of velocity diffusion coefficient DV and deviations from
Gaussian distribution

We proposed an analytical expression for the VACF of the particle velocity V (t) and
we derived the variance of the diffusive variable X(t).

Until the velocity coefficient of diffusion DV is not random the resulting PDF is
still a Gaussian density G(x, σ2

x(t)), where the variance σ2
x(t) is the one derived from

the VACF with anomalous time scaling, due to the randomness of the time scale τc
(or the friction γ).

Including random velocity diffusivity DV we may derive not Gaussian PDF.
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We remind that the Gaussian fractional stochastic process is described by the
following equation:

dXφ(t) = Vφ(t)dt

dVφ(t) = − 1

τc
Vφ(t)dt− ω2

0Xφ(t) +
√

2DvφdW (dt), ω0 ≥ 0 ,
(3.144)

Where the label φ is introduced to distinguish this process from the classical one
and it represents the anomalous time scaling exponent. τc is the stochastic timescale
of the process, distributed according to b(τc). Dvφ is a constant non-random value
that we will see it is proportional to the mean value of the random parameter DV .
The resulting PDF in the long time limit is:

P (x, t;φ) =
1√

4πCtφ
e
− x2

4Ctφ , (3.145)

with C = Γ(α+1)
Γ(3−α)

(
Γ(1/α)
α

)(2−φ)
〈τc〉(3−φ)Dvφ for the free particle case (ω0 = 0), while

C = 〈DV 〉〈τc〉α+1
(
ω2

0

)α−1
αΓ(α)

(
Γ(1/α)
α

)α
when ω0 > 0.

Let’s consider a new stochastic variable which is the product of the Gaussian
variable Xφ and an appropriate power of a random variable Λ not dependent on
time:

X =
√

ΛXφ , (3.146)

velocity changes as well:

V =
√

ΛVφ , (3.147)

leading to the following stochastic process:

d
√

ΛXφ(t) =
√

ΛVφ(t)dt

d
√

ΛVφ(t) = − 1

τc

√
ΛVφ(t)dt− ω2

0

√
ΛXφ(t) +

√
Λ
√

2DvφdW (dt) ,
(3.148)

and we have

dX(t) = V (t)dt

dV (t) = − 1

τc
V (t)dt− ω2

0X(t) +
√

2ΛDvφdW (dt) ,
(3.149)

and DV = ΛDvφ .
Since the PDF h(DV ) does not depend on time and the stochastic variable DV is

independent of τc, for each realization of DV the Gaussian distribution is recovered
and the diffusion coefficient D is proportional to the particular realization of DV .

From the Lemma 3.1 in [PP16] we have that the PDF associated to a product of
two independent random variables Z = λρZ1 is:

p(z) =

∫ ∞
0

p1(z/λρ)pλ(λ)
dλ

λρ
. (3.150)
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Then if we consider Z = Xt−φ/2, Z1 = Xφt
−φ/2 and λρ =

√
Λ that is equivalent

to X =
√

ΛXφ, with Λ = DV /Dvφ and we can write:

PX(x/tφ/2) =

∫ ∞
0

PXφ(x/(tφDV /Dvφ)1/2)h(DV )
dDV

(DV /Dvφ)1/2
, (3.151)

where h(DV ) = p2(DV /Dvφ)/Dvφ .
Multiply both sides by 1

tφ/2
.

1

tφ/2
PX(x/tφ/2) =

∫ ∞
0

1

(tφDV /Dvφ)1/2
PXφ(x/(tφDV /Dvφ)1/2)h(DV )dDV (3.152)

Let’s recall the Gaussian distribution of Xφ in the long time limit:

PXφ(x, t) =
1√
tφ
PXφ(x/

√
tφ) =

1√
4πC ·Dvφt

φ
e
− x2

4C·Dvφt
φ

=
1√

(4C ·Dvφt
φ)
M1/2

 |x|√
(C ·Dvφt

φ)


= Gφ(x, σ2

x(t,Dvφ))

(3.153)

Let’s recall that PX , PXφ are self-similar distribution. Then, we have the follow-
ing general expression:

P (x, t) =

∫ ∞
0

1√
(4C ·DV tφ)

M1/2

(
|x|√

(C ·DV tφ)

)
h(DV )dDV

=

∫ ∞
0

Gφ(x, σ2
x(t,DV ))h(DV )dDV ,

(3.154)

which means that the final probability is the conditional probability respect to the
realization of the random variable DV weighted over the distribution h(DV ).

Assuming different distributions of the velocity diffusivity h(DV ) is it possible
to generate different PDFs as the Mainardi or Levy, which are related to the most
known fractional processes in the literature.

In particular, if p(Λ) = Mβ(Λ), i.e. the special Wright function known as Mainardi
function, we have h(DV ) = Mβ(DV /Dvφ)/Dvφ , so that for β = 1 we obtain h(DV ) =
δ(DV −Dvφ).

The mean diffusivity of velocity can be derived using the formula ([MLP01]):∫ ∞
0

rδMν(r)dr =
Γ(δ + 1)

Γ(νδ + 1)
, δ > −1 (3.155)

〈DV 〉 =

∫ ∞
0

DV

Mβ(DV /Dvφ)

Dvφ

dDV = Dvφ

Γ(2)

Γ(β + 1)
(3.156)
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Analogously we have that 〈D2
V 〉 = D2

vφ
Γ(3)

Γ(2β+1) . We may generalize this formula
as:

〈Dn
V 〉 =

(
〈DV 〉

Γ(β + 1)

Γ(2)

)n Γ(n+ 1)

Γ(nβ + 1)
. (3.157)

The resulting PDF is the Mainardi space time distribution with a time stretching:

PX(x, t) =

∫ ∞
0

1

2(C ·DV tφ)1/2
M1/2(|x|/(C ·DV t

φ)1/2)Mβ(DV /Dvφ)/DvφdDV

=
1

2(C · tφ)1/2
Mβ/2

( |x|
(C · tφ)1/2

)
,

(3.158)

If β = φ this is also the solution of the time fractional diffusion equation, obtained
substituting the first-order time derivative in the standard diffusion equation with
a Caputo derivative of order β ∈ (0, 2]. In this sense, we may cover only the range
β ∈ (0, 1], for which the PDF presents only a single peak, symmetric respect to X .

Considering p(Λ) = L
−α/2
α/2 (Λ), i.e. h(DV ) = L

−α/2
α/2 (DV /Dvφ)/Dvφ , extremal Levy

distribution, we obtain that the final PDF is the symmetrical Levy distribution:

PX(x, t) =

∫ ∞
0

1

2(C ·DV tφ)1/2
M1/2(|x|/(C ·DV t

φ)1/2)L
−α/2
α/2 (DV /Dvφ)/DvφdDV

=
1

2(C ·Dvφt
φ)1/2

L0
α

(
x

(C ·Dvφt
φ)1/2

)
,

(3.159)

In this last case, we notice that the diffusivity of velocity does not have a finite
mean value, which means that the energy necessary to the system to generate such
a process should be infinite. This is not realistic in nature but mathematically it is
consistent with the fact that the final distribution P (x, t) is a Levy density and has
an infinite MSD.

Introducing a cut-off on h(DV ), the mean value should become finite as well as
the MSD in the final distribution and the energy involved in the process. However,
the analyticity of the solution is lost and the final distribution can only be computed
numerically. We expect this numerical solution to be similar, at least in the long-
time limit, to the distribution related to Levy Flights. This part of the research goes
beyond the scope of the present work and is being developed by a O. Sliusarenko,
postdoc at BCAM. Preliminar results confirm our expectation and have been pre-
sented in [Sli+17].

3.6 Simulations of the model

Special effort is required in the simulation of the model because of the presence of the
extremal Lévy distribution, α−stable distributions, involved in the distribution of
both the timescale τ and the random scale Λ. In fact also the Mainardi-Wright distri-
bution can be written in terms of a extremal Levy distribution,Mβ(x) =

[
L−ββ (x)

]−β .
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Generation of extremal Lévy distributed random numbers has been performed
following the method of Chambers and Mallow [CMS76; JW94]:

LEXTα,CM =
sin[α(r1 + π/2)]

(cos r1)1/α

{cos[r1 − α(r1 + π/2)]

− ln r2

}
, 0 < α < 1 , (3.160)

where r1 and r2 are random variables uniformly distributed in (−π/2, π/2) and (0, 1)
respectively. Extreme ranges of the distribution can be described replacing the dis-
torted samples by the asymptotic values. To ensure that semi-analytical representa-
tion is normalized, two normalization parameters k1(α) and k2(α) are introduced to
have:∫ ∞

0
LEXTα (x)dx =

∫ xn

0
k1(α)x′−ae−bx

′−c
dx′+

N∑
i=n

LEXTα,CM (xi)dxi+

∫ ∞
xN

k2(α)

x′1+α
dx′ = 1 ,

(3.161)
where LEXTα (x) is the constructed distribution, the second term on the right-hand is
the histogram obtained by the Chambers-Mellow method and the first and last term
are the asymptotic form respectively for x→ 0+ and x→∞, with

a =
2− α

2(1− α)
; b = (1− α)αα/(1−α); c =

α

1− α .

Normalization constant is needed only for the analytical forms because the numeri-
cal one is proved to be already normalized by Chambers[CMS76]. This expression is
used to obtain a semi-analytical cumulative distribution and to generate the desired
random variables by means of the inverse transformation method.

Simulations show that transient anomalous regime is obtained for both the super
and subdiffusive case. This regime is asymptotic in the model construction, however
in simulation becomes transient because of the finiteness of the maximum value of
the random timescale extracted. The anomalous regime switch to normal diffusion
regime for t >> τmax. The transient regime start as expected for t > 〈τ〉 and variance
of velocity reach asymptotically the expected value σv = DV 〈τ〉, as can be noted in
Fig. 3.2.

3.7 Discussion

In this Chapter, we have shown a framework based on a Langevin approach in
which fractional kinetics and anomalous diffusion can emerge from Gaussian-based
stochastic processes. This corresponds in practice to a proper random modulation
of the parameters in the Langevin equation.

We studied the center of mass motion of a heterogeneous ensemble of particles
and the motion of a test particle coupled to this heterogeneous surround, demon-
strating that it may display anomalous diffusion in an intermediate transient regime.
We also show that its dynamics can be described by the superposition of OU pro-
cesses, characterizing the ensemble. This corresponds more in general to consider
a Langevin equation with properly distributed random timescale and velocity dif-
fusivity parameters. We determined a suitable distribution of timescales, which can
be attributed to mass density variability in the ensemble, of our extended Langevin
process, and demonstrated that it allows obtaining a fractional kinetics with Gaus-
sian PDF.
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FIGURE 3.2: . Results variance behavior of simulations with constant
Λ of superdiffusion (upper left), subdiffusion (upper right), compar-
ison with a Gaussian of the PDF (lower right), results of simulated

PDFs with h(Λ) (lower left). Figures from [Spo16].

Considering a free particle in a viscous medium it is possible to describe anoma-
lous super-diffusive regimes while introducing a confining term in the equation but
maintaining the same parameter modulation, we can describe subdiffusive regimes.
To this aim in the present work we considered the Langevin oscillator, that is ob-
tained adding the Hook’s restoring force to the free particle Langevin equation. This
result is interesting because the Langevin harmonic oscillator converges to the free
particle case in the limit of vanishing confining potential. This is an important result
because the subdiffusive regime, generally associated with trapping phenomena,
arises naturally by the introduction of a macroscopic confining potential and it is
not related to changes in the mathematical description of the problem. Within our
approach, finally, until the Langevin equation is linear we are able to easily recover
non-Gaussian PDFs, in particular, the Mainardi and the Levy densities associated
respectively to time and space-fractional diffusion, introducing a multiplicative ran-
dom length scale in the process. This length scale corresponds to the velocity diffu-
sion coefficient and can be related to the mass distribution of the ensemble.

Since the present approach may appear similar to the so-called superstatistics,
i.e., the "statistics of statistics" [BC03], it is useful to dedicate a few words comparing
these approaches. The superstatistics approach takes into account large-deviations
of intensive quantities of systems in nonequilibrium stationary states [Bec01; BC03;
ABC07] and it was motivated by some preliminary success obtained when fluctu-
ations of parameters were considered [WW00; Bec02]. In general, superstatistics
is successful to model turbulent dispersion considering energy dissipation fluctua-
tions [Bec01; Rey03], renewal critical events in intermittent systems [PCG09], and for
different distributions of the fluctuating intensive quantities different effective sta-
tistical mechanics can be derived [BC03], e.g., Tsallis statistics with χ2-distribution.

The main idea of superstatistics is that a Brownian test particle experiences such
fluctuations by moving from cell to cell [BC03]. Following this idea, the random
value of the fluctuating parameter is generated at any change of cell. The main
assumption behind this picture is that each cell is temporally in equilibrium, within
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the cell, there are no fluctuations but different value assigned to each cell. The local
value of the fluctuating parameter changes in the various cells on a long timescale
that is much larger than the relaxation time that the single cells need to reach local
equilibrium. This means that the fluctuating parameter follows a slow dynamics and
then the integration over the fast variable is taken after that over the slow variable
which is in opposition to what an adiabatic scheme requires [Abe14]. The order of
integration could not affect the computation of the expected values but its role can
be significant when entropy is considered [ABC07; Abe14]. This inconsistency is
solved by considering a dynamical equation also for the slow fluctuating quantity
[Abe14], such dynamical equation was already considered in [Rey03].

The present approach is clearly based on a different picture, even if the superpo-
sition of Langevin equations may suggest some analogies. Here the superposition
generates the single particle trajectory because reproduces the effects of the ensem-
ble heterogeneity. In fact, in the present approach, the fluctuations are not due to
different values in different cells but to the distribution in the density of the parti-
cles of the surround related to b(τ). As a consequence of this, the present approach
does not take into account slow and fast dynamics and then the issue concerning the
order of integration does not arise.
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Chapter 4

Anomalous diffusion in spiny dendrites

Time fractional extensions of the cable equation have been proposed in the literature to
describe transmembrane potential in spiny dendrites concurrently with anomalous dif-
fusion models for the ions after anomalous diffusion of tracers in this particular systems
was observed. This anomalous behavior was directly related to the geometrical nature
of the system, in particular the density of spines, by experiments and computer simula-
tions. It was also described analytically in comb-like models. Following this idea in this
Chapter we propose two stochastic processes that can be justified by the random geome-
try of the system and we derive the associated extension of the cable equation, which has
a Caputo time fractional derivative instead of the first order time derivative. The funda-
mental solutions of the most common boundary problems are obtained by the application
of the Efros theorem of Laplace transforms, and written in terms of Wright special func-
tions. In literature, similar generalizations have been solved in terms of H-Fox functions.
However, the present derivation allows writing explicitly the solution in terms of entire
functions and in particular as an integral subordination form containing the solution of
the classical cable equation. This is a direct consequence of the application of the Efros
theorem, which can be interpreted as a generalization of convolution to subordination
relations.

4.1 Introduction

Neurons are the fundamental structural units of the nervous system. These cells
are specialized to communicate each other through electrical and chemical signals,
specifically called neural signals. We refer for more extensive introductions to neuro-
physiology to the textbooks [DS94],[Wei96],[Tuc88] and briefly collect here the fun-
damental concepts devoted to the biological understanding of the problem.

Despite the incredible diversity existing between different neurons type, the ba-
sic mechanism to exchange electrical signals is the same as for other excitable cells
and is driven by transmembrane ion currents, generating a variation in the trans-
membrane voltage. Depending on the properties of their membrane two kind of
cells (or part of cells) can be distinguished: isopotential, which means that the trans-
membrane electric potential is the same overall the membrane, or non-isopotential,
where this potential could be different in different points of the surface, as in the case
of the axons and dendrites, the "electric wires" of the neurons. The principal ions in-
volved are sodium (Na+), potassium (K+), calcium (Ca2+) and chloride (Cl−). Ions
motion can be generated by a concentration gradient or by an electrical field.
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The flux produced by diffusion in a chemical gradient is classically described by
the Ficks law: −→

J diff = −D−→∇ [C] , (4.1)

where D is the coefficient of diffusion and [C] the concentration of the ionic specie
that is diffusing.

Drift into an electric field is described by the Ohm law:

−→
J drift = −µZ[C]

−→∇V , (4.2)

where µ is called mobility and Z is the valence of the ion specie.
The frictional resistance exerted by the fluid medium is independent of the pro-

cess driving the motion. The flux is an additive quantity, (4.1) and (4.2) can be then
related by:

D =
KBT

q
µ . (4.3)

Despite the presence of charged ions inside the cell all the parts of the cell are
neutral except the membranes, through which a resting potential different from zero
is maintained by an inside-outside chemical gradient. The maintenance of this gradi-
ent is fundamental for the correct working of both iso-potential and non-isopotential
cells, but it is not trivial. It consists in a balance of passive and active mechanisms.
Cell membranes are characterized by selective permeability to different ions going in
and out following their concentration gradient, but ions can be also pumped against
their chemical gradient by active transporters (specific proteins) that burn ATP (the
fuel of the cell).

Let’s consider the total flux:

J = Jdiff + Jdrift = −µKBT

q

∂[C]

∂x
− µZ[C]

∂V

∂x
, (4.4)

we may consider the molar flux J = J/NA

J = Jdiff + Jdrift = −uRT
F

∂[C]

∂x
− uZ[C]

∂V

∂x
, (4.5)

where u = µ/NA and F = qNA.
The current results to be the flux multiplied by the charge of the ion:

I = J · (Zq) = −µZkBT
∂[C]

∂x
− µZ2q[C]

∂V

∂x
, (4.6)

equivalently we may also consider the current I as the molar flux J = J/NA multi-
plied by the total molar charge ZqNA = ZF .

When I = 0 we have the following expression for the transmembrane potential:

∂V

∂x
= −kBT

Zq

1

[C]

∂[C]

∂x
. (4.7)

Integrating along the membrane thickness we obtain:

V0 = Vin − Vout =
RT

ZF
ln

(
[C]out
[C]in

)
, (4.8)

where u = µ/NA, F = qNA and V0 represents the transmembrane potential at rest,
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which is different from zero until a proper gradient of ions concentration through
the membrane is maintained.

Neurons are non-isopotential cells, this condition is necessary to transmit the
electrical signal, in terms of ions diffusion, in the dendrites and axons. They can be
geometrically approximated by a cable, i.e. a cylinder in which the length is much
larger than its radius, and eventually, transmit the excitation to another cell or to
the soma of the cell. Ions diffusion along the longitudinal axes of the cylinder is
fundamental in this type of cells, concurrently with the transmembrane potential
previously defined.

The flux of the ions along the longitudinal direction, call it x, can be split again
in a diffusion term plus a drift generated by a gradient o the potential. Thus we may
describe the flux along longitudinal axes by the same J(x) defined in Eq.(4.4), but
calculated respect to this new definition of the variable x.

By applying the continuity equation

∂[C]

∂t
= −∂J

∂x
, (4.9)

we may derive from the NPE the following diffusion equation for the ions:

∂[C]

∂t
= D

∂2[C]

∂x2
+

∂

∂x

(
D
ZF

RT
[C]

∂V

∂x

)
, (4.10)

to which is added a loss/gain of particles quantified in terms of a transmembrane
current−4

dJm, that accounts for the passive escape of ions through the ionic channel
due to the presence of a transmembrane potential higher then the prescribed one at
rest.

The potential is defined as [Tuc88]:

Vm(x, t) = V0 +
Fd

4cm

∑
i

([Ci](x, t)− [Ci]0(x, t)) . (4.11)

It is assumed that axial concentration gradient is negligible while the potential
variation is not due to the coefficient Fd

4cm
, and Eq.4.10 for potential reduces to:

cm
∂Vm
∂t

= −D
(

d

4rL

∂2Vm
∂x2

)
− im . (4.12)

The ionic transmembrane current term im can be written in term of the Ohm law:

im =
Vm − V0

rm
. (4.13)

This phenomenon is approximated by the electrical circuit as in Fig.4.1, consist-
ing of a capacitor and a resistance in parallel. The cellular membrane, constituted
by two lipid layers that isolate the internal region from the rest, is modeled by the
capacitor. Inserted within the lipidic barrier, the specific proteins that act as chan-
nels permitting ions permeation are modeled by the resistance. The transmembrane
current is then divided into capacitive and ionic current:

Im = IC + Iionic = Cm
dVm
dt

+
Vm
Rm

, (4.14)
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where
Vm = V − V0 . (4.15)

FIGURE 4.1: Figures taken from D. Johnston, S. Miao-Sin Wu. Foun-
dations of cellular neurophysiology. MIT Press (1995). (Fig. 3.1).

Dendrites and axons are non-isopotential parts of the neuron in which the mem-
brane can be geometrically approximated by a cylinder. The circuit structure of a
cylindrical membrane is shown in Fig.4.2. The cell membrane is characterized by
a linear density of RC modules, crossing the membrane, connected by an internal
(and eventually external) resistance describing the ionic flow parallel to the mem-
brane in the cytoplasm viscous medium inside the cell (or outside). External axial
resistance could be eventually included. Because of this, we have a potential loss
of the membrane from a site to another along the cylinder. In general, the external
resistance is taken equal to zero (r0 = 0). So we have:

∂Vm(x, t)

∂x
= −riii . (4.16)

Part of the current flowing in the cytoplasm may cross the membrane in the RC
modules:

∂ii
∂x

= −im . (4.17)

Combining (4.16) and (4.17) with (4.14) we obtain the cable model:

1

ri

∂Vm(x, t)

∂x2
= Cm

∂Vm(x, t)

∂t
+
Vm(x, t)

Rm
, (4.18)

where coefficients correspond to the axial internal resistance ri, the transmem-
brane capacitance cm and the transmembrane resistance rm.

FIGURE 4.2: Figure taken from D. Johnston, S. Miao-Sin Wu. Founda-
tions of cellular neurophysiology. MIT Press (1995). (Fig. 4.6.).

The resulting differential equation for the transmembrane potential takes the
form of a standard diffusion equation with an extra term that accounts the decay
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of the electric signal in time. For simplicity in the rest of this work we will use the
dimensionless scaled variables X = x/λ and T = t/κ, where λ =

√
rm/ri and

κ = rmcm are the characteristic space and time scales of the process, determined by
the values of the membrane resistance and capacitance per unit length of the system,
following [Mag06]:

∂2Vm(X,T )

∂X2
− ∂Vm(X,T )

∂T
− Vm(X,T ) = 0 . (4.19)

Interesting quantities to neurophysiology are connected to First kind boundary
condition (the Signaling Problem) and Second Kind boundary condition problems,
following the nomenclature of [Kev00]. Signaling Problem is interesting to under-
stand how the system evolves when excited at one end with a specific potential
profile, Second Kind boundary condition problem is interesting because it can be
related to the profile of a current injected across the membrane.

In Signaling Problems the cable is considered of semi-infinite length (0 ≤ X <
∞), initially quiescent for T < 0 and excited for T ≥ 0 at the accessible end (X = 0)
with a given input in membrane potential Vm(0, T ) = g(T ). The solution can be
derived via the Laplace Transform (LT) approach:

∂2Vm(X,T )

∂X2
= (s+ 1)Vm(X,T ) , (4.20)

and the LT of the solution results

Ṽm(X, s) = g(s)e−
√
s+1X . (4.21)

Relevant cases are impulsive input g(T ) = δ(T ) and unit step input g(T ) = θ(T )
where δ(T ) and θ(T ) denote the Dirac and the Heaviside functions, respectively. The
solutions corresponding to these inputs can be obtained by LT inversion [Mag06]
and read in our notation:

Gs(X,T ) =
X√
4πT 3

e−( X2

4T
+T) , (4.22)

and

Hs(X,T ) =

∫ T

0
Gs(X,T ′) dT ′ . (4.23)

We refer to Gs to as the fundamental solution or the Green function for the Signal-
ing Problem of the (linear) cable equation in Eq.(4.19), whereas to Hs to as the step
response. As known, the Green function is used in the time convolution integral to
represent the solution corresponding to any given input g(T ) as follows

Vm(X,T ) =

∫ T

0
g(T − T ′)Gs(X,T ′) dT ′ . (4.24)

The spatial variance associated to this model is known to evolve linearly in time.
If we consider an impulse or a step current injected at some point X the problem

is subjected to the following boundary conditions, specifically

I = I0δ(T ) =
−1

riλ

∂Vm(X,T )

∂X
, (4.25)
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or

I = I0θ(T ) =
−1

riλ

∂Vm(X,T )

∂X
. (4.26)

We consider the adimensional current I = I0riλ and put it to unity for conve-
nience. Applying the impulse in X = 0 the LT reduces to

Ṽm(X, s) =
1√
s+ 1

e−
√

s+1X , (4.27)

the Green function and the step response function (when a step current is applied in
X = 0) reads, respectively,

Gm(X,T ) =
1√
πT

e−( X2

4T
+T) , (4.28)

and

Hm(X,T ) =

∫ T

0

1√
πT ′

e−( X2

4T′+T′) dT′ , (4.29)

The Cauchy problem can be solved too in terms of Laplace transforms, the Green
function in this special case is equivalent to Eq.(4.28) normalized to the real x axes
and reads:

Gc(X,T ) =
1√
4πT

e−( X2

4T
+T) , (4.30)

The motion of ions along the nerve cells is conditioned by this model, that pre-
dicts a mean square displacement of diffusing ions scaling linearly with time. By
the way, significant deviations from linear behavior have been measured by experi-
ments [JDS97][NSS02][San+06][Ion+17]. A relevant medical and biological example
is the anomalous subdiffusion in neuronal dendritic spines [SM80] [Dua03]. Partic-
ularly appropriate systems are spiny Purkinje cell dendrites characterized by both
spiny and not spiny branches. Spiny branches are in fact characterized by subdiffu-
sive dynamics, while not spiny branches are not. The spatial variance of a diffusing
inert tracer (concentration of) in spiny branches evolves as a sub-linear power law
of the time, and the diffusion with smaller values of the power exponent is associ-
ated to higher spine density [San+06], as spines behave as a trap for the diffusing
molecules.

In [HLW08] anomalous diffusion process at the level of ions diffusion has been
included modifying the Nernst-Planck equation.

In these cases, the diffusion coefficient D is no more a constant as in the standard
NPE but it becomes a parametrized time-dependent operator with scaling parameter
0 < α ≤ 1. For FBM (I) and CTRW (II) respectively we have:

D(α, t)I = D(α)ID
∗(α, t)I = D(α)IIαt

α−1 , (4.31)

and

D(α, t)II = D(α)IID
∗(α, t)II = D(α)II

∂1−α

∂t1−α
, (4.32)

where ∂1−α

∂t1−α is the Riemann-Liouville fractional derivative operator.
Considering no external current the following this approach leads to the follow-

ing differential equations for the two models:

∂VI
∂T

= αTα−1∂
2VI
∂X2

− µ2κT κ−1VI , (4.33)
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and

∂VII
∂T

=
∂α−1

∂Tα−1

∂2VII
∂X2

− µ2∂
κ−1VII
∂T κ−1

. (4.34)

The introduction of a Caputo time derivative in the equation to model the volt-
age response in neurons has been instead proposed in [TMS14] to model spiking
adaptation for a homogeneous membrane patch, where the space derivatives van-
ish, named fractional leaky integrate-and-fire model:

∂αV (T )

∂Tα
= −(V (T )− VL) + Iinj , (4.35)

where an external injected current Iinj is included.
Riemann-Liouville and Caputo fractional derivatives, respectively Dα and Dα

∗ ,
are related by the following relation [Mai97]:

Dαf(t) = Dα
∗ f(t) +

m−1∑
k=0

tk−α

Γ(k − α+ 1)
f (k)(0+) , (4.36)

in terms of fractional integrals they are defined as:

Dα = DmJm−α , (4.37)

and
Dα
∗ = Jm−αDm . (4.38)

4.2 Two stochastic models of anomalous diffusion

Experimental evidence of anomalous diffusion of an inert tracer in spiny branches
of Purkinje cells [San+06] suggested that the origin of anomalous diffusion in this
system is related to the geometry of the system, and that anomalous diffusion is re-
lated to the presence of spines more than to the presence of branches. Furthermore,
spine density can change dynamically depending on neuronal activity. The idea
of correlation between spines density and the anomalous time scaling exponent of
the MSD was suggested also in [HLW08], because it was already known that spine
density is an important feature for the correct working of several types of neurons,
and low density of spines is associated to aging [JDS97; Dua03], neurological disor-
ders [NSS02] and syndromes [SM80]. In [HLW08] it was observed that subdiffusive
behavior enlarges the window of high potential at the soma, despite it lowers the
maximum value of the peak. It was suggested that this effect could be in fact helpful
to compensate time delay of postsynaptic potentials along dendrites and to reduce
their longtime temporal attenuation. Then high spine density should have been
related to more enhanced subdiffusive behavior. More recently several other exper-
iments have been performed on Purkinje cells and pyramidal cells [San+11] and the
correlation between spine density and anomalous diffusion exponent in these types
of neurons was explicitly studied. The MSD was described in terms of an anomalous
exponent dω by the introduction of a time-dependent diffusion coefficient:

〈X2(t)〉 = 2D(t) · t = Γ · t2/dw , (4.39)

and a linear correlation was found between the parameter dω and the measured
density of spines in both the types of neurons studied. The geometric impact on
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anomalous transport in dendrites was then modeled by exploiting the geometrical
similarities between a comb structure and a spiny dendrite in terms of comb-like
models of diffusion [IM13; MA13]. In this model was considered that particles may
diffuse in both spines, fingers of the comb, and dendrite, the backbone of the comb.
Where spines behave as traps for the moving particles, and the average survival
time τ inside each spine is determined by its geometry. Markovian process was
assumed inside each spine, i.e. exponential distribution of survival time ΨM (t, τ) =∫∞
t

1
τ e
−t′/τdt′ = e−t/τ , but the random size and shape of the spines [NSS02] entail

that the final process is the sum of many independent Markovian processes averaged
over the distribution of the timescale τ :

Ψ(t) =

∫ ∞
0

ΨM (t, τ)fS(τ)dτ . (4.40)

When fS(τ) is a power law Ψ(t) shows a power law behavior as well, and subdiffu-
sive diffusion appears.

The emergence of fractional kinetics in complex media in CTRW was introduced
more explicitly as a general concept in [Pag14]. Analogously to the comb-like model
presented, in that short note the special case of a survival probability of the Mittag-
Leffer type was there derived in terms of a Markovian process with characteristic
waiting time properly distributed:∫ ∞

0
ΨM (t, τ)fS(τ)dτ = Eα(−tα) , (4.41)

where Eα(·) is the one parameter Mittag-Leffer function with 0 < α < 1 [Mai10]:

Eα(z) :=
∞∑
n=0

zn

Γ[αn+ 1]
, (4.42)

and fS(τ) = 1
τ2Kα(1/τ), with Kα = K−αα,α fundamental solution of the neutral

spacetime fractional diffusion equation [MLP01], i.e., when space and time fractional
orders of derivation are equal, with extremal asymmetry parameter, i.e., defined on
the positive real axes only. Within this approach fS(τ) corresponds to the stationary
distribution of these timescales. If instead we consider the non stationary case it
holds for the general case:

Ψ(t) =

∫ ∞
0

ΨM (t, τ)f(τ, t)dτ , (4.43)

however in the non-stationary case the solution for f(τ, t) could be no unique given
Ψ(t).

In the present case the following identity holds:

Ψ(t) =

∫ ∞
0

ΨM (t, τ)f(τ, t)dτ =

∫ ∞
0

e−qH(q, t)dq , (4.44)

then for Ψ(t) = Eα(−tα) we may write:

H(q, t) =
1

tα
Mα(q/tα) , (4.45)
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or equivalently:

f(τ, t) =
1

τ2
t1−αMα(t1−α/τ) , (4.46)

where Mα(z) = W−α,1−α(z) is the M-Wright function, special case of the Wright
function Wλ,µ(z) defined by the series [Mai10]:

Wλ,µ(z) :=

∞∑
n=0

zn

n! Γ[λn+ µ]
, λ > −1, µ ≥ 0 . (4.47)

The relation in Eq.(4.45) is a consequence of the Laplace transform relation be-
tween the M-Wright and the Mittag-Leffer functions [Mai10]:

Mα(r)÷ Eα(−s) , r ∈ R+ , (4.48)

thus: ∫ ∞
0

e−rt
α
Mα(r)dr = Eα(−tα) , (4.49)

applying the change of variables q = rtα we have:∫ ∞
0

e−q
1

tα
Mα(q/tα)dq = Eα(−tα) . (4.50)

Applying this idea to the most general solution for CTRW [Mon64; SGM04] is
it possible to write it in term of a superposition of Markovian components, each
characterized by the same jump PDF [Tul16]:

P (r, t) =

∫ ∞
0

PM (r, t/τ)f(τ, t)dτ =

∫ ∞
0

PM (r, q)H(q, t)dq . (4.51)

The simplest diffusion process of molecules associated to the transmembrane po-
tential solution of the classic cable equation isP ′M (r, t) = PM (r, q)e−q, withPM (r, q) =

1√
4πq

e−r
2/4q, standard diffusion process, multiplied by the exponential factor e−q that

accounts for the loss of particles in the system. Following the same superposition
principle after turning on the exponential decay term, the transmembrane potential
P (r, t) corresponds to the integral of the solution of the classic cable equation aver-
aged by the same H(q, t) = 1

tαMα(q/tα), by considering that the decay is subjected
to the same timescale of the diffusion process:

P (r, t) =

∫ ∞
0

1√
4πq

e
−(X

2

4q
+q) 1

tα
Mα(

q

tα
)dq . (4.52)

The classic problem was written in term of the adimensional variable T = t/τ ,
with τ = cmrm, and X = x/λ, with λ =

√
ri/rm related to the circuit component of

the membrane element. The solution of the fractional process can be written in term
of a superposition of the classic solution weighted by the distribution of the circuit
element parameters, thus we have:

Vα(x, t) =

∫ ∞
0

1√
4πt/τ

e
−
(
λ2 x2

4t/τ
+t/τ

)
t1−α

τ2
Mα(t1−α/τ)dτ . (4.53)

Then in terms of circuit elements the system results characterized by a capacitance
that varies between the elements of the circuit according to a certain time dependent
distribution, considering ri, rm unitary constant for simplicity, in the present case it
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correspond to:

f(cm, t) =
t1−α

c2
m

Mα(t1−α/cm) . (4.54)

If there exists also a population of rm, representing the transmembrane resistance,
the time decay of the solution and diffusion processes are described by two different
but correlated distributions, because the coefficient rm disappears in the Gaussian
factor.

In terms of comb-like model approach the timescale is the average sojourn time
in the spine and can be related to the geometry of the spine, as example for spines
with a head of volume V and cylindrical spine neck of length L and radius a, the
mean life time is τ = (LV )/(πa2D), where D is the diffusivity of the spine [IM13;
MA13]. If this volume may change dynamically it makes sense to consider a time
dependent distribution in this case as well.

Eq.(4.53) can be also interpreted within the ggBm approach [Mura]; rewriting
the integral form as follows:

Vα(X,T ) =

∫ ∞
0

1√
4πΛTα

e
−
(

X2

4ΛTα
+ΛTα

)
Mα(Λ)dΛ , (4.55)

where inside the integral we recognize the fundamental solution of the fBm model
defined in Eq.(4.33) for the particular case α = κ.

The ggBm-like stochastic process can be defined by the product:

X ′(t) =
√
DX(t) , (4.56)

where X(t) is a Gaussian process with unitary coefficient of diffusion, rescaled by
the diffusion coefficient D distributed according to:

ρ(D, t) =
1

tα−1
Mα(D/tα−1) , (4.57)

where comes natural the change of variables D = Λtα−1, which is the fBm definition
of the diffusion coefficient, thus p(Λ) = Mα(Λ) [DG+16]. The survival probability of
each particle is conditioned to its diffusion coefficient D:

r(D, t) = e−Dt . (4.58)

The PDE for these processes can be derived by computing the Laplace-Fourier
transform of the integral form in Eq.(4.52), that reads

ˆ̃Vα(s, k) =
2sα−1

sα + 1 + k2
, (4.59)

thus the transformed PDE is

2sα−1 = sα ˆ̃Vα(s, k) + ˆ̃Vα(s, k) + k2 ˆ̃Vα(s, k) , (4.60)

which correspond to the time fractional cable equation described in [VM17] with
0 < α < 1 for Cauchy initial conditions:

∂αVα(X,T )

∂Tα
=
∂2Vα(X,T )

∂X2
− Vα(X,T ) , (4.61)

where ∂α

∂Tα is the Caputo time fractional derivative.
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4.3 Time fractional cable model

In this Section, we consider the extension of the cable equation expressed in Eq.(4.19),
which correspond the substitution of the integer time derivative with a fractional
Caputo time derivative. This approach extends the model of [TMS14] to diffusing
processes. The solution derived in here can be reconducted to a special case of the
model presented in [HLW08], but the approach used to derive it, at least for us, is
much simpler and allows to write explicitly the integral form of the solution in terms
of entire functions. For this reason, different boundary conditions can be easily de-
rived and computed. As for the model derived by [HLW08], our approach allows
to reproduce at least qualitatively the main characteristics observed in experiments
[NSS02], [JDS97],[Dua03],[SM80][San+06].

To model anomalous sub-diffusion we substitute the first-order time derivative
in Eq.(4.19) with a fractional time derivative of Caputo type [GM97], [Pod99] of order
α ∈ (0, 1):

∂2Vm(X,T )

∂X2
− ∂αVm(X,T )

∂Tα
− Vm(X,T ) = 0 , (4.62)

for 0 < α < 1.

4.3.1 Solution of the Signaling Problem via Laplace Transform

The solution of the Signaling Problem can be derived via LT [VM17], however, the
inversion of the LT solution for Eq. (4.62) requires special efforts because of the term
Vm(X,T ).

When this term is not present, the resulting equation is the well known time
fractional diffusion equation:

∂2V ∗m(X,T )

∂X2
− ∂αV ∗m(X,T )

∂Tα
= 0 , (4.63)

for which the solutions of the corresponding Cauchy and Signaling Problems have
been derived in the 1990’s in terms of two auxiliary Wright functions (of the second
type) [Mai96; Mai97]. Specifically for the Signaling Problem, the general solution
there provided in integral convolution form reads

V ∗m(X,T ) =

∫ T

0
g(T − T ′)G∗α,s(X,T ′) dT ′ , G∗α,s(X,T ) =

1

T
W−α/2,0

(
−X/Tα/2

)
,

(4.64)
where G∗α,s(X,T ) denotes the Green function of the Signaling Problem of the frac-
tional time diffusion equation (Eq.(4.63)) and W−α/2,0(·) is a particular case of the
transcendental function known as Wright function defined in Eq.(4.47). This func-
tion, entire in the complex plane, is discussed extensively in [Mai10] where the in-
terested reader can find the following relevant LT pairs, rigorously derived in [Sta]:

tµ−1W−ν,µ (−x/tν) ÷ s−µ exp (−xsν) , 0 ≤ ν < 1 , µ > 0 . (4.65)

Here we have adopted an obvious notation to denote the juxtaposition of a locally
integrable function of time t with its LT in s with x a positive parameter. It is worth
to recall the distinction of the Wright functions in first type (λ ≥ 0) and second type
(−1 < λ ≤ 0) and, among the latter ones, the relevance of the two auxiliary functions
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introduced in [Mai96]:

Fν(z) = W−ν,0(−z) , Mν(z) = W−ν,1−ν(−z) , 0 < ν < 1 , (4.66)

inter-related as Fν(z) = νzMν(z). Indeed the relevance of both the Wright functions
has been outlined by several authors in diffusion and stochastic processes. Particular
attention is due to the M -Wright function (also referred to as the Mainardi function
in [Pod99]) that, since for ν = 1/2 reduces to exp (−z2/4)/

√
π, is considered a suit-

able generalization of the Gaussian density, see [Pag13] and references therein.
Then the Green function for the Signaling Problem of the time fractional diffusion

equation (Eq.(4.63)) can be written in the original form provided in [Mai96] as

G∗α,s(X,T ) =
1

T
Fα/2

(
X/Tα/2

)
=
α

2

X

Tα/2+1
Mα/2

(
X/Tα/2

)
, (4.67)

where the superscript ∗ is added to distinguish the time fractional diffusion equation
from our fractional cable equation, both depending on the order α ∈ (0, 1).

Applying the LT to Eq.(4.62) with the boundary conditions required by the Sig-
naling Problem, that is Vm(X, 0+) = 0, Vm(0, T ) = g(T ), we have:

(sα + 1)Ṽm(X, s)− ∂2Ṽm(X, s)

∂X2
= 0, (4.68)

which is a second order equation in the variable X with solution:

Ṽm(X, s) = g̃(s)e−
√

(sα+1)·X . (4.69)

Because of the shift constant in the square root of the LT in Eq.(4.69), the inversion
is no longer straightforward with the Wright functions as it is in the time fractional
diffusion equation (Eq.(4.63)). Consequently, we have overcome this difficulty recur-
ring to the application of the Efros theorem [Gra04] that generalizes the well-known
convolution theorem for LTs. For sake of convenience let us hereafter recall this the-
orem, usually not so well-known in the literature. The Efros theorem states that if
we can write a LT f̃(s) as:

f̃(s) = φ(s) · F̃ (ψ(s)), (4.70)

where the function F̃ (s) has a known inverse LT F (T ), the inverse LT can be written
in the form:

f(T ) =

∫ ∞
0

F (τ)G(τ, T )dτ , (4.71)

where:
G(τ ;T )÷ G̃(τ, s) = φ(s)e−τψ(s) . (4.72)

In Eq.(4.69), LT solution of our Signaling Problem, we thus have:

φ(s) = g̃(s), ψ(s) = sα , (4.73)

and
F̃ (s)|X = e−X

√
s+1 . (4.74)

Then, having G̃(τ, s) = g̃(s) e−τsα , thanks to the standard convolution theorem of
LTs, we obtain:

G(τ, T ) =

∫ T

0

g(T − T ′)
T ′

W−α,0(−τ/T ′α)dT ′ , (4.75)
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where W−α,0 is the F-Wright function, and

F (T )|X =
X√
4πT 3

e−(X
2

4T
+T ) , (4.76)

is the solution in Eq.(4.22) of the standard cable equation (Eq.(4.19)).
Then, the general solution for the Signaling Problem can be written in terms of

known functions:

Vm(X,T ) =

∫ ∞
0

X√
4πτ3

e−( X2

4τ
+τ)

[∫ T

0

g(T− T′)
T′

W−α,0(−τ/T′α)dT′
]

dτ

=

∫ T

0
g(T − T ′)

[∫ ∞
0

X√
4πτ3

e−(X
2

4τ
+τ) 1

T ′
Fα(

τ

T ′α
) dτ

]
dT ′ . (4.77)

Substituting g(T ) = δ(T ) in the general solution in Eq.(4.77) we obtain the Green
function for the fractional model (Eq.(4.62)), shown in Fig.(4.3):

Vm(X,T ) := Gα,s(X,T ) =

∫ ∞
0
Gs(X, τ)

1

T
Fα(

τ

Tα
)dτ

=

∫ ∞
0
Gs(X, τ)G∗2α,s(τ, T )dτ (4.78)

When g(T ) = θ(T ) we obtain the step response of our fractional cable equation :

Vm(X,T ) := Hα,s(X,T ) =

∫ ∞
0
Gs(X, τ)

[∫ T

0
G∗2α,s(τ, T ′)dT ′

]
dτ (4.79)

=

∫ ∞
0
Gs(X, τ)H∗2α,s(τ, T ) dτ , (4.80)

whereH∗2α,s(τ, T ) is the step response function for the time fractional diffusion equa-
tion. After some manipulations including the change of variable z = τ/T ′α and
integrating by parts after using the recurrence relation of Wright functions:

dWλ,µ(z)

dz
= Wλ,λ+µ(z) , (4.81)

and the relation between the auxiliary functions: Fν(z) = νzMν(z) we may rewrite
the step-response solution as:

Vm(X,T ) := Hα,s(X,T ) =

∫ ∞
0
Hs(X, τ) · 1

Tα
Mα(

τ

Tα
)dτ , (4.82)

where Hα,s(X,T ) is the step response function for the standard cable model. The
same expression can easily be derived by direct application of the Efros theorem
and is plotted in Fig.4.4.

4.3.2 The Green function for the Cauchy Problem

Consider an infinite cable with boundary conditions Vm(±∞, T ) = 0 and initial con-
dition Vm(X, 0) = f(X). The general solution of the Cauchy problem is related to
the Green function Gα,c(X,T ) through the following relation:

Vm(X,T ) =

∫ +∞

−∞
f(x− ξ)Gα,c(ξ, T )dξ . (4.83)
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Gα,c(X,T ) can be derived via Laplace Transform:

(sα + 1)G̃α,c(X, s)−
∂2G̃α,c
∂X2

= δ(X)sα−1 , (4.84)

boundary conditions imposes:

G̃α,c(X, s) =

{
c1(s)e−X

√
sα+1, if X > 0

c2(s)e+X
√
sα+1, if X < 0

. (4.85)

Imposing G̃α,c(0−, s) = G̃α,c(0+, s) leads to c1(s) = c2(s). Integrating Eq.(4.62)
over X from 0− to 0+ we have:

∂G̃α,c(0+, s)

∂X
− ∂G̃α,c(0−, s)

∂X
= −sα−1 (4.86)

the coefficients result:
c1(s) = c2(s) =

1

2s1−α√sα + 1
, (4.87)

the resulting LT of the Green function reads:

G̃α,c(X, s) =
1

2s1−α√sα + 1
e−X

√
sα+1 . (4.88)
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The inversion can be easily performed for X > 0, thanks again to the Efros theorem,
and extended by symmetry respect to the X-axes for X < 0.

Let’s consider φ(s) = 1
s1−α , ψ(s) = sα, following the theorem we may setG(τ, s) =

1
s1−α e

−τsα and F (X, s) = 1
2
√
s+1

e−X
√
s+1, that have known inverse LT:

F (X,T ) =
1√
4πT

e
−
(
X2

4T
+T

)
, (4.89)

and
G(τ, T ) =

1

Tα
W−α,1−α(−τ/Tα) =

1

Tα
Mα(τ/Tα) . (4.90)

The inverse LT for the Green function is plotted in Fig.4.5 and reads:

Gα,c(X,T ) =

∫ ∞
0

1√
4πτ

e
−
(
X2

4τ
+τ

)
1

Tα
Mα(τ/Tα)dτ

=

∫ ∞
0
Gc(X, τ)G∗2α,c(τ, T )dτ .

(4.91)
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4.3.3 Response to injected current

An interesting biological problem is to consider an injected current in the system.
Transmembrane potential is related to the transmembrane current through the rela-
tion −I = ∂2Vm(X.T )

∂X2 , where the minus sign is due to the direction of the current, in
this case flowing inside the cell. Let’s consider a singular point injected current in
X = 0, it takes the form I(X,T ) = I0δ(X)f(T ). Integrating from 0− to 0+ we obtain
the relation

− I0f(T ) =
∂Vm(X,T )

∂X

∣∣
X=0+ −

∂Vm(X,T )

∂X

∣∣
X=0−

. (4.92)

We recall the LT for the semi-infinite cable for an initially undisturbed cable:

Ṽm(X, s) = Ṽm(0, s)e−X
√
sα+1 . (4.93)

At the boundary condition we have:

I0f̃(s) = −∂Ṽm(X, s)

∂X

∣∣
X=0+ , (4.94)
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if we consider an impulse injection of current in X = 0 we have I0δ(T ) =

−∂Vm(X,T )
∂X

∣∣
X=0+ . Applying this condition to the LT we obtain:

Ṽm(0+, s) =
I0√
sα + 1

, (4.95)

leading to the following Laplace Transformed solution:

G̃α,m(X, s) =
I0√
sα + 1

e−X
√
sα+1 . (4.96)

According to the previous derivations it is then straightforward that the inverse
LT takes the form:

Gα,m(X,T ) =

∫ ∞
0

I0√
πτ
e
−
(
X2

4τ
+τ

)
1

T
W−α,0(−τ/Tα)dτ

=

∫ ∞
0
Gm(X, τ)G∗2α,s(τ, T )dτ ,

(4.97)

represented in Fig.4.6.
For a generic boundary I0f̃(s) we obtain:

Ṽm(X, s) =
I0f(s)√
sα + 1

e−X
√
sα+1 . (4.98)

The general solution becomes:

Vm(X,T ) =

∫ T

0
f(T − T ′)Gα,m(X,T ′)dT ′ . (4.99)

The solution is symmetric respect to X , the problem can be then extended to the
infinite cable introducing a factor 1/2: G∞α,m(X,T ) = 1

2Gα,m(X,T ).
The extension to the infinite cable case admits also the following generalization,

current injection inX0 6= 0 is equivalent to shift the cable of the same valueX0, then:

V∞X0,m(X,T ) =

∫ T

0
f(T − T ′)G∞α,m(X −X0, T

′)dT ′ . (4.100)

When the injected current is a step function we obtain the following LT solution:

H̃α,m(X, s) =
I0

s
√
sα + 1

e−X
√
sα+1 =

I0

s1−αsα
√
sα + 1

e−X
√
sα+1 , (4.101)

considering φ(s) = 1
s1−α , ψ(s) = sα we have G(τ, s) = 1

s1−α e
−τsα and F (X, s) =

1
s
√
s+1

e−X
√
s+1, that have known inverse LT Eq.(4.100) can be simplified to:

Hα,m(X,T ) =

∫ ∞
0
Hm(X, τ)

1

Tα
Mα(τ/Tα)dτ

=

∫ ∞
0
Hm(X, τ)G∗2α,c(τ, T )dτ ,

(4.102)

which is shown in Fig.4.7.
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4.4 Discussion

Fractional calculus is often used to catch by parsimonious mathematical approach
some underlying complex behavior. Caputo’s fractional derivative is a non-local
operator and for this reason, as pointed out in [TMS14], it could be introduced to
explain emergent behaviors like the appearance of multiple timescale dynamics and
memory effects, related to the complexity of the medium. In Section 4.2,we derived
two possible stochastic processes for inert tracer diffusion in spiny dendrites that in
principle give rise to the same partial differential equation for the transmembrane
potential. The PDF evolution of both the processes is be described by the time frac-
tional generalization of the cable equation presented in Eq.(4.62), that can be solved
for the most common boundary and initial conditions by the application of the Efros
theorem of Laplace transforms [VM17; SVM17] as shown in Section 4.3.

The first process is a CTRW built as a superposition of Markovian processes, each
one subjected to a different timescale of the waiting time distribution, where the
timescale is a non stationary distribution. This means that the whole system change
in time modifying the profile of the timescale distribution. The second process is
based on a ggBm-like approach in which a Brownian process with unitary diffusion
coefficient is rescaled by a random scale that is non stationary distributed as well.
This scale represents in fact the value of the diffusion coefficient and can be used
to generate anomalous time-scaling of the mean square displacement in the final
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variable:
〈X ′2〉 = 〈D〉 · t . (4.103)

If r(D, t) = 1 we obtain 〈X ′2〉 ∼ tα. The exponential suppression has the effect that
probability distribution collapse to zero in the infinite time, because all the particles
disappear from the system.

Except for the exponential suppression that accounts for loss of particles, a simi-
lar non-stationary ggBm process has been proposed in [DG+16] as an alternative to
CTRW to account the Ergodicity Breaking (EB) described by several experiments on
diffusion of cellular components in living systems. Despite both ggBm and CTRW
may account for EB, in [DG+16] it was shown that the p-variation test provides dif-
ferent values for the two alternative processes, and that values obtained for ggBm
where compatible with the experimental dataset considered in their research, on the
contrary of CTRW.

For this reasons it seems promising to characterize the present processes looking
forward for single particle tracking data to be compared with the models. Moreover
the two processes presented account the complexity of the phenomena directly from
geometrical (waiting time timescales distribution) and/or electrophysiology (cell re-
sistances and capacitance values distributions) properties of the system, that could
be directly measured as it was done for spine density profiles in [San+11]. Finally the
anomalous transport phenomena is generated by a proper superposition of classic
processes, that is not ad-hoc but can be related to experimental observations, clearly
simplifying also the computational efforts of the simulation procedures of the trajec-
tories.

The cable model, fractional or linear, is used to describe subthreshold potentials
or passive potentials, associated with dendritic processes in neurons. The traveling
potential is summed up in the center of the cell, called soma, and an action potential
is produced when a threshold is exceeded. Anomalous regimes of diffusion can then
have a deep impact on the communication strength.

Diffusion results more anomalous, i.e. the fractional exponent α decreases, with
increasing spine density [San+06]. Decreasing spine density is characteristic of ag-
ing [JDS97],[Dua03], pathologies as neurological disorders [NSS02] and Down’s syn-
drome [SM80], then subdiffusive regimes are in some sense associated with a health
condition. It has been suggested that increasing spine density should serve to com-
pensate time delay of postsynaptic potentials along dendrites and to reduce their
longtime temporal attenuation [HLW08].

Looking at our plotted solutions for the fractional cable equation when an impul-
sive potential is applied at the accessible end it can be noted from Fig.4.3 that peak
high decreases more rapidly with decreasing α at early times, vice-versa is less sup-
pressed at longer times, and the crossover time increases with decreasing α. Looking
at the potential versus time it can also be noted that potential functions associated
to lower α last for a longer time at an appreciable intensity and arrive faster at early
times with respect to the normal diffusion case (α = 1). By the way, when a constant
potential is applied at the accessible end we note from Fig.4.4 that the exponential
suppression of the potential along the dendrite is reduced for high X values with
respect to normal diffusion. Instead, for small X the potential results just slightly
more suppressed in the sub-diffusion process. These behaviors can be noticed also
for the other cases in Fig.4.5 and Fig.4.6 - 4.7.

The presented fractional cable model satisfies the main biological features of the
dendritic cell Signaling Problem. With respect to models solved for the Cauchy
problem, our approach could include specific time-dependent boundary conditions,



4.4. Discussion 95

which will allow reconstructing with accuracy the expected signal at the soma if
the model will result capable to predict real data behavior. Furthermore the solu-
tions can be computed directly, i.e. calculating the integral associated, as well as by
Laplace Transform inversion [AW06] without any remarkable issue.

From a mathematical point of view, the Efros theorem extends the concept of
convolution as an integral form that is consistent with a subordination-type integral.
However such integral form does not necessary connote a subordinated process, as
it has been shown for ggBM [MP08b], [DG+16], but could also be interpreted as
a consequence of the random nature of the media in which particles are diffusing
as shown in Section 4.2. This model can be also read as a generalization of time
fractional diffusion processes where mass is not conserved due to leakage. This
approach naturally recovers the solution for the time fractional case in the limit in
which the leakage is put to zero in the integral forms.
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Chapter 5

Conclusions

This thesis was centered on the modeling of biological stochastic processes, in par-
ticular, birth-death and diffusion processes. Three different mathematical tools were
applied in the three chapters to model three different case studies: Master Equation
(ME), stochastic differential equation (SDE) and partial differential equation (PDE).
All the systems analyzed were characterized on the basis of their environment com-
plexity. The case of LINE transposons ecosystem described in Chapter 2, in which
the genomic environment is unique to each copy, directly affecting its dynamics
parameters, was treated by the competitive neutrality assumption of the model pro-
posed, in which stochastic mechanisms as demographic stochasticity, migration, and
speciation are the most important forces shaping the community. Medium and/or
ensemble complexity in the derivation of an alternative Langevin approach in Chap-
ter 3 was described by a population of parameters characterizing the system, as the
mass and radii of the particles composing the surround for the test particle motion,
and almost equivalently by the introduction of a population of timescales and dif-
fusivity parameters in the equations. Geometrical complexity, generated by the ran-
dom shape and size of spines in dendrites, was modeled in Chapter 4 by a fractional
generalization of the cable equation and a populations of scales in the stochastic
processes derived.

Neutral assumption proposed in Chapter 2, is naturally broken by the intro-
duction of a competition for the polymerase protein in the neutral model, which
is necessary to start autonomous transposition. The model proposed was able to
describe the observed distribution of the relative species abundances (RSA) of the
LINE ecosystem in 42 Mammals genomes. Furthermore, it was able to catch some
important features of the evolutionary history, and to point out the similarity be-
tween the RSA of genomes belonging to the same taxonomic order, and evidencing
the presence of evolutive radiation phenomena within the same genome, when data
were available, i.e., in two Murinides genomes (Mouse and Rat) and three primates
(Homo sapiens, Rhesus macaque, Chimpanzee).

In Chapter 3 it was demonstrated that anomalous diffusion may arise in a hetero-
geneous ensemble of particles by a proper distribution of mass and radii within the
Langevin approach. Furthermore suitable distributions of these parameters in terms
of timescales and velocity diffusion coefficient was proposed in order to obtain the
same PDFs associated to fractional Brownian motion and space and time fractional
diffusion, observed in nature.

In Chapter 4 two different stochastic processes and the associated fractional gen-
eralization of the cable equation were introduced to describe anomalous diffusion
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in spiny dendrites related to subthreshold potential propagation. The fundamental
solutions for the Cauchy problem and first and second boundary problems were de-
rived. These results were interpreted in comparison with other existing models in
the literature. The possible advantage of this kind of models respect to real data was
discussed.
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Appendix A

Appendix A

A.1 Mean field approximation and reductiond to 1D prob-
lem

The system of LINEs can be considered as a two specie problem: the active copies
and the inactive one. Such a system can be described by a two dimensional master
equation as defined in Eq.(2.23).

We may define the mean field variables:

X =
∑
x,y

xP (x, y, t) =< x >

Y =
∑
x,y

yP (x, y, t) =< y >
(A.1)

then

Ẋ =
∑
x,y

xṖ (x, y, t)

Ẏ =
∑
x,y

yṖ (x, y, t)
(A.2)

As an example we solve the significant pieces, the whole calculation is skipped.

∑
x,y

x(Ξ−x − 1)bAxP (x, y, t) =
∑
x

x(Ξ−x − 1)bAxP (x, t)

=
∑
x

bAx(x− 1)P (x− 1, t)−
∑
x

bAx
2P (x, t)

=
∑
x

bA(x+ 1)xP (x, t)−
∑
x

bAx
2P (x, t)

=
∑
x

bAxP (x, t)

= bAX

(A.3)

in which change of variable from n to n-1 has been done to collect P(x,y,t) from each
addend. Analogously we may calculate:
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∑
x,y

y(Ξ−y − 1)bAIxyP (x, y, t) = bAI
∑
x,y

y(x(y − 1)P (x, y − 1, t)− xyP (x, y, t))

= bAI
∑
x,y

(x(y + 1)yP (x, y, t)− xy2P (x, y, t))

= bAI
∑
x,y

xyP (x, y, t)

≈ bAIXY
(A.4)

the last approximation is exact only if x,y are independent variables and the prob-
ability distribution is factorizable: P (x, y, t) ≈ P (x, t)P (y, t). In our case we keep
also in mind that the coefficient bAI is expected to be very small, hence the interac-
tion should not affect dramatically the marginals.

With this approach we finally obtain that the 2D probabilistic master equation
can be approximated by two coupled differential equations, one describing the ac-
tive copies, the other describing the inactive copies. If we set X = nA and Y = nI ,
finally we have:

dnA
dt

= bA · nA − dA · nA (A.5)

dnI
dt

= (bI + dA) · nA + bAI · nA · nI − dI · nI (A.6)

If we approximate nA to a constant value, that is not exact but can be acceptable,
the equation for the inactive copies recalls the equation for a birth death process with
external influx:

dnI
dt

= bAI · 〈nA〉 · nI − dI · nI + (bI + dA) · 〈nA〉 (A.7)

whom stationary solution in the probalistic form is a negative binomial, describ-
ing exactly the RSA of the ecosystem.

PRSA = 〈Φn〉 = Θ
xn

n!
Γ(n+ Υ) (A.8)

where Θ = S′

[(1−x)−Υ−1]Γ(Υ)
.

A.2 Supplementary figures
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FIGURE A.1: ABC results of neutral model fit of Cat
RSA.Comparison of the expected values from the mean parameters
obtained with the ABC (black) to the Preston plot of the RSA and
to the expected values obtained by non-linear least squares method
(blue) on the same histogram(left panel);heat map of the posteriors of
the parameters (right panel), log2 mean value (x axes), influx values

(y axes).

FIGURE A.2: ABC results of neutral model fit of Chimpanzee
RSA.Comparison of the expected values from the mean parameters
obtained with the ABC (black) to the Preston plot of the RSA and
to the expected values obtained by non-linear least squares method
(blue) on the same histogram(left panel);heat map of the posteriors of
the parameters (right panel), log2 mean value (x axes), influx values

(y axes).

FIGURE A.3: ABC results of neutral model fit of Cow
RSA.Comparison of the expected values from the mean parameters
obtained with the ABC (black) to the Preston plot of the RSA and
to the expected values obtained by non-linear least squares method
(blue) on the same histogram(left panel);heat map of the posteriors of
the parameters (right panel), log2 mean value (x axes), influx values

(y axes).
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FIGURE A.4: ABC results of neutral model fit of Dog
RSA.Comparison of the expected values from the mean parameters
obtained with the ABC (black) to the Preston plot of the RSA and
to the expected values obtained by non-linear least squares method
(blue) on the same histogram(left panel);heat map of the posteriors of
the parameters (right panel), log2 mean value (x axes), influx values

(y axes).

FIGURE A.5: ABC results of neutral model fit of Rat
RSA.Comparison of the expected values from the mean parameters
obtained with the ABC (black) to the Preston plot of the RSA and
to the expected values obtained by non-linear least squares method
(blue) on the same histogram(left panel);heat map of the posteriors of
the parameters (right panel), log2 mean value (x axes), influx values

(y axes).

FIGURE A.6: ABC results of neutral model fit of RhesuSrheMac3
RSA.Comparison of the expected values from the mean parameters
obtained with the ABC (black) to the Preston plot of the RSA and
to the expected values obtained by non-linear least squares method
(blue) on the same histogram(left panel);heat map of the posteriors of
the parameters (right panel), log2 mean value (x axes), influx values

(y axes).
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FIGURE A.7: ABC results of mixture model fit of Cat
RSA.Comparison of the expected values from the mean parameters
obtained with the ABC (black) to the Preston plot of the RSA and
to the expected values obtained by non-linear least squares method
(blue) on the same histogram(left panel);heat map of the posteriors of
the parameters of the abund elements(center panel), heat map of the
posteriors of the parameters of the rare elements(right panel), log2

mean value (x axes), influx values (y axes).

FIGURE A.8: ABC results of mixture model fit of Chimpanzee
RSA.Comparison of the expected values from the mean parameters
obtained with the ABC (black) to the Preston plot of the RSA and
to the expected values obtained by non-linear least squares method
(blue) on the same histogram(left panel);heat map of the posteriors of
the parameters of the abund elements(center panel), heat map of the
posteriors of the parameters of the rare elements(right panel), log2

mean value (x axes), influx values (y axes).
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FIGURE A.9: ABC results of mixture model fit of Cow
RSA.Comparison of the expected values from the mean parameters
obtained with the ABC (black) to the Preston plot of the RSA and
to the expected values obtained by non-linear least squares method
(blue) on the same histogram(left panel);heat map of the posteriors of
the parameters of the abund elements(center panel), heat map of the
posteriors of the parameters of the rare elements(right panel), log2

mean value (x axes), influx values (y axes).

FIGURE A.10: ABC results of mixture model fit of Dog
RSA.Comparison of the expected values from the mean parameters
obtained with the ABC (black) to the Preston plot of the RSA and
to the expected values obtained by non-linear least squares method
(blue) on the same histogram(left panel);heat map of the posteriors of
the parameters of the abund elements(center panel), heat map of the
posteriors of the parameters of the rare elements(right panel), log2

mean value (x axes), influx values (y axes).
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FIGURE A.11: ABC results of mixture model fit of Rat
RSA.Comparison of the expected values from the mean parameters
obtained with the ABC (black) to the Preston plot of the RSA and
to the expected values obtained by non-linear least squares method
(blue) on the same histogram(left panel);heat map of the posteriors of
the parameters of the abund elements(center panel), heat map of the
posteriors of the parameters of the rare elements(right panel), log2

mean value (x axes), influx values (y axes).

FIGURE A.12: ABC results of mixture model fit of RhesuSrheMac3
RSA.Comparison of the expected values from the mean parameters
obtained with the ABC (black) to the Preston plot of the RSA and
to the expected values obtained by non-linear least squares method
(blue) on the same histogram(left panel);heat map of the posteriors of
the parameters of the abund elements(center panel), heat map of the
posteriors of the parameters of the rare elements(right panel), log2

mean value (x axes), influx values (y axes).
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Appendix B

In this Appendix are reported some supplementary results and special cases of the
model described in Chapter 3.

B.1 Examples of relations between b(τ) and h(Dv)

The motion of the center of mass of an ensemble of Brownian particles is determined
by the distributions b(τ) and h(Dv). When fluctuation dissipation theorem holds for
each particle:

τ =
m

6πνr
, Dv =

kBT6πνr

m2
. (B.1)

The distributions b(τ) and h(Dv) are determined by the mass and radius distribu-
tions of the heterogeneous ensemble. If the radius is a constant these distributions
are correlated and determined by the same distribution of masses ρ(m) ∼ b(τ), while
h(Dv) ∼ h(1/m2). Then we have:

h(Dv) =
m3

2
ρ(m)|m= 1√

Dv

. (B.2)

Thanks to this relation several special cases can be derived.
Interesting distributions are the generalized gamma distribution:

γdα,β(D) =
β

dαΓ(α/β)
Dα−1e−(D/d)β , (B.3)

and its inverse:

γ̃dα,β(x) =
βdαβ

Γ(α)
D−αβ−1e−(d/x)β . (B.4)

If h(Dv) = γ
D∗v
α,β(Dv) then:

ρ(m) = mα′(β′−1)γ̃m
∗

α′,β′(m) , (B.5)

where α′ = 2α, β′ = 2β, m∗ = 1/
√

(D∗v) and m = 1/
√

(Dv).
In case of β = 1/2, ρ(m) is an inverse gamma distribution with α′ = 2α.



108 Appendix B. Appendix B

Another interesting case is the h(Dv) associated to the PDF b(τ) suggested to
obtain anomalous time scaling of the MSD, for the mass we have:

ρ(m) =
α

Γ(1/α)

1

m
L−αα (m) , (B.6)

the corresponding PDF for diffusivity is:

h(Dv) =
α

Γ(1/α)

1

2Dv
L−αα

(
1/
√

(Dv)
)
. (B.7)

When h(Dv) = Mα(Dv), Mainardi-Wright function, then:

ρ(m) =
2

α
m2/α−1L−αα (mα/2) . (B.8)

B.2 Special case with harmonic Langevin oscillator

Subdiffusion is related to the presence of some negative part in the VACF. The iden-
tity

∫∞
0 R(t) = 0, is satisfied for an harmonic potential. It correspond to add a term

−mω2
0X in the Langevin equation.

m
dV

dt
(t) = −m

τc
V (t)−mω2

0X(t) + Γξ(t) , (B.9)

The VACF becomes

R(t) =

∫ ∞
0

Dvh(Dv)dDv

∫ ∞
0

τce
− t

2τc

[
cos(ω1t)−

1

2ω1τc
sin(ω1t)

]
b(τc)dτc (B.10)

where ω1 =
√
ω2

0 − 1
4τ2
c

we considered an harmonic potential with constant characteristic frequency of
oscillation ω0, that could be related to the application of a constant external field to
the system.

It results that in the long time limit the velocity correlatiom function scales with
time as the power law: limt→∞R(t) ∝ t−ν , ν = 2 − α. Because the time scale pa-
rameter is stochastic, some components are subjected to a stronger potential then
others. However since fractional behavior is associated to the tail of the distribu-
tion of the timescales, the oscillator term is always not negligible for the trajectories
determining the dynamics.{

τc >
1

2ω0
, oscillation (dumped)

τc <
1

2ω0
, over dumped

. (B.11)

If the characteristic oscillator frequency is correlated to the timescale of the single
process the behavior of the system could be much more complicated and lead to
completely different behaviours. We may consider as example that the coefficient of
the viscous drag and of the oscillator have the same order of magnitude: ω0 =

√
c
τc

,

where c is a positive real constant of order 1. We obtain ω1 =
√

4c−1
2τc

= a
2τc

. We
distinguish the corresponding underdumped behavior (oscillations) when a ∈ <
and overdamped behaviour (no oscillations) when a ∈ =, in term sof the constant c
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we have: {
c > 1

4 , oscillation (dumped)
c < 1

4 , over dumped
, (B.12)

then depending on the value of the constant we should observe always a dumped
or an over dumped regime.

Then we may rewrite:

R(t) =

∫ ∞
0

Dvh(Dv)dDv

∫ ∞
0

τce
− t

2τc

[
cos(

a

2τc
t)− 1

a
sin(

a

2τc
t)

]
b(τc)dτc (B.13)

We may rewrite the trigonometric functions in their exponential forms (cos(x) =
eix+e−ix

2 ,sin(x) = eix−e−ix
2i ), then the integral result the sum of two parts:

R(t) =

∫ ∞
0

Dvh(Dv)dDv

∫ ∞
0

1

2ia

[
(1 + ia)e−

t(1+ia)
2τc − (1− ia)e−

t(1−ia)
2τc

]
τcb(τc)dτc

(B.14)
until a 6= 0 it can be solved in the same way as the super diffusive case. so we have:
thanks to the integral rapresentation of the extremal Levy density distribution which
characterize the fractional scaling of b(τc)

L−αα (x) =
1

αx

1

2πi

∫ γ+i∞

γ−i∞

Γ(s/α)

Γ(s)
xsds, 0 < α < 1 , (B.15)

hence we have:

R(t) = 〈DV 〉
α

Γ(1/α)

∫ ∞
0

1

2ia

[
(1 + ia)e−

t(1+ia)
2τc − (1− ia)e−

t(1−ia)
2τc

]
L−αα

(
τc
τ∗

)
dτc

= 〈DV 〉
α

Γ(1/α)

∫ ∞
0

1

2ia

[
(1 + ia)e−

t(1+ia)
2τc − (1− ia)e−

t(1−ia)
2τc

] [ 1

α

1

2πi

∫ γ+i∞

γ−i∞

Γ(s/α)

Γ(s)

(
τc
τ∗

)(s−1)

ds

]
dτc

= 〈DV 〉
α

Γ(1/α)

1

α

1

2πi

∫ γ+i∞

γ−i∞

Γ(s/α)

Γ(s)

[∫ ∞
0

1

2ia

[
(1 + ia)e−

t(1+ia)
2τc − (1− ia)e−

t(1−ia)
2τc

]( τc
τ∗

)s−1
dτc

]
ds

ξ1 =
t(1 + ia)

2τc
, ξ2 =

t(1− ia)

2τc

= 〈DV 〉〈τc〉
1

α

1

2πi

∫ γ+i∞

γ−i∞

Γ(s/α)

Γ(s)

1

2ia
·

·
[
(1 + ia)

∫ ∞
0

e−ξ1ξ−1−s1

(
t(1 + ia)

2τ∗

)s
dξ1 − (1− ia)

∫ ∞
0

e−ξ2ξ−1−s2

(
t(1− ia)

2τ∗

)s
dξ2

]
ds

= 〈DV 〉〈τc〉
1

α

1

2πi

1

2ia
·

·
[
(1 + ia)

∫ γ+i∞

γ−i∞

Γ(s/α)Γ(−s)
Γ(s)

(
t(1 + ia)

2τ∗

)s
ds− (1− ia)

∫ γ+i∞

γ−i∞

Γ(s/α)Γ(−s)
Γ(s)

(
t(1− ia)

2τ∗

)s
ds

]
,

(B.16)

analogously to the superdiffusive case it can be solved through the residues the-
orem considering the poles s/α+ 1 = −n or s = n, with n = 0, 1, 2..∞.
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Solving for the poles s/α+ 1 = −n it can be written as:

R(t) = 〈DV 〉〈τc〉
∞∑
n=1

(−1)n

n!

Γ(αn)

Γ(−αn)

(
t

2τ∗

)−αn 1

2ia

[
(1 + ia)−αn+1 − (1− ia)−αn+1

]
.

(B.17)

Then we may distinguish 2 cases, the dumped and the overdumped.
When a ∈ <we have:

R(t) = 〈DV 〉〈τc〉
∞∑
n=1

(−1)n

n!

Γ(αn)

Γ(−αn)

(
t

2τ∗

)−αn 1

a

[
ρ−αn+1sin(ϕ(1− αn))

]
, (B.18)

where ρ =
√

1 + a2 and ϕ = arctan(a)
When t→∞ only the first term survives and we find:

R(t) = 〈DV 〉〈τc〉
Γ(α+ 1)

Γ(1− α)

(
t

τ∗

)−α 1

a

[
ρ1−αsin(ϕ(1− α))

]
, (B.19)

which is enough to obtain the desired scaling of the MSD σ2
x(t) ∝ tφ, with φ = 2−α.

for the over dumped a ∈ = and we obtain:

R(t) = 〈DV 〉〈τc〉
∞∑
n=1

(−1)n

n!

Γ(αn)

Γ(−αn)

(
t

2τ∗

)−αn 1

2|a|
[
(1 + |a|)−αn+1 − (1− |a|)−αn+1

]
,

(B.20)

the leading term for the limit t→∞ is:

R(t) = 〈DV 〉〈τc〉
(

t

2τ∗

)−α 1

2|a|
[
(1 + |a|)−α+1 − (1− |a|)−α+1

]
(B.21)

Considering the poles in the other semi-plane, s = n with n = 0, 1, 2..∞, for the
short time limit we have:

R(t) = 〈DV 〉〈τc〉
1

α

∞∑
n=0

(−1)n

n!

Γ(n/α)

Γ(n)

(
t

2τ∗

)n
.

1

2ia

[
(1 + ia)n+1 − (1− ia)n+1

]
(B.22)

converges to R(0) = 〈DV 〉〈τc〉.
A possible explanation to this behavior is that changing the timescale as well the

oscillator frequency is equivalent to a time streching of each component determined
by its characteristic timescale, i.e a large part of the components are so streched re-
spect to the others that never reach negative values also if at their own time scale we
should observe oscillation.

B.2.1 Solution via Laplace Transform

We can demonstrate the same result working with its LT.



B.2. Special case with harmonic Langevin oscillator 111

The laplace transform can be applied only if the integral over τc has finite value,
which can be demonstrated numerically or analitically.Then we have:

L[R(t)](s) = 〈Dv〉
∫ ∞

0

s

s2 + s/τc + c/τ2
c

τcb(τc)dτc

= 〈Dv〉
∫ ∞

0

sτ2
c

s2τ2
c + sτc + c

α

Γ(1/α)
L−αα (τc/τ∗)dτc

(B.23)

This integral takes the form:∫ ∞
0

g(xy)h(y)yz−1dy =
1

2πi

∫
L
x−qg∗(q)h∗(z − q)dq (B.24)

considering x = sτ∗, y = τ = τc/τ∗, z = 2, g(τ) = 1
τ2−τ+c

, h(τ) = τL−αα (τ). g∗(q),
h∗(q) are the Mellin transforms of the correspective functions. g(τ) can be rewritten
as :

g(τ) =
1

τ2 − τ + c
=

1

(τ + 1/2)2 − (1/4− c)
=

1

(τ + 1/2−
√

1/4− c)(τ + 1/2 +
√

1/4− c)

=
1

(τ +A)(τ +B)
.

(B.25)

The Mellin Transform of g(τ) is g∗(q) = πcsc(πq)A
q−1−Bq−1

B−A = Γ(q)Γ(1−q)Aq−1−Bq−1

B−A ,
with |arg(A)|, |arg(B)| < π.

The Mellin Trasform of h(τ) is h∗(q) = 1
α

Γ(−q/α)
Γ(−q) .

The expressions for Laplace and Mellin trasforms have been taken from the Bate-
man project which collect a huge number of transforms for several type of functions.

So we have:

L[R(t)](s) = 〈Dv〉
α

Γ(1/α)
τ3
∗ s

1

2πi

∫
L

(τ∗s)−qg∗(q)h∗(2− q)dq

= 〈Dv〉
α

Γ(1/α)
τ2
∗

1

2πi

∫
L

(τ∗s)1−qΓ(q)Γ(1− q)A
q−1 −Bq−1

B −A
1

α

Γ((−(2− q)/α)

Γ(q − 2)
dq

= 〈Dv〉
α

Γ(1/α)
τ2
∗

1

2πi

∫
L

[(τ∗s
B

)1−q
−
(τ∗s
A

)1−q] 1

B −AΓ(2− q)Γ((1− (2− q)/α)dq

(B.26)

This integral is then written as residues serie for the poles q = 2 − α(n + 1), in
order to obtain the long time limit behaviour of the VACF (t → ∞, s → 0), or for
q = 1 + n, to obtain its short time limit behavior (t→ 0, s→∞).
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Then for the long time limit we have:

lim
t→∞

R(t) = lim
s→0

s · L[R(t)](s)

= lim
s→0

s · 〈Dv〉〈τc〉τ∗
∞∑
n=0

α
(−1)n

n!
Γ(α(n+ 1)) (τ∗s)

−1+α(n+1)
[
B+1−α(n+1) −A1−α(n+1)

] 1

B −A

= 〈Dv〉〈τc〉
Γ(α+ 1)

B −A

(
1

τ∗s

)−α [
B1−α −A1−α]

∼ 〈Dv〉〈τc〉
Γ(α+ 1)

B −A

(
t

τ∗

)−α [
B1−α −A1−α]

(B.27)

where A = 1/2−
√

1/4− c and B = 1/2 +
√

1/4− c, that can be written in term
of a =

√
4c− 1: A = 1−ia

2 ,B = 1+ia
2 . Then:

lim
t→∞

R(t) ∼ 〈Dv〉〈τc〉
Γ(α+ 1)

B −A

(
t

τ∗

)−α [
B1−α −A1−α]

∼ 〈Dv〉〈τc〉
Γ(α+ 1)

2ia

(
t

2τ∗

)−α [
(1 + ia)1−α − (1− ia)1−α] (B.28)

B.2.2 Failure of confinment

The failure of the confining behavior of an harmonic potential with timescale depen-
dent characteristic oscillation frequency can be demonstrated by explicit calculation
of the expression:

∫∞
0 R(t), that is expected to be zero in case of subdiffusive regime

and infinity in case of superdiffusive regime. This integral can be calculated thanks
to the relation with Laplace Transforms:

∫∞
0 R(t) = L[R(t)](s)|s=0.

When the coefficient of the viscous drag and of the oscillator have the same order
of magnitude, ω0 =

√
c
τc

, we have:

L[R(t)](s) = 〈Dv〉
∫ ∞

0

sτ2
c

s2τ2
c + sτc + c

α

Γ(1/α)
L−αα (τc/τ∗)dτc (B.29)

that for s→ 0 leads to an indetermined form 0 · ∞.
When the characteristic oscillation frequency is constant this does not happen

because we have:

L[R(t)](s) = 〈Dv〉
∫ ∞

0

sτc
s2τc + s+ ω0τc

α

Γ(1/α)
L−αα (τc/τ∗)dτc

= s · 〈Dv〉〈τc〉/ω0

(B.30)
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