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Abstract

When dealing with high-dimensional data and, in particular, when the number of at-

tributes p is large comparatively to the sample size n, several classification methods

cannot be applied. Fisher’s linear discriminant rule or the quadratic discriminant

one are unfeasible, as the inverse of the involved covariance matrices cannot be com-

puted.

A recent approach to overcome this problem is based on Random Projections (RPs),

which have emerged as a powerful method for dimensionality reduction. In 2017,

Cannings and Samworth introduced the RP method in the ensemble context to ex-

tend to the high-dimensional domain classification methods originally designed for

low-dimensional data. Although the RP ensemble classifier allows improving classi-

fication accuracy, it may still include redundant information. Moreover, differently

from other ensemble classifiers (e.g. Random Forest), it does not provide any insight

on the actual classification importance of the input features. To account for these

aspects, in the first part of this thesis, we investigate two new directions of the RP

ensemble classifier. Firstly, combining the original idea of using the Multiplicative

Binomial distribution as the reference model to describe and predict the ensem-

ble accuracy and an important result on such distribution, we introduce a stepwise

strategy for post-pruning (called Ensemble Selection Algorithm). Secondly, we pro-

pose a criterion (called Variable Importance in Projection) that uses the feature

coefficients in the best discriminant projections to measure the variable importance

in classification.

In the second part, we faced the new challenges posed by the high-dimensional data

in a recently emerging classification context: one-class classification. This is a spe-

cial classification task, where only one class is fully known (the target class), while

the information on the others is completely missing. In particular, we address this

task by using Gini’s transvariation probability as a measure of typicality, aimed at

identifying the best boundary around the target class.
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Chapter 1

Introduction

High-dimensional data arise when the number of observed variables, p, is much larger

than the sample size, n. Image processing, information retrieval in text documents,

food authentication studies are only a few examples of the applications in which

data of that kind have to be analyzed. In those contexts, standard statistical meth-

ods cannot be applied, as the matrices involved in the computations are, in general,

not full rank and, thus, cannot be inverted. A solution to this problem, which has

attracted large attention in the statistical literature, suggests to impose a sparse

structure on the estimated vector parameters by the introduction of an L1 penalty

on their norm. Lasso-based approaches to regression, classification and dimension

reduction methods have been populating the statistical literature since Tibshirani’s

seminal paper in 1996 [115]. See Buhlmann, van de Geer [18] and Hastie, Tibshirani,

Wainwright [55] for detailed references.

A different approach is based on the recourse to Random Projections (RPs), which

have recently emerged as a powerful method for dimensionality reduction. Theoret-

ical results indicate that this method preserves distances quite nicely. The original

p-dimensional data is projected onto a d-dimensional (d� p) subspace through the

origin, using a random d× p matrix A, whose columns have been generated accord-

ing, for example, to the Haar measure (so that they are unit length and orthogonal).

Using matrix notation where Xp×n is the original set of n p-dimensional observa-

tions, XRP
d×n = Ad×pXd×n is the projection of the data onto a lower d-dimensional

subspace. The key idea of random mapping arises from the Johnson-Lindenstrauss

lemma, which states that if points in a vector space are projected onto a randomly

selected subspace of suitably high dimension, the distances between the points are

approximately preserved. Following this theorem, when p is large compared to n,

we may project the data at random into a lower dimensional space and run the

1



2 Chapter 1. Introduction

statistical procedure on the projected data, potentially making great computational

savings, while achieving comparable or even improved statistical performance.

The idea of combining random projections with ensemble methods has given very

nice results in the supervised classification context [20], where the task consists in

assigning an object (or a number of objects) to one of two or more groups, on the

basis of a sample of labelled training data. In the high-dimensional context, popular

methods such as Fisher’s linear discriminant rule or the quadratic discriminant one

cannot be applied, as the involved covariance matrix cannot be inverted.

In 2017, Cannings and Samworth introduce a general method for high-dimensional

classification, based on a careful combination of the results obtained by applying

an arbitrary base classifier to random projections of the feature vectors into a lower

dimensional space. The random projections are divided into disjoint groups, and,

within each group, the projection yielding the smallest estimate of the test error

is selected. Then, the Random Projection ensemble classifier aggregates results of

applying the base classifier on the selected projections, with a data-driven voting

threshold to determine the final assignment. Theoretical results elucidate the effects

on performance of increasing the number of projections.

The first part of this thesis presents some new results in the field of random projec-

tion ensemble classification.

It is well known that the performance of ensemble classifier methods is strongly

driven by the degree of the dependence between the classifiers in the ensemble [16].

Including in the ensemble negatively dependent classifiers can improve the perfor-

mance, while positively correlated classifiers make the ensemble classifier redundant

and, therefore, may worsen its effectiveness. Following that line, many researches

have proved that ensemble post-pruning is a relevant strategy for the identification

of the ensemble minimizing the misclassification rate.

Even assuming independent random projections, the classifiers in the RP ensemble

are not independent, as they are trained on the same data. This implies that the

performances of the ensemble cannot be well described by the Binomial model and

that a distribution accounting for the Bernoulli variables dependence is required.

Among the several solutions proposed in the literature, we have found that the

Multiplicative Binomial distribution, introduced by Altham [4] and Lovison [78] is

able to provide a better approximation to the ensemble accuracy than the standard

Binomial one. We have derived some further theoretical results on the asymptotic

distribution of the Multiplicative Binomial and an interesting property showing that

the marginal probability of success is larger than the one of the Bernoulli compo-
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nents, only if those components are negatively related to each other.

Based on these results, we have developed a stepwise strategy for post-pruning

(called Ensemble Selection Algorithm, ESA) involving a pruning function which

combines both the accuracy and the dependence between classifiers and accounts

for them by using the Multiplicative Binomial model parameters. The performances

of this method are tested on both real and simulated data and show that, in many

circumstances, the solution proposed sensibly improves the ensemble accuracy, while

reducing the ensemble size.

Furthermore, despite of ensemble methods are known to have good predictive perfor-

mances, they are a sort of black box and no longer allow detecting the most relevant

variables for classification purposes. Thus, we have exploited the characteristics of

random projections to propose a method that uses the variable coefficients in the

best discriminant projections in order to assess variable importance in classification.

This method, that we have called VIP (Variable Importance in Projections) has

shown very good ability to correctly detect the most relevant featues for classifica-

tion purposes, while improving the ensemble accuracy.

The second part of the thesis deals with the new challenges posed by the high-

dimensional data in a recently emerging classification context, that is one-class clas-

sification. This is a special classification problem, where only one class is fully known

(called target class), while the information on the others is totally vague [111]. In

this sense, a very typical example is given by the food authentication issue, where

the characteristics of “good” food (i.e. the target class) are known, while those of

“counterfeit” food may arise in many and almost unpredictable ways. Misclassi-

fication rate is no longer meaningful in this context; the goal instead consists in

finding a boundary around the target class so that the probability of labelling as

“counterfeit” a unit belonging the this class is minimized.

We have proposed a new one-class classification method based on Gini’s transvaria-

tion probability as a measure of typicality aimed at identifying the boundary around

the target class. Furthermore, we have addressed dimension reduction issues by

proposing various strategies; one of them is still based on random projections and

exploits a variant of our VIP criterion for variable ranking.
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Chapter 2

High-dimensional supervised

classification

2.1 Introduction

In the last decades, dramatic advances in data capture, processing power, data

transmission and storage have been accomplished. The resulting availability of large

amounts of information for each observation gave rise, in many areas of modern sci-

ences, to datasets characterized by a number of features p comparatively larger than

the sample size n. Examples of the so called “High-Dimension, Low-Sample Size”

(HDLSS, [3]) datasets are very common in a wide range of applications, includ-

ing genetic studies (DNA microarrays, Deep Sequencing, Micro RNA, CGH -Copy

Number Variation, SNPs -Single Nucleotide Polymorphisms, Methalaytion), bioin-

formatics (fMRI - functional Magnetic Resonance Imaging), neuroimaging (DTI -

Diffusion Tensor Imaging, Calcium-Florescence Imaging, EEG & MEG), climatol-

ogy (spatial and spatio-temporal data), economics and finance (stock markets time

series), multimedia data retrieval and social networks (tweets, likes, friendships, in-

teractions, . . . ).

In such domains, most of the statistical methods originally developed for low di-

mensional contexts tend to present several limitations, mainly due to the inability of

these procedures to both estimate the underlying covariance structure of the HDLSS

data and consider their specific characteristics. For these reasons, high-dimensional

data have posed both practical and theoretical challenges to standard statistical

techniques and have rendered many classification methods impractical [62].

The classification process can be described and performed through a mathemati-

5



6 Chapter 2. High-dimensional supervised classification

cal function C, called classifier. Its traditional task is to assign a new object x to

one of a set of classes by learning from a number of observed attributes related to

the object:

C : x→ C(x)

In supervised classification, the correct output y, i.e. the true class membership of

each object x, is known in advance.

In this context, a “classic” supervised classification method is the Linear Discrimi-

nant Analysis (LDA), introduced by Fisher in his seminal work [39] of 1936. LDA

explicitly attempts to model the difference between the classes by finding the linear

combinations of the observed features which best characterize and separate them.

Even if it has been originally derived for discrimination purposes, LDA can be also

used to address classification issues, i.e. to define a rule for assigning each unit to

one of the known groups. In particular, for the two group case, the LDA classifier

is given by:

ĈLDA
n :=

1 if (x̄1 − x̄0)
TW−1x > 1

2
(x̄1 − x̄0)

TW−1(x̄1 + x̄0)

0 otherwise

where x̄1, x̄0 are the average vectors of class 1 and 0 respectively and W is the

within class covariance matrix.

As LDA rests on very strict assumptions which are not always satisfied, many

other classification methods have been proposed in the literature, e.g. Quadratic

Discriminant Analysis (QDA), kernel discrimination (Knn), Maximum Likelihood

Estimation (MLE), decision trees, Random Forest (RF), Neural Networks (NN),

Support Vector Machines (SVM) and others.

Any classification algorithm should address two main aims:

� the accuracy of the result (in terms of minimization of the misclassification

error or, more in general, of a risk function, P (C(x) 6= y)).

� the generalization of the result (in terms of predictive performance).

As mentioned before, in presence of high-dimensional data, the use of classi-

fication methods originally developed for low dimensional contexts is limited: on

one hand, the presence of noisy or irrelevant features can mislead these learning

algorithms due to the so-called “curse of dimensionality” [7]; on the other, the

impossibility to exactly compute some of their discriminant criteria requirements,
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makes these procedures unfeasible in high-dimensions. For example, both LDA and

QDA need the estimation of the inverse covariance matrix, Σ−1, in order to compute

the classification rule; however, being Σ not full-rank when p is larger than n, its

inverse cannot be directly calculated.

In order to overcome these problems, a number of proposals to extend Discrimi-

nant Analysis to the high-dimensional setting have been put forward. Some of these

involve the use of non-sparse classifiers (e.g. [44], [37], [11]); some others imply the

positive definite estimation of the within-class covariance matrix, Σ (e.g. [71], [126]);

others finally assume sparse (e.g. [38, 116]) decision boundaries or suggest to solve

an optimization problem with the addition of an L1 penalty term to encourage spar-

sity. In particular, the latter mentioned methods, yielding sparse coefficient vector

estimates, perform a process of variable selection. Though, it has been demonstrated

that dimension reduction procedures which combine the input features, rather than

select a subset of them, are generally more efficient; in fact, feature selection tech-

niques may discard some potentially important variables, e.g. variables that are not

predictive if individually considered, could provide significant improvements when

taken in conjunction with other features.

Traditionally, variable combination methods involve the projection of the high-

dimensional data onto a lower-dimensional subspace so to capture as much data

variability as possible. Principal Component Analysis (PCA) is probably the multi-

variate statistical procedure most broadly used to handle dimension reduction tasks.

Although PCA can be successfully used in many applications, its aim does not al-

ways coincide with that of a classification task.

A recent approach for dimension reduction is the Random Projection (RP) method.

Introduced at the turn of the 21st century [1, 12, 89], the idea is to map at ran-

dom the original high-dimensional data onto a lower subspace using a matrix with

columns of unit length. Specifically, the key point of RPs is that, regardless of the

original data dimension, the final solution still preserves almost perfectly the global

information. Such result is guaranteed by the Johnson-Lindenstrauss lemma [61]: a

subset of n points lying in the Euclidean space of any dimension can be embedded

in d = O(log n/2) dimensions while approximately preserving the distances between

any pair of points.

In [20], Cannings and Samworth introduced the RP method in the context of ensem-

ble classifiers so as to extend to the high-dimensional domain classification methods

originally designed for low-dimensional data. The novel idea of the two authors is
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to aggregate, using a modified majority voting technique, results of a generic base

classifier applied to different training sets, each generated by randomly projecting

the feature vector onto a lower-dimensional space (RP ensemble classifier).

Although the RP ensemble classifier allows to improve classification accuracy, it

may still include redundant information. In addition, differently from other ensem-

ble classifiers (e.g. Random Forest), it does not provide any insight on the actual

importance of the input features for classification purposes. In order to account for

these aspects, this thesis investigates two new directions of the RP ensemble classi-

fier.

The remainder of this Chapter is organized as follows. Section 2.2 provides an

overview of the ensemble methodology and briefly presents the Random Projec-

tion Ensemble classifier. In Section 2.3, the accuracy of a generic ensemble is

described using a novel distribution and some results on such model are given. Sec-

tions 2.4 and 2.5 introduce respectively the ensemble post-pruning and variable

selection problems and provide experimental results to illustrate the empirical per-

formances of two new procedures. Conclusions and possible extensions are finally

discussed in Section 2.6.

2.2 Ensemble of classifiers

Ensemble classification is a learning paradigm where a finite number of base clas-

sifiers are jointly trained and combined (typically through a plurality or majority

vote, i.e. the candidate with the majority votes wins) to solve the same problem.

This technique is typically used to increase the prediction accuracy in classification

beyond the level achieved by any individual classifier.

Generally, an ensemble algorithm is developed in two steps: firstly a collection of

base classifiers is trained on the same data (or on some manipulated versions of the

same data) and then the individual predictions are combined together.

Ensemble systems usually differ from each other in the number of considered in-

dividual classifiers (ensemble size), the procedure used to generate them and the

strategy chosen to produce the final decision.
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The earliest works on ensembles date back to the late Seventies, when Tukey

(1977, [121]) suggested to fit an ensemble of two regression models. Later, in 1979,

Dasarathy and Sheela [30] proposed to divide the input space in two or more smaller

partitions, where to separately train a single classifier. In 1990, Hansen and Salamon

[52] used a plurality consensus scheme to improve the performances of Artificial Neu-

ral Networks (ANN). However, the main progress in the field of classifier ensembles

was probably achieved in 1995 with Freund and Schapire’s seminal paper [42]. The

two authors introduced the famous AdaBoost algorithm, the first (and probably still

the most used) practical boosting technique1. At the same time, in 1996, Breiman

[15] laid the foundation of another machine learning ensemble meta-algorithm, called

Bagging, bootstrap aggregating, whose aim is to improve the classification accuracy

by combining predictions from randomly generated training sets.

Since these procedures have been proven to be very effective in solving a wide spec-

trum of classification problems, research in the ensemble learning context has ex-

panded rapidly over the last couple of decades. As a result, nowadays a vast number

of ensemble techniques are available to both enhance the performances of supervised

and unsupervised classification methods and improve the quality of clustering algo-

rithms. Some of these techniques center on producing individual learners which

disagree in their predictions; in fact, several studies [15, 45, 50, 70, 73, 103] have

shown that ensembles of diverse base classifiers, i.e. classifiers which return differ-

ent results with independent errors, achieve better performances than ensembles of

identical (and, thus, redundant) experts.

According to Ditterich [31], diversity in ensembles can be induced in many different

ways:

(i) manipulating the training set: each base classifier is trained on a differ-

ent subset of examples drawn according to a bootstrap scheme (Bagging, [15],

Boosting, [42])2 or a cross-validation rule (cross validated committees, [90]).

(ii) manipulating the input features: each base classifier is trained on a dif-

ferent subset of features [26, 122]; this method could be used only if the input

1Boosting is a machine learning approach that generates a strong classifier in the probably
approximately correct (PAC) sense by combining weak classifiers.

2The difference between these two methods is that while bagging uses an ensemble of inde-
pendently trained classifiers, boosting creates ensembles by sequentially adding new classifiers in
order to mitigate all the previous models lacks.
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features are highly correlated.

(iii) manipulating the output target: each base classifier is trained on a differ-

ent partition of the classes labels into two disjoint subsets (Error-Correcting

Output Coding, [32])

(iv) injecting randomness: each base classifier is trained on the same subset of

examples, but with different initial weights.

Despite diversity is deemed to be an important factor for the success of ensemble

of classifiers, its computation is not straightforward. In fact, although many pairwise

measures of diversity are provided by the statistical literature (for an extensive

review, see [73]), there is not a unanimous agreement on a single best definition

[110]. In addition, in presence of more than two classifiers, not even a single global

diversity index exists.

2.2.1 Random projection ensemble classification

In 2017 Cannings and Samworth [20] introduced a novel approach for high-dimensional

binary classification based on RPs. The contribution of using RPs in the ensembles

context is twofold: on one hand, the required ensemble diversity is ensured by the

randomness of the projections; on the other, the dimensionality, p, of the dataset

(and thus the classification complexity) is reduced while approximately preserving

all the pairwise distances between points (Johnson-Lindenstrauss Lemma).

The main idea of the two authors is to generate a classification prediction by av-

eraging over many individual ones and, then, use a data-driven voting threshold α

to determine the final assignment. Specifically, each of the averaged B1 prediction

is obtained by applying an arbitrary base classifier on a different low-dimensional

random projection of the data, carefully chosen in a set of B2 possible solutions.

The possibility of using any method as base classifier makes such technique a very

general and flexible tool.

Let Ĉn = Ĉn,τn,d be the d-dimensional (d ≤ p) generic base classifier trained on

the data τ , consisting of n pairs in Rd × {0, 1}. Let A1, A2, . . . , AB1 be the B1

independent random projections from Rp to Rd (where d is the projecting matrix
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rank) chosen from as many non overlapping blocks of B2 random projections yielding

the smallest test error estimates.

Hence, the generic RP ensemble classifier, for some α ∈ (0, 1), is given by:

ĈRP
n :=

1 if ν̂B1
n (x) ≥ α

0 otherwise

where

ν̂B1
n (x) :=

1

B1

B1∑
b1=1

1{Ĉn(Ab1x)=1}

and Ĉn(Ab1x) is the projected data base classifier.

The RPs generating process is not uniquely-defined and, therefore, it could be per-

formed by using different approaches. In their work [20], Cannings and Samworth

discuss at first the possibility to simulate A1, A2, . . . , AB1 according to the Haar

measure. Namely, they suggest to generate a matrix Q ∈ Rd×p, where the entries

are drawn independently from a standard normal distribution, and then use the left

singular vectors of the QT singular value decomposition so as to derive AT . Since

such a process might be computationally expensive (the computation of the left

singular vectors of a p× d matrix requires O(pd2) operations), other alternatives to

the Haar method are also mentioned in [20]. One one side, the idea of mapping the

training data onto a lower dimensional subspace by employing a random Gaussian

matrix (which requires only O(npd) operations) is presented; on the other, the use

of projections constrained to be Axis-Aligned (i.e. each row of A consists of p − 1

null components and one non-null component equals to 1) is suggested, especially

in ultrahigh dimensional contexts.

For further details and practical considerations concerning the choice of α, d, B1

and B2 refer to [20].

Beside its excellent empirical performances, the very interesting aspect of the

RP ensemble classifier introduced in [20] rests in its theoretical properties. In their

work, in fact, Cannings and Samworth directly derived some important theoretical

results on their proposal. As a first step, the authors proved that, as the number

of projections increases, the test error of the RP ensemble classifier could be well

approximated by its infinite simulation counterpart; in addition, they demonstrated
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that the error in this approximation holds uniformly in the Binomial proportion.

Then, with no specific assumption on the configuration of the training data, τ , and

the distribution of both the test points and the individual projections, they were

able to control the test excess risk. Namely, a bound for the difference between the

test error of the RP ensemble classifier and the Bayes risk was obtained as the sum

of three distinct terms: two of them only depend on the choice of the base classifier

and the third one is proved to be even negligible as B2 increases. Furthermore, a

projection A∗ yielding to an oracle decision boundary (in R
d) essentially the same

as the decision boundary of the Bayes classifier in the original space (Rp) is proven

to exist under some limited conditions (i.e. assumption 3 in [20]). Lastly, the theo-

retical framework in [20] focuses on the demonstration that, by using specific base

classifiers (e.g. LDA or Knn), the first two terms of the above-mentioned bound

are not affected by the number of input features, p; specifically, it was shown that

these terms only depend on the dimension of the subspace (d), the sample size (n)

and the number of projections (B1 and B2).

All the discussed theoretical results descend from the key assumption of inde-

pendent RPs. Following this assumption, the authors also imply the independence

of the base classifiers whose relation with the final ensemble is, thus, described by

a Binomial model. In fact, answering to the question of Stander and Dalla Valle on

whether it is possible to quantify the classification uncertainty by using the individ-

ual proportions CA1
n , . . . , C

AB1
n , Cannings and Samworth in [20] suggest to employ

the Binomial distribution.

2.3 Modeling ensemble accuracy

Let E be an ensemble of B1 generic base classifiers, Ci i = 1, . . . , B1, and let

Di =

1 if Ci(x) = y

0 if Ci(x) 6= y
,

where y is the vector of true memberships.

Assuming

πi = P (Di = 1) = π (2.1)

to be the individual probability of correctly classifying each observation, then:

� Di ∼ Ber(π);
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� the number of accurate predictions is

S =

B1∑
i=1

Di ;

� the prediction accuracy of the majority vote ensemble E is

Âc = P (S ≥ j + 1) = 1− FS(j),

where F is the cumulative distribution function of the probability model as-

sumed for S (which will be detailed in the following) and

j =

B1

2
if B1 is even

B1−1
2

if B1 is odd.

For independent base classifiers, it is straightforward that S follows a Binomial

distribution (B), S ∼ Bin(B1,π), and

Âc =

B1∑
s=j+1

(
B1

s

)
πs(1− π)B1−s.

In the case of independent and equally accurate base models (with accuracy π >

1/2), Lam and Suen [74] proved that the majority vote ensemble performs better

than any of the individual classifiers that generate it.

However, in spite of the independence of the RPs, the assumption of independent

classifiers for the RP ensemble is not realistic as they have been trained on the very

same data.

The literature about the sums of non-independent Bernoulli random variables shows

different possible strategies for dealing with the “intra-units” association: in 1948

Skellam [106] proposed to model the π parameter of the Binomial distribution with a

Beta model of α and β hyperparameters; in 1978 [4] Altham discussed the possibility

of extending the Binomial model in two different directions, the Additive Binomial

distribution and the Multiplicative Binomial distribution, characterized respectively

by an “additive” and a “multiplicative” definition of the interaction among units;

in 2010, Diniz et al. [33] applied a Bayesian approach to the Correlated Binomial

model introduced by Luceno in 1995 [79]; in 2016, Kadane [63] derived the Conway-
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Maxwell-Binomial distribution so as to model both positive and negative dependence

among the Bernoulli summands.

In presence of positive average pairwise correlation ρ, the Beta-Binomial distribution

(BB) could be employed to characterize the accuracy Âc as:

Âc =

B1∑
s=j+1

(
B1

s

)
Γ(α + β)

Γ(α)Γ(β)

Γ(s+ α)Γ(B1 − s+ β)

Γ(B1 + α + β)

where α = π(1− ρ)/ρ, β = α(1− π)/π, ρ > 0 so that V ar(π) > 0, and Γ(x) is the

gamma function [2].

In order to allow for negative correlation, ρ < 0, Prentice [92] extended the BBD

under the condition that ρ ≥ max{−π(B1−π− 1)−1,−(1−π)[B1− (1−π)− 1]−1}.

In this thesis, the intra-classifiers association in the ensemble context is accounted

for the Multiplicative Binomial (MB) distribution, introduced in [4]. Specifically,

we refer to a revised version of this distribution proposed by Lovison in 1998 [78],

characterized by a more intuitive interpretation of the distribution parameters. Such

a distribution is a member of the exponential family and, therefore, it has sufficient

statistics and a family of proper conjugate distributions.

Under the assumption of exchangeable classifiers, the MB takes the form:

P (S = s) =

(
B1

s

)
ψs(1− ψ)B1−sω(B1−s)s∑B1

i=0

(
B1

i

)
ψi(1− ψ)B1−iω(B1−i)i

.

Here:

� ψ, 0 ≤ ψ = π/τ1 ≤ 1 is the independence marginal probability parameter

(i.e. in the case of independent classifiers ψ = π), where

τr(ψ, ω) =
KB1−r(ψ, ω)

KB1(ψ, ω)
r = 1, . . . , B1

and

KB1−a(ψ, ω) =

B1−a∑
i=0

(
B1 − a
i

)
ψi(1− ψ)B1−a−iω(B1−a−i)(i+a);

� ω> 0 is the intra-units association parameter which governs the dependence

between the classifiers: ω < 1 describes positively associated classifiers, ω > 1
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a negative global relationship and ω = 1 independent classifiers.

This measure is inversely related to the conditional cross-product ratio (CPR)

as

ωi,v =
1√

CPRi,v|rest
,

CPRi,v|rest =
P (Di = 1, Dv = 1)P (Di = 0, Dv = 0)

P (Di = 1, Dv = 0)P (Di = 0, Dv = 1)
, i, v = 1, · · · , B1, i 6= v.

(2.2)

In [78], Lovison also derived the first two central moments of the MB distribution

in a form that facilitates their comparison to the binomial ones:

E[S] = B1ψτ1

V [S] = B1ψη

where η = τ1 − ψ(B1τ
2
1 − (B1 − 1)τ2).

Following the MB model, in presence of dependent base classifiers (with the

same individual probability of success π), the prediction accuracy of the majority

vote ensemble is:

Âc = 1− Fs(j) =

B1∑
s=j+1

(
B1

s

)
ψs(1− ψ)B1−sω(B1−s)s∑B1

i=0

(
B1

i

)
ψi(1− ψ)B1−iω(B1−i)i

.

In order to investigate the goodness of fit of the Binomial (B), the Beta-Binomial

(BB) and the Multiplicative Binomial (MB) distributions to the RP ensemble clas-

sifier accuracy, different scenarios were examined.

Specifically, RP ensembles of different sizes, B1 = {5, 25, 100, 300, 500}, have been

derived, by using to the method described in Section 2.2.1 (with d = 2 and B2 = 50),

from high-dimensional data generated according to the following model:

x|{y = 0} ∼ 1

2
Np(µ1,Σ) +

1

2
Np(−µ1,Σ)

x|{y = 1} ∼ 1

2
Np(µ2,Σ) +

1

2
Np(−µ2,Σ)

where p = 100, Σ = I100×100, µ1 = (2,−2, 0, . . . , 0)T and µ2 = (2, 2, 0, . . . , 0)T .
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B BB MB

B1=5
M(|Ac− Âc|) 0.317 0.013 0.008

10×s.e 0.010 0.010 0.010
χ2 48.489 0.050 0.020

B1=25
M(|Ac− Âc|) 0.126 0.017 0.012

10×s.e 0.020 0.010 0.010
χ2 4.091 0.091 0.043

B1=100
M(|Ac− Âc|) 0.044 0.022 0.013

10×s.e 0.030 0.020 0.010
χ2 0.535 0.143 0.059

B1=300
M(|Ac− Âc|) 0.102 0.020 0.018

10×s.e 0.060 0.020 0.020
χ2 2.028 0.141 0.111

B1=500
M(|Ac− Âc|) 0.168 0.021 0.032

10×s.e 0.070 0.020 0.020
χ2 4.427 0.152 0.237

Table 2.1: Averages and standard errors (over 100 simulations) of the absolute
differences between the sample accuracy, Ac, of an ensemble of B1 classifiers and the

expected one, Âc, predicted according to the Binomial (B), the Beta Binomial (BB) and
the Multiplicative Binomial (MB) distributions. The goodness of fit χ2 statistic values for

each model are also reported.

Results coming from the simulation study confirm that the MB seems to char-

acterize and predict the classification accuracy better than both the B and the BB

models. Table 2.1 shows the average and the corresponding standard errors (over

100 simulations) of the absolute differences between the sample accuracy, Ac, of an

ensemble of B1 classifiers and the expected one, Âc, predicted according to the three

different distributions. In the same table, the goodness of fit χ2 statistic values are

given.

2.3.1 Limit theorems of MB distribution

As discussed in the previous section, our interest in the MB distribution is closely

related to the ensemble classification framework; namely, such distribution is di-

rectly employed to model the classification accuracy of the RP ensemble classifier

introduced in [20]. Thus, with the intent to better characterize and understand the

MB behavior in the ensemble context, some of its limits are investigated. The proof

of all these results are given in Appendix A.
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Theorem 1. Let S ∼MB(ψ, ω), B1 be the number of trials and k a positive integer:

� ∀B1:

S
d−−−→

ω→0+

δ(0) if ψ → 0

δ(B1) if ψ → 1

� ∀B1 = 2k:

S
d−−−−→

ω→+∞
δ

(
B1

2

)

� ∀B1 = 2k + 1:

S
d−−−−→

ω→+∞

δ
(
B1−1

2

)
if ψ → 0

δ
(
B1−1

2
+ 1
)

if ψ → 1

In Theorem 1 the convergence of the MB distribution to the Dirac delta one, δ,

when both the parameters ω and ψ diverge, is proven. Such a result is particularly

interesting from an ensemble point of view as it allows to identify the characteristics

of the ensemble E (in terms of joint probability of success, ψ, and/or level of intra-

units association, ω) that yield better performances: in particular, the closer to B1

is the point mass of δ to which S converges, the larger is the ensemble accuracy

predicted by the MB model.

Proposition 1. Let S ∼MB(ψ, ω), B1 be the number of trials,

Z =
S − B1ψτ1√

B1ψη

d−−−−−→
B1→+∞

N (0, 1)

where N is the Gaussian distribution.

This Proposition shows that, as B1 increases, the MB asymptotically converges

to the Gaussian distribution with mean B1ψτ1 and variance B1ψη. In view of this,

the asymptotic confidence interval for the parameter, ψ, could be easily derived as

P

 1

τ̂1

ψ̂ − zα/2
√
ψ̂η̂

n

 ≤ ψ ≤ 1

τ̂1

ψ̂ + zα/2

√
ψ̂η̂

n

 = 1− α
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and, then, compared to the one for the parameter π of the Binomial model:

P

{
π̂ − zα/2

√
π̂(1− π̂)

n
≤ π ≤ π̂ + zα/2

√
π̂(1− π̂)

n

}
.

Here, τ̂1, ψ̂, η̂ and π̂ are the maximum likelihood estimates of τ1, ψ, η and π.

Theorem 2. Let S ∼MB(ψ, ω), B1 be the number of trials and ψ = π/τ1 ≥ 1/2:

ω > 1⇔ ψ > π

In other words, the marginal probability of success ψ of a set of B1 classifiers is larger

than the common individual one, π, if and only if the B1 classifiers are negatively

related (ω ≥ 1) to each other.

In Theorem 2, the relationship between ψ, ω and π is determined and, then,

reshaped in the ensemble context. Figures 2.1 and 2.2 clearly depict this association

and illustrate that, for the same ψ ≥ 1/2 (see, for example ψ = 0.8) and for a

given size B1 of the ensemble, as the negative dependence ω among the classifiers

increases, the required individual accuracy π decreases.

Figure 2.1: Relationship among ω, ψ and π, for B1 = 5.
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Figure 2.2: Relationship between ω and π for ψ = 0.8.

2.4 Ensemble post pruning

Most of the earliest ensemble approaches tend to exploit all the available individual

results to produce the final prediction. However, as [119] pointed out, in the late

1990s, many researchers showed that removing some classifiers from an ensemble

might determine a positive effect on the classification accuracy. In other words, in

presence of redundant models, the accuracy of the final ensemble E can be lower

than that of one or more of its subsets. See, as an example, the situation below,

where ∀i = 1, 2, 3, E, Di = 1 if the unit is correctly classified and Di = 0 otherwise:
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D1 D2 D3 DE

Unit 1 1 1 1 1

Unit 2 0 0 1 0

Unit 3 1 1 1 1

Unit 4 1 0 1 1

Unit 5 0 1 0 0

Unit 6 1 1 1 1

Unit 7 0 0 1 0

Unit 8 0 1 0 0

Unit 9 1 1 1 1

Unit 10 1 0 0 0

Accuracy 0.6 0.6 0.6 0.5

A detailed review on methods to select classifiers from a given ensemble can be

found in [119]. Tsoumakas et al. provide a taxonomy of the most important ensemble

post pruning strategies, organizing them in four different categories: Ranking-based,

Optimization-based, Clustering-based and Other methods.

Methods belonging to the Ranking-based category try to order individual learn-

ers according to a given criterion. Only the learners included in the tail of such

distribution are considered in the final ensemble. The main differences among these

methods consist in both the measure used to order the model (e.g. kappa-pruning,

orientation ordering, . . . ) and the choice of the number of classifiers to retain (i.e.

fixed number or dynamic selection).

The first Ranking-based strategy originated in 1997 from Margineantu and Diet-

terich’s study on boosting pruning [80]. Later, after Tamon and Xiang (2000, [109])

stated that “the boosting pruning problem is intractable even to approximate”, many

other researchers changed their point of view and focused their attention on pruning

ensembles generated by parallel methods (e.g. Bagging). One of the most recent ap-

proaches of the ranking category is the Collective-Agreement-based Pruning (CAP),

introduced by Rokach in 2009 [93]. This algorithm aims to rank subset of classifiers

(rather than individual classifiers) according to both the individual accuracy and

the level of redundancy between them.
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Optimization-based are guided by a performance measure to be optimized. This

class appears to be the most reliable strategy in searching for an appropriate subset

from an ensemble. In particular, heuristic methods based on the evaluation of as

many different designs as possible seem to always select the best performing model

[97]. However, the complexity of such techniques grows exponentially with the

number, B1, of classifiers in the ensemble and thus the problem becomes computa-

tionally intractable very quickly. When the ensemble size is large and consequently

the search space is enormous, Genetic Algorithms (GA) could be employed to find

the best subset of classifiers instead of other stochastic and evolutionary selection

techniques, such as greedy hill-climbing [22], artificial immune algorithms [41, 129],

case similarity search [27], rough set-based selection [60] and others. GA was firstly

introduced by Holland in 1975 [58] as an effective optimization method which tries

to find the best solution simulating some of the processes observed in natural se-

lection. The evolution usually begins from a random initial population and then

continues by choosing, at each step of the algorithm, the most fit3 individuals from

the current generation (parents). Over the parents a modification of the genetic

information (or genome) in terms of mutation, crossover, inversion and selection is

performed so as to create a new population. The process terminates when one of

the stopping criteria is met, e.g. the maximum number of iteration is reached or

the best solution during the evolution process does not change to a better value for

a predefined number of generations.

In 2002, Zhou et al. firstly presented the GASEN [132] (Genetic Algorithm based

Selective ENsemble), a new selective ensemble method which exploits a genetic al-

gorithm to select the most appropriate subset of classifiers. A year later, Zhou and

Tang [131] proposed a revised version of the GASEN, called GASEN-b, where a

“hard” inclusion (i.e. 0/1), rather than a “soft” one (i.e. weighted), of the classifiers

is performed.

As a consequence of the results obtained by Zhou et al., many other authors later

used GAs in searching for the best solutions for the classifier ensemble selection (see,

among others, [5, 9, 10, 23, 24, 56, 57, 88, 105, 127]).

Clustering-based and dynamic selection methods are employed to simplify the

ensemble selection process considerably, even if they do not guarantee the optimality

3the fitness function is usually the value of the objective function in the optimization problem
being solved.
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of the search. The core idea of the clustering-based pruning process is to identify

groups of individual classifiers that present similar behavior and then select from

each cluster the individual learner prototypes. For the initial phase, different clus-

tering techniques can be used: hierarchical agglomerative clustering [46], k-means

clustering based on Euclidean distance [75] and deterministic annealing [6].

Although they differ for the point of view, most of the strategies for ensemble

pruning agree in considering diversity among individual classifiers as a key issue in

building performing ensembles (see, among others,[2, 8, 15, 45, 50, 57, 70, 73, 103]).

Experimental studies demonstrate that the ensemble performances might be im-

proved if both the accuracy and the diversity measures are considered during the

classifier selection process. In 2009, Ko et al. [66] introduced a compound diversity

function for ensemble pruning which exploits both the individual classifiers’ accu-

racy and diversity. In 2014, Bhatnagar et al. [8] presented a heuristic algorithm,

called ADP, which combines together the individual classification accuracies and the

pairwise diversities; such a procedure also eliminates the computational costs of the

compound measure introduced by Ko et al., by using an approach based on GA.

In their work, Bhatnagar et al. asserted that “ADP algorithm is highly likely to

discover optimal ensemble. In case the optimal is missed, the discovered sub-optimal

ensemble is empirically found to be close to the optimal ensemble in terms of both

accuracy and size”. In 2015, Hernandez et al. [57] presented a multi-objective GA

as a procedure to select, from all possible combinations of a large number of experts,

the configuration of diverse base classifiers that provides the best possible accuracy.

In the RP ensemble context, if the number of relevant variables is low, the choice

of the projection that yields the smallest estimate of the test error in each of B1

blocks may cause a lack of diversity among the resulting classifiers. Therefore, in

order to induce diversity and to avoid the selection of B1 too similar base classifiers,

Lu and Xue, in the discussion on the paper by Cannings and Samworth [20], suggest

to use a greedy forward strategy that identifies the optimal projection matrices, by

penalizing the similarity among them. In a similar spirit, Feng considers the idea of

sequentially selecting the RPs so as to make them mutually orthogonal.

Although such techniques may help to generate ensembles of diverse base classifiers,

they explicitly induce dependence among the projections and, therefore mine the
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theoretical framework described 2.2.1.

In reply to these proposals, with the intent of increasing the diversiy among the en-

semble classifiers, the authors themselves examine in [20] a new extension for the RP

ensemble classifier. In particular, they discuss, for each projection, the possibility

to randomize the choice of the base models (i.e. LDA, QDA, Knn) with probability

1/3 or, alternatively, to try all the three methods and retain the one that minimizes

the leave-one-out error estimate.

In the following section, an innovative ensemble post pruning approach is intro-

duced and applied to the RP ensemble classifier. Specifically, such procedure repre-

sents a valid option that allows to identify subsets of diverse base classifiers which,

if jointly considered, provide accurate performances. Furthermore, the proposed al-

gorithm, by performing an aposteriori classifier selection, keeps the RP projection

matrices mutually independent and, therefore, it is coherent with the theoretical

results discussed in [20].

2.4.1 A new proposal for the RP ensemble classifier selec-

tion

Motivated by the above-mentioned results from the literature, the idea of using the

MBD as the reference model for the ensemble accuracy and the result of Theorem 2, a

novel proposal for the selection of the classifiers in the RP ensemble, called Ensemble

Selection Algorithm (ESA) is devised.

This technique follows a simple stepwise criterion: starting from a single classifier

ensemble E, at each step it adds to the existing ensemble the classifier that is most

similar to E in terms of accuracy π (Equation 2.1) and, at the same time, that

provides the highest gain in terms of ω (Equation 2.2).

Specifically, the selection algorithm starts by joining the two individual classifiers

to which the highest value in the compound matrix H is associated.

H =


h1,1 h1,2 · · · h1,B1

h2,2 · · · h2,B1

. . .
...

hB1,B1

 = Π̃ + Ω

This hybrid matrix H is derived by adding the similarity matrix Π̃ of the individ-
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ual classifier accuracies, πi, with the matrix of the pairwise dependencies between

experts, Ω, measured here in terms of the MBD dependence parameter ω.

Then, following this heuristic principle, at each step of the procedure, a new classifier

joins to the existing ensemble E, according to the highest increase in an objective

function. In order to identify such classifier, the following steps are carried out:

1. consider a classifier Ci which has not yet been selected;

2. compute

(a) the difference between the individual accuracy of classifier Ci, πi, and the

average individual accuracy of the existing ensemble, π̄E:

δE,i = 1− |πi − π̄E|
max(π)−min(π)

;

(b) the gain obtained by selecting classifier Ci in terms of ω with respect to

the existing ensemble:

ω̃i = max {ωE∪Ci − ωE, 0},

where ωe is the dependence parameter computed for ensemble e;

3. choose the classifier Ci which yields

max
i
{δE,i + ω̃i}.

However, small differences between the entries of matrix H could not be relevant

and a choice based on the highest term may not be optimal.

In order to overcome this potential limit, a multi-start strategy can be pursued;

namely, instead of considering the single best value of H, nBest (e.g. 3,5) combina-

tions are taken and carried on.

2.4.2 Empirical analysis

The performances of the ESA have been assessed in terms of classification accuracy

on both artificial and real data. For comparison, results from the RP ensemble

classifier and those obtained by applying an alternative pruning method (the multi-

objective Genetic Algorithm, GA, presented in [57]) are discussed. In particular, the

latter procedure was implemented using the GA package [101] with fitness function
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Fitness(x) = Accuracy(x) +Diversity(x)

where:

� Accuracy(x) = 1
#(x)

∑#(x)
i=1 πi ;

� Diversity(x) =
∑#(x)

i<v DFi,v/
(
#(x)
2

)
.

Here, DFi,v is the pairwise Double Fault measure introduced by Giacinto and

Roli in [47], defined as the fraction of misclassifications (n00) made by both

the classifiers considered:

DFi,v =
n00

n
.

For each example, an ensemble of size B1 = 101 has been generated using the

RPParallel function in the RPEnsemble package (Cannings and Samworth, 2016,

[19]) with a training set of size nTr, a test set of size nTe = n − nTr (or, where

available, a subsample of size 1000) and blocks of B2 = 50 d-dimensional Gaussian-

distributed RPs. For the LDA and QDA base classifiers, the training estimator for

the test error suggested in [20] was employed; the Knn, instead, was performed by

using the leave-one-out based estimate.

The subscript below each method refers to the dimension of the projected data, d =

{2, 5}; the quantity in brackets denotes to the number of classifiers, Ĉl, considered

in the final ensemble.

Bold results highlight all the situations in which our proposal performs better than

all the other competitors.

2.4.2.1 Simulated examples

In this section, the ESA was applied on the four simulated models described in [20]

for π1 = 0.5, using LDA as base classifier, nTr = 200 and p = 100. For each scenario,

Nreps = 30 repetitions were carried out.

Tables 2.2-2.3 show, for all the methods, the averages of both the accuracy rate,

â = M(Âc) and, in brackets, the number of selected classifiers, ĉl = M(Ĉl). A

measure of variability for â and ĉl is also provided (i.e. the standard error of the

statistic designated by the subscript). In particular, the standard error of â in the
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tables below is estimated as:

1

N
1/2
reps

{
(1− â)â

nTe
+

n− 1

nTeNreps

Nreps∑
l=1

(â− Âcl)2
}1/2

.

See [20] for further details.

Model 1 − Sparse class boundaries

x|{y = 0} ∼ 1

2
Np(µ0,Σ) +

1

2
Np(−µ0,Σ)

x|{y = 1} ∼ 1

2
Np(µ1,Σ) +

1

2
Np(−µ1,Σ)

Σ = Ip×p, µ0 = (2,−2, 0, . . . , 0)T and µ1 = (2, 2, 0, . . . , 0)T

Model 2 − Rotated sparse normal

x|{y = 0} ∼ Np(Ωpµ0,ΩpΣ0Ω
T
p )

x|{y = 1} ∼ Np(Ωpµ1,ΩpΣ1Ω
T
p )

Ωp is a p × p rotation matrix sampled once according to the Haar measure, µ0 =

(3, 3, 3, 0, . . . , 0)T , µ1 = (0, . . . , 0)T .

Σ0 and Σ1 are block diagonal, with blocks Σ
(1)
0 (3× 3 matrix with diagonal entries

equal to 2 and off-diagonal entries equal to 1
2
), Σ

(1)
1 = Σ

(1)
0 − I3×3 and Σ

(2)
0 = Σ

(2)
1

((p − 3) × (p − 3) matrix with diagonal entries equal to 1 and off-diagonal entries

equal to 1
2
).

- Σ
(1)
0

3×3
=

 2 0.5 0.5

0.5 2 0.5

0.5 0.5 2



- Σ
(1)
1

3×3
=

 1 0.5 0.5

0.5 1 0.5

0.5 0.5 1


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- Σ
(2)
0

(p−3)×(p−3)
= Σ

(2)
1

(p−3)×(p−3)
=


1 0.5 . . . 0.5

0.5 1 . . . 0.5
...

. . .
...

0.5 0.5 . . . 1



Model 3 − Independent features

x|{y = 0} ∼ Np(µ, Ip×p)

x|{y = 1} is simulated from a distribution of p independent components

each with a standard Laplace distribution, L(0, 1).

µ = (1/
√
p)(1, . . . , 1, 0 . . . , 0)T is the mean vector of the normal distribution with

p/2 non-zero components.

Model 4 − t-distributed features

x|{y = r} = µr + Zr/
√

(Ur/νr) r = 0,1

Zr ∼ Np(0,Σr) independent of Ur ∼ χ2
νr . µ0 = (1, . . . , 1, 0 . . . , 0)T with 10 non-zero

components, µ1 = 0, ν0 = 2, ν1 = 1, Σ0 = Σj,k where Σj,j = 1, Σj,k = 0.5 if

max(j, k) ≤ 10 and j 6= k, Σj,k = 0 otherwise, and Σ1 = Ip×p.

RP Methodd Results for Model 1 Results for Model 2
LDA2 50.59 0.49 (101.00 0.00) 93.88 0.25 (101.00 0.00)
ESA-LDA2 50.67 0.43 (70.30 4.43) 92.73 0.32 (38.57 4.34)
GA-LDA2 50.54 0.43 (52.27 0.80) 93.43 0.25 (45.67 0.95)

LDA5 50.27 0.38 (101.00 0.00) 94.16 0.23 (101.00 0.00)
ESA-LDA5 49.85 0.38 (58.80 4.25) 93.30 0.28 (27.73 3.83)
GA-LDA5 49.92 0.40 (51.70 0.64) 93.86 0.21 (42.97 0.97)

Table 2.2: Accuracy rates with standard errors and (number of selected classifiers with
standard errors) for Models 1 and 2.

The overall results showed in Tables 2.2 and 2.3 demonstrate that removing

redundant classifiers from the RP ensemble (rather than using the entire set) could

determine a performance gain. Moreover, in all the situations where it occurs (Model

1, Model 3 and Model 4 with d = 2), the ESA tends to be more effective than the
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RP Methodd Results for Model 3 Results for Model 4
LDA2 50.39 0.86 (101.00 0.00) 64.26 1.64 (101.00 0.00)
ESA-LDA2 50.47 0.82 (66.97 3.98) 64.99 1.35 (46.23 6.05)
GA-LDA2 50.38 0.88 (55.37 0.98) 63.53 1.54 (50.73 0.98)

LDA5 52.72 0.70 (101.00 0.00) 69.68 1.09 (101.00 0.00)
ESA-LDA5 52.39 0.69 (60.87 4.82) 69.35 1.00 (49.07 5.51)
GA-LDA5 52.22 0.66 (53.07 0.90) 68.98 1.07 (50.60 0.99)

Table 2.3: Accuracy rates with standard errors and (number of selected classifiers with
standard errors) for Models 3 and 4.

GA in selecting the smallest subset of base classifiers that provide the best possible

accuracy.

2.4.2.2 Real data examples

Seven different high-dimensional datasets available from the UC Irvine (UCI) Ma-

chine Learning Repository [76] have been used to evaluate the method performances.

In all the real applications, the ESA has been trained for nBest = 5 solutions.

Eye state detection dataset

The electroencephalogram eye state dataset provides information about p = 14

electroencephalogram measurements on 14980 patients. The task is to use these

information to determine whether the eye is either open (class 0, size 8256) or

closed (class 1, size 6723).

Ionosphere dataset

The ionosphere dataset contains p = 32 high-frequency antenna measurements for

315 observations. Specifically, radar returns from the ionosphere are classified as

either suitable for further analysis (class 0, size 225) or not (class 1, size 126) de-

pending on the evidence for free electrons.

Down’s syndrome diagnoses in mice

The mice dataset consists of the expression levels of p = 68 proteins/protein mod-

ifications on 1080 mice. The task is to classify mice as healthy (class 0, size 570)

or affected by Down’s syndrome (class 1, size 507) on the basis of their protein

expression measurements.
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Hill-valley dataset

The hill-valley dataset consists of 1212 observations, each of them representing 100

points on a two-dimensional graph. When plotted in sequence, the points create

either a hill (a“bump” in the terrain; class 0, size 600) or a valley (a “dip” in the

terrain; class 1, size 612). The goal of the analysis is to classify the terrain on the

basis of a vector of dimension p = 100.

Musk dataset

The musk dataset consists of 6598 molecules classified as musk (class 0, size 1016)

or non-musk (class 1, size 5581), based on p = 166 features that describe the exact

shape or the conformation of each molecule. The goal is to learn to predict whether

new molecules will be musks or non-musks.

Cardiac arrhythmia dataset

The cardiac arrhythmia dataset contains observations on 452 patients. The aim

is to distinguish between the presence (class 0, size 245) and absence (class 1, size

207) of cardiac arrhythmia using results from p = 190 electrocardiogram (ECG)

measurements.

Human activity recognition dataset

The human activity recognition dataset contains p = 561 measurements, recorded

from a waist-mounted smartphone with embedded inertial sensors while a subject is

performing an activity. The initial dataset has been subsampled in order to include

only two of the six original activity: walking and laying. The final dataset consists

of 1226 walking” observations (class 0) and 1407 “laying” observations (class 1).

As noticed for the simulation results, for the real data applications too, the

classification performances of the ESA are generally in line with those yielded by

the other competitors. Moreover, in some real examples (e.g. for the mice and

the hill-valley datasets), the improvement in classification accuracy provided by our

proposal is particularly evident.

The inspection of the values in brackets (i.e. the number of classifiers selected for

the final ensemble), clearly shows the tendency of the ESA (already mentioned in

Section 2.4.2.1 for the simulated examples) to consider small subsets of classifiers.
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RP Methodd Results for eye state data Results for ionosphere data
nTr = 50 nTr = 200 nTr = 1000 nTr = 50 nTr = 100 nTr = 200

LDA2 62.80 (101) 59.20 (101) 62.20 (101) 87.38 (101) 90.04 (101) 90.07 (101)
ESA-LDA2 60.50 (27) 62.70 (2) 63.80 (3) 82.06 (7) 89.24 (49) 89.40 (28)
GA-LDA2 61.80 (48) 60.20 (47) 62.00 (51) 87.38 (25) 86.45 (33) 88.08 (32)

LDA5 60.70 (101) 57.60 (101) 63.00 (101) 88.37 (101) 88.45 (101) 90.07 (101)
ESA-LDA5 58.80 (12) 58.60 (23) 62.50 (24) 87.71 (10) 86.06 (2) 89.40 (6)
GA-LDA5 61.10 (32) 57.90 (55) 62.80 (44) 85.38 (26) 87.65 (41) 88.74 (36)

QDA2 64.80 (101) 66.00 (101) 65.50 (101) 88.70 (101) 94.42 (101) 92.72 (101)
ESA-QDA2 58.70 (7) 66.60 (51) 67.00 (23) 91.69 (6) 92.03 (16) 94.04 (13)
GA-QDA2 64.00 (42) 65.90 (57) 68.70 (57) 84.05 (27) 93.23 (32) 91.39 (53)

QDA5 64.70 (101) 70.80 (101) 74.60 (101) 88.70 (101) 91.63 (101) 96.69 (101)
ESA-QDA5 63.10 (6) 70.90 (10) 73.70 (11) 86.71 (1) 92.83 (3) 94.70 (7)
GA-QDA5 62.60 (28) 71.40 (49) 74.50 (48) 87.38 (33) 91.24 (39) 96.03 (51)

Knn2 64.10 (101) 66.50 (101) 76.40 (101) 94.35 (101) 93.63 (101) 95.36 (101)
ESA-Knn2 63.60 (9) 65.80 (64) 76.40 (99) 83.06 (4) 87.65 (4) 94.70 (27)
GA-Knn2 58.10 (43) 66.60 (55) 77.00 (56) 90.03 (38) 93.23 (21) 94.04 (43)

Knn5 60.30 (101) 72.50 (101) 88.20 (101) 87.04 (101) 94.82 (101) 92.05 (101)
ESA-Knn5 65.30 (7) 69.70 (23) 67.90 (57) 89.04 (5) 90.44 (2) 95.36 (7)
GA-Knn5 61.50 (37) 72.40 (52) 87.50 (51) 92.05 (46) 89.64 (31) 96.69 (32)

Table 2.4: Accuracy rates and (number of selected classifiers) for the eye state and
ionosphere data.

In addition to the discussed outcomes, a further analysis was implemented with

the aim to compare the performances of the considered post-pruning approaches

(ESA and GA) with those yielded by the new extensions suggested by Cannings and

Samworth to increase the RP ensemble diversity. In particular, Table 2.8 contains

the accuracy rates for the mice and the hill-valley datasets obtained by employing

the leave-one-out (loo) estimator for all the three base classifiers (i.e. LDA, QDA,

Knn) in the RP ensemble and by performing the new procedures introduced in the

discussion on [20]. Specifically, with “Random” we denote the authors’ proposal of

randomly choosing, on each projection, the base classifier; with “All”, instead, we

refer to the alternative of trying all the base methods on each projection and, than,

selecting the most performing one.

Results from this numerical study reveals once again that diversity is a key issue

in classifier combination. Moreover, our proposal of aposteriori selecting the most

diverse and accurate set of the ensemble classifiers according to the MB parameters,

seems to provide good results. In fact, the accuracy rates yielded by the ESA are

always better than (or comparable with) those achieved by inducing diversity during

the RP ensemble generating process.
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RP Methodd Results for mice data Results for hill-valley data
nTr = 200 nTr= 500 nTr= 1000 nTr = 100 nTr= 200 nTr= 500

LDA2 71.49 (101) 70.54 (101) 64.94 (101) 56.10 (101) 62.90 (101) 63.34 (101)
ESA-LDA2 73.55 (19) 76.60 (8) 67.53 (8) 55.40 (4) 71.00 (1) 64.89 (4)
GA-LDA2 72.41 (61) 68.80 (41) 71.43 (39) 53.50 (47) 59.80 (53) 64.04 (34)

LDA5 74.23 (101) 76.26 (101) 72.73 (101) 60.40 (101) 80.40 (101) 69.94 (101)
ESA-LDA5 81.98 (6) 80.59 (8) 72.73 (14) 63.90 (11) 80.90 (68) 77.95 (27)
GA-LDA5 74.34 (50) 78.34 (43) 77.92 (46) 60.30 (50) 80.70 (100) 82.58 (53)

QDA2 74.68 (101) 75.91 (101) 72.73 (101) 57.90 (101) 58.90 (101) 59.55 (101)
ESA-QDA2 78.56 (17) 83.71 (11) 81.82 (11) 57.90 (101) 59.90 (16) 61.24 (11)
GA-QDA2 77.31 (52) 76.78 (51) 75.32 (41) 60.70 (55) 59.80 (52) 59.55 (39)

QDA5 82.21 (101) 83.88 (101) 81.82 (101) 66.40 (101) 67.40 (101) 62.08 (101)
ESA-QDA5 85.86 (14) 86.48 (11) 85.71 (44) 66.10 (100) 67.40 (101) 64.47 (8)
GA-QDA5 83.58 (42) 84.23 (48) 87.01 (55) 65.20 (44) 66.80 (60) 60.11 (40)

Knn2 85.40 (101) 93.59 (101) 97.40 (101) 52.20 (101) 56.00 (101) 70.93 (101)
ESA-Knn2 86.32 (59) 93.24 (82) 97.40 (79) 53.30 (16) 56.30 (22) 83.57 (16)
GA-Knn2 84.38 (29) 92.89 (50) 98.70 (51) 53.90 (49) 54.70 (49) 74.58 (49)

Knn5 86.55 (101) 97.05 (101) 98.70 (101) 50.20 (101) 52.80 (101) 64.75 (101)
ESA-Knn5 86.20 (6) 98.27 (15) 100.00 (6) 50.50 (10) 54.50 (12) 69.52 (17)
GA-Knn5 86.32 (48) 97.40 (36) 100.00 (51) 51.30 (49) 51.50 (54) 66.29 (40)

Table 2.5: Accuracy rates and (number of selected classifiers) for the mice and hill-valley
data.

2.5 Variable Importance in ensembles

As discussed in the previous section, ensemble of classifiers proved to be a very

useful tool for excellently solving many classification problems. In particular, by

combining the predictions of several (potentially weak) base classifiers, ensembles

allow to better improve both the generalizability and the robustness of the final

estimates. Hovewer, these notable performances carry a remarkable drawback that

strongly affects ensemble algorithms. Namely, methods in this class could be con-

sidered as “black-boxes” which take in input and give out just predictions, without

worrying too much about the underlying mechanism. In this sense, one of the main

shortcomings of ensembles is the fact that, differently from the single classifier, they

loose connection with the original variables and, therefore, do not provide any in-

sight about the feature importance in the classification process.

Among the proposed ensembles of classifiers, the Random Forest procedure rep-

resents one of the most commonly used. The RF algorithm was firstly introduced

by Breiman in 2001 [16] as an ensemble learning technique which combines the pre-

dictions of B1 weak learners (classification or regression trees) in order to boost their

individual performances. In order to help the interpretation of the final outcome

and to overcome the ensemble limits above-discussed, the possibility of efficiently
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RP Methodd Results for musk data Results for cardiac data
nTr = 100 nTr = 200 nTr = 500 nTr = 50 nTr = 100 nTr = 200

LDA2 83.00 (101) 83.10 (101) 83.30 (101) 62.94 (101) 72.59 (101) 77.38 (101)
ESA-LDA2 77.90 (4) 85.70 (18) 86.80 (44) 63.68 (11) 67.05 (8) 75.00 (26)
GA-LDA2 83.00 (50) 83.10 (50) 83.30 (50) 62.19 (43) 72.16 (50) 73.41 (55)

LDA5 74.00 (101) 81.90 (101) 88.80 (101) 63.18 (101) 71.88 (101) 76.59 (101)
ESA-LDA5 83.60 (6) 83.80 (32) 88.70 (6) 64.43 (11) 70.17 (10) 78.17 (37)
GA-LDA5 73.00 (39) 82.60 (39) 88.80 (47) 62.69 (36) 71.02 (42) 75.79 (51)

QDA2 83.00 (101) 83.10 (101) 87.90 (101) 61.94 (101) 70.74 (101) 77.38 (101)
ESA-QDA2 78.70 (51) 82.40 (37) 87.50 (50) 61.69 (69) 70.74 (35) 78.17 (41)
GA-QDA2 78.40 (51) 83.10 (50) 87.50 (65) 59.20 (48) 69.60 (46) 77.38 (50)

QDA5 83.70 (101) 88.60 (101) 90.00 (101) 60.20 (101) 72.73 (101) 78.57 (101)
ESA-QDA5 81.90 (1) 85.90 (5) 89.10 (14) 59.95 (16) 68.47 (17) 78.17 (13)
GA-QDA5 82.40 (21) 85.60 (36) 88.90 (32) 57.71 (41) 66.19 (50) 77.38 (42)

Knn2 84.00 (101) 85.20 (101) 90.00 (101) 59.70 (101) 73.30 (101) 73.02 (101)
ESA-Knn2 83.10 (7) 81.40 (99) 87.60 (6) 58.71 (14) 73.01 (25) 73.02 (101
GA-Knn2 78.50 (54) 84.00 (56) 89.10 (45) 62.19 (44) 69.32 (51) 69.44 (55)

Knn5 86.20 (101) 86.00 (101) 89.10 (101) 66.42 (101) 70.74 (101) 76.59 (101)
ESA-Knn5 85.00 (5) 87.50 (25) 88.00 (5) 63.93 (26) 67.33 (21) 78.18 (75)
GA-Knn5 86.00 (39) 85.20 (53) 89.40 (60) 63.93 (43) 69.60 (43) 77.78 (56)

Table 2.6: Accuracy rates and (number of selected classifiers) for the musk and cardiac
arrhythmia data.

ranking the input features according to their importance was considered since the

first formulation of the algorithm. In particular, in RFs, the strength of a generic

u-th feature can be measured by averaging, over all the trees in the forest, the dif-

ference between the initial Out-Of-Bag (OOB) error and the OOB error computed

after permuting the values for the u-th variable in the OOB sample. The final score

is than obtained by normalizing these differences with their standard deviations.

Inspired both by the RF process for variable ranking and the work of Montanari

and Lizzani [85] on projection pursuits, the main idea in this work is to use the

information provided by the RP ensemble classifier so as to mitigate the typical lack

of interpretability which characterizes of ensembles.

2.5.1 Variable ranking for the RP ensemble

A still open issue in [20] is “to understand the properties of the variable ranking

induced by the RP ensemble classifier”. In fact, despite such classifier highly im-

proves the classification accuracy, it does not allow to identify the variables with the

highest discriminative power, as a single classifier does.

In the discussion on the paper by Cannings and Samworth [20], several contributors

mention the potential use of sparse RPs (e.g. Axis-Aligned Random Projections,
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RP Methodd Results for human activity recognition data
nTr = 50 nTr = 200 nTr = 1000

LDA2 99.80 (101) 100.00 (101) 99.90 (101)
ESA-LDA2 98.80 (1*) 99.50 (1**) 100.00 (1)
GA-LDA2 99.80 (50) 100.00 (20) 99.80 (13)

LDA5 99.80 (101) 100.00 (101) 100.00 (101)
ESA-LDA5 99.40 (1*) 99.50 (1*) 100.00 (1**)
GA-LDA5 99.80 (50) 100.00 (50) 99.60 (4)

QDA2 99.80 (101) 100.00 (101) 100.00 (101)
ESA-QDA2 98.00 (1*) 99.40 (1**) 99.70 (1)
GA-QDA2 99.80 (50) 99.90 (15) 99.90 (14)

QDA5 99.90 (101) 99.90 (101) 100.00 (101)
ESA-QDA5 99.00 (1*) 99.40 (1*) 99.60 (1)
GA-QDA5 99.80 (50) 99.90 (50) 100.00 (50)

Knn2 99.80 (101) 99.90 (101) 100.00 (101)
ESA-Knn2 99.10 (1*) 99.50 (1**) 99.90 (1)
GA-Knn2 99.90 (50) 100.00 (12) 99.60 (19)

Knn5 99.70 (101) 99.90 (101) 99.90 (101)
ESA-Knn5 98.50 (1*) 99.50 (1*) 99.50 (1**)
GA-Knn5 99.70 (50) 99.90 (50) 100.00 (50)

* means that all the πi are equal and, thus, the ESA
does not start.
** means that the H matrix does not contain nBest =
5 different values and, thus, only smaller solutions of
nBest (corresponding to the number of distinct hi,v,
i 6= v) are explored.

Table 2.7: Accuracy rates and (number of selected classifiers) for the human activity
recognition data.

AA-RP) to measure the importance of each input variable. Gataric, for example,

numerically demonstrates that performing a majority vote scheme across the B1

projections

â∗u =
1

B1

B1∑
i=1

1{(ATi Ai)u,u=1} u = 1, · · · , p (2.3)

could provide a good estimation of the classification power for each feature u.

In this work, in the same spirit, a specific coefficient, called Variable Importance

in Projection (VIP), is introduced so as to evaluate the importance of each input

variable.

Following Montanari and Lizzani (2001), for the u-th variable the Importance Coef-

ficient (CI) is defined as

CIui =
d∑
q=1

|auqi|su√∑p
z=1 (auzisu)

2
i = 1, · · · , B1
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RP Methodd Results for mice data Results for hill-valley data
nTr = 200 nTr= 500 nTr= 1000 nTr = 100 nTr= 200 nTr= 500

LDA2 70.35 (101) 71.75 (101) 66.23 (101) 56.10 (101) 63.20 (101) 63.76 (101)
ESA-LDA2 73.43 (8) 77.12 (4) 63.64 (1) 58.90 (3) 67.10 (15) 63.06 (10)
GA-LDA2 69.78 (54) 74.87 (41) 67.53 (47) 53.50 (47) 60.80 (49) 64.47 (49)

LDA5 73.55 (101) 73.48 (101) 72.73 (101) 60.40 (101) 69.60 (101) 68.82 (101)
ESA-LDA5 78.45 (16) 80.24 (6) 81.82 (9) 64.10 (6) 72.60 (16) 71.91 (9)
GA-LDA5 74.66 (54) 76.95 (45) 74.03 (53) 59.60 (42) 66.30 (50) 68.82 (43)

QDA2 74.68 (101) 75.91 (101) 72.73 (101) 53.30 (101) 59.70 (101) 59.55 (101)
ESA-QDA2 78.56 (17) 83.71 (11) 81.82 (11) 54.50(1) 59.70 (91) 62.36 (9)
GA-QDA2 77.31 (52) 76.78 (51) 75.32 (41) 53.40 (57) 57.00 (41) 59.41 (46)

QDA5 82.21 (101) 83.88 (101) 81.82 (101) 60.20 (101) 59.20 (101) 61.80 (101)
ESA-QDA5 85.86 (14) 86.48 (11) 85.71 (44) 56.00 (1) 59.60 (9) 64.04 (17)
GA-QDA5 83.58 (42) 84.23 (48) 87.01 (55) 56.90 (47) 58.20 (43) 60.39 (17)

Knn2 85.40 (101) 93.59 (101) 97.40 (101) 52.20 (101) 56.00 (101) 70.93 (101)
ESA-Knn2 86.32 (59) 93.24 (82) 97.40 (79) 53.30 (16) 56.30 (22) 83.57 (16)
GA-Knn2 84.38 (29) 92.89 (50) 98.70 (51) 53.90 (49) 54.70 (49) 74.58 (49)

Knn5 86.55 (101) 97.05 (101) 98.70 (101) 50.20 (101) 52.8 (101) 64.75 (101)
ESA-Knn5 86.20 (6) 98.27 (15) 100.00 (6) 50.50 (10) 54.50 (12) 69.52 (17)
GA-Knn5 86.32 (48) 97.40 (36) 100.00 (51) 51.30 (49) 51.50 (54) 66.29 (40)

Random2 84.49 (101) 90.64 (101) 94.80 (101) 52.00 (101) 55.20 (101) 66.29 (101)
All2 84.15 (101) 94.28 (101) 100.00 (101) 53.70 (101) 55.60 (101) 73.59 (101)
Random5 84.72 (101) 97.05 (101) 100.00 (101) 60.70 (101) 68.40 (101) 66.43 (101)
All5 87.00 (101) 97.40 (101) 98.70 (101) 59.80 (101) 70.30 (101) 72.89 (101)

Table 2.8: Accuracy rates and (number of selected classifiers) for the mice and hill-valley
data obtained by using the loo estimator.

where auqi indicates the attribute u coefficient in the q-th vector of the d-dimensional

random projection solution and su the variability (i.e. the standard deviation) of

each attribute.

The Variable Importance in Projection for feature u is then obtained as

V IPu = median
i=1,...,B1

CIui. (2.4)

The median is used here so as to mitigate the effects on the V IP of potential not-

so-good projections. By computing the VIP it is possible to rank the input features

and highlight the most relevant ones for classification purposes.

The number of variables to be kept is decided by the user; a possible strategy is to

explore all the solutions and, then, retain only the first h variables that minimize

the test error estimate.

2.5.2 Empirical analysis

Performances of the VIP criterion have been evaluated in both simulated and real

data applications.
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As a first step, for each simulated scenario, the capability of the measure in 2.4 to

recognize the actual important variables was tested and, then, compared to the one

described in 2.3. Secondly, both the VIP (RP-VIP) and the proposal by Gataric

(AA-RP) were applied within the RP ensemble classifier framework with the specific

aim to address classification issues. In this case, the input variables of each dataset

have been initially ranked according to the two discussed criteria, each computed on

B1 = 101 d-dimensional Gaussian-distributed RP matrices selected within blocks

of B2 = 50 possible solutions; then, three base classifiers (LDA, QDA, Knn) were

performed on 100 different training sets, by using, for each method, only the first h

variables yielding the largest estimate of the training accuracy.

In addition to the accuracy rates provided by the RP-VIP and the AA-RP ensemble

classifiers, results from the RP ensemble classifier in [20] and the “standard” classi-

fication (i.e. by applying the base classifier in the original space) are reported.

The subscript below each method still refers to the dimension of the projected data,

d = {2, 5}.

2.5.2.1 Simulated examples

In this section, the VIP criterion (2.4, RP-VIP) and the proposal discussed by

Gataric (2.3, AA-RP) for variable ranking have been tested and compared in a

Monte Carlo simulation study, focusing on their capability of recovering the actu-

ally important features, p∗.

In particular, four different simulation settings, inspired to the synthetic data ex-

amples described in [81], were considered.

Samples of size nTr ∈ 50, 100 have been simulated for a p = 100-dimensional fea-

ture vector, where only the first p∗ = 4 variables contain useful information for

classification purposes. The relevant features were generated from the following

distribution,

x[1:4]|{y = 0} ∼ N4(µ0, I2)

x[1:4]|{y = 1} ∼ N4(µ1, I2)

where µ0 = (−2,−2,−2,−2)T and µ1 = (2, 2, 2, 2)T . The remaining 96 variables

were created according to the model

x[5:100] = x[1:4]β + ε,
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where ε ∼ N(0,Ω). Different settings for β and Ω define different scenarios: in Model
1, the irrelevant variables have been simulated independently of the relevant ones;
in Models 2 to 4, in addition to the relevant and irrelevant variables, an increasing
number of redundant features has been included in the data generating process.
The values of the parameters for all the models are reported below. Each non-
null entry of β was randomly sampled with replacement from the sequence seq =
(0.00, 0.05, 0.10, 0.15, 0.20, 0.25); every element of seq has the same probability of
being chosen, 0.08, except for the 0.00 that is selected with probability 0.6.

Model 1

β = 096 Ω = I96

Model 2

β =


β1,1 β1,2 . . . β1,24

...
...

β4,1 β4,2 . . . β4,24

072

 Ω = I96

Model 3

β =


β1,1 β1,2 . . . β1,24 . . . β1,48

...
...

β4,1 β4,2 . . . β4,24 . . . β4,48

048

 Ω =

I24 0.5I24

I48



Model 4

β =


β1,1 β1,2 . . . β1,24 . . . β1,48 . . . β1,96

...
...

β4,1 β4,2 . . . β4,24 . . . β4,48 . . . β4,96

 Ω =

I24 0.5I48

I24


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Table 2.9 shows the number of relevant variables detected from the two approaches

as the first p∗ ones over 100 simulations. In Tables 2.10-2.11, for all the discussed

methods, the number of variables h used for the final computation, the accuracy

rates and the standard errors of 100 repetitions are compared.

Model d Method Results for RP-VIP Results for AA-RP
nTr = 50 nTr = 100 nTr = 50 nTr = 100

1-3 4 1-3 4 0 1-3 4 0 1-3 4
1 2

LDA 100% 100% 30% 70% 27% 73%
QDA 100% 100% 25% 75% 23% 77%
Knn 100% 100% 17% 83% 24% 76%

1 5
LDA 100% 100% 51% 49% 60% 40%
QDA 100% 100% 37% 63% 53% 47%
Knn 100% 100% 65% 35% 55% 45%

2 2
LDA 100% 100% 31% 69% 24% 76%
QDA 100% 100% 34% 66% 21% 79%
Knn 100% 100% 17% 83% 12% 88%

2 5
LDA 100% 100% 38% 62% 62% 38%
QDA 100% 100% 29% 71% 43% 57%
Knn 1% 99% 100% 59% 41% 56% 44%

3 2
LDA 100% 100% 59% 41% 32% 68%
QDA 1% 99% 100% 55% 45% 31% 69%
Knn 2% 98% 100% 46% 54% 22% 78%

3 5
LDA 100% 100% 67% 33% 67% 33%
QDA 100% 100% 66% 34% 51% 49%
Knn 100% 100% 69% 31% 63% 37%

4 2
LDA 2% 98% 1% 99% 81% 19% 43% 57%
QDA 1% 99% 1% 99% 83% 17% 47% 53%
Knn 2% 98% 2% 98% 76% 24% 40% 60%

4 5
LDA 1% 99% 100% 1% 94% 6% 78% 22%
QDA 1% 99% 100% 96% 4% 74% 26%
Knn 2% 98% 100% 1% 91% 9% 79% 21%

Table 2.9: Number of relevant variables detected as first p∗ ones on 100 repetitions of
Models 1—4.

As can be noticed from Table 2.9, the VIP measure is very good in performing

its tasks: namely, it is capable to almost perfectly identify the actually relevant

information sources among the others. On the contrary, the procedure introduced

by Gataric does not perform excellently as well: in fact, even if from the hardest

scenario (Model 4) to the simplest one (Model 1) the number of relevant variables

correctly recognized by the method increases, the obtained results never equal those
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provided by the VIP.

Method Results for Model 1 Results for Model 2
nTr = 50 nTr = 100 nTr = 50 nTr = 100

h h h h
LDA2 97.94 0.24 98.74 0.10 98.35 0.20 98.71 0.11

VIP-LDA2 3 98.98 0.13 8 98.80 0.15 3 98.91 0.14 7 98.98 0.11

AA-LDA2 3 99.08 0.13 4 99.19 0.08 3 98.97 0.14 4 99.16 0.09

LDA5 98.57 0.19 98.59 0.12 98.50 0.20 98.60 0.12

VIP-LDA5 3 98.96 0.14 8 98.94 0.13 3 98.94 0.15 7 99.04 0.10

AA-LDA5 3 98.86 0.17 3 99.23 0.07 4 99.00 0.15 5 99.17 0.08

LDA —† 66.87 0.67 —† 68.94 0.67

QDA2 98.00 0.22 98.81 0.11 98.21 0.20 98.76 0.11

VIP-QDA2 3 98.66 0.18 4 98.81 0.16 3 98.75 0.17 4 98.90 0.12

AA-QDA2 2 98.87 0.15 3 99.05 0.09 2 98.84 0.15 3 99.03 0.10

QDA5 98.58 0.17 98.77 0.12 98.70 0.18 98.59 0.13

VIP-QDA5 3 98.55 0.17 4 98.83 0.15 3 98.72 0.17 4 98.86 0.12

AA-QDA5 2 98.81 0.16 3 99.09 0.09 2 98.78 0.15 3 99.10 0.09

QDA —† —† —† —†

Knn2 98.10 0.19 98.80 0.11 98.34 0.21 98.65 0.11

VIP-Knn2 3 98.73 0.15 2 98.84 0.11 3 98.78 0.15 4 98.82 0.11

AA-Knn2 3 99.10 0.14 2 98.88 0.10 3 99.04 0.13 4 98.89 0.10

Knn5 98.11 0.22 98.83 0.10 98.10 0.22 98.72 0.11

VIP-Knn5 5 98.72 0.15 2 98.81 0.10 3 98.67 0.16 3 98.94 0.10

AA-Knn5 5 98.91 0.15 2 98.94 0.11 3 99.05 0.14 3 98.90 0.10

Knn 98.75 0.15 98.58 0.10 98.82 0.15 98.83 0.11

Table 2.10: Number of selected variables h, accuracy rates and standard errors for Models
1 and 2.

Although the performances for the VIP and the AA criteria discussed for Ta-

ble 2.9 are noticeably different, as can be seen in Tables 2.10-2.11, the classification

accuracies yielded by the two methods are comparable at all. In fact, even not be-

ing able to perfectly distinguish the relevant information from the rest, the AA-RP

classifier attains competitive results in terms of unit allocation. A possible expla-

nation for this apparently contradictory outcome could be found in the use, by the

AA-RP ensemble classifier, of sets of both relevant and/or redundant variables when

it tackles classification problems.

2.5.2.2 Real data examples

Performances of the VIP criterion have been evaluated in real data applications,

too. The RP-VIP classification accuracy has been tested on the same datasets dis-

cussed in Section 2.4.2.2; each dataset was split into training and test sets of size

respectively nTr and nTe = n− nTr (or, where available, a subsample of size 1000).

Although the main aim of ranking the input features in terms of their discriminative

power rests in a better understanding of the classification problem, results presented

in Tables 2.12-2.15 clearly show that, in RP ensemble context, this procedure allows



2.5. Variable Importance in ensembles 39

Method Results for Model 3 Results for Model 4
nTr = 50 nTr = 100 nTr = 50 nTr = 100

h h h h
LDA2 98.52 0.16 98.76 0.11 98.91 0.15 98.83 0.11

VIP-LDA2 3 98.96 0.13 9 99.01 0.11 3 99.00 0.13 7 99.03 0.12

AA-LDA2 3 99.07 0.12 3 99.21 0.08 3 98.98 0.14 4 99.15 0.09

LDA5 98.84 0.14 98.73 0.11 99.09 0.13 99.01 0.10

VIP-LDA5 3 98.99 0.12 7 98.99 0.11 3 98.97 0.13 7 99.07 0.09

AA-LDA5 3 99.02 0.15 4 99.12 0.10 4 98.67 0.17 4 99.05 0.09

LDA —† 67.33 0.75 —† 65.99 0.80

QDA2 98.33 0.18 98.73 0.11 98.90 0.15 98.84 0.10

VIP-QDA2 3 98.53 0.16 5 98.88 0.13 3 98.74 0.15 5 98.84 0.14

AA-QDA2 2 98.69 0.15 3 98.99 0.10 3 98.87 0.15 3 99.05 0.09

QDA5 98.80 0.12 98.70 0.11 99.01 0.13 98.94 0.10

VIP-QDA5 3 98.41 0.22 4 98.87 0.13 3 98.57 0.17 5 98.73 0.18

AA-QDA5 3 98.75 0.15 3 99.10 0.09 2 98.71 0.16 3 98.91 0.14

QDA —† —† —† —†

Knn2 98.29 0.18 98.70 0.12 98.69 0.18 98.82 0.10

VIP-Knn2 2 98.77 0.13 3 98.85 0.10 3 98.69 0.15 3 98.88 0.10

AA-Knn2 2 99.01 0.13 3 98.88 0.10 3 98.96 0.15 3 98.94 0.10

Knn5 98.81 0.14 98.72 0.11 99.11 0.13 98.88 0.10

VIP-Knn5 2 98.68 0.15 3 98.89 0.10 2 98.81 0.15 2 98.89 0.10

AA-Knn5 2 99.02 0.13 3 98.89 0.10 2 98.73 0.18 2 98.82 0.11

Knn 98.89 0.13 98.86 0.10 98.89 0.14 98.96 0.09

Table 2.11: Number of selected variables h, accuracy rates and standard errors for Models
3 and 4.

to still preserve the classification accuracy.

The variable selection process for both the RP-VIP and the AA-RP ensemble clas-

sifiers is illustrated in the plots of Appendix B.1. In particular, as can be noticed in

Figures B.7-B.84, the variable ranking induced by the two procedures is notably dif-

ferent and the solution provided by the VIP seems to be much more stable than that

obtained by performing a majority vote across the axis-aligned projections. From

the plots, in fact, it is evident that while the accuracy of the RP-VIP tends to in-

crease only until all the (potentially) most important variables have been considered,

the one of the AA-RP presents alternate peaks, especially when used in conjunction

with LDA or QDA. In addition, in some cases of the mice, hill-valley, cardiac and

human activity recognition datasets, the proposal of Gataric in Equation 2.3 can-

not even be performed: namely, being some axis-aligned projected data collinear,

both the linear and quadratic discriminant analyses become totally unfeasible (see

Section 2.1).
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Method Results for eye state data, p = 14 Results for ionosphere data, p = 32
nTr = 50 nTr = 200 nTr = 1000 nTr = 50 nTr = 100 nTr = 200

h h h h h h
LDA2 58.22 0.30 61.05 0.23 62.96 0.24 86.40 0.49 89.16 0.31 90.26 0.30

VIP-LDA2 13 57.52 0.35 13 60.99 0.22 14 63.06 0.19 26 76.14 0.41 31 81.48 0.32 29 84.61 0.33

AA-LDA2 2 53.02 0.43 2 58.27 0.26 6 59.23 0.23 31 76.40 0.44 20 81.75 0.29 2 82.02 0.31

LDA5 58.23 0.34 61.26 0.24 63.74 0.16 86.80 0.37 89.06 0.28 89.79 0.30

VIP-LDA5 14 57.37 0.36 10 57.50 0.23 14 63.06 0.19 26 77.69 0.40 32 81.73 0.33 32 84.42 0.35

AA-LDA5 2 55.28 0.45 3 54.64 0.34 2 58.82 0.22 2 82.25 0.27 3 82.54 0.25 27 84.60 0.30

LDA 57.37 0.36 60.74 0.23 63.06 0.19 76.28 0.44 81.73 0.33 84.42 0.35

QDA2 59.28 0.34 63.83 0.39 64.51 0.74 90.08 0.40 92.81 0.23 93.80 0.23

VIP-QDA2 12 60.78 0.32 14 70.90 0.37 14 71.58 0.99 10 84.86 0.42 15 88.22 0.28 30 86.56 0.35

AA-QDA2 9 58.23 0.33 7 62.90 0.37 6 58.64 0.56 11 83.43 0.51 7 90.08 0.31 2 85.21 0.29

QDA5 60.98 0.36 67.92 0.40 69.84 0.85 89.73 0.48 93.61 0.22 94.65 0.22

VIP-QDA5 14 60.24 0.36 12 69.73 0.39 13 71.06 1.01 13 80.56 0.65 19 85.60 0.36 31 86.25 0.35

AA-QDA5 8 59.90 0.34 2 59.96 0.46 3 62.80 0.88 3 86.40 0.30 3 84.90 0.29 3 89.67 0.31

QDA 60.24 0.36 70.90 0.36 71.58 0.99 —† 80.62 0.61 85.93 0.37

Knn2 60.16 0.34 68.53 0.25 75.60 0.19 88.41 0.44 92.90 0.26 94.26 0.23

VIP-Knn2 5 59.11 0.29 10 69.21 0.22 5 75.39 0.14 23 79.21 0.68 8 81.43 0.38 6 84.93 0.35

AA-Knn2 5 59.33 0.33 10 68.67 0.24 5 77.28 0.15 23 69.27 0.71 8 85.28 0.34 6 88.19 0.31

Knn5 60.39 0.34 72.90 0.24 86.22 0.15 87.15 0.45 92.63 0.27 94.50 0.23

VIP-Knn5 11 55.01 0.31 14 70.96 0.24 2 57.91 0.16 9 77.97 0.54 16 81.86 0.40 3 79.85 0.41

AA-Knn5 11 59.51 0.32 14 70.96 0.24 2 63.70 0.18 9 80.06 0.53 16 82.47 0.41 3 89.32 0.29

Knn 59.18 0.28 70.95 0.24 85.60 0.12 78.27 0.74 81.93 0.48 83.65 0.38

Table 2.12: Number of selected variables h, accuracy rates and standard errors for the eye
state and ionosphere data.

2.6 Discussion and extensions

The RP ensemble classifier introduced by Cannings and Samworth in [20] seems

to be a promising and very general tool for solving binary classification tasks. In

particular, their idea to use RPs in the ensemble context successfully introduces di-

versity into the classification solution and, thus, significantly improves the ensemble

accuracy.

In this work, two different directions for the RP ensemble classifier are investigated:

on one hand, an Ensemble Selection Algorithm (ESA) is introduced with the aim

of identifying the most accurate subset of classifiers, by combining the original idea

of using the Multiplicative Binomial distribution (MB) as the reference model to

describe and predict the ensemble accuracy with an important result on such dis-

tribution. On the other, inspired by the Random Forest (RF) process for feature

selection, the RP ensemble classifier is adjusted so as to provide a variable rank-

ing through a specific coefficient called Variable Importance in Projection (VIP).

The innovative contribution of these two solutions does not rely on the algorithmic

procedure, rather on the introduction of novel criteria that enhance the results, in

terms of both accuracy and understanding.

Results of applying both the ESA and the VIP criterion in simulated and real data
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Method Results for mice data, p = 68 Results for hill-valley data, p = 100
nTr = 200 nTr = 500 nTr = 1000 nTr = 100 nTr = 200 nTr = 500

h h h h h h
LDA2 68.86 0.31 70.59 0.30 70.22 0.59 56.16 0.47 58.46 0.55 61.55 0.57

VIP-LDA2 61 93.65 0.13 56 95.77 0.10 67 96.78 0.21 95 62.52 0.48 29 65.41 0.50 90 66.71 0.43

AA-LDA2 25 92.84 0.11 28 93.54 0.11 7 92.00 0.26 21 62.36 0.51 20 61.94 0.49 6 61.84 0.39

LDA5 74.46 0.32 76.42 0.28 77.03 0.49 62.65 0.84 65.55 0.91 68.38 0.97

VIP-LDA5 58 93.87 0.13 58 95.96 0.10 66 96.78 0.21 99 62.27 0.50 55 65.34 0.50 7 65.56 0.45

AA-LDA5 61 92.83 0.15 27 93.86 0.10 7 90.14 0.30 27 63.71 0.47 97 63.57 0.48 23 64.93 0.44

LDA 93.49 0.14 95.98 0.10 96.76 0.21 62.36 0.51 63.34 0.45 66.19 0.38

QDA2 73.64 0.31 75.55 0.27 75.17 0.53 53.50 0.30 55.24 0.32 58.22 0.35

VIP-QDA2 33 93.22 0.18 38 98.08 0.07 50 99.13 0.11 12 54.64 0.32 7 56.25 0.303 10 56.36 0.31

AA-QDA2 —† —† —† 2 50.16 0.21 2 51.42 0.24 3 53.09 0.28

QDA5 81.17 0.29 83.59 0.23 84.30 0.44 55.09 0.42 57.81 0.44 60.84 0.49

VIP-QDA5 27 91.36 0.20 37 97.82 0.08 52 99.16 0.11 11 51.64 0.23 29 52.35 0.24 18 54.97 0.27

AA-QDA5 —† —† —† —† —† 5 53.22 0.27

QDA —† —† —† —† —† —†

Knn2 87.72 0.36 92.50 0.23 96.73 0.22 52.11 0.25 57.18 0.34 72.69 0.39

VIP-Knn2 7 73.45 0.23 5 78.28 0.23 3 76.65 0.48 3 50.24 0.24 12 51.13 0.23 4 53.68 0.22

AA-Knn2 7 81.13 0.22 5 91.01 0.15 3 83.53 0.43 3 50.39 0.23 12 51.01 0.24 4 53.68 0.22

Knn5 87.94 0.28 92.42 0.10 99.49 0.09 50.82 0.23 52.90 0.24 64.19 0.23

VIP-Knn5 5 71.53 0.22 4 73.44 0.22 8 92.79 0.33 57 50.52 0.24 8 50.94 0.23 38 55.36 0.24

AA-Knn5 5 82.72 0.20 4 88.18 0.17 8 97.95 0.19 57 50.53 0.24 8 51.86 0.22 38 55.36 0.24

Knn 80.25 0.23 92.97 0.09 99.12 0.12 50.62 0.24 51.41 0.23 53.34 0.21

Table 2.13: Number of selected variables h, accuracy rates and standard errors for the
mice and hill-valley data.

demonstrate that our proposals successfully control the misclassification rate by us-

ing a very small number of individual classifiers and by ranking the features in terms

of their discriminative power.

Although preliminary results are good, we are almost certain that a further re-

search could provide even additional enhancements. In particular, for the ESA, we

are aware that the forward search-based procedure is quite complex - O(B3
1) - and

does not guarantee the optimality of the combination found.
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Method Results for musk data, p = 166 Results for cardiac data, p = 190
nTr = 100 nTr = 200 nTr = 500 nTr = 50 nTr = 100 nTr = 200

h h h h h h
LDA2 84.29 0.20 85.27 0.16 85.79 0.18 65.67 0.45 68.95 0.36 70.87 0.36

VIP-LDA2 62 76.30 0.41 107 82.52 0.23 157 91.11 0.11 43 55.31 0.48 83 57.36 0.42 166 57.63 0.62

AA-LDA2 2 83.97 0.21 2 84.62 0.12 5 84.86 0.11 —† —† —†
LDA5 84.87 0.32 87.80 0.18 89.85 0.12 66.71 0.47 70.06 0.33 72.29 0.35

VIP-LDA5 50 78.82 0.37 118 81.70 0.24 153 91.18 0.11 37 57.10 0.50 81 57.55 0.41 179 57.89 0.60

AA-LDA5 24 83.68 0.25 121 84.25 0.23 2 84.65 0.11 —† —† —†
LDA —† 74.66 0.41 90.93 0.11 —† 190 —† 53.97 0.25

QDA2 84.98 0.28 86.73 0.20 87.94 0.18 67.11 0.39 70.15 0.33 71.22 0.36

VIP-QDA2 15 82.06 0.24 24 84.72 0.17 67 86.46 0.14 9 60.02 0.39 31 60.23 0.46 66 66.93 0.44

AA-QDA2 2 83.65 0.21 2 84.06 0.14 2 84.76 0.11 —† —† —†
QDA5 87.77 0.25 89.28 0.20 91.24 0.13 63.23 0.58 70.16 0.34 72.75 0.34

VIP-QDA5 12 79.47 0.51 31 85.55 0.13 58 87.36 0.15 15 56.83 0.41 43 55.89 0.61 69 65.64 0.46

AA-QDA5 7 81.74 0.26 2 84.90 0.13 2 84.65 0.11 —† —† —†
QDA —† —† —† —† 190 —† —†

Knn2 86.56 0.30 88.74 0.23 91.17 0.12 66.27 0.47 69.70 0.34 71.98 0.33

VIP-Knn2 6 83.07 0.27 2 84.80 0.17 3 84.99 0.12 5 58.20 0.40 8 59.39 0.36 2 53.95 0.36

AA-Knn2 6 84.27 0.24 2 87.75 0.17 3 90.40 0.13 5 58.96 0.38 8 68.58 0.31 2 59.65 0.37

Knn5 87.65 0.31 89.87 0.22 91.91 0.13 65.81 0.49 69.71 0.35 72.46 0.34

VIP-Knn5 45 85.12 0.21 4 85.82 0.26 3 85.65 0.12 43 59.70 0.39 6 58.90 0.37 14 60.25 0.34

AA-Knn5 45 86.29 0.26 4 86.61 0.20 3 90.26 0.12 43 61.45 0.46 6 58.54 0.37 14 67.13 0.36

Knn 85.96 0.25 88.89 0.15 91.83 0.13 59.79 0.38 61.80 0.35 64.75 0.34

Table 2.14: Number of selected variables h, accuracy rates and standard errors for the
musk and cardiac arrhythmia data.

Method Results for human activity recognition data, p = 561
nTr = 50 nTr = 200 nTr = 1000

h h h
LDA2 99.85 0.01 99.92 0.01 100.00 0.00

VIP-LDA2 2 100.00 0.00 2 100.00 0.00 2 100.00 0.00

AA-LDA2 2 99.33 0.07 2 100.00 0.00 3 100.00 0.00

LDA5 99.82 0.02 99.90 0.01 100.00 0.00

VIP-LDA5 2 100.00 0.00 2 100.00 0.00 2 100.00 0.00

AA-LDA5 3 99.33 0.06 2 99.94 0.01 2 100.00 0.00

LDA —† —† 100.00 0.00

QDA2 99.80 0.02 99.91 0.01 100.00 0.00

VIP-QDA2 2 99.96 0.01 2 99.98 0.00 2 99.99 0.00

AA-QDA2 —† —† —†
QDA5 99.83 0.02 99.88 0.01 99.99 0.00

VIP-QDA5 2 99.96 0.01 2 99.98 0.00 2 100.00 0.00

AA-QDA5 —† —† —†
QDA —† —† —†

Knn2 99.81 0.02 99.91 0.01 100.00 0.00

VIP-Knn2 2 99.47 0.04 2 100.00 0.00 2 100.00 0.00

AA-Knn2 2 99.46 0.04 2 99.83 0.02 2 99.98 0.01

Knn5 99.80 0.02 99.90 0.01 100.00 0.00

VIP-Knn5 2 100.00 0.00 2 100.00 0.00 2 100.00 0.00

AA-Knn5 2 98.63 0.05 2 98.72 0.04 2 100.00 0.00

Knn 99.74 0.02 99.87 0.01 99.98 0.00

Table 2.15: Number of selected variables h, accuracy rates and standard errors for the
human activity recognition data.



Chapter 3

One-class classification

3.1 Introduction

As widely discussed in 2.1, the typical problem of classification is to assign a new

object to one of a set of classes which are known in advance. But how can this pro-

cedure be performed if the information on only one of the classes (the target class)

is available? How can a boundary around this class be defined so as to recognize as

much of the target objects as possible while minimizing the chance of error? Cir-

cumstances of this kind characterize various contexts including machine fault and

fraud detection, food authentication and medical or machine diagnostics.

In order to better explain the peculiarities of these situations, let’s consider two

simple examples.

Firstly, imagine that you are holding a beef burger in you hand, wandering if

you are going to eat wealthy enough. Would you be able to recognize whether the

meet in your burger is “100% pure beef” as claimed?

Then, change scenario and suppose that you are an art curator who has been asked

to evaluate a painting in terms of its state of preservation. Could you give an advice

on ways to restore or maintain the artwork in good conditions, on the basis of the

specific “ingredients” it shall be composed of? Although it may seem so, the answer

to these questions is not trivial. Surely, you are supposed to know the color, the

shape, the smell and the flavor of a true beef burger; similarly, depending both on

the the painting technique adopted and the historic period the piece of art dates

back, its pure chemical composition is presumed to be given. However, the ways

43
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both the burger and the painting might be contaminated are countless and mostly

unpredictable.

By their nature, these issues could be read as typical one-class classification prob-

lems [86] and they are usually addressed by either resorting to distance-based or to

density-based methods.

In this work, a new statistical approach for one-class classification based on Gini’s

definition of transvariation probability between a group and a constant is pro-

posed. In particular, we refer to the concept of transvariation and some of its related

measures, firstly introduced in an univariate context by Gini in 1916 [48] and, sub-

sequently, extended to the multivariate case and to a model-based formulation by

Gini and Livada [49] and Dagum [28].

The remainder of this chapter is organized as follow. Section 2 formalizes the

one-class classification problem and provides a detailed taxonomy of the existing

methods; then, in the same section, the definition of transvariation probability be-

tween a group and a constant, both in the univariate and the multivariate contexts,

is presented. In Section 3, a novel transvariation-based one-class classification

algorithm is introduced and some technical aspects, including dimension reduction

or variable selection procedures, are discussed. In Section 4, the methodology is

tested and its performances are evaluated in both simulated and real data. A final

discussion on the obtained results and possible extensions is included in Section 5.

3.2 Theoretical background

3.2.1 What is one-class classification?

In order to fully understand what one-class classification is and why it is different

from other well known classification tasks, let’s consider, as an example, the study

on physical measurements (i.e. weight and height) of a set of individuals shown in

Figure 3.1.

In subfigure (a), the typical one-class classification problem is presented. Particu-

larly, with the aim to describe the observed individuals (target class) and to detect

which (new) observations resemble them in terms of weight and height, a clear

boundary around this set is defined and, on the basis of it, each new unit (e.g. the

triangle) classified. Moving then to subfigure (b), the world of standard classifica-
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tion (namely, the Quadratic Discriminant Analysis, QDA) is described. In this case,

differently from the one-class, the set of individuals is divided in a given number of

classes (e.g two: adult and children) according to their physical characteristics and

the goal is to learn how to assign each (new) unit to the most likely class, while

minimizing the error. Finally, subfigure (c) show the outlier detection issue and it

points out how this problem might be similar, even if not identical to the one-class

classification one. In fact, while the training set for the outlier detection is nat-

urally polluted by deviant observations, that used to train the one-class classifier

does not include any outlier and all the anomalies should be recognized only in new

observations.

The classic one-class classification methodologies always identify two distinct

elements:

� a distance (or resemblance, or probability) measure of a new object z to

the target class χ ∈ Rn×p;

� a threshold, t, for this measure.

In particular, a new object z is classified as a target class one only if the distance

measure d(z) is smaller than a given threshold td, d(z) < td, or, equivalently, if the

resemblance measure f(z) is bigger than the threshold tf , f(z) > tf .

In the one-class classification framework, there is no way to a priori assess the false

positive rate as no examples from the outlier class are, in principle, available. There-

fore, in this case, only the number of objects of the target class that are wrongly

attributed to the outlier group (false negatives) can be controlled.

3.2.2 Taxonomy of one-class classifiers and methods com-

parison

In the context of one-class classification, different algorithms, methodologies and

procedures have been proposed. According to the internal model used as classifier,

all these techniques could be grouped in three different categories: density methods

estimate the probability density function in the complete feature space, boundary

methods aim to define the best boundary1 around the training data and recon-

struction methods assume a data generating process and evaluate the fit of each

1the boundary which maximizes the probability of accepting a target object while minimizing
the chance of error
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Figure 3.1: Different classification algorithms performed on the same sample of 198
human weights and heights.
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observation with respect to that model.

Although the statistical literature provides several approaches to address the

one-class problem, no method has been shown to consistently outperform (or under-

perform) the others. In particular, the comparison between the different one-class

classifiers is typically based on the following criteria:

� Behavior with respect to the outliers: one-class classification methods

should be able to accept as many objects from the target class as possible,

while rejecting all the observations which might contaminate the training set.

In this sense, the preference is for all the models that, with the aim to improve

the classification rule, recognize and, then, use noise objects to give a more

precise description of the target data.

� Number of parameters to be estimated or set by the user: the number

of free parameters that should be decided beforehand, along with their initial

values, have a strong effect on the final performances of any one-class classifier.

Since no clear rule is provided, any method might completely fail when the

user decision is not correct. Therefore, models with a small number of free

parameters should be preferred.

� Computational and storage requirements: although the computational

power and the storage capacity accommodated by the new computing de-

vices is constantly increasing, several aspects that limit the applicability of

some methods to real contexts still exist (e.g. the implementation of adaptive

models to new settings could be computationally intractable). Procedures

computationally easy and low-demanding in terms of storage space are the

favored.

� Accuracy rates: this requirement represents the most important aspect in

evaluating a one-class classifier, even though the less trivial to measure, as it

requires the true class label for each object to be computed. In particular,

while in a simulation study the true membership of the data is given, in real

applications such information is not known apriori and, thus, it should be de-

rived from past observations (which are not necessarily similar to new ones).

According to this criterion, the method which obtains the best trade-off be-

tween the fraction of target objects s (sensitivity, 1 − eI) and the fraction of
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outliers s− (specificity, 1−eII)2 correctly recognized is to be preferred. Usually,

as only characteristics of the target class χ are given, s is fixed so as

s :=


#(d(x) < td)

n
if d is a distance measure

#(f(x) > tf )

n
if f is a resemblance measure

, x ∈ χ and |χ| = n

and, then, methods are compared in terms of s−.

When all the possible combinations of s and s− for varying t values are com-

puted, the Receiver-Operating Characteristic (ROC) curve [83] can be ob-

tained. Specifically, such a curve allows to define a complete sensitivity/speci-

ficity report for each model and, therefore, it helps in comparing different

methods in terms of classification performances. Figure 3.2 shows the ROC

space, defined by s (axis of ordinates) and s− (axis of abscissae). The perfect

classification representing 100% sensitivity and 100% specificity is given by the

point with coordinates (1,1) in the ROC space; the random guess, instead, is

described by the dashed diagonal line drawn from the top-left to the bottom-

right corner of the plot. Points below the diagonal represent a classification

that is significantly better than a random result, whilst points above the line

describe poor results (worse than those obtained by chance).
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Figure 3.2: The ROC space and plots
of some prediction examples.
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3.2.2.1 Density methods

The most straightforward approach for one-class classification is probably the idea

of modeling the training set by using a probability density function (pdf), e.g. a

2eI and eII are respectively the Type I and Type II errors.
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Gaussian or a Poisson distribution. The aim of density-based methods, in fact, is to

estimate the density of the target class χ, f(x) with x ∈ χ, and to set a threshold,

tf , on the resulting densities.

These techniques usually work very well, especially when the sample size is suffi-

ciently large and the model assumed to describe the target distribution is appro-

priate. However, since such a choice is not trivial and it requires a large number

of training objects to overcome the curse of dimensionality [7], their actual imple-

mentation could be limited. In this work, four different density estimation methods

for the target class are considered: Gaussian and mixture of Gaussian models, the

Kernel Density Estimation (KDE), the K-nearest-neighbors (Knn) estimation and

histograms.

Gaussian and mixture of Gaussians

These methods assume that the target class χ could be well described using the

p-dimensional Gaussian distribution:

f(x) =
1

(2π)d/2|Σ|1/2
exp

{
−1

2
(x− µ)TΣ−1(x− µ)

}
,

where µ is the mean vector, Σ is the covariance matrix and p is the dimension

of the feature space, or, alternatively, by resorting to a mixture of K Gaussian

p-dimensional distributions fk(x) = fk(x;µk,Σk)

f(x) =
1

K

K∑
k=1

πkfk(x),

where πk is the prior probability that x is generated from the k-th component of

the mixture and K is the total number of mixing components.

The mixture model is more flexible than the single Gaussian distribution and presents

a better fit. However, as drawbacks, it requires more training data to be estimated,

as the number of free parameters of the mixture, nFreeMixG, is larger comparatively

to that of the simple distribution, nFreeG:

nFreeMixG =

(
p+

p(p+ 1)

2
+ 1

)
K ≥ nFreeG = p+

p(p− 1)

2
.

Notice that nFreeMixG is often reduced by assuming just diagonal covariance matri-

ces, i.e. Σk = diag(σk).



50 Chapter 3. One-class classification

These models are characterized by both a learning and a classification process

computationally inexpensive; here, the only computational effort consists in the in-

version of the covariance matrix Σ. When the inverse of Σ cannot be calculated,

e.g. when the data have singular directions or they are badly scaled, it should be

approximated by using the pseudo-inverse matrix Σ+ = ΣT (ΣTΣ)−1 [108] or by ap-

plying a regularization constraint to Σ (e.g. by adding a user-defined constant λ to

the diagonal, i.e. Σ′ = Σ + λI).

The storage space required for the learning phase is relatively large since all the

training data should be used and retained; however, it could be significantly re-

duced by incrementally evaluating the model parameters. The storage requirements

for classification, instead, are negligible.

The presence of outliers in the training set could seriously affect the model perfor-

mances; the final classification accuracy, in fact, strongly depends on how well the

assumed distribution (i.e. the Gaussian model) fits the target class.

Kernel density estimator

The Kernel density estimation method is essentially a data-interpolation technique

that does not make any strong assumption about the shape of the data distribution.

In this case, in fact, the density of the target class is directly derived from the data

and it is given by:

f(x) =
1

n

n∑
i=1

ϕH (x− xi) . (3.1)

Here, n is the training set size, H is the positive definite bandwidth matrix and

ϕH(.) = |H|−1/2ϕ(H−1/2x) is the kernel function in the p-dimensional space.

The choice of ϕ(.) in 3.1 is not crucial to the performances of f . Among all the

possible alternatives, a popular solution for ϕ(.) is the normal kernel,

ϕ(x) = (2π)−p/2|H|−1/2 exp

(
−1

2
(x− µ)T |H|−1(x− µ)

)
,

where H plays the role of the covariance matrix. In this particular case, the Kernel

density estimator could be considered as a natural extension of the Gaussian method

that has been previously described.

The Kernel density model is extremely flexible and it allows to approximate arbitrary

distributions for which the parametric form is unknown. In addition, it presents few

free parameters, corresponding to the number of different positive entries of H. The

choice of H, controlling the amount and orientation of smoothing induced, plays an
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important role on the classifier performances and, therefore, it should be carefully

specified. A common method to choose the optimal H is to use the bandwidth

that minimizes the Approximated Mean Integrated Squared Error3. Based on this

approach, several bandwidth selection techniques (differing from the method used

to estimate the AMISE) have been proposed in the literature: among the others,

the plug-in and the cross validation selectors are the the most commonly employed

procedures.

For the training phase, the Kernel density estimator computational costs are limited;

the testing phase, instead, is very expensive and it requires a storage space that may

become even prohibitive when the number of observations, n, is large.

Knn estimation

A well-known nonparametric method for classification is the K nearest neighbors

density estimator, or Knn. It is a special type of the kernel density estimation

method with a local choice of the bandwidth.

In this case, the local density of a generic observation x is estimated by:

f(x) =
K

nVprp
, (3.2)

where:

� n is the cardinality of the training set;

� Vp is the volume of the Euclidean p-dimensional unit ball centered in x;

� rp is the Euclidean distance between x and its K-th closest neighbor.

Equation 3.2 can be directly derived from Equation 3.1 by choosing H to be identity

matrix and a kernel that is a uniform density on the p-dimensional Euclidean unit

ball [59].

The Knn method needs to keep all the observation vectors during the testing

phase and, therefore, it requires a very large storage space. Furthermore, the pro-

duced estimates are not true probability densities as the integral taken over all the

sample space diverges.

No free parameters have to be set or estimated by the Knn method and only the

number of neighbors K included in the area should be provided in advance. The

3It is the asymptotic approximation of the Mean Integrated Squared Error. The MISE cannot
be directly used since it does not have a tractable closed form.
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choice of K strongly affects the smoothing of the estimates and, consequently, the

method robustness. Existing theoretical results suggest that, if n → ∞ and the

Euclidean or the Mahalanobis distances are used for classification, K should vary

with n such that K
n
→ 0. However, since no general guideline is provided for all

the other scenarios, the optimal value for K is typically chosen by minimizing the

cross-validation error.

Histograms

Histogram analysis is an extremely common way to perform kernel density estima-

tion, as it could be used even in presence of symbolic data. Generally, histograms are

obtained by dividing the complete feature space into non-overlapping and consecu-

tive intervals (called bins) and then by counting the number of observation vectors

falling in each of them. The number of bins, K, should be provided in advance and

this value affects the smoothness of the estimates: a large value for K may pro-

duce a very spike density estimation, whilst a small K could provide over-smoothed

estimates.

By their nature, histograms are quite resistant to noise and mislabelling er-

rors and they are pretty inexpensive in terms of both computational and storage

requirements. However, they need a large training set to overcome the curse of di-

mensionality and, thus, provide accurate estimates; moreover they are not smooth

and, as discussed, they tend to be very sensitive to the correct choice of K.

3.2.2.2 Boundary methods

Although the density method performances are generally pretty good, when the

available amount of data is limited, the kernel function produces unreliable esti-

mates. In situations characterized by a large number of variables, p, and/or a small

sample size, n, in fact, a boundary approach appears more appropriate. Methods in

this category only imply the definition of the tightest boundary around the target

set. The classification issue is performed by evaluating the distance of a given object

from the target class and, then, by comparing it to a threshold td. In particular, td

is directly derived on the distance measures and it is adjusted to ensure a predefined

sensitivity, s:

td :
#(d(x) < td)

n
= s.

The main drawback of the boundary methods relies on their inherent sensitivity

to scaling of the features, mostly due to their use of a distance measure between the
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observations.

For this category of methods, the K-centers algorithm, two techniques derived from

the Support Vector Classifier (ν Support Vector Classification, ν-SVC and Sup-

port Vector Data Description, SVDD) and the class of depth-based approaches are

discussed in the following.

K-centers

K-centers is probably the simplest boundary method that has been proposed so far.

Namely, it covers the training data with K small hyperspheres of equal radii whose

centers, µk, are placed on the target class so as to minimize εK−centers error, i.e. the

maximum distance of the minimum distances between the data and the centers:

εK−centers = max
i

(
min
k
||xi − µk||2

)
.

Starting from either a single or a multiple random initialization, the K-centers

method uses a forward search strategy to determine the oprtimal radius of the

hyperspheres. For this reason, this approach is strongly sensitive to the presence of

outlier observations in the training set.

Once the K balls have been placed and the centers decided, the distances between

each observation x and the centers µk could be computed as:

dK−centers(x) = min
k
||x− µk||2.

Then, the classification issue could be addressed by comparing each distance to a

threshold td: if dK−centers(x) > td, x is deemed not to belong to the target class;

otherwise, x is considered as a target object. For the K-centers method, only K

parameters (corresponding to the number of balls) have to be defined,

nFreeK−centers = K

and the computational cost is very low. However, as a drawback, it may require a

large memory space, due to its necessity of storing all the observation vectors during

the learning phase.
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ν Support Vector Classification (ν-SVC) and Support Vector Data De-

scription (SVDD)

The the ν Support Vector Classification (ν-SVC) is a method for one-class classifica-

tion proposed by proposed by Schölkopf et al. in 1999 as a variant of the conventional

Support Vector Machine (SVM) introduced by Vapnik in [124]. In their work [100],

the authors suggest to use an hyperplane, w, in order to separate the training set

from the origin with a maximum margin. In particular, the minimization problem

that should be solved in order to find w is:

min
w,ρ,ξ

1

2
||w||2 − ρ+

1

νn

∑
i

ξi (3.3)

subject to the constraints w · xi ≥ ρ − ξi, ∀i ξi ≥ 0, where ρ is the margin which

separates xi from the origin with error ξ and ν ∈ (0, 1) is a user defined parameter

indicating the fraction of the data that should be separated (comparable to C in

SVVD).

Given that the training data are preprocessed to have unit norm, the ν-SVC has been

proven to provide good results. In this particular case, the optimization problem

in 3.3 could be rewritten as:

min R
′2 + C ′

n∑
i=1

ξ′i

subject to the constraint ||x′i − a′||2 ≤ R
′2 + ξ′i, ∀i.

A recent alternative to ν-SVC, also inspired to SVM, is the Support Vector Data

Description (SVDD), introduced by Tax and Duin in 2004 in [112]. This approach

aims to find the smallest closed hypersphere (in terms of volume), rather than an

hyperplane, with the highest density of training data. Specifically, such a sphere is

identified so as to minimize the error function

εSV DD = R2 , (3.4)

subject to the constraint ||xi − a||2 ≤ R2, i = 1, · · · , n. Here, a is the center of

the hypersphere, R is its radius and xi represents the i-th sample vector from the

training set.

Although the error function in 3.4 guarantees the identification of the smallest closed
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sphere, it is very strict and, therefore, it does not allow the presence of training

objects with large distances from the ball center, a. In order to overcome this limit,

the minimization problem could be rewritten with the inclusion of a penalization

term, in analogy with 3.3:

εSV DD = R2 + C
n∑
i=1

ξi , i = 1, · · · , n , (3.5)

subject to the constraint ||xi− a||2 ≤ R2 + ξi, ∀i. In particular, the penalty term is

composed by a set of slack variables, ξi ≥ 0, and a given parameter, C, controlling

the number of training vectors not covered by the sphere. Using the Lagrange mul-

tipliers, αi ≥ 0 and γi ≥ 0, ∀i, equation 3.5 and its constraint could be incorporated

in

εSV DD = R2 +C
∑
i

ξi−
∑
i

αi
{
R2 + ξi − (||xi||2 − 2axi + ||a||2)

}
−
∑
i

γiξi (3.6)

This equation should be minimized with respect to R, a, ξi and maximized with

respect to αi, γi. By setting the partial derivatives of 3.6 to zero and substituting

the resulting constraints to the same equation, the SVVD error function results as:

εSV DD =
∑
i

αi(xi · xi)−
∑
i,j

αiαj(xi · xj) (3.7)

subject to the constraints
∑

i αi = 1 and 0 ≤ αi ≤ C.

With the aim to provide further flexibility, Vapnik proposed to expand 3.7 by using

a kernel function, ϕ(xi · xj) instead of a simple inner product (xi · xj). The use of

ϕ(.) allows to map the training vectors onto a higher dimensional feature space and,

thus, to produce an accurate description of the target class.

In order to perform classification, the distance d(x, a) between the observation

vector x and the center of the sphere, a, is computed and, then, compared to the

radius R. Only if such a distance is smaller (or equal) than the radius, x is accepted

as a target :

d(x, a) = ||x− a||2 = (x · x)− 2
∑
i

αi(x · xi) +
∑
i,j

αiαj(xi · xj) ≤ R2 ,

where a =
∑

i αixi and R2 = (xk · xk)− 2
∑

i αi(xk · xi) +
∑

i,j αiαj(xi · xj) (xk are

the support vectors which have αk < C).
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Since both the the ν-SVC and the SVDD use a regularization parameter (ρ or

C) to control the noisy or mislabelled vectors that should be excluded from the

description, they are quite robust to the outliers. Furthermore, the classification

issue is computationally simple and it does not require a large storage memory.

However, as the size of the training set, n increases, the applicability of the two

methods could be seriously precluded. In these situations, in fact, the algorithm

complexity could become prohibitive being n equal to the number of both the pa-

rameters to estimate and the objects to store during the learning phase.

Depth-based approaches

The concept of location depth was firstly introduced in 1975 by Tukey [120] as a

graphical tool for visualizing bivariate data sets, and has since been extended to the

multivariate case [34]. Different depth measures with different characteristics have

been proposed [77], but all of them have the same purpose: to determine how deep

(or central) a given observaton is.

Statistical depth functions provide center-outward ordering of multi-dimensional

data and, therefore, can be exploited to measure the “extremeness” or “outlying-

ness” of a data point with respect to a given data set. In this sense, these functions

could be successfully used to answer the one-class classification issue: all the ob-

servations that significantly deviate from the data cloud are indeed expected to be

more likely characterized by small depth values than large ones.

One-class classification methods (and, more in general, outlier detection methods)

based on statistical depths have gained increasing attention in the literature thanks

to their appealing features [25, 29, 98]. Depth-based methods, in fact, are com-

pletely data-driven and avoid strong distributional assumption; in addition, for a

low dimensional input space, they provide intuitive visualization of the data set by

finding peeling and depth contours (e.g. bagplot, convex hull, . . . ).

3.2.2.3 Reconstruction methods

The main idea of any reconstruction method is to make an assumption about the

data generating process and, then, describe objects by using their reconstruction

error εreconstr, i.e. the difference between the fitted and the observed values. In

particular, since the underlying model is supposed to well represent the target class,

εreconstr could be considered as measure of distance from x to this set.
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In this work, well-known reconstruction methodologies are discussed, including K-

means, Learning Vector Quantization (LVQ), Self-Organizing Maps (SOM), Princi-

pal Component Analysis (PCA) and mixture of PCAs and a network model (Au-

toencoder).

K-means, LVQ and SOM

All these methods are based on the idea that if the data reflect an underlying group

structure, they can be well represented by using a set of K prototype vectors µk, with

K decided beforehand. The position of each prototype (“placing”) is directly learned

from the training set. For the K-means algorithm [13] the best placing is obtained

by minimizing the total mean squared error between the training samples and their

representative prototypes, i.e. the trace of the pooled within cluster covariance

matrix:

εK−means =
n∑
i=1

(
min
k
||x− µk||2

)
.

The optimal solution for εK−means can be found by employing either a batch or an

on-line routine. Batch algorithms start with a random placement of the prototypes;

then, at each step, they assign x to the closest prototype, i.e. the group k for which

dK−means(x) = arg min
k
||x− µk||,

finally, they update the prototype to the mean of the new set Sk (the set of objects

which include x),

µk =
1

nk

∑
i∈Sk

xi.

Such a procedure is repeated until the convergence is met, i.e. until the prototype

places are stable. On-line techniques, on the contrary, consider each observation

vector sequentially and use it to update the position of its nearest prototype (com-

petitive learning):

µk(τ + 1) = µk(τ) + η(τ)(xi − µk),

where 0 < η(τ) < 1 is the learning rate.

The LVQ procedure [21] is so similar to the K-means one that it can be even consid-

ered as its supervised version (a label yi is provided for each training object xi). In

particular, LVQ derives the best placing for µk by minimizing the misclassification

error and, at each step until convergence, it updates only the nearest prototype to
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the training object xi.

Lastly, the SOM algorithm [68] usually learns the best prototype placing by using

a competitive learning routine. Namely, SOM starts by setting a uniform lattice of

prototypes on a pSOM -dimensional plane; then, until stability, the nearest prototype

of each observation vector xi is identified and all the prototypes in its neighborhood

updated according to:

µk(τ + 1) = µk(τ) + η(τ)fwind(|xi − µk|)(xi − µk),

where fwind(|xi − µk|) is a window function that is equal to 1 when xi = µk and

decreases as |xi − µk| increases.

K-means, LVQ and SOM use the euclidean distance for the definition of εreconstr

and, therefore, they are sensitive to scaling of the features. Furthermore, their

performances strongly depend on the correct choice of their specific parameters: the

number K of clusters for K-means, the learning rate η for LVQ and the topological

assumptions determining the neighborhood for SOM.

For each method, the number of free parameters is equal to the dimension of µ:

nFreeK−means = nFreeLQV = pk,

nFreeSOM = pkpSOM .

All these techniques are computationally low expensive and they require small

memory spaces, especially when they use on-line learning procedures.

PCA and mixture of PCAs

Principal Component Analysis is a statistical procedure that could be employed

as a one-class classifier when p is large and a clear linear subspace is present. Its

original aim is to find the linear combinations of the input features which explain

(as best as possible) the internal variance and covariance structure of the data.

Specifically, PCA maps each data vector xi on the orthonormal subspace spanned by

the eigenvectors ei = (ei1, · · · , eip), i = 1, · · · , p of Σ, decreasingly ordered according

to the corresponding eigenvalues λi.

X ′ = AX , A = [e1, · · · , ep]. (3.8)
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Usually, not the whole set of ei, i = 1, · · · , d, is used to define the final transfor-

mation of X into X ′, but only the first q eigenvectors explaining a certain fraction

(e.g. the 70 − 80%) of the data variability are retained. In this sense, PCA could

be considered as a dimensionality reduction technique.

In order to implement one-class classification, the reconstruction error may be com-

puted as the Mahalanobis distance from each original object to its mapped version

εPCA =

p∑
i=1

x′i
λi

;

then, the empirical distribution of this error could be used to identify the optimal

threshold for classification.

According to Pearson [91], an intersting property of PCA is that the projection

defined by 3.8 minimizes εPCA.

PCA is particularly sensitive to both noise and outlier observations as they directly

affect the variance and covariance structure of the data. In addition, since the

number of free parameters is quite large

nFreePCA =
p(p− 1)

2
,

a substantial effective sample size is required.

In the case of not mean-centered data, the mean vector has to be estimated and,

thus, another p free parameters should be added to nFreePCA. Obviously, if only q

components are retained,

εPCA =

q∑
i=1

x′i
λi

and nFreePCA =
q(q − 1)

2
.

Since PCA only defines a linear projection of the data, its application is quite

limited. Several non-linear extensions have been proposed in the statistical lit-

erature: among other, curves ([54] and [114]), multi-layer auto-associative neural

networks ([69]), kernel-function approach ([125]) and generative topographic map-

ping, or GTM, ([14]) represent just some examples.

In 1999, Tipping and Bishop ([117] and [118]) firstly attempted to model the

nonlinear structure of the data by using a mixture of K local linear sub-models.

Specifically, they reformulated the PCA within a maximum-likelihood framework
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based on a specific version of the Gaussian latent variable model. Here, the marginal

probability of a given object x is

fMixPCA(x) = πk

K∑
k=1

(
(2π)−p/2|Ck|−1/2 exp

{
−1

2
(x− µk)

TC−1k (x− µk)

})
,

where Ck = σ2I + AkA
T
k is the covariance matrix in the Ak subspace. The Mixture

of Principal Component Analyzers is built in a probabilistic structure, and, there-

fore, all the model parameters µk, Ck and Ak could be estimated through the EM

algorithm. The number of free parameters is significantly large

nFreeMixPCA = pq + 1− p(p− 1)

2
,

even if it could be controlled by the choice of q.

Similarly to PCA, also Mixture of PCA is very sensitive to scaling of the features.

Autoencoders

The autoencoder is a particular type of neural network algorithms whose aim is to

approximately reproduce as output only the input objects that resemble the training

data.

Specifically, an autoencoder is composed of an input and an output layers of the

same dimension p and one (ore more) internal hidden layer(s), constrained to have

a dimension q < p, where q is the number of hidden units. This “undercomplete”

representation learning process acts as an information compressor and it forces the

model to capture only the most relevant features of the training data. The algorithm

structure presents two different phases, each defined by a transition function:

1. during the encoding phase the input x ∈ Rp is mapped into a code (or image)

r = σ(Ax + b) ∈ Rq, where σ is an element-wise activation function (sigmoid

function or rectified linear unit), A is a weight matrix and b is a bias vector;

2. during the decoding phase r is reconstructed into x′ = σ′(A′r+b′) ∈ Rp, where

σ′, A′ and b′ could differ from the corresponding objects of the previous phase.

The parameters of this model are optimized so as to minimize the average recon-

struction error, computed as the difference between the network output, x′, and the

network input, x:

εAutoenc = ||x′ − x||2.
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The autoencoder with only one hidden layer and q linear transformation units

projects x onto the q-dimensional subspace spanned by the first q principal com-

ponents. Therefore, this method, too, could be viewed as a dimension reduction

technique.

By their specific nature, autoencoders are very flexible and they allow a variety of

functional mappings to be represented. However, their shortcoming is the need to

set several parameters by the user: the number of hidden layers, the number of

hidden units at each layer, the type of transformation function, the learning rate

and the stopping criterion. The number of free parameters can be very large, even

if it can be controlled by the choice of q. In the case of just one hidden layer:

nFreeAutoenc = (2p+ 1)q + p.

As the set of weights, A, has to be estimated using the complete training set,

both the computational complexity and the storage requirements of the learning

phase could be very high (approximately of order O(N3
A), NA being the number of

weights in the network). Instead, the computational complexity and the storage

requirements of the classification phase are moderate.

3.2.3 What is transvariation probability?

The transvariation concept has proved to be very useful in the standard classifica-

tion context as a measure of group separability, especially when the assumptions

that justify the optimality of Fisher’s linear discriminant function are not met [84].

Its applicability can be even extended to the one-class domain, as the definition of

transvariation probability seems to perfectly fit the idea of resemblance between an

object and a group.

Moreover, the transvariation probability concept we refer to can be also viewed as

a data depth measure, i.e. a measure of how deeply a generic observation lies in the

data cloud [120].

According to Gini [48],

Definition 3. A group g and a constant c are said to transvariate on a variable x,

with respect to its mean value mx if the sign of some of the n differences xi − c is

opposite to that of mx − c.

In this definition, the constant c can be seen as the observed value of a degener-
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Figure 3.4: Two examples of no transvariation (first two rows) and a case of
transvariation (third row) between a given unit (red triangle) and the group median (blue

circle).

ated group, that is a group made of a single unit. Hence, by following this approach,

the application of such definition to the one-class domain is straightforward: c can

be considered as the single unit whose resemblance with respect to the target class

(namely, with its median mx) shall be evaluated.

In order to fully understand what transvariation means, consider as an example, the

three different scenarios depicted in Figure 3.4. In the first two, no transvariation

occurs between constant c (red triangle) and the mean value mx (blue circle) as all

the differences xi − c, where xi is any other group observation (black points), have

the same sign pattern. In the third case, on the contrary, there is evidence that c

transvariates with respect to mx, as there are three points whose differences with c

have opposite sign with respect to that of mx − c.

The probability that an event fulfills Definition 3 is known as transvariability, τ .

For the discrete case, τ is simply the number of transvariations over the number of

possible differences,

τ =
sx + s′x

2

n
, (3.9)

where:

� sx is the number of units for which (xi − c)(mx − c) < 0;
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� s′x is the number of units for which (xi − c)(mx − c) = 0;

� n is the number of differences (xi − c).

If we assume mx to be the median (as Gini did), the maximum of τ is 1
2
.

The definition of transvariation probability with respect to an average value (the

median) is the ratio between the transvariability and its maximum (τM)

tpc =
τ

τM
0 ≤ tpc ≤ 1.

Here, values closer to 1 reflect an higher resemblance of c with the target class.

The discrete definition of transvariation probability is:

tpc =
τ

(1/2)
= 2

sx + s′x
2

n
.

When the probability density function of the target class is known or can be

estimated, a density version of transvariation probability can be used. In analogy

with the discrete case, transvariability can be defined as:

τ = min[F (c), 1− F (c)], (3.10)

where F (c) is the cumulative distribution function evaluated in c. Assuming mx to

be the median, its maximum is still 1
2

. Thus, the density version of transvariation

probability is given by:

tpc =
τ

(1/2)
= 2 ·

F (c) mx ≥ c

1− F (c) mx < c
.

Transvariation probability allows for extensions to more than one variable. Specif-

ically, in the multivariate discrete case, the definition of transvariability τ , coherently

to 3.9, corresponds to the joint probability that an event fulfills the Definition 3:

τ =
sx + s′x

2

n
, (3.11)

where

� sx is the number of units for which (xi − c)(mx − c) < 0 for all the variables;

� s′x is the number of units for which (xi − c)(mx − c) = 0 for all the variables;
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� n is the number of differences (xi − c).

If we assume

mx = (m1, . . . ,mp)

be the multivariate spatial median or mediancentre4 (i.e. mx is the vector that

minimizes
∑

n d(x,mx), where d(x,mx) is the distance between x and mx), the

maximum τM is no longer 1
2

but it needs to be estimated. In particular, τM can be

computed as τ in 3.11 on the translated data y = x − (mx − c). Therefore, the

multidimensional discrete definition of transvariation probability is

tpc =
sx + s′x

2

sy +
s′y
2

. (3.12)

Extending, in the same way, 3.10 to the multidimensional case and considering

that τM is no longer 1
2
, the multidimensional density definition of transvariation

probability is

tpc =

∫ bx1
ax1

· · ·
∫ bxp
axp

f(x) dx∫ bMx1
aMx1

· · ·
∫ bMxp

aMxp
f(x) dx

where, for u = 1, . . . , p:

� f(x) is the probability density function of the target class;

� axu =

cu if cu ≥ mu

−∞ if cu < mu

;

� bxu =

+∞ if cu ≥ mu

cu if cu < mu

;

� aMxu =

mu if cu ≥ mu

−∞ if cu < mj

;

� bMxu =

+∞ if cu ≥ mu

mu if cu < mu

.

Obviously, when the variables involved in the computation can be assumed to be

independent, the multivariate transvariation probability reduces to the product of

4Since there is more than one definition of the multivariate median in the literature, other
alternatives could be considered.
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the simple univariate ones:

tpc =
∏
h

tpc1,u u = 1, . . . , p,

where tpc1,u is the univariate marginal transvariation probability corresponding to

the u-th variable.

3.3 Transvariation based One-Class Classifier (TOCC)

3.3.1 The proposal

As stated in the introduction, the goal of any one-class classifier is to define a

learning rule that accepts as many target objects as possible and rejects all those

significantly deviating from this class. In particular, during the training phase, the

one-class classifier uses the available information on the target class in order to build

the classification model, i.e. so as to derive a frontier around this set. In this thesis, a

new one-class classification method based on both the discrete and density definitions

of transvariation probability is introduced. We shall refer to a Discrete version of

the TOCC (D TOCC) if the transvariation probability is computed according to

3.12; similarly, we would refer to the Density-Based algorithm (DB TOCC) when

considering the continuous version of the transvariation probability.

The classification rule of the TOCC is carried out through the following steps:

1. Set a value, s, as the expected sensitivity of the one-class classifier;

2. For each unit c compute its transvariation probability tpc with respect to the

target group median, mx;

3. Use the s− th percentile of the (increasing) ordered distribution of transvari-

ation probabilities as a threshold, t, for the one-class classifier

For a new test sample x, the transvariation probability of z, tpz,with respect to

mx is computed. Then, the decision whether z belongs to the target set or not is

based on threshold t and can be summarized as follows:tpz ≥ t z ∈ target class

tpz < t z ∈ outlier class
.
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Let’s go back to the example described in Section 3.2.1 and visualize how the

TOCC works in practice. In Figure 3.5, observations are plotted in different colors

according to the level of their transvariation probabilities, tpc, with respect to the

target group median, mx (green rhombus). As expected, moving away from mx, the

intensity of the transvariation probability decreases. In particular, setting s equals

to 0.90, all the objects with a value of tpc smaller than the threshold, t, are classified

as (false) negative (blue circles).
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Figure 3.5: Level of transvariation probability between each observation and the target
group median (green rhombus). Blue circles are the target objects (about the 10% of the

whole target set) wrongly classified.

3.3.2 A modified version of the TOCC

With the aim to better improve the approach described in the previous section and

inspired by those algorithms that use a set of prototypes to represent the input data

(e.g. K-means, SOM, . . . ), a modified version of the Discrete TOCC is introduced.

Basically, the proposal extends the D TOCC procedure, by combining it with the

clustering information on the target class provided by a clustering algorithm (the

Partitioning Around Medoids, PAM). The main peculiarity of the PAM D TOCC

is that, by analyzing each cluster separately, it returns a set of thresholds, rather

than a single one. In so doing, it is capable to detect those deviating observations
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Figure 3.6: True class membership of a simulated example.

that do not necessarily lie on the external border of the target class, but that are

scattered within the set.

For a better understanding, consider the example in Figure 3.6, where the observa-

tions deviating from the target class (black points) are plotted as (yellow) triangles.

As can be easily noticed, the non-target objects are not well separated from the

target ones and all of them are confused in the same points cloud.

In Figure 3.7, the two different solutions yielded by the “standard” D TOCC

(a) and the PAM D TOCC (b), respectively, are depicted. In particular, subfigure

(a) shows how the D TOCC, by its nature, is able to recognize as outliers only the

deviating points placed on the target class perimeter. For this reason, this procedure

is particularly appropriate in presence of outlier objects that are “distant” from

the target class or when there is no evidence of strong overlap between the two

“classes”. In all the other situations, the PAM D TOCC should be preferred: as

clearly illustrated in subfigure (b), this algorithm is able to detect non-target objects

that deviate from the target class along different directions.

The following steps outline the PAM D TOCC two-phases process:

Phase I:
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Figure 3.7: Class memberhip of the same simulated example in Figure 3.6 predicted by
the (a) D TOCC and the (b) PAM D TOCC.
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(a) run the PAM algorithm5 on the target class and store the resulting in-

formation on both the cluster membership and the prototype vectors,

Phase II: for each cluster k,

(a) set a value, s, as the expected sensitivity of the one-class classifier6;

(b) For each unit c in the k-th cluster compute its transvariation probability

tpc with respect to the group prototype, kmx. Notice that, in this case,

the formula described in 3.12 should be used for both the univariate and

the multivariate computations. In fact, since mx is no longer the median,

but the cluster centroid, there is no guarantee that τM is equal to 1
2
;

(c) use the s−th percentile of the (increasing) ordered distribution of transvari-

ation probabilities as a threshold, kt, for the one-class classifier.

For a new sample z, the cluster membership, i, should be predicted (for example

by assigning the object to the group described by the nearest prototype, imz
7) and,

then, its transvariation probability, tpz, with respect to imx, computed. The fi-

nal decision to accept or reject z as a target object results from the rule described

in 3.3.1, considering it as the threshold.

3.3.3 One-class classification in high-dimensional contexts

When dealing with one-class classification issues (or, more in general, with any

classification task), in high-dimensional contexts, preliminary dimension reduction

or variable selection procedures may be required. In particular, such a preprocess is

essential in order to both avoid the effects of the curse of dimensionality and reduce

the computational costs that might result by the presence of too many features.

3.3.3.1 Dimension reduction

For dimension reduction, the classical Principal Component Analysis (PCA) or its

sparse version (sPCA, introduced in [133]) proved to produce good results in the

5The number of groups K is chosen beforehand.
6Generally, this value is set equal for all clusters.
7x is assigned to group i if

d(x,imx) < d(x,kmx) k = 1, . . . ,K.
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one-class framework, given that only the low-variance projections are retained [113].

Such directions, in fact, by producing the tightest description of the target class,

turned out to be the most informative ones for the one-class classification problem.

In addition to PCA, the Random Projection (RP) method represents a valid alter-

native for reducing the data dimensionality8. Similarly to the ensemble approach

introduced by Cannings and Samworth [20] for supervised classification, the iden-

tification of the B1 most interesting projection from a one-class point of view, too,

is possible. In particular, since, in this context, no information on the outlier class

is available and the objective is to identify those directions yielding the compact

representations of the target set, a new one-class specific criterion is required. Co-

herently with the definition of transvariation probability presented in Section 3.2.3,

a possible choice for our procedure is to select, within B2 different solutions, the RP

that minimizes the Meadian Absolute Value (MAD) of the projected data. Such a

choice, in fact, provides the most compact version of the projected target set with

respect to its median. The classification results obtained by performing one-class

classification on the selected projections are, then, aggregated by using a majority

vote so as to derive the final unit allocation.

3.3.3.2 Variable selection

Alternatively to dimension reduction, it is reasonable to help classification meth-

ods work more efficiently by finding the subset of variables that actually carries the

relevant information about the observations and by discarding the non-informative

ones. The model-based varSel algorithm introduced in [99] deals with this issue and

it uses Gaussian Mixtures to identify the most suitable variables for classification

(and clustering) purposes. In this sense, others approaches to variable selection can

be also found in [102] [87] and [82].

In addition to those, the Variable Importance in Projection (VIP) criterion intro-

duced in Section 2.5.1 could be used in the one-class context, too, with the aim to

rank the input features and, thus, to remove those that are deemed not to improve

the classification performances.

3.4 Empirical analysis

In this section, the specificity rates s− (i.e. the fraction of outliers correctly recog-

nized) of the TOCC in both simulated and real experiments are discussed. For each

8A detailed review of RPs is discussed in Section 2.1
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example, the Discrete (D TOCC), the Density-Based (DB TOCC) and the PAM-

based (PAM D TOCC) versions of the procedure have been implemented and, where

needed, the dimension reduction techniques described in 3.3.3.1 were considered.

In the DB TOCC, since the true shape of the target class distribution was not

known, a Gaussian mixture model (see 3.4) has been fit using the Mclust function9:

f(x) =
K∑
k=1

πkfk(x;µk,Σk).

In the PAM D TOCC, K = 5 clusters were considered.

For comparison, results of applying six different one-class classification methods

representing the state of the art, are presented. In particular, these methods include

the Gaussian model (Gauss, implemented using the mahalanobis function), the

Mixture of Gaussians approach (Mix-Gauss, implemented using the mclust package;

here, the optimal number of components, ranging from 1 to 9, wass chosen so as

to maximize the BIC), the kernel density estimation (KDE, implemented using the

ks package with the normal kernel an the unconstrained plug-in bandwidth matrix

selector), the K-means algorithm (KM, implemented using the kmeans function with

K = 5 clusters), the 2-dimensional self organizing map (SOM, implemented using

the kohonen package with a 5 × 5 grid and a learning rate α = (0.5, 0.3)) and the

support vector data description (SVDD, implemented using the svdd package [107],

with a cost parameter for the postive examples C = 0.1).

3.4.1 Simulated examples

A wide simulation study has been conducted in order to evaluate the performances of

the method proposed in Section 3.3.1. In each of the simulation settings described

below, the target (χ, red points) and non-target (Υ, blue stars) data have been

generated according to different p-dimensional distributions, where p was chosen

equal to 1 and 2 so as to visualize (see, for example Figure 3.8) how the different

versions of the TOCC act on the boundary definition.

9The number of mixing components (ranging from 1 to 9) and the model shape were chosen
so as to maximize the BIC.
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Figure 3.8: Examples of the boundary definition.

Let

µ0 = 0p , Σ0 =


1 p = 1 1 0.35

0.35 1

 p = 2

be the mean vector and the covariance structure of the target data. Let

µ1 = µ0 + δ

be the mean vector of the non-target data, where, for a given value of δ, all the

variables are equally shifted. The magnitude of the shift δ is described by the

noncentrality parameter

λ =

√
δ′Σ−10 δ.

For each scenario, different sizes of the target class, n ∈ {100, 200, 500}, and different

magnitudes of the shift (λS = 1, Small shift; λM = 2, Medium shift; λL = 3, Large

shift) were considered. The number of the deviating observations generated is always

one half the number of the target ones.

Simulation setup

� Model 1: Gaussian

χ ∼ Np(µ0,Σ0)

Υh ∼ Np(µ1,Σ0) p = 1, 2
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Figure 3.9: Examples of the gaussian dataset.

� Model 2: t

χ ∼ tp(df = 3,µ0, Ip)

Υh ∼ tp(df = 3,µ1, Ip), p = 1, 2
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Figure 3.10: Examples of the t dataset.

� Model 3: Gaussian/t

χ ∼ Np(µ0,Σ0)

Υh ∼ tp(df = 3,µ1, Ip), p = 1, 2
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Figure 3.11: Examples of the Gaussian/t dataset.

� Model 4: Gaussian/Uniform

χ ∼ Np(µ0,Σ0)

Υ ∼ Ud(min = µ0 − 3 ∗ diag(Σ0),max = µ0 + 3 ∗ diag(Σ0)) p = 1, 2
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Figure 3.12: Example of the Gaussian/Uniform dataset.

� Model 5: Banana-shaped

χ and Υ were generated according to a bivariate (p = 2) banana-shaped dis-

tribution with different types of angles: 1 for the target class, 2 for the small

shift, 4 for the medium shift and 6 for the largest one.

The function used to simulate the banana-shaped data is reported in Ap-

pendix D.
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Figure 3.13: Examples of the banana-shaped dataset.

Figures 3.14-3.18 and Figures C.1-C.10 (in Appendix C) contain the boxplots of

the specificity rates corresponding to a sensitivity level s ≥ 0.9, deriving from 100

simulations. Tables C.4-C.5 (in Appendix C) summarize, for each scenario, their

average value and the corresponding standard deviations.

Results coming from this study clearly show the general effectiveness of the

transvariation-based one-class classifier (TOCC) we introduced. In particular, for

all the simulated models, both the discrete and the density versions of the algorithm

attain specificity rates (for a sensitivity level s ≥ 0.9) that are always better than

or, in the worse cases, comparable with those from the state-of-the-art methods.

These promising outcomes allow to efficiently use the proposed algorithms in a wide

variety of problems.

A separate evaluation should be carried out for the PAM D TOCC since, as clearly

depicted in the boxplots in Figures 3.14-3.18 and in Figures C.1-C.10, it works no-

tably well in some specific scenarios. In particular, the performances of this classifier

strongly depend on both the characteristics of the target set and the behavior of

the non-target observations. Namely, the most effective results could be noticed in

the multivariate case and/or when the target class do not present an elliptical shape

(Model 5). Competitive outcomes are also evident in presence of a strong overlap

between the target and non-target classes, i.e. when the outlier set is generated ac-

cording to a small shift from the target one. In all these situations, in fact, being the

PAM D TOCC a very flexible procedure, it seems able to both fit well the data and

perfectly identify those deviating observations that are scattered within the target

set and do not limitedly lie on its external perimeter.
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Figure 3.14: Specificity for s ≥ 0.9 sensitivity level for small (S), medium (M) and large
(L) shifts for Model 1, n = 500.
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Figure 3.15: Specificity for s ≥ 0.9 sensitivity level for small (S), medium (M) and large
(L) shifts for Model 2, n = 500.
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Figure 3.16: Specificity for s ≥ 0.9 sensitivity level for small (S), medium (M) and large
(L) shifts for Model 3, n = 500.
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Figure 3.17: Specificity for s ≥ 0.9 sensitivity level for Model 4, n = 500.
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Figure 3.18: Specificity for s ≥ 0.9 sensitivity level for small (S), medium (M) and large
(L) shifts for Model 5, n = 500.
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A further analysis of the plots reveals that the sample size, n, only affects the vari-

ability of the performances achieved by all the one-class classifiers taken into account:

namely, as n increases, all the algorithms provide more stable result. Moreover, as

expected, the yielded specificity rates tend to be better when the non-target ob-

jects are placed far away from the target class. Among the state-of-the art methods

cosidered, the KDE represents the only exception on this and its contrary behavior

is probably due to a wrong specification of the bandwidth matrix H for the outlier

class: expressively, being H estimated only on the target set, the kernel ϕH(.) is

likely to produce incorrect estimates for the observations that differ too much from

this class.

A special mention should be made for the results of Model 5. The non-convexity

of the banana-shaped data, in fact, appears very hard to be detected by all the

methods, especially by the less flexible ones. In situations like this, as clearly illus-

trated in Figure 3.18 and Figures C.9-C.10, the most adaptive procedures (i.e. PAM

D TOCC, Mix-Gauss, KDE and SOM) seem to handle the “non-typicality” of the

target class distribution more appropriately.

3.4.2 Real data examples

In this section, the classifiers above have been tested and compared on two sets of

near infrared spectroscopic food data and a dataset containing measurements on

waste treatment plants. Since they all present a large number of input features, p,

the dimension reduction and variable selection procedures discussed in Section 3.3.3

have proved necessary. For the RP method discussed in Section 3.3.3.1, the best

B1 = 101 RPs were considered, each carefully chosen within B2 = 50 possible

solutions.

A brief description of the data used is given below. Then, Tables 3.1-3.3 show, for

each example, the specificity rates corresponding to a sensitivity level s ≥ 0.9.

The subscript below each dimension reduction or variable selection method refers

to the feature space dimension used for the analysis.

3.4.2.1 Honey data

This dataset, originally described in [35] and [65], contains n = 314 honey samples.

For experimental purposes, an alteration of half of the samples (157) was performed

in laboratory using three different adulterants: fructose-glucose mixture (fg), beet

invert syrup (bi) and high fructose corn syrup (hfcs). The spectra of these samples
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Figure 3.19: Honey data spectrum.

were recorded over p = 700 wavelengths (see Figure 3.19).

3.4.2.2 Oil data

The dataset [36] contains n = 92 Greek olive oil samples whereof 46 “pure” and 46

“adulterated”. Particularly, the samples labelled “P” have not been adulterated,

while the samples labelled “A” have been altered with the 5% of sunflower oil. The

spectra of these samples are recorded over p = 1050 wavelengths (see Figure 3.20).

3.4.2.3 Waste treatment plant data

This dataset comes from the daily measures of sensors in a urban waste water

treatment plant and it is available from the UC Irvine (UCI) Machine Learning

Repository [76]. Here, the objective is to classify the operational state of the plant

in order to predict faults through the state variables of the plant at each of the stages

of the treatment process. It contains n = 527 observations on p = 38 continuous

variables.

This dataset represents a difficult classification task since no method turned out to

be able to identify the days in which the plant wrongly operated.

The analysis of the real data results confirms the general good performances
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Figure 3.20: Oil data spectrum.

Method PCA2 SPCA2 RP2 VARSEL4 VIP4

D TOCC 1.00 0.92 0.24 0.77 0.23
DB TOCC 1.00 0.92 0.19 0.55 0.20
PAM D TOCC 1.00 0.96 0.45 0.88 0.20
Gauss 1.00 0.92 0.26 0.76 0.24
Mix-Gauss 1.00 0.92 0.31 0.83 0.34
KDE 1.00 0.99 0.09 0.23 0.21
KM 0.93 0.91 0.26 0.53 0.19
SOM 0.99 0.93 0.53 0.71 0.26
SVDD 0.76 0.92 0.19 0.32 0.16

Table 3.1: Specificity for s ≥ 0.9 sensitivity level for Honey data.

Method PCA2 SPCA2 RP2 VARSEL4 VIP4

D TOCC 1.00 1.00 0.98 1.00 0.26
DB TOCC 1.00 1.00 0.91 0.96 0.28
PAM D TOCC 1.00 1.00 1.00 1.00 0.93
Gauss —† 1.00 0.89 1.00 0.98
Mix-Gauss 1.00 1.00 0.89 1.00 0.98
KDE 1.00 0.24 0.07 0.15 0.09
KM 1.00 1.00 0.96 0.89 0.24
SOM 1.00 1.00 1.00 0.98 0.89
SVDD 1.00 1.00 0.78 0.74 0.07

Table 3.2: Specificity for s ≥ 0.9 sensitivity level for Oil data.
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Method PCA2 SPCA2 RP2 VARSEL4 VIP4

D TOCC 0.34 0.21 0.37 0.62 0.49
DB TOCC 0.25 0.21 0.35 0.36 0.34
PAM D TOCC 0.35 0.23 0.13 0.79 0.61
Gauss 0.31 0.20 0.35 0.31 0.22
Mix-Gauss 0.34 0.19 0.37 0.33 0.24
KDE 0.30 0.19 0.19 0.00 0.00
KM 0.34 0.19 0.32 0.25 0.25
SOM 0.42 0.24 0.36 0.40 0.44
SVDD 0.23 0.15 0.29 0.24 0.24

Table 3.3: Specificity for s ≥ 0.9 sensitivity level for Waste treatment plant data.

attained by the TOCC, even in situations where the dimension reduction procedure

implemented seems not appropriate. In particular, the adaptive version of the pro-

posed algorithms (i.e. the PAM D TOCC) still provide specificity rates that are

quite always higher than those yielded by the most flexible approaches (Mix-Gauss,

KDE, SOM and SVDD).

For both the Honey and the Oil datasets, the benefit of employing dimension re-

duction procedures, rather than the feature selection ones, is evident: as illustrated

in the first two columns of Tables 3.1 and 3.2, in fact, PCA and sPCA enable all

the considered methods to excellently work. On the contrary, for the Plant data

(Table 3.3), the best performances are achieved when the feature selection methods

are applied: the PAM D TOCC, for example, used in conjunction with the VarSel

algorithm outperforms all the other techniques, by correctly identifying the 79% of

the days in which the plant wrongly operated.

For the majority of the one-class classifiers implemented on the Oil and the Plant

data, the RP ensemble approach described in Section 3.3.3.1 provides specificity

rates that are comparable with those obtained by performing PCA or sPCA.

As regards the VIP criterion for variable selection, it is competitive with the VarSel

procedure only on the Waste treatment plant data data: the presence of highly

correlated variables in both the infrared spectroscopic food data analyzed, in fact,

severely affects its capability to identify the very relevant input features.

3.5 Discussion and extensions

In this work, new directions for the one class classification issue are introduced. In

particular, transvariation probability (tp) has been firstly suggested as a measure of

resemblance between an observation and a set of well-known objects (target class).

The proposal performances, evaluated in terms of specificity, i.e. the proportion of

actual negatives that are correctly predicted, on both real and simulated one-class
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datasets, demonstrate that the use of tp as a tool in the construction of a one-class

classifier allows to outperform several state-of-the-art methods.

Although they exploit the same measure of resemblance, the D TOCC and the

DB TOCC catch different aspects of the target class boundaries. In particular, the

density approach appears to give a good approximation of the so called density (or

s-upper) level set, L(s):

L(s) := {x ∈ Rp : f(x) ≥ s}

where f(x) is a generic probability density function.

As Figures 3.21-3.22 show, in fact, the DB TOCC is able to “peel” the target

set around its whole perimeter and, thus, to approximately reproduce its L(0.9).
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Figure 3.21: Density level set (a) approximation for the ellipse-shaped data performed by
the D TOCC (b) and the DB TOCC (c) for s=0.9.
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Figure 3.22: Density level set (a) approximation for the banana-shaped data performed
by the D TOCC (b) and the DB TOCC (c) for s=0.9.

In the one-class context, especially for the two sets of spectroscopic food data,

the VIP criterion does not perform as well as in other situations (see, for example,
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the results for the Waste treatment plant data or those discussed in 2.5.2 for super-

vised classification). This is due to the presence of highly associated input features

that pollutes the capability of the VIP to detect those actually relevant (by its na-

ture, the VIP tends to assume approximately the same value for the very correlated

variables). Thus, with the aim to identify the relevant features for one-class classifi-

cation purposes (and to exclude the redundant ones) a specific correction procedure

is advisable, so as to mitigate the correlation effect. In particular, a possible strat-

egy is to consider the variables with the highest VIP value whilst discarding those

who have an average absolute correlation with the variables already included larger

than a given threshold, κ. From our empirical experience, a reasonable interval for κ

would be 0.4−0.7, depending on the average degree of the association in the original

data: the strongest, the lower is the threshold. However, a more formal approach

could be to rephrase the problem as an optimization one and to solve it with an

iterative numerical procedure:

max VIPu − κ|ρ̄|

where ρ̄ is the average correlation between the variable u and those already selected.

Tables 3.4-3.6 show, for each dataset, the specificity rates corresponding to a sensi-

tivity level s ≥ 0.9 for the adjusted for correlation VIP, κ-VIP.

Method κ-VIP4, κ = 0.5 VIP4

D TOCC 0.43 0.23
DB TOCC 0.15 0.20
PAM D TOCC 0.73 0.20
Gauss 0.12 0.24
Mix-Gauss 0.14 0.34
KDE 1.00 1.00
KM 0.21 0.19
SOM 0.41 0.26
SVDD 0.11 0.16

Table 3.4: Specificity for s ≥ 0.9 sensitivity level for Honey data for the κ-VIP with
κ = 0.5.

The comparison of the performances achieved by all the discussed one-class clas-

sifiers shows the quite general improvement determined by the use of the κ-VIP,

rather than its original version, to identify the four most relevant variables of each

dataset. This attitude is particularly evident for the two spectroscopic data, since,

for these sets, the average correlation between the input features is strong (0.63 for

the Honey and 0.72 for the Oil data). The fraction of altered honey samples cor-

rectly recognized by the PAM D TOCC, for example, is boosted from 0.20 to 0.73



3.5. Discussion and extensions 87

Method κ-VIP4, κ = 0.4 VIP4

D TOCC 0.98 0.26
DB TOCC 0.96 0.28
PAM D TOCC 1.00 0.93
Gauss 1.00 0.98
Mix-Gauss 1.00 0.98
KDE 0.09 0.11
KM 0.57 0.24
SOM 0.96 0.89
SVDD 0.26 0.07

Table 3.5: Specificity for s ≥ 0.9 sensitivity level for Oil data for the κ-VIP with κ = 0.4.

Method κ-VIP4, κ = 0.6 VIP4

D TOCC 0.70 0.49
DB TOCC 0.48 0.34
PAM D TOCC 0.90 0.61
Gauss 0.41 0.22
Mix-Gauss 0.48 0.24
KDE 0.00 0.00
KM 0.25 0.25
SOM 0.38 0.44
SVDD 0.23 0.24

Table 3.6: Specificity for s ≥ 0.9 sensitivity level for Waste treatment plant data for the
κ-VIP with κ = 0.6.

by employing a threshold, κ, equals to 0.5 to discard very associated variables. An

analogous result is attained for the Oil data, too: in this case, the performance of the

D TOCC goes from 0.26 to 0.98 if each of the four features is sequentially identified

so as to present an average absolute correlation with those already selected lower

than κ = 0.4.
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Appendix A

A.1 Proof of Theorem 1

Proof. Case 1: ∀B1:
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It follows that:
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B1ψ
+

(B1 − 1)
(
B1−3

4
+ ψ

)
B1ψ


= B1ψ

 B1−1
2

+ ψ − (B1−1)2

4
− ψ2 − (B1 − 1)ψ +

(B1−1)(B1−3)
4

+ (B1 − 1)ψ

B1ψ


= B1ψ

[
2B1 − 2 + 4ψ −B1

2 − 1 + 2B1 − 4ψ2 +B1
2 − 3B1 −B1 + 3

4B1ψ

]
= B1ψ

[
4ψ − 4ψ2

4B1ψ

]
= ψ(1− ψ)

It follows that:

lim
ψ→0+

(
lim

ω→+∞
E[S]

)
= lim
ψ→0+

[
B1 − 1

2
+ ψ

]
=
B1 − 1

2
,

B1 − 1

2
+ ψ = O(ψ)

lim
ψ→0+

(
lim

ω→+∞
V [S]

)
= lim
ψ→0+

[ψ(1− ψ)] = 0, ψ(1− ψ) = O(ψ2)

lim
ψ→1−

(
lim

ω→+∞
E[S]

)
= lim
ψ→1−

[
B1 − 1

2
+ ψ

]
=
B1 − 1

2
,

B1 − 1

2
+ ψ = O(ψ − 1)

lim
ψ→1−

(
lim

ω→+∞
V [S]

)
= lim
ψ→1−

[ψ(1− ψ)] = 0, ψ(1− ψ) = O(ψ − 1)

Combining these results, it is straightforward to notice that, in all the cases

where the limit of the variance is equal to 0, the random variable S degenerates to

the limit of its expectation, LE, with probability 1. Formally,

P (S = s) =

1 if s = LE

0 otherwise
=⇒ S −−−−−−−−−−→

ω→0+ ∨ ω→+∞
ψ→0+ ∨ ψ→1−

δ[LE]

where δ is the Dirac-Delta function δx0 [φ] = φ(x0).
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A.2 Proof of Proposition 1

Proof. Because of the symmetry of the joint distribution of (C1, ..., CB1), it is always

possible to write

E[S] = B1E[C1]

and

V [S] = B1V [C1] +B1(B1 − 1)Cov[C1, C2]

Therefore, the Central Limit Theorem for dependent random variables can be ap-

plied to S, provided that the overall mean and variance behave ‘sensibly’. Specifi-

cally, we refer to the central limit theorem for dependent classes of random variables

derived by Kaminski in [64]:

Theorem. Let {Xi}i≥1 be a sequence of identically distributed random variables

such that E|X1|2+ε < +∞ for some ε > 0. Let V [X1] = σ2 and ε1 be a positive

number such that ε1 <
ε

2(1+ε)
. Denote by S =

∑n
i=1Xi the partial sum. Suppose that

for sufficiently large k, the inequality

sup

{
|P

(
j⋂
i=1

{Xvi ≤ xvi}

)
−

j∏
i=1

P (Xvi ≤ xvi) : (xv1 , . . . , xvj) ∈ Rj|

}
≤ (1−k−ε1)k−kε1−j

(A.1)

holds, where v1, . . . , vj is any choice of indices such that kε1 < v1 < · · · < vj ≤ k.

Then:
Yn − E[Yn]

σ
√
n

d−→ N(0, 1) as n→∞.

It is important to underline that the left-hand side of condition A.1 is only on the

tail Xkε1 , Xkε1+1, . . . , Xk and it reflects the degree of dependence among Xv1 , . . . , Xvj

(i.e. if Xv1 , . . . , Xvj are independent, the left-hand side of inequality A.1 is 0, oth-

erwise it is a real positive number). Then, it is easy to see that, for fixed k, the

right-hand side of A.1 tends to become larger as j increases.

In our case, a different number B1 of Bernoulli variables C1, ..., CB1 is required

so as to satisfy inequality A.1, depending on their average degree of dependence, ω.

Condition A.1 surely holds for any ω if n→∞.
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A.3 Proof of Theorem 2

Proof.

π(ψ, ω) = ψτ1

Now,

τ1 =

∑B1−1
i=0

(
B1−1

i

)
ψi(1− ψ)B1−1−iω(B1−1−i)(i+1)∑B1

i=0

(
B1

i

)
ψi(1− ψ)B1−iω(B1−i)i

≤ 1 ⇐⇒

DB1
=

B1−1∑
i=0

(
B1 − 1

i

)
ψi(1− ψ)B1−1−iω(B1−1−i)(i+1) −

B1∑
i=0

(
B1

i

)
ψi(1− ψ)B1−iω(B1−i)i ≤ 0

(A.2)

The difference DB1 can be factored as:

DB1 =

∆(ψ − 1)(2ψ − 1)(ω − 1) if B1 is even

∆(ψ − 1)(2ψ − 1)(ω − 1)(ω + 1) if B1 is odd
(A.3)

where ∆ is a positive polynomial (only numeric proofs are possible and they are

given in Tables A.1-A.4 and in Figure A.2).

By expressions A.2-A.3, it follows that:

τ1 ≤ 1 ⇐⇒ DB1 ≤ 0 ⇐⇒

0 ≤ ψ ≤ 1
2
∧ 0 ≤ ω ≤ 1

1
2
≤ ψ < 1 ∧ ω ≥ 1

This result is also shown in Figure A.2, where red and black points correspond

respectively to τ1 ≤ 1 and τ1 > 1, for different sample size B1.
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Figure A.1: Values of τ1 for ψ ∈ [0, 1], ω ∈ [0, 2]. Red and black points correspond
respectively to τ1 ≤ 1 and τ1 > 1.

Table A.1: Values of ∆ for ψ ∈ [0, 1], ω ∈ [0, 2] and B1 = 4.



A.3. Proof of Theorem 2 95

Table A.2: Values of ∆ for ψ ∈ [0, 1], ω ∈ [0, 2] and B1 = 5.

Table A.3: Values of ∆ for ψ ∈ [0, 1], ω ∈ [0, 2] and B1 = 9.

Table A.4: Values of ∆ for ψ ∈ [0, 1], ω ∈ [0, 2] and B1 = 12.
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Figure A.2: Values of ∆ for ψ ∈ [0, 1] according to different values of ω and B1.
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Figure B.1: Accuracy rate ( ) and optimal number of variables, h, ( ) for
the VIP-LDA (first row), VIP-QDA (second row) and VIP-Knn (third row) for the eye

state data with n = 50 and d = 2.



B.1. RP-VIP and AA-RP ensemble classifiers variable selection in real data
applications 99

2 4 6 8 10 12 14

40
60

80
10

0

no.var

ac
cu

ra
cy

2 4 6 8 10 12 14

40
60

80
10

0

no.var

ac
cu

ra
cy

2 4 6 8 10 12 14

40
60

80
10

0

no.var

ac
cu

ra
cy

Figure B.2: Accuracy rate ( ) and optimal number of variables, h, ( ) for
the VIP-LDA (first row), VIP-QDA (second row) and VIP-Knn (third row) for the eye

state data with n = 50 and d = 5.
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Figure B.3: Accuracy rate ( ) and optimal number of variables, h, ( ) for
the VIP-LDA (first row), VIP-QDA (second row) and VIP-Knn (third row) for the eye

state data with n = 200 and d = 2.
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Figure B.4: Accuracy rate ( ) and optimal number of variables, h, ( ) for
the VIP-LDA (first row), VIP-QDA (second row) and VIP-Knn (third row) for the eye

state data with n = 200 and d = 5.
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Figure B.5: Accuracy rate ( ) and optimal number of variables, h, ( ) for
the VIP-LDA (first row), VIP-QDA (second row) and VIP-Knn (third row) for the eye

state data with n = 1000 and d = 2.
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Figure B.6: Accuracy rate ( ) and optimal number of variables, h, ( ) for
the VIP-LDA (first row), VIP-QDA (second row) and VIP-Knn (third row) for the eye

state data with n = 1000 and d = 5.
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Figure B.7: Accuracy rate ( ) and optimal number of variables, h, ( ) for
the AA-LDA (first row), AA-QDA (second row) and AA-Knn (third row) for the eye

state data with n = 50 and d = 2.
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Figure B.8: Accuracy rate ( ) and optimal number of variables, h, ( ) for
the AA-LDA (first row), AA-QDA (second row) and AA-Knn (third row) for the eye

state data with n = 50 and d = 5.
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Figure B.9: Accuracy rate ( ) and optimal number of variables, h, ( ) for
the AA-LDA (first row), AA-QDA (second row) and AA-Knn (third row) for the eye

state data with n = 200 and d = 2.
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Figure B.10: Accuracy rate ( ) and optimal number of variables, h, ( )
for the AA-LDA (first row), AA-QDA (second row) and VIP-Knn (third row) for the

eye state data with n = 200 and d = 5.
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Figure B.11: Accuracy rate ( ) and optimal number of variables, h, ( )
for the AA-LDA (first row), AA-QDA (second row) and VIP-Knn (third row) for the

eye state data with n = 1000 and d = 2.
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Figure B.12: Accuracy rate ( ) and optimal number of variables, h, ( )
for the AA-LDA (first row), AA-QDA (second row) and VIP-Knn (third row) for the

eye state data with n = 1000 and d = 5.
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Figure B.13: Accuracy rate ( ) and optimal number of variables, h, ( )
for the VIP-LDA (first row), VIP-QDA (second row) and VIP-Knn (third row) for the

ionosphere data with n = 50 and d = 2.
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Figure B.14: Accuracy rate ( ) and optimal number of variables, h, ( )
for the VIP-LDA (first row), VIP-QDA (second row) and VIP-Knn (third row) for the

ionosphere data with n = 50 and d = 5.
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Figure B.15: Accuracy rate ( ) and optimal number of variables, h, ( )
for the VIP-LDA (first row), VIP-QDA (second row) and VIP-Knn (third row) for the

ionosphere data with n = 100 and d = 2.
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Figure B.16: Accuracy rate ( ) and optimal number of variables, h, ( )
for the VIP-LDA (first row), VIP-QDA (second row) and VIP-Knn (third row) for the

ionosphere data with n = 100 and d = 5.



114 Appendix B.

5 10 15 20 25 30

40
60

80
10

0

no.var

ac
cu

ra
cy

5 10 15 20 25 30

40
60

80
10

0

no.var

ac
cu

ra
cy

5 10 15 20 25 30

40
60

80
10

0

no.var

ac
cu

ra
cy

Figure B.17: Accuracy rate ( ) and optimal number of variables, h, ( )
for the VIP-LDA (first row), VIP-QDA (second row) and VIP-Knn (third row) for the

ionosphere data with n = 200 and d = 2.
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Figure B.18: Accuracy rate ( ) and optimal number of variables, h, ( )
for the VIP-LDA (first row), VIP-QDA (second row) and VIP-Knn (third row) for the

ionosphere data with n = 200 and d = 5.
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Figure B.19: Accuracy rate ( ) and optimal number of variables, h, ( )
for the AA-LDA (first row), AA-QDA (second row) and AA-Knn (third row) for the

ionosphere data with n = 50 and d = 2.
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Figure B.20: Accuracy rate ( ) and optimal number of variables, h, ( )
for the AA-LDA (first row), AA-QDA (second row) and AA-Knn (third row) for the

ionosphere data with n = 50 and d = 5.
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Figure B.21: Accuracy rate ( ) and optimal number of variables, h, ( )
for the AA-LDA (first row), AA-QDA (second row) and AA-Knn (third row) for the

ionosphere data with n = 100 and d = 2.
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Figure B.22: Accuracy rate ( ) and optimal number of variables, h, ( )
for the AA-LDA (first row), AA-QDA (second row) and AA-Knn (third row) for the

ionosphere data with n = 100 and d = 5.
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Figure B.23: Accuracy rate ( ) and optimal number of variables, h, ( )
for the AA-LDA (first row), AA-QDA (second row) and AA-Knn (third row) for the

ionosphere data with n = 200 and d = 2.
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Figure B.24: Accuracy rate ( ) and optimal number of variables, h, ( )
for the AA-LDA (first row), AA-QDA (second row) and AA-Knn (third row) for the

ionosphere data with n = 200 and d = 5.
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Figure B.25: Accuracy rate ( ) and optimal number of variables, h, ( )
for the VIP-LDA (first row), VIP-QDA (second row) and VIP-Knn (third row) for the

mice data with n = 200 and d = 2.
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Figure B.26: Accuracy rate ( ) and optimal number of variables, h, ( )
for the VIP-LDA (first row), VIP-QDA (second row) and VIP-Knn (third row) for the

mice data with n = 200 and d = 5.
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Figure B.27: Accuracy rate ( ) and optimal number of variables, h, ( )
for the VIP-LDA (first row), VIP-QDA (second row) and VIP-Knn (third row) for the

mice data with n = 500 and d = 5.
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Figure B.28: Accuracy rate ( ) and optimal number of variables, h, ( )
for the VIP-LDA (first row), VIP-QDA (second row) and VIP-Knn (third row) for the

mice data with n = 500 and d = 5.
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Figure B.29: Accuracy rate ( ) and optimal number of variables, h, ( )
for the VIP-LDA (first row), VIP-QDA (second row) and VIP-Knn (third row) for the

mice data with n = 1000 and d = 2.
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Figure B.30: Accuracy rate ( ) and optimal number of variables, h, ( )
for the VIP-LDA (first row), VIP-QDA (second row) and VIP-Knn (third row) for the

mice data with n = 1000 and d = 5.
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Figure B.31: Accuracy rate ( ) and optimal number of variables, h, ( )
for the AA-LDA (first row), AA-QDA (second row) and AA-Knn (third row) for the

mice data with n = 200 and d = 2.
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Figure B.32: Accuracy rate ( ) and optimal number of variables, h, ( )
for the AA-LDA (first row), AA-QDA (second row) and AA-Knn (third row) for the

mice data with n = 200 and d = 5.
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Figure B.33: Accuracy rate ( ) and optimal number of variables, h, ( )
for the AA-LDA (first row), AA-QDA (second row) and AA-Knn (third row) for the

mice data with n = 500 and d = 5.



B.1. RP-VIP and AA-RP ensemble classifiers variable selection in real data
applications 131

0 10 20 30 40 50 60 70

40
60

80
10

0

no.var

ac
cu

ra
cy

0 10 20 30 40 50 60 70

40
60

80
10

0

no.var

ac
cu

ra
cy

0 10 20 30 40 50 60 70

40
60

80
10

0

no.var

ac
cu

ra
cy

Figure B.34: Accuracy rate ( ) and optimal number of variables, h, ( )
for the AA-LDA (first row), AA-QDA (second row) and AA-Knn (third row) for the

mice data with n = 500 and d = 5.
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Figure B.35: Accuracy rate ( ) and optimal number of variables, h, ( )
for the AA-LDA (first row), AA-QDA (second row) and AA-Knn (third row) for the

mice data with n = 1000 and d = 2.
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Figure B.36: Accuracy rate ( ) and optimal number of variables, h, ( )
for the AA-LDA (first row), AA-QDA (second row) and AA-Knn (third row) for the

mice data with n = 1000 and d = 5.
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Figure B.37: Accuracy rate ( ) and optimal number of variables, h, ( )
for the VIP-LDA (first row), VIP-QDA (second row) and VIP-Knn (third row) for the

hill-valley data with n = 100 and d = 2.
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Figure B.38: Accuracy rate ( ) and optimal number of variables, h, ( )
for the VIP-LDA (first row), VIP-QDA (second row) and VIP-Knn (third row) for the

hill-valley data with n = 100 and d = 5.
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Figure B.39: Accuracy rate ( ) and optimal number of variables, h, ( )
for the VIP-LDA (first row), VIP-QDA (second row) and VIP-Knn (third row) for the

hill-valley data with n = 200 and d = 2.
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Figure B.40: Accuracy rate ( ) and optimal number of variables, h, ( )
for the VIP-LDA (first row), VIP-QDA (second row) and VIP-Knn (third row) for the

hill-valley data with n = 200 and d = 5.
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Figure B.41: Accuracy rate ( ) and optimal number of variables, h, ( )
for the VIP-LDA (first row), VIP-QDA (second row) and VIP-Knn (third row) for the

hill-valley data with n = 500 and d = 2.
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Figure B.42: Accuracy rate ( ) and optimal number of variables, h, ( )
for the VIP-LDA (first row), VIP-QDA (second row) and VIP-Knn (third row) for the

hill-valley data with n = 500 and d = 5.
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Figure B.43: Accuracy rate ( ) and optimal number of variables, h, ( )
for the AA-LDA (first row), AA-QDA (second row) and AA-Knn (third row) for the

hill-valley data with n = 100 and d = 2.
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Figure B.44: Accuracy rate ( ) and optimal number of variables, h, ( )
for the AA-LDA (first row), AA-QDA (second row) and AA-Knn (third row) for the

hill-valley data with n = 100 and d = 5.
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Figure B.45: Accuracy rate ( ) and optimal number of variables, h, ( )
for the AA-LDA (first row), AA-QDA (second row) and AA-Knn (third row) for the

hill-valley data with n = 200 and d = 2.
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Figure B.46: Accuracy rate ( ) and optimal number of variables, h, ( )
for the AA-LDA (first row), AA-QDA (second row) and AA-Knn (third row) for the

hill-valley data with n = 200 and d = 5.
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Figure B.47: Accuracy rate ( ) and optimal number of variables, h, ( )
for the AA-LDA (first row), AA-QDA (second row) and AA-Knn (third row) for the

hill-valley data with n = 500 and d = 2.
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Figure B.48: Accuracy rate ( ) and optimal number of variables, h, ( )
for the AA-LDA (first row), AA-QDA (second row) and AA-Knn (third row) for the

hill-valley data with n = 500 and d = 5.
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Figure B.49: Accuracy rate ( ) and optimal number of variables, h, ( )
for the VIP-LDA (first row), VIP-QDA (second row) and VIP-Knn (third row) for the

musk data with n = 100 and d = 5.
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Figure B.50: Accuracy rate ( ) and optimal number of variables, h, ( )
for the VIP-LDA (first row), VIP-QDA (second row) and VIP-Knn (third row) for the

musk data with n = 100 and d = 5.
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Figure B.51: Accuracy rate ( ) and optimal number of variables, h, ( )
for the VIP-LDA (first row), VIP-QDA (second row) and VIP-Knn (third row) for the

musk data with n = 200 and d = 2.
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Figure B.52: Accuracy rate ( ) and optimal number of variables, h, ( )
for the VIP-LDA (first row), VIP-QDA (second row) and VIP-Knn (third row) for the

musk data with n = 200 and d = 5.



150 Appendix B.

0 50 100 150

40
60

80
10

0

no.var

ac
cu

ra
cy

0 50 100 150

40
60

80
10

0

no.var

ac
cu

ra
cy

0 50 100 150

40
60

80
10

0

no.var

ac
cu

ra
cy

Figure B.53: Accuracy rate ( ) and optimal number of variables, h, ( )
for the VIP-LDA (first row), VIP-QDA (second row) and VIP-Knn (third row) for the

musk data with n = 500 and d = 2.
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Figure B.54: Accuracy rate ( ) and optimal number of variables, h, ( )
for the VIP-LDA (first row), VIP-QDA (second row) and VIP-Knn (third row) for the

musk data with n = 500 and d = 5.
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Figure B.55: Accuracy rate ( ) and optimal number of variables, h, ( )
for the AA-LDA (first row), AA-QDA (second row) and AA-Knn (third row) for the

musk data with n = 100 and d = 5.
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Figure B.56: Accuracy rate ( ) and optimal number of variables, h, ( )
for the AA-LDA (first row), AA-QDA (second row) and AA-Knn (third row) for the

musk data with n = 100 and d = 5.
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Figure B.57: Accuracy rate ( ) and optimal number of variables, h, ( )
for the AA-LDA (first row), AA-QDA (second row) and AA-Knn (third row) for the

musk data with n = 200 and d = 2.
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Figure B.58: Accuracy rate ( ) and optimal number of variables, h, ( )
for the AA-LDA (first row), AA-QDA (second row) and AA-Knn (third row) for the

musk data with n = 200 and d = 5.
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Figure B.59: Accuracy rate ( ) and optimal number of variables, h, ( )
for the AA-LDA (first row), AA-QDA (second row) and AA-Knn (third row) for the

musk data with n = 500 and d = 2.
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Figure B.60: Accuracy rate ( ) and optimal number of variables, h, ( )
for the AA-LDA (first row), AA-QDA (second row) and AA-Knn (third row) for the

musk data with n = 500 and d = 5.
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Figure B.61: Accuracy rate ( ) and optimal number of variables, h, ( )
for the VIP-LDA (first row), VIP-QDA (second row) and VIP-Knn (third row) for the

cardiac arrhythmia data with n = 50 and d = 2.
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Figure B.62: Accuracy rate ( ) and optimal number of variables, h, ( )
for the VIP-LDA (first row), VIP-QDA (second row) and VIP-Knn (third row) for the

cardiac arrhythmia data with n = 50 and d = 5.
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Figure B.63: Accuracy rate ( ) and optimal number of variables, h, ( )
for the VIP-LDA (first row), VIP-QDA (second row) and VIP-Knn (third row) for the

cardiac arrhythmia data with n = 100 and d = 2.
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Figure B.64: Accuracy rate ( ) and optimal number of variables, h, ( )
for the VIP-LDA (first row), VIP-QDA (second row) and VIP-Knn (third row) for the

cardiac arrhythmia data with n = 100 and d = 5.
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Figure B.65: Accuracy rate ( ) and optimal number of variables, h, ( )
for the VIP-LDA (first row), VIP-QDA (second row) and VIP-Knn (third row) for the

cardiac arrhythmia data with n = 200 and d = 2.
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Figure B.66: Accuracy rate ( ) and optimal number of variables, h, ( )
for the VIP-LDA (first row), VIP-QDA (second row) and VIP-Knn (third row) for the

cardiac arrhythmia data with n = 200 and d = 5.
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Figure B.67: Accuracy rate ( ) and optimal number of variables, h, ( )
for the AA-LDA (first row), AA-QDA (second row) and AA-Knn (third row) for the

cardiac arrhythmia data with n = 50 and d = 2.
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Figure B.68: Accuracy rate ( ) and optimal number of variables, h, ( )
for the AA-LDA (first row), AA-QDA (second row) and AA-Knn (third row) for the

cardiac arrhythmia data with n = 50 and d = 5.
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Figure B.69: Accuracy rate ( ) and optimal number of variables, h, ( )
for the AA-LDA (first row), AA-QDA (second row) and AA-Knn (third row) for the

cardiac arrhythmia data with n = 100 and d = 2.
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Figure B.70: Accuracy rate ( ) and optimal number of variables, h, ( )
for the AA-LDA (first row), AA-QDA (second row) and AA-Knn (third row) for the

cardiac arrhythmia data with n = 100 and d = 5.
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Figure B.71: Accuracy rate ( ) and optimal number of variables, h, ( )
for the AA-LDA (first row), AA-QDA (second row) and AA-Knn (third row) for the

cardiac arrhythmia data with n = 200 and d = 2.
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Figure B.72: Accuracy rate ( ) and optimal number of variables, h, ( )
for the AA-LDA (first row), AA-QDA (second row) and AA-Knn (third row) for the

cardiac arrhythmia data with n = 200 and d = 5.
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Figure B.73: Accuracy rate ( ) and optimal number of variables, h, ( )
for the VIP-LDA (first row), VIP-QDA (second row) and VIP-Knn (third row) for the

human activity recognition data with n = 50 and d = 2.
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Figure B.74: Accuracy rate ( ) and optimal number of variables, h, ( )
for the VIP-LDA (first row), VIP-QDA (second row) and VIP-Knn (third row) for the

human activity recognition data with n = 50 and d = 5.
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Figure B.75: Accuracy rate ( ) and optimal number of variables, h, ( )
for the VIP-LDA (first row), VIP-QDA (second row) and VIP-Knn (third row) for the

human activity recognition with n = 200 and d = 2.
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Figure B.76: Accuracy rate ( ) and optimal number of variables, h, ( )
for the VIP-LDA (first row), VIP-QDA (second row) and VIP-Knn (third row) for the

human activity recognition data with n = 200 and d = 5.
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Figure B.77: Accuracy rate ( ) and optimal number of variables, h, ( )
for the VIP-LDA (first row), VIP-QDA (second row) and VIP-Knn (third row) for the

human activity recognition data with n = 1000 and d = 2.
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Figure B.78: Accuracy rate ( ) and optimal number of variables, h, ( )
for the VIP-LDA (first row), VIP-QDA (second row) and VIP-Knn (third row) for the

human activity recognition data with n = 1000 and d = 5.
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Figure B.79: Accuracy rate ( ) and optimal number of variables, h, ( )
for the AA-LDA (first row), AA-QDA (second row) and AA-Knn (third row) for the

human activity recognition data with n = 50 and d = 2.
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Figure B.80: Accuracy rate ( ) and optimal number of variables, h, ( )
for the AA-LDA (first row), AA-QDA (second row) and AA-Knn (third row) for the

human activity recognition data with n = 50 and d = 5.
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Figure B.81: Accuracy rate ( ) and optimal number of variables, h, ( )
for the AA-LDA (first row), AA-QDA (second row) and AA-Knn (third row) for the

human activity recognition with n = 200 and d = 2.
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Figure B.82: Accuracy rate ( ) and optimal number of variables, h, ( )
for the AA-LDA (first row), AA-QDA (second row) and AA-Knn (third row) for the

human activity recognition data with n = 200 and d = 5.
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Figure B.83: Accuracy rate ( ) and optimal number of variables, h, ( )
for the AA-LDA (first row), AA-QDA (second row) and AA-Knn (third row) for the

human activity recognition data with n = 1000 and d = 2.
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Figure B.84: Accuracy rate ( ) and optimal number of variables, h, ( )
for the AA-LDA (first row), AA-QDA (second row) and AA-Knn (third row) for the

human activity recognition data with n = 1000 and d = 5.
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Figure C.1: Specificity for s ≥ 0.9 sensitivity level for small (S), medium (M) and large
(L) shifts for Model 1, n = 100.
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Figure C.2: Specificity for s ≥ 0.9 sensitivity level for small (S), medium (M) and large
(L) shifts for Model 1, n = 200.
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Figure C.3: Specificity for s ≥ 0.9 sensitivity level for small (S), medium (M) and large
(L) shifts for Model 2, n = 100.
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Figure C.4: Specificity for s ≥ 0.9 sensitivity level for small (S), medium (M) and large
(L) shifts for Model 2, n = 200.
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Figure C.5: Specificity for s ≥ 0.9 sensitivity level for small (S), medium (M) and large
(L) shifts for Model 3, n = 100.
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Figure C.6: Specificity for s ≥ 0.9 sensitivity level for small (S), medium (M) and large
(L) shifts for Model 3, n = 200.
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Figure C.7: Specificity for s ≥ 0.9 sensitivity level for Model 4, n = 100.
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Figure C.8: Specificity for s ≥ 0.9 sensitivity level for Model 4, n = 200.
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Figure C.9: Specificity for s ≥ 0.9 sensitivity level for for small (S), medium (M) and
large (L) shifts Model 5, n = 100
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Figure C.10: Specificity for s ≥ 0.9 sensitivity level for small (S), medium (M) and large
(L) shifts for Model 5, n = 200.
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Method shift Results for d = 1 Results for d = 2
n = 100 n = 200 n= 500 n = 100 n = 200 n = 500

S 0.240.08 0.260.06 0.270.04 0.270.09 0.250.07 0.230.05
D TOCC M 0.380.10 0.400.08 0.410.04 0.560.14 0.570.10 0.550.06

L 0.490.12 0.530.08 0.540.05 0.840.12 0.860.07 0.860.04

S 0.250.08 0.260.06 0.270.03 0.250.08 0.230.05 0.210.04
DB TOCC M 0.400.09 0.410.07 0.410.04 0.570.11 0.560.07 0.540.05

L 0.520.10 0.530.07 0.540.05 0.860.09 0.860.05 0.860.03

S 0.200.10 0.180.08 0.150.05 0.540.13 0.400.08 0.240.05
PAM D TOCC M 0.270.12 0.250.10 0.220.06 0.700.12 0.570.12 0.400.09

L 0.530.14 0.310.11 0.290.07 0.870.09 0.800.11 0.690.10

S 0.250.08 0.260.06 0.270.03 0.240.07 0.230.05 0.220.04
Gaussian M 0.400.09 0.410.07 0.410.04 0.570.09 0.560.07 0.540.05

L 0.520.10 0.530.07 0.540.05 0.860.07 0.860.04 0.860.03

S 0.260.08 0.260.06 0.270.03 0.250.08 0.230.05 0.220.04
Mix-Gauss M 0.400.09 0.410.07 0.410.04 0.580.09 0.560.07 0.540.05

L 0.520.10 0.530.07 0.540.05 0.870.07 0.860.04 0.860.03

S 0.100.05 0.100.03 0.100.02 0.060.04 0.080.03 0.090.02
KDE M 0.100.05 0.100.04 0.100.03 0.070.05 0.080.04 0.090.02

L 0.090.05 0.100.04 0.100.02 0.070.04 0.080.04 0.090.02

S 0.250.09 0.230.07 0.220.04 0.260.08 0.240.06 0.210.04
KM M 0.340.10 0.310.09 0.330.06 0.550.11 0.530.10 0.510.06

L 0.430.11 0.420.10 0.420.07 0.830.10 0.820.08 0.820.04

S 0.000.01 0.000.00 0.000.00 0.430.09 0.320.06 0.230.04
SOM M 0.000.01 0.000.00 0.000.00 0.660.08 0.550.08 0.470.06

L 0.010.02 0.000.01 0.000.00 0.870.07 0.800.07 0.760.06

S 0.250.08 0.260.07 0.270.05 0.260.08 0.250.07 0.240.05
SVDD M 0.390.10 0.400.08 0.410.06 0.610.09 0.610.08 0.610.06

L 0.510.12 0.530.08 0.540.06 0.900.06 0.890.04 0.890.03

Table C.1: Specificity for s ≥ 0.9 sensitivity level for Model 1.
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Method shift Results for d = 1 Results for d = 2
n = 100 n = 200 n= 500 n = 100 n = 200 n = 500

S 0.190.08 0.200.06 0.200.04 0.210.11 0.170.07 0.160.04
D TOCC M 0.270.11 0.290.08 0.290.05 0.410.21 0.380.16 0.330.12

L 0.340.12 0.370.09 0.370.06 0.650.27 0.670.21 0.680.15

S 0.200.07 0.210.06 0.210.03 0.160.08 0.150.06 0.140.04
DB TOCC M 0.290.10 0.310.07 0.290.05 0.340.19 0.330.15 0.320.10

L 0.370.10 0.380.08 0.380.05 0.620.26 0.660.20 0.670.13

S 0.200.11 0.160.07 0.130.03 0.460.13 0.320.10 0.190.05
PAM D TOCC M 0.240.11 0.180.07 0.140.04 0.540.17 0.340.14 0.170.07

L 0.260.12 0.190.07 0.160.05 0.670.23 0.470.22 0.210.13

S 0.200.07 0.210.06 0.210.03 0.150.06 0.140.05 0.140.03
Gaussian M 0.280.10 0.310.07 0.290.04 0.310.12 0.300.10 0.290.08

L 0.360.10 0.380.08 0.380.05 0.640.17 0.630.15 0.640.12

S 0.200.07 0.210.06 0.210.03 0.160.06 0.140.05 0.140.03
Mix-Gauss M 0.290.10 0.310.06 0.290.04 0.330.12 0.300.09 0.290.07

L 0.370.10 0.390.07 0.380.05 0.680.15 0.650.12 0.650.08

S 0.100.05 0.100.03 0.110.03 0.030.04 0.050.04 0.080.02
KDE M 0.100.05 0.110.02 0.110.03 0.030.05 0.050.05 0.080.02

L 0.110.05 0.110.03 0.110.03 0.030.05 0.050.04 0.080.02

S 0.230.08 0.210.06 0.200.04 0.210.07 0.170.05 0.150.04
KM M 0.310.09 0.290.07 0.270.05 0.400.15 0.360.12 0.320.11

L 0.360.10 0.360.08 0.330.05 0.670.20 0.650.18 0.600.16

S 0.010.02 0.010.01 0.000.00 0.440.10 0.290.07 0.200.04
SOM M 0.010.02 0.010.01 0.000.01 0.650.10 0.490.11 0.380.08

L 0.020.04 0.010.02 0.010.01 0.800.09 0.700.10 0.590.11

S 0.180.10 0.190.10 0.200.11 0.160.09 0.160.08 0.150.08
SVDD M 0.250.14 0.260.14 0.280.15 0.320.19 0.340.20 0.320.21

L 0.320.16 0.330.16 0.360.18 0.600.25 0.610.27 0.550.29

Table C.2: Specificity for s ≥ 0.9 sensitivity level for Model 2.
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Method shift Results for d = 1 Results for d = 2
n = 100 n = 200 n= 500 n = 100 n = 200 n = 500

S 0.330.09 0.350.06 0.360.04 0.390.09 0.380.07 0.360.05
D TOCC M 0.460.09 0.480.07 0.480.04 0.640.14 0.650.10 0.640.06

L 0.560.10 0.580.06 0.580.04 0.870.09 0.900.05 0.900.03

S 0.350.08 0.350.06 0.360.03 0.370.08 0.360.06 0.350.04
DB TOCC M 0.470.08 0.480.06 0.480.04 0.650.11 0.630.08 0.620.05

L 0.580.08 0.580.06 0.580.04 0.890.07 0.900.04 0.890.03

S 0.290.12 0.270.11 0.260.09 0.610.12 0.490.08 0.350.06
PAM D TOCC M 0.360.12 0.350.12 0.340.08 0.740.11 0.630.10 0.480.08

L 0.440.14 0.450.11 0.410.08 0.900.07 0.850.09 0.750.09

S 0.350.08 0.350.06 0.360.03 0.370.07 0.370.06 0.350.04
Gaussian M 0.470.09 0.480.06 0.480.04 0.650.09 0.640.07 0.630.05

L 0.580.08 0.580.06 0.580.04 0.890.05 0.900.04 0.900.03

S 0.350.08 0.350.06 0.360.03 0.380.07 0.370.06 0.350.04
Mix-Gauss M 0.470.09 0.480.06 0.480.04 0.660.10 0.640.07 0.630.05

L 0.580.08 0.580.06 0.580.04 0.890.05 0.900.04 0.900.03

S 0.210.07 0.210.06 0.220.04 0.210.07 0.230.06 0.250.03
KDE M 0.220.08 0.220.05 0.220.04 0.210.07 0.220.06 0.250.03

L 0.220.08 0.230.07 0.240.05 0.200.07 0.220.05 0.250.04

S 0.340.10 0.320.06 0.310.05 0.390.08 0.370.07 0.350.04
KM M 0.430.09 0.420.07 0.420.05 0.630.12 0.610.09 0.600.06

L 0.520.10 0.500.07 0.500.05 0.870.07 0.870.07 0.870.04

S 0.040.04 0.030.02 0.030.02 0.520.08 0.430.06 0.350.04
SOM M 0.070.05 0.050.03 0.050.03 0.720.08 0.630.07 0.560.06

L 0.090.07 0.080.04 0.070.04 0.890.06 0.840.06 0.800.06

S 0.340.08 0.350.06 0.360.04 0.360.08 0.350.07 0.350.05
SVDD M 0.460.09 0.480.07 0.480.06 0.680.09 0.680.08 0.680.06

L 0.570.10 0.580.06 0.580.05 0.910.05 0.920.04 0.820.03

Table C.3: Specificity for s ≥ 0.9 sensitivity level for Model 3.

Method Results for d = 1 Results for d = 2
n = 100 n = 200 n= 500 n = 100 n = 200 n = 500

D TOCC 0.440.09 0.440.07 0.450.04 0.650.08 0.620.06 0.620.04

DB TOCC 0.450.09 0.450.06 0.450.04 0.640.08 0.620.06 0.610.04

PAM D TOCC 0.290.14 0.270.13 0.260.09 0.750.12 0.650.09 0.510.09

Gaussian 0.450.09 0.450.06 0.450.04 0.650.07 0.630.05 0.620.04

Mix-Gauss 0.450.09 0.450.06 0.450.04 0.650.07 0.630.05 0.620.04

KDE 0.130.11 0.100.09 0.050.04 0.200.14 0.200.11 0.170.07

KM 0.390.09 0.360.06 0.360.04 0.640.08 0.620.06 0.600.04

SOM 0.000.00 0.000.00 0.000.00 0.700.08 0.600.06 0.530.04

SVDD 0.450.09 0.450.07 0.450.04 0.600.07 0.580.07 0.580.04

Table C.4: Specificity for s ≥ 0.9 sensitivity level for Model 4.
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Method shift Results for d = 2
n = 100 n = 200 n= 500

S 0.420.08 0.370.05 0.350.03
D TOCC M 0.630.07 0.600.06 0.570.04

L 0.720.06 0.700.05 0.680.03

S 0.310.07 0.320.05 0.320.03
DB TOCC M 0.550.08 0.550.06 0.550.03

L 0.660.07 0.670.05 0.670.03

S 0.650.14 0.570.11 0.520.07
PAM D TOCC M 0.860.09 0.810.07 0.770.05

L 0.930.06 0.910.05 0.900.03

S 0.140.06 0.130.04 0.130.02
Gaussian M 0.250.07 0.240.05 0.240.03

L 0.410.08 0.400.06 0.410.03

S 0.590.09 0.580.06 0.580.04
Mix-Gauss M 0.840.06 0.840.04 0.830.02

L 0.900.04 0.900.03 0.900.02

S 0.320.07 0.320.07 0.400.07
KDE M 0.690.11 0.690.11 0.850.07

L 0.870.07 0.870.07 0.970.03

S 0.260.07 0.240.05 0.220.03
KM M 0.660.09 0.640.05 0.630.03

L 0.750.06 0.750.04 0.740.03

S 0.590.08 0.560.06 0.530.05
SOM M 0.820.06 0.810.04 0.800.03

L 0.870.05 0.870.03 0.870.03

S 0.250.06 0.270.05 0.280.04
SVDD M 0.440.08 0.450.05 0.450.03

L 0.490.07 0.500.05 0.510.03

Table C.5: Specificity for s ≥ 0.9 sensitivity level for Model 5.
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Appendix D

D.1 R Functions

1 banana2d=function(N,s){

2 # N is the number of sample units to generate

3 # s is the banana angle

4

5 r=5

6 p=c(0.5, 0.5)

7 #N=c(50 ,50)

8 #s=1

9

10 domaina =0.125*pi+runif(N[1])*1.25*pi

11 B=cbind(runif(N[1]),runif(N[1]))*s

12 A=cbind(r*sin(domaina),r*cos(domaina))

13 a=A+B

14

15 domainb =0.375*pi -runif(N[2])*1.25*pi

16 B2=cbind(runif(N[2]),runif(N[2]))*s

17 A2=cbind(r*sin(domainb),r*cos(domainb))

18 C2=cbind(rep( -0.75*r,times=N[2]),rep (-0.75*r,times=N[2]))

19 a2=A2+B2+C2

20

21 aa=rbind(a,a2)

22

23 return(aa)

24 }
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& Petrelli, 1943.

[50] Pablo M Granitto, Pablo F Verdes, and H Alejandro Ceccatto. “Neural net-

work ensembles: evaluation of aggregation algorithms”. In: Artificial Intelli-

gence 163.2 (2005), pp. 139–162.
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