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Abstract 33 

 34 

The gut microbiota assembly during the very first days of life plays a pivotal role in the education of 35 

the immune system and in the building of a healthy status later in life. Besides the mode of delivery, 36 

also the feeding type and the gestational age have an impact on the gut microbiota composition. For 37 

this reason, by means of next-generation sequencing of the 16S rRNA gene on Illumina MiSeq, we 38 

characterized and compared the intestinal bacterial community in 2 cohorts of infants, 1 constituted 39 

by 36 healthy breast-fed infants born full-term and the other constituted by 21 infants born moderate 40 

to late pre-term (32 to 37 weeks) receiving different types of feeding (mother breast milk, human 41 

breast milk from donor and formula). The first cohort was sampled at 20th day of life, whilst the 42 

second one was sampled longitudinally from birth to 30th day of life. In addition, also the infant’s 43 

saliva and the mother’s milk were sampled and sequenced. 44 

The characterization of the 3 ecosystems in full-term infants led to the hypothesis that the mother 45 

milk, together with the microorganisms that reside in the baby’s mouth, may act as seeding 46 

community and may participate to infant gut microbiota assembly. On the other hand, in the 47 

moderately-to late pre-term cohort, the extreme diversity of the infant’s clinical history provokes a  48 

tremendous inter-individual variability. Nevertheless, milk and saliva microbiological structure s 49 

resembled the ones of full-term cohort. The gut microbiota instead presented a very different 50 

composition and it is plausible that its establishment is strongly influenced by the infant’s clinica l 51 

history and environmental bacteria than the mutual relationship with the mother. 52 

  53 
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Introduction 54 

 55 

Almost 150 years have passed since Il'ja Il'ič Mečnikov theorized that health could be enhanced by 56 

manipulating the gut microbiota (GM). Where do we stand today? Many studies have been carried 57 

out to investigate the characteristics the intestinal community and of the other microbial ecosystems 58 

that inhabit human body. Our organism contains up to 27 sites where a microbial community can be 59 

found (Costello et al., 2009). The gastrointestinal tract is fully colonized by microorganisms, starting 60 

from the mouth down to the colon. The oral cavity represents the first access to the gastrointest ina l 61 

tract and it communicates perpetually with the external environment. In the mouth, many different 62 

ecosystems can be found: salivary, gingival, lingual and mucosal. The salivary microbiota (SM) of a 63 

healthy adult is scarcely biodiverse and it is mainly constituted by genus Streptococcus (species S. 64 

salivarius and S. mitis), but also the genera Neisseria, Rothia and Prevotella are present (Yun-ji Kim 65 

et al., 2016; Zaura et al., 2014). Yet the most dense and biodiverse of these communities present in 66 

the GIT resides in the colon, where it reaches the concentration of 1012 CFU/g of luminal content. 67 

When the GM is described at a compositional level, only a limited number of phyla is found: 68 

Firmicutes, Actinobacteria, Bacteroidetes, Proteobacteria, and Verrucomicrobia, with Firmicutes and 69 

Bacteroidetes accounting for up to 90% of the ecosystem (Costello et al., 2009). On the contrary, if 70 

we look at a lower phylogenetic level, the biodiversity explodes, reaching more than 1000 species  71 

(Qin et al., 2010). The microbial community that resides in our gut is very unique, describing a 72 

personal fingerprint. The GM provides the host with metabolic functions, such as the digestion of 73 

complex polysaccharides, production of vitamins, cofactors and other secondary metabolites 74 

(Bäckhed et al., 2004). There is a wide range of metabolites produced that depend on the 75 

macronutrient ingested. The endpoint of polysaccharide fermentation is mainly represented by short-76 

chain fatty acids (SCFAs), namely acetic, propionic and butyric. They participate in the pathway that 77 

regulates appetite and play a role in host nutrition and energy homeostasis, controlling energy 78 

production and storage (Russel et al., 2013). On the other hand, when amino acids are metabolized 79 

by the GM, we obtain indolic and phenolic compounds, together with methylamines, which are linked 80 

to obesity, type 2 diabetes and hepatic steatosis (Lin et al., 2017). 81 

Many researches have also demonstrated how crucial the GM is in educating the immune system 82 

starting from the very beginning of life, by modulating the generation of an equilibrium between anti-  83 

and pro-inflammatory response when exposed to bacteria (Berrington et al., 2013). An impaired GM 84 

leads to a defective communication with the immune system, causing persisting effect on host 85 

physiology later in life even after GM resembling (Arrieta et al., 2014). 86 
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The gut colonization was thought to start during delivery, but recently Aagard and colleagues 87 

demonstrated that microbial DNA belonging to the species Escherichia coli, Bacteroides spp., 88 

Neisseria lactamica, Staphylococcus epidermidis and Propionibacterium acnes is found in the 89 

placenta (Aagard et al., 2014). Nevertheless, the mode of delivery, together with gestational age at 90 

birth and type of nutrition, play a pivotal role in the bacterial establishment at early stage. The most 91 

favourable condition for the infant health status is being born at term with vaginal delivery and being 92 

fed exclusively with maternal breast milk. However, statistics says that in Italy in 2015, 34.1% of the 93 

delivery were C-sections (Italian Health Ministry Data). Vaginal-delivered infant GM is different 94 

from the C-section one (Dominguez-Bello et al., 2010; Gritz and Bhandari, 2015): while vaginally-95 

born infants have a gut microbial composition enriched in Bacteroides, Bifidobacterium, 96 

Parabacteroides, Escherichia and Shigella (Bäckhed et al., 2015) and they present also bacteria 97 

deriving from maternal vaginal microbial community, such as Lactobacillus and Prevotella species 98 

(Gritz and Bhandari, 2015), infants born via C-section are instead colonized by epidermal and 99 

environmental species, namely Clostridium, Staphylococcus, Propionobacterium, and 100 

Corynebacterium and, when they are compared to the vaginally-born, they have lower levels of 101 

anaerobes, in particular Bacteroides and Bifidobacterium (Brugman et al., 2015). These differences 102 

though smooth over with the introduction of milk. Newborns can be fed with maternal breast milk, 103 

human breast milk from donor and formula. Human breast milk is thought to be the most beneficia l 104 

for the baby’s health and also for the GM establishment (Agostoni et al., 2009). It contains a mixture 105 

of nutrients and molecules, such as immunoglobulins (IgA), carbohydrates, fatty acids and lactoferr in 106 

(Jain and Walker, 2014). Among the glucidic fraction, the human milk oligosaccharides (HMOs) 107 

represent one of the most investigated, because of its capacity to selectively stimulate the growth of 108 

specific bacteria in the infant gut. Human milk has not only a prebiotic function, but it has been 109 

suggested that could act also as microbes source, being enriched in Streptococcaceae, 110 

Bifidobacteriaceae and Staphylococcaceae (Biagi et al., 2017). The origin of these bacteria has not 111 

been elucidated yet. An enteromammary pathway has been suggested by Perez and colleagues (2006) 112 

and they support the idea that fragments of DNA, antigens and microbial protein may be transported 113 

via blood by dendritic cells to the mammary gland and be secreted in the milk. Throughout the milk, 114 

the mother starts to educate the immature immune system of the baby to the late formation of a 115 

microbial community. Another theory explains the presence of bacteria as a contamination coming 116 

from the infant’s mouth, that inoculate milk duct during suction (Biagi et al., 2017). Infants receiving 117 

nourishment from the mother display a GM structure dominated by species of Bifidobacterium and, 118 

when compared to formula-fed infants, show lower relative abundance of Enterobacteriaceae. 119 

Formula-fed ones also show the presence of Escherichia coli, Clostridium difficile, Bacteroides, 120 



5 
 

Prevotella, and Lactobacillus (Jost et al., 2012). C-section is a more common practice in premature 121 

birth, when it is essential to give birth to the foetus due to diseases affecting either the mother or the 122 

baby, as well as uterine infections or breakage of the amniotic sac. A baby born premature is usually 123 

described according to the gestational age, that is the weeks dating from the first day of the mother's 124 

last menstrual period (NIH, US library of medicine). The World Health Organization has drawn up a 125 

classification to define newborns according to gestational age: 126 

• extremely pre-term (<28 weeks); 127 

• very pre-term (28 to <32 weeks); 128 

• moderate to late pre-term (32 to <37 weeks); 129 

• full-term (37 to 40 weeks). 130 

It is estimated that every year in Italy around 40.000 babies are born pre-term (Italian Society of 131 

Neonatology). Pre-term infants display a different gut colonization when compared to full term ones 132 

(Arboleya et al., 2012) and it is influenced not only by the mode of delivery (mainly C-section) and 133 

nutrition (mainly with a mixture of human breast milk and formula), but also by an impaired feeding 134 

process, due to the delay in the full establishment of coordinated latch, suckling, swallowing and 135 

breathing (Mizuno et al., 2003), incomplete oesophageal peristalsis (Staiano et al., 2007) and altered 136 

gastric emptying (Riezzo et al., 2000). These newborns are exposed to many complications, such as 137 

necrotizing enterocolitis (NEC) and sepsis (Gregory et al., 2016). NEC is characterized by intestina l 138 

inflammation that can lead to tissue necrosis and sepsis. Its onset appears to be multifactorial: gut 139 

immaturity, intestinal damage or injury, enteral feeding and impaired bacterial colonization play a 140 

role, although the exact pathogenesis remains unidentified. The role of GM establishment in NEC has 141 

been investigated by a meta-analysis carried out by Pammi and colleagues (2017) and they 142 

highlighted that the onset of the disease is predated by an increase of Proteobacteria and a concomitant 143 

decrease of Firmicutes and Bacteroidetes. Moreover, maternal breast milk administration is 144 

considered protective against NEC onset (Meinzen-Derr et al., 2009). 145 

Although many researches focus on GM features in very and extremely pre-term infants, moderately 146 

to late pre-term is considered a neglected category, because poorly investigated. Even if they have a 147 

much lower risk of medical complications than more premature infants, they still experience higher 148 

rates of infant morbidity and mortality, as well as higher risks of childhood disabilities (Shapiro-149 

Mendoza et al., 2012) when compared to full term babies. 150 

For these reasons it is important to focus the research on this group, describing their gut ecosystem 151 

from birth until weaning, in the frame of milk microbial composition. Finally, in order to understand 152 

how much these babies differ from the normal healthy situation, it is crucial to compare them with 153 

full term vaginally delivered babies, who are exclusively breastfed. This approach allows the 154 
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identification of the bacterial genera considered “health-promoting” that are lacking in the GM of 155 

pre-term infants, paving the way to the development of an individual probiotic intervention to restore 156 

the ecosystem. 157 

  158 
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Project outline 159 

 160 

It’s becoming always clearer that disturbances that strike the GM in newborns affect health status 161 

later in life. Many factors can interfere with a correct GM establishment, such as gestational age, 162 

mode of delivery and type of feeding. According to gestational age, we can divide the newborns in 4 163 

categories (WHO definition): 164 

• extremely pre-term (<28 weeks) 165 

• very pre-term (28 to <32 weeks) 166 

• moderate to late pre-term (32 to <37 weeks). 167 

• full-term (37 to 40 weeks) 168 

Being born full-term with vaginal delivery and being fed exclusively with mother breast milk is 169 

considered the most desirable condition for health and for a correct GM establishment. For this 170 

reason, the first part of this research work was addressed to the characterization of the gut microbia l 171 

community of 36 healthy, vaginally delivered and full-term babies, who were exclusively breastfed 172 

at 20th day of life. In addition, also saliva microbiota from the baby and breast milk from the mother 173 

were analysed, in order to understand the relationship between the infant GM and the mother milk 174 

microbial ecosystem, in the frame of the mouth community, which acts as mandatory connection. 175 

Consequently, our focus moved to infants who are born between 32 to 37 weeks (moderate to late 176 

pre-term). This group is considered a neglected one, because yet poorly investigated. According to 177 

the OMS report on pre-term births drawn up in 2012, the total number of premature infants was of 178 

131,296,785 and the moderate to late pre-term category accounted for the 84.3%. These newborns do 179 

not have the typical clinical progress of full term babies, having high probability of developing many 180 

complications, in particular necrotizing enterocolitis (NEC) and sepsis. Nevertheless, their 181 

complication onset rate is smaller when compared to the very and extremely pre-term ones. GM 182 

assembly appears to play a pivotal role in the development of such complications and for this reason 183 

we decided to characterize the gut microbial community establishment in a cohort of 21 neonates 184 

sampled longitudinally. From these babies, in addition to faecal samples, also a saliva swab was taken, 185 

together with an aliquot of mother’s milk (when present) at different timepoints, from birth until 186 

weaning, collecting a total number of 348 samples. The microbial community of all these samples 187 

was sequenced using Illumina platform, then characterized and described from a phylogenetic point 188 

of view; moreover, the impact of breastfeeding was examined. Finally, the comparison between full 189 

term and pre-term babies at 20 days of life was performed in order to decipher the differences between 190 

these 2 conditions. 191 

  192 
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Experimental procedures 193 

 194 

Total bacterial DNA extraction from complex matrix 195 

 196 

Total bacterial DNA was extracted from feces using the DNeasy Blood and Tissue Kit (QIAGEN, 197 

Hilden, Germany) with a modified protocol (Yu and Morrison, 2004). Briefly, 250 mg of stool 198 

samples were resuspended in 1 mL of lysis buffer (500 mM NaCl, 50 mM Tris–HCl pH 8, 50 mM 199 

EDTA and 4% SDS) and treated with 3 beads-beating steps in FastPrep instrument (MP Biomedica ls, 200 

Irvine, CA) at 5.5 movements per sec for 1 min and kept in ice among treatments. Samples were 201 

centrifuged at full speed for 5 min at 4°C, then 260 μl of 10M ammonium acetate were added and the 202 

samples incubated for 5 min in ice. After 10 min of centrifugation at full speed at 4°C the supernatants 203 

were collected and 1 volume of isopropanol added. Samples were mixed and incubated in ice for 30 204 

min. DNA was collected by 15 min of centrifugation at full speed at 4°C and the pellet washed with 205 

70% ethanol. The pellet was then resuspended in 100 μl of TE buffer and RNA and proteins removed 206 

treating the samples respectively with 2 μl of DNase-free RNase (10 mg/ml) for 15 min at 37°C and 207 

15 μl of proteinase K at 70°C for 10 min. DNA was further purified using QIAamp Mini Spin columns 208 

(QIAGEN) following the manufacturer’s instructions. For milk samples, the same protocol described 209 

above for fecal samples was applied, preceded by the centrifugation of 2 ml of sample at full speed 210 

for 10 min at 4°C. For DNA extraction from oral swabs, the cotton swab was suspended in 500 μl of 211 

PBS, vortexed for 1min and sonicated for 2 min. These 2 steps were repeated twice, then 2 cycles of 212 

bead-beating with FastPrep at 5.5 movements per sec for 1min, with 200 mg of glass beads, were 213 

applied. Cotton residues were removed and the debris pelleted by centrifugation at 9000g for 5 min. 214 

The supernatant was discarded and the pellet resuspended in 180 μl of enzymatic lysis buffer 215 

(QIAGEN). Samples were then treated according to the DNeasy Blood&Tissue kit (QIAGEN) 216 

instructions, following the protocol for Gram positive bacteria. Extracted DNAs were quantified 217 

using the NanoDrop ND-1000 spectrophotometer (NanoDrop Technologies, Wilmington, DE). 218 

  219 

16 rRNA gene amplification and sequencing 220 

 221 

For each sample, the V3-V4 region of the 16S rRNA gene was PCR amplified in 25 μl final volume 222 

containing 5 μl of microbial DNA (diluted to 5 ng/μl for fecal samples, undiluted for milk and oral 223 

swab), 2X KAPA HiFi HotStart ReadyMix (KAPA Biosystems, Resnova, Rome, Italy), and 200nM 224 

of S-D-Bact-0341-b-S-17/S-D-Bact-0785-a-A-21 primers (Klindworth et al., 2013) carrying Illumina 225 
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overhang adapter sequences. PCR conditions set up as follows: initial denaturation at 95°C for 3 226 

minutes, 25 cycles of denaturation at 95°C for 30 seconds, annealing at 55°C for 30 seconds, and 227 

extension at 72°C for 30 seconds, and a final extension step at 72°C for 5 minutes. PCR amplicons 228 

were purified with a magnetic bead-based clean-up system (Agencourt AMPure XP; Beckman 229 

Coulter, Brea, CA). Indexed libraries were prepared by limited-cycle PCR using Nextera technology 230 

and further cleaned up with AMPure XP magnetic beads (Beckman Coulter). Libraries were pooled 231 

at equimolar concentrations (4nM), denatured and diluted to 6 pmol/L before loading onto the MiSeq 232 

flow cell. Sequencing on Illumina MiSeq platform was performed by using a 2×300 bp paired end 233 

protocol, according to the manufacturer’s instructions (Illumina, San Diego, CA).  234 

 235 

Bioinformatics 236 

 237 

Data analysis is performed using a pipeline combining PANDAseq (paired-end assembler for 238 

Illumina sequences) (Masella et al., 2012) and QIIME (Quantitative Insights Into Microbial Ecology) 239 

(Caporaso et al., 2010). High-quality reads are filtered and then clustered into operational taxonomic 240 

units (OTUs) at a 0.97 similarity threshold using UCLUST (Edgar, 2010). Taxonomy is assigned 241 

using the RDP (Ribosomal Database Project) classifier against Greengenes database (May 2013 242 

release) and the chimera filtering is performed by discarding all singleton OTUs. Alpha diversity is 243 

measured using the Chao1, observed species and Shannon index metrics. Beta diversity was estimated 244 

by computing Bray-Curtis distances. The distance matrix obtained was used for principal coordinates 245 

analysis (PCoA) and plotted using the rgl and vegan packages of R. 246 

  247 
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Part A: The bacterial ecosystem of mother’s milk and infant’s mouth and gut 248 

 249 

Biagi Elena, Quercia Sara, Aceti Arianna, Beghetti Isadora, Rampelli Simone, Turroni Silvia, Faldella Giacomo, 250 

Candela Marco, Brigidi Patrizia, Corvaglia Luigi 251 

 252 

Published on Frontiers in microbiology in 2017 253 

 254 

Introduction 255 

 256 

The microbiota of individuals with whom a human being has direct and frequent contacts contributes 257 

in shaping its microbial communities (Song et al., 2013; Stahringer et al., 2012). This is even more 258 

true in the case of breastfed infants and their mothers, where the microbial ecosystems of the latter 259 

are the most relevant sources of colonizing microbes for the former (Arrieta et al., 2014). The 260 

progressive building of the infants’ microbiota, especially for what concerns the gut ecosystem, is a 261 

crucial proceeding for educating their immune system to the delicate balance between tolerance and 262 

reactivity that is needed to maintain health throughout the entire human life (Arrieta et al., 2015; 263 

Honda and Littman, 2016; Lynch and Pedersen, 2016). Consequently, the understanding of the 264 

colonization dynamics of the infant’s gut microbiota is not only fascinating from the ecological point 265 

of view, but also incredibly relevant for clinical immunology (Arrieta et al., 2015; Honda and 266 

Littman, 2016). 267 

The infant’s gut microbiota is a highly dynamic community that is progressively and continuous ly 268 

shaped during the first days of life, with nutrition (breast vs. formula feeding) being among the most 269 

relevant drivers for its composition (Gritz and Bhandari, 2015). With its estimated 3 log CFU/ml of 270 

bacterial concentration (Jost et al., 2014), human breast milk is listed among the first sources of 271 

microbes for the infant’s gut ecosystem, together with the mother’s skin, mouth and vaginal tract, in 272 

case of vaginal delivery (Mueller et al., 2015). Research struggles to give a conclusive demonstrat ion 273 

for the origin of the bacteria recovered in human milk: even if a controversial “bacterial entero-274 

mammary pathway” has been proposed (Rodríguez, 2014), contamination by the surrounding skin 275 

microbiota and other environmental sources might also occur. Indeed, facultative anaerobic or 276 

prevalently aerobic species are the major colonizers of the human milk ecosystem: Streptococcus and 277 

Staphylococcus are the most frequently isolated and abundant bacterial groups in milk samples, 278 

together with skin-derived or environmental contaminants (i.e. Propionibacterium and genera of the 279 

Enterobacteriaceae family) (Fitzstevens et al., 2016). However, well-known intestinal probiotic 280 

bacteria (i.e. Bifidobacterium and Lactobacillus) are often retrieved by both molecular and 281 



11 
 

cultivation-based studies (Fitzstevens et al., 2016). Next generation sequencing also allowed the 282 

detection of obligate anaerobic, gut-associated genera, such as Bacteroides, Blautia, Dorea, and 283 

Faecalibacterium (Jost et al., 2013); if alive, these bacteria could act as pioneers in the infant gut for 284 

the construction of the adult gut microbiota, which will begin to settle down at weaning (Rodríguez, 285 

2014). 286 

In this scenario of microbial exchange between mother and child, the baby’s mouth is unavoidab ly 287 

involved, being the obligate transition point for the milk to reach the gastrointestinal tract. The oral 288 

microbiota is a well-characterized portion of the human microbiome. It is usually dominated by 289 

Streptococcus and Staphylococcus in healthy, breastfed term infants; aerobic or facultative anaerobic 290 

bacterial taxa, such as Gemella, Actinomyces, and Veillonella, act as later and minor colonize rs 291 

(Sampaio-Maya and Monteiro-Silva, 2013). The mouth is a particularly exposed ecosystem, 292 

anatomically open to the external environment and continuously in contact with air, food, and water. 293 

For these reasons, this ecosystem needs to cope with chemical, physical and mechanical fluctuations. 294 

The mouth of healthy individuals is not routinely found to be colonized by non-oral microorganisms, 295 

possibly because exogenous bacteria lack in specific adhesins and receptors that would enable them 296 

to bind to oral surfaces, or are excluded by immune mechanisms (Wade, 2013). On the contrary, 297 

evidences of seeding of the baby’s gut by the oral microbiome have been provided (Costello et al., 298 

2013; Ding and Schloss, 2014). 299 

In this frame, it is crucial to include the bacteria inhabiting the infant’s oral cavity in the complex 300 

mechanism of bacterial transfer between the mother’s milk microbiota and the infant’s gut ecosystem. 301 

Indeed, the oral ecosystem might contribute in seeding the gut both directly, through deglutition, and 302 

indirectly, by contaminating the mother’s milk ducts, during suction.  303 

In an attempt to decipher the relationship between the mother’s milk ecosystem and the infant’s 304 

microbiome, we analyzed, to our knowledge for the first time, the microbial composition of oral, gut 305 

and milk ecosystems in a small, yet very homogeneous, cohort of 36 healthy mother-infant pairs. By 306 

limiting the influence of confounding variables (e.g. delivery mode, gestational age), our find ings 307 

shed some light on the relevance of bacterial sharing between these ecosystems. 308 

 309 

Subjects recruitment 310 

 311 

The Nursery of S. Orsola-Malpighi Hospital in Bologna, Italy, recruited mother-infant pairs meeting 312 

the following criteria: (i) vaginal delivery at term (≥37 weeks gestation), (ii) exclusive breastfeeding 313 

during the sampling period, (iii) no antibiotic/probiotic exposure of either the mother or the infant 314 
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during pregnancy, intrapartum or postnatally. Infants who had or developed clinical conditions that 315 

required hospitalization were excluded. 316 

Written informed consent was obtained, in accordance with the Declaration of Helsinki, from each 317 

mother before the mother-infant pair was discharged from the nursery (48-72 hours after delivery). 318 

Follow-up visits at 20 days of life were scheduled in order to obtain a neonatal fecal sample, two 319 

neonatal oral swabs (before and after breastfeeding), and a fresh mother milk sample. Feces were 320 

collected from diapers using a standard sterile collection tube. Milk samples were collected with the 321 

aid of a breast pump into sterile plastic tubes; prior to collection, mothers were asked to wash the 322 

nipple and mammary areola with soap and water. Oral samples were obtained by gently swabbing a 323 

sterile cotton-tipped applicator on the inside of the infant’s cheek. Samples were immediate ly 324 

delivered to the laboratory using cold packs, then split into aliquots ready for DNA extraction and 325 

frozen within few hours from collection. Samples were thawed in batches for processing. All samples 326 

were processed within 4 months of receipt. Demographic and clinical data were recorded in a specific 327 

case report form. The study was approved by the ethics committee of the S. Orsola-Malpighi Hospital 328 

in Bologna (study protocol 53/2014/U/Tess). Methods were carried out in accordance with the 329 

approved guidelines. 330 

 331 

Experimental procedure and statistics 332 

 333 

Samples processing were conducted as described in “Experimental procedure”. Statistics was 334 

performed using R software (https://www.r-project.org/) and the libraries vegan and made4. 335 

Weighted and unweighted UniFrac distances were used for Principal Coordinates Analyses (PCoA), 336 

and the significance of separation was tested by permutational multivariate analysis of variance using 337 

the function “adonis” of the vegan package, after testing for homogeneity of dispersion using the 338 

function “betadisper”. Wilcoxon test was used to assess significant differences between two groups 339 

of samples; adaptations for paired samples were used when necessary. Kruskal-Wallis test was used 340 

for multiple comparisons, followed by Tukey post-hoc test when appropriate. P values were corrected 341 

for multiple comparisons using the Benjamini-Hochberg method. P<0.05 was considered as 342 

statistically significant. Correlation between datasets was tested by using the Kendall method.  343 

 344 

Results and discussion 345 

 346 

https://www.r-project.org/
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Thirty-six mother-infant pairs were included in the study. All infants were vaginally delivered and 347 

exclusively breastfed. Neither infants nor mothers had received any antibiotics or probiotics until the 348 

sampling date. One-hundred-forty-three samples were collected 20 days after delivery: 36 mother’s 349 

milk samples, 36 infant’s fecal samples, and 71 infants’ oral swabs (35 pairs of pre and post 350 

breastfeeding samples plus one unpaired pre-breastfeeding sample). 351 

The extracted bacterial DNA was phylogenetically characterized by 16S rRNA gene (V3-V4 region) 352 

Illumina sequencing. A total of 1,475,619 high-quality reads was obtained with a mean of 353 

10,319±3,364 reads per sample. Rarefaction curves obtained with Shannon and Chao1 metrics 354 

approximated the saturation level after 3,000 reads. Reads were clustered in 7,524 operational 355 

taxonomic units (OTUs) at 97% of identity. OTU table and taxa summary tables at family and genus 356 

level are available as Supplementary Tables.  357 

 358 

 359 
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M, mother’s milk ecosystem; Opre, infant’s oral ecosystem before breastfeeding; Opost, infant’s oral ecosystem after breastfeeding; F, infant’s fecal ecosyst em. 

 

Table A1. OTU sharing among the bacterial ecosystem of the infant’s mouth and feces, and the mother’s milk. The OTUs most frequently (>40% of the mother-infant pairs) 

shared by at least two bacterial ecosystems are shown, with assigned taxonomy. Only OTUs present at a relative abundance >0.1% were considered. Assigned taxonomy is reported 

using Greengenes syntax.  

 

Mother-infant pairs (% ) in which the same OTU  

was present in ≥2 ecosystems  

 

OTU ID M-Opre-F M-Opost-F M-Opre M-Opost M-F Assigned Taxonomy (within Bacteria kingdom) 

24152 23 20 31 20 46 
p_Actinobacteria; c_Actinobacteria; o_Bifidobacteriales; f_Bifidobacteriaceae; g_Bifidobacterium; 

s_breve 

24615 63 63 97 97 63 p_Firmicutes; c_Bacilli; o_Lactobacillales; f_Streptococcaceae; g_Streptococcus; s_infantis  

36228 3 3 51 51 3 p_Firmicutes; c_Bacilli; o_Gemellales; f_Gemellaceae; g_; s_ 

36370 23 37 34 60 60 p_Proteobacteria; c_Gammaproteobacteria; o_Enterobacteriales; f_Enterobacteriaceae; g_; s_  

41720 26 29 29 34 74 
p_Actinobacteria; c_Actinobacteria; o_Bifidobacteriales; f_Bifidobacteriaceae; g_Bifidobacterium; 

s_longum 

90869 0 0 3 0 51 
p_Actinobacteria; c_Actinobacteria; o_Bifidobacteriales; f_Bifidobacteriaceae; g_Bifidobacterium; 

s_bifidum 

94290 80 83 86 91 83 p_Firmicutes; c_Bacilli; o_Lactobacillales; f_Streptococcaceae; g_Streptococcus; s_  

99920 80 83 80 83 91 p_Firmicutes; c_Bacilli; o_Bacillales; f_Staphylococcaceae; g_Staphylococcus; s_  

101886 37 37 43 43 43 p_Firmicutes; c_Bacilli; o_Lactobacillales; f_Streptococcaceae; g_Streptococcus; s_  



15 
 

A PCoA based on unweighted UniFrac distance showed that the microbiota of infants’ oral swabs, 

infants’ feces and mothers’ milk clustered separately (Figure A1.A), as expected being the resident 

communities of three distinct body districts that are different for pH, oxygen levels, and nutrients 

availability. Adonis test confirmed that the reported separation was significant, even if this result 

needs to be taken into account cautiously since the test for homogeneity of dispersion (function 

betadisper) returned that milk samples had a significantly different dispersion compared to the other 

groups of samples. When weighted UniFrac distances were used for PCoA (Figure A1.B), fecal 

samples overlapped with milk samples on PCo1. Thus, the difference between milk and fecal 

ecosystems was better explained by unweighted metrics, hinting that it might reside in fractions of 

the microbial communities that are exclusive of one of the two ecosystems (Lozupone et al., 2007). 

Fecal samples also showed higher dispersion, indicating higher variability in the most abundant 

species of the ecosystem, with respect to oral and milk communities. 

The oral microbiome was the least diverse of the considered ecosystems (Shannon diversity index, 

mean ± standard deviation (SD), 2.3±0.6; Figure A1.C), largely dominated by Streptococcaceae 

(average relative abundance (rel. ab.), 69.8%) (Figure A2), with Streptococcus being the dominant 

genus in 94% of samples, confirming the known literature on this ecosystem (Zaura et al., 2014; Lif 

Holgerson et al., 2015; Hendricks- Muñoz et al., 2015; Davè et al., 16). Also confirming the large 

amount of knowledge on the topic (Muller et al., 2015; Jost et al., 2012), the fecal microbiota of 

breastfed infants at 20 days of life was dominated by Bifidobacteriaceae (average rel. ab., 38.2%), 

with Bifidobacterium being the dominant genus in 67% of samples. Fecal microbiota also included 

relevant average abundances of Enterobacteriaceae (15.4%), Streptococcaceae (13.9%), 

Bacteroidaceae (9.5%), Staphylococcaceae (5.4%), and Lactobacillaceae (4.8%) (Figure 2).  
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Figure A1. Diversity in the bacterial ecosystem of the mother’s milk, and infant’s feces and mouth.  

PCoA based on unweighted (A) and weighted (B) UniFrac distances of the microbiota of mother’s milk (light blue), infant 

feces (yellow), and infants mouth (pink). Samples are identified by filled circles. In both PCoA first and second principal 

components (PCo1 and PCo2) are plotted. The percentage of variance in the dataset explained by each axis is reported.  

Box and whiskers distribution of the Shannon α-diversity index (C), intra-group unweighted UniFrac distances (D), and 

intra-group weighted UniFrac distances (E), calculated for milk (light blue), fecal (yellow) and oral (pink) samples. 

Significant differences between datasets are indicated, as calculated using Tukey post -hoc test after Kruskal-Wallis test 

for multiple comparisons (*, P≤0.001; **, P≤0.0001). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A2. Average composition of the bacterial community in mother’s milk and infant’s feces and mouth. For 

each group of samples, a pie chart based on the average relative abundance (%) at family level is plotted. Bacterial families  

with relative abundance ≥0.2% in at least 10% of the samples are depicted. Colors for each family are reported in the 

legend. 

 

Both oral and fecal microbiota of infants showed higher unweighted UniFrac distances within group 

(0.80±0.03 and 0.80±0.04, respectively) compared to milk (0.68±0.04, Kruskal-Wallis test, 

P<0.0001). When the weighted UniFrac metric was considered, the within-group distances obtained 
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for the fecal samples remained the highest (0.5±0.2), whereas those calculated for the oral samples 

became the lowest (0.14±0.06 Kruskal-Wallis test, P<0.0001). Since weighted UniFrac measure is 

better suited to detect differences in abundance even when the overall groups of organisms that are 

present in each sample remain the same (Lozupone et al., 2007), these observations suggest that the 

variability between oral samples might reside in subdominant species that are not highly conserved 

among samples. 

The average microbiota profile obtained for breast milk was significantly more diverse (Shannon 

diversity index = 4.9±1.1; Figure 1C) than both infant’s feces and oral swabs (3.0±0.7 and 2.3±0.6, 

respectively; Kruskal-Wallis test, P<0.0001); interestingly, according to the unweighted UniFrac 

metric, the variability among milk samples was the lowest (0.68±0.03; Kruskal-Wallis test P<0.0001; 

Figure A1.D), and remained significantly lower than that of fecal samples when the weighted UniFrac 

distances were computed (0.25±0.07; P<0.0001; Figure A1.E). In other words, the milk ecosystem of 

the 36 enrolled mothers was richer and more similarly composed among samples (in terms of bacterial 

species) than the fecal or mouth ecosystem of their children, suggesting that the milk duct might act 

as an environmental filter allowing for the survival and proliferation of the same bacterial species in 

most individuals (a “niche-based” community assembly, according to Costello et al. (2012). As 

expected (Fitzstevens et al., 2016), the milk ecosystem phylogenetic structure showed a slight 

dominance of Streptococcaceae (average rel. ab., 24.5%), with Streptococcus being the dominant 

genus in 53% of samples, but also a considerable representation of the typically infant fecal family 

Bifidobacteriaceae (11.2%, with Bifidobacterium being the dominant genus in 19% of samples) and 

Staphylococcaceae, which is instead a common skin and mouth inhabitant (Belkaid and Segre, 2014) 

(11.1%, with Staphylococcus being the dominant genus in 11% of samples) (Figure 2). Confirming 

previous studies (Jost et al., 2014; Jost et al., 2013) , and supporting the hypothesis of a possible link 

between the milk microbiota and the gut ecosystem of the mother, also anaerobic bacterial families 

that are commonly found in the adult human intestine, such as Lachnospiraceae, Ruminococcaceae 

and Bacteroidaceae, were present with an average rel. ab. of 10.3, 5.4 and 4.4%, respectively. 

Specifically designed studies are required to investigate if these bacteria are indeed alive in the milk 

ecosystem, as well as the ecological importance of this putative bacterial migration from the mother’s 

gut to the milk duct. The milk microbiota was the only one showing a few genera that were present 

in more than half of the subjects but never retrieved in the other two ecosystems, partly confirming 

the observations of Jost et al. (2014). In particular, sequences assigned to the genus Ralstonia were 

detected at a relative abundance >0.1% in 83% of the milk samples (average rel. ab., 0.67%), and in 

none of the infant’s fecal or oral samples; similar trends were shown by the genus Sediminibacterium  
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(detected in 61% of the milk samples, average rel. ab., 0.15%) and unclassified members of the 

Flavobacteriaceae family (detected in 50% of the milk samples, average rel. ab., 0.16%). 

No correlation between the relative abundance of each family or genus in the three different 

ecosystems was found, after P values correction, with the exception of the abundance of the 

subdominant family Lactobacillaceae, whose values were positively correlated in saliva and feces of 

the same infant (Kendall tau = 0.61, P = 0.05). 

According to our observations, the passage of the milk through the mouth affects the composition of 

the oral microbiota in each infant. Indeed, samples from the same subjects were rarely plotted closer 

to each other than to samples taken from other babies on the PCoA based on unweighted UniFrac 

distance (Figure A3), even if the multivariate analysis showed no significant separation between the 

two groups of samples (before and after breastfeeding). Significant differences were not found 

comparing the genus-level profiles of the samples before and after breastfeeding. However, it was 

possible to notice that 77% of the enrolled babies showed higher coordinate values on the PCo2 axis 

in the post-breastfeeding sample than in the pre-breastfeeding one. PCo2 was found to account for 

more variation in data than expected by random chance (broken-stick eigenvalue = 1.07, actual 

eigenvalue = 1.17). Indeed, the difference between pre- and post-breastfeeding PCo2 coordinates was 

found significant (paired Wilcoxon test, P = 0.02), meaning that it could be possible to find a common 

trend in the small changes occurring in the infant’s mouth ecosystem after the mother’s milk passage, 

in the frame of the individual microbiota structure. Pursuing the identification of these small changes, 

we found that the coordinate values on the PCo2 axis of each samples were significantly (P<0.01) 

and positively correlated to the relative abundance of a few bacterial families, which were found 

averagely more represented in the breast milk than in the infant’s oral ecosystem, such as 

Lachnospiraceae (Kendall tau, 0.49; average rel. ab.: 0.07% in infant’s mouth, 1.3% in infant’s feces, 

and 10.3% in mother’s milk), Ruminococcaceae (Kendall tau, 0.46; average rel. ab.: 0.04% in infant’s 

mouth, 0.1% in infant’s feces, and 5.4% in mother’s milk), Oxalobacteriaceae (Kendall tau, 0.40; 

average rel. ab.: 0.29% in infant’s mouth, 0% in infant’s feces, and 0.72% in mother’s milk), and  

Bacteroidaceae (Kendall tau, 0.48; average rel. ab.: 0.09% in infant’s mouth, 9.5% in infant’s feces, 

and 4.4% in mother’s milk).  



21 
 

 

 

 

 

 

 

 

 

 

 

 

Figure A3. Relationship between pre- and post-breastfeeding infant oral microbiota. PCoA based on unweighted 

UniFrac distances of the microbiota of the infant’s mouth sampled before (empty circles) and after (filled circles) 

breastfeeding. Samples from the same subject are connected by a black line. The first and second principal components 

(PCo1 and PCo2) are plotted. The percentage of variance in the dataset explained by each axis is reported. 

 

Aiming at exploring the possibility of passage of bacteria from one ecosystem to another, we focused 

our attention to the OTUs shared between two or three samples taken from the same mother-infant 

pair. It is important to remember that 16S rRNA gene-based characterization does not allow for strain-

level analysis. However, the sharing of the same OTUs might give indications on what species could 

be interesting to further explore (and possibly identify to the strain level) using culture-based 

techniques and/or metagenomics. Filtering for the OTUs accounting for at least 0.1% of the 

ecosystem diversity (number of normalized sequences per sample), a mean of 4.5 (considering pre-

breastfeeding oral samples, range 2-10) and 4.7 (considering post-breastfeeding oral samples, range 

1-11) OTUs were shared between the three ecosystems (Figure A4). Among those more frequently 

shared (Table 1) we found OTUs assigned to Staphylococcus spp. (shared by the three samples in 

80% [pre-breastfeeding] and 83% [post-breastfeeding] of pairs, and by feces and milk only in 91% 

of cases), Streptococcus spp. (shared by the three samples in 80% [pre-breastfeeding] and 83% [post-

breastfeeding] of pairs, and by feces and oral samples only in 86% [pre-breastfeeding] and 91% [post-

breastfeeding] of cases), and Streptococcus infantis (shared by the three samples in 63% of pairs, and 

by feces and milk only in 97% of cases). Interestingly, the Streptococcus OTUs found to be preserved 
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among two or three ecosystems were also the dominant ones in all the infant’s oral samples: indeed, 

one or a couple of these OTUs generally accounted for the totality of the Streptococcaceae population 

and, in most cases, for the dominant portion of the entire ecosystem, confirming previous findings on 

the adult’s oral microbiota (Li et al., 2013). Even if the genera Streptococcus and Staphylococcus 

have been recognized as universally predominant in the human milk by a recent systematic review 

(Fitzstevens et al., 2016), the mechanisms of their colonization of the milk ducts are not explained. 

The very high abundance of Streptococcus in the baby’s mouth that we report in the present study, 

together with the identity between the dominant Streptococcus OTUs in the infant’s mouth and those 

detected in their mothers’ milk, bring us to suggest that the infant’s mouth could have a seeding effect 

on the milk duct resident community during suction.  

Milk and infant’s oral microbiota also shared the presence of a OTU assigned to unclassified members 

of Gemellaceae family, in 51% of mother-infant pairs; indeed, Gemella is another known major core 

genus in both adult and infant’s oral mucosa (Costello et al., 2013; Zaura et al., 2014; Hendricks-  

Muñoz et al., 2015).  

Most interestingly, the majority of the OTUs shared between mother’s milk and infant’s feces, but 

not present in infant’s mouth, was assigned to members of the Bifidobacterium genus, well-known 

inhabitants of the gut microbiota of breastfed infants (Arrieta et al., 2014) In particular, OTUs 

assigned to Bifidobacterium breve, Bifidobacterium bifidum, and Bifidobacterium longum were 

shared by 46%, 51%, and 74% of the milk and fecal samples taken from the same mother-infant pair 

(Table 1), supporting the hypothesis that the mother’s milk may act as a reservoir of pioneer probiotic 

bacteria for the baby’s gut microbiome (Jost et al., 2013). These bacteria are necessary for the 

degradation of human milk oligosaccharides (HMO) and are boosted in the infant’s gut by the 

continuous refueling of these energy source (Mueller et al., 2015). It was not surprising to find that 

bifidobacteria were almost absent in the infant’s oral ecosystem (average rel. ab., 0.4%), probably 

due to the aerobic environment provided by the baby’s mouth; however, thanks to their known ability 

to tolerate oxygen exposure (Bottaccini et al., 2014), they could be able to survive the transit ion 

through the oral cavity without actively colonizing it.  

Our study has the limitations of a 16S-based molecular characterization, namely the possible biases 

deriving from the DNA extraction method, PCR amplification, and OTU assignment algorithm 

(Schloss and Westcott, 2011; Walker et al., 2015), as well as the failure in discriminating between 

DNA deriving from live and actively proliferating bacteria and DNA fragments from dead cells. 

However, the homogeneity of our cohort, as well as the inclusion of oral samples from the infants 

before and after breastfeeding, led to interesting and useful observations that add knowledge to the 

complex, and still to be disentangled, topic of the microbiome assembly.   
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In particular, we observed a very limited number of shared OTUs and reported no correlation between 

the abundances of bacterial families or genera among the mother’s milk, the child’s mouth and the 

child’s gut. These findings seem to support the hypothesis that, for most of the inhabiting species, the 

process of microbiota assembly in different infant’s body sites and in the mothers’ milk ducts is driven 

more by local adaptation than by true immigration of bacteria from other ecosystems, according to 

the metacommunity theory depicted by Costello et al. (2012).  

On the contrary, an interesting behavior was observed for OTUs assigned to the genera 

Bifidobacterium, Streptococcus and Staphylococcus, which constitute a relevant fraction of the infant 

gut and mouth ecosystem. Indeed, among the OTUs assigned to these genera, a few were retrieved as 

dominant or very abundant in the majority of the infants and were also shared by the corresponding 

mother’s milk. Even if the sharing of the same OTUs cannot be considered as a proof of transmiss ion, 

the colonization of both the mother’s milk and infant’s feces by the same Bifidobacterium OTUs 

seems to sustain the hypothesis that the human milk is among the sources for the baby’s gut 

inoculation of this bacterial group. At the same time, it does not constitute a proof that live bacteria 

can be translocated through an entero-mammary pathway (Rodríguez, 2014). Indeed, more recent 

observations (Meadow et al., 2015) seem to imply that bacteria do not need to be transported through 

complex enteric mechanisms to migrate from one human ecosystem to other body sites or, possibly, 

to other individuals, but just to be “emitted” in the microbial cloud that surrounds each individual.  

The very frequent retrieval of the same Streptococcus and Staphylococcus OTUs in the majority of 

the infants, as well as in their mothers’ milk microbiota, is also an intriguing observation, because 

this consistency of behavior among the enrolled subjects might call for the existence of a biologica l 

or ecological role for these bacteria during the infant’s microbiota assembly. A streptococcal and/or 

staphylococcal migration from one ecosystem to another cannot be proven by our results, but the very 

high abundance of Streptococcus spp. in the oral ecosystem leads us to speculate that the baby’s 

mouth might be the among the sources of contamination of both the infant’s gut ecosystem, via 

deglutition, and mother’s milk ducts, during suction. This will need to be proven by cultivation-based 

studies, where strains can be isolated and fully characterized, as well as by studies with a longitud ina l 

layout for all the considered ecosystems. Moreover, since all the enrolled infant were born in the same 

hospital, it cannot be excluded that the frequent and abundant retrieval of the same Streptococcus and 

Staphylococcus OTUs might be linked to the contact with the same environment in the very first days 

of life; this observation could yet strengthen the importance of the living environment in determining 

the human microbiome composition. 
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Figure A4. OTU sharing between mother’s milk, and infant’s fecal and oral bacterial ecosystems. Venn diagrams  

showing the average number of OTUs shared between the bacterial communities of the mother’s milk (light blue), the 
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infant’s feces (yellow) and the infant’s mouth (pink), the latter sampled before (A) and after (B) breastfeeding. The total 

number of OTUs for each ecosystem is reported in the boxes outside the circles, expressed as mean and range (in brackets).  

 

Conclusions 

 

The assembly dynamics of the infant’s gut ecosystem are a topic of huge interest for human 

immunology and microbiology (Lynch and Pedersen, 2016). Indeed, the existence of a crucial 

window of time in which the microbiota contributes to the education of the infant’s immune system 

has been demonstrated (Arrieta et al., 2015; Honda and Littman, 2016). Our study highlights that 

bacterial communities in other body sites could be involved in the early phases of the gut microbiota 

assembly. Even if the specific conditions (pH, oxygen level, nutrient availability) of the infant’s gut 

seem to be the most relevant filter impacting on its final phylogenetic structure and abundance profile, 

other bacteria-colonized districts and/or the bacteria-coated body surfaces of the mother might act as 

a reservoir of seeding species, among which those ecologically necessary and intestinally-adaptab le 

will be selected.  
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Part B: Dynamics of the infant microbiomes onset: exploring the gut and the oral 

microbiota in full-term and pre-term infants in the frame of mother’s milk 

microbial ecosystem 
 

Introduction 

 

The early gut microbial community establishment in infants during delivery and the very first days 

after birth has been shown to contribute in building a solid healthy status for the following age later 

in life (Arrieta et al., 2014). The gestational age at birth is one of the first factor that affects the 

intestinal colonization (Gregory et al., 2016, Microbiome). Moreover, sooner the infant is born, 

higher is the risk of complication onset. Normal duration of pregnancy settles on 40 weeks, but infants 

born between 37 and 40 weeks are in any case considered full-term. For what concerns preterm birth, 

the World Health Organization has drawn up a classification based on gestational age: 

• extremely preterm (<28 weeks); 

• very preterm (28 to <32 weeks); 

• moderate to late preterm (32 to <37 weeks); 

In 2012, in the face of 131,296,785 global births, 15,000,000 infants were born preterm. Of these, 

84.3% belong to the category “moderate to late preterm” (OMS report, Born to soon, 2012). Preterm 

births can be provoked by maternal or foetal infections and health conditions of the mother (ascribable 

to nutrition, psychological stress or anxiety, smoking, age) (Ruiz et al., 2016). The common 

procedure for delivery in preterm birth is C-section, in order to avoid the stress linked to the delivery 

process to the foetus (Italian Society of Gynecologics and Ostetricians, Gestione del parto 

pretermine). C-section leaves a very peculiar signature on gut microbial community, characterized by 

a higher relative abundance of Clostridium, Staphylococcus, Propionibacterium and 

Corynebacterium with respect to vaginally-delivered infants (Dominguez-Bello et al., 2010). While 

the gut microbial colonization in full-term infants has been extensively investigated (Jost et al., 2012; 

Arrieta et al., 2015; Honda and Littman, 2016; Lynch and Pedersen, 2016), focus has been moved 

also on the preterm ones only recently (Gregory et al., 2016; Arboleya et al., 2011; Arboleya et al., 

2017). Among the 3 categories of preterm infants, the moderately to late preterm one is the less 

examined, although it is the most frequent type of premature birth in the world. These infants are 

subjected to many complications, (such as necrotising enterocolitis and sepsis) and, even their clinica l 

history is often less complex compared to the extremely and very preterm ones, they have to be 

followed carefully, because they often develop more critical conditions than full-term babies. 

Interestingly, the GM has been shown to be implicated in the onset of these complications (Pammi et 
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al., 2017). The gut microbial community of moderately to late preterm babies has been analysed 

through 16S rDNA Illumina sequencing in a few papers (Gregory et al., 2016; Sherman et al., 2016), 

with a limited sample size (Berrington et al., 2013). The additional obstacle to these studies is the 

tremendous number of variables affecting the clinical history of these subjects. Indeed, they are often 

administered with antibiotics and probiotics, together with surfactants. Moreover, until the infant 

cannot feed itself from the maternal breast, she/he is nourished using enteral nutrition, with a mixture 

of maternal breast milk (when available), human breast milk from donor and formula. Breast milk is 

considered the best choice for infants’ health and it contributes to GM shaping not only as a source 

of prebiotic nutrients (above all human milk oligosaccharides, HMOs), but also as a putative supply 

of bacterial cells (especially microorganisms belonging to the families of Streptococcaceae, 

Paenibacillaceae, Lachnospiraceae, Bifidobacteriaceae and Pasteurellaceae) (Biagi et al., 2017). 

These bacteria maybe are among the first colonizers of infant’s gut, but the vertical transmiss ion 

mechanism is still scarcely depicted, especially considering that also mother’s skin microbiota and 

infant’s oral microbial community are involved in this process. Infant oral cavity is a forced route for 

the milk to cross during feeding. Moreover, during suction, it also acts as collector of the mother’s 

skin microbial cells. The oral microbiota has been extensively described and we know that healthy 

infant salivary community is constituted mainly by microorganisms belonging to the family of the 

Streptococcaceae (with Streptococcus being the dominant genus), Staphylococcaceae, 

Paenibacillaceae and Veillonellaceae (Biagi et al., 2017). 

In order to shed light in the intestinal colonization process in moderately to late preterm infants, we 

characterize through Illumina sequencing stool sample collected from 21 infants, besides oral swab 

samples and milk samples from the mothers, having, in our knowledge for the first time, a highly 

comprehensive vision of the bacterial ecosystems that surround this neglected preterm category. 

 

Subjects recruitment 

 

Sixteen mother-infant pairs (16 mothers and 21 infants) were recruited in the Nursery of S. Orsola-

Malpighi Hospital in Bologna, Italy. Five of the 16 recruited infants were twin pairs, of which 1 pair 

monochorionic monoamniotic and 4 pairs monochorionic biamniotic. Inclusion criteria matched the 

WHO definition for moderate to late preterm, according to which gestational age must be included 

between 32 and 37 weeks. Exclusion criteria were the necessity or preference of the mother to use 

formula milk instead of human breast one (both maternal and from donor). Anthropometric and 

clinical characteristics of the infants recruited are reported in Table B1. Milk samples from the 
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mother, faecal samples and oral swabs from the infant were collected at birth and at 4, 7, 14, 21 and 

30 days after birth. 

Faeces were collected from diapers using a standard sterile collection tube. Milk samples were 

collected with the aid of a breast pump into sterile plastic tubes; prior to collection, mothers were 

asked to wash the nipple and mammary areola with soap and water. Oral samples were obtained by 

gently swabbing a sterile cotton-tipped applicator on the inside of the infant’s cheek. All samples 

were immediately delivered to the laboratory and stored at -80°C until analyses. Demographic and 

clinical data were recorded in a specific case report form. All participants signed a written consent 

form. The study was approved by the ethics committee of the S. Orsola Malpighi Hospital in Bologna 

(study protocol 53/2014/U/Tess). The study was conducted according to the principles expressed in 

the Declaration of Helsinki. Methods were carried out in accordance with the approved guidelines. 
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Gestational age at delivery  33.4±1.0 

Weight at birth (g) 1787.3±444.9 

Female and male 13/21 (61.9%) and 8/21 (38.1%) 

Vaginal delivery 2/21 (9.5%) 

C-section 19/21 (90.4%) 

Twin 10/21 (47.6%) 

Sepsis 4/21 (19.0%) 

NEC 2/21 (9.5%) 

Probiotic administration (Reuflor) 17/21 (80.9%) 

Surfactant administration 3/21 (14.2%) 

Antibiotic administration 14/21 (66.6%) 

of which ampicillin 11/14 (78.6%) 

of which ampicillin+amikacin 3/14 (21.4%) 

Antimycotic administration (fluconazole) 1/21 (4.8%) 

Enteral feeding 21/21 (100%) 

Range start enteral feeding (days) 1-5 (mean 1.4± SD 1) 

Feeding   

maternal breast milk+ formula 12/21 (57.1%) 

human breast milk from donor+formula 1/21 (4.7%) 

human breast milk from donor+maternal breast 

milk 

6/21 (28.5%) 

human breast milk from donor 2/21 (9.5%) 

Breastfeeding 15/21 (71.4%) 

Range start breastfeeding (days) 7-45 (mean 16.6 ± SD 9.9) 

Demission (temporal range in days) 7-45 (mean 20.1 ± SD 10.4) 
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Table B1. Anthropometric and clinical characteristics of the pairs mother-infant recruited. Descriptive 

characteristics of pre-term infants, together with the drug therapy, probiotics administration and the feeding type are 

reported for each subject recruited (21 infants and 16 mothers) 

 

Experimental procedure and statistics 

 

Samples were processed as described in “Experimental procedure”. Statistics was performed using 

RStudio software version 1.0.136 running on R software 3.1.3 (https://www.r-project.org/), 

implemented with the libraries vegan and made4. Relative abundance filtering was performed 

keeping the genera showing a minimum abundance of 2% in at least 10% of the samples. Weighted 

and unweighted UniFrac and Bray-Curtis distances were used for Principal Coordinates Analyses 

(PCoA), and the significance of separation was tested by permutational multivariate analysis of 

variance using the function “Adonis” of the vegan package. Wilcoxon test was used to assess 

significant differences between two groups of samples. Correlation between datasets was verified  

computing Kendall correlation coefficient. 

 

Results and discussion 

 

In this research work we characterized the GM community and the salivary microbiota in 21 moderate 

to late preterm infants, from birth until the 30th day of life, through the Illumina sequencing of 16S 

rDNA. Moreover, the microbial community of the maternal milk (when available) was described. We 

sequenced a total of 348 sample (138 stools, 69 milk samples and 141 salivary samples), obtaining a 

number of 11,810,468 high quality reads with a mean of 66,713.2069 ± SD 271,834.7874 reads per 

sample. Reads were clustered in 46,404 operational taxonomic units (OTUs) at 97% of identity. 

  

https://www.r-project.org/
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Figure B1. Area plot representing the faecal microbial ecosystems in all 

subjects across time. Graphs represent the relative abundance at family level for 

all the subjects analysed from birth to the 30th day after birth. Each infant is 

associated with a number and the twin pairs are reported with the same number 

followed by the letters “a” or “b”. Black vertical bar indicates the breastfeeding 

starting day. 
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When the community structure of all the stool samples collected was analysed at family level, we 

observed that faecal microbiota composition was extremely variable over time and between subjects, 

probably reflecting the personal clinical history of these infants (Figure B1). 

The gut microbial community of the infants was analysed considering all the samples collected in the 

first 30 days after birth, excluding the meconia. Meconia are indeed a foetal product, composed by 

bile, mucus, epithelial cells and swallowed amniotic fluid. During the first month of life the infant’s 

GM was constituted mainly by three families: Enterobacteriaceae, Staphylococcaceae and 

Bifidobacteriaceae. When this fraction is described at genus level, we observed that there is a core 

community of bacteria that accounts for 42.7% of the ecosystem, and this core is averagely composed 

by Klebsiella (17.1%), Staphylococcus (13.2%) and Bifidobacterium (12.3%). These results partially 

resemble the ones reported by Stewart and colleagues (2016) on pre-term GM composition. One 

infant (C6) has a very peculiar GM structure, that doesn’t resemble any of the other infant’s microbia l 

community. Indeed, it is characterized by a high level of Clostridiaceae starting from day 4 after birth. 

When the gut microbial composition was observed at deeper phylogenetic level (namely species), we 

found out that the total amount of Clostridiaceae is due to Clostridium neonatale. This species 

accounts totally for the Clostridium fraction until day 14, then at day 21 Clostridium perfringens 

appears. At day 30 their relative abundance decreases dramatically, giving space for news Clostridium  

species to proliferate (Veillonella dispar and parvula). In this infant, a pattern very similar to the 

Clostridiaceae one is followed by the family of Enterobacteriaceae. Indeed, only one genus accounts 

for the total amount of this family, which is Citrobacter. At day 21, another member of the 

Enterobacteriaceae family appears, that is Klebsiella. Both members of the Enterobacteriaceae family 

have been retrieved in stool samples of infants who are hospitalized in intensive care unit (Goldman 

et al., 1978). The distinctive tract of this baby in respect to the other is the administration of 

fluconazole, that was given from day 1 to day 10. The impact of fluconazole on infant GM has never 

been investigated yet, but a study has been conducted in healthy adults (Wheeler et al., 2016). The 

response to this antimycotic treatment of the 2 microbial communities appears to be diverse, but we 

must take into account the profound differences between infant’s and adult’s GM. 

When we described the gut microbial ecosystem trend in terms of biodiversity (expressed by the 

Shannon index) over time, we noticed that, at birth, the meconium was highly biodiverse (mean 3.68 

± SD 1.64) and then passed through a drop at day 4 of life (mean 1.86 ± SD 0.90). This variation was 

significant (Wilcoxon rank sum test p=0.0002). At day 7 the biodiversity started to grow (mean 2.83 

± SD 0.89) until reaching a plateau at day 14 (mean 3.48 ± SD 0.94). Interestingly, the same trajectory 

was followed by the salivary microbiota, thus maintaining always a lower biodiversity level compared 

to stool samples (Figure B2). Also the salivary microbiota alpha diversity followed a drop from day 
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1 to day 4 after birth and also in this case the variation was significant (Wilcoxon rank sum test 

p=0.0002). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B2. Bar plot representing the alpha diversity of stool and saliva samples over time. In the graph the mean  

alpha diversity measured by Shannon index of the stool and saliva samples divided according to the timepoint of collection  

is represented. Yellow bars represent stool samples and pink bars the salivary microbiota. 

 

A PCoA based on Bray-Curtis distance showed that the faecal samples collected from day 4 to day 

30 after birth cluster separately according to timepoint (Figure B3). This separation was confirmed 

by permutation test with pseudo F ratios (p<0.001). Stool samples also describe a trajectory along 

timepoints: we noticed that, as the infants grow older, faecal samples move from the down right of 

the graph to the above left side. Interestingly, when we correlated the bacterial genera with the PCoA 

axes, we noticed that MDS2 axis is positively correlated with Bifidobacterium (p<0.001), Delftia 

(p<0.001), Faecalibacterium (p<0.001), Lactobacillus (p<0.001) and Roseburia (p=0.001). These 

bacteria (Delftia, Faecalibacterium and Roseburia) are common commensals of the human adult gut 

ecosystem, pointing that the infant GM is approaching to an adult-type community as the baby grows 

older. The positive correlation with Bifidobacterium may indicate the increasing chances of the infant 

to be breastfed. In our cohort, the infants started to be breastfed between 7 th and 45th day (mean 16.6 

± SD 9.9). 
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Figure B3. Principal Coordinates Analysis based on Bray-Curtis distances of faecal samples from day 4 to day 30 

after birth. All faecal samples collected belonging to the same timepoint are represented with the same colour. Axis  

MDS1 and MDS2 account for the 24.7% and 18.4% of the variability respectively. When the separation between 

timepoints is measured, the result is significant (permutation test with pseudo F ratios, p<0.001). Based on the sample 

ordination, significant positive correlations between MDS2 and the relative abundance of some intestinal bacterial genera 

are reported. 

 

The Bray-Curtis average distance at the same timepoint for stool samples increases from birth to day 

14 (0.65 to 0.77), suggesting an impact of the clinical conditions on the gut microbial composition. 

Starting from day 21 (0.54), the distance decreases, indicating that stool samples composition is more 

similar. It’s tempting to suggest that the GM structure follows an adaptive trajectory towards a 

healthy- like infant composition. The same path is followed by the saliva samples, for which 

interindividual diversity increases over time from birth to day 14 of life, to then start falling at day 

21. Intriguingly, the Bray-Curtis average distance between samples belonging to the gut ecosystem, 

regardless to timepoint, is higher compared to the salivary samples one (Figure B4). 
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Figure B4. Bar plot representing the Bray-Curtis average distance of stool and saliva samples over time. In the 

graph the distance between faecal and saliva samples belonging to the same ecosystem collected at the same timepoint is 

measured by Bray-Curtis metrics. Yellow bars represent faecal microbiota and pink bars the saliva microbiota. 

 

As reported before, meconium samples were analysed separately as they are a foetal product. When 

the bacterial diversity between meconia was measured using the unweighted UniFrac distances and 

represented as PCoA, we noticed that a separation emerged. While the samples C1a, C1b, C2a, C8, 

C14, C9, C13b, C5, C7, C6, C4, C13a, C2b, C16 and C12b clustered on the right side of the graph 

(group A), C11, C10, C3a and C15 were spread on the left side. The separation between group A and 

the outliers is significant (permutation test with pseudo F ratios, p=0.002) (Figure B5).  
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Figure B5. Principal Coordinates Analysis based on unweighted UniFrac distances of meconium samples .  

Meconium samples analysed are plotted based on the unweighted UniFrac distances. Axis PC1 and PC2 account for the 

16.3% and 8.7% of the variability respectively. The formation of a group appears (group A) and when the difference 

between this group and the outliers is measured with permutation test with pseudo F ratios, the p values result is significant 

(p=0.002). The average GM composition of samples belonging to group A is represented with pie chart.  

 

The same separation was confirmed when a heatmap was built on the relative abundance at genus 

level, using Spearman distance and Ward clustering method (Figure B6). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B6. Heat map based on genera composition of meconium samples. Heat map shows the relative abundance of 

meconium composition. Hierarchical clustering was performed using the Pearson distance measure and Ward linkage 

method. 

 

Taking into account these results, we proceeded to mediate the meconium relative abundance at genus 

level of those subject belonging to the group A and obtained a community characterized by 21.4% of 

Bifidobacterium, 11.4% Ralstonia, 11% Staphylococcus, 7.1% Streptococcus, 5.2% Lactobacillus, 

4.4% Klebsiella, 3.2% Bacteroides and 12.7% of unclassified bacteria belonging to the family of 

Enterobacteriaceae (Figure B5). According to Chu and colleagues (2017), meconium structure at 

genus level (measured for the infants recruited with the same gestational age we are considering) is 

mainly characterized by 13.9% of Sphingobium, 9.9% Neisseria, 9.8% Lactobacillus, 8.9% 

Staphylococcus and 8.2% Escherichia. This meconium structure resembles only partially the one we 
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observed, and it’s interesting to notice that no bifidobacteria was detected by them. On the other hand, 

outlier samples are characterized by a very individual composition, often presenting a dominance of 

few bacterial genera. C3a GM is composed by the 99% of Erwinia, C10 by 89% of Klebsiella, C11 

by 57.61% of unclassified member of the Enterobacteriaceae, 16.77% of Klebsiella, 6.83% of 

Citrobacter and 3.45% of Trabulsiella and C15 by 54% of Enterococcus and 31% of Rothia. 

What leaps out is that, while meconium structure appeared to be highly diverse, the alpha-divers ity 

falls at the subsequent timepoint (day 4), while the inter-individual variation increased. This 

observation is supported by the comparison of the measure of the alpha diversity in meconium and 

stools collected at day 4, which results in a significant variation (Wilcoxo n rank sum test, p < 0.001). 

Analogously to faecal samples, the milk samples presented an extremely variable composition over 

time and among subjects (Figure B7). Staphylococcaceae is the family that dominate the ecosystem, 

likewise reported in Biagi et al. (2017). Staphylococcaceae, in particular genus Staphylococcus, is a 

common symbiont of skin microbiota and it also retrieved in infant oral environment (Grice et al., 

2011; Biagi et al., 2017). This suggests that mother’s skin and infant’s oral microbiota could act as 

seeding ecosystems during suction, taking advantage of the temporary opening of milk ducts. On the 

other hand, we can’t exclude the possibility that, during sampling, skin microorganisms have been 

picked up erroneously. 

We kept on examining the impact of breastfeeding on the biodiversity of the ecosystems focusing on 

the milk microbial community. We compared the alpha diversity values (measured with Shannon 

index) of the samples available before and after breastfeeding, but the result was not significant 

(Wilcoxon rank sum test, p>0.05), indicating that suction doesn’t have any impact on the milk 

microbiota in terms of biodiversity. We performed the same analysis on stool samples, comparing 

alpha diversity values measured with Shannon index of the samples before and after the start of 

breastfeeding. The difference was significant (Wilcoxon rank sum test, p<0.05), probably due to the 

introduction of milk and the concomitant contact with the mother skin that happens during suction, 

that could act as an additional source of bacteria. 
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 Figure B7. Area plot representing the milk microbial ecosystems 

in all subjects across time. Graphs represent the relative abundance 

at family level for all the subjects analysed from birth to the 30th day 

after birth. Black vertical bar indicates the breastfeeding starting day. 
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The salivary microbiota, differently from stool and milk samples, follows a reproducible pattern in 

terms of composition and dynamics between subjects. For this reason, we chose to mediate the 

relative abundances of the families composing the saliva microbial community of all subjects at the 

same timepoint and represent them as a dynamics over time, from birth to 30 th day of life (Figure B8). 

We observed that Pseudomonadaceae, Oxalobacteriaceae and Straphylococcaceae decrease over 

time, while Streptococcaceae and Micrococcaceae (which are typical residents of the salivary 

microbiota) increase. This may indicate that, as the infant grows older, its oral microbiome changes 

and starts resembling the adult-type one.  

 

 

Figure B8. Area plot representing the saliva microbial  

ecosystems in all subjects across time. Graph represents the 

relative abundance at family level for all the subjects analysed 

from birth to the 30th day after birth. 

 

 

We investigated if the start of breastfeeding had an impact also on oral microbiota composition, 

comparing the alpha diversity values of the samples before and after breastfeeding, measured by 

Shannon index, but the result was not significant (Wilcoxon rank sum test, p>0.05). Indeed, we 

assessed that the beginning of breastfeeding influences the intra-individual biodiversity only in stool 

samples, while it has no significant impact on mother milk and infant oral microbiota. This could 

suggest that the microorganisms that the infant acquires during breastfeeding, cross only transiently 

the mouth, without influencing the already resident community. This could be due to the differences 

in terms of environment that characterize mouth and gut (pH, availability of nutrients, oxygen level). 

However, once reached the gut, the same microorganisms are able to impact the GM composition. 

 

Comparison between full-term and moderately to late pre-term 

 

The characterization of the GM in moderately to late pre-term infants it is very important in the frame 

of depicting the role of GM in the onset of complications typical of pre-term infants, such as NEC 
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and sepsis. Furthermore, it’s crucial, in a view of developing a personalised strategy of intervention, 

to understand the similarities and the differences with a heathy-like GM composition. For this reason, 

we proceeded to perform the comparison between gut microbial community in full-term and 

moderately to late pre-term. We thus compared the faecal GM structure of the 2 cohorts at 21 and 20 

days of life respectively. These new-borns are exposed to different conditions, not only in term of 

gestational age, type of delivery and nutrition. Moderate to late pre-term infants are indeed often 

hospitalized in intensive care unit, administered drugs and fed with feeding tube. In our cohort, 90.4% 

of the infants were born with C-section, they remained in hospital from 5 to 45 days, the 71.4% of 

them was administered antibiotic and all of them were initially fed though feeding tube (Table B1). 

Considering that a high biodiversity of the ecosystem is positively correlated with higher ability of 

the GM to respond to external stressors, we evaluated firstly the alpha diversity (measured with Chao1 

index) of the samples, comparing full-term babies and pre-term babies at 20 and 21 days respectively 

for all the ecosystems analysed. While milk samples showed a similar value of diversity, with no 

significant difference between full-term and pre-term infants (Wilcoxon rank sum test, p=0.8), a 

significant difference was found for faecal and oral microbial communities (Wilcoxon rank sum test, 

p<0.001 for faeces and p=0.005 for saliva). (Figure B9). The pre-term infant’s ecosystems resulted 

to be more diverse, but with a concomitant broader interval of dispersion of the data. 
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Figure B9. Boxplot representing the alpha-diversity of the 3 ecosystems (stool, saliva and milk) of term and preterm 

infants. Alpha diversity measured with Chao1 index is compared between full-term and moderately to late pre-term 

infants. The difference between the 2 cohorts is significant for faecal (yellow) and oral (pink) ecosystems (Wilcoxon rank 

sum test, p<0.001 for faeces and p=0.005 for saliva), while the difference is not significant for milk (azure) sample 

(Wilcoxon rank sum test, p>0.8). 

 

These data suggest that gestational age of the infant, together with the clinical conditions, affect the 

alpha diversity of stool and saliva microbial community, but has no significant impact on the milk 

ecosystem. 

In order to examine if samples belonging to the same ecosystem differ between the two cohorts 

analysed, a PCoA for stools, saliva and milk was performed using Bray-Curtis metrics (Figure B10). 

When the evaluation of the separation between the two cohorts was calculated using Adonis 

permutational test, the results were significant for all the three ecosystems (stool, p=0.001; milk, 

p<0.001; saliva, p<0.001). What leaped out was that, for faeces and milk samples, the dispersion was 

higher in pre-term infants than full-term ones. On the other hand, salivary microbiota samples in pre-

term babies clustered very closely, indicating a very high similarity degree, maybe due to the restrict 

environment they are exposed to. Indeed, full-term babies at 20th day of life were not only breastfed, 

but also permanently residing at home and therefore are exposed to many contaminations, in terms 
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of environment and people. Instead, for what concerns our pre-term cohort, only 33% of the infants 

at 21st day of life was breastfed and the 39% of them was still hospitalized in intensive care unit. 
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Figure B10. PCoA representing sample belonging to the 3 ecosystems (stool, milk 

and saliva) in full-term and pre-term infants. Faecal, milk and salivary microbiota 

of full-term and pre-term infants at 20th and 21st day of life respectively are represented 

in a PCoA. Each ecosystem is represented individually and the separation between 

full-term and pre-term is significant for all the 3 ecosystems (Adonis permutational 

test, stool, p=0.001; milk, p<0.001; saliva, p<0.001). 
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Because of the high degree of inter-individual variability of faecal samples collected at 21st day of 

life, it was impossible to mediate the relative abundance composition to compare then the GM 

structure between full-term and pre-term ones. Nevertheless, a heatmap based on microbia l 

composition described at family level of all the stool samples collected at day 21st of life of pre-term 

infants was built in order to understand if it could be possible to divide the samples in group according 

to the microbiological structure. The faecal samples clustered to form 3 groups, and their separation, 

measured with Adonis permutational test, was significant (p=0.02). 
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When the microbial composition was mediated between samples belonging to the same group, we 

noticed that group 1 was characterized by the higher relative abundance of Veillonellaceae, a lactate -

fermenting microorganism commonly found in the human intestine. Group 2 was characterized by 

higher relative abundance of Enterobacteriaceae (37.9%) compared to the other 2 and group 3 by the 

highest amount of Streptococcaceae, Enterococcaceae and Staphylococcaceae.  

The analysis of these data suggests that stool microbial composition differs between full-term and 

pre-term infants, while the overall composition in terms of dominant families of infant’s saliva and 

mother’s milk is comparable. Because of the different drug therapies and feeding conditions the 

infants were exposed to during their stay in the hospital, it is tempting to speculate that the GM 

assembly is influenced more by the clinical history and environmental bacteria than the mutua l 

relationship with the mother and the bacteria she provides through latching.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure B11. Heat map based on family composition of 

faecal samples collected at day 21st of life. Heat map shows 

the relative abundance of GM composition at family level. 

Hierarchical clustering was performed using the Pearson 

distance measure and Ward linkage method. The formation of 

3 groups is observed and the separation between them is 

significant (Adonis permutational test, p=0.02). The mean GM 

structure at family level for each group is represented with a 

pie chart. 
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Conclusion and further perspectives 

 

The assembly dynamics of the infant’s gut ecosystem is a topic of tremendous interest for human 

microbiology and immunology (Lynch and Pedersen, 2016). Indeed, the existence of a crucial 

window of time in which the microbiota contributes to the education of the infant’s immune system 

has been demonstrated (Arrieta et al., 2015; Honda and Littman, 2016). Moreover, if the infant is 

born before the normal pregnancy term (<37 weeks), the organs immaturity and the pharmacologica l 

treatment pave the way to the onset of complications, such as respiratory faint, necrotising 

enterocolitis and sepsis. The GM has been demonstrated to play a role in the outbreak of some of 

these complications and for this reason the description of the colonization dynamics of the infant gut 

during the very first days of life appears to be fundamental.  

In the light of these considerations, we characterized the microbial communities of infants’ stool and 

saliva, together with mother breast milk, in two cohorts of babies, one constituted by 36 healthy 

breast-fed infants born full-term and the other constituted by 21 infants born moderate to late pre-

term receiving different types of feeding (mother breast milk human breast milk from donor and 

formula). The first cohort was sampled at 20th day of life, whilst the second one was sampled 

longitudinally from birth to 30th day of life. 

Our study led on full-term cohort, demonstrate that the microbial ecosystems belonging to other body 

sites, both of the mother (breast milk) and of the infant itself (saliva) could be involved in the 

assembly of the gut microbiota. This cohort was very homogenous, and the microbial structures of 

the ecosystems was comparable between subjects. On the other hand, the infants belonging to the 

moderately to late pre-term cohort had a very personal clinical history and each baby was a story of 

its own. The data obtained point out the high inter-individual variability of the ecosystems observed 

(stools, saliva and milk). When we focused in particular on stools microbial composition, we realize 

that, as proposed by Zaneveld and colleagues in the “Anna Karenina principle” (2017), the 

microbiomes of healthy hosts may all look similar, while microbiomes of unhealthy hosts may end 

up looking very different from one another. Since a dysbiotic GM could lead to the onset of 

complications linked to the gastrointestinal tract, it is particularly important to have a healthy- like 

GM structure to have a confrontation with. This may be useful in the frame of setting up an 

intervention strategy aimed to the restore of a healthy- like GM structure. This inter-individua l 

diversity makes things extremely complicated, but nevertheless, probiotics administration has 

become a well-founded successful therapy in recent years.  



48 
 
 

Further works are intended to characterize another category of pre-term infants, namely the extremely 

pre-term one (<28 weeks). We are recruiting 26 extremely pre-term infants and we have programmed 

to collect stool samples from the infants and milk sample from the mother at birth and days 1, 4, 7, 

30 after birth and at demission from hospital. A very intriguingly feature is that all the samples 

belonging to the 3 cohorts where were collected in the same hospital. It’s therefore highly definab le 

if there’s an environmental contamination or a nosocomial infection that could affects the samples 
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Isolation and characterization of probiotic bacteria from human breast milk 

 

Within the National Technological Cluster Project PROS.IT (Promotion of consumer’s health: 

nutritional valorisation of Italian agrofood traditional products), a research activity directed to the 

isolation of probiotic bacteria from human breast milk was carried out (OR 2 - Isolation and 

characterization of probiotics. Activity 3.1 - Study of new probiotic formulations containing bacteria 

isolated from human breast milk). Isolation of bifidobacteria was conducted starting from human 

breast milk samples collected for the full-term infants’ study (Part 1, The bacterial ecosystem of 

mother’s milk and infant’s mouth and gut). An aliquot of the samples was seeded on 4 different 

cultural media, before the samples were placed at -80°C until further analysis. The media used were: 

MRS (De Man, Rogosa and Sharpe) + 0.05% of cysteine, Wilkins-Chalgren, Agar Tos Propionate + 

mupirocine and RB. 

Two strains of bifidobacteria (Bifidobacterium scardovi and Bifidobacterium breve) and 2 of 

lactobacillus (Lactobacillus gasseri and Lactobacillus fermentum) have been isolated using MRS + 

0.05% of cysteine, grown at 37°C in an anaerobic chamber containing a gas mix of 90% N2, 5% CO2 

and 5% H2 for 24 hours. For all microorganisms, resistance to simulated gastric fluid has been tested, 

according to the methodology described by Fernandez and colleagues (2003). Briefly, a cellular 

sospension containing 1 x 1010 cells were added to 50 ml of simulated gastric fluid (125 mM NaCl, 7 

mM KCl, 45 mM NaHCO3, 3 g/L pepsin, pH 2) and incubated in anaerobic condition on a stirring 

support, in order to simulate peristaltic movements. The survival rate of the microorganisms was 

determined throughout plate counting of aliquots taken at 30, 60, 90 e 180 minutes of incubation. 

Plates were incubated in anaerobic condition at 37°C for 24 hours. The test was repeated with another 

simulated gastric fluid solution at pH 3. Moreover, MIC threshold was tested as required by EFSA, 

in order to determine if these microorganisms were antibiotic resistant. Finally, the complete sequence 

of the 16s rDNA was obtained using Sanger sequencing.  

Once verified that these bacteria answer to all the features required by WHO in order to be defined 

“probiotic”, they were delivered to Granarolo Company (Bologna) for the developing of a probiotic 

milk product. This probiotic milk was used in a human trial (OR 5-In vivo validation of beneficial 

effects of prototypes of functional foods. Activity-In vivo validation of beneficial effects of functional 

foods enriched with probiotics) and was administered to women aged 55-75 years suffering from 

insomnia for 12 weeks.  
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