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Introduction 
 

This work shows the main activity carried out in my doctorate. I focused my research on the 

analysis of multiphase machines for More Electric Aircraft (MEA) applications.  

A wide part of the PhD work looks at the methods to model multiphase electrical machines.  

The models are firstly used to develop techniques for the on-line diagnosis and mitigation of 

faults, focusing on open phase, high resistance and inter-turn short circuit faults. In case of open 

phase faults, various fault tolerant control techniques for different multiphase machines are 

proposed, showing advantages and drawbacks of them. In particular, the multiphase and the 

multi three-phase layouts are compared for Induction Machines (IM). 

A second part of the PhD is dedicated to the design and control of Multi Sector Permanent 

Magnet (MSPM) fault tolerant machines. 

A radial force control for a MSPM machine is defined with the goal of controlling the radial 

force for a bearingless operation. Then, a fault tolerant control, that allows avoiding the radial 

force or also controlling it in case of open phase fault, is proposed. This idea is to aim for a fault 

tolerant bearingless machine or having the possibility to prevent and mitigating the effects of a 

bearing fault by the machine control.  

The final part of the work is dedicated on a new design of MSPM machine, based on the stator 

segmentation idea. The proposed design aims to improve the fault tolerance of the machine 

without significantly affecting its performance in the healthy behaviour. This would reduce the 

difficulties on the monitoring and fault tolerant control of the standard topology. 

Many efforts have been carried out in order to understand and properly control the analysed 

multiphase machines, allowing the development of accurate models and the realization of 

experimental tests. 

Chapter 1 is an introduction on the MEA idea, highlighting the importance of the use of 

multiphase machines in the aeronautic field.  

A generalized model of multiphase machine, based on the Space Vector Decomposition 

technique, is presented in Chapter 2. The chapter focuses on distributed  winding IM and 

Surface Permanent Magnet (SPM) machines. 

Chapter 3 describes and compares different fault tolerant control techniques for open phase 

faults in IMs. 

Chapter 4 is related to interturn short circuits and high resistance connections. 

In Chapter 5, a technique for the radial force control of a MSPM machine is presented, taking 

into account for different possible machine controls and fault conditions.  

Chapter 6 focuses on a new idea of machine design for distributed winding MSPM machines 

based on the stator segmentation. 
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Multiphase Machines for More 

Electric Aircraft applications  
 

This chapter aims to introduce the reader to the process of aircraft electrification that is 

happening in this historical period, highlighting the importance of efficient and reliable drives 

for the future aircraft technologies. A focus on multiphase machines is given. Indeed, nowadays, 

multiphase machines are one of the main proposed solution to improve the performance and 

the fault tolerance of electrical machines, especially when the power of the system is as high 

that a standard three-phase drive in no more suitable to sustain it. This is the case of integrated 

starter-generators for aircrafts.  

 

 Aircraft Industry and Market 

 

The aircraft market is continuously increasing, and because this is happening so fast, the 

industry must continue to seek opportunities for cost reduction and efficiency improvements to 

ensure a sustainable growth. 

Aviation transported approximatively 3.8 billion passengers on commercial airlines in 2016, 

and this value is increasing with a rate higher than 7% in the last three years. Tab. 1.I reports 

the trend of the air passenger traffic [1]. 

Because most of the flights are between different countries, a key point for the success of the 

aircraft market is a proper coordination in terms of rules and standards. 

The European air travel, for example, is actually responsible for an Air Traffic Management 

(ATM) of about 26,000 flights daily. In July 2017, the Network Manager has handled the record 

of one million flights across the EUROCONTROL network and in several occasions there were 

more than 35,000 flights in a single day [2]. In order to allow the sustainability of the future air 

transport in Europe, there are already new common rules and procedures (resulting by two 
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Single European Sky, SES, legislative packages) for the establishment of the aircraft safety, 

capacity and efficiency standards. 

The aircraft industry is also taking into account the emissions related to the global warming and 

the climate changes, as it is happening in the automotive sector too. The Advisory Council for 

Aeronautics Research in Europe (ACARE) has set that by 2020 the air transportation should 

achieve a 50% reduction of Co2 emissions, 80% reduction of NOx emissions, 50% reduction 

of external noise and a green design, manufacturing, maintenance and disposal product life 

cycle [3].  

In terms of economic impact, the fuel is still responsible of about 18% of the operating costs, 

for a total fuel cost of about US$130 billion every year. As can be seen in Tab. 1.II [4], the 

impact of the fuel cost is definitely important. Furthermore, the political and economic choices 

of the different countries of the world significantly affect the cost of the fuel of the total cost 

for the customers [5]. It results that many efforts aim to increase even more the efficiency of 

the propulsive and auxiliary systems.  

Tab. 1.I – IATA: Statistic on commercial airline. 

 

Tab. 1.II – IATA: Fuel Impact on Operating Costs. 
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For the longer-term future aircrafts, it is estimated that the development of hybrid-electric and 

battery-powered aircrafts could contribute to meet the industry goal of reducing aviation’s 

global carbon footprint by 50% by 2050, compared to 2005. Indeed, the actual technology is 

already mature, and huge efforts will not result in equivalent improvements, while the aircraft 

electrification process seems to be a good possible solution. A study from Munich-based think 

tank Bauhaus Luftfahrt (“Ce-Liner”) finds that larger electrically powered commercial aircraft 

could be possible from around 2035, and could cover routes of up to 1600 km in the subsequent 

years, assuming continuing strong progress in battery technology [6]. Of course, the increase 

of the electrical power on-board makes the efficiency and reliability of the electrical grid, the 

power generators and the drives a central point in the research for the future technologies. That 

is why there is such a spread of projects related to the More Electric Aircraft (MEA), More 

Electric Engine (MEE) and All Electric Aircraft (AEA) applications in the universities and 

companies around the world. In terms of European research, the most important programme is 

Clean Sky, where the collaboration between industries and universities is resulting in new idea 

and a series of demonstrators that aim to reduce the “emission and noise footprints of the aircraft 

with new engine architectures, improved wing aerodynamics, tighter composite structures, 

smarter trajectories, and more electrical on-board energy” [7]. 

  

 The idea of More Electric Aircraft 

 

The aerospace industry challenges are similar to the automotive industry ones in terms of 

emissions, fuel economy and costs. As in the automotive market, the aerospace trend is to move 

toward the increasing use of More Electric drives. 

The MEA concept provides for the utilization of electric power for all the non-propulsive 

systems of an aircraft. The traditional systems are also driven by hydraulic, pneumatic and 

mechanical sources. These non-electrical systems need a heavy and bulky infrastructure for the 

 

Fig. 1.1– Power flow in a standard civil aircraft. 
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power transmission, and the difficulties on the diagnosis and localization of the faults limit their 

availability. Fig. 1.1 [3] shows a standard power flow in a civil aircraft. 

Instead, in a MEA design, the jet engine completely provides the aircraft trust, and an embedded 

generator provides the power required by all the electrical loads, as shown in Fig. 1.2 [3]. 

The Airbus Boeing 787 Dreamliner is an example that represents the recent industrial 

development of the MEA technology, and similar developments can be found on the other 

MEAs.  

Boeing 787 Dreamliner was designed to be the first airliner with the use of composite as the 

primary material of its airframe and to move toward the idea of MEA, with the aim of increasing 

the efficiency of about 20% [8]. The advancements in engine technology, provided by GE and 

Rolls-Royce, are the biggest contributor to the airplane’s overall full efficiency improvements 

[9]. To meet the requirements in terms of efficiency, reliability, availability, lightness and costs, 

one of the most important improvement on the design is that it includes mostly electrical flight 

systems, with a bleed-less architecture that allows extracting more efficiently power from the 

propulsive system, by two generators on each engine, and electrical brakes (rather hydraulically 

actuated brakes). The total electrical power (1 MVA) is subdivided in two 500 kVA channels, 

and two on the Auxiliary Power Units (APU), increasing the efficiency of the propulsion 

system. What has traditionally powered by bleed-air from the engine has been transitioned to 

an electric architecture. In particular, the only left bleed system on the Boeing 787 is the anti-

ice system for the engine inlets [10, 11]. 

Furthermore, the 787 can be started without any ground power. To start the engine, the APU 

battery system is used to power the engine generators that start the engines in motoring mode 

[11]. Of course, owing to the starting profile, together with the emergency load profile, the 

sizing and the selection of the batteries have to be redesigned in MEA to meet the new power 

requirements, increasing the complexity of the new generation aircrafts [12]. 

 

Fig. 1.2 – Power flow in a civil MEA. 
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Because of the essential reliability of the total system, moving to an electrification of the aircraft 

needs to introduce redundancies in the electrical system, and the final layout is as the one shown 

in Fig. 1.3 [11]. As example of this redundancy, Boeing 787 has demonstrated that it can fly 

for more than six hours with only one of the two engine (indeed it is a twin-engine aircraft) and 

one of the six generators working [13].  

The no-bleed architecture of the Boeing 787 affects also its electrical systems, where a new 230 

V ac at 360-800 Hz and ± 270 V dc voltage lines are added to the traditional 115 V ac at 400 

Hz and 28 V dc. The ± 270 V dc voltage is reached by auto-transformer-rectifiers.  

Gearboxes connect the generators to the engine, working at a variable frequency (360-800 Hz) 

proportional to the engine speed. This allows avoiding the constant speed drive of the Integrated 

Drive Generator (IDG), which is the most complex component. As a result, the IDG reliability 

increases using an easier and cheaper technology.  

The Boeing 787 is a study example that shows the actual available technology for civil aircrafts 

and represents the efforts needed to introduce the MEA technology on-board.  

 

 The idea of More Electric Engine 

 

The aviation industry has always pushed the boundaries of technology in order to create quieter 

and more efficient aircrafts, and even before the first light of the More Electric Boeing 787 

Dreamliner, the main companies (as GE and Rolls-Royce) were looking on developing the next 

aircraft technology: the More Electric Engine. The idea of MEE is to replace all the accessories 

mechanically driven by the engine (oil, fuel and hydraulic pumps and the generators) with 

electrically driven ones, and produce the needed electrical power by embedded generators 

 

Fig. 1.3 – The MEA concept on Boeing 787. 
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directly attached on the engine shaft, rather than connect them by means of a mechanical 

gearbox [14, 15]. Furthermore, one of the key features needed to realize a MEA technology, is 

that the electrical generator can start the engine and can provide the electrical power to the loads 

with enough efficiency and reliability. Indeed, all the non-propulsive power comes from these 

embedded generators, and they must reach a level of availability and maturity that ensures a 

neglectable risk of failure for the system.  

The MEE requirements need new architectures and technologies of electrical machines and 

drives. There are criticalities of having a high power and high power density electrical machine 

embedded on the shaft of the propulsive system that satisfies the requested reliability [16]. In 

particular, the machine might rotate at high speed (up to 10-50 krpm) in a harsh environment 

with high temperatures and vibrations. Furthermore, there are space and assembly limitations. 

That is why the research is focusing so much on the development of MEE solutions. 

Fig. 1.4 [17] shows an example of embedded starter/generator. 

To design a MEE it is essential to choose where to locate the starter/generators and the other 

generators, and the topology of the electrical machines. 

 

Embedded starter/generator location  

 

The generators could be placed on the Low Pressure shaft (LP) or on the High Pressure Shaft 

(HP) of the turbine engine. As can be seen form Fig. 1.5 [17], the two locations make the 

machine work at different pressures, temperatures and rotational speeds.  

The rotational speed affects the size of the generator once its output power is fixed. The 

generators on the LP shaft will have a lower power density than the generators on the HP shaft 

(rotating at about 10000-20000 rpm). The temperature is lower on the LP side, since the HP 

 

Fig. 1.4 – Rolls-Royce electric starter/generator embedded in the gas turbine engine. 
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generator would be near the exhausted air outlet (with an ambient operating temperature around 

300-400 ºC), but the lower pressure reduces the natural thermal cooling of the generator [18]. 

A typical MEE layout is shown in Fig. 1.6 [17]. As the starter/generator is placed on the HP 

shaft, it is one of the most stressed drives, because of the high temperature environment [19]. 

 

Embedded starter/generator machine topologies  

 

According to [14], the main electrical machine topologies used for starter/generator application 

are: 

 Switched Reluctance Machine (SRM) 

 Permanent Magnet Brushless Machine (PMBM) 

 Induction Machine (IM) 

The main advantage of SRM is their robustness, reliability and availability in a harsh 

environment, owing to the absence of permanent magnets and windings on the rotor. However, 

its airgap must be larger than the other topologies in order to reduce the torque pulsations and 

acoustic noise produced by its double saliency. Furthermore, in high seep applications the fast 

pulsating fields might cause high rotor losses. 

PMBM are preferred for their higher power density, torque density, power factor, efficiency 

and easy controllability when compared with SRM and IM. In case of fault, the PM machines 

are intrinsically less fault tolerant because of the presence of the induced back emf and the 

demagnetization issue [20]. 

 

Fig. 1.5 – Operating temperatures in a typical jet engine. 
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IM are robust, simple and cheap, but their power factor, power density and torque density are 

significantly reduced when compared with PMBM. Furthermore, the control of an IM is more 

complex and in case of short circuit fault, the rotor coupling makes the magnetic isolation of 

the healthy phases by the faulty ones almost impossible. Multiphase designs allow increasing 

the fault tolerance of IM, but they require complicated control techniques. The temperature 

tolerance and the easy sensorless control operation make IM still an interesting solution for 

MEE application. 

Furthermore, the harsh environment and the ambient temperatures (possibly exceeding 250 ºC) 

make the drive requires materials such as PMs and insulations close or beyond their operating 

limits. In [14] the HP S/G is a PMBM, while the generator on the LP is a geared SRM, and in 

[16] many type of PMBM S/G are compared in terms of fault tolerant solutions, highlighting 

the necessity of efficient cooling systems for its application, while in [18] a IM is preferred. 

Hence, new materials and cooling systems must be adopted for both the machine and the power 

electronic, and the choice of the best electrical machine for MEE applications are still to be 

defined.  

The evaluation of the final drive reliability is a key point to allow introducing it on-board of an 

aircraft, because the safety of the system must be guaranteed over the performance and the 

efficiency. In the section CS-E 510 of the Certification Specifications for Engines (CS-E) of 

the European Aviation Safety Agency (EASA) it is reported that the probability of hazardous 

engine effects must be predicted to occur at a rate not in excess of 10−7 per engine flight hour 

for each engine. The probability that this event rises from a single failure cause must be 

predicted to be lower than 10−8 per engine flight hour. Major effects are constrained to 10−5per 

engine flight hour. Indeed “it is recognized that the probability of Primary Failures of certain 

single elements cannot be sensibly estimated in numerical terms” [21]. These specifications 

show the importance of the research on reliable and fault tolerant drives for MEA applications. 

Section 1.5 focuses on the multiphase machine topology as a possible reliable solution. 

 

 

Fig. 1.6 – A typical MEE layout. 
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 State of the Art and Applications of Multiphase Drives 

 

Since nowadays the electrical machines are no more directly connected to the grid, the number 

of phases can be arbitrary, becoming a potential design variable. A multiphase system differs 

from the standard single, double and three-phase ones, for having a number of phases (m) higher 

than 3. The high research interest on multiphase machines rises from the idea that for each new 

phase there is an additional degrees of freedom that can be exploited to implement more 

complex machine controls and designs. Of course, this complexity results in higher 

performance, reliability and control flexibility. The scheme of a multiphase drive connected to 

a standard three-phase grid is shown in Fig. 1.7 [22]. 

The advantages of a multiphase machine depend on the considered machine and winding 

topology, but some of them are intrinsic. In particular, multiphase machines allow splitting the 

total power of the system among an increased number of phases. Reducing the power on each 

phase results in a derating of the power electronic components needed for the converter that 

feed the machine. This can be explained taking as example a double layer three-phase winding 

machine with two series coils for each phase located in the same slots (U1-U2, V1-V2 and W1-

W2). The two coils of each phase can be no more series connected and it is possible to consider 

them as two different phases, each connected to its new three-phase subsystem (U1-V1-W1 and 

U2-V2-W2). Two independent converters can feed the new three-phase windings, easily 

realizing a design of a six-phase drive. Feeding the new windings in order to control the 

machine with the same currents of the equivalent three-phase drive, the phase voltages that 

must be provided by each converter are half time the voltages required by the previous machine 

design. On the other hand, if the same voltage is kept, increasing the turns number the converter 

power switching can bear half of the current. This advantage is definitely important for high 

power drives, as in the electric ship propulsion [23-29], high power turbo compressors [30] and 

MEEs [18, 31-33], but it is also suitable for low voltage applications as in the automotive 

industry [34, 35]. Even if this PhD work is focused on multiphase electrical machines, it is 

worth to highlight that a similar approach, for reducing the switching device rating, can be 

adopted for power electronics, for example opting for a multilevel converter topology [36]; or 

even hybrid solutions of multilevel and multiphase systems can be proposed [37]. 

Moving toward multiphase drives means that the standard approach to the machine design must 

take into account also for the possibility to control the currents in the new phases with different 

control techniques than the one used for three-phase drives. That is why it is quite common to 

 

Fig. 1.7 - Multiphase system connected to a standard three-phase grid. 
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place the new phases in different positions from the one of a three-phase machine, or even better 

to do a completely new winding design. This enable to: 

 inject more independent currents in the phases; 

 make possible the control of more harmonics of the magnetic field in the airgap. 

As known, the constraint on the current control of a three-phase winding is related to its star 

connection. Owing to the star connection, the sum of the three currents must be equal to zero. 

This results on the possibility to independently control only two currents. While, in a multiphase 

machine with a single star connection the number of independent currents are m – 1; and in 

case of more stars (Nstar), the independent currents are (m-Nstar).  

 By the modelling of rotative electrical machines, it results that there is a direct relation between 

the armature magnetic field in the airgap and the stator currents. In many cases, the windings 

are placed in such a way that for each pair of added independent currents it is possible to 

completely control an additional harmonic of the armature field. Understanding and 

implementing these more complex control techniques needs a good experience on machine 

modelling, and many efforts have already been done in the past in order to clarify how to do 

this [38, 39]. 

The advantages of this improvement on multiphase electrical machine design and control can 

be summarized in: 

 performance; 

 fault tolerance and diagnosis; 

 new control techniques. 

 

Performance 

 

A multiphase machine design and control can significantly increase the machine performance 

in terms of torque density. Indeed, the instantaneous magnetomotive force distribution depends 

on the position of each phase and on the value of the current passing into them. The position of 

the phases is generally constrained by the number of slots and the winding assembly feasibility, 

while the star connections are the only limit to the multiphase current control. Usually the 

design methods aim at maximizing the fundamental spatial harmonics of the magnetomotive 

force distribution, while minimizing the non-fundamental ones; that for a multiphase machine 

must be done taking into account of the phase shift control of the currents. Further 

improvements have been also proposed to increase the average torque exploiting the higher 

harmonics of the spatial distribution. These methods are named as current harmonic injection 

[40-45]. However, the use of higher order harmonics in the torque production must be 

investigated for each machine design and topology, because the order of the space harmonic 

significantly affects the efficiency of the torque production [43]. Furthermore, eliminating 

higher order harmonic fields in the airgap makes possible to mitigate the torque ripple and the 

machine noise. Multiphase machines allow reducing the torque ripples, because the harmonics 

that have the same order of the ones generated also by the rotor can be controlled to be deleted 

or minimized, reducing also their related losses [27, 46]. 
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Fault tolerance and diagnosis 

 

In case of aircraft applications, the most important goal of a drive is its reliability, and this is 

the main reason why multiphase machines are considered a suitable solution for MEA 

applications [20]. 

Faults in electrical machines can be mainly summarized in high resistance connections, open 

circuit and short circuit faults related to the winding deterioration. However, also eccentricities, 

bearing faults, rotor cage faults, permanent magnet demagnetization and sensor faults are 

related to the electromagnetic behaviour of the electrical machines, and suitable designs and 

controls can be proposed to detect or mitigate their effects.  

In terms of fault tolerance, multiphase machines can be seen as a system with an internal 

redundancy: when one of the phases is opened, the others can help to compensate the missing 

power, minimizing the performance derating and avoiding a machine failure. However, the 

optimization of the fault tolerant control strategy is something that is not always easy to define 

because it depends on the machine topology [47-50] and the control strategy. One solution to 

compensate the open winding fault is to open all the legs of the inverter feeding the faulty 

system, and this is a choice often proposed for machines with three-phase inverters connected 

to three-phase star connected windings. However, it is also possible to keep suitable currents in 

the remaining healthy phases of the faulty subsystem in order to improve the fault tolerant 

performance [51]. Many works have already published to solve the problem of open circuit 

faults, and it seems that the methodologies on how to deal with this fault are quite mature. 

Instead, the compensation of the other faults seems more complex to manage and most of the 

works have been done for three-phase machines. 

High resistance connections are easily compensated by the standard PI regulators, even if to 

obtain better performance additional inverse sequence or resonant regulators can be used in a 

fault tolerant control configuration, as in the diagnostic technique based on negative sequence 

regulators in [52], generalized in [53] and [54] for multiphase machines. Even if high 

resistances in one phase are not in general one of the most critical fault, their diagnosis is 

essential to detect a wrong connection or an undesired localized temperature increase in one 

phase in order to derate the machine and plan in advance the maintenance of the drive. 

Many efforts are oriented on finding a suitable control technique that avoids the machine failure 

in case of short circuit faults. In [55] and [56] the fault tolerant control aims to maintain the 

machine performance as in the healthy behaviour significantly increasing the phase currents, in 

[57] the short circuit current is kept to zero compensating the back emf of the faulty phase by 

the remaining healthy ones. However, one of the main problem of the short circuits in electrical 

machines is that an on-line fault detection is needed, before putting into effect whatever fault 

tolerant algorithm.  

The on-line detection of short circuit faults is a complex topic and it requires accurate models 

[58-60], electrical signature analysis [61, 62] or artificial intelligence techniques in order to 

allow discriminating this fault by the other topologies [63, 64]. As alternative solution, a 

specific wire design for the on-line detection of the fault is proposed in [65, 66], where the wires 

have a shelter used for the fault early detection. Because of the complexity of the short circuit 
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detection and compensation, other researches are also looking for solving the problem by fault 

tolerant designs, where the advantage of multiphase machines can be found in the possibility to 

place subsystems of phases in localized stator areas in order to make the various subsystems 

more independent [67-69]. 

Bearing faults are investigated by electrical signature analysis in [61, 70], while the 

eccentricities are detected by the back emf induced in additional windings in [71] and by 

electrical signature analysis in [72]. However, their compensation is possible only if there is a 

control on the machine radial forces, as discussed after in the part related to the new control 

techniques of multiphase machines. 

Rotor faults depend on the analysed machine topology. In case of squirrel cage, for example, 

the most analysed rotor fault is the open fault of one bar. The cage faults is mainly analysed by 

electrical signature analysis [73], pendulous oscillation techniques [74] or by the monitoring of 

the external magnetic field [75]. Instead, in case of permanent magnet machines, the 

demagnetization fault is one of the most critical. The permanent magnet demagnetization is 

detected by sensing coils in [76], by the current signature analysis in [77, 78], by the back emf 

space vector harmonic content in [79], and by the back emf space vectors in [53] by means of 

the additional degrees of freedom of multiphase machines.  

Solutions to reduce the effect of a rotor fault are presented in [80] for a squirrel cage broken 

bar, where a fuzzy logic controller is used, and in [81, 82] for the demagnetization of the PM, 

by means of a reluctance assisted design. However, most of the research on the rotor faults is 

still focused on the detection algorithms. 

Finally, sensors fault are critical mainly for the current, voltage and speed-position sensors. The 

current sensor fault detection can be based on the average normalized value of the phase 

currents as in [83], or by more complex methods as Kalman filter or observer based as the works 

in [84, 85] that are generalized for also the other sensor faults. Considering the case of speed-

position sensor fault, there are already many algorithms that allow controlling the electrical 

machines as what is called as a sensorless configuration. The techniques for the sensorless 

control of three-phase machines have been deeply studied and applied also in the industry. 

Alternative techniques for multiphase machines sensorless operation have been found for both 

induction and PM machines. In [86] the authors propose a sensorless technique that exploit the 

control of the third harmonic field of a seven phase machine in order to implement an alternative 

flux observer, while in [87] the sensorless technique based on the rotor slot harmonics is 

improved using the additional degrees of freedom of a five and a six phase machine. The control 

of higher harmonic fields is also proposed for the sensorless control of a nine phase IPM 

machines with high frequency signal injection techniques in [88]. 

To conclude, if a stop for unscheduled maintenance is very expensive or not accepted, the 

design and control of such more fault-tolerant complex drives may be justified, otherwise the 

advantages of multiphase machines must be evaluated in each application weighting the 

improved performance with the costs related to the increased number of devices. 
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New control techniques 

 

In [89-91] an interesting multi-machine control is proposed. More machines are independently 

controlled even if their windings are series connected and fed by the same converter. This is 

possible because of phase transpositions. The phase transpositions change the sequences of the 

currents, or their relative shift angle. Each series machine, designed to interact only with the 

fundamental current sequence resulting in its winding, will have the additional losses related to 

the current sequences that are not useful for its torque production. This seems to be a really 

promising solution for applications in which the increased losses and the reduced efficiency of 

the machine is preferred in order to reduce the space and the costs required by the additional 

converters needed by each machine in the standard solution. 

Another interesting control of a multiphase machine is the radial force control. Indeed, if the 

machine windings of an electrical machine are not symmetrical under each pole pair, also the 

even harmonic fields appear. These fields can be controlled in order to create a radial force that 

can compensate eccentricities, bearing faults or even levitate the rotor of the machine. This 

approach has been used to develop bearingless machines for both squirrel cage IM, as in [92, 

93], and PM machines, as in [51, 94-96]. These solutions can be an alternative to the use of 

active magnetic bearings in high speed applications [97]. 

 

 Multiphase Machines as a Fault-Tolerant solution for 

MEA applications 

 

The reliability is essential in aeronautical applications, where many devices must considered 

in the chain of faults that can result in the failure of the system. Generators, flaps actuators, 

aileron actuators and fuel pumps are some of the most critical drives, and they require being 

fault tolerant. Where the fault tolerant feature is used here after for MEA drives meaning that 

the analysed fault can be managed in order to not bring to its system failure even if at reduced 

performance. Indeed, in [98-100] the accepted probability of losing the control of the aircraft 

(for example by rudder jamming) is evaluated to be around 1 × 10−9 per hour flight.  

However, the fault probabilities of three-phase drives can be evaluated as in Tab. 1.III [20]. 

Because of the strict regulations in aerospace applications, the critical components should not 

have a derating of torque or power in case of an electrical fault and the fault must not affect 

other components [20]. 

From Tab. 1.III it can be noticed that the faults in the electronic devices are more likely to 

happen. To mitigate these faults, it is quite common to have more dc grids with different dc 

bus. The control is also desired to have an on-line detection of the faults in order to detect and 

possibly mitigate the more probable faults: switching device breakage or open circuit and short 

circuit winding faults. 
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Having a precise evaluation of the fault probabilities of all the devices in an aircraft is really 

complex, however the authors in [99] give an interesting analysis of the fault probability of an 

electromecchanical actuator, reported here as an example to understand how to meet the aircraft 

safety requirements. In Fig. 1.8 [99] there is a fault-three-analysis of a typical position-

controlled electromecchanical actuator. 

The probability of the actuator failure (1.61 × 10−4 per hour flight) is too high, needing a fault-

tolerant architecture, as the one of Fig. 1.9 [99], where a dual-lane solution for the electrical 

system is proposed. 

Tab. 1.III - Electric and electronic failure rates in three-phase drives. 

 

 

 

 

Fig. 1.8 - Single channel electromecchanical actuator fault-tree (probabilities given per hour flight). 

 

 



Multiphase Machines for More Electric Aircraft applications 

15 

 

Having a dual-line solution allows increasing the reliability of the complete system up to 

8.68 × 10−6 per hour flight. Finally, a further redundancy of the whole system must be adopted 

in order to reach a sufficient level of reliability (<1 × 10−9 ). This means that at least two 

redundant actuators are needed. 

As previously mentioned, a different analysis must be carried out for each drive, in particular 

for the generators of MEE applications. Indeed, there are many additional criticalities (related 

to the harsh environment, vibrations and high power density requirements of these electrical 

machines) but the possibility to have them completely embedded with the turbine shaft allows 

avoiding the gearbox, one of the most critical mechanical components. 

However, the example of the electromecchanical actuator shows that, because by standard 

drives the required reliability and availability cannot be reached, the way to reach the fault 

 

Fig. 1.10 - Method of flight control redundancy. 

 

 

 

Fig. 1.9 - Dual-lane electromecchanical actuator fault-tree (probabilities given per hour flight). 
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tolerance of a system is by means of redundancies. An easy way to explain the different 

redundancies can be done considering the flight control actuators, as in Fig. 1.10 [100].  

The actuator can have a twin acting on two different surfaces (surface redundancy), having the 

drawback of a possible jam of the broken actuator in an undesired position. Other solutions are 

to have the two actuators on the same surface (actuator redundancy), or having an intrinsic 

redundant drive (internal redundancy). In addition, hybrid redundancies can be used. The goal 

of the research on multiphase machine fault tolerant drives is to give them an additional internal 

redundancy from the electrical point of view. The goal of this internal redundancy is to increase 

the reliability of the system as shown in the previous example of Fig. 1.9. In some cases, 

multiphase machines are also proposed for improving the drive performance in order to reduce 

the probability of the failure of the mechanical components (for example by low torque ripple 

and bearingless solutions). 

As shown in Fig. 1.11 [100], once the machine design is defined, a first differentiation of the 

possible redundancies of a multiphase drive can be done considering only the electrical circuit. 

Many other and hybrid solutions can be adopted, but these are the more common in IM and 

PM ac drives. The layout mainly depends on the internal connection of the phases and on how 

they are connected to the power electronic devices. It is worth noticing that in reality there is 

also a magnetic coupling of the phases inside the machine, but with a proper control and design 

it is possible to make an easier comparison of the layouts neglecting the coupling. With this 

approximation, the multiphase drives can be summarized in [32, 99, 100]: 

 Multiphase; 

 Multi single-phase; 

 Multi three-phase. 

A multiphase layout consists of a single multiphase winding with all the phases connected to 

the same star. The machine has all the phases fed by a single converter. In a standard multiphase 

drive there are many critical faults that affect the complete system and can bring with high 

probability to a failure of the drive, as dc bus failure, short circuit fault of a switching device 

and short circuits in the winding. To avoid the failure of the system in these scenarios, one of 

the more reliable solution is the multi single-phase, where independent converters feed the 

phases. In this case, each phase affects the others only by the non-electrical couplings, 

significantly reducing the spread of the fault. However, this solution is more complex, 

expensive and less efficient. Furthermore, even if each fault is contained, the probability of 

having a fault is increased because of the higher number of switching devices. The multi three-

 

Fig. 1.11 - Redundancies of multiphase machines. 
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phase solution is an intermediate one. The additional components are only the dc buses. Of 

course, also multi-four phase, multi-five phase and so on can be adopted. However, the three-

phase layout is interesting for the maturity of the three-phase technologies and because three 

is the minimum number of phases that allows having a vector control of the machine even if 

only one subsystem is healthy and all the others are open. Furthermore, increasing the number 

of the phases in each subsystem makes the control of the machine more complex (the idea of 

the redundant three-phase control, as in [101], must be abandoned) and the exploitation of the 

dc bus voltage is reduced, as can be seen in [102, 103]. 

To enhance the fault tolerance, the subsystem of phases may be also physically, magnetically 

and thermal isolated, but it is usually hard to meet the fault tolerant requests without affecting 

the system performance [68]. 

In this thesis, the focus is on standard machine design with multi three-phase winding solutions 

for fault tolerant controls. Only in some cases, the stars are connected together to realize a 

completely multiphase drive; in order to compare the proposed control techniques in the two 

configurations.  
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Multi-Harmonic Generalised 

Model for Multiphase 

Machines 
 

For a multi three-phase machine with each three-phase subsystem having its own star 

connection, the easier way to control it is based on the approximation that it is possible to 

control each subsystem as an independent machine; and the three-phase machines are then 

connected to the same shaft [1]. A different approach must be used if the coupling between the 

different set of three-phase windings is likely to be taken into account for performance or 

control purposes. Furthermore, if there are multiphase machines with more than three phases 

connected to the same star point, the three-phase theory must be abandoned. 

Nowadays, many improvements for the control of multiphase machines have been proposed 

and validated, and many of them are based on the theory of the multi Space Vector 

Decomposition (SVD) [2, 3]. The idea of the SVD approach is that the machine can still be 

thought as a sum of three-phase machines, each one described in terms of currents by a complex 

number (current space vector). The current space vector represents a harmonic of the armature 

field in the airgap rather than a physical three-phase subsystem. Furthermore, the current 

space vector equations are in general independent anymore; this happens in particular if there 

are reluctances, non-linearities or asymmetries caused by faults in the machine [3-5], or 

because of particular controls [6]. 

 

The next section introduces the space vector general transformations and inverse 

transformations needed to describe a multi-variable system. Then, the method is applied for the 

definition of a general model for multiphase machines based on the winding function approach. 

The model is maintained as general as possible. Indeed, this chapter aims to present a unique 

machine model, which is general at least for all the machine topologies analysed in the next 

chapters. Due to the complexity of the equations, many steps are highlighted in the presentation 

of the model. 
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  Space Vector Decomposition theory  

 

The basis of the SVD theory comes from the idea of representing a “polyphase” system by a 

set of new “symmetrical co-ordinates”. In the late 1918, Fortescue wrote the first important 

publication on the multiphase space vectors, using them for the analysis of power networks [7]. 

As explained in this paper, asymmetrical systems can be represented by symmetrical systems 

with equal degrees of freedom. He also wrote: “I admit that the appearance of the equations is 

cumbersome, but that is almost impossible to overcome. The nature of the subject makes the 

equations cumbersome”. The development of this concept led to the definition of complex 

numbers that can be represented as vectors moving in different planes (generally named x-y, α-

β or d-q) called space vectors [8]. 

A system of n variables of the x-th quantity (x𝑘, nk ,...2,1 ) can be fully represented by n 

complex numbers 𝑦
ℎ
. Each complex numbers 𝑦

ℎ
 is referred to as the vector of the h-th space 

or h- th plane (h- th space vector). 

Suitable transformations allow passing from the physical quantities 
kx to the new ones 𝑦

ℎ
. The 

general transformation, also called as Clarke transform, is as follows: 
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where C is an arbitrary constant and �̅� = 𝑒𝑗
2𝜋

𝑛 .  

The general inverse transformation of (2.1) is: 
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By means of (2.1) and (2.2) it is possible to pass from the physical domain of the system 

quantities to the new domain of the space vectors in their 
hh    (or

hh yx  , or
hh qd  ) 

representation planes (or spaces) and vice versa. Fig. 2.1 shows schematically the concept of a 

transformation that brings to a new set of variables that fully represents the system. 

 

Fig. 2.1 – Space vector transformation and inverse transformation of an n variable system. 
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It is immediate to notice that the new system of variables is redundant. Indeed, the space vectors 

𝑦
ℎ

 are in general complex numbers, while the physical variables are always real numbers (as 

the word “real” means). This results that there are more variables than the physical ones, and 

some additional relationship between the new variables must be found in order to identify an 

inverse transformation that considers the same number of input of the starting system. If the 

number of variables of the two models is the same, the number of constraints between the 

variables of each model and the number of independent variables (degrees of freedom of the 

system) is the same too. This allows developing a one-to-one transformation between the two 

domains. 

It is worth noticing that (2.1) and (2.2) take into account for all the possible independent space 

vectors. Indeed, the transformation can also be written for all the values of h  ( ];[ h ), as: 
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Moreover, introducing the total number of space vectors (z), the inverse transformation can be 

extended as:  
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However, all the additional vectors are redundant owing to the following relationship: 
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Indeed, 
)1( kwn  is equal to 1 ( 1)1(2

)1(
2

)1(  


 kwj
kwn

n
j

kwn ee 



 ) for each h value (both positive 

and negative). This means that for each vector defined by (2.1) there are infinite others that are 

identic to it, and at the same time a vector that is different from all the one defined by (2.1) 

cannot exist. By the relation (2.5), it is possible to rewrite (2.4) as (2.2), making (2.2) 

completely general. 

It is also important to highlight that the space vectors are a Hermitian function for their space 

(or plane or order). A Hermitian function is a complex function with the property that its 

complex conjugate is equal to the original function with the variable changed in sign. This 

means that, according to (2.2), the following relationship can be written: 
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    (2.6) 

By means of (2.6), it is easily possible to simplify (2.1) and (2.2) in order to reduce the number 

of independent space vector. However, the simplification depends on the number of variables; 

in particular, it changes if the variables are an odd or even number. The next two subsections 

show how the transformation and the inverse transformation can be simplified in case of an odd 

and an even number of symmetrical variables. 

 

Space Vectors Transformation (odd number of variables) 

 

If the variables of the system are odd, there is always one real space vector and all the others 

are complex. The real space vector is also called homopolar component, because it represents 

what is equal between all the variables (in other words, it is the average value when C is equal 

to 1), and it is defined as: 
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C
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Note that it has been chosen to use as homopolar component the 0-th one rather than the n-th 

space vector as it is usually done in literature. The advantage of this choice is that the order of 

the component is the same whatever the number of phases, making always clear what the 

homopolar sequence means. 

All the other space vectors are complex numbers that respect the relationship (2.6). This allows 

rewriting (2.2) as: 
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Because
)1)(()1(   khnkh  , the inverse transformations is: 
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Introducing the real operator , there is a useful relationship for complex numbers, which is: 
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yy
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By means of (2.10), the inverse transformation (2.9) results in: 
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Alternatively, by repeating the same passages considering only the even space vectors, the 

inverse transformation can be also rewritten as: 
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A common choice on the modelling of three-phase electrical systems is to choose the C constant 

equal to 2 and using the inverse transformation (2.11). In this way, if the homopolar component 

0y  is null, the only space vector needed to describe the system is the first one 1y , and all the 

variables of the system are described by the relation (2.11) as  )1(

1

 k

k yx  . This means 

that in case of symmetric and sinusoidal conditions, (waveforms, of the physical quantities in 

the time domain, with same frequency and amplitudes and shifted of the same angle in the 

time), the amplitude of each quantity is equal to the magnitude of the 1st space vector. That is 

why hereafter the C value is considered always equal to two.  

The transformations and inverse transformations for a system with an odd number of variables 

(n odd) become: 
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Space Vectors Transformation (even number of variables) 

 

In case of an even number of variables, it is less intuitive how to simplify the inverse 

transformation to a reduced number of independent space vectors. Indeed, to realize a one-to 

one transformation the number of space vectors should be reduced in order to have a number 

of space variables equal to the equivalent number of degrees of freedom needed to fully describe 

the system.  
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In addition, there is a new space vector (the n/2-th) which is always real: 
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This real component is no more homopolar, but if desired it can be seen as an evaluation of 

what has the same amplitude but opposite sign between half of the variables (
1x ,

3x ,
5x , ….) 

and the other half ( 2x , 4x ,
6x , ….). 

Therefore, there are two real components and n-2 complex space vectors. Again, the 

relationship (2.6) allows rewriting (2.2) as: 
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The transformation with an even number of variables is quite important for the purpose of the 

generalisation of the model proposed in this chapter. Indeed, in many cases, the winding is 

asymmetrical, and a redundant transformation is needed. As explained in the next subsection, 

the redundant transformation often results to be symmetrical for an even number of redundant 

variables. 

 

Redundant transformations for making symmetrical an asymmetrical transformation 
 

In some cases, an asymmetrical transformation is used to describe some variables in order to 

represent them taking into account of the asymmetrical physic of the system (this happens for 

example in multiphase machines with an even number of phases asymmetrically distributed, as 

shown in the following section). In asymmetrical machines, often it is enough to introduce a 

double number of variables (half of them will be non-physical) in order to obtain a symmetrical 

transformation of the full set of variables. It results that the resulting symmetrical 

transformation must be with an even number of equivalent variables. It is possible to verify 

(numerically for example) that in some of these cases (2.17) can be simplified as: 
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or 
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This result has been verified for distributed asymmetrical six-phase and twelve-phase windings, 

as mentioned in the next section. 

The term n is the total number of variables used to define the symmetrical transformation. In 

the mentioned winding layouts (as the asymmetrical six-phase and twelve-phase ones), n is 

twice the variables of the system. Often, in order to define the transformation as for an odd 

number of symmetrical variables, the C constant is set equal to 4 rather than 2 in the 

transformation and inverse transformation. In general, C is set in order to keep the 

transformation shape as the one without redundant variables. Therefore, C results as twice the 

number of redundant and real variables divided by the number of real variables). Even if (2.19) 

and (2.20) are often used in the modelling of standard multiphase machines with asymmetrical 

windings, these inverse transformations are not general. The simplification of the inverse 

transformation must be verified for each machine, making an asymmetrical transformation of 

variable slightly more complex to use than a symmetrical one (the one generally used for 

multiphase machines with an odd number of phases symmetrically distributed). An example of 

asymmetrical winding that cannot be modelled with this approach (the multi sectored winding) 

is presented in the next section and analysed in deep in Chapter 4. 

Because the choice of the transformation to describe a multivariable system significantly affects 

the complexity of the model, the next subsection presents the proposed general approach to the 

transformations and inverse transformations of multiphase electrical machines. The 

transformations are defined on a winding function approach. 

 

 General approach to Multiphase Machine Modelling: 

Stator Winding and Transformations 

 

The model of a multiphase machine differs from the one of an equivalent three-phase for the 

stator winding. The higher number of phases increases the number of independent currents and 

relative generated space harmonic fields that can be controlled. 

In this section, the equations of the magnetic field produced by a winding are presented. The 

relationship between the currents and the magnetic field harmonics are defined in terms of 

current space vectors by means of the SVD theory. 

Certainly, the SVD theory can be applied to whatever electrical machine, but the new variables 

(the space vectors) must be introduced in a suitable way for the control of the electromagnetic 

quantities (voltages, currents and fluxes). The proposed technique, to find a suitable 

transformation, is by means of a winding function approach. The idea is that each spatial 

harmonic of the magnetic field in the airgap can be directly related to a current space vector. In 

particular, the ρ-th space harmonic of the magnetic field ( H ) can be related to the ρ-th space 

current vector (
i ). Note that hereafter the term space is always used, when writing about the 

space vectors, for indicating the order of the considered vector, which is the plane where the 

vector is represented (
   , 

 yx   or
 qd  ). 



CHAPTER 2 

32 

 

Once the current space vector equations are determined, one of the most critical point of the 

machine model is to identify a suitable inverse transformation of the resulting space vectors. 

This is needed for example to evaluate the voltage reference values that define the modulating 

signals (voltage control). 

The proposed method is based on the definition of a redundant multiphase transformation. 

Indeed, it is always possible to introduce additional variables to the system and then set them 

equal to zero. The idea rises from the desire of using symmetrical space vector transformations 

as (2.1) and (2.2). 

The method used to model a stator winding is defined with the following hypothesis: 

 The slotting effect, end-effect, saturations and all the others non-linearities of an 

electrical machine are neglected and the iron is considered to have an infinite magnetic 

permeability and zero losses. 

 The magnetic field in the airgap is considered for only its radial component and the 

bending of the airgap is neglected (the radial component of the flux results in parallel 

flux lines), owing to define a mono dimensional model of the machine, where all the 

magnetic quantities depend only by the angular position (ϑ). In some analysis (squirrel 

cage and stator segmentation), also the axial dimension (z) is taken into account in the 

model for the evaluation of the skewing, but the field is still considered only radial. 

 The first derivative of the electric displacement vector is supposed equal to zero : 

0
dt

Dd
. 

Note that the time dependence of the quantities in the model is not explicit if it is not needed 

for further explanations. 

The next subsection defines the magnetic field in the airgap generated by the current flowing 

in a generic turn. Then, the analysis is extended to a multiphase winding. A suitable space vector 

transformation is defined from the equation of the overall magnetic field in the airgap produced 

by the stator currents. An in-deep analysis of this transformation is carried out in this section. 

 

Armature field (one turn) 

 

This subsection describes the relationship between the current flowing in one turn and the 

related field in the airgap. 

It is well known that the airgap field produced by one turn, in the hypothesis of only radial flux, 

is described by a rectangular waveform until the reluctance (airgap thickness) is constant and 

the currents are supposed to be concentrated in points located in an angular position in the 

middle of the slots.  

The basic equations needed to solve the problem of identifying the field distribution produced 

by a turn crossed by a current are: 

 Gauss’s law for magnetism 
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 Ampère’s circuital law 

Gauss’s law for magnetism states that the flux density (B) has always divergence equal to zero, 

or (in its integral form) that the net flux exiting a closed surface is always zero: 

 0
CS

CSdB . (2.21) 

Ampère’s circuital law states (in its integral form) that the magnetic field (H) around a closed 

path (integral lane C) is equal to the total current passing to whatever surface (
CS ) enclosed by 

this path. Separating the conduction current from the polarization current, it leads to the general 

Maxwell- Ampère’s equation in its integral form: 

 C

S
C

C Sd
dt

Dd
JldH

C









  . (2.22) 

Under the hypotheses of the model (in particular, neglecting the effect of the electric 

displacement field D ) and replacing the second member with the current flowing in the 

considered turn, (2.23) can be simplified as: 

 k
C

C ildH  . (2.23) 

There are two ways to use (2.21) and (2.23) for the definition of the field produced by a coil in 

the airgap. The first one is passing through the definition of the spatial distribution of the current 

density, and then applying the laws of the electromagnetism. The second is to simplify the 

model in order to apply directly the two equations based on the expected field distribution 

(rectangular distribution centred with the magnetic axis of the coil), going straight to the desired 

result. However, the second approach is only valid if the reluctance effects can be neglected. 

Instead, the first approach is more general and allows modelling also the machine reluctances 

(for example slotting effects and not isotropic rotor geometries, as in [4] for a five phase 

winding with an Internal Permanent Magnet, IPM, rotor). In the two next paragraphs, both the 

two methods are presented, in order to verify that they give the same result when the first 

method is simplified to an isotropic magnetic circuit, and to show how it is also possible to 

model machines taking into account for reluctance effects. Fig. 2.2 shows the conventions for 

the machine modelling, while Fig. 2.3 and Fig. 2.4 show the geometries and parameters used 

to model a general k-th turn of the stator winding. 

The k-th turn has:  

 its geometrical centre in the angular position 
k ; 

 a pitch of 
k  radians ; 

 a turn width of  radians (meaning that, for the purposes of the model, the turn is 

simplified to rectangular shape). 
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1st Method: current density distribution 
 

This paragraph aims to define the magnetic field in the airgap generated by the current flowing 

in a generic turn by means of a general approach that is valid also in presence of a not isotropic 

magnetic circuit (reluctance). 

The magnetic field produced by the k-th turn can be written as function of the spatial distribution 

of the linear current density. 

Taking into account of an infinitesimal angle of the airgap (
sd ), the circuital law (2.23) can 

be written as: 

           sskssssss RdddHH   , (2.24) 

where  sk   is the linear current density of the k-th turn. 

Introducing the inverse function of the airgap ( /1g ), (2.23) can be also written as: 

 
 
 

 
 

  ssk
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ss

s

s Rd
dg

dH

g

H














 . (2.25) 

 

Fig. 2.3 – Spatial location of a turn (turn k) in the airgap circumference. 

 

Fig. 2.2 – Conventions of the proposed model. 
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In terms of Taylor series, neglecting the higher order infinitesimal contributions, the following 

steps (where the angle dependence is implicit) can be done: 
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 (2.26) 

Neglecting the higher order infinitesimal contributions, (2.26) becomes: 
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. (2.27) 

The resulting circuital law (2.22) can be expressed for the infinitesimal angle of the airgap as: 

 sks

s

Rdd
g

H

d

d












 . (2.28) 

That is: 

 

Fig. 2.4 – Spatial location of a turn (turn k) in the airgap circumference. 
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, (2.29) 

with: 

 
 

 R
d

dF
sk

s

s 



 . (2.30) 

The term  sF  represents the magnetomotive force distribution in the airgap related to the k-

th turn, and can be evaluated once its linear current density (
k ) is defined. 

Once the magnetomotive force is defined, the magnetic field is simply calculated by the 

following equation (with 
s  explicit): 

      sss FgH   . (2.31) 

Equation (2.31) is general for whatever current distribution and reluctance circuit of the 

machine (slotting effects, reluctance of the rotor, etc.), until the approximation of radial field 

can be accepted. The advantage of this equation is that the magnetomotive force depends only 

from the current distribution (and not from the reluctance). Even if an analysis of the reluctance 

effects is not done in this thesis, it is worth to notice that rewriting (2.31) with all the quantities 

expressed in terms of their Fourier series allows evaluating which are the harmonics of the 

magnetomotive force and the reluctance that interact to produce each harmonic of the magnetic 

field. 

Here below, the linear current density distribution is evaluated to define its representative 

magnetomotive force equation. 

In case of a representation of the turns that neglects their radial thickness and with the 

hypothesis that the current density is the same in the turn width (rectangular wires), the linear 

current density of the generic k-th turn is described by the relationship: 

  












widthturntheoutsideif

widthturntheinsideif
R

ik

sk

0
  (2.32) 

The linear current density of one turn can be expressed, in terms of Fourier series, by the 

following equation: 

    







1

0





 sj

kksk e , (2.33) 

where 
0k is the average value of the linear current density (always zero when considering a 

complete turn), and 
k is the complex coefficient that represents the ρ-th order spatial harmonic 

of the linear current density distribution. 
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The complex coefficients of the Fourier series (
k ) are defined by the following Fourier 

transform: 

  










 


s
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skk de s
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. (2.34) 

The solution of (2.34) is quite straightforward with some expedients. Hereafter the solution 

steps are summarized: 
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When the width of the turn is negligible in the model, the following approximation is 

acceptable: 
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 (2.35) 

The magnetomotive force distribution of the k-th turn can be now expressed by means of (2.30) 

introducing its Fourier transform: 
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(2.36) 

Solving the derivative and rearranging, the Fourier series components of the magnetomotive 

force can be expressed as: 

 


kk

R
jF  . (2.37) 

The final expression of the magnetomotive spatial harmonics becomes: 
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If the airgap is constant (  



1

sg ), the magnetic field harmonics are directly related to the 

magnetomotive force distribution by (2.31), resulting in the equation:  

 kjkkk

k e
iF

H















 


2
sin

2
. (2.39) 

The next paragraph aims to verify that (2.39) defines the magnetic field in the airgap generated 

by the current flowing in a generic turn in case of an isotropic magnetic circuit. This second 

method is less general, but much more simple. 

 

2nd Method: point type currents for isotropic magnetic circuit 
 

In case of an isotropic airgap (    s
) and concentrated currents, it is possible to simplify 

the steps to reach the relationship between the harmonics of the armature magnetic field and 

the stator currents (2.39).  

In this case, the two laws (2.21) and (2.23) can be simplified and directly used to find the desired 

equation. It can be done solving the following system of equations: 
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Resulting in: 
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The space harmonics of the magnetic field can be directly derived by the Fourier transform of 

the spatial distribution given by (2.41) with the following steps: 

 

.
2

sin
2

2

1

2

21

111

22

2

2

2

2

2

2

2

2

2

0

kk

kk

k
k

k
k

s

k
k

k
k

s

k
k

k
k

s

k
k

k
k

ss

jkkj
jj

k

s

jkk
s

jkk

s

j

ks

j

ks

j

kk

e
i

eee
j

i

de
i

de
i

deHdeHdeHH

















































































 
































































 
 



Multi-Harmonic Generalised Model for Multiphase Machines 

39 

 

Exactly the same result of equation (2.39) is obtained. Fig. 2.5 shows the magnetic field in the 

airgap related to the analysed turn.  

The next subsection defines the equation of total field in the airgap produced by a multiphase 

winding in an isotropic machine. Hereafter, the machine is considered as isotropic (the 

reluctance effects are neglected).  

 

Armature field (multiphase winding) 

 

This subsection aims to evaluate the field distribution produced by a multiphase winding. 

Taking into account a single phase (x) with 
xN coils (y), composed by 

xyN turns each, the total 

armature field of the analysed phase can be written as: 

 

 









 


x

xy

x N

y

jxyx
xy

N

y

yxyx e
i

NHNH
11 2

sin
2 







. (2.42) 

Taking into account of all the m phases of the machine, the overall harmonics of the armature 

field can be written as: 
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. (2.43) 

If all the phases have the same coils geometry (in terms of winding in the slots) and are only 

placed in different stator areas, the pitch of the coils of each phase ( y ) is the same and also 

their relative positions ( y ), number (Nc) and turns number in each one (N). It follows that 

(2.43) becomes: 
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, (2.44) 

 

Fig. 2.5 – Spatial distribution of the magnetic field produced by a turn (turn k) in the airgap. 
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where 
y is the angular shift from the magnetic axis of the y-th coil and the magnetic axis of 

the relative phase, while x is the magnetic axis of the x-th phase. 

Owing to this choice of the angles in (2.44), it is possible to introduce a constant called winding 

factor and defined as: 
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(2.45) 

It is worth noticing that the winding factor aK  might be, in general, a complex number. 

However, if the coils have the same number of turns and are symmetrically distributed around 

the magnetic axis of the relative phase (as it usually happens) it results in a real constant.  

It results that the magnetic field harmonics can be written as: 
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It can be noticed that the only complex number in the last equation is related to the position of 

the stator phases. It follows that a new complex variable (
i , called current space vector) can 

be introduced in order to redefine (2.46) as: 
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with the current space vector defined as: 
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However, (2.48) is not always a symmetrical transformation of the m currents. A symmetrical 

transformation can be used, in order to generalize the machine model, as discussed in the 

previous subsection. In particular, the machine is considered having a number of phases equal 

to the slots number (
SN ). The non-existing phases are not taken into account in the summation 

of the current space vector evaluation, while the existing phases are numbered with the position 

of their magnetic axis or with the first slot from which they appear with the same shape of the 

others. It results that (2.48) can be rewritten as: 

 
 







S

S

N

x

x
N

j

xei
m

i
1

1
2

2




 , (2.49) 

with x representing the x-th phase with its magnetic axis shifted of  1
2

x
NS

  radians from the first 

phase of the winding (which defines the origin of the stator reference frame). The current xi  

results to be equal to zero if there is not a phase with the magnetic axis in the x-th position. This 

concept is deeply investigated in the next section, and allows defining a symmetrical 
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transformation for the 
SN  redundant variables. Indeed, for a system of m phase, (2.49) is written 

for mNS   additional phases which not existing, can be taken into account just setting their 

currents to zero. These can be seen as searching phases (considering the searching coils idea) 

which are not fed by a voltage source and have zero current. However, for the purpose of this 

thesis, these phases are just needed for the generalisation of the model and do not have a 

physical meaning. 

Often, it is possible to find a smaller symmetry in the winding of order n  (all the existing phases 

have the magnetic axis centred in positions shifted of an angle multiple of 
n

2
 fro the first 

phase). In this case, a space vector symmetrical transformation with a reduced number of 

variables can be defined as: 
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If the phases are symmetrically distributed (in the hypothesis of the model, this is possible only 

if the phases are an odd number), n is equal to the phase number m and:  
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Finally, if mpq2  is equal to the slots number (
SN ), (2.47) can be also represented as: 
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 . (2.52) 

The general equation needed to describe the harmonics of the magnetic field generated by a 

multiphase winding (2.47) (2.49) are analysed in the next subsection. In particular, it shows the 

current space vector transformation (2.49) explaining when and how the related inverse 

transformation can be simplified. In the following subsections, the approach is verified and for 

some common winding topologies. 

 

Space vectors analysis for modelling of multiphase machines 

 

The relationships between the phase currents and the space harmonics of the magnetic field are 

fully described by (2.47) or in many cases by (2.52). This equation allows introducing the 

complex numbers, already named current space vectors (
i ). Because the final goal of the 

machine model is to define a proper control, a smart choice for representing the other variables 

of the system is by means of vectors defined in the same way.  

The current space vectors are defined by (2.48) as: 
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This transformation can be also used for all the other quantities of the system (voltages and 

linked fluxes), allowing to consider the machine as a sum of three-phase machines (each related 

to the considered space) interacting as described by the SVD model.  

However, the identification of a suitable SVD inverse transformation is essential in order to 

evaluate the physical variables of the system and therefore to define the machine control (or in 

other words, calculating the reference phase voltages once the voltage space vectors are 

established). The proposed solution to define a general SVD inverse transformation is by means 

of a new symmetrical transformation that still keeps the same current space vector equations 

shape. 

The idea is to settle a redundant multiphase transformation, introducing additional variables 

and set them equal to zero, in order to have a symmetrical transformation and inverse 

transformation (as (2.1) and (2.2)). The hypotheses are that:  

 All the phases of the machine must be considered with the same geometry and just 

located in a different area of the stator (two different winding layouts are not taken into 

account). This assumption is the same used to define the magnetic field of the machine 

stator currents in (2.44). 

 Each phase must be shifted from the others of a pitch that is a multiple of the same 

integer fraction of the total circumference. In particular, they must be shifted of an 

integer number of slots (assuming that the slots are symmetrically distributed around 

the stator circumference). 

Because the analysed winding has equal coils (with pitch pitchc ) for each phase, and the phases 

are shifted at least from a slot pitch, the transformations (2.1) and (2.2) are written for a number 

of variables that is the same of the slot number (
SN ), as for the currents in (2.49). The 

generalized transformation is defined as: 
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with SN
j

e





2

 and k  used to highlight that the summation keeps into account only once the 

quantities associated with the machine phases, under the hypothesis that the phases are 

geometrically equal, starting in the k -th slot, and wound in the same direction; otherwise the 

quantity 
kx must be considered equal to zero.  

The inverse transformation is still (2.2), adapted here below to the 
SN quantities of the m-phase 

system. 
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The inverse transformation can be simplified to take into account of the relationships that the 

different space vectors hy  have, according to the considered winding layout. In particular, if it 

is possible to identify a symmetry in the phase positions, the angle that represent the symmetry 

can be redefined as Sn
j

e





2

 , where Sn  is the new number of symmetrically distributed slots 

needed to place the starting coil of each phase. This approach allows simplifying the 

transformation and inverse transformation, using an equivalent number of slots 
Sn  rather than 

the real one (
SN ). The transformation results as: 
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with Sn
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2

 and k  used to highlight that the summation keeps into account only the phases 

starting in the k -th slot of the new reduced set of slots.  

The inverse transformation becomes: 
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It is worth to note that (2.53) is numerically identical to (2.48). It is just defined in a different 

way in order to realize that there is an inverse transformation that can always be used for all the 

machines that have a winding configuration in agreement with the hypothesis of the model 

described in this thesis. 

These transformations and inverse transformations are the starting point of the proposed general 

machine model. They allow completely describing the full system and are coherent with the 

definition of a direct relationship between the current space vectors and the magnetic field in 

the airgap. Then, for each winding, the not existing variables (related to the not physical phases) 

are set to zero and the winding constraints are considered in order to find the final 

transformation and inverse transformation suitable for the analysed machine. The idea is to 

define a symmetrical transformation with the lowest number of variables (the equivalent 

number of reduced slots, Sn ), in such a way the it is easier to find an inverse transformation that 

consider the same number of input variables as the degrees of freedom of the system. 

The next subsections show the analysis of the space vector representation for some multiphase 

windings. The presented windings are the same of the machines analysed in the next chapters. 

For each of them more possible winding configurations and space vector transformations are 

considered, highlighting the differences. 
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Space vectors analysis (the standard three-phase winding) 

 

This subsection shows the analysis of the simplest three-phase distributed winding machine in 

order to present the concept of symmetrical and asymmetrical winding and space vector 

transformation. 

Fig. 2.6 shows a three-phase distributed winding machine with six slots. The origin of the stator 

reference frame is in the position of the magnetic axis of the first phase (in this case the first 

phase is the green one, wound from the slot 1 to the slot 4). This assumption is valid in the 

entire thesis, if not specified.  

The relationship between the magnetic field harmonics and the generalized current space vector 
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 ). For the analysed winding, 

the generalized current space vector is defined as: 
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 . (2.57) 

Taking into account for the convention of the positive currents, (the magnetic axis of the phase 

starting in the second coil is usually wound in the opposite direction of the others in order to 

create a suitable rotating field), the current space vector equation can be rewritten considering 

the phase starting in the 2nd slot as starting from the 5th. This can be done only because the 

geometry of the phase is the same if it is analysed as starting from one slot or from the other. 

This new solution leads to define the current space vectors as for an equivalent slots layout with 

only the odd slots (named y), as: 

 

Fig. 2.6 – Six slots distributed winding three-phase machine concept (example). The green vertical line (magnetic axis of 

the first phase) highlights the origin of the stator reference frame. 
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Therefore, the generalized transformation of this machine can be defined in two significant 

ways: 

 Asymmetrical winding 

 Symmetrical winding 

 

Asymmetrical winding (the standard three-phase winding) - example 
 

If the phases are chosen as starting in the 1st, 2nd and 3rd slot respectively as in Fig. 2.7 (left), 

(2.53) can be written as: 
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 ,    5,4,3,2,1,0h ,  (2.59) 

with 6

2


j

e . It is worth to notice that this transformation is an asymmetrical one, and 

therefore it is considered as a redundant symmetrical transformation with six equivalent 

variables (twice the physical ones): 
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Fig. 2.7 – Six slots distributed winding three-phase machine with asymmetrical (left) and symmetrical (right) winding 

distribution (concept). With “x” are indicated the starting slots of the phases and with “o” the final ones. 
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The generic inverse transformation is related to an equivalent system with six variables (an 

even number of variables), so it can be written as: 
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As mentioned in the previous section, the inverse transformation for an even number of 

variables is defined also by (2.17) or, because the transformation is kept the same even for the 

redundant number of variables, as: 
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It is straightforward to verify the relationship here below (for k =1, 2 and 3): 
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. 

Therefore, the inverse transform can be written also as: 
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 .    (2.63) 

This result is an example of the inverse transformation that can be used for asymmetrical 

systems modelled as symmetrical redundant ones, as shown in the equations (2.19) and (2.20). 

It is immediate to define a new transformation for the analysed winding as: 
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Which inverse transform is: 
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. 

This means that a new symmetrical transformation can be defined, rather than the asymmetrical 

one. According to the model hypothesis, this is possible because the geometry of the second 

phase is the same if it is considered as starting in the slot 2 or 5 (only its magnetic axis is the 

opposite, but the magnetic axes of the phases depend on the winding connections and the 

proposed model is independent from the star connection constraints).  
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Symmetrical winding (the standard three-phase winding) - example 
 

Owing to the result obtained by the asymmetrical winding of a standard three-phase machine, 

it seems that the transformation can be simplified to a symmetrical one. In order to avoid 

passing from the asymmetrical transformation, it is also possible to choose the starting of the 

winding phases considering them in the odd slots, knowing already that there are not phases 

starting in the even slots. In this way, the machine can be considered as an equivalent one with 

half the number of the slots for the starting of the phases (now the subscript of the variables, k, 

refers to the new set of symmetrical slots numeration as in Fig. 2.7, right): 
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 ,    2,1,0h ,  (2.64) 

with 3

2


j

e . This approach is always useful for machines with an odd number of phases 

symmetrically distributed. 

The generic inverse transformation is as the one for a system with an odd number of variables, 

(2.14) and (2.15). The possible inverse transformations are rewritten here below for this specific 

case: 
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x  ,    3,2,1k , (2.65) 

and 
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x  ,    3,2,1k . (2.66) 

The symmetrical winding model is usually preferred in the modelling of symmetrical machines 

because it reflects the winding conventions for the positive currents, and the star connection 

constraint results in having a null homopolar current space vector ( 0i ). Instead, in case of 

asymmetrical connection of the winding, the general transformation can be preferred for the 

same reason.  

The analysis on a standard three-phase winding machine is useful to validate the effectiveness 

of the proposed transformation, and is one of the easier examples to show how the choice of a 

proper transformation is useful to simplify the machine model. The choice must be done taking 

into account of the star connection constraints and being aware of the complexity of an inverse 

transformation when the transformation is not the suitable one. 

Hereafter, the concept is applied for almost all the multiphase winding layouts that are analysed 

in this thesis. 
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Space vectors analysis (12 phase asymmetrical winding) 

 

A 12 phase asymmetrical winding with 2 pole pairs and 1 slot per pole and per phase, as the 

one in Fig. 2.8 (left) can be described by the following general transformation: 
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with 48
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ee S  , and the inverse transformation results in: 
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However, the phases under each pole pairs are the same and till there is a symmetry of the 

machine under the different pole pairs, the stator winding generates and interacts with only the 

harmonics of the magnetic field in the airgap multiple of the pole pairs number (p). Indeed the 

winding factor aK  in (2.52) is zero for all the other harmonics. It means that the existence of 

a current space vector not multiple of p has not electromagnetic effects on the machine. 

Therefore, in the inverse transformation only the space vectors multiple of p are useful to 

determine the machine behaviour and define a machine control. The inverse transformation 

becomes: 

  










24

0

)1(
24

21/

0

)1(
2

4

1

2 h

khj

h

pN

h

kph
N

j

ph

S

k ezey
N

mp
x

S

S



,  (2.69) 

with the transformation: 

 

Fig. 2.8 – 48 slots and 2 pole pairs distributed winding 12-phase machine. Asymmetrical winding (left) and quadruple 

three-phase winding (right). The magnetic axis and the starting of the phases are highlighted with coloured lines in the 

back iron and with crosses in the slots respectively. 
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The following transformation can be introduced as done for the three-phase winding, recreating 

a symmetry in the transformation and inverse transformation neglecting the pole pairs. This 

approximation can be still done only because the field related to the currents (and linked with 

the winding) is always symmetrical under each pole pair, and so it is possible to define the 

space vectors without taking into account the current space vectors not multiple of p. With the 

new assumptions, the transformation for the analysed machine becomes: 
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with the new   value: 24

2


j

e . In this case, the winding is asymmetrical, and it is not possible 

to find a reduced symmetry of the windings in order to simplify the transformation.  

The inverse transformation results in: 
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That can be also rewritten as: 
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and it can be verified that for this winding a further simplification allows rewriting the inverse 

transformation as: 
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It is worth to notice that if the winding was not symmetrical under the pole pairs, all the current 

space vectors must be taken into account to analyse also the harmonics of the field not multiple 

of p. In this scenario, the general equations (2.67) and (2.68) must be considered in the model. 

How to better identify the relationships between the current space vectors in order to define a 

number of independent variable (among the current space vectors) equal to the degrees of 

freedom of the system remains an open question. 
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Quadruple three-phase configuration 
 

The twelve-phase machine analysed in this thesis has another feature. The phases are gathered 

together in three groups of four phases. Each of this group has been wound thinking at its 

equivalent three-phase 4 slot per pole and per phase layout. It means that the second group of 

phases rather than starting in the 5-th slot (4+1) starts in the 9-th one (4*2+1), and the third 

group of phases starts in the 17-th one (4*4+1). Fig. 2.8 (right) shows the magnetic axis of the 

quadruple three-phase winding layout under the first pole pair. 

However, the transformation remains the same, and just the phases are chosen with a different 

angle: 

 










 
20

17

)1(
12

9

)1(
4

1

)1( 222

k

kh

k

k

kh

k

k

kh

kh x
m

x
m

x
m

y  ,    23,,2,1,0 h ,  (2.75) 

with 24

2


j

e , and the inverse transformations is still defined in the same way (considering the 

inverse transformation based on the odd space vectors) but for a different phase numeration: 
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The advantage of this choice is that in the equivalent three-phase configuration the machine can 

be described by a symmetrical three-phase transformation. Furthermore, if each phase of the 

four-phase subsystems is considered as part of a three-phase system with the respective phases 

of the two other subsystems, each of the resulting three-phase subsystems is a symmetrical one 

and the machine can be described as sum of four shifted three-phase subsystems. In particular, 

these four three-phase subsystem can be fed by independent converters, realising the so-called 

quadruple three-phase winding configuration.  

The next two subsections present two completely different nine-phase windings. In the next, 

the nine phases are distributed in the same way in the different pole pairs with a series 

connection of the coils. Therefore, each phase is symmetrically wound around the stator 

circumference. In the following, the phases are wound only in some sectors of the stator, 

resulting in an asymmetrical coil distribution of each phase. 

 

Space vectors analysis (nine phase winding) 

 

In this subsection, a nine phase winding, as the one in Fig. 2.9, is considered. The winding is 

studied before as a three-phase winding to show how to take into account of the slot per pole 

and per phase number. Then, the nine-phase winding configuration is investigated. 
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Three-phase configuration 
 

It is possible to consider the nine-phase winding as a three-phase winding if the phases are 

series connected. In Fig. 2.9, the equivalent three-phase winding can be identified by connecting 

the phases with the same colour (and different tone) in series. In this case the same assumption 

done for the 12-phase machine in terms of pole pairs can be done. The resulting transformation 

is: 
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In this example the slots per phase and per pole (q) is kept as a variable in order to generalize 

the method. The transformation can be investigated under the assumption that the phases are 

considered as starting from the same slot per pole and per phase, as in the steps below: 
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This transformation is the same found for the asymmetrical three-phase winding (2.59). Again, 

the second phase can be considered as starting in the place of the 5th equivalent slot of the six 

phase equivalent stator. This allows defining a final transformation as the standard one: 

 

Fig. 2.9 – 36 slots and 2 pole pairs distributed winding 9-phase machine. Asymmetrical winding (left) and symmetrical 

winding (right). The magnetic axis and the starting of the phases are highlighted with coloured lines in the back iron and 

with crosses in the slots respectively. Note: the winding on the right is symmetrical in its electrical degrees representation. 
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with its inverse transformation given by: 
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Nine-phase configuration 
 

Fig. 2.9 (left) shows the nine-phase winding configuration. The winding in its nine-phase 

configuration can be studied as an asymmetrical winding with the general transformation and 

inverse transformation as follows: 
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If the analysis of the magnetic fields not multiple of p can be neglected in the model, it is 

possible to simplify the transformations taking into account of the pole pairs symmetry, 

resulting in:  
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As done in the three-phase six slot machine, because the number of phases is odd, the starting 

of the phases can be chosen in a smart symmetrical way, resulting in the transformations: 
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Alternatively, in its common shape, as: 
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The problem is similar to the one found for the three-phase machine modelled as an 

asymmetrical one, and again the solution is also simplified to recreate a symmetry in the 

transformation and inverse transformation neglecting the pole pairs. It must be noticed that in 
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most of the cases it is worth to connect the phases to the terminal box with the same assumption 

used for the transformation (the current that goes from the terminals into the phases must have 

the same direction in the starting of the phases according to their position in the transformation). 

This allows, in terms of current control and modelling, taking into account of the star connection 

just imposing the homopolar sequence equal to zero. It results that if the nine phase is wound 

and star connected in a symmetrical way also the symmetrical transformation is the suitable 

one. If the machine is asymmetrically wound, the asymmetrical transformation might be more 

likely used, as in an even-phase machine.  

 

Triple Three-phase configurations 
 

The nine-phase machine can be wound in a triple three-phase configuration, as in Fig. 2.9 

(right), following the idea of the quadruple three-phase winding described in the previous 

subsection. In this case, the phases will start in the slots 1, 2, 3, 7, 8, 9, 13, 14 and 15. The 

resulting three-phase subsystems (1-7-13, 2-8-14 and 3-9-15) are symmetrical, and their 

transformations and inverse transformations are the standard symmetrical three-phase ones. 

However, the full transformation remains an asymmetrical one (asymmetrical triple three-phase 

machine). The problem can be solved choosing the same slots defined for the symmetrical nine-

phase winding, realising a symmetrical triple three-phase machine (1-7-13, 3-9-15 and 5-11-

17). In this way, the simplified symmetrical set of transformation and inverse transformation 

(2.82) can be adopted. 

The next subsection presents the last multiphase winding topology analysed in this thesis, the 

sectored one. 

 

Space vectors analysis (multi-sectored triple three-phase winding) 

 

Another possible multiphase winding is the sectored one, shown for a nine-phase 3 pole pairs 

layout in Fig. 2.10. The nine-phase machine has three sets of three-phase windings (triple three-

phase) located at 120 mechanical degrees in the stator area, and the phases are different under 

each pole pair. 

Also in this case it is possible to connect in series the phases of the same colour topology in 

Fig. 2.10 (blue, red and green) in order to realize a standard three-phase winding with 3 pole 

pairs (modelled using the standard three-phase transformation, owing to the pole pairs number 

and the symmetry of the polar symmetry of the winding).  

Instead, the nine-phase analysis is no more as the one discussed in the previous subsection 

(symmetrical or asymmetrical), because of the different pitch of the phases and the asymmetry 

under the pole pairs. 

As example, let us assume that only the phases of the first sector are considered. In this case, 

the number of phases is still three, and they are symmetrically distributed under one pole pair, 

but the electromagnetic behaviour of the machine can hardly be represented by the analysis of 
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only the harmonic fields multiple of p, because the winding factor related to the others field 

harmonics is no more zero. Therefore, the transformation must be evaluated for all the space 

vectors, otherwise critical effects caused by the unbalance of the machine would be neglected. 

The same happens if the nine phases are taken into account. 

Not existing a reduced symmetry, the general transformation for the nine-phase machine 

remains the most general one, as below: 
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e , and its inverse transformation is: 
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simplifiable by the relationship of a symmetrical system with an even number of variables, as: 
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For this winding layout, the inverse transformation is quite complex to be simplified to a 

reduced number of space vectors, and a customized transformation has been introduced in the 

5th Chapter to analyse and control this machine topology by means of a SVD approach. This is 

true also for the multiphase winding presented in Chapter 6, segmented design. Indeed, it is 

 

Fig. 2.10 – 18 slots and 3 pole pairs sectored winding 9-phase machine. The magnetic axis and the starting of the phases 

in the first sector are highlighted with coloured lines in the back iron and with crosses in the slots respectively. 
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modelled with the same approach of the general transformation presented here. However, due 

to the complicated geometry of the winding, the analysis it is not presented in this chapter. 

The next section shows the voltage space vector equations for a multiphase winding. The 

following sections focus on the evaluation of the analysis of the flux linked with the winding, 

which appears in the voltage equations. 

 

 Voltage Space Vector Equations 

 

This section aims to present the voltage equations for a multiphase winding, starting from the 

voltage equation of one turn. Finally, the equations are written in terms of space vector 

representation in order to define a direct analysis (and eventually the control algorithm) of the 

field harmonics in the airgap. Indeed, the current space vectors are directly related to the spatial 

harmonics of the relative magnetomotive force distribution. 

As it is usually done, in the modelling of star connected machines (as the one investigated in 

this work), the electrical equations are written in terms of phase voltages. Another possibility 

is writing the model in terms of terminal voltages. The advantage of a phase voltage model is 

that also the homopolar voltage (zero-space voltage space vector) is taken into account, while 

in the case of a terminal voltage model the homopolar voltage is neglected.  

Having a phase voltage model allows evaluating the voltage of the neutral point of the star 

connection to detect faults and asymmetrical behaviours. Most of the time this information is 

not available by the measurements, but by the measured current and modulating voltages it is 

possible to predict its value if the source of the fault/asymmetry is known. In this thesis, the 

voltage of the neutral point is not measured for the purpose of the diagnosis, but its value is just 

evaluated in the model as an additional information for future investigations. Instead, in terms 

of current control the two models are equivalent, owing to the star connection constraint.  

The SVD electrical equations of a multiphase machine can be directly derived from the space 

vector transformation of the phase voltages: 
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where x  is a phase considered as starting in the x-th slot.  

The voltage inverse transformation is: 

 





1

0

)1(

2

SN

h

kh

h

S

x v
N

m
v  ,    

SNx ,,2,1  ,  

where xv is the voltage of the x-th phase of the m-phase machine, and  is equal to SN
j

e

2

.  

Each phase is composed by a series of turns wound around the stator. The next subsection shows 

the voltage equation for a single turn. 
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Voltage equation (single turn) 

 

The voltage equation for the single k-th turn can be generally defined as: 

 
dt

d
irv

ktot

kkk

,
 ,  (2.87) 

where
kr is the resistance of the turn and 

ktot ,  is the total flux linked with it. The linked flux 

takes into account of the following components: 

 Self leakage flux: flux that is produced by the turn, and therefore it is linked with it, but 

does not reach the airgap (in the hypothesis of the model it is the flux that does not reach 

the rotor iron) 

 Mutual leakage flux: the leakage flux of the other stator turns that does not reach the 

airgap (the rotor) but it is linked with the analysed turn.  

 Linked flux through the airgap: the sum of the flux produced by the turn (therefore 

linked) that reaches the airgap (rotor) plus the flux that is generated by the rotor and the 

other phases that reaches the airgap and is linked with the analysed turn. 

kkMlkLlktot   ,,,
. 

These components can be expressed by the following relationships: 

 Turn self leakage flux (
kLl , ): because this component is only related to the current 

flowing in the analysed turn, in the hypothesis of linear machine behaviour it can be 

evaluated as 
kkkLl ill, . Where kll is the self leakage inductance of the analysed turn. 

 Turn mutual leakage flux (
kMl, ): being the sum of the leakage fluxes of the other 1tN  

turns linked to the analysed one, its expression can be written as: 
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where 
ktml ,
 is the mutual leakage inductance between the t-th and k-th turns. 

Considering a turn of the x-th phase, the effect of the x-th phase turns can be 

distinguished by the effects of the turns of another y-th phase. Even the y-phase is 

defined as the one starting in the y-th slot and if it does not exist it means that the model 

can be simplified or the same model can be kept just imposing the variable related to 

the not existing phases equal to zero. The equation of the mutual leakage flux becomes: 
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with 
ktxml ,
the mutual leakage inductance of the tx-th turn of the phase x with the turn k 

and 
ktyml ,
the mutual leakage inductance of the ty-th turn of the phase y with the turn k. 
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 Turn linked flux through the airgap ( k ): this component is analysed in the next section, 

and it is responsible for machine electromagnetic power transferred to the rotor and for 

the mechanical power that results on the shaft. 

 

The next subsection presents the voltage equation for one phase, starting from the 

considerations done for the single turn. 

 

Voltage equation (single phase) 

 

The voltage equation for the k-th turn of the x-th phase can be written as: 
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(2.88) 

The voltage equation of one phase, with all its series-connected turn, is evaluable by: 
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The terms in the brackets can be identified as: 

 Phase resistance (
xR ): the total resistance of the series turns of the phase x. It is easily 

evaluated as: 





txN

kx

kxx rR
1

. 

 Phase self leakage inductance (
xLl ): describing the flux that is produced by the phase 

x, and therefore it is linked with it, but does not reach the airgap (that in the hypothesis 

of the model is the same of saying that it is the flux that does not reach the rotor iron). 

It is evaluated as:  
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. 

 Phase to phase mutual leakage inductance (
xyMl ): describing the leakage flux of the 

other stator phases that does not reach the airgap (the rotor) but it is linked with the 

analysed phase. It is evaluated as:  
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Introducing the new constant and defining the total linked flux through the airgap of the phase 

x as 



txN

kx

kxx

1

 , the phase voltage equation becomes: 
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The next subsection presents the voltage space vector equation for a general multiphase 

winding, highlighting how the leakage inductances might result in a more complicated model. 

Then, the equations are simplified neglecting the mutual leakage effects between different 

phases in order to simplify the equations for the machines analysed in the thesis. 

 

Voltage equation (multiphase winding) 

 

The space vector voltage equation becomes: 
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If all the phases have the same phase resistance (
sx RR  ), the same phase self leakage 

inductance ( LlLlx  ), and the space vector transformation are introduced, it is also possible to 

write the voltage space vector equation as: 
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The inverse transformation of the currents is introduced to completely write the equation in 

terms of space vector components, resulting in: 
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Introducing a new non-physical variable: 
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the mutual leakage space vector between the space h and the space ρ, the general space vector 

voltage equation of a multiphase winding is: 
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Mutual leakage inductances between different phases 
 

It is interesting to notice that in a three-phase standard winding, as the one in Fig. 2.6, the mutual 

leakages between the phases can easily have all the same value, and the mutual leakage between 

the space h and the space ρ is:  
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This parameter can be analysed as:  
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which is equal to zero in all the cases but when h is equal to ρ, resulting in: 
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It results that, if the mutual leakages between the phases have all the same value, the space 

vector voltage equations can be written as: 
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In case of a star connected symmetrical winding the system of equations is simplified as: 
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It can be concluded that in a star connected electrical machine, even if the mutual leakage 

inductances between the phases are significant, until their value is the same (as might happen 

in a symmetrical three-phase machine), they do not create additional interactions between the 

spaces of the space vector model. This is not true for a multiphase machine, where in general 

the mutual leakage inductances might have different values.  
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For example, it is possible to consider the triple three-phase sectored winding of Fig. 2.10. 

Analysing its end-windings, there are two significant mutual leakage inductances: the mutual 

leakage between the central phase of each sector with the two other phases of the same (
CLMl ) 

and the mutual leakage between the two external phase of each sector (
LLMl ). Therefore, the 

mutual leakage space vectors are evaluated as: 
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If has been verified that in this winding topology, there are interactions between the spaces 

related to the mutual leakage space vectors also if  is equal to . 

 

Simplified voltage equation without mutual leakage inductances between different phases 
 

The mutual leakage inductances depend on the winding configuration, the machine geometry 

and the end-winding layout. They are an important contribution especially if there are more 

phases wound inside same slots (as in a double layer winding configuration).  

By the model, it results that in general all the space vector equations might be mutually coupled 

by the mutual leakages between the different phases. However, in case of single layer windings 

the mutual leakages can usually be neglected, simplifying the space vector voltage equation as: 
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 .  (2.97) 

Because in this thesis all the analysed machines have single layer windings, the mutual leakage 

inductances are supposed to be zero. This allows identifying machine asymmetries by the space 

vector equations without carrying out an in-deep analysis of the mutual leakage effects. 

The next section presents the analysis of the flux that passes through the airgap and links the 

phases of a multiphase winding. The overall effect of the flux to the phases of the winding is 

considered by a space vector representation of the system. The analysis is carried out starting 

from the flux linked with a single turn following the same approach used to define the voltage 

equations. The aim of this approach is to allow for the analysis of one fraction of the winding. 

This will be useful, in the next chapters, for representing an asymmetrical behaviour in case of 

a winding fault (open phase, high resistance and interturn short circuit faults) or a different 

number of turns in the different phases (as in Chapter 6). 

 

 

 

 

LLMl
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 Linked Flux Space Vectors 

 

When not specified, hereafter the linked fluxes are the fluxes that pass through the airgap and 

are linked to the phases of the considered winding. 

Under the assumptions of the model (in particular that the flux is only radial in the airgap), the 

linked flux contributions only depend on the geometry of the winding and on the distribution 

of the magnetic field in the airgap. This section analyses the flux linked with a single turn, a 

phase and finally a multiphase winding (by the space vector representation). 

 

Linked flux (single turn) 

 

The linked flux equation for a generic turn of the stator winding can be written as the integral 

through the surface of the turn of the normal component (to the considered surface) of the 

magnetic flux density. However, as done for the evaluation of the armature field, there are two 

ways to evaluate the linked fluxes. The first is valid for a general distribution of the conductors 

in the stator. The second method is based on the hypothesis of conductors concentrated in the 

centre of the slots. 

 

1st Method: conductors density distribution 
 

The flux linked with a generic k-th turn can be evaluated as:  
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where H is the total magnetic field in the airgap, R is the average radius of the airgap, L is the 

active length of the machine, and 
 







0

Rd
ik

k  represents the conductor density of the k-th turn 

(considering that, as in the typical modelling approach, skin and proximity effects are 

neglected).  

In terms of spatial harmonics of the distribution of the current density and total magnetic field, 

the linked flux can be written as: 
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where k  is the ρ-th harmonic of the conductor spatial distribution: 
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If the conductor width is not significant, the harmonics of the conductor distribution are 

simplified as:  
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The following steps can evaluate the resulting linked flux: 
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 (2.101) 

The same result can be obtained by assuming a negligible width of the conductors from the 

beginning, as shown in the next paragraph. 

 

2nd Method: point type conductors 
 

Assuming that the conductors are concentrated in points located in the central axes of the slots, 

the linked flux of the generic k-th turn can also be evaluated as: 
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In terms of spatial harmonics of the distribution of the total magnetic field, the linked flux can 

be evaluated following the steps below: 
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As expected, the result is the same for the two methods and it is reported here below: 
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The dependence of the total magnetic field from the axial direction is need to take into account 

for the eventual skewing of the magnets of the squirrel cage, as will be investigated in the 

following sections. 

The next subsection aims to present the evaluation of the linked flux for a single phase. 

 

Linked flux (single phase) 

 

If all the phases have the same coils geometry (in the slots, without considering the end-winding 

design) and are only placed in different stator areas, they have the same number of coils (
CN ) 

and turns ( N ). It follows that the linked flux of each phase ( 
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 ) can be also written 

introducing the winding factor defined in (2.45),with the angle of the y-th coil 
y considered 

in respect of the magnetic axis of the considered phase x , as: 
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The next section defines the linked flux equations for a multiphase winding in terms of space 

vector representation. 
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Linked flux (multiphase winding) 

 

The space vector of the flux linked with the various phases of a multiphase winding is: 
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Because considering a redundant symmetrical system of phases )1(

1
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ѵ is zero or a multiple of
SN , (2.106) can be rewritten as: 
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This equation results in having also equivalent linked fluxes with the not existing phases. 

However, these phases have zero currents. Therefore, their contributions to the power and the 

torque are zero. The not existing phases can be analysed as flux observer coils (coils used for 

the measurement of the linked fluxes). 

If there is not a skew in the design of the machine, the simplified equation of the linked fluxes 

space vectors is: 

 
 

   
 

   























 























 *

0

0

int

2
hyN

S

hyNa

N

h
y

hyN

S

hyNa

y

Sh S

S

S

S

S H
hyN

K
H

hyN

K
LRpqNN

m
 , (2.108) 

with aK  the winding factor defined by (2.45).  

The equations of the linked flux can be also used to evaluate the self inductance of the winding.  

For the purposes of the thesis, the equation is written in the next subsection for the general 

single turn (k-th), and then the complete equation of the multiphase winding is given. 
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Self inductance (single turn) 

 

The voltage equation for the k-th turn of the x-th phase (2.88) can be written, neglecting the 

mutual inductances with the other phases, as: 
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The harmonics of the flux produced by the turn itself are described by (2.39) as: 
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The linked flux with the turn can be written by (2.104) as: 
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It follows that the linked flux produced by the turn itself can be written by (2.104) as: 
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Substituting (2.110), it can be rewritten as: 
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Introducing the single turn self inductance 
kl  defined as: 
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it results in the final equation: 

kxkkxself il, . (2.114) 

It results that the turn voltage equation can be written as: 
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The next subsection presents the analysis of the self inductance effect for a multiphase winding 

in terms of space vector representation. 

 

Self inductance (multiphase winding) 

 

Considering the whole multiphase winding, analysing only the field produced by the winding 

itself (2.47), the linked fluxes space vector equation becomes: 
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Taking into account that, owing to the symmetry of the transformation  hyN S
i 

 and  
*
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equal to hi  , the equation can be simplified as: 
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Introducing the non-physical h-space self inductance, 
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the contribution of the linked flux produced by the winding itself is defined by: 

 hhhself iL, , (2.118) 

and the total linked flux space vector results in: 

 hmutualhhhmutualhselfh iL ,,,   , (2.119) 

where hmutual,  takes into account of the linked flux produced by the rotor or other sources of 

magnetic field (for example a short circuit loop in the winding itself, as it is shown in the next 

chapter). 

The resulting space vector voltage equation results as: 
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The eventual mutual coupling between the different spaces is considered in the term hmutual , , 

also if in a standard machine design with negligible anisotropies of the magnetic circuit these 

mutual terms are not considered. If there are anisotropies or asymmetrical behaviours of the 

machine, also the mutual coupling between the armature spaces must be considered.  

The next two sections aim to define the equations for the space vectors of the mutual flux 

hmutual , , which takes into account for the coupling of the flux produced by the rotor and the 

considered multiphase winding. The next section considers for a SPM rotor, while the following 

one analyses the effect of a squirrel cage rotor.  

 

 Surface Permanent Magnet Machine Modelling  

 

The electromagnetic behaviour of an electrical machine is defined by its interaction with the 

existing sources of magnetic field. The first source is the current distribution in the winding. 

The second one is related to the rotor. In case of a permanent magnet machine, the magnets are 

the only rotor source. This section presents the model of an SPM rotor and the effects of the 

magnet flux on a single turn and a multiphase winding. 

 

Single permanent magnet model and basic equations 

 

The method proposed to model the permanent magnet field is based on a fixed radial thickness 

of the magnets and radial magnetization. The magnets are supposed to be working in their linear 

behaviour, as in Fig. 2.11. The other hypothesis are the same used for the modelling of the 

armature field. The equation that describes the flux density can be considered differently in the 

air and in the magnets: 
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Fig. 2.11 – Simplified magnetic behaviour of the magnets. 
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The analysis of the magnetic field can be done taking into account a quite general geometry, as 

in Fig. 2.12. Under the model hypothesis, the radial position of the reluctance or of the magnet 

has not effect on the solution. An additional hypothesis that simplifies the problem is that the 

magnets relative permeability is considered equal to 1 (
0 M

). 

The problem can still be easily solved by the Gauss’s law for the electromagnetism (2.21) and 

the Ampère’s circuital law (2.23), but this time the magnets internal equation must be taken 

into account. 

The Gauss’s law for the electromagnetism for the analysed problem is: 
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Because of the radial direction of the flux, the Gauss law expresses the continuity of the flux 

density in the radial direction. In presence of the magnets, this means that the following 

relationship is always true: 

     airM BB  . (2.123) 

Including the magnet internal equation (2.121), it is possible to write: 

     airMMr HHB 0 , (2.124) 
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In Fig. 2.11 the closed loop where to integrate the magnetic field of the circuital law is dashed. 

The circuital law can be solved in three different scenarios (according to the selected closed 

loop): 

1. Without passing through the magnet 

 

Fig. 2.12 – Magnet with constant radial thickness with a general machine reluctance. 
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2. Passing from one side through the magnet and coming back without doing it 

3. Passing both times through the magnets 

In the first scenario (outside the magnet), the circuital law results in the equation: 

02,21,1   airair HH , 

2,21,1  airair HH  . 

In the second scenario (half through the magnet), the circuital law results in the equation: 

  02,21,1,1   airMairMM HHH . 

Including the Gauss’s law for the electromagnetism (2.125), it can be written that: 

  0221,1
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MairM
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resulting in: 

2,21
0

,1 






airM

M

r
MM

M

air H
B

H 







 . 

Doing the simplification that 
M

0
is almost equal to 1, allows writing the following 

approximated circuital law: 

eqkM

M

r
airair i

B
HH ,2,21,1  


 . (2.126) 

This means that the magnetic behaviour is similar to the effect of a concentrated current at the 

border of the magnet with amplitude M

M

rB



. 

In the third scenario (completely through the magnet), the circuital law results in the equation: 

    02,2,21,1,1  MairMMMairMM HHHH  . 

Including the Gauss’s law for the electromagnetism (2.125), it can be written that: 
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resulting in: 
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, 

simplifiable, considering the magnet permeability similar to the air one, as: 
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2,21,1  airair HH  . 

By means of (2.126), the same approach used for the armature field is used here for the magnets: 

the magnet is considered as a turn centred in the angular position k  with pitch k  and 

current equal to: 

M

M

r
eqk

B
i 


, . 

As for the analysis of the field in the airgap produced by a single turn, also for the magnets it is 

possible to define two approaches. The first one, more general and presented in the next 

paragraph, defines the magnetomotive force of the magnets and evaluates the relative field 

distribution by means of the airgap geometry (it takes into account for reluctance effects). The 

second approach is based on the assumption of isotropic magnetic circuit (constant airgap and 

negligible slotting effect) and results in a simplified analysis. This second approach is not 

presented because is less general and leads to the same result as verified for the analysis of the 

field distribution produced by a single turn in Section 2.2. 

 

Magnetomotive force method 
 

The magnetomotive force of the equivalent turn representing a PM can be expressed in terms 

of spatial harmonics, substituting in (2.38) the equivalent current eqki , given by (2.126), as: 
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. (2.127) 

Note that now the angle of the magnet magnetic axis (
k ) depend on the relative position 

between the centre of rotor and the stator reference frames ( m ), therefore also by the time: 

   tkmkk   . 

The magnetic field in the air of the airgap produced by one magnet can be evaluated by (2.31) 

as: 

      sss FgH   . (2.128) 

Taking into account of the magnet material equation, it is also possible to write by (2.125) 

that: 
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 0  (2.129) 

In terms of flux density, (2.121) allows also verifying that the continuity of the flux density is 

verified: 
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The extension of the magnet field to a generic number and typology of surface mounted 

magnets is equivalent to the analysis done for the stator winding. The difference is only that the 

current in the equivalent coil is constant, its sign defines the polarity of the magnet, and the 

thickness can be seen as the amplitude of the current or the number of turns for a given current 

per turn. 

For the purposes of the analysis shown in this thesis, a simplified case of surface permanent 

magnet rotor (with negligible pitch shortening magnets) is presented in the following subsection 

only to simplify the equations. However, in Chapter 5 and Chapter 6 the magnets shortening is 

considered as a design variable. 

The next subsection presents the model of an overall SPM rotor. 

 

Surface Permanent Magnet rotor 

 

The idea of a standard surface permanent magnet rotor is shown in Fig. 2.13. According to the 

conventions used for the positive currents and the direction of the positive magnetic field, the 

amplitude of the permanent magnet field harmonics can be directly derived by (2.127). As in 

the modelling of the stator currents the origin of the stator reference frame has been chosen on 

the magnetic axis of the first phase of the machine, the origin of the rotor reference frame for 

an SPM machine is chosen in the centre of one north oriented magnet (for example the k-th in 

Fig. 2.13). 

The equation of the harmonics of the equivalent magnetomotive force distribution for an SPM 

rotor with a general number of magnets symmetrically distributed as in Fig. 2.13 is: 

 

Fig. 2.13 - SPM rotor with three pole pairs. 
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simplified as: 
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Because (2.131) is different from zero only for the harmonic orders odd multiple of p, and in 

the not zero cases, it can be written that: 
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the resulting equation for the harmonics of the magnets MMF is:  
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Finally, if the rotor angular position is considered in the reference frame of the k-th magnet  

( mk   ), the harmonics of magnet field in the air of the airgap are defined as: 
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In many applications, the magnets are skewed in respect to the stator. Because of the 

manufacturing process of the permanent magnets, the skew is discrete. To obtain a continuous 

skew without an expensive design of the magnets it is possible to skew the stator lamination. 

However, in this case the winding process is more complicated. In this thesis, the stator skew 

is not considered, and the analysis is presented only for a discrete permanent magnet skew and 

a squirrel cage skew. The skew of the magnets can be represented, for a standard SPM rotor 

with symmetrically distributed magnets skewed by wskew,  radians in the w-th skew step ( wL  

meter wide and centred in the axial position wz ), by the following relationship: 
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  (2.134) 

The next two subsections present the effect of an SPM rotor (in terms of linked flux) on a single 

turn and a multiphase winding respectively. 
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Voltage equation (single turn) 

 

To complete the electromagnetic model of a multiphase machine with a SPM rotor (neglecting 

the reluctance of the magnetic circuit), hereafter the voltage equations of the stator winding are 

written taking into account of the electromotive force (emf) induced by the PM magnetic field. 

For the purposes of the thesis, the equation is written also for the general single stator turn (k-

th), and then the complete space vector equation is given. 

The linked flux with the k-th turn related to the PM field (named PM rather than mutual in order 

to distinguish it from the one produced by a wound or squirrel cage rotor) can be written by 

(2.111) as: 

  


 

























 


1

*

00

0
, )()(

2
sin

h

jh

h

L

z

jh

h

L

z

k
kxPM

kxkx dzezHdzezHh
h

R 
 . (2.135) 

Substituting the harmonics of the PM field, it becomes: 
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  (2.136) 

A skew parameter can be identified as:  
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which is a real number if the skew angles wskew,  are chosen in relation to the magnetic axis of 

the considered series of magnets. 

If the skew is constant along the axial length and the magnet pieces have the same length, the 

skew parameter can be simplified as: 
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, (2.137) 

and the linked flux can be written as: 
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simplifiable as: 
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The total voltage space vector equation of the analysed winding (2.97), introducing (2.119) and 

(2.139), results in: 
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.  (2.140) 

The next subsection extend the effect of an SPM rotor to a multiphase winding represented in 

terms of space vector equations. 

 

Voltage equation (multiphase winding) 

 

Considering the full stator winding, the mutual linked flux space vector hmutual ,  (named here 

hPM , in order to distinguish it from the one produced by a wound or squirrel cage rotor) with a 

non-skewed stator winding (2.106), taking into account that the magnets symmetry allows 

considering only for the harmonic orders odd multiple of p (
oddph ) of the PM magnetic 

field, becomes: 
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(2.141) 

 

Introducing the skew parameter ,skewK , as before for the single turn analysis, the h-space 

linked flux space vector can be written as: 
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 (2.142) 

The total voltage space vector equation of the analysed winding (2.97), introducing (2.119) and 

(2.142), results in: 

  
dt

d

dt

id
LLliRv

hPMh
hhsh

,
 ,  (2.143) 

where the mutual coupling between the different spaces is not considered, knowing that, if there 

are anisotropies, also the mutual coupling between the armature spaces must be considered. 

This subsection completes the electromagnetic model of a multiphase winding with an SPM 

rotor. The next section defines the model of squirrel cage. The model of the cage is based on 

the multiphase approach. In other words, the squirrel cage is represented by its equivalent 

multiphase winding. To complete the model of a general multiphase machine, the analysis of 

the power, the torque and the radial force for SPM and IMs is described in Section 2.7. 

 

 Squirrel Cage Modelling  

 

This section aims to present a general model of a squirrel cage IM. In particular, the squirrel 

cage rotor in analysed in deep by a multiphase modelling approach. Initially, the squirrel cage 

is described taking into account also for the possible causes of asymmetries. Then, the effect of 

the cage on a multiphase winding is analysed starting from the analysis of a single turn.  

The electromagnetic behaviour of an electrical machine is defined by its interaction with the 

existing sources of magnetic field. The first source is the current distribution in the winding. 

The second one is related to the rotor. In case of a squirrel cage machine, the bar and ring 

currents are the rotor source of magnetomotive force and relative magnetic field. 

The next subsection shows how a squirrel cage rotor can be represented as a multiphase 

machine with Nb phases. The advantage of this representation is that the results obtained for a 

multiphase stator winding can be directly used for the modelling of the squirrel cage rotor. 
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Squirrel cage as an Nb-phase symmetrical winding 

 

A squirrel cage is here analysed as an equivalent multiphase machine with Nb single-turn 

phases each starting in the relative rotor bar and ending in the next rotor bar. The transformation 

for the modelling of the quantities of this equivalent winding is quite easy because it is already 

a symmetrical system that in general cannot be simplified to a reduced symmetry. In case of a 

number of bars multiple of the pole pairs it can easier to consider for only the bars in one pole 

pair, but hereafter the bars number is taken as a general value without simplify according to the 

pole pairs number. A draft of a squirrel cage is presented in Fig. 2.14. As usually happens, the 

induction machine cages are twisted on their axial direction in order to reduce the interaction 

of the rotor with some field harmonics produced by the stator (skew of the rotor) and by the 

slotting effect. Therefore, the model takes into account also for the rotor skew.  

Fig. 2.15 shows one of the Nb equivalent phases (the x-th) representing the squirrel cage. 

The parameters r and ll are the resistance and the self leakage inductance, while the subscripts 

of the squirrel cage model are referred to as in the following list: 

 x refers to the equivalent non-physic phase between the b-th and the (b-1)-th bars, 

renamed as )( xb and )1( xb  (
bNx ,...,2,1 ). 

 )( xb  refers to the bar where the equivalent x-th phase starts. 

 )(xr  refers to the ring of the circuit where the equivalent x-th phase is wound. 

 R  refers to the rear of the cage. 

 F  refers to the front of the cage. 

According to the squirrel cage constraints, in addition to the standard relationships that can be 

derived analysing the electric scheme of Fig. 2.15, the currents must also respect the following 

relationships: 
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 (2.144) 

 

Fig. 2.14 - Squirrel cage and related model parameters. 
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where 0rFI  and 0rRI  are currents that can appear owing to axial fluxes. The mutual leakage 

inductances between different bars or different rings and between bars and rings are neglected 

in the analysis because considered not significant in a squirrel cage. 

The next subsection shows the voltage equation of one of the equivalent phases representing 

the squirrel cage. The following one describes the overall equivalent multiphase winding of the 

squirrel cage in terms of space vector representation. Finally, the linked fluxes analysis is 

presented and the effect of the cage on the stator winding is defined. 

 

Voltage equation (single equivalent phase - between two bars) 

 

The voltage equation of the x-th equivalent phase shown in Fig. 2.16 is: 
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 (2.145) 

with 
x is the linked flux with the x-th equivalent phase that passes through the airgap.  

Equation (2.145) can be rewritten, considering that   )1()(    xxxb iii and   )(1)1(   xxxb iii   , as: 
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 (2.146) 

Note that the constraint 0 
1

)( 


Nb

x

xbi  result also in  



Nb

x

xi
1

0 . Indeed:  

 

Fig. 2.15 – Equivalent phase of a squirrel cage. 
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Simplifying (2.146) results in: 
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 (2.147) 

Equation (2.147) completely defines the behaviour of an equivalent phase of the squirrel cage. 

The next subsection presents the effect of all the equivalent phases of the cage rotor in terms of 

space vectors representation. 

 

Voltage equation (equivalent multiphase winding of the squirrel cage) 

 

Because the interaction of the rotor with the stator is by means of the field harmonics in the 

airgap and each of these harmonics can be related to the relative stator and rotor current space 

vectors, also the rotor voltage equation are written in terms of space vectors as follows: 
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with bN
j

e





2

 . The cage equation becomes: 

 

Fig. 2.16 – Electrical circuit and parameters of the equivalent phase of a squirrel cage. 
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 (2.149) 

The following paragraph highlights the possibility to have axial fluxes and unbalanced rings. 

This thesis focus on faults on the stator winding. However, this brief analysis on possible 

asymmetries on the squirrel cage shows how the proposed model can be extended for the 

analysis of these phenomena. 

 

Ring unbalances and axial fluxes  
 

The contributions of the homopolar currents in the rings are not related to the considered space 

vector (harmonic), but they cause a voltage drop that can be analysed introducing the two axial 

equations of the cage: 
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for the frontal ring, and 
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for the rear ring. Note that the equations are independent from the bars parameters. 

Furthermore, if the squirrel cage is symmetrical (there are not asymmetries in the resistances 

and inductances), the equation can be easily simplified as: 
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  (2.152) 

for the frontal ring, and 
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  (2.153) 

for the rear ring. This allows considering that in a symmetrical squirrel cage the homopolar 

currents of the slices of rings related to the equivalent phases are only produced by axial fluxes 

in the machine. 

Neglecting the axial fluxes allows writing: 
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for the frontal ring, and 

  
 

dt

di
lliR

dt

dI
llIR

x

xrR

N

x

xxrR

N

x

rR
xrR

N

x

rRxrR

N

x

bbbb

)(

1

)(

1

0
)(

1

0)(

1

0 


 , (2.155) 

for the rear ring. 

This means that in case of an unbalance in the impedance in the slices of the rings there are 

homopolar currents (only in the unbalance ring) that might be taken into account in the cage 

equation.  

Hereafter, the rings are supposed to be symmetrical and possible axial fluxes are neglected. 

Under this hypothesis, the equation of the squirrel cage can be simplified as in the next 

paragraph. 

 

Balanced rings and negligible axial fluxes 
 

If the impedances of the various ring slices are equal and there are no axial flux components 

linked with the rings, it results that the homopolar currents in the rings can be neglected. In this 

case, (symmetrical rings and no axial fluxes) the cage space vector equations can be written as: 
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From the next subsection, also the asymmetries of the bars of the squirrel cage are neglected in 

order to simplify the model of the overall machine. 

 

Voltage equation (equivalent multiphase winding of a symmetrical cage) 

 

If also the bars are symmetric, the equation of a symmetrical cage without axial fluxes is: 
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It can be easily rewritten as: 
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resulting in: 
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Introducing the non-physical rotor h-space resistance: 
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and rotor h-space leakage inductance: 
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the final space vector equations of a symmetrical and squirrel cage rotor without axial fluxes 

can be written as: 

 h
h

rhhrh
dt

id
LliR 0 . (2.160) 

Equation , represents the voltage space vector equation of a squirrel cage rotor. The main 

difference from a short circuited multiphase winding is that also in case of a symmetrical 
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squirrel cage rotor the space resistance and space leakage inductance are function of the 

considered space. 

The next subsection aims to define the analytical equation for the linked flux space vector h . 

Instead, the following subsections present the couplings between a squirrel cage and a 

multiphase winding. 

 

Linked flux (general) 

 

The h-space linked flux space vector is as the one of an Nb-phase machine (2.108) with one 

turn per phase: 
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(2.161)  

with the equivalent winding factor equal to: 
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If the winding is skewed, as in Fig. 2.1, with the z-axis starting from the middle of the axial 

length of the cage, , becomes: 

 

 

   

 

 

   

 

.)(

sin

2

)(

sin

2

int

2*

0

0

0

2

0

0







































































 

 

















































b

skew
b

b

skew
b

b

N

h
y

L

L
zhyNj

hyN

L

zb

b

b

y

L

L
zhyNj

hyN

L

zb

b

b

h

dzezH
hyN

N
hyN

R

dzezH
hyN

N
hyN

R













 (2.163) 

Note that the sign of the skewing changes, because the dependence by z of the magnetic field 

is internal to the harmonics, and integrating along a skewed path it is equal to shift all the 

harmonics in the airgap.  

The harmonics of the magnetic field produced by the equivalent multiphase currents of a non-

skewed cage are evaluable by (2.52) as: 
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If the skew is taken into account, the equation becomes: 
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It results that , can be considered sum of two terms (a self and a mutual effect with the other 

sources of magnetic field but the cage itself) as: 

 hmutualhselfh ,,   .  

The next subsection defines the self linked flux space vector equation for a squirrel cage rotor. 

 

Self inductance (equivalent multiphase winding of a squirrel cage - SVD) 

 

The self contribution of the linked flux in a squirrel cage rotor modelled as a multiphase winding 

can be defined as: 
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The equation does not depend by the z dimension anymore. Furthermore, the space vector 

relationships (     hhyNhyN iii
bb

 

*
) allows simplifying the self linked fluxes space vector 

equations as: 
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Introducing the non-physical h-space self inductance of the cage equivalent multiphase 

winding: 
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the linked fluxes space vector equations result as: 

 hmutualhhcagehmutualhselfh iL ,,,,   , (2.168) 

and the squirrel cage voltage space vector equations are defined as: 
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Taking into account a general multiphase winding, the mutual effect of this winding of the cage 

is included in the term hmutual , . This can be evaluated by (2.163), considering only the 

harmonics of the field produced by the stator winding. This analysis is done in the next two 

subsections for a single stator turn and for the overall stator multiphase winding respectively. 

 

Mutual flux (effect of a single turn on the squirrel cage) 

 

For the purposes of the thesis, before analysing the whole winding, the equation  of the effect 

of the stator currents on the squirrel cage is written for the general single stator turn (k-th turn 

of the x-th phase in the position 
kx  in the stator reference frame oriented with the magnetic 

axis of the first stator phase). The cage is considered with the centre of its first equivalent turn 

shifted by 
m radians from the stator reference frame. The linked flux related to the k-th turn 

current kxi  is evaluated introducing (2.39) into (2.163) as follows: 
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Simplifying, and replacing in 
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(2.170) becomes: 
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The equation can be simplified by introducing the new parameter
hcakx

X ,
 , given by: 

 
   hskew

k

b

hca K
h

h
N

h

X
kx 2,

2
sinsin 







 













, 
(2.173) 

as: 
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The next subsection defines the linked flux space vector on a squirrel cage rotor produced by a 

multiphase stator winding. 

 

Mutual flux (effect of a multiphase winding on the squirrel cage) 

 

In case of a full multiphase stator winding, the harmonics produced by the stator currents are 

defined by (2.47), with a symmetry of order n  for the m-phase winding. The current space 

vector is defined by (2.48), resulting in: 
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 (2.175) 

Replacing the skew constant
hskewK ,
, (2.175) becomes: 
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 (2.176) 

One of the more critical steps in the modelling of a multiphase induction machine with a squirrel 

cage is to relate the h-th space vector of the cage linked fluxes to the space vectors of the stator 

currents by taking into account the relationships of the 
SN -th order symmetrical transformation 

used to describe the stator quantities: 
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These relationships, and the introduction of the additional parameter
hcaX ,
 that relates the cage 

with the armature winding as in (2.174), allows rewriting the linked flux space vectors as: 
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(2.177) 

The next two paragraphs show how (2.177) results in case of multiphase windings with odd or 

even symmetries in their geometry. 
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Standard symmetrical winding (odd number of phases) 
 

If the winding has a zero sequence of the current space vectors and an n -order symmetry with 

n odd (as the nine-phase in Fig. 2.9, right), (2.177) can be rearranged considering that  ii
szN 

*
 

as: 
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(2.178) 

 

Standard asymmetrical winding (even number of phases) 
 

Instead, if the winding has a n -order symmetry with n even (as the twelve phase asymmetrical 

winding in Fig. 2.8), (2.177) can be rearranged as: 
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(2.179) 

This relationship represents the interaction between the h-th spaces of the cage with all the ρ-th 

spaces of the stator. In other words, once the current space vectors i (ρ=1,2,…n) are known 

(they are always known if there is a current control or if all the currents are measured), (2.179) 

represents the effect (in terms of induced electromotive force, emf) of these current vectors on 

the rotor equation in the h-th space. Then, the h-th space equation determines the h-th cage 



CHAPTER 2 

88 

 

current space vector
hi , and this current vector is related to the h-th harmonic of the spatial 

distribution of the magnetic field in the airgap ( hH ) and the higher order ones ( hkNb
H   and

hkNb
H  ). Therefore if (2.179) results in an induced emf on the cage ( hmutual , ) equal to zero, the 

rotor will not react generating the harmonics of the cage field of order hkNb   and hkNb   

(with  ,...2,1k ). 

The next two subsections aim to present the effect of the squirrel cage currents on the stator 

winding (starting from the analysis of a single stator turn). 

 

Voltage equation (effect of the cage on a single turn) 

 

To complete the electromagnetic model of a multiphase induction machine with a squirrel cage 

rotor, the voltage equations of the stator winding are written taking into account of the emf 

induced by the cage magnetic field. For the purposes of the thesis, the equations are written also 

for the general single stator turn (k-th), and then they are generalized to the full winding.  

The linked flux with the k-th turn (related to the cage rotor field) are described by (2.111) 

considering the cage field described by (2.165), where the cage harmonics are shifted along the 

z direction in the stator reference frame The linked flux equation is written as: 
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Introducing the skewing factor
hskewK ,
, (2.180) becomes: 
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Introducing also the parameter
hcakx

X ,
 , the final equation is: 
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The voltage equation of the generic k-th turn can be written as: 
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The next subsection extend the analysis of the effects of the rotor cage currents to a multiphase 

stator winding in terms of space vector representation. 

 

Voltage equation (effect of the cage on a multiphase winding) 

 

Considering the full stator winding, the mutual linked flux space vector hmutual ,  (named here 

hcage, in order to distinguish it from the one produced by a PM rotor) with a not skewed stator, 

is evaluated by (2.106) and (2.47) (adapted to the equivalent multiphase winding associated to 

the cage rotor) as: 
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Introducing the skew parameter
hskewK ,
, as done before for the single turn analysis, the h-space 

linked flux space vector can be rewritten as: 
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(2.185) 

The introduction of the parameter 
hcaX ,
 already defined (that relates the cage with the armature 

space vectors), allows rewriting (2.185) as: 
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(2.186) 

One of the more critical steps in the modelling of a multiphase induction machine with a squirrel 

cage is to relate the h-space stator winding linked flux space vectors to the cage current space 

vectors by taking into account the relationships of the bN -order symmetrical transformation 

used to describe the squirrel cage quantities: 
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These relationships allows writing the following equation for the armature linked fluxes caused 

by the cage field: 
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(2.187) 

The next two paragraphs show how (2.187) results in case of a squirrel cage with an odd or an 

even number of bars. 

 

Odd number of bars 
 

In case of an odd number of bars, (2.187) is simplifiable as: 
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  (2.188) 

 

Even number of bars 
 

Instead, in case of a squirrel cage with an even number of bars, (2.187) is simplifiable as: 
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(2.189) 

The next subsection summarizes the space vector equations of a multiphase machine with a 

squirrel cage rotor. 

 

Voltage equations (summary) 

 

The total voltage space vector equation of the stator winding (2.97), introducing (2.119) and 

(2.142), results in: 

  
dt

d

dt

id
LLliRv

hcageh
hhsh

,
 ,  (2.190) 

while the cage voltage SVD equation (2.169) is reported below: 

 
dt

d

dt

id
LLliR hmutualh

hcagerhhrh

,

,0


 , 

aware that, if there are anisotropies also the mutual coupling between the armature spaces must 

be considered. 

It is interesting to note that the cage parameters completely depend from the space, while the 

resistance and the leakage effects in a multiphase stator winding are independent form the space 

until there are not faults or asymmetries in the control or in the machine. In the assumption of 

healthy and symmetrical behaviour, the only effects of the mutual couplings between the stator 

and the rotor windings are described by the interaction between equations of the same space 

and by the relationships between the various spaces that limit the independent variables to the 

degrees of freedom of the machine quantities. 

The general mutual flux space vectors (2.177) and (2.187) are reported here below. 
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The mutual flux produced by the stator winding and linked with the rotor cage is described as: 
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The mutual flux produced by the rotor cage and linked with the stator winding is described as: 
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The analysis of the mutual flux space vectors becomes complex when many harmonics of the 

magnetic field are considered. However, for most of the analysis it is possible to consider only 

the lowest order harmonics because their amplitude is generally significantly higher than the 

one of the higher order harmonics. Indeed, the coefficients of the mutual fluxes hcaX ,  decrease 

with the square value of the harmonic order according to (2.173), (2.171), (2.45) and (2.162): 
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Voltage equation (further considerations on the symmetries - SVD) 
 

It is worth to notice that in case of a symmetrical transformation with a reduced symmetry, only 

some space vectors are evaluated for the inverse transformation and for the model. In particular, 

rather than the spaces 1,2,… ,
SN , the only spaces evaluated in the inverse transformations and 

in the model are the ones multiple of 
n

NS : 
n

NS , 2
n

NS ,…., n
n

NS . Therefore, all the equations 

are rewritten substituting n to
SN , as if the machine had n slots, and the transformations will be 

as (2.55) and (2.56).  
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Of course, attention must be used when the symmetry is reduced. If the symmetry is in terms 

of slot per pole and per phase, or because of a different choice of the starting slot of the phases, 

the new space vectors are still the same and are directly related to the relative harmonics of the 

magnetic field: 
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. 

While, if the pole pairs are not considered in terms of possible asymmetrical behaviours 

(modelling in electrical degrees the machine considering it symmetrical under each pole pair), 

the model takes into account for only the electrical harmonics h-el: 
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, 

only if the machine is symmetrical under each pole pairs, otherwise if in the space vector non-

multiple of p there are additional information, these information are neglected in the electrical 

model. An example of this result is the one already mentioned of a multi-sector stator winding 

when only one sector three-phase subsystem is analysed. In this case, also not multiple of p 

harmonics are produced when the winding is fed.  

Another example can be a standard star connected three-phase winding with two pole pairs with 

a 1st order field harmonic in the airgap, the winding will have opposite emf under its pole pairs. 

The total effect of the emf on the stator phases is eliminated by the series connection. Therefore, 

this harmonic will not affect the space equation of the machine. However, because of the 

interaction of the armature field (mainly a 2nd order harmonic) with this 1st order harmonic, 

there can be additional electromagnetic effects. For example, the radial force can appear and 

create eccentricities. In case of eccentric rotor, the magnetic circuit is unbalanced and the stator 

currents generate field harmonics not multiple of p by the interaction with the reluctance. The 

space vector can still be defined in electrical degrees, but knowing that the 1st electrical current 

space vector is related to the p-th harmonic of the armature field (and not the real 1st harmonic 

in mechanical degrees). This reason justify the assumption of writing the model without 

simplifying the pole pairs relationship in the space vector transformation, and only considering 

the space vectors multiple of p in the inverse transformation when the pole pairs symmetry is 

respected in the winding layout. 

The next section analyses the power flows, the torque and the radial force in a multiphase 

electrical machine.  
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 Power, Torque and Force Equations 

 

Three analysis are proposed in this subsection. The first one is an analysis of the different 

components of the electrical power in input to the system. The second analysis is related to the 

evaluation of the magnetic coenergy of the machine. The last analysis refers to the introduction 

of the radial force principles in electrical machines.  

The power analysis and the coenergy are also used to define the torque generated by the 

interactions between the various sources of magnetomotive force in the machine. However, the 

second method is more general and allows evaluating also the torque components not directly 

related to the input power to the stator winding, as the cogging and slotting effects.  

The analysis of the power is also useful in order to highlight the various components. In 

particular, many control techniques presented in the next chapters are based on the optimisation 

of the stator copper losses in the control of the field harmonics in the airgap. Therefore, the 

copper Joule losses are highlighted in the proposed analysis.  

The inputs of an electrical machine are the electrical power (in terms of terminals voltages and 

currents) and the external torque and force applied to the rotor (to the shaft) by the load. The 

instantaneous electrical power in input to an electrical machine is simply given by the sum of 

the power entering in each phase (sum of the power of its series turns). 

The following analysis starts from the electrical power of a single turn following the approach 

presented in the previous sections. 

 

Power equation (single turn) 

 

The input electrical power of the single k-th turn of the x-th phase is defined as: 

 
xkxkx ivP  ,  (2.191) 

Introducing the voltage equation of the turn (2.115), the turn power equation becomes: 
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.  (2.192) 

At steady state, considering only one frequency: )sin(   tIix
, the power equation can be 

analysed in its terms as: 

 Turn copper Joule losses: 

 )22cos(1
2

)(sin
2

222   t
I

rtIrir kxkxxkx
. 

 Turn inductive power: 
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The inductive power of the electrical system at steady state conditions is completely 

considered as a reactive power (it has zero average value in one electrical period). 

 Turn mutual power:  

x

kxmutual
i

dt

d ,
. 

This component represents the interaction of the turn with all the other systems of the 

machine. In particular, the contribution of the mutual power related to linked flux 

produced by the rotor represents the power transferred to the rotor. This power is 

partially related to the shaft torque (completely in case of a PM rotor). 

Equation (2.111) describes the contribution of the rotor field to the mutual flux with the 

analysed turn, reported here below: 
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 (2.193) 

 

SPM machine torque (single turn) 
 

For a SPM rotor, by means of (2.139), the mutual power with the rotor results in: 
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Making the time derivative and dividing by the mechanical speed, the generated torque can be 

evaluated as: 
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simplified as:  
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with hkxPMTK ,,,  the torque constant related to the h-th field harmonic equal to: 
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It is interesting to note that in case of a single turn, in case of a dc current in the turn the torque 

has a zero average value and a sum of torque ripples at the frequencies of the permanent magnet 

field harmonics: 
dt

d
ph m

odd


. The only way to obtain a dc component of the torque is to have a 

current in the turn with an a.c. component at one of the frequencies of the rotor harmonics: 

  xmoddxx phIi   sin . Indeed, in this case the following relationship occurs: 

            xkxmxkxxmkxm phphphph   2coscos
2

1
sinsin . 

It results that there is also a dc component of the torque for the h-th field harmonic.  

 

Squirrel cage machine torque (single turn) 
 

For a squirrel cage rotor, by means of (2.182), the mutual power with the rotor results in: 
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with hcakx
X ,  defined by (2.173). 

Solving the time derivative, the power equation becomes: 
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The terms that are not multiplied by the mechanical speed do not contribute to the mechanical 

power. The additional terms, that depend by the time derivative of the cage currents, represent 

the power transferred between the stator and the rotor that do not produce the mechanical power. 

Therefore, the generated torque can be evaluated by these terms divided by the mechanical 

speed as: 
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, (2.199) 

simplified as: 
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with hkxcageTK ,,,  the torque constant related to the h-th field harmonic of the cage (in other words, 

to the h-th rotor current space vector hcagei , ) defined as: 
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The analysis of the average torque and the torque ripples, produced by the interaction between 

the turn and the cage, depends on the currents in the two systems. Therefore, the analysis is 

much more complex than the one of a SPM machine because the cage currents must be 

evaluated by the machine behaviour.  

The next subsection extends the analysis of a single turn to a multiphase winding represented 

in terms of space vector equations. 

 

Power equation (multiphase winding) 

 

The input electrical power for a multiphase winding is defined as: 
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with tx used here to indicate the t-th series turn of each x-th phase. The equation can be 

investigated in terms of the voltage and current inverse transformations defined in a general 

way as: 







1

0

)1(

2

SN

h

kh

h

S

k y
N

m
x  , 

with SN
j

e





2

  and k  used to indicate the starting slot of the machine phases. The power can 

be written in terms of space vectors as: 
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 .  (2.202) 

However, as the transformation is defined in its general shape, it is possible to effectively 

consider also the not existing phases in the power equation, because the transformation takes 

into account of the fact that the quantities related to the not existing phases are equal to zero. 

The used general transformation (2.52) is reported here below to highlight again that the not 

existing phases are not taken into account: 
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In this case, the power of all the phases (existing and not) can be evaluated as: 
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Because in the general inverse transformation all the space vectors are used, for each k-th phase 

(starting in the k-th slot) it is possible to rewrite (2.203) as: 
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Because
SN  equivalent phases (existing and not) are considered, 
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SN . Therefore, the instantaneous input power equation can be rewritten in a general shape as: 
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with the term 
22

SS NN vi  existing only if SN is an even number. According to the space vector 

transformation relationships hNS
i  is equal to

*

hi , and the power equation can be rewritten as: 
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(2.206) 

By the same relationship, the number of analysed vectors can be reduced as: 
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This equation is completely general and because of this, it is a redundant expression. However, 

all the next analysis can be done also for the particular expression of the power for each 

machine, taking into account only for the needed space vectors. 
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The voltage space vector equation for a multiphase symmetrical winding (2.190) is reported 

here below: 
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Introducing this expression in (2.207) allows writing the instantaneous power as: 
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This equation can be simplified as: 
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Unfortunately, the zero and 
2

SN
 current space vector are not always zero, as discussed in the 

previous sections. Indeed, they are always equal to zero if the winding is completely 

symmetrical and star connected (odd phase symmetrical winding with all the phases star 

connected), otherwise their values depend by the winding distribution and star connections. For 

example, a three-phase winding layout without star connection and with each phase fed by its 

own H-bridge converter allows for the circulation of the zero space current (homopolar current). 

However, the power contributions can still be analysed in their respective terms: 

 Armature copper Joule losses: 
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It is interesting to note that in general some effects as the ripple of Joule losses in the 

various phases (or turns) at steady state operation is not present in the total instantaneous 

power of the system. For example, in a symmetrical three-phase winding (described by 

the general transformation (2.64)) the sum of the machine armature Joule losses is: 
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The first current space vector of the three-phase machine at steady state and in a standard 

control rotates at constant speed and magnitude, generating a constant sum of the Joule 

losses. Therefore, the analysis of the power of each phase can be useful to better analyse 

the local effects. For example, this can be done for a better evaluation of the thermal 

stress of the windings considering the electrical frequency of the machine in its working 

cycles. 

 Armature inductive power:  
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The inductive power of the electrical system at steady state conditions is completely 

considered as a reactive power (it has zero average value in one electrical period 

whatever the frequency of the system). If the currents are all dc, this power component 

is zero because it is related to the variation of the magnetic energy of the system during 

the time. 

 Armature mutual power:  
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. 

This component represents the interaction of the stator winding with all the other 

systems of the machine. In particular, the contribution of the mutual power related to 

linked flux produced by the rotor represents the power transferred to the rotor. This 

power is partially related to the shaft torque (completely in case of a PM rotor). 

Equation (2.107) is used to describe the contribution of the rotor field to the mutual flux linked 

with stator multiphase winding. It is reported here below considering only the mutual 

components: 
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Therefore, the related instantaneous electrical mutual power with the rotor can be considered 

as the sum of the contributions of the various space vectors, defined as: 
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Each space power contribution hmutualP ,  is defined as: 
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Substituting (2.210) in (2.212), it results that: 
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In the next two paragraphs, the analysis of the mutual effects related to the rotor field are 

separately considered for the case of a SPM machine and a squirrel cage one, as done above for 

the analysis of a single turn. 

 

SPM machine torque (multiphase winding) 
 

Introducing the equation of the mutual flux space vector in case of a SPM rotor (2.142), the 

relative mutual power equation (named hPMP ,  here below) can be written as: 
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(2.214)  

The equation can be simplified as: 
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(2.215)  

The resulting torque contribution related to the h-th armature current space vector is: 
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(2.216)  

simplified as: 
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with: 
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the torque constants related to the h-th armature current space vector. 
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The total torque for a SPM multiphase machine is: 
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It is interesting to note that in order to obtain a constant torque with one of the contributes of 

the first summation in (2.216), the h-th current space vector must rotate in the same direction 

of the rotor at speed equal to )( hyN
dt

d
s

m 


. Usually only one y value is chosen to produce a 

constant torque and the other values will result in torque ripples. On the other hand, to create a 

constant torque with the contributions in the second summation, the current vector must rotate 

in the opposite direction of the rotor at speed )( hyN
dt

d
s

m 


. In other words, in some cases the 

torque contributions can be used to increase the average torque of the machine by a direct 

sequence and in other cases by an inverse current sequence of the h-th current space vector.  

For example, in a three-phase SPM machine, it is possible to generate a torque by the p-th 

current space vector (this is the common choice in the control of PM machines). However, this 

results in a torque ripple at 6p times the mechanical speed related to the interaction between the 

5p-th field harmonic of the PM with the 5p-th field harmonic of the armature because pi5 is equal 

to 
*

pi . However, it is also possible to control the only independent current space vector ( pi ) in 

order to create a torque control based on the interaction between the field harmonics of order 

5p. This can be done by controlling pi with an inverse sequence at 5 times the fundamental 

electrical frequency. This will usually result in a huge torque ripple related to the contribution 

of the uncontrolled main field harmonic and in a significantly reduced efficiency in the torque 

production (because of the inverse proportionality of the torque constants 


hyPMTK ,,,  with the 

field harmonic orders:
hyN

K
s

hyPMT


 1
,,, ). Theoretically, this approach can be used to define 

an improved machine control that allows eliminating the torque ripples related to the higher 

order field harmonics. 

 

Squirrel cage machine torque (multiphase winding) 
 

Introducing the equation of the mutual flux space vector linked with the multiphase winding 

and produced by a squirrel cage rotor (2.187), the mutual power equation ( hcageP , ) for the h-th 

armature space vector can be written as: 
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(2.219) 

The equation can be simplified as: 
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(2.220) 

Considering only the contributions proportional to the rotor speed, the torque related to the h-

th armature space is evaluated as: 
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 (2.221) 

simplified as: 
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(2.222)  

with: 
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the torque constants related to the h-th armature current space vector. 

The total torque of the squirrel cage multiphase machine is: 
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The analysis of the torque generated in a squirrel cage machine is quite complex because of the 

slip of the various rotor field harmonics related to the not constant rotor current space vectors. 

Indeed, in general all the rotor current space vectors rotate with a particular speed (related to 

their slip) in the rotor reference frame. 



CHAPTER 2 

106 

 

In order to clarify the power components in a squirrel cage IM, the power analysis is presented 

in the next subsection, considering the squirrel cage equivalent multiphase winding. 

 

Power equation (squirrel cage) 

 

A squirrel cage can be analysed as a multiphase machine with 
bN  symmetrical phases and 

without an external power source ( 0P ), because there is not an external voltage source:  

0hv . 

The voltage space vector equation of the equivalent multiphase winding of a squirrel cage rotor 

(2.169) is reported here below: 
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Introducing this expression in (2.207) allows writing the instantaneous input power as: 
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  (2.224) 

The power contributions can be analysed in their respective terms: 

 Cage copper Joule losses:  
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 Cage inductive power:  
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 Cage mutual power:  




 





























12/

0

*,

2

2
,

0

0,

24

S

b

b N

h

h

hwindingb
N

N
winding

windingb
winding i

dt

dN
i

dt

d

i
dt

dN
P





.  



Multi-Harmonic Generalised Model for Multiphase Machines 

107 

 

The contribution of the stator multiphase winding field to the mutual flux linked with the rotor 

cage is described by (2.177), reported here below: 
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Therefore, the related instantaneous electrical mutual power with the rotor can be considered 

as the sum of the contributions of the various space vectors, defined as: 
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 (2.225) 

Each space power contribution hwindingP ,  is defined as: 
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Introducing the equation of the space vector of the mutual flux linked with a squirrel cage rotor 

and generated by a multiphase winding (2.177), the mutual power equation for the h-th armature 

space vector can be written making explicit which are the armature (winding) and cage related 

(cage) current space vectors, as: 
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 (2.227) 

The equation can be simplified as: 
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(2.228) 

Considering only the contributions proportional to the rotor speed, the torque related to the h-

th cage space is evaluated as: 

   
 

   
 

,)(

)(

*

,

*

,

0

1

0

0

*

,,

0

1

0

0
,

0int

int

0int














































































 


































 















hcagewinding

N

hyN

N

h
y

y

hyNj

hyNcab

N

b

hcagewinding

N

hyN

y

hyNj

hyNcab

N

b
hwinding

iieXhyNj
RLmpqNN

iieXhyNj
RLmpqNN

T

s

b

b

mb

b

s

s

b

mb

b

s

























 
(2.229) 

simplified as: 



Multi-Harmonic Generalised Model for Multiphase Machines 

109 

 

 

 

 
,*

,

*

,

0

,,,

1

0

*

,,

0

,,,

1

0

,

0int

int

0int














































































 































 












hcagewinding

N

hyN

N

h
y

y

hyNj

hywindingT

N

hcagewinding

N

hyN

y

hyNj

hywindingT

N

hwinding

iiejK

iiejKT

s

b

b

mb

s

s

b

mb

s

















 

 

(2.230) 

with: 
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the torque constants related to the h-th cage current space vector. 

The total torque of the squirrel cage multiphase machine is: 

 





12/

1

20

22

bb N

h

h

N

T

T
T

T . (2.231) 

The analysis of the torque generated in a squirrel cage machine can be solved by the power 

analysis of the stator winding or of the cage. Indeed, comparing only the lower harmonic 

contribution of the h-th order current space vectors, the related torque can be defined by (2.230) 

as: 
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The two torque equations are equal, being    xx  * . 

As expected, the torque given by the cage analysis is the same of the one given by the stator 

winding (indeed the torque is produced by both the armature and cage fields, and the equation 

validate the effectiveness of the model). 

While in case of a SPM rotor, the torque equation (2.217) for only the p-th space is reported 

here below: 

  *

,0,,, p

jp

pPMTpPM iejKT m .  

 

Squirrel cage machine not-mechanical mutual power (multiphase winding) 
 

Here below the second terms of the mutual power contribution of a squirrel cage machine are 

analysed in order to verify that these power contributions are related to the mutual power that 

is not mechanical. Therefore, these terms (named transf ) represent the power transferred between 

the stator and the rotor that is not generated by the torque production. 

The contribution in (2.220) referred to the power transferred to the stator by the rotor is: 
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The contribution in (2.228) referred to the power transferred to the rotor by the stator is: 
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Considering only one harmonic of the magnetic field in the airgap and the relative space vector 

components, the two previous relationships can be rewritten as: 
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Considering a steady state condition, the equations can be written as: 
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with 
rh  and 

sh  the rotor and stator electrical frequencies for the h-th space. As expected, with 

the stator and rotor current vectors having the same electrical frequency, the two equations give 

the same result. This is what happens for example in a transformer. Indeed, an induction 

machine at stand still operation can be seen as a transformer with the secondary winding in 

short circuit. Its mutual power is completely transferred between the stator and the rotor without 

producing a mechanical power (even if in this case there is a torque, the rotor is not moving and 

therefore there is not work and mechanical power). 

Instead, if the rotor is moving, the difference between the power transferred form the stator to 

the rotor and the power transferred from the rotor to the stator is the mechanical power: 
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In order to produce a not zero average torque, the speed of the stator field (
sh ) must be 

synchronous with the speed of the rotor field ( rhm   ), resulting (as expected) in: 
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Introducing the variable PhK , with: 

  *

,,
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 , 

the steady state power between the stator and the rotor can be written as: 
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and: 
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The previous relationships can be rewritten as: 

mPhshPhhwindinghtransfwindinghrotormutual hKKPPP   ,,,,, , 

mPhrhPhhcagehtransfcagehstatormutual hKKPPP   ,,,,, . 

Because to produce a not zero average torque at steady state conditions the rotor frequency 

must be 
mshrh h  , and 

mPhhK   represents the mechanical power, it results that: 

  shPhmPhmshPhmPhrhPhhstatormutual KhKhKhKKP  ,, , 

hmechanicalhstatormutualmPhshPhhrotormutual PPhKKP ,,,,,   . 

As expected, a component of the transferred mutual power from the stator to the rotor, 

hstatormutualP ,, , does not result in a mechanical power. The power component hrotormutualP ,,  takes into 

account for the total active power that the cage needs in order to allow for the bar currents to 
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circulate. Indeed if the machine is working in motoring mode the stator absorbs from the 

grid/converter an active power equal to hstatormutualP ,, . Part of this power ( hmechanicalP , ) is transferred 

to the load, and the remaining is absorbed by the cage hrotormutualP ,, to sustain its losses. 

If there is not mechanical power, as in a transformer ( 0m ) or at no load ( 0PhK ), all the 

mutual active power flows from the stator to the rotor to sustain its losses (the iron losses, that 

are here neglected, and the Joule ones). 

The next subsection aims to evaluate the torque equations by the analysis of the coenergy of 

the machine. 

 

Airgap magnetic coenergy (alternative method for the torque evaluation) 

 

Another method to define the torque of an electrical machine is by means of the derivative of 

the magnetic coenergy of the system with respect to the rotor position. 

The magnetic coenergy of the system is: 

 dVBdHW

H

 
0

' , (2.232) 

where V is the volume of the system. 

In an electrical machine, the coenergy in the iron can be neglected because the magnetic field 

(H) is much lower than the one in the airgap (the magnetic permeability of the iron
Sheet  is 

significantly higher than the one of the air,
0 ). Furthermore, the hypothesis of the model is to 

have only radial flux in the machine. Therefore, the magnetic field in the air (only in its radial 

component) can be defined as: 
0

B
H  . 

 

Torque evaluation from the coenergy analysis 
 

The coenergy of a system with hard magnetic materials, as the one in Fig. 2.17 [9], can be 

analysed substituting the permanent magnet volumes with a virtual airgap. The magnets are 

described only by their equivalent magnetomotive force, as in [10]. Indeed, if the magnet 
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characteristic can be linearized in the working points (until the demagnetising field remains 

single-valued), the coenergy of the permanent magnet can be evaluated as in [11] (the graphical 

meaning of the equation is shown in Fig. 2.18): 

 

 
m
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m dVdHBW
m

 
0

' . (2.233) 

This equation can be modified considering a linear magnet material behaviour as: 
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 (2.234) 

Because the remanence depends only by the magnet magnetization, the component of the 

coenergy that depends by the rotor position and is related to the torque production is only: 

 m

m

m dV
B

W  2
''

2

. (2.235) 

Because the magnet permeability is almost as the one of the air, and the continuity of the flux 

makes the flux density be the same in the radial dimension for all the points in the airgap and 

magnets, the magnet regions can be considered as an equivalent air for the torque evaluation 

(virtual airgap).  

 

Fig. 2.17 - Example of B-H curve of a high power density hard magnetic material. 
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Therefore, the component of the coenergy of the full system that affects the torque is evaluated 

as: 

   dVHdV
B

W 20

0

2

22

1
'




. 

 
(2.236) 

The torque of the system can be approximately expressed as: 

   dVH
d

d
dVB

d

d

d
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mmm

202

0 22
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, (2.237) 

where 
m is the angular position of the rotor and B is the flux density in the air region of the 

airgap. 

According to the model hypothesis, the torque general equation can be rewritten, keeping only 

the time as implicit, as: 

       dzRdzzH
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d
dVH
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d
T Smsms

L

mm
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22

2

2

0 0

020

   . (2.238) 

By this equation, it is also possible to evaluate reluctance torque components (cogging and 

slotting effects for example). Indeed, the magnetic field can be written as in (2.31), and can be 

rewritten in its general shape as: 

      zFzgzH msmsms ,,,,,,   , (2.239) 

where /1g . Therefore, the general torque equation can be modified as below: 

 

Fig. 2.18 - Coenergy of a hard magnetic material (concept). 
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 (2.240) 

where the contribution related to the interaction between the magnetomotive sources (currents 

and permanent magnets) and the reluctance of the magnetic circuit is: 
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Instead, the interaction between the magnetomotive sources taking into account of the 

modulation of the flux caused by the reluctance distribution is: 
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If the machine has negligible reluctance effects, as the machines investigated in this work of 

thesis, the first effect (reluctance torque) is zero, and the torque can be simplified as: 
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If the airgap is constant, the following simplified torque equation is preferred: 
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The magnetic field in the airgap can be substituted by its Fourier expansion in the angular 

dimension
S : 
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Keeping implicit the dependences with the rotor position and the axial direction, the torque 

equation for an isotropic machine can be written as: 
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that is: 



Multi-Harmonic Generalised Model for Multiphase Machines 

117 

 

       

   
.

4

,
4

1

2

0

*

*

2

0

*

0 1

0

1

2

0

*

2

00 1

0

dzde
d

Hd
Hde

d

Hd
H

R

dzde
d

Hd
zHde

d

Hd
H

R
T

h

S

hj

m

hS

hj

m

h

L

h

S

hj

m

mhS

hj

m

h

L

m

ss

ss

 

 













































































  
(2.245) 

The terms 
S

jz
de s 




2

0

are always zero but when z is equal to zero (in that case it is 2 ). 

Therefore, the only torque contribution is given by the interaction between space harmonics of 

the magnetic field of the same order (with the same angular periodicity), and the torque can be 

evaluated as: 
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The magnetic field is the sum of the stator and rotor components: hrotorhstatorh HHH ,,  . 

However, the armature field harmonics do not depend by the rotor position; therefore, the torque 

equation can be simplified as: 
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 . (2.247) 

The torque equation can be rewritten as: 
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(2.248) 

Each harmonic of the rotor field depends by the rotor position by a function like hrotorH , =

mm

m

jh

hrotor

jh

hrotor eHeH


 0,,)0(,,  , while )0(,, mhrotorH   depends only by the magnets design or by 

the cage currents (note that the rotor sources of magnetic field, like permanent magnets or 

squirrel cage currents, are synchronous with the rotor, being part of it). Therefore, the term 

depending only by the rotor field is zero, as shown here below: 
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The torque equation remains described as: 
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The harmonic of the magnetic field for a multiphase winding (2.52) is: 

 






i
KNmpq

H
a

 .  

For a SPM symmetrical rotor (2.132) it is: 
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For a squirrel cage rotor (2.163) it is: 
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By the presented equations, the evaluation of the torque is straightforward. 

 

SPM machine: torque equation (energy method) 
 

The torque of a SPM machine results (only for h odd and multiple of the pole pairs number) as: 
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(2.250) 

exactly as in the equation founded by the analysis of the instantaneous power. 

 

Squirrel cage machine: torque equation (energy method) 
 

The torque of a squirrel cage machine results as: 
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(2.251) 

exactly as in the equation founded by the analysis of the instantaneous power. 

 

Radial Force 

 

In case of asymmetries and faults, electrical machines might have a not zero resultant force. On 

the other hands, some designs of electrical machines allow for the control of the resultant radial 

force acting on the rotor.  

In this thesis, the radial force is analysed for both the cases (faults and force control). In 

particular, this subsection deals with the identification of a radial force equation for a general 

electrical machine. Then, the equation is simplified considering the fundamental hypothesis of 

the model: only the radial component of the magnetic field is taken into account.  

 

Magnetic force principle 
 

According to the Maxwell tensor principle, the magnetic pressure in absence of electric field 

can be expressed as: 

 rt rtrt r
t

B
r

Bt
t

B
r

B 


 












 

22
2

1

02
, (2.252) 

where rt  is the magnetic pressure, or Maxwell stress tensor, and the subscripts r and t are used 

to represent the radial and tangential components. 

Considering only the radial component of the flux, (2.252) is simplified as: 
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The magnetic field in the model is considered positive when it is directed from the rotor to the 

stator, the same convention is used for the radial unit vector r  in (2.252) (that is described as 

positive if it is an attractive force of the rotor to the stator), resulting in the following equation: 
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 . (2.254) 

The subscript that indicates the direction of the force component (r) is neglected hereafter, 

making implicit that only the radial component is analysed. 

Equation (2.254) allows defining the radial force on a closed surface surrounding the rotor 

(acting on the centre of the airgap, with radius R ). In case of linear magnetic circuit, the 

resulting radial force on the rotor results as: 
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The magnetic field, H, depends by the sources of magnetomotive force and by the reluctance 

of the circuit, and its evaluation has already been presented. The magnetic field in the airgap 

can be substituted by its Fourier series, and the following relationship to be defined: 
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(2.256)  

The term 


 
2

0

S

jz
de s is null for all the cases in which z is different from zero, for which it results 

equal to 2 . Therefore, because   1 h  is never equal to zero, the radial force equation 

can be written as: 
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It results that, whatever are the sources of the magnetic field, the resultant force on the rotor is 

produced by the interaction between the generic h-th field harmonic with the field harmonics 

of order h-1 and h+1. This result can be used to explain the radial forces produced by reluctance 

design, eccentricities, or faults, and can be used to define a radial force control by the stator 

currents with or without considering the presence of a rotor source of magnetic field. It is quite 

easy to understand by (2.257) that a resulting radial force can exist only if there are both even 

and odd field harmonics.  

 

Extended analysis for the tangential components of the magnetic field in the airgap 
 

If all the Maxwell stress tensor components are considered, the general force equation is: 
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resulting in the equation: 
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that becomes, in case of linear magnetic circuit, as: 
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(2.260)  

Following the same steps done for the only radial component, it results: 
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The Maxwell stress tensor analysis can be also used for evaluating the torque, which 

approximatively results from considering the average of the tangential component of the 

Maxwell stress tensor multiplied by the average airgap radius. In case of isotropic magnetic 

circuit, the torque can be expressed as: 
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(2.262)  

However, the proposed analytical model neglects the tangential component of the magnetic 

field in the airgap. Therefore, the evaluated radial force is approximated, and the torque is 

evaluated by means of the coenergy of the system or by the analysis of the components of the 

electrical power in input to the system.  

 

 Summary and Advantages of a Multi-Harmonic 

Model for Multiphase Machines 

 

Moving towards multiphase machines makes the machine model inevitably more complex. 

Indeed, in order to describe the machine behaviour, all the degrees of freedom of the control 

must be taken into account. From an electromagnetic point of view, the degrees of freedom of 

a machine are the controllable sources of magnetomotive force: the currents (in the armature 

winding). Indeed, the harmonics of the armature magnetic field are directly related to the 

winding currents, or better to the current space vectors.  

However, in order to control the currents, the most common method is by means of a voltage 

source (an electrical grid or a voltage source converter). This makes essential the modelling of 

the relationships between the currents and the voltages. Therefore, this chapter presented a deep 

analysis of the voltage space vector equations of a generic multiphase machine. 

 

Advantages of a multi-harmonic SVD model 

 

Because of the direct relationship between the current space vectors and the related field 

harmonics, it seems promising to write also the voltage equations in terms of space vectors. 
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The voltage space vector equation for a general symmetrical multiphase machine with an 

isotropic magnetic circuit and with negligible mutual leakage inductances between the different 

phases (2.120) is reported here below: 

  
dt

d

dt

id
LLliRv hmutualh

hhsh

,
 .  (2.263) 

In a standard three-phase machine control the final goal is to properly define the best value of 

the main field harmonic (h=p) in order to generate the required reference torque (or speed, or 

position as well). Therefore, the space vector equation for a three-phase machine is simply: 

  
dt

d

dt

id
LLliRv

pmutualp

ppsp

,
 .  (2.264) 

Indeed, in a standard three-phase machine there are two independent currents (owing to the star 

connection). The same number of degrees of freedom must be kept in the choice of the numbers 

of controllable current space vectors. Because a space vector is made by two variables (being a 

complex number it has a real and an imaginary component), the control of a three-phase 

machine can be defined by the control of a single space vector. 

The only independent current space vector of a three-phase machine is indirectly the source of 

all the higher order field harmonics caused by the armature. Improved controls can be adopted 

in order to take into account for this effect to provide better performance. However, each trial 

of controlling a higher order harmonic affects also the fundamental one and all the others. This 

means that the ideal control of the machine should consider in the same time all the field 

harmonics effects as function of the fundamental current space vector, and this can result in a 

quite complex and customized control for the analysed machine. 

Instead, a multiphase machine with m  phases and 
starN  stars has in general 

starNm  

independent currents, which results in having almost 
2

starNm 
 independent current space 

vectors (this value depends on the number of phases and how the space vector are defined). 

Each of these current vectors allows independently controlling a related field harmonic; in 

particular, the current space vector hi  is related to the field harmonic hH  (still under the 

hypothesis of isotropic magnetic circuit and ideal conditions) by (2.47), reported here below: 








i
KNmpq

H
a

 . 

Therefore, it is possible to control independently 
2

starNm 
 field harmonics as if each harmonic 

were generated in a different machine connected to the same shaft of the others and 

magnetically coupled with them by its mutual flux equations. The voltage space vector equation 

of each space represents the electrical equation of the equivalent machine. As expected, the 

performance can significantly increase in a multiphase multi harmonic control. 

The easier example is related to the torque contributions of an electrical machine. In a 

multiphase machine, the ripples related to the higher order field harmonics can be easily 
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eliminated by imposing as zero the relative reference current space vector. This can be done for 

all the independent spaces (or field harmonics). 

It is possible to think about many other possibilities for exploiting the multiphase degrees of 

freedom. Some example are presented in the following chapters of this thesis. 

 

Multi-harmonic models (summary of the equations – simplified model) 

 

The equations that describe a multiphase machine (model) have been presented in this chapter 

and are summarized here below in their simplified shapes. 

The stator phase equations, independently from the rotor topology are as in the next paragraph. 

 

Stator (armature) 
 

Space vector transformation (2.53): 
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Magnetic field (2.47): 
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Voltage equation (2.120): 

 
dt

d

dt

id
LLliRv

hmutualh
hhsh

,
 , 

where the mutual coupling between the different spaces is not considered, knowing that, if there 

are anisotropies or the winding is not a standard full pitch one (as for the sectored topology), 

also the mutual coupling between the armature spaces must be considered. 

The rotor equations are presented in the two following paragraph for an SPM and a squirrel 

cage IM respectively. 

 

SPM multiphase machine (rotor effects) 
 

The magnetic field harmonics of ad SPM rotor (2.134) are evaluated as: 
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The mutual linked flux space vector produced by the magnets and linked with the armature 

winding hmutual ,  (named hPM , ) can be written as (2.142): 
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The resulting torque components (2.218) are given by (2.217):  
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The main torque contributions are evaluated as:  

 *

,0,,,, h

jh

hPMTmainhPM iejKT m . 

 

Squirrel cage multiphase induction machine (rotor effects) 
 

The space vector transformation (2.53) for a squirrel cage analysed as a bN -phase bN -slot 

multiphase winding is: 
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The equation of the magnetic field harmonics for a squirrel cage rotor (2.165) is: 
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The voltage equation is (2.169): 

 
dt

d

dt
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 . 

The mutual linked flux space vector produced by the cage and linked with the armature 

winding hmutual ,  (named hcage, ) can be written as (2.187): 
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The mutual linked flux space vector produced by the armature winding and linked with the 

squirrel cage equivalent winding hmutual ,  (named hwinding , ) can be written as (2.177): 
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The resulting torque components (2.223) are given by (2.222) as: 
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The main torque contributions are evaluated as:  
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*

,,0,,, hhcage

jh

hcageThcage iiejKT m . 

 

Force Equation 
 

The eventual force effects can be evaluated by the proposed model, for all the rotor 

topologies, by (2.257):  
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All the equations of the models presented in the next chapters refer to the model proposed in 

this one. 
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Open Phase Faults and Fault 

Tolerant Controls in 

Multiphase Drives 
 

The open phase fault is the most probable electric fault in electrical drives. More phases can 

open in the same time and the effect of the fault on the machine behaviour depends on the 

machine design and winding. An in-deep analysis of compensation algorithms for multiple open 

phase faults is carried out in this chapter considering Voltage Source Inverters (VSIs) feeding 

multiphase electrical machines.  

In this chapter, the fault compensation is realised by means of a Fault Tolerant Control (FTC), 

generalized to whatever standard distributed winding multiphase machine under the following 

hypotheses: 

 The winding is not an open end-winding 

 The phase number is odd, or it is a multiple of three 

 The machine is symmetrical under each pole pair 

Simulations and experimental results are presented for the multi three-phase winding topology. 

 

Open Phase faults in Electrical Drives 

 

An open phase fault can appear on the converter side or on the machine side, as shown in Fig. 

3.1 for a standard three-phase drive. 

The breakdown of the switching devices or the activation of the drive active and passive 

protections can cause converter open phase faults. In particular, in case of missing of the control 

signals (Digital Signal Processor, DSP, failure) all the devices are generally open. A typical 

example is the desaturation protection that opens part of the switches in order to avoid 

dangerous short circuit currents. 

The machine open phase faults are more likely related to the disconnection of the phases from 

the terminal box or from the switching devices (converter connections). This might happen 
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because of assembly mistakes or connections deterioration. Among the terminal box open phase 

faults, it is considered also the star connection failure. If the star connection is realised inside 

the housing and not in the terminal box (in this case it is usually in the end windings), this fault 

is often included in the winding fault category. However, this nomenclature might be 

misleading because the reader can easily think about a physical cut of the wires, which is quite 

improbable (this is the reason why here this fault is still considered under the category of 

terminal box faults). 

The possibility to manage a phase opening is essential to prevent the failure of the drive control 

system and allows minimizing the performance derating. Furthermore, the proposed FTC 

allows controlling to zero the current in one or more phases by means of the same technique 

used to compensate the open phase fault. Zeroing the current in some phases gives the 

possibility to avoid the related copper losses and eventually disconnect these phases on purpose 

with a reduced effort.  

As example, if a localized temperature increase is detected in one slot, the current flowing in 

that slot can be controlled to zero in order to avoid the accelerated ageing of the insulation in 

the slot and in general in the full system.  

Furthermore, in case of a redundant layout of the winding and the converter (as in a multi three-

phase configuration) it is possible to control to zero the currents of the phases connected to one 

converter in order to open them with a limited effort (the electric arc is theoretically avoided 

being the current in the phases equal to zero). Once the phases are open, the converter can be 

replaced or its maintenance can be easily carried out without an unscheduled stop of the system. 

 

 

 

 

Fig. 3.1 – Open phase faults in a standard three-phase drive (most typical faults). 
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 Open Phase Faults in Inverter Fed Multiphase 

Machines 

 

This section presents the open phase faults in inverter fed multiphase machines. Before, 

considering for a fault in the connections of the phases and, then, in the switches of the inverter 

legs. 

 

Terminal Box and Converter Connection Faults 

 

The electric arc is not analysed in this work. Therefore, in case of a physical opening of an 

electrical connection, the transient needed for the current to become zero is neglected. Under 

this hypothesis, (2.89) gives the phase voltage equation for the analysed x-th phase, named as 

xf-th in order to highlight that the phase is the faulty one. Neglecting the mutual leakage 

inductances between different phases and considering all the phases having the same resistance 

and self-leakage inductance parameters, the voltage equation for the faulty phase can be written 

as: 

 
dt

d

dt

di
LlRiv

fxxf

xfxf


 .  (3.1) 

A physical open fault results in having a zero current in the faulty phase ( 0xfi ), therefore 

(3.1) can be rewritten as: 

 
dt

d
v

fx

xf


 .  (3.2) 

This relationship allows modelling a machine with an opened phase. Because the electric arc is 

not modelled, the transient behaviour of the machine during the fault transient is simulated by 

an R-L response. A better analysis and simulation of the fault is not carried out in this work 

because the focus is posed on the control of the machine after the fault transient. 

 

Protections and Drives   

If the fault happens on a single switching device of a VSI in such a way that the current can 

flow only through its anti-parallel diode (this might happen because of the driver protections, 

as the the DeSat, or for a missing signal from the DSP), the resulting current is unipolar (it can 

flow only in one direction). In the next two paragraph, it is analysed what happens in case of 

open fault of one of the two switching devices (the top or the bottom one). Hereafter, with topS  

and
bottomS  are defined the states of the switches (“0” means that the considered shitch is off, 

open circuit state, and “1” means that it is on, short circuit state). 
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Top switch open fault 
 

The scheme in Fig. 3.2 allows easily explaining this fault behaviour for the fault of the top 

switch. If the fault happens when the current in the considered phase is positive (left in the 

figure), the current can only pass through the bottom diode as soon as the top switch is 

controlled as open (open fault). The equation that describes the phase behaviour is: 

  
dt

d

dt

di
LlRivS

i

with

Fault
fxxf

xfstartop

xf






00

0

,  (3.3) 

where starv is the instantaneous potential of the neutral point (star connection) and “0” is the 

potential of the negative point of the dc bus (reference potential). 

Once the current 
xfi becomes zero and changes its sign (or if the fault happens when the current 

is already negative), it flows in the bottom switch, when it is on, or in the top diode, when the 

bottom switch is off (left in the figure). The phase equation is as the one of a standard VSI 

control: 
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  (3.4) 

There is a particular machine behaviour when the current becomes again equal to zero and it 

wants to change its sign. Indeed, in order to make the current change its sign (from negative to 

positive), the needed phase voltage is: 

 
dt

d

dt

di
Llv

fxxf

iixf
xfxf




 00
.  (3.5) 

However, if the current becomes positive it must flow on the bottom diode (because the top 

switch can only be open being in fault). Therefore, (3.5) results as in (3.3): 

 

 

Fig. 3.2 – Single switching open fault scheme in case of a top driver protections or missing signal from the DSP fault. 

Transient behaviour of the fault with a positive current (left) and steady state behaviour (right). 
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0 .  (3.6) 

This means that it must be verified the following relationship: 

 0

00











 xfxf ii

fxxf

star
dt

d
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.  (3.7) 

However, (3.7) is not verified if the uncontrolled generator behaviour is avoided and if the zero 

state of the three-phase inverter (in particular the zero state “0, 0, 0” that can lead to a three-

phase short circuit configuration of the machine) is not commanded. 

The analysis of the behaviour of the current when it becomes positive because (3.7) is true is 

not investigated. 

 

Bottom switch open fault 
 

The same analysis is done here for the failure of the bottom switch. The scheme in Fig. 3.3 

allows easily explaining this fault behaviour. If the fault happens when the current in the 

considered phase is negative (left in the figure), the current can only pass through the top diode 

as soon as the bottom switch is controlled as open (open fault). The equation that describes the 

phase behaviour is: 
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,  (3.8) 

where dcv is the potential of the positive point of the dc bus. 

Once the current 
xfi  becomes zero and changes its sign (or if the fault happens when the current 

is already positive), it flows in the top switch, when it is on, or in the bottom, when the top 

switch is off (left in the figure). The phase equation is as the one of a standard VSI control: 

 


















 1

00

0
top

fxxf

xfstardc

top

fxxf

xfstar

xf S
dt

d

dt

di
LlRivv

S
dt

d

dt

di
LlRiv

i

with

Fault
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In order to make the current change its sign (from positive to negative) once the current becomes 

equal to zero, the needed phase voltage is: 
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If the current becomes negative it must flow on the top diode, and (3.10) results as in (3.8): 
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 00
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This means that it must be verified the following relationship: 
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.  (3.12) 

However, (3.12) is not verified if the uncontrolled generator behaviour is avoided and if the 

zero state of the three-phase inverter (in particular the zero state “1, 1, 1” that can lead to a 

three-phase short circuit configuration of the machine) is not commanded. 

The analysis presented for describing the open phase fault is approximated, but it well 

represents most of the machine working conditions. 

 

Zero Current Control and Uncontrolled Generator Behaviour 

 

Equation (3.2) describes the instantaneous phase voltage that is needed to keep the current in 

one phase equal to zero. The proposed control technique allows zeroing the current by the 

closed loop control and keeping it to zero. However, if the emf on the windings exceeds a 

threshold value (in particular if the phase to phase terminal voltage is higher than the dc link 

voltage) the inverter behaves like a three-phase rectifier, and neither a control nor the opening 

of the switches allows avoiding the generating current. This operating condition is named as 

Uncontrolled Generator (UCG). Mechanical circuit breakers might be used to ensure that this 

dangerous generating current is zero, or the converter protections must be designed in order to 

manage the power flow related to this uncontrolled current (back-to-back configuration, brake 

resistance, etc.). 

 

 

 

Fig. 3.3 – Single switching open fault scheme in case of a bottom driver protections or missing signal from the DSP 

fault. Transient behaviour of the fault with a positive current (left) and steady state behaviour (right). 
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 Modelling and Fault Tolerant Control for Open Phase 

Faults 

 

In this thesis, the proposed machine controls are based on the SVD approach. This means that 

the space vector theory presented in Chapter 1 is used to define the control algorithm. The 

theory behind the modelling of the fault is simplified in the development of the control 

algorithm, with the hypothesis that the current in the considered faulty phases suddenly reaches 

the zero value when the fault happens. This also means that as soon as the FTC turns on, it sets 

the reference current for the faulty phases equal to zero. Doing this, even in case of a false 

detection the FTC forces the phase current to zero in the analysed phases. 

This section introduces the equations used to take into account for an open phase fault in the 

general model of a multiphase machine presented in Chapter 1. The idea of fault tolerant control 

is explained and a brief introduction to the open phase fault in three-phase machine is given. 

Then, the proposed fault tolerant control for multiphase machines is presented in its general 

shape.  

  

Model of and Open Phase Fault 

 

The constraint in the machine model and control of an open phase fault is simply as: 

 0xfi ,  (3.13) 

for each of the open phases. 

The inverse transformation for a general multiphase winding (2.54) allows writing (3.13) as: 
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with hi  the current space vector of the h-th space defined by (2.53) as: 
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Indeed, as discussed in Chapter 2, the generalized model of an m-phase machine is developed 

by means of a redundant transformation in order to develop a unique theory and adapt it to 

different multiphase windings and layouts. 
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Open Phase Fault Tolerant Control (FTC) Concept 

 

In a standard current control, the torque production is related to the interaction between the 

stator and rotor main harmonics of the magnetic field in the airgap. The general torque equation 

for an isotropic machine is the one given by (2.249) and reported here below: 
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In a machine with p pole pairs, the fundamental harmonic is the p-th one ( pH ) and the main 

torque contribution is related to this field harmonic. Indeed, the models are often developed in 

electrical degrees considering only for this spatial harmonic. In case of fault, in order to generate 

the desired average torque, the fundamental harmonic must be maintained to the same values. 

Because this harmonic is related to the main current space vector 
pi  by (2.47), the proposed 

FTC aims to take into account of the fault in order to keep the same p-th current space vector. 

To do this, the other current space vectors must be controlled according to (3.14). This result in 

the introduction of additional losses and torque components caused by the field harmonics 

related to the FTC of the other current space vectors. The FTC proposed here neglects these 

additional effects assuming that they are secondary when compared to the effect of the main 

field harmonic control. 

 

Open Phase Fault in Three-Phase Electrical Drives 

 

Most of the electrical drives are three-phase star connected ones. In this particular case of 

multiphase machines, the open phase fault theory is quite different from the one proposed for a 

general multiphase machine, because the main current space vector will never be maintained as 

in the healthy operation. Indeed, in order to generate a desired current space vector, at least two 

independent currents are needed. In case of only one degree of freedom in the currents, the 

current space vectors can move only on segments, making impossible to generate a FTC with 

reasonable performance. In literature there are FTC techniques for three-phase machines based 

on the control of the three-phases as independent windings, or on the control of the zero 

sequence current by means of an extended converter that has an additional leg for the control 

of the neutral point of the star connection [1, 2]. 

Because the aim of the work is to propose an in-deep analysis of the open phase faults in 

multiphase machines, the control is developed on the assumption that there are always enough 

degrees of freedom to completely generate the main current space vector (
pi ). In other words, 

the FTC is based on the hypothesis that there are at least three healthy phases connected to the 

same star or two pairs of phases connected to two different stars. 
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Open Phase Fault Tolerant Control in Multiphase Electrical Drives 

 

In a multiphase machine, the main current space vector (
pi ) can be generally generated in an 

infinite ways both in the healthy and faulty behaviour. One particular and quite common 

solution is the one that aims to minimize the total copper losses in the stator windings [3-5]. 

The losses in the stator windings are defined by the relative term in (2.209), reported here 

below: 
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(3.15) 

Introducing the vector of the current space vector components ( veci ) it is possible to rewrite 

(3.15) in a suitable way for the solution of the problem as: 
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S

J R
N

m
P ii
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 ,  (3.16) 

with veci  equal to: 

T

NNNppvec sss
iiiiiiiiii 








  1,1,

2

22110 ........... i , 

where “T” is the transposition operator. 

The vector representing the current space vectors can be divided in two terms, the component 

related to the main current vector 
pi  and the component that takes in to account of all the other 

auxiliary current space vectors auxi . They are defined as 

  Tppp ii i ,

,....... 0

2

1,1,1,1,1,1,2211

T

NNNppppaux iiiiiiiiiiii
sss 








  i  

(3.17) 

where the two scalar space vectors are placed at the end of the vector because of their particular 

meanings. 

The FTC equation (3.14) can be rewritten by the inverse transformation for a general multiphase 

winding, with SN
j

e





2

 , as: 
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In order to simplify the problem, hereafter only the current space vectors multiple of the pole 

pairs number (p) are considered, under the assumption that the machine can be analysed in 

electrical degrees (p=1). Therefore, the main current space vector becomes the first one. A 

further approximation is that for the analysed windings, it is possible to use only the odd 

electrical current space vectors in the definition of the inverse transformation (this is true in 

most of the multiphase symmetrical and asymmetrical machines as discussed in Chapter 1). 

Therefore, if the machine has a symmetrical winding with an odd number of phases sN  is equal 

to the number of phases (m) and if the machine has a standard asymmetrical winding with an 

even number of phases sN is twice the number of phases (2m). Note that this approach is correct 

only if the machine transformation with the equivalent 
sN  variables is symmetrical and 

completely describes the machine behaviour. Under this hypothesis, even in case of an 

asymmetrical winding, the number of considered independent space vectors can be still 

identified with the odd vectors up to the m-th. With the new simplification, the FTC relationship 

between the current space vectors is defined rewriting (3.18), leaving only the main current 

vector components in the first member as: 
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.  (3.19) 

Note that the m-th space vector component in a machine with an odd number of phases 

represents the homopolar sequence. However, this component is always zero if the open end 

winding layout is not considered and all the phases are star connected (as in the analysed case). 

Equation (3.19) can be defined for all the 
fN  faulty phases in matrix form as: 

 01  harmAiBi , (3.20) 

where the A and B matrixes are defined as: 
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with 
xfhc ,

 equal to  xfhcos , 
fhs ,

 equal to  xfhsin , and 
SN 2  . 

The copper Joule losses equation (3.16) can be written for the considered current space vector 

as: 

 
aux

T

auxs

T

sJ R
m

R
m

P iiii
22

11  ,  (3.22) 

with 
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 Tii 111 i , 

 Tmmaux iiiiii 2,2,5533 ....  i if m is odd, 

 Tmmaux iiiiii 1,1,5533 ....  i  if m is even. 

(3.23) 

It is quite intuitive that in order to minimize the stator coper losses, the square values of the 

current space vectors must be minimized, but the problem must consider also the constraints 

related to the open phases (3.20) and the star connections. 

In order to take into account for the constraints of the winding design (in terms of star 

connections), a new set of current space vectors (
auxi' ) is introduced.  

 
auxauxaux i'Ci  .  (3.24) 

Note that (as mentioned above), hereafter the zero sequence is considered as zero because the 

open end-winding configuration is not analysed in this work. 

 

Optimized FTC algorithm by means of the Lagrange multipliers method 

 

The optimization problem can be solved by means of the Lagrange multipliers method. In 

particular, the aim of the problem is the minimization of the total stator copper losses. 

By means of (3.22) and (3.20), the objective function of the Lagrange problem is: 
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L AiBiλiiii  111
22

,  (3.25) 

with λ  the vector of the Lagrange multipliers (  T λ ). 

By means of (3.20), (3.24) and (3.25), the Lagrange multipliers method applied to the presented 

problem is based on the solution of the following system of equations: 
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 (3.26) 

where 
auxi'


are the partial derivatives of the Lagrange function with respect to the α and β 

components of the auxiliary current space vectors. 



CHAPTER 3 

140 

 

Equation (3.26) can be reformulate as: 
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The first term of the equation system can be simplified as: 
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(3.28) 

It results that the auxiliary current space vectors are related to the Lagrange multipliers by: 

     λACCCi'
TT

s

aux
mR




1
,  (3.29) 

where   is the pseudo inverse operator. 

By the second equation of (3.27), the Lagrange multipliers can be evaluated by the following 

relationship: 

     0
1

1 


λACCCACBi
TT

smR
,  (3.30) 

reformulated as: 

      1BiACCCACλ



TT

smR .  (3.31) 

Therefore, the system can be rewritten as: 
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  (3.32) 

Therefore, (3.29) results as: 
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          1BiACCCACACCCi'



TTTT

aux .  (3.33) 

Equation (3.33) and the last of (3.32) allows evaluating the auxiliary current space vectors as: 

          1BiACCCACACCCCCi'i



TTTT

auxaux .  (3.34) 

It is worth to notice that (3.34) can be adopted only if there are at least three healthy phases in 

the system (the number of open phases is lower than 3m ). 

 

Healthy machine 
 

For a healthy machine, the auxiliary current space vectors are independent from the main 

current space vector, and the solution that minimizes the stator copper losses is simply: 

 0auxi .  (3.35) 

This means that in order to control the machine main current space vector (as in a standard 

FOC) with the lowest stator coper losses, the auxiliary current space vectors must be controlled 

to zero. 

 

Open phase faults for symmetrical odd-phase machines with a single star 
 

For a machine with an odd number of phases and a single star ( auxaux ii   and C  is the identity 

matrix) and (3.34) can be simplified as: 

    1

1
iBAAAi


 TT

aux .  (3.36) 

In the easier case for which only the first phase (A1) is open, A and B are: 

 01B ,  1,21,21,51,51,31,3 ... 
SS NN scscscA . (3.37) 

It is possible to verify that in this particular case, the FTC relationship becomes: 

   101...0101
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i .  (3.38) 

The resulting auxiliary current space vectors are:  

   1
3

2
 i

m
jii hh


 .  (3.39) 
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This case is a particular result, but it is interesting because all the other cases of single phase 

FTC for a multiphase machine with an odd number of phases and a single star can be identified 

by (3.39), with just a shift in the reference frame of the model in the position of the analysed 

faulty phase. Indeed, if the fault is in the xf-th phase, the relationship becomes [5]:  
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.  (3.40) 

However, in case of different star connections and in case of asymmetrical windings, also the 

case of a single-phase opening is not as easy as in a symmetrical odd-phase winding. 

 

 Current Sharing and Fault Tolerant Control for 

Independently Star Connected Multi Three-Phase 

Machines under Open Phase Faults 

 

A typical solution of multiphase layout is the multi three-phase one, where there is a number of 

three-phase symmetrical windings shifted between each other in the stator slots. The multi 

three-phase configuration has the advantage that in terms of machine modelling, it can be 

analysed as the sum of the effects of multi three-phase subsystems.  

The currents of each T-th three-phase subsystem can be completely described by their standard 

representation: 
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or, alternatively, by the general transformation: 
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with the relative inverse transformation: 
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The space vector transformation allows easily defining the main and auxiliary current space 

vectors of the analysed machine as: 
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where 
Tx represents the position of the first phase of each three-phase subsystem. If all the 

three-phase subsystems are independently star connected, all the current space vectors with an 

order multiple of three are zero. However, in some cases, it can be interesting to analyse also 

the machine behaviour when two or more three-phase subsystems (up to the single star 

configuration) are connected together. In this cases all the current space vectors must be taken 

into account. An in-deep analysis of the constraints caused by the star connections is done in 

the next section in order to show how it is possible to define a machine control that takes into 

account for them. Instead, this section focuses on the muti three-phase configuration (three-

phase independent star connected subsystems). 

 

Current sharing: concept 
 

An interesting control for multi three-phase machines is the current sharing one. The idea is 

that, if it is possible to independently control the currents of the different three-phase 

subsystems, the total power requested from the load can be shared between the three-phase 

subsystems in a not equal distribution. For example, it is also possible to make some inverter 

work in generating mode while the others are supplying the machine with the power required 

by the load plus the one generated by the inverter which is generating (without considering the 

effect of this control on the overall losses). With this approach, the fault tolerant control in case 

of an open fault of one three-phase subsystem can be developed just setting to zero the reference 

currents (power) in input to the analysed subsystem. The next subsection presents the current 

sharing concept already existing in literature. The following subsection proposes a new 

improvement to this control algorithm. Finally, the method is applied for the compensation of 

one subsystem open phase fault. 

 

Current Sharing for Independently Star Connected Three-Phase Subsystems 

 

In a standard FOC of a multiphase machine, the main goal is the production of the requested 

main current space vector (
1i ). For a multi three-phase machine, the main current vector can be 

written by (3.45) as: 
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 . (3.46) 

The stator copper losses of each three-phase subsystem are given by (3.22) with only the main 

current space vector components. It is logical that the contribution of each three-phase current 

space vector must be in phase with the others (in particular in phase with the reference of the 

main current vector 
1i ) in order to minimize the total stator copper losses. This concept is well 
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represented in Fig. 3.4, where the current space vectors of the three-phase subsystems are 

named with letters (A,B,C,D) to better distinguish them from the current space vectors that 

represents the full machine currents.  

Considering only the fundamental current space vector in (3.22) allows writing the stator copper 

losses for the t-th three-phase subsystem as: 

 
11,
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TsTJ iiR
m

P   . (3.47) 

The total stator copper losses equation by (3.22) for typical odd symmetrical and even 

asymmetrical is: 
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Alternatively, directly by the sum of the subsystem losses, (3.22) can be defined as: 

 11

1

,

1 2

3
T

T

Ts

N

T

TJ

N

T

J iiRPP
TT




 .  (3.48) 

According to the principle of losses minimization, it is possible to introduce a constant K for 

each three-phase subsystem that identifies how much the considered subsystem is involved in 

the production of the main current space vector (and therefore the machine power). By means 

of these new coefficients (
TK ), named current sharing coefficients, (3.46) can be rewritten as: 
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T

TKii
1

11 ,  (3.49) 

 where the control assumption is that each three-phase current vector is controlled as: 
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j
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 . 
(3.50) 

 

Fig. 3.4 – Schematic draw of the three-phase subsystem FTC. a) and b) show example of not optimized current controls, 

while c) shows the solution with the phase of the inverter current contributions that minimizes the stator Joule losses to 

maintain the same 1Si value for a quadruple three-phase systems (
TN =4). 
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It is clear from (3.49) that the current sharing coefficients, as they are defined, must respect the 

following constraint: 

 1
1




TN

T

TK  . (3.51) 

Under this assumption, (3.45) evaluates all the auxiliary current space vectors. However, 

because of the properties of the three-phase transformation, (3.45) results in the following 

system of three equations: 
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  (3.52) 

The homopolar current space vector of each three-phase subsystem ( 0Ti ) is not affected by the 

control of the main current space vector, therefore, even if there was not a constraint given by 

the star connections, the minimization of the losses would make it be controlled equal to zero 

when the machine is healthy. Furthermore, (3.48) and (3.49) allow writing the stator Joule 

losses as: 
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1
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 .  (3.53) 

The minimum value of the losses is given with all the same current sharing coefficient, equal 

to
T

T
N

KK
1

 . The resulting copper losses are equal to
Ts

T

J NRiiP 11
2

3
 . 

In different operating scenarios, the current sharing coefficients (
TK ) can be controlled in order 

to make some of the three-phase subsystem work in positive torque operation (
TK >0, motoring 

mode) and others in negative torque operation (
TK <0, generating mode). In other words, the 

power of some three-phase subsystems can be positive while in other it is negative. This makes 

some of the power circulate between the three-phase subsystems without affecting the total 

power of the load, realising a power transfer between the different inverters. However, this 

result is quite valid in case of permanent magnet machines, while in case of induction machines 

a better current sharing control must be considered in order to minimize the losses. Indeed, part 

of the main current vector, the d-axis component in the reference frame of the rotor flux, is 

magnetizing current. Even if the magnetizing current is only related to the reactive power, the 

d-axis component of the main current vector generates losses and must be considered separately 

in a proper power sharing control of the machine.  
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Current Sharing for Independently Star Connected Three-Phase Subsystems (d-q axis 

control enhancement) 

 

In order to take into account for the d-q FOC of the machine, the current sharing theory can be 

improved defining all the equations in the rotor field reference frame rewriting (3.46) as: 
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,  (3.54) 

where now the control assumption is that each three-phase current vector is controlled as: 
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. (3.55) 

The current sharing coefficients must now respect the following constraints: 
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The auxiliary current space vectors can be now evaluated by the following equation system: 
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  (3.57) 

By (3.55) and (3.56) it is possible to implement a current sharing technique for the rotor flux 

control by the choice of the TdK  coefficients (for the rotor flux generation in IM or for flux 

weakening in PM machines), and for the torque and power production by the choice of the TqK  

coefficients. This allows minimizing the reactive power (and the related losses) by keeping for 

example all the TdK  coefficients equal to 
T

dTd
N

KK
1

  and managing the input and output 

active power by the TqK  coefficients.  

In particular, having a negative TdK  coefficient only results in an increase of the reactive power 

asked from the T-th converter and by the others in order to compensate this negative effect. 

Therefore, the proposed current sharing control mainly aims to avoid negative d-axis current 

sharing values. 
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Open Phase FTC Algorithm for Independently Star Connected Three-Phase Subsystems 

 

The easier approach in the definition of a FTC algorithm for a multi three-phase machine is 

based on the current sharing approach presented in the previous subsection. 

The idea is that in case of an open phase fault in one of the three-phase subsystems, all its three 

phases are controlled to zero.  

Although this thesis is focused on the development of FTC techniques for multiphase drives, it 

is worth to notice that it is a typical practice to develop converter devices based on a hardware 

fault communication. This means that if a fault is detected in the switching devices, it is possible 

that the logic circuits (or the controller) intervene to open the faulty leg of the inverter as in Fig. 

3.5. Another possibility is that the protections open all the phases of the three-phase inverter as 

in Fig. 3.6. This second protection solution is the suitable one for a FTC control based on the 

multi three-phase current sharing theory. 

Having a missing three-phase subsystem, or controlling its current to zero in order to protect 

the machine from a failure, results in the simple relationship: 

 0fK , (3.58) 

where fK is the current sharing coefficient that describes the faulty three-phase subsystem.  

If all the other three-phase subsystems are controlled with the same amplitude (solution that 

minimizes the stator copper losses), in order to respect the constraint (3.51) the current sharing 

coefficients of the healthy phases must be: 

 
1

1




T

T
N

K . (3.59) 

If there are fN  faulty subsystem, the general relationship for the healthy subsystem is: 

 

Fig. 3.5 – Logic for the fault protection on a single leg. 
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In this optimized FTC, the references for the auxiliary current space vector, in a multi three-

phase machine with independently star connected three-phase windings, can be evaluated as: 
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  (3.61) 

Equation (3.61) completely defines the optimized FTC control of a multi three-phase machine 

with independently star connected subsystems with an algorithm based on the disconnection of 

a full subsystem. This solution is the optimised one also for subsystems with more than three-

phases (until they are done by symmetrical windings) and if the stars are connected to each 

other in whatever configuration. However, if only one phase is in fault, this algorithm open (or 

control to zero the currents) also the remaining healthy phases of the faulty subsystem. It is 

clear that some advantages can be expected by a FTC based on the exploitation of all the 

available degrees of freedom (healthy phase currents) of the faulty machine. 

 

 

 

 

 

Fig. 3.6 – Full three-phase fault protection logic. 
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 Improved Fault Tolerant Control for Multiphase 

Machines under Open Phase Faults 

 

In section 3.2 the proposed FTC, optimized for the stator copper losses, has been extended to a 

general multiphase machine with an odd number of phases and a single star connection. In 

section 3.3, a simplified method, based on the current sharing approach, has been proposed to 

manage a fault in a multi three-phase machine by disconnecting the faulty three-phase 

subsystems.  

In this section, the generalized method based on the Lagrange multipliers is analysed for multi 

three-phase windings with whatever star connection configuration.  

The results are generalised to the most common star configurations and for whatever number 

of faulty phases (up to m-3). 

 

Optimized FTC Algorithm by means of the Lagrange Multipliers method for Multi 

Independently Star Connected n-Phase Subsystems (n odd) 

 

The theory developed in the previous section 3.3 can be extended to the improved optimized 

FTC proposed in section 3.2 by taking into account of the connection constraints represented 

by the C matrix. 

The general FTC equation (3.34) is reported here below: 

          1BiACCCACACCCCCi'i



TTTT

auxaux .   

The definition of the A and B matrixes is clear, but how to define the constraints of the current 

space vectors in relation with the star connections is in general quite challenging.  

The star connection constraints in multi n-phase systems are well represented by relationships 

between the homopolar current space vectors of the various n-phase subsystems. In case of 

independently star connected symmetrical n-phase subsystems (therefore with n an odd 

number), (3.45) can be generalized to define the space vector constraints as: 
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, (3.62) 

where in case of multi three-phase windings n is equal to three. 

In terms of C matrix, (3.62) is equal to impose: 

 0)1(2)2(),1(2)2(  xnnxnnC , 0)1(2)1),(1(2)1(  xnnxnnC , (3.63) 

with x up to half the number of subsystems (n-phase windings). 
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If the subsystems are star connected between each other, the evaluation of the C matrix becomes 

challenging. Because having more than three phases for each subsystem is not common, 

hereafter the analysis focuses on the multi three-phase windings. The possible star configuration 

in a multi three-phase winding are limited. As example, Fig. 3.7 shows the most common star 

configurations for a quadruple three-phase winding. 

 

Optimized FTC Algorithm by means of the Lagrange Multipliers method for Multi 

Three-Phase Subsystems Connected to a Single Star 

 

In case of a single star connection, there are two typical winding configurations: the 

symmetrical one (with an odd number of phases) and the asymmetrical one (with an even 

number of phases). The first solution has already be presented in section 3.2, being the direct 

result of the FTC algorithm once the possibility of having an open end-winding configuration 

is neglected. This case is easy because the star constraint can be easily defined by considering 

the zero current space vector (homopolar component of the full machine) equal to zero. 

Instead, in case of an even number of three-phase subsystems the single star constraint is more 

complex to be defined. 

 

Single-star even-phase asymmetrical multi three-phase windings 
 

The single star constraint for a multi three-phase winding with an even number of phases can 

be defined as: 

 

 

Fig. 3.7 – Typical star configurations for a quadruple three-phase winding. 
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. (3.64) 

Because the FOC aims to control the main current space vector (
1i  for a model developed in 

electrical degrees), the suitable inverse transformation for an asymmetrical even-phase machine 

is the one that takes into account for only the odd space vectors, as in (2.20) with the 

transformation constant (C) equal to 4. The current inverse transformation for a typical even 

phase asymmetrical machine is reported here below: 
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ii  ,     (3.65) 

with Ns
j

e




2

  and mN S 2 . 

Because the model, the control and the losses are easily defined for the inverse transformation 

with the odd current space vectors, the single star constraint cannot be written as for a 

symmetrical odd-phase winding ( 00 i ). Indeed this component is related to an even space 

vetor. The constraint is more complex to be considered. In particular, the odd current space 

vectors related to the zero sequences of the three-phase subsystems are defined by (3.62) with 

n equal to 3 and k an odd number as: 
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 . (3.66) 

Because the inverse transformation (2.20) takes into account for a number of variables (in terms 

of current space vectors) equal to the degrees of freedom of the system (the currents), the star 

connection constraints are completely defined by the odd current space vector multiple of 3 in 

(2.20). The homopolar current space vector of each three-phase subsystem can be derived by a 

suitable inverse transformation related to these current space vectors. 

It is possible to write (2.20) in matrix form as: 

 0, Tevenstar Gii   , (3.67) 

with: 

 TkSkSSSSSevenstar oddodd
iiiiii  ),3max(),3max(,9,9,3,3, i , 

 TNT T
ii 0100 i , 

and:  
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2
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1
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NsN
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T
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G , (3.68) 
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with r the raw number and c the column number. Is it worth to notice that the vector of the 

current space components and the one of the three-phase homopolar currents have always the 

same dimension. Therefore, the inverse of the G matrix allows evaluating the three-phase 

homopolar currents as function of the related current space vectors as: 

 evenstarT ,

1

0 iGi
 , (3.69) 

The star connection constraint (3.64) can be written for a single star winding as: 
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iGi , (3.70) 

with  TTNones )(  the transpose of a vector of 
TN ones. 

Equation (3.70) allows writing the single-star constraint by setting one component , the x-th, of 

the current space vectors (the related to the three-phase homopolar currents ones) in function 

of the others as: 
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(3.71) 

resulting in the space vector constraint: 
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  . (3.72) 

This constraint for the star connection matrix (C) used to evaluate (3.34) results as: 

 

 











 
T

T

N

T

xT

N

T

yT

yx

1

,

1

1

,

1

)1(61),1(61

G

G

C , 

 

 













 
T

T

N

T

xT

N

T

yT

yx

1

,

1

1

1,

1

)1(62),1(61

G

G

C  , 

0)1(61),1(61  xxC ,  

(3.73) 

setting a constraint on the α component of the x-th current space vector related to the three-

phase homopolar currents, or: 
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(3.74) 

setting a constraint on the β component of the x-th current space vector related to the three-

phase homopolar currents . 

The choice of the x-th current space vector that is used to set the constraint for the single-star 

connection is arbitrary, but only one component of this current space vector must be chosen, 

because the constraint must be unique. Indeed, the single star result in the loss of only one 

degree of freedom in the current control. Therefore, only one equation must be added as 

constraint to the solution of the problem.  

If there are more stars, there must be an independent equation (constraint) for each of them. 

 

Optimized FTC Algorithm by means of the Lagrange Multipliers method for Multi-Star 

Connected Three-Phase Subsystems  

 

The approach used to take into account for the single-star connection can generalized to 

consider different star connections in multi three-phase machines. A general constraint equation 

system has not been found, but the methodology for defining it according to the analysed 

winding is presented hereafter.  

 

Multi-star multi three-phase windings 
 

The star connection constraint for a machine with an odd number of phases can be defined as 

done for the single star analysis in case of an even number of phases, just considering also the 

homopolar current 0i . The star connection constraints can still be identified by means of (3.67), 

reported here below: 

 0Tstar Gii  . (3.75) 

In case of an odd number of three-phase subsystems, there is just the additional constraint 

related to the homopolar current component of the full system ( 0i ). Therefore, the vector of the 

space vectors related to the homopolar currents of the three-phase subsystems is: 

 Tmkmkoddstar oddodd
iiiiiii  ),3max(),3max(,9,9,3,30,  i . 

The constraint for each Sx-th star connected system is: 
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 0
1

00 


TSxN

T

TSxSx ii , (3.76) 

that can be written making explicit the equation for the k-th three-phase subsystem of the Sx-th 

star connected system as: 

 




TSxN

kT
T

TSxkSx ii
1

00,
' . 

(3.77) 

This means that considering (3.75), it is possible to evaluate the star connection relationships 

for each z-th component as: 

 0):1:1(,, TNzkstar T
iGi  . (3.78) 

If (3.77) is taken into account, the previous equation results as: 

 0):1:1,(, ' TNzkstar T
iGi  , (3.79) 

where 0' Ti  is considered as the modified vector of three-phase homopolar currents described 

as: 

 TNnnnT
T

iiiiii 00,10,
'

0,120100 ......' i , 

where (3.77) describes a modified vector for each star connection. In matrix form, this 

relationship can be written as: 

 00' TT ii Z , (3.80) 

with Z a matrix defined as an identity matrix with a zero on the main diagonal for each star (on 

the raw related to one of the star connected three-phase subsystem, n-th), for which the elements 

on the other columns are -1 for all the three-phase subsystems connected to the same star (n-

th). 

It result that  

 000 ''' TTTstar iiGGii HZ  , (3.81) 

where H  is the ZG  matrix without the n-th columns of the homopolar components that have 

been written as function of the others, and 0'' Ti is the vector of the homopolar components 

neglecting the ones written as function of the others by (3.77). Therefore, H is a (
TN ;

ST NN 

) matrix and 0'' Ti  is a (
SN ; 1) column vector.  

For each star (but the ones with a single three-phase subsystem connected to the star), it is 

possible to find one redundant set of equations in the relationships between the three-phase 

homopolar currents and the related current space vectors. By properly choosing the redundant 

equations set, it is possible to identify in (3.81) two systems of relationships like: 
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011,
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H

H
  (3.82) 

One of the two matrixes (
2H ) must be a (

ST NN  ;
ST NN  ) invertible one, and its relative 

vector of the current components (
2,stari ) is a (

ST NN  ;1) one.  

The final constraint equation can be found as: 

   2,

1

211, starstar ii


 HH . (3.83) 

Indeed, the number of constraints (dimension of the 
1,stari  vector) is 

SN  and the related matrix 

(
1H ) is a (

ST NN  ;
SN ) one. 

Here below the method is applied for multi three-phase machines up to 12 phases (quadruple 

three-phase configuration). 

 

Optimized Open Phase FTC Algorithm for a dual three-phase winding (star connection 

constraints) 

 

A six-phase machine has usually a double three-phase winding that can be connected in a single 

star or in a double star configuration. The winding is composed of two three-phase subsystems 

shifted by 30 electrical degrees. The model is based on a 12 phase symmetrical winding where 

half of the phases do not exist, and therefore the space vectors are defined by a 12-phase 

symmetrical transformation. 

A schematic example of a standard dual three-phase drive is shown in Fig. 3.8, where also the 

magnetic axes of the machine are highlighted. 

 

The currents of the two three-phase subsystems (A and B) can be described by the relative space 

vector representation by (3.41) and (3.42) as: 

 

Fig. 3.8 – Double three-phase standard drive and relative magnetic axis directions. 
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The current space vectors related to the three-phase homopolar current components are defined 

by the relationship (3.75): 

 
0Tstar Gii  ,  

with  Tstar ii  ,3,3i  ,  TBAT ii 000 i  and the G matrix given by (3.68) is: 
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Independent Stars  
 

In case of independent stars, the Z matrix defined in (3.80) is: 

 









00
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Z .  

Therefore (3.81) results as: 
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00 TTstar iiGi Z .  

The solution of the system (3.82) is: 
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i
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The constraints on the C matrix (originally an identity one) are given as: 

        0)1(61),1(61  xxC ,     
SNx ,...1 , 

        0)1(62),1(62  xxC ,     
SNx ,...1 , 

 

that means: 
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        01,1 C    02,2 C . (3.84) 

 

Single Star 
 

In case of a single star, the Z matrix defined in (3.80) is: 

 











01

01
Z .  

Therefore (3.81) results as: 
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The solution of the system (3.82) is: 
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Note that the constraint can be defined in two ways, but in order to define the same result given 

by (3.73), H1 and H2 are chosen in a suitable way. If the other solution is chosen, the constraint 

is defined as in (3.74). 

The final constraint equation (3.83) is: 

    ,3,3

1
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1

21,3
2

1

2

1
iiii 













HH .  

The constraint on the C matrix (originally an identity one) is given as: 

        01,1 C    02,2 C  12,1 C . (3.85) 

 

Optimized Open Phase FTC Algorithm for a triple three-phase winding (star connection 

constraints) 

 

A nine-phase machine has usually a triple three-phase winding, which can be connected in a 

single star or in a double star configuration, however here only a particular solution with two 

stars is presented. The symmetrical winding layout is composed of three three-phase 
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subsystems shifted by 40 electrical degrees (the resulting model is based on a 9-phase 

symmetrical winding, and therefore a 9-phase symmetrical transformation).  

A schematic example of a symmetrical triple three-phase drive is shown in Fig. 3.9, where also 

the magnetic axes of the machine are highlighted. 

 

The currents of the three three-phase subsystems (A, B and C) can be described by the relative 

space vector representation by (3.41) and (3.42) as: 
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2
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The current space vectors related to the three-phase homopolar current components are defined 

by the relationship (3.75) 

 0Tstar Gii  ,  

with: 

 Tstar iii 0,3,3 i , 

 TCBAT iii 0000 i , 

and the G matrix given by (3.68) as: 

 

Fig. 3.9 – Triple three-phase standard drive and relative magnetic axis directions. 
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Independent Stars  
 

In case of independent stars, the Z matrix defined in (3.80) is: 
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Therefore (3.81) results as: 
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The solution of the system (3.82) is: 
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The constraint on the C matrix (originally an identity one) are: 

        0)1(61),1(61  xxC  ,     
SNx ,...1 , 

        0)1(62),1(62  xxC ,     1,...1  SNx ,  
 

where the second relationship is evaluated up to the 1SN -th element because the homopolar 

space vector does not have an imaginary part, that means: 

                01,1 C ,   02,2 C ,  07,7 C . (3.86) 

 

 

Single Star 
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In case of a single star, the Z matrix defined in (3.80) is: 
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Therefore (3.81) results as: 
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The solution of the system (3.82) is: 
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The final constraint equation (3.83) is: 
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Indeed, there are infinite solutions on the 












,3

,3

i

i
 values. Therefore, the only constraint is that 

the homopolar sequence is zero. 

The constraint on the C matrix (originally an identity one) is given as: 

                      07,7 C .   (3.87) 

 

Double Star (AB-C) 
 

Because this example does not have a practical application, the problem is solved only for the 

case of the first two stars connected together and the third one independently star connected. 

In this case, the Z matrix defined in (3.80) is: 
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Therefore (3.81) results as: 

.

00

02887.0

0
2

1

000

001

001

3

1

3

1

3

1

6
9

2
sin

3

1
3

9

2
sin

3

1
0

6
9

2
cos

3

1
3

9

2
cos

3

1

3

1

000 TTTstar iiiGi








































































































Z    

The solution of the system (3.82) is: 
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Indeed, if the homopolar component is considered, the equation system will result in an infinite 

number of solutions for the values of the third current vector components. However, by this 

simplification, the additional constraint can be found neglecting the homopolar components. 

The final constraint equation (3.83) is: 
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Indeed, there are infinite solutions on the 












,3

,3

i

i
 values. Therefore, the only constraint is that 

the homopolar sequence is zero.  

The constraint on the C matrix (originally an identity one) is given as: 

               01,1 C ,   
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2
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tgC ,  07,7 C . (3.88) 

 

Optimized Open Phase FTC Algorithm for a quadruple three-phase winding (star 

connection constraints) 

 

A twelve-phase machine has usually a quadruple three-phase winding that can be connected in 

a single star, in a quadruple star or in a dual six-phase star configuration, (other more unusual 

solutions are not analysed). The winding is composed of four three-phase subsystems shifted 
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by 15 electrical degrees. The model is based on a 24 phase symmetrical winding where half of 

the phases do not exist, and therefore a 24 phase symmetrical transformation is used.  

A schematic example of a standard quadruple three-phase drive is shown in Fig. 3.10, where 

also the magnetic axes of the machine phases are highlighted. 

 

The currents of the four three-phase subsystems (A, B, C and D) can be described by the relative 

space vector representation by (3.41) and (3.42) as: 
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The current space vectors related to the three-phase homopolar current components are defined 

by the relationship (3.75) 

 
0Tstar Gii  ,  

with: 

 Tstar iiii  ,9,9,3,3i , 

 TDCBAT iiii 00000 i . 

and the G matrix given by (3.68) as: 

 

Fig. 3.10 – Quadruple three-phase standard drive and relative magnetic axis directions. 
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Independent Stars  
 

In case of independent stars, the Z matrix defined in (3.80) is: 

 





















0000

0000

0000

0000

Z .  

Therefore (3.81) results as: 
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The solution of the system (3.82) is: 
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The constraint on the C matrix (originally an identity one) are given as: 

        0)1(61),1(61  xxC  ,     
SNx ,...1 , 

        0)1(62),1(62  xxC ,     
SNx ,...1 , 

 

that means: 

        01,1 C ,   02,2 C ,  07,7 C ,  08,8 C . (3.89) 
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Single Star 
 

In case of a single star, the Z matrix defined in (3.80) is: 
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Therefore (3.81) results as: 
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The solution of the system (3.82) is: 
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The final constraint equation (3.83) is: 
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In terms of analytical result, this can be written as: 
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The constraint on the C matrix (originally an identity one) is given as: 

        01,1 C ,   2.41422,1 C , 17,1 C  0.41428,1 C . (3.90) 

 

Double Star (AB-CD) 
 

One possibility is to connect the two consecutive three-phase subsystems in two independent 

six-phase stars. This configuration is named here as “AB-CD” stars configuration. 

In this case, the Z matrix defined in (3.80) is: 
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Therefore (3.81) results as: 
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The solution of the system (3.82) is: 
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Note that this choice of the H matrixes allows having always a finite solution (in other cases 

the system cannot be solved). 

The final constraint equation (3.83) is: 
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The constraint on the C matrix (originally an identity one) is given as: 

        01,1 C ,   0.41428,1 C , 07,7 C  2.41422,7 C . (3.91) 

 

Double Star (AC-BD) 
  

For a double six-phase configuration “AC-BD”, the steps are the same presented for the “AB-

CD” solution. The Z matrix defined in (3.80) is: 
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The solution of the system (3.82) is: 
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Note that this choice of the H matrixes allows having always a defined solution (in other cases, 

as the solution used for the “AB-CD” layout, the system is unsolvable). 

The final constraints equation (3.83) is: 
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The constraints on the C matrix (originally an identity one) are given as: 

        01,1 C ,   17,1 C , 28,1 C ,  02,2 C , 18,2 C . (3.92) 

 

Double Star (AD-BC) 
  

For a double six-phase configuration “AD-BC”, the steps are the same presented for previous 

solutions.  

The Z matrix defined in (3.80) is: 
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The solvable solution of the system (3.82)  in this case (as for the “AB-CD” case) is: 
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Note that this choice of the H matrixes allows having always a finite solution (in other cases 

the system cannot be solved). 

The final constraint equation (3.83) is: 
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The constraints on the C matrix (originally an identity one) are given as: 

        01,1 C ,   2.41422,1 C , 07,7 C , 0.41428,7 C . (3.93) 

The next section summarizes the fault tolerant control technique presented in this chapter. The 

following sections show the simulation and experimental results. 

 

 Summary of the proposed Fault Tolerant Control for 

Open Phase Faults 

 

The method proposed in the previous sections has been generalized to whatever standard 

distributed winding multiphase machine under the following hypothesis: 

 The winding is not an open end-winding (each phase is connected with others to a star); 

 The phase number is odd, or it is a multiple of three, in a typical symmetrical or 

asymmetrical winding layout; 

 The machine is symmetrical under each pole pair. 

The considered FTC is based on the minimization of the total stator copper losses in the 

production of the main current space vectors (  Tii  ,1,11 i ), and is based on the solution of 

(3.34) for the evaluation of the auxiliary current space vectors: 

          1BiACCCACACCCCi



TTTT

aux .    

While the matrixes A and B depend on the fault (they represent one equation for each faulty 

phase), the C matrix is related to the constraints introduced by the star connection of the 

winding. According to the hypotheses of the analysed windings, odd and even phase machines 

can be analysed in the same way. In particular, the solutions have been presented for:  

 Single star (with the number of phases, m, odd or multiple of three) 

 Independent n-phase stars (with n an odd number of symmetrical distributed phases) 

 Double stars for multi three-phase windings 

 

Single Star (with the number of phases, m, odd or multiple of three) 
 

In case of an odd number of phases, the simplified method that neglects the zero order current 

space vector already takes into account for the single star connection constraint. In case of an 
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even number of three-phase subsystems, the constraint results in having the C matrix with 

(3.73): 
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setting a constraint on the α component, or (3.74): 
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setting a constraint on the β component, with G the matrix that relates the current space vectors 

to the three-phase homopolar currents (
0Tstar Gii  ) defined by (3.68) with Ns  equal to m (total 

phase number) for an odd-phase machine and Ns  equal to 2m for an even-phase machine: 
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Independent n-phase stars (with n an odd number of phases) 
 

Equation (3.63) defines the constraints related to a multi n-phase machine with 
TnN  phases 

independently connected: 

 0)1(2)2(),1(2)2(  xnnxnnC , 0)1(2)1),(1(2)1(  xnnxnnC .  

 

Double stars for multi three-phase windings 
 

A unique general solution for the double star configurations has not been found. However, the 

result for a triple three-phase winding has been shown and the one for a twelve-phase machine 

in double six-phase layout are reported here below. Equations (3.91)-(3.93) define the double 

six-phase constraints, depending on the winding layout as: 

   01,1 C ,   0.41428,1 C , 07,7 C , 2.41422,7 C ,   for “AB|CD” layout  
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   01,1 C ,   17,1 C , 28,1 C ,  02,2 C , 18,2 C ,     for “AC|BD” layout 

  01,1 C ,   2.41422,1 C , 07,7 C , 0.41428,7 C , for “AD|BC” layout 

The proposed method can be used to compensate whatever open phase fault condition or to set 

to zero the current in the desired phases. The approach is general, and allows developing a 

suitable FTC for also other winding configurations. A general equation has not been found 

because the current space vector constraints, that must be defined in order to solve the problem, 

can be defined in more ways, and the solution is not unique.  

Anyway, the solution for the definition of the optimized FTC can be found only if the model is 

described by a number of space vector components that is equal to the number of degrees of 

freedom available for the current control, making the star connection constraints essential. 

 

Simplified FTC and Current Sharing Approach 
 

In order to simplify the solution for a multi three-phase machine with independently star 

connected subsystems, the current sharing approach can be adopted. In this case, a fault is 

compensated by the loss of all the three-phase faulty subsystem. 

The current sharing technique can be also used for a power sharing control of the machine. In 

particular, it is possible to make some three-phase subsystems working in motoring mode and 

others in generating mode, realizing a power transfer between them. The general current sharing 

equations (3.57) are defined by the proper choice of the current sharing coefficients, and are: 
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  (3.94) 

 with the following constraints (3.56): 

 1
1




TN

T

TdK   and 1
1




TN

T

TqK .  

The FTC simplified technique is based on setting TdK  and TqK  equal to zero for the faulty T-

th three-phase subsystem. 
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  Case study: 12-Phase Asymmetrical Machine  

 

As case study, the methods are verified for a 12-phase induction machine. The analysed 

squirrel-cage induction machine has four independent three-phase windings, fed by four VSIs. 

The three-phase windings are spatially shifted by 15 electrical degrees and independently star 

connected. The distribution of the magnetic axes of the phases is shown in Fig. 3.11. The 

converters can be connected to one or more shared dc links and the three-phase subsystems can 

be star connected between them in whatever configuration. 

The machine has 48 stator slots and 40 rotor slots, and the main control parameters are 

summarized in Table 3.1 under the hypothesis that the higher order field harmonics can be 

neglected (this is the hypothesis behind the proposed FTC). 

 

Analytical results  

 

By the equations summarised in the section 3.5, it is possible to evaluate the current values for 

each working condition of the machine and whatever fault tolerant operation in the hypothesis 

that the current control is properly working (zero error condition). Indeed, the proposed FTC 

defines a machine FOC that is based on the generation of the desired main current space vector 

(  Tii  ,1,11 i ). Therefore, the auxiliary current space vectors are all set to zero in the standard 

behaviour, while they assume different values only if a current sharing technique or a FTC are 

applied. The reference values for the auxiliary current space vectors are defined in order to 

follow the reference of the main current vector minimizing the total stator copper Joule losses.  

The stator copper Joule losses and the maximum value of the phase current are analysed for a 

given control technique (fault condition). The losses are used to compare the different control 

techniques in order to give an approximated evaluation of the machine power derating, while 

the maximum phase current is analysed in order to understand the derating required by the 

converter constraint (instantaneous maximum current). 

A first comparison is done for a single phase fault with independent three-phase stars, showing 

the losses with a current sharing based FTC (named also “three-phase FTC”) and comparing 

them with the obtained by the improved FTC (named also “single-phase FTC”). Fig. 3.12 shows 

 

Fig. 3.11 – Schematic of a standard quadruple three-phase drive and magnetic axis directions of the 12-phase machine. 
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the difference between the two FTCs ideas. Then the performance is compared also with the 

other possible star configurations and faults. 

 

Independent Stars: comparison between three-phase FTC and single-phase FTC 
 

The three-phase simplified FTC results in controlling the auxiliary current space vectors by 

(3.94) setting 0 AqAdA KKK  and 
3

1
 TqTdT KKK  for the healthy T-th three-phase 

subsystems B, C and D. The auxiliary current space vectors result as: 
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  (3.95) 

 

Table 3.1 – Main machine SVD control parameters. 

 

 

Fig. 3.12 – Schematic of the basic idea of the three-phase FTC (purple) and the single-phase FTC (green) in case of 

single phase open fault for an independent star configuration of a multi three-phase machine. 
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The single-phase enhanced FTC results in controlling the auxiliary current space vectors by 

(3.34), setting the star connection constraint by the proper C matrix. The auxiliary current space 

vectors result as: 
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  (3.96) 

Fig. 3.13 shows the analytical value of the stator copper Joule losses when the main current 

space vector ( 1i ) is increased up to its rated value (16 A). The figure compares the losses in 

case of healthy and faulty machine (phase A1 open fault) for both the FTCs. It is clear that a 

single-phase FTC allows reducing the total stator copper Joule losses. This means that a lower 

de-rating is expected. Indeed, to avoid the thermal overload of the stator windings, the 

magnitude of the main current vector ( 1i ) has to be lower than the rated value (IS1, rated) by 

about 6% for the single-phase FTC, and by about 12% for the three-phase FTC. 

Fig. 3.14 compares the maximum peak value of the phase currents for both the FTCs as a 

function of the magnitude of the main current space vector ( 1i ). Although the Joule losses are 

significantly reduced in the single-phase FTC, they are not equally distributed among the phases 

and it can be verified that the maximum peak value of the phase currents is almost the same for 

the two methods for a given main current vector. The result in Fig. 3.14 shows also that the 

reduction of the overload performance (related to the inverter maximum phase current) is 

almost the same in the two FTC. The red dotted line (that describes the maximum phase current 

value allowed by the converter) crosses the two Imax curves almost in the same points in the 

 

Fig. 3.13 – Analytical Joule losses comparison of the healthy machine (blue) and the faulty machine (phase A1 open), 

with three-phase FTC (purple) and single-phase FTC (green). 



CHAPTER 3 

174 

 

overload area. The derating of the maximum allowed magnitude of the main current space 

vector is of 17.25 A with the three-phase FTC and 17.51 A with the single-phase FTC, 

compared to 23 A in case of healthy machine. With a single-phase FTC the maximum current 

increase is of 0.26 A, about 1.13% of the maximum magnitude in case of healthy machine. 

Therefore, the overload performance have almost the same de-rating in the two FTCs.  

 

Star configuration comparison for a single phase open fault 
 

It is possible to connect the stars of a quadruple three-phase machine between each other in 

order to mainly reduce the machine stator copper losses. In particular, the more attractive star 

configurations are: 

 Multi three-phase (A|B|C|D), as the one analysed in the previous subsection; 

 Double six-phase configuration with star connection of neighbouring three-phase 

subsystems (AB|CD); 

 Double six-phase configuration with star connection of alternated three-phase 

subsystems (AC|BD); 

 Double six-phase configuration with star connection of concentric three-phase 

subsystems (AD|BC); 

 Twelve-phase single-star configuration (ABCD). 

Fig. 3.15 shows the analytical value of the stator copper Joule losses when the main current 

space vector ( 1i ) is increased up to its rated value (16 A). The figure compares the losses in 

case of healthy and faulty machine (phase A1 open fault) for the FTCs in all the star connection 

configurations. It is clear that the losses can be reduced by connecting together the stars of the 

three-phase windings. In particular, as expected the multi-phase single-star configuration 

allows having the better performance. The multi six-phase layouts result in the same losses, 

making them equal from this first analysis. 

 

Fig. 3.14 – Analytical maximum phase current comparison of the healthy machine (blue) and the faulty machine (phase 

A1 open), with three-phase FTC (purple) and single-phase FTC (green). 
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Fig. 3.16 compares the maximum peak value of the phase currents for the FTCs as a function 

of the magnitude of the main current space vector ( 1i ) in all the star connection configurations.  

 

Fig. 3.16 – Analytical maximum phase current comparison with healthy machine (blue) and the faulty machine (phase A1 

open). Three-phase FTC (purple) and single-phase FTC: quadruple three-phase layout (green), double six-phase layouts 

(spotted) and twelve-phase layout (orange). The maximum phase current is highlighted in red.  

 

 

Fig. 3.15 – Analytical Joule losses comparison with healthy machine (blue) and the faulty machine (phase A1 open). Three-

phase FTC (purple) and single-phase FTC: quadruple three-phase layout (green), double six-phase layouts (spotted) and 

twelve-phase layout (orange). The rated copper Joule losses are highlighted in red.  
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It is interesting to note that the maximum current in some winding configurations is higher than 

the one resulting from the three-phase FTC. In particular, all the dual six-phase configurations 

give a higher peak current with the single phase FTC when compared with the three-phase FTC.  

Furthermore, also the multi-phase single-star layout results in a higher peak current than the 

multi three-phase independent stars one with the single phase FTC. 

These results can be used in order to identify a proper FTC according to the machine limits. 

During a machine overload operation, the best control is the single-phase FTC with a multi 

three-phase configuration. Instead, at steady state operation, the minimization of the losses can 

be achieved with better performance exploiting the increased degrees of freedom of a double 

six-phase or better a full twelve-phase winding.  

It is worth noticing that the twelve-phase configuration makes possible the implementation of 

all the proposed FTC algorithms, and the star constraints can be implemented by the control. 

Therefore, also a multi six-phase layout can be controlled as a multi three-phase one. 

It result that in terms of current control, the multi-phase winding is the more flexible, allowing 

for the implementation of all the proposed FTCs according to the performance requirements. 

Between the double six-phase configurations, the peak current is significantly higher in the 

AB|CD configuration, while the two other configurations seem to have reduced maximum 

currents. However, the AD|BC layout behaves like the AB|CD one when the faulty phase is in 

the three-phase system B or C, while the peak current in case of the AC|BD stars remains as in 

Fig. 3.16. It results that the better configuration is the AC|BD one. The maximum current in the 

phases affects also the machine behaviour in terms of saturations as is shown in one of the 

following subsections. The results are the same if the faulty phase is the first, second or third 

of a three-phase subsystem. Therefore, this analysis is general for whatever single-phase fault. 

The phase currents for the healthy and faulty machine with FTC are shown in Fig. 3.17-Fig. 

3.23 in order to give a better understanding of the phenomena. 

 

 

Fig. 3.17 – Analytical phase currents at rated value of the main current space vector. Healthy machine. 
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Fig. 3.18 – Analytical phase currents at rated value of the main current space vector. Three-phase FTC (phase A1 open). 

 

 

Fig. 3.19 – Analytical phase currents at rated value of the main current space vector. Single-phase FTC (phase A1 

open). 
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Fig. 3.20 – Analytical phase currents at rated value of the main current space vector. Double six-phase layout AB|CD 

(phase A1 open).  

 

 

Fig. 3.21 – Analytical phase currents at rated value of the main current space vector. Double six-phase layout AC|BD 

(phase A1 open).  
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Fig. 3.22 – Analytical phase currents at rated value of the main current space vector. Double six-phase layout AD|BC 

(phase A1 open).  

 

 

Fig. 3.23 – Analytical phase currents at rated value of the main current space vector. Twelve-phase layout ABCD  

(phase A1 open).  
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Star configuration comparison for a multi-phase open fault 
 

The number of open phase faults and their distribution among the phases results in a huge 

amount of possible fault scenarios. Therefore, here it is presented a particularly critical fault 

with almost half of the phases open. The result is interesting only to validate the advantage of 

the star connections also in case of a catastrophic fault. 

The working scenario is represented by the following fault configuration: 

021211  DDBBA iiiii . 

Therefore, only one three-phase subsystem is completely working. Such a fault might represent 

the case of a mechanical or thermal fault in some areas of the machine, for example caused by 

a partial failure of the cooling system. However, the aim of this analysis is not to justify the 

fault phenomenology but just showing the differences in terms of FTC algorithms and star 

connections. 

Fig. 3.24 shows the analytical value of the stator copper Joule losses when the main current 

space vector ( 1i ) is increased up to its rated value (16 A). The figure compares the losses in 

case of healthy and faulty machine for the FTCs in all the star connection configurations. As 

expected, the multi-phase single-star configuration allows having the better performance. The 

multi six-phase layouts result in different losses, but the best solution depends from the fault 

configuration. 

Fig. 3.25 compares the maximum peak value of the phase currents for the FTCs as a function 

of the magnitude of the main current space vector ( 1i ) in all the star connection configurations, 

showing that aslo in this case the best solution is one of the double six-phase according to the 

 

Fig. 3.24 – Analytical Joule losses comparison with healthy machine (blue) and the faulty machine (phases A1, B1, B2, 

D1, D2 open).  Three-phase FTC (purple) and single-phase FTC: quadruple three-phase layout (green), double six-phase 

layouts (spotted) and twelve-phase layout (orange). The rated copper Joule losses are highlighted in red.  
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analysed fault. In general, the single star still results the best solution also in terms of maximum 

expected peak current.  

Figures Fig. 3.26-Fig. 3.32 show the phase currents in the different FTCs and star connection 

layouts. 

 

 

 

 

Fig. 3.25 – Analytical maximum phase current comparison with healthy machine (blue) and the faulty machine (phases 

A1, B1, B2, D1, D2 open).  Three-phase FTC (purple) and single-phase FTC: quadruple three-phase layout (green), double 

six-phase layouts (spotted) and twelve-phase layout (orange). The maximum phase current is highlighted in red.  

 

 

Fig. 3.26 – Analytical phase currents at rated value of the main current space vector. Healthy machine. 
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Fig. 3.27 – Analytical phase currents at rated value of the main current space vector.  

Three-phase FTC (phases A1, B1, B2, D1, D2 open). 

 

 

Fig. 3.28 – Analytical phase currents at rated value of the main current space vector.  

Single-phase FTC (phases A1, B1, B2, D1, D2 open). 
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Fig. 3.29 – Analytical phase currents at rated value of the main current space vector. 

 Double six-phase layout AB|CD (phases A1, B1, B2, D1, D2 open).  

 

 

Fig. 3.30 – Analytical phase currents at rated value of the main current space vector.  

Double six-phase layout AC|BD (phases A1, B1, B2, D1, D2 open).  

 



CHAPTER 3 

184 

 

 

 

 

 

 

 

 

Fig. 3.31 – Analytical phase currents at rated value of the main current space vector.  

Double six-phase layout AD|BC (phases A1, B1, B2, D1, D2 open).  

 

 

Fig. 3.32 – Analytical phase currents at rated value of the main current space vector.  

Twelve-phase layout ABCD (phases A1, B1, B2, D1, D2 open).  
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Control Schemes - Comparison 

 

The current control of a multiphase machine differs from a standard three-phase one because 

of the increased number of degrees of freedom. A suitable way to develop the current control 

of an electrical machine is by means of a space vector approach. This means that the control is 

developed analysing the SVD machine model. Each space can be controlled on the idea that it 

represents an equivalent three-phase system (controlled in its d-q components) that interacts 

with the other ones as described by the machine model. In this subsection, the control schemes 

for a quadruple three-phase machine are presented, comparing the different possible solutions 

according to the star connection and desired FTC requirements.  

 

Current Control– Independent stars: Current sharing (three-phase FTC) 
 

The simplified current sharing equation for a quadruple three-phase machine (3.95) is: 
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In this control scenario, owing to the star connections or to the current control algorithm, the 

current space vectors related to the homopolar sequences of the three-phase subsystems are zero 

( 093  ii ). In case of one or more open phase faults in one or more three-phase subsystems, 

the FTC algorithm works setting the current sharing coefficients (
TK ) related to the faulty 

subsystems equal to zero.  

According to (3.97), the auxiliary current space vectors are directly related to the main current 

space vector or to its conjugate. 

Fig. 3.33 shows the current sharing control scheme of the machine. 

As in a standard FOC for an induction machine, the d-axis current control of the main space 

vector is synchronous and directed in the direction of the rotor flux (ϑ), and it is used for 

generating the rotor flux itself. For a given rotor flux magnitude, the q-axis current control of 

the main space vector (synchronous with the rotor flux, but shifted by 90 electrical degrees from 

the d-axis in the positive direction) is used to control the machine torque (or in other words it 

allows the position, speed or power control). 

At steady state operation, the main current space vector is a vector rotating at constant speed 

around a circular trajectory. Therefore, it is represented by a direct sequence of the currents, 

highlighted with a “+” in the control scheme. In the d-axis reference frame, the main current 

space vector 1i  results as: refqSrefdSrefS jiiii ,1,1,11   . The PI regulator used for controlling 
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the main current space vector d-q components is named as PI(c) in Fig. 3.33. Note that this PI 

is the sum of two regulators, one for the real part of the vector control and one for the imaginary 

one. The figure shows only one regulator for sake of scheme clarity, and the same is done for 

the other current space PI regulators. 

The auxiliary current space vectors are represented by direct sequences (7th) or inverse ones (5th 

and 11th) as in (3.97). For this reason, the machine healthy and FT controls can be defined my 

means of a pair of synchronous PI regulators for each space (PI c, d, e and f in Fig. 3.33 ). The 

inverse sequences are highlighted with a “-“. 

Owing to the hypothesis of the FTC algorithm, (it neglects the presence of the higher order field 

harmonics in the airgap), the compensation of the bemfs in the auxiliary spaces is not 

implemented. The PI outputs are the voltage space vectors. By means of standard Park 

transformations, the voltage space vectors are transferred to the stator reference frame. The 

inverse SVD transformation is used to evaluate the reference phase voltages and finally a 

standard PWM technique is used to define the inverter control. In case of more than three-

phases connected to the same star, the multiphase PWM technique is used, as in [6]. 

Six additional PI regulators (the pairs related to PI(d), PI(e) and PI(f) in Fig. 3.33) are needed 

to implement a standard current sharing control (with the same d-axis and q-axis sharing 

coefficients) or a three-phase FTC. Then, there are also the remaining four standard FOC PIs 

(PI(a), PI(b) and PI(c)). However, these additional PI regulators are needed in the control of the 

multiphase machine also in a healthy operation. Indeed, in a standard multiphase FOC, the 

auxiliary current space vectors must be controlled to zero. In many cases, this already allows 

obtaining the best machine performance (there are also techniques that aim to improve the 

performance by exploiting also the auxiliary spaces, but usually the efficiency of the drive is 

reduced in these operations [7]). 

 

 

 

 

Fig. 3.33 – Block diagram of the current sharing and three-phase FTC control scheme. 
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Current Control– Independent Stars: single-phase FTC 
 

When a single-phase FTC is implemented, the auxiliary current space vectors are controlled 

with both direct and inverse sequences. Therefore, the current control requires twice the PI 

regulators, as shown in Fig. 3.34. Fig. 3.34 highlights the logic of the three-phase FTC (in 

purple) and the single-phase FTC (in green). In particular, the additional PI regulators and 

transformations requested by the single-phase FTC are highlighted in green. The total number 

of additional regulators compared with a standard FOC is 12 (six pair of PI, two pairs for each 

auxiliary current space vector). 

 

Current Control– General Solution (double six-phase or single star control): optimised 

single-phase FTC 
 

If a double six-phase or a single-phase winding layouts are chosen, the homopolar currents 

flowing from one three-phase subsystem to another must be controlled. The control of these 

currents is related to the control of the auxiliary current space vectors 3i  and 
9i , as shown in Fig. 

3.35. It result that the control of a double six-phase or a twelve-phase machine requires at least 

10 auxiliary PI regulators (a pair for each of the five auxiliary space vectors: 3rd, 5th, 7th, 9th and 

11th). 

The FTC control of the machine requires just the 10 additional PIs if a three-phase FTC (or a 

basic current sharing technique) is implemented or if the machine is healthy. Instead, as soon 

as the method is enhanced to the single-phase FTC, the additional PIs must be twice. In total, 

the auxiliary PIs for an improved FTC are 20 (ten pairs, two pairs for each of the additional 

 

Fig. 3.34 – Block diagram of the single-phase and three-phase FTC control schemes. 
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space vectors). The additional PIs required by the optimized FTC are highlighted in orange in 

Fig. 3.35. 

It is clear that the implementation of the machine control is more complex if the number of stars 

is reduced. Indeed, each star connection adds a constraint in the current control, reducing the 

number of controllable degrees of freedom. The reduced number of degrees of freedom can be 

found also in the current space vectors, and this must be taken into account in the development 

of the current control. If the star constraints are not properly considered, the PI regulators 

diverge (saturate) resulting in a deterioration or unfeasibility of the control. 

 

Numerical simulation results (Matlab-Simulink) 

 

Numerical simulation results are presented in this subsection to compare the different FTCs in 

terms of control complexity. The machine model is simplified in order to take into account for 

a reduced number of field harmonics (up to the 11th one). The space parameters are simplified 

and the cage is analysed as a 12-phase machine with a single star connection. In other words, 

the degrees of freedom of the cage is constrained to the same number of the stator ones. The 

simulations are based on a Matlab-Simulink code, where most of the blocks are developed by 

Matlab scripts. 

 

Fig. 3.35 – Block diagram of the single-phase and three-phase FTC control schemes. 
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The simulation results are presented for reduced speed and currents, in order to compare them 

with the obtained experimental results (done at no load, reduced speed and with a limited power 

supply in order to avoid risks in case of fault behaviour and FTC). 

 

Simulation results– Independent Stars: three-phase and single-phase FTC 
 

Fig. 3.36 shows the Matlab-Simulink simulation results for the quadruple three-phase 

configuration (four independently star connected three-phase windings). Firstly, the machine is 

magnetized and it is accelerated up to 300 rpm (with a smooth slope starting at 0.25 s). At t=1 

s a sudden fault happens (in the first analysis the single-phase fault is investigated, with the 

phase A1 opening) and the FTC acts instantaneously. The FTC compensates the open phase 

fault by increasing the current in the remaining healthy phases according to the desired FTC 

method (three-phase FTC from 1 to 1.25 s, and single phase FTC from 1.25 to 1.5 s). 

It can be noticed that the maximum phase current remains almost the same in the two FTCs. 

Fig. 3.37 shows the comparison of the phase currents in the different steady state working 

conditions (healthy, with three-phase FTC and with single-phase FTC). The results are the same 

 

Fig. 3.36 – Simulation of a speed transient from 0 to 300 rpm, followed by the fault of phase A1 open (t=1s). From 1 to 1.25 

s three-phase subsystem FTC, from 1.25 to 1.5 s single-phase FTC. The last subplot shows the α−β components of the main 

current space vector iS1 (blue) and of the auxiliary ones (red). 
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expected from the analytical comparison. Indeed, with the single-phase FTC the currents are 

better distributed in the remaining healthy phases, but the maximum peak current is almost the 

same as in the three-phase FTC.  

What is more interesting in terms of current control implementation is that the trajectories of 

the current space vectors are significantly different in the two methods.   

Fig. 3.38 shows the trajectories of the current space vectors resulting from the Matlab-Simulink 

simulations. As expected, the main current space vector trajectory is always the same 

independently from the working scenario (the main FTC goal is to do this). When the machine 

is healthy (blue trajectories in Fig. 3.38), the auxiliary current space vectors are controlled to 

zero (being a result of an ideal simulation, the references are followed really well by the PI 

controllers). When the three-phase FTC is working, the auxiliary current space vectors are 

controlled according to (3.97). Being the trajectories circumferences, a direct sequence 

regulator (7th space) or an inverse one (5th and 11th spaces) for each component of the current 

vectors is enough. 

 

Fig. 3.37 – Simulated phase currents. The machine is healthy (top left) and then has phase A1 opened, with the three-phase 

FTC (top right) and the single-phase FTC (centre and bottom). With colours are differentiated the 1st phase (blue), the 2nd 
(green) and the 3rd (orange) of each inverter. The thickest lines refer to the phase currents of inverter A. 

. 
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When the single-phase FTC is activated, the trajectories of the current space vectors are 

segments. A segment trajectory can be analysed, in terms of space vector control, as the sum of 

a direct and an inverse sequence of the rotating space vector with same amplitude and speed, 

with the only difference that the inverse sequence is rotating in the opposite direction. In this 

particular case (phase A1 open fault), the segments are moving on the real-axis (α), but in 

general the segments are shifted according to the fault condition. Instead, the effect of the FTC 

on the trajectory and the distribution of the currents between the phases is not affected by the 

working operation (on-load and no-load operation result in the same FTC behaviour). 

The current distribution between the remaining healthy phases is presented in Table 3.2. 

As can be noticed, in this particular case the peak current in the B1 and D2 phases is almost the 

same in the two FTCs, while in the other phases the currents are significantly reduced with the 

single-phase FTC.  

 

 

 

 

 

 

 

Fig. 3.38 – Simulated current space vectors trajectories. Trajectory of 1Si  (blue) and of the auxiliary vectors in case of 

single-phase FTC (green) and three-phase subsystem FTC (purple). 
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Simulation results– Double Six-Phase winding: Single-phase FTC 
 

The simulations have been carried out also for the other winding layouts (double six-phase and 

twelve-phase). When the three-phase homopolar currents can flow from one three-phase 

subsystem to another, the 3rd and 9th current space vectors are no more zero. 

Fig. 3.39 shows the three-phase homopolar currents with the different double six-phase 

configurations in case of single phase FTC with phase A1 open fault. The three-phase 

homopolar currents are related to the 3rd and 9th space vectors. Therefore, the auxiliary current 

space vectors are all different from zero in the FT operation. 

 

Table 3.2 – Maximum phase current in case of A1 open phase fault (in p.u. to the value of the healthy machine) 

 Healthy Three-phase FTC Single-phase FTC 

A1 1 0 0 

A2 1 0 0.87 

A3 1 0 0.87 

B1 1 1.33 1.31 

B2 1 1.33 1.18 

B3 1 1.33 1.03 

C1 1 1.33 1.26 

C2 1 1.33 1.26 

C3 1 1.33 1 

D1 1 1.33 1.18 

D2 1 1.33 1.31 

D3 1 1.33 1.03 
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Fig. 3.39 – Three-phase homopolar currents in case of phase A1 open fault and single phase FTC. AB|CD star connection 

(top), AC|BD star connection (centre) and AD|BC star connection (bottom). 

 

. 
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Table 3.3 shows the current space vector trajectories when the machine is healthy and when the 

single-phase FTC is on.  

Table 3.3 – Comparison of the current space vector trajectories in respect to the healthy behaviour in case of A1 open 

phase fault. The scale is of 2A/div in all the figures. 

Space Healthy  AB|CD AC|BD AD|BC 

1 

    

3 

    

5 

    

7 

    

9 

    

11 
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It is interesting to note that the trajectory are similar in the 5th, 7th and 11th auxiliary spaces, with 

just different magnitudes of the vectors. Instead, the 3rd and 9th current space vectors are 

different also in terms of phase angle. 

Table 3.4 shows the current distribution between the remaining healthy phases according to the 

different double six-phase layouts. The AB|CD layout seems the best in terms or current 

distribution among the healthy phases, but this happens only for the particular analysed fault.  

Indeed, if the fault happens in the three-phase subsystem B or C, the AD|BC configuration 

behaves with a maximum current as the one given by the AB|CD winding configuration (that 

remains always as in the analysed case). Therefore, the winding that results in the best current 

distribution (minimum peak current) in all the faulty conditions is the AC|BD one. The AD|BC 

behaves better than the others only when the fault is in the A or D three-phase subsystems, but 

being the fault location unpredictable, the AC|BD is still the best solution. 

 

Simulation results–Single-Star winding: Single-phase FTC 
 

The single-star configuration is the one that allows exploiting the highest number of degrees of 

freedom (the open end-winding configuration is not analysed).  

Fig. 3.40 shows the three-phase homopolar currents with the single-star (twelve-phase) 

configuration in case of single phase FTC with phase A1 open fault. As in the double six-phase 

layout, the auxiliary current space vectors are all different from zero in the FT operation. 

Table 3.5 shows the current space vector trajectories when the machine is healthy and when the 

single-phase FTC is on, comparing all the proposed FTC techniques. 

Table 3.6 presents the current distribution between the remaining healthy phases according to 

the different star connection layouts. 

Table 3.4 – Maximum phase current in case of A1 open phase fault (in p.u of the value of the healthy machine). 

 Healthy AB|CD AC|BD AD|BC 

A1 1 0 0 0 

A2 1 0.94 0.94 0.94 

A3 1 0.94 0.94 0.94 

B1 1 1.48 1.24 1.24 

B2 1 0.95 1.13 1.13 

B3 1 0.97 1.02 1.02 

C1 1 1.19 1.42 1.19 

C2 1 1.19 0.97 1.19 

C3 1 1 1.03 1 

D1 1 1.13 1.13 1.33 

D2 1 1.23 1.24 0.99 

D3 1 1.02 1.02 1.12 

 



CHAPTER 3 

196 

 

  

 

Fig. 3.40 – Three-phase homopolar currents in case of phase A1 open fault and single phase FTC. Single-star layout. 

 

. 

 

Table 3.5 – Comparison of the current space vector trajectories in respect to the healthy behaviour in case of A1 open 

phase fault. The scale is of 2A/div in all the figures. 

Space Healthy  Single Star Space Single Star 

1 

  

7 

 

3 

  

9 

 

5 

  

11 
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Simulation results–Comparison: multi-phase critical fault FTC 
 

The same fault configuration used as example for the analytical study, has been simulated to 

show the control and performance behaviour when a catastrophic fault happens. The fault is 

described by the following relationship: 

021211  DDBBA iiiii . 

Therefore, only one three-phase subsystem is completely working. As mentioned in the 

previous analysis, the aim is not to justify the fault phenomenology but just showing the 

differences in terms of FTC algorithms and star connections. Without showing all the 

simulation results, it is interesting to note that in this fault scenario (as happens in general) the 

auxiliary current space vector trajectories are ellipsoids, as shown in Table 3.7 for the single-

star configuration. It is also interesting to note that the amplitude of the auxiliary current space 

vectors is quite big when a fault as the one analysed here happens. Therefore, the hypothesis of 

the model to neglect the effects of the higher order space vectors in the magnetic field in the 

airgap might not be admissible, and some additional effects might be considered. 

Table 3.8 reports the maximum phase currents reached in the different FTCs. It is clear that the 

proposed algorithm does not aim to distribute the current contributions to the main current space 

vector in order to minimize the peak current. Indeed, the algorithm is developed for the stator 

copper Joule losses minimization.  

The significant increase of current and related copper losses in the remaining healthy phases 

result in an excessive overrating. As previously shown in Fig. 3.24 and Fig. 3.25, the main 

current space vector (machine output power) must be reduced at least of about two times in 

terms of total stator copper losses (steady state derating), and of about three times (in transient 

overload conditions) to not exceed the maximum current in the switching devices. Therefore, 

for the analysed drive the maximum current constraint affects the FTC steady state performance 

Table 3.6 – Maximum phase current in case of A1 open phase fault (in p.u of the value of the healthy machine). 

 Healthy 3-ph FTC 1-ph FTC AB|CD AC|BD AD|BC Single-Star 

A1 1 0 0 0 0 0 0 

A2 1 0 0.87 0.94 0.94 0.94 1 

A3 1 0 0.87 0.94 0.94 0.94 1 

B1 1 1.33 1.31 1.48 1.24 1.24 1.32 

B2 1 1.33 1.18 0.95 1.13 1.13 1.03 

B3 1 1.33 1.03 0.97 1.02 1.02 0.99 

C1 1 1.33 1.26 1.19 1.42 1.19 1.28 

C2 1 1.33 1.26 1.19 0.97 1.19 1.07 

C3 1 1.33 1 1 1.03 1 1.01 

D1 1 1.33 1.18 1.13 1.13 1.34 1.21 

D2 1 1.33 1.31 1.23 1.24 0.99 1.1 

D3 1 1.33 1.03 1.02 1.02 1.12 1.06 
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more than the Joule losses constraint in case of a catastrophic fault. Instead, for a single phase 

fault, the Joule losses and maximum current constraints can still be taken into account 

separately for the steady state and overload working operations (as in the healthy condition). 

Table 3.7 – Comparison of the current space vector trajectories in respect to the healthy behaviour in case of A1, B1, B2, 

D1 and D2 open phases fault. The scale is 2A/div in all the figures. 

Space Healthy  Single Star Space Single Star 

1 

  

7 

 

3 

  

9 

 

5 

  

11 

 

 

Table 3.8 – Maximum phase current in case of A1, B1, B2, D1 and D2 open phase faults (in p.u of the value of the 

maximum peak current for the healthy machine). 

 Healthy 3-ph FTC 1-ph FTC AB|CD AC|BD AD|BC Single-Star 

A1 1 0 0 0 0 0 0 

A2 1 0 1.73 1.65 1.97 1.7 1.75 

A3 1 0 1.73 0.93 1.97 1.23 1.51 

B1 1 0 0 0 0 0 0 

B2 1 0 0 0 0 0 0 

B3 1 0 0 0.96 0.8 1.31 1.1 

C1 1 4 3.61 3.55 3.47 3.33 3.49 

C2 1 4 3.61 3.43 2.3 2.51 2.26 

C3 1 4 1 1.19 2.1 1.05 1.03 

D1 1 0 0 0 0 0 0 

D2 1 0 0 0 0 0 0 

D3 1 0 0 1.1 0.81 1.65 1.41 
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Finite Element Results (Flux): Comparison of iron saturation and related torque 

reduction in case of two three-phase subsystem open phase fault (best double six-phase 

configuration for simplified six-phase FTC performance enhancement)  

 

FE simulations have been carried out to understand the machine behaviour in case of open 

phase fault, and understand if the hypothesis behind the developed FTC are sufficient. In 

particular, the three-phase FTC with one and two faulty subsystems is analysed here. 

The simulations are carried out at rated speed (5941 rpm, with electrical frequency of about 200 

Hz) and at rated current (16 Apk, 11.5 Arms). 

Between the differences in terms of winding configuration, it is clear that the increased 

complexity of the control for a twelve-phase machine compared with a quadruple three-phase 

one can be justified by the improved FTC performance. Indeed, the stator copper losses are 

significantly reduced in the single-star FTC. Instead, the double six-phase configurations 

analysis shows advantages on the AC|BD star connection for keeping the maximum phase 

current lower in the worst fault scenario.  

As it has been done for the quadruple three-phase FTC, also for the double six-phase layout it 

is possible to define a FTC that controls to zero all the currents in the faulty subsystem (the one 

where the open phase fault happens). This FTC is named here as six-phase FTC. The method 

is based on the current sharing technique, with the difference that the current sharing constants 

in (3.97) are equal for the two three-phase subsystems connected to the same star. Because this 

control technique is much easier to implement in a double six-phase machine than a single-

phase FTC one, some FE analysis are done to define which is the best double six-phase 

configuration also for the double six-phase FTC.  

 

Fig. 3.41 – B-H curve of the stator (NO 20) and rotor (VacoFlux 50) laminations. 
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Note that the analysed machine has FeCo laminations in the rotor. In particular, a VACOFLUX 

50 supplied by VACUUMSCHMELZE GmbH & Co. Therefore, the iron saturation is at much 

higher value (at about 2 T) than the one of a standard lamination (as the one of the stator, NO 

20 supplied by Cogent Power Ltd). Fig. 3.41 shows the B-H curve of the two materials. 

 

Quadruple Three-Phase Configuration (Three-phase FTC) 
 

Fig. 3.42 shows the machine behaviour at rated conditions when the machine is healthy (left), 

when the currents of one three-phase subsystem are set to zero while the currents in the others 

are maintained as before the fault (centre), and when the three-phase FTC is implemented in 

order to compensate the fault by the remaining healthy phases. 

Because the remaining healthy phases work in an overload condition, the iron saturation reduces 

the actual torque of about 1.5 %.  

 

 

 

 

 

 

Fig. 3.42 – Flux view for the healthy machine (left), the machine working with a three-phase open fault without FTC 

(centre) and with three-phase FTC (right). Inverter D three-phase open fault. 

 

. 
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Dual Six-Phase Configuration (Neighbouring three-phase subsystems - AB|CD and AD|BC) 
 

The dual six phase configurations AB|CD and AD|BC behave in the same way in the worst 

scenario of six-phase FTC (six-phase open fault), because in both cases the fault happens in 

two series connected neighbouring three-phase subsystems. Therefore, the analysis is presented 

only for the AB|CD configuration with the six-phase subsystem CD FTC. 

Fig. 3.43 shows the machine behaviour at rated conditions when the machine is healthy (left), 

when a six-phase subsystem current are set to zero and the others maintain the same amplitudes 

(centre), and when the six-phase FTC is implemented. The same main current space vector is 

generated by the AB subsystem to compensate the fault. 

Because the remaining healthy phases work in an overload condition, the iron saturation reduces 

the actual torque of about 5.5 %. This torque reduction is quite important, and it is intensified 

by the concentration of the magneto motive force produced by the stator currents (because the 

two remaining three-phase subsystems are neighbouring). 

 

 

 

 

 

 

Fig. 3.43 – Flux view for the healthy machine (left), the machine working with a six-phase open fault without FTC (centre) 
and with six-phase FTC (right). Inverters C and D six-phase open fault. 
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Dual Six-Phase Configuration (Not neighbouring three-phase subsystems – AC|BD) 
 

Fig. 3.44 shows the machine behaviour at rated conditions when the machine is healthy (left), 

when the currents of one six-phase subsystem (BD) are zero and the others are maintained as 

before the fault (centre), and when the six-phase FTC is implemented in order subsystem (AC) 

to compensate the fault by its remaining healthy phases. 

Because the remaining healthy phases work in an overload condition, the iron saturation reduces 

the actual torque of about 3.6 %. This torque reduction is less than the one found for the case 

of neighbouring three-phase subsystems fault. It results that also in terms of iron saturation in 

case of six-phase open FTC the best FTC performance is reached with an AC|BD double six-

phase layout. 

It is important to notice that if the machine is not a 12-phase machine, but just a six-phase one, 

this result does not means that the six-phase machine winding must be defined following this 

idea. Indeed, if the phases are distributed in more slots per pole, the best solution for increasing 

the machine torque/Ampere ratio is the one with the phases distributed in neighbouring slots. 

The result reported here is only for a 12-phase current control. 

 

 

 

 

 

Fig. 3.44 – Flux view for the healthy machine (left), the machine working with a six-phase open fault without FTC (centre) 
and with six-phase FTC (right). Inverters B and D six-phase open fault. 
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Experimental results 

 

Some experimental results are presented in this subsection in order to validate the possibility to 

implement the FTC and verify the theory presented in this chapter. Where not specified, the 

presented tests are at no load, 5 A of magnetizing current (d-axis component) and 300 rpm 

speed. 

 

Test bench 
 

Fig. 3.45 shows the test bench, where a gearbox (9:1) connects an electrical machine to the 

analysed drive. The torque is measured by a Kistler 4503A50H00B1000. 

The tests have been carried out on a scaled prototype of starter-generator for MEE applications 

(right side of Fig. 3.45). The machine has twelve phases that can be star connected in the 

terminal box in whatever configuration. The main machine control parameters are the ones 

already presented in Table 3.1. Fig. 3.46 shows the exploded inverter components. 

Fig. 3.47 shows the full quadruple three-phase inverter and control platform (left) and the 

induction machine prototype (right). 

 

 

 

 

Fig. 3.45 – Test bench. From left to right: load (bidirectional drive) gearbox 9:1, torque meter, scaled prototype. 

. 
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Independent Stars: Simplified current sharing control (matryoshka and circulating power) 
 

Two examples of the simplified current sharing theory have been verified by experimental tests 

at 1000 rpm and 9 Nm torque.  

The first one, named here as “matryoshka current sharing”, is presented in order to verify that 

it is possible to control the four three-phase subsystems of the quadruple three-phase machine 

with different current sharing constants.  

The “matryoshka current sharing” control is defined by the relationship: 

DCBA KKKK 842  . 

Fig. 3.48 shows the first currents of each of the four three-phase subsystems. 

 

Fig. 3.46 – Test bench. From the left to the right: DSP TMS320F28335, control board (with DSP), driver’s board for one 
three-phase winding, power board for one three-phase winding. 

 

. 

 

 

 

Fig. 3.47 – Quadruple three-phase inverter (left) and twelve phase starter/generator scaled prototype (right). 

 

. 
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The second example, shown in Fig. 3.49, validates the possibility to control one three-phase 

 

Fig. 3.48 – Matryoshka current sharing control with DCBA KKKK 842  , [10 A/div]. 

 

. 

 

 

Fig. 3.49 – Simplified current sharing control with 5.0AK  and 5.0 DCB KKK , [10 A/div]. 
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subsystem with a negative current sharing coefficient. This means that the considered three-

phase subsystem is working in generating mode while the three others are working in motoring 

mode. Note that the current sharing technique in Fig. 3.49 is not the optimized one for the 

generation of the rotor flux (while three subsystems are working to produce it, the subsystem 

A is working in flux weakening control). If this technique is likely to be used in a real 

application, it must be improved with different current sharing coefficients on the d and q axes 

as explained in 3.3. 

 

Independent Stars: comparison between three-phase and single-phase FTC 
 

The experimental results for the FTC are presented for the machine working at 300 rpm and no 

load condition. Fig. 3.50 shows the experimental comparison of the phase currents in the 

different steady state working conditions (healthy, with three-phase FTC and with single-phase 

FTC).  

The results are the same expected from the analytical and simulation comparison. Indeed, with 

the single-phase FTC the currents are better distributed in the remaining healthy phases, but the 

maximum peak current is almost the same as in the three-phase FTC.  

Fig. 3.51 shows the trajectories of the current space vectors resulting from the experimental 

measurements. As expected, the main current space vector trajectories are always the same 

independently form the working scenario (the main FTC goal is to do this). When the machine 

is healthy, the auxiliary current space vectors are controlled to zero. Therefore, the auxiliary 

current space vectors are almost equal to zero (except for measurement errors and limited 

bandwidth of the PI regulators) and are not shown in Fig. 3.51. When the three-phase FTC is 

working, the auxiliary current space vectors are controlled according to (3.97). Being the 

trajectories circumferences (except for some secondary effects, mainly related to the dead times 

and voltage drops on the switching devices), a direct sequence regulator (7th space) or an inverse 

one (5th and 11th spaces) for each component of the current vector is enough. 

When the single-phase FTC is activated, the trajectories of the current space vectors are 

segments (except for the secondary effects). In general, the segments are shifted according to 

the fault condition.  

The FTC current distribution between the remaining healthy phases is the same presented in 

Table 3.2, with a maximum experimental mismatch for the peak current of about 5%. 

Fig. 3.52 compares the stator copper Joule losses for the two FTCs, evaluated from the 

measured currents and phase resistances. As can be noticed, the total stator copper losses are 

constant in the three-phase FTC and present a ripple in the single-phase FTC. A ripple in the 

losses might result in a ripple in the total power requested by the dc link that can be a further 

drawback of the single phase FTC. 
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Fig. 3.50 – Measured currents of the inverter-B, when the machine is healthy (top left) and then has phase A1 opened, with 

the three-phase subsystem FTC (top right). Then all the inverter currents with the single-phase FTC are shown: inverter-A 

(centre left), inverter-B (centre right), inverter-C (bottom left), inverter-D (bottom right). With colours are differentiated the 
1st phase (blue), the 2nd (green) and the 3rd (orange) of each inverter, [2A/div]. 

 

Fig. 3.51 – Measured current space vectors trajectories. Trajectory of  (left) and of the auxiliary vectors (5th, 7th and 11th 

from the left to the right) in case of single-phase FTC (top) and three-phase subsystem FTC (bottom), [2A/div]. 
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Experimental results– Double Six-Phase winding: Single-phase FTC 
 

Fig. 3.53, Fig. 3.54 and Fig. 3.55 show the three-phase homopolar currents with the different 

double six-phase configurations in case of single phase FTC with phase A1 open fault. 

The three-phase homopolar currents are related to the 3rd and 9th space vectors. Therefore, the 

auxiliary current space vectors are all different from zero in the FT operation.  

 

Fig. 3.52 – Total stator copper Joule losses in case of phase A1 open fault with three-phase FTC (left) and single-phase 

FTC (right), [ 20W/div]. 

 

. 

 

 

 

Fig. 3.53 – Three-phase homopolar currents in case of phase A1 open fault and single-phase FTC. AB|CD star layout, 
[2A/div]. 

 

. 
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Fig. 3.54 – Three-phase homopolar currents in case of phase A1 open fault and single-phase FTC. AC|BD star layout, 

[2A/div]. 

 

. 

 

 

 

Fig. 3.55 – Three-phase homopolar currents in case of phase A1 open fault and single-phase FTC. AD|BC star layout, 

[2A/div]. 

 

. 
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Table 3.9 shows the current space vector trajectories for the healthy machine and for the FTC 

in case of phase A1 open fault. 

 

Table 3.9 – Comparison of the current space vector trajectories in respect to the healthy behaviour in case of A1 

open phase fault. The scale is of 2A/div in all the figures. 

Space Healthy  AB|CD AC|BD AD|BC 

1 

    

3  

   

5 

    

7 

    

9  

   

11 
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Experimental results–Single-Star winding: Single-phase FTC 
 

Fig. 3.56 shows the three-phase homopolar currents with the single-star (twelve-phase) 

configuration in case of single-phase FTC with phase A1 open fault.  

Table 3.10 shows the current space vector trajectories when the machine is healthy and when 

the single-phase FTC is on. 

  

 

 

 

 

 

 

 

 

Fig. 3.56 – Three-phase homopolar currents in case of phase A1 open fault and single phase FTC. Single-star layout, 

[2A/div]. 

 

. 
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Table 3.10 – Comparison of the current space vector trajectories in respect to the healthy behaviour in case of A1 open 

phase fault. The scale is of 2A/div in all the figures. 

Space Healthy  Single Star Space Single Star 

1 

  

7 

 

3  

 

9 

 

5  

 

11 
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  Conclusions 

 

In this chapter, an in-deep analysis of the open phase faults has been carried out, focusing on 

the development of optimised FTCs for multiphase machines. 

The attention is posed on the quadruple three-phase winding topology. 

Two main control techniques are proposed and compared: the first one (three-phase FTC) is 

based on the opening of all the phases of the faulty subsystem (ex. disabling the faulty inverter); 

in contrast, the second one (single-phase FTC) tries to exploit all the remaining healthy phases 

of the inverters. The three-phase FTC is a particular case of current sharing control. To be 

thorough, also the current sharing theory has been explained and validated. 

Both the proposed FTCs aim to minimize the stator copper Joule losses without changing the 

reference value of the fundamental current space vector ( 1i ), leading to different results.  

Owing to the higher number of available phases, the single-phase FTC shows reduced stator 

Joule losses but needs twice the number of PI regulators to control the auxiliary current vectors. 

In order to enhance the FTC performance, it is also possible to connect the three-phase 

subsystems in various star configurations (mainly double six-phase or twelve-phase). Reducing 

the number of stars results in increasing the degrees of freedom in the current control. These 

degrees of freedom allow reducing the stator Joule losses in case of fault, but the control of 

more auxiliary current vectors result in having four additional PI regulators for the control of 

the homopolar currents between the three-phase subsystems. Also FEA (in Flux) has been done 

to consider the effects of the iron saturation, in order to define which is the best double six-

phase winding layout in terms of fault tolerant behaviour.  

The analytical results and the FTC techniques have been verified by Matlab-Simulink 

simulations and by experimental tests on a scaled prototype of quadruple three-phase starter-

generator. The tests confirmed the feasibility of the proposed FTCs in all the analysed star 

configurations. 

To conclude, if only the stator copper Joule losses are taken into account, the single-phase FTC 

with a single star layout is the best one. Conversely, if the controller cannot afford the 

introduction of additional regulators in terms of memory usage and calculation time, the three-

phase FTC with independent three-phase subsystems has lower control requirements. As an 

intermediate solution, the double six-phase layout with the star connection of not neighbouring 

three-phase subsystems seems another possible solution for FTC improvement. 
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High Resistance and Interturn 

Short Circuit Faults 
 

High resistance (HR)connections and interturn short circuits (ISC) are among the most 

probable faults related to the deterioration and ageing of electrical machines. Winding faults 

are cause of about the 30% of failures in electrical machines [1]. The insulation can be 

damaged by unexpected heat sources, mechanical and chemical alterations or because of 

electrical stress and partial discharges (in particular, for machine fed by converters based on 

switching devices). As example, the localised temperature increase could happen in a healthy 

machine, working in its standard conditions, in case of unexpected missing cooling of a machine 

volume (obstructing material, cooling system failure). This might affect the material properties 

and bring to a HR fault in one winding before the system failure. It is clear that the early 

detection of these faults is significantly important for applications with high reliability 

requirements, or if the maintenance costs are critical.  

The aim of this chapter is to model the HR and ISC faults and show how it is possible to 

implement an online detection algorithm based on a standard controller (without requiring 

additional expensive and bulky measurement devices).  

Many techniques have been proposed to detect winding faults, such as Motor Current Signature 

Analysis (MCSA), sequence impedances and Artificial Intelligence (AI) [2]. The presented 

approach is based on the sequence impedances evaluation, where the detected values are 

compared with the ones expected from an analytical model. The model of the faulty machine is 

based on a winding function approach [3, 4], as the ones developed in Chapter 2. 

The HR fault is analysed with an accurate modelling of the phenomena. The presented HR 

detection algorithm is based on the idea already tested for other machines [5, 6]. The same 

approach is extended for the ISC detection. The considered ISC is supposed to happen between 

turns of the same phase (the phase-to-phase and the phase to ground faults are not analysed) 

and the phenomena is simplified in order to simulate the fault and describe its behaviour. While 

Chapters 3 focuses on the optimised control of the armature field harmonics for increasing the 

control performance and fault tolerance, this chapter aims for the development of a fault 

detection algorithm. Therefore, Fault Tolerant Controls (FTC) are not considered. 

Simulations and experimental results are presented in Section 4.8-4.10. Firstly, considering an 

open loop voltage control with the aim of validating the proposed model for the detection of 
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HR and ISC faults [7-9]. Then, the analysis of a current controlled machine is performed 

highlighting the sensitivity of the detection algorithm to the fault and machine behaviour. 

Finally, the HR detection algorithm is verified by experimental tests for a prototype of nine-

phase IM. 

 

Introduction to High Resistance (HR) and Interturn Short Circuit (ISC) Faults 

 

Among the causes of HR connections and ISC faults, the following ones can be highlighted:  

- assembly or manufacturing of the phase connections;  

- winding process; 

- temperature increase (hotspots);  

- chemical reactions; 

- electric stress (partial discharges);  

- mechanical stress (vibrations, Ampère’s force, reluctance forces).  

The first step needed for the definition of a diagnostic algorithm for an electrical machine is the 

development of a reliable model. The proposed model is based on the winding function 

approach, and the resistances and leakage inductances are considered as the lumped parameters 

of the equivalent electrical circuit. 

Fig. 4.1 shows the simplified electrical circuit that describes the HR and ISC faults. 

An HR condition can affect all the phases in the same way (as happens in case of extended 

overloads), or only some parts of the winding (asymmetrical HR). In case of an ideal machine 

current control, the resulting machine behaviour might be the same of the healthy case with just 

an increase of the voltage needed to feed the faulty phases. However, a hotspot might change 

the material behaviour (iron lamination B-H curve) and in PM machines might bring to a PM 

demagnetisation.  

Instead, in case of ISC faults, the magnetic behaviour is not directly related to the machine 

current control. Indeed, as deeply explained in the next section, the short circuit loop generates 

an uncontrolled circulating current. The materials might change their behaviour as in an HR 

 

Fig. 4.1 – High resistance (left) and Interturn short circuit (right) faults. Concept. 
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fault, with the difference that the iron saturation and PM demagnetisation must also take into 

account for the presence of the uncontrolled ISC current. Indeed, the ISC current introduces 

additional losses, but also an uncontrolled distortion of the flux density in the airgap. This 

generates torque and forces, as verified also in Chapter 6 for a three-phase short circuit fault in 

a triple three-phase machine.  

Only to briefly introduce this effect, an ISC might be simplified as an additional and 

independent short-circuited winding as in Fig. 4.2. This winding reacts to the flux in the airgap 

in a similar way of a squirrel cage in blocked rotor conditions, but in an asymmetrical way. The 

ideal ISC results in the effect of an asymmetrical winding for the faulty phase (with a reduced 

number of turns) plus the effect of the ISC loop that interacts with the stator and the rotor but 

does not directly depend from the phase voltages (or buy the current control), as happens for a 

blocked squirrel cage rotor. However, considering for a not ideal ISC the model is even more 

complicated. In this chapter, the HR and ISC faults are modelled and analysed in deep. The 

next section introduces the equivalent circuit used to take into account for the electrical passive 

components of the winding, while the following ones present the complete electromagnetic 

model of the machine. Finally, a simplified model and the detection algorithms are explained 

and verified by simulations and experimental tests. 

 

 Equivalent circuit for High Resistance and Interturn 

Short Circuit Faults 

 

This section aims to introduce the model of the passive components (resistances and leakage 

inductances) related to HR and ISC faults, considered as lumped parameters in the winding 

equivalent circuits. 

In order to simplify the fault analysis, the materials behaviour is considered linear and 

independent from the machine operating conditions and faults (that is, independent from the 

currents, magnetic field and temperature). As in Chapter 3, the transient of the fault is not 

analysed. As additional simplifications: the considered winding is a single layer one; the mutual 

leakage inductances between turns in different slots are neglected; and the different coils are 

supposed to be identical in terms of electromagnetic behaviour (same leakage inductances and 

turns number). Furthermore, the ISC fault is supposed to happen between two turns of the same 

phase.  

The next subsection shows the equivalent circuit used to describe the HR and ISC faults, while 

the following one defines how the passive components are considered in the phase voltage 

equations. In case of an HR fault the phase voltage equations are enough to represent the fault 

 

Fig. 4.2 – Ideal Interturn short circuit fault (left) and equivalent circuit (right). Concept. 
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condition. Instead, the analysis of the distortion of the field is needed to complete the ISC 

modelling. Therefore, Section 4.2 aims to analyse the electromagnetic effect of the ISC current. 

The model, as in Chapter 3, refers to the equations developed in Chapter 2 (taken for granted 

their effectiveness for the model hypotheses). 

 

Circuital representation of HR and ISC faults 

 

This paragraph introduces the equivalent circuit of a winding in case of HR and ISC faults.  

Fig. 4.3 shows the circuit of a healthy phase (x, in the bottom), a phase with an HR condition 

(y, in the centre), and a phase with an ISC fault (z, in the top). The HR condition is represented 

by the variation of the relative phase resistance ( yR , highlighted in blue in Fig. 4.3). Instead, 

an ISC fault is represented by the short circuit resistance ( SCr ), the number of short circuited 

turns ( fN , to highlight that are affected by the fault) and the short circuit current ( SCi ). The 

parameters that describe an ISC fault are highlighted in red in Fig. 4.3. 

The main passive components of the circuital representation are the phase self leakage 

inductance Ll  and the phase resistance R  for the healthy phases and yR for the general y-th 

phase with unbalanced resistance.  

The phase equation (2.90) for a healthy phase or a phase with an HR condition (x-th phase), 

neglecting the mutual leakage inductances between coils in different slots, is: 

 

Fig. 4.3 – High Resistance and Interturn Short Circuit concept and proposed nomenclature. Phase x (bottom) is healthy; 

phase y (centre) is affected by a HR condition; phase z (top) is affected by an ISC fault (with a resulting possible resistance 

variation). 
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dt

d

dt

di
LliRv xx

xxxx


 ,  (4.1) 

The x-th phase series resistance is: 





txN

kx

kxx rR
1

, 

where kx is the lowercase used for indicating the k-th series turn of the x-th phase, and the self 

leakage inductance of the x-th phase is defined as: 








tx txtx N

kx

N

ktx
tx

kxtx

N

kx

kxx mlllLl
1 1

,

1

. 

with kxll  the self leakage inductance of each kx-th turn and kxtxml ,  the mutual leakage inductance 

between the tx-th and kx-th turns. The linked flux x  is the sum of the flux that pass through 

the airgap and links all the series turns:  





N

kx

kxx

1

 . 

Under the hypothesis of having only one coil geometry for all the winding, the self leakage 

inductance can be assumed the same for all the phases that are healthy or affected by a HR 

condition. Therefore, it is possible to write (2.88) as: 

 
dt

d

dt

di
LliRv xx

xxx


 .  (4.2) 

Equation (4.2) is sufficient for the analysis of HR faults in electrical machines. Instead, the 

description of an ISC fault requires more explanation. Indeed, Fig. 4.3 shows a circuital 

approach for describing the ISC defined by a series of three electrical subcircuits: 

- the starting phase subcircuit (named with the subscript “s”);  

- the ending phase subcircuit (named with the subscript “e”);  

- the ISC loop (named with the subscript “c”, being this subcircuit in general located 

between the s-th and the e-th ones). 

Each subcircuit might in general have different series resistances ( scsR , , sccR ,  and sceR , ) and a self 

leakage inductances ( scsLl , , sccLl ,  and sceLl , ). However, with a high probability some turns of 

the three subcircuits (starting, central and ending), or all of them (in case of two slot per phase 

single layer winding), are located in the same slots. Therefore, the mutual leakage effect 

between the subcircuits must be taken into account also in the simplified hypotheses of 

neglecting the mutual leakage inductances between coils in different slots.  

The next two subsections aims to define the evaluation of the passive components in the 

different subcircuits. The proposed simplified model of the equivalent circuit takes into account 

for also the slot mutual leakage inductances of the subcircuits in the short-circuited phase. 
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ISC faults – leakage inductances analysis 

 

In order to consider for all the slot leakage effects in case of ISC faults Fig. 4.3 can be 

represented as in Fig. 4.4. The main difference is that in the new representation the mutual 

leakage couplings are highlighted by the respective constants ( csMl , , ecMl ,  and esMl , , where 

it is implicit that they refer to the couplings related to the coils affected by the ISC fault). 

Indeed, the leakage flux linked with the k-th turn of the x-th phase, sum of N series turns in each 

of the Nc series coils (for a total of ct NNN   series turns, that for a traditional distributed 

winding is NpqN t  ), is:  

 
tx

N

kx

N

ktx
tx

kxtxkxkxkxMlkxLl imlill 






1 1

,,,  . 
(4.3) 

For a healthy phase, described by (4.2), the total phase leakage inductance is: 
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 1 1
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11

, .  (4.4) 

However, in case of an ISC fault, the leakage linked flux depends on the position of the ISC. 

Fig. 4.5 shows the two considered ISC configurations: turn-to-turn between two different coils 

and between turns of the same coil. The total number of coils is the same in all the phases, cN

, and each coil still has the same turns number, N . 

The z1 phase in Fig. 4.5 is affected by an ISC in the end winding between two different coils. 

In particular, there are sn  and en  healthy coils before and after the fault. The fault affects in 

 

Fig. 4.4 – Interturn Short Circuit concept and proposed nomenclature. Phase z is affected by an ISC fault (with a resulting 

possible resistance variation), and all the slot leakage effects are represented by their respective constants in case of a 

single slot pair per phase winding. 
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total cn  “central” coils. Therefore, two coils are partially short-circuited and 2cn  are fully 

short-circuited. Instead, the z2 phase in Fig. 4.5 is affected by an ISC in a single coil (this is the 

only possible turn-to-turn fault inside one slot). In particular, there are sn  and en  healthy coils 

before and after the fault, while there is only one coil affected by the short circuit ( 1cn ).  

It is well known that the leakage inductance between two turns in the same slot significantly 

depends on the relative position in the slot. In particular, the self and mutual leakage effects are 

strongly affected by the radial position of the two considered turns. This leads to a huge number 

of possible scenarios. The analytical modelling of this effect results complicated, and the 

attempt to take into account for the radial position of the shorted turns has been abandoned. The 

main reason is that a simplification of the model has not been found. Therefore, the approach 

is simplified on the assumption that the leakage couplings between the turns do not depend 

from the turns position in the slots. Therefore, all the local leakage constants kxll  and kxtxml , are 

equal: 

 lmlll kxtxkx  , .  (4.5) 

Under the assumption above, the equation for the total phase leakage inductance in a healthy 

machine (as for the x phase in Fig. 4.5), (4.4) becomes: 

   ,1 2

1 111

, xxccxcxcx

N

kx

N

ktx
tx

N

kx

N

c

xL iLliLlNliNNilNNNlNill
c


















 





  (4.6) 

 

Fig. 4.5 – Interturn Short Circuit concept and proposed nomenclature for the leakage flux analysis. Phase x is healthy; 

phase z1 is affected by an ISC in the end winding; phase z2 is affected by a slot ISC fault. 
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with the coil self leakage inductance lNLlc

2 . Therefore, the equivalent turn self and mutual 

leakage constant (4.5) is evaluated by the phase total leakage inductance (the conventional one) 

as:  

 
2NN

Ll
l

c

 .  (4.7) 

In the next two paragraphs, the mutual couplings related to the leakage flux between the 

different subcircuits in Fig. 4.5 are evaluated (in case of ISC between two coils, first, and in the 

same coil, later). 

 

Mutual leakage inductances in case of coil-to-coil ISC 
 

In case of an interturn short circuit in the end winding of one phase (as for the z1 phase in Fig. 

4.5), or better between two different coils, the simplified leakage effect can be described by the 

following relationships. 

For the starting coils ( sn  plus the not short-circuited turns of the first short-circuited coil): 
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where fsN  is the number of short-circuited turns in the coil where the shot circuit fault starts. 

For the short-circuited coils ( cn ): 
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 (4.9) 

For the ending coils ( en plus the not short-circuited turns of the last short-circuited coil): 
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where feN  is the number of short-circuited turns in the coil where the short circuit fault starts. 

The total number of short-circuited turns is: 
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  fecfsf NNnNN  2 . 

 

Mutual leakage inductances in case of single coil ISC 
 

In case of an interturn short circuit in a slot of one phase (as for the z2 phase in Fig. 4.5), or 

more in general between two turns of the same coil, the simplified leakage effect can be 

described by the following relationships. 

For the starting coils ( sn  plus the first part of not short-circuited turns in the short-circuited 

coil): 
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where fN  is the number of short-circuited turns in the coil and scsN ,  is the number of healthy 

turns in the faulty coil after which the short circuit fault starts. 

For the short circuit loop in the short-circuited coil ( 1cn ): 
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For the ending coils ( en  plus the ending part of not short-circuited turns in the short-circuited 

coil): 
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  (4.13) 

This subsection presented the evaluation of the leakage effects related to an ISC fault. The next 

one aims to repeat the analysis for the resistance effects. 

 

HR and ISC faults – resistances analysis 

 

In this paragraph, the ISC equivalent circuit is analysed in terms of subcircuit resistances. The 

proposed model of ISC fault consider also for a possible resistance increase in the short 

circuited turns. Therefore, if the short circuit current is zero (infinite short circuit resistance) 
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the resistance increase in the short circuit loop results as an HR fault in the analysed phase. 

Indeed, in the next sections, the model is developed for the ISC fault, and then it is simplified 

for the analysis of the HR condition. 

The phase voltage equation for a phase with an ISC fault differs from (4.2) in terms of presence 

of subcircuits, but also because the new subcircuits have different parameters than the healthy 

phase ones. In particular, the same approach used for the analysis of the leakage inductances in 

the previous paragraph can be used for highlighting the probable temperature increase in the 

slots where the short circuit happens. Fig. 4.6 shows the proposed modelling of the series 

resistances in the subcircuits for a healthy phase, and for the two analysed cases of short circuit 

faults. The resistances in Fig. 4.6 are drawn as constants (only the short circuit fault resistance

cr  is maintained as variable) for clarity. However, they are in general all depending from the 

temperature (that is, they are function of the time and the losses distribution). The proposed 

model defines only two resistance values: one for the short-circuited turns ( cr ) and one for the 

not short-circuited turns ( r ), neglecting the heat transfer between the healthy turns and the 

faulty ones. In reality, this is not true. However, the approximation is useful in order to take 

into account for a different resistance in the short circuit loop (expected from the high copper 

losses caused by the short circuit current) and a possible HR condition in the faulty phase 

outside the ISC loop is also added from Section 4.3. 

By means of the hypothesis above, the voltage drops on the resistances are modelled according 

to the following equations. 

In a healthy machine: 

 

Fig. 4.6 – Interturn Short Circuit concept and proposed nomenclature for the resistances analysis. Phase x is healthy; 

phase z1 is affected by an ISC in the end winding; phase z2 is affected by a slot ISC fault. With “Q” are highlighted the 

main radial thermal paths related to the short circuit current copper Joule losses (the axial path is implicit). 
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with the coil resistance NrRc   and r  the resistance of each series turn. Therefore, the turn 

resistance for the healthy phases is evaluated by the total phase resistance (the conventional 

one) as:  

 
NN

R
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c

s .  (4.15) 

The resistances of the faulty phase subcircuit are analysed in the two following paragraphs for 

the two ISC conditions (coil-to-coil and single coil). 

 

Subcircuit resistances in case of coil-to-coil ISC 
 

In case of an interturn short circuit between two coils of one phase (as for the z1 phase in Fig. 

4.6), the resistance voltage drops can be described by the following relationships. 

For the starting coils ( sn  plus the not short-circuited turns of the first short-circuited coil): 

     1111,1 zfsszfszcszscszcs irNNNnirNNiNrNniriRn  ,  (4.16) 

where fsN  is the number of short-circuited turns in the coil where the short circuit fault starts. 

For the short-circuited coils ( cn ): 
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  (4.17) 

where the total number of short-circuited turns is: 

  fecfsf NNnNN  2 . 

For the ending coils ( en plus the not short-circuited turns of the last short-circuited coil): 

     11111, zfeezcezfezcezsce irNNNniNrNnirNNiRnir  ,  (4.18) 

where feN  is the number of short-circuited turns in the coil where the shot circuit fault starts.  
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Resistances in case of single coil ISC 
 

In case of an ISC between two turns of the same coil (as for the z2 phase in Fig. 4.6), the 

resistance voltage drops can be described by the following relationships. 

For the starting coils ( sn  plus the first part of not short-circuited turns in the short-circuited 

coil): 

   2,2,22,2 zscsszscszcszscszcs irNNnirNiNrNniriRn  ,  (4.19) 

where scsN ,  is the number of healthy turns in the faulty coil after which the short circuit fault 

starts. 

For the short circuit loop in the short-circuited coil ( 1cn ): 

   sccfzcfsczscc irNirNiir  22, .  (4.20) 

For the ending coils ( en  plus the ending part of not short-circuited turns in the short-circuited 

coil):  

    2,22,22, zefscszezfscszcezsce irNnNNNiNrnirNNNiRnir  .  (4.21) 

At this point, the passive parameters of the equivalent electrical circuit are completely defined. 

Therefore, it is possible to write the phase voltage equations for the healthy and faulty phases, 

as described in the next subsection. 

 

Circuital phase voltage equations for HR and ISC faults 

 

The phase voltage equation (2.88) resulting by the model presented in the previous subsection 

for the x-th healthy phase is simply: 

 
dt

d

dt

di
LliRv xx

xsx


 ,  (4.22) 

with NrNR cs   and lNNLl c

2 ; where the turn leakage inductance l  and the turn resistance 

r  represent the average leakage and resistance contribution associated to each of the series 

turns in one coil. 

Instead, in case of fault the voltage phase and the ISC loop equations are as described in the 

paragraphs here below. 
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Circuital phase voltage equation for HR fault 
 

In case of a high phase resistance condition, (2.88) results for the y-th phase as: 

 
dt

d

dt

di
LliRv

yy

yyy


 ,  (4.23) 

with ycy NrNR   in case of a uniform resistance increase in all the turns (from r  to yr ).  

In order to highlight the turn resistance increase, it is useful to introduce the new parameter HRr  

(the turn resistance increase). The phase resistance increase in the y-phase can be associated to 

some of the series turns as: 

    HRfsHRfcHRffcy rNRrNNrNrrNrNNNR  , 

with a localised resistance increase of HRr  in fN  of the series turns. 

 

Circuital voltage equation for coil-to-coil ISC 
 

In case of an ISC between two coils of a phase (the z1-th in Fig. 4.5 and Fig. 4.6), the phase 

voltage equation (2.88) results as: 
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  (4.24) 

Substituting (4.8)-(4.10) and (4.16)-(4.18), and considering the turn resistance increase in the 

turns crossed by the ISC current HRr  as described for the HR fault ( HRc rrr  ), (4.24) results 

as: 
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(4.25) 
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with 
1z  the total flux that pass through the airgap and links the turns of the faulty phases. 

Indeed, the ISC fault do not change the relationship between the flux in the airgap and the linked 

flux with the considered phase because the geometry of the turns is unchanged.  

Finally, because the total number of coils is   ecsc nnnN  2 , the phase voltage equation 

results as: 
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(4.26) 

 

Voltage equation for single coil ISC 
 

The same analysis can be carried out for an ISC between two turns of the same coil. The phase 

voltage equation of phase affected by the fault (as the z2-th in Fig. 4.5 and Fig. 4.6) is: 
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 (4.27) 

Substituting (4.11)-(4.13) and (4.19)-(4.21) and considering that in this case the total number 

of coils are esc nnN  1 , the final equation becomes: 
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 .  (4.28) 

As already mentioned, in case of zero short circuit current (4.26) and (4.28) result in a particular 

HR condition: 

 
dt

d

dt

di
LlirNiRv zz

zHRfzsz


 .  (4.29) 

Therefore, hereafter the HR condition is modelled as a particular case of ISC fault with zero 

short circuit current.  
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Voltage equation for the ISC loop 
 

To complete the circuital analysis, the voltage drop on the short circuit resistance ( scr ) defines 

the short circuit loop equation: 

 scsccz irv , ,  (4.30) 

with czv , the voltage drop defined for a coil-to-coil short circuit fault ( czcz vv ,1,  ) as: 
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(4.31) 

whereas, in case of short circuit between two turns of the same coil ( czcz vv ,2,  ) it results as: 
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  (4.32) 

resulting respectively in the short circuit loop equation: 
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for a coil-to-coil ISC, and: 

 

 

  ,
,22

2

2

dt

d

dt

di
NlNirrN

dt

di
lNirrNir

czz
fzHRf

sc

fscHRfscsc






  (4.34) 

in case of single coil ISC. 

As expected, in case of infinite short circuit resistance (healthy machine or HR condition) the 

short circuit current is zero. 
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To complete the analysis of the phase voltage equations the next subsection aims to evaluate 

the linked flux with a generic phase (healthy or faulty) and with the ISC loop. 

 

Linked fluxes equations for HR and ISC faults 

 

The linked flux evaluation (without considering for the leakage components) in a phase with a 

HR fault is the same of a healthy one. Instead, the linked flux evaluation for the ISC loop is 

different, as described here below. 

 

Linked flux for a healthy phase 
 

The airgap flux linked with a single turn has been already defined in Chapter 2, (2.104), as: 
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with k  the angular position of the magnetic axis of the k-th turn compared to the magnetic 

axis of the first phase of the winding (considered as the angular position of the α-β stator 

reference frame), and k  the pitch of the k-th turn. 

From the linked flux with one turn the total flux linked with the general x-th healthy phase is: 
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with )(zH h  h-th harmonic of the total field in the airgap and ahK  the winding factor of the x-

th phase defined by (2.45) (equal to all the phases in the hypotheses of the model, as explained 

in Chapter 2). 

 

Linked flux for the ISC loop 
 

For the ISC loop, the evaluation of the linked flux is more complicated. Indeed, it is important 

to highlight that for a machine with coils distributed in order to generate an overall magnetic 

axis centred with the position that defines the phase to which they belong to, it is possible to 

define a winding factor, which is a real number, and it is the same for all the phases. Instead, in 

case of ISC the asymmetrical distribution of the short circuited turns in the different coils makes 

impossible to defined in advance the phase of the equivalent magnetic axis. Therefore, the short 

circuit loop linked flux cz , cannot be simplified considering just a real winding factor and 

maintaining the same magnetic axis of the faulty phase.  
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The airgap linked flux with the ISC loop ( cz , ) can be defined as: 
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 (4.37) 

In order to define a suitable relationship, the complex winding factor ( fhK ) is introduced as: 
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(4.38) 

The overall phase of this new complex variable ( fjh
e


) identifies the magnetic axis of the short 

circuit fault in respect to the considered spatial harmonic order (or space, h), with f  the 

magnetic axis of the ISC loop. The magnitude of the complex winding factor, fhK , can be seen 

as the standard winding factor associated to the subcircuit of the ISC loop.  

By the previous result, the ISC linked flux equation can be written as: 
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If the fault affects only one series coil, kf  is the same for all the short-circuited turns, equal 

to f , and if the fault happens in the central coil of one phase (if the coils number is odd) the 

ISC loop and the faulty phase have the same magnetic axis ( xfkf   ). However, in general 

the angle can be whatever in the span between the magnetic axis of the first and the last of the 

series turns of the short-circuited phase. 

This last paragraph concludes the definition of the phase and ISC loop circuital voltage 

equations. However, to complete the model of the machine the harmonics of the magnetic field 

in the airgap must be evaluated according to the analysis of their sources. Indeed, they appear 

in the phase voltage equations, or better in the linked flux evaluation. The general theory 

presented in Chapter 2 is considered in the next section in order to analyse the effect of the ISC 

current on the magnetic field in the airgap and define the effect of the rotor in terms of field 

distribution and torque. 
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 Interturn Short Circuit Faults: Electromagnetic 

Analysis of the Short Circuit Loop 

 

The voltage equations described in the previous section completely describe the electrical 

behaviour of the machine under the hypothesis of the model once the linked magnetic flux 

through the airgap is known. This section aims to evaluate the linked flux through the airgap in 

order to define a general electromagnetic model of a faulty machine in case of ISC fault. Indeed, 

the short circuit current affects the magnetomotive force (MMF) distribution producing an 

uncontrolled asymmetrical distortion of the flux in the airgap, with consequent torque ripples 

and forces on the rotor. As the machine is assumed isotropic and working in linearity, the 

analysis is based on the equations presented in Chapter 2. Firstly, the magnetic field related to 

the ISC current is evaluated. Then, the equations of the model are summarised, and finally the 

torque and force equations are presented. 

 

Magnetic field generated by the ISC loop current 

 

The magnetic field generated by the short-circuited phase can be described (still under the 

hypothesis of linear material behaviours) as the sum of the effects of the phase current flowing 

in all the turns plus the short circuit current flowing only in the ISC loop. Because the short 

circuit current is considered as positive when it flows as in Fig. 4.3, the current in the short-

circuited turns is the difference between the faulty phase current and the ISC one, scz ii  . 

However, it is found convenient to consider separately the effects of the two currents. 

According to the theory developed in Chapter 2, the magnetic field harmonic generated by the 

k-th turn (2.39) for an isotropic machine is: 
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The magnetic field generated by the x-phase current is described in the same way by(2.42) for 

both a healthy and a faulty phase as: 
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Instead, in case of ISC fault, the overall magnetic field is evaluated adding the effect of the 

magnetic field generated by the short circuit current as: 
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with fjh

fheK


the complex winding factor defined by (4.38). The “-” sign is used to highlight 

that the short circuit current is considered as positive when it flows in the opposite direction of 

the phase current in the short-circuited loop as in Fig. 4.4. 

(4.41) and (4.42) evaluate the armature magnetic field in the airgap generated by the overall 

multiphase winding in presence of an ISC fault. The resulting field space harmonics are 

evaluated as: 

 sc

jhfhf

h
ah

hsc

m

x

xhh ie
h

KN
i

h

mNpqK
HHH f



2
,

1




, (4.43) 

with hi  the space vector of the stator phase currents defined by the general space vector 

transformation (2.53): 
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The current space vectors represent completely the machine phase currents that are measured 

and controlled by the closed loop voltage control, while the short circuit current sci  is 

uncontrolled and function of the fault parameters. 

Before analysing the force and torque equations for an ISC fault, the next subsection 

summarizes the electromagnetic model of the faulty machine presented up to this point and 

adding the effect of the rotor on the magnetic field distribution. 

 

HR and ISC fault armature equations - Summary 

 

In this subsection are summarised the electromagnetic equations of the model of an electrical 

machine in case of HR or ISC faults adding the effect of an SPM or squirrel cage IM rotor. 

The voltage equation for the x-th healthy phase is: 
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dt

di
LliRv xx

xsx


 .  (4.45) 

The voltage equation for a phase with an ISC fault (or a HR condition if 0sci ) is: 
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 ,  (4.46) 

with: 

lNNMl fsc  . 

The voltage equation for the ISC loop is: 
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with: 

   lNNnNLl fecfssc

222 2  , 

 in case of coil-to-coil ISC, and: 

lNLl fsc

2 , 

 in case of ISC between turns of the same coil. 

The airgap flux linked with a phase x  (or 
z  as well) is: 

  






 


























1

,

0

0 )(
2

h

jh

hr

L

z

h
ah

x
xedzzHHL

h

RpqNK 
 , (4.48) 

where the rotor field harmonics are considered in the )(, zH hr  term, and the armature ones in the 

hH  one. The airgap flux linked with the short circuit loop cz ,  is: 
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Given the phase voltages, the linked flux through the phases and the short circuit loop, the 

voltage equations evaluate the phase and short circuit currents.  

The flux linked with the armature windings (phases and ISC loop) depends from the armature 

but also from the rotor field distribution. 

The armature field harmonics as function of the phase and short circuit current are as: 
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Instead, the rotor field harmonics already defined in (2.134) and (2.165) for an SPM and an IM 

squirrel cage rotors are as follows. For an SPM rotor: 
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with
PMSh the magnet pitch shortening parameter (reduction of the magnets pitch in per unit) in 

each segmentation length of a SPM rotor: 
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For a squirrel cage rotor, it results as: 
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By (4.45)-(2.165) the machine electromagnetic behaviour is completely defined once the rotor 

speed and phase voltages are known in function of the time (plus the rotor currents in case of 

an IM). The next subsection aims to define the torque and radial force from the magnetomotive 

force distribution (function of current and magnets) given by the solution of the electromagnetic 

model. 

 

Torque and radial force evaluation for ISC faults 

 

The torque and radial force have been evaluated in Chapter 2 with a general approach. Here 

below, the equations are represented highlighting the effect of an ISC current. 

Being the phase and short circuit currents analysed in two separate contributions of the armature 

field, also the related torque and radial force can be evaluated separately. 

 

Phase currents torque contribution 
 

The general torque equation presented in Chapter 2 in case of a healthy machine is considered 

as sum of a number of contributions as: 
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For a SPM machine (2.217) defines the torque contributions as:  
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with: 
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Instead, for a squirrel cage rotor IM the torque contributions are expressed by (2.222) as: 
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with: 
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ISC current torque contribution 
 

In case of ISC, there is an additional torque component caused by the interaction between the 

rotor magnetic field and the generated by the short circuit current one. The relationships for the 

short circuit torque are the same resulting by the phase currents, with the only difference that 

rather than be function of the phase current space vector
hi , they are function of the current vector 

related to the short circuit loop fjh

scei


. The short circuit loop could also be seen as an 

equivalent multiphase winding (with one phase), but this would make the analysis much more 

complicated. In Chapter 2, the torque effect of a single turn of the armature winding has been 

presented. The obtained result is used here to define the effect of the fN  short-circuited turns. 

The total short circuit torque equation for a SPM machine (2.195) results as: 
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 (4.56) 

with: 
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The total short circuit torque equation for a squirrel cage rotor IM (2.200) results as: 
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The “-” sign is still caused by the opposite convention for the positive short circuit current in 

the turns where it flows. 

It is interesting to note that the considered short circuit affects one set of series turns and not a 

full three-phase winding. Therefore, the resulting armature field is a pulsating one and the 

resulting torque for an SPM machine presents a significant ripple and reduction of its average 

value. In case of a cage machine, the analysis is more complicated depending on the reaction 

of the cage, but a reduction of the average torque and a higher torque ripple are expected. 

The simplified radial force evaluation (2.257) is: 
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The analysis of the force coefficients has not been carried out, but some considerations can be 

done. In particular, the force equation is the same independently from the sources of the 

magnetic field harmonics. Therefore, if the machine is with full pitch turns and a single pole 

pair (each turn has a 180 degrees mechanical pitch) an ISC fault do not generate radial forces, 

because only odd harmonics are generated in the airgap (p=1). Instead, if the turn pitch is 

different from 180 mechanical degrees (as in a machine with a short pitch winding or in general 

with a number of pole pairs higher than one, p>1) the ISC current generates both odd and even 

field harmonics. These harmonics interact with themselves and with the rotor ones producing a 

radial force qualitatively described by (2.257). 

The equations presented in this section are completed in the next one, where the complete model 

is presented in terms of space vector representation. 
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 Space Vector Model of a Multiphase Machine with a 

High Resistance or Interturn Short Circuit Fault 

 

The electromagnetic equations presented in the previous section are based on the relationships 

between the current space vectors and the field harmonics in the airgap. Indeed, a suitable 

current control of a multiphase machine (or three-phase as well) is usually based on the machine 

voltage space vector equations defined for the stator phases in the general form as: 
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 . In case of a squirrel cage IM, the rotor is modelled as a 
bN -phase symmetrical 

machine as described in Chapter 2.  

In this section, all the electromagnetic equations are rewritten in terms of space vector 

representation for the three sources of MMF: 

- stator phase winding; 

- ISC loop; 

- rotor magnets (SPM) or squirrel cage (IM). 

 

Stator Phase Voltage Space Vector Equation 
 

The stator voltage equation results by the space vector transformation of (4.46) as:  
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Considering the airgap linked flux in three components related to the various sources of MMF 

(stator, rotor and short circuit loop), (4.60) becomes: 
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where the first raw of (4.61) is the voltage space vector equation of an healthy multiphase 

winding, the second raw represents the contribution related the HR in the faulty turns, and 

finally the third raw represents the effect of the ISC current.  

The self inductance of the h-space defined in (2.117) and (2.118) is written here below: 
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The second term: 
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can be analysed as a HR fault in the faulty phase (now only in the z-th phase), by an additional 

voltage drop space vector hHRv ,  defined as: 
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with hHRR ,  the HR space vector (representing only the resistance increase from the expected 

value) localised in the faulty phase as: 
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with the relative general inverse transformation that evaluate the overall phase resistance 

increase: 
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hsc , is the linked flux space vector related to the field produced by the ISC current, which can 

be evaluated by (4.48) and (4.50) as: 
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(4.65) 

The linked flux space vector related to the rotor MMF ( hr , , for an SPM or a squirrel cage 

rotor) are the same defined for a healthy machine. Their equations, presented in Chapter 2, are 

summarised here below. 

The linked rotor flux space vector for a SPM rotor is (2.142): 
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The linked rotor flux space vector for a squirrel cage IM is (2.185): 
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(4.67) 

The last equations completely describe the stator phase electromagnetic behaviour once the ISC 

and rotor MMFs are known. In the next paragraphs, the equations for the ISC loop and the 

squirrel cage (in case of IM) that allows solving the full equations of the system and therefore 

evaluating the MMFs of the three components (stator, ISC loop and rotor) are presented. 

 

ISC loop Equation 
 

The voltage equation for the ISC loop (4.47) can be rewritten in terms of phase current space 

vectors, and considering for the airgap linked flux cz ,  in three components related to the 

various sources of MMF (stator czs ,, , rotor czr ,,  and short circuit loop czsc ,, ). The ISC loop 

equation results as: 
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The airgap flux generated by the stator phase currents and linked with the ISC loop ( czs ,, ) can 

be evaluated by (4.49) as:  
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The airgap flux generated by the rotor and linked with the ISC loop ( czr ,, ) can be evaluated 

doing the same steps presented in Chapter 2 for the flux linked with a single turn, and 

simplifying as follows. 

For a SPM rotor, it results by (2.139) as: 
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 . (4.70) 

For a squirrel cage rotor, it results by (2.172) as: 
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 . (4.71) 

Finally, the airgap flux generated by the ISC loop and linked with the ISC loop itself ( czsc ,, ) 

can be evaluated considering the self inductance of the ISC loop by (4.49) and (4.50) as: 
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with: 
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the self inductance of the ISC loop. 
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Given the phase voltages and the linked flux through the phases and the short circuit loop, the 

voltage equations allows evaluating the phase and short circuit currents.  

The only missing equation is the squirrel cage voltage equation that considers also for the effect 

of the ISC current, topic of the next paragraph. 

 

Rotor Cage Space Vector Equation 
 

The squirrel cage voltage space vector equation (2.169) in case of ISC can be defined as: 
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with hmutual ,  the cage linked flux space vector resulting by the machine phase currents. 

The linked flux space vector generated by the stator phase currents (2.176) is: 
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Instead, hscmutual ,,  represents the cage linked flux space vector resulting by the ISC fault current. 

The ISC effect can be evaluated by (2.172) and (4.42) as: 
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 (4.75) 

The other cage parameters (self inductance, resistance and leakage inductance related to the 

considered rotor space equation) in the space vector equations are the same presented in Chapter 

2, summarised here below. 
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The presented equations are used to analyse the ISC and HR faults. Before simplifying the 

equations for simulating and presenting the results obtained for the fault analysis, the ISC fault 

is generalised in the following subsection considering the presence of an additional HR 

condition in more phases outside the ISC loop.  

 

General Interturn Short Circuit with High Resistance Fault in Multiphase Electrical 

Machines 

 

In case of a general fault condition (with both an ISC and an HR fault), the phase resistance 

might change also in other phases. Instead the ISC fault is considered to happen only in one 

phase. As mentioned in the previous section, it is useful to represent the resistance variation 

from the normal value rather than the overall resistance. Therefore, the voltage drop space 

vector hHRv ,  can be still defined as in (4.62), but the resistance increase space vector of the 

phases is now defined as: 
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,  (4.76) 

with the relative general inverse transformation (4.64) that consider for the total phase 

resistance increase. 
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To conclude the model, the complete equations are summarised in the next subsection. 
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Summary of the complete Space Vector model for HR and ISC faults in multiphase 

machines 

 

The space vector equations for the stator, ISC loop and rotor with also the possibility of having 

an HR fault are summarised here below. 

 

Stator Phase Voltage Space Vector Equation 
 

The stator voltage space vector equation is: 
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with the HR phase resistance increase space vector as: 
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the stator linked flux space vector generated from the ISC current: 
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 (4.80) 

the stator linked flux space vector generated from an SPM rotor: 
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 (4.81) 

or for a squirrel cage rotor: 



High Resistance and Interturn Short Circuit Faults 

245 

 

   

 

 

   
 

   

 

 

   
 

.

sin
2

sin
2

int

*

,

,

0

0

,

,

0,


















































































































S

mS

S

SS

mS

S

SS

N

h
y

hyNj

hyNr

S

b

S

S

hyNskewhyNab

S

y

hyNj

hyNr

S

b

S

S

hyNskewhyNab

Shcage

ei
hyN

N
hyN

hyN

KKN
RLpqNN

m

ei
hyN

N
hyN

hyN

KKN
RLpqNN

m















 
(4.82) 

ISC loop Equation 
 

The ISC loop voltage equation is: 
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with the stator related linked flux: 
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the rotor related linked flux for an SPM rotor: 
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or for a squirrel cage rotor: 
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Rotor Cage Space Vector Equation 
 

The squirrel cage voltage space vector equation is: 
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with the cage linked flux space vector resulting by the machine phase currents: 



CHAPTER 4 

246 

 

   

 
   

 

   

 
   

 
,

sin
2

sin
2

int

*

2

0

0
2

0

,















































































































b

mb

bb

b

mb

bb

b

N

h
y

hyNj

hyNskewhyN

b

hyNa

b

b

hyNj

y

hyNskewhyN

b

hyNa

b

b

hmutual

eKi
hyN

K
N

hyN
RLNmpq

eKi
hyN

K
N

hyN
RLNmpq


















 (4.88) 

and the cage linked flux space vector resulting by the ISC fault current: 
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 (4.89) 

This paragraph concludes the machine model for HR and ISC faults in SPM and squirrel cage 

IMs. The following section considers a simplification of the model. In particular, only the most 

main field harmonics in the airgap are taken into account, and the machine is supposed to be a 

distributed multi three-phase winding (not sectored) squirrel cage IM. Then the proposed HR 

and ISC detection algorithms are presented, before showing the simulation and experimental 

results. 

 Principle for High Resistance and Interturn Short 

Circuit Faults Detection with Ideal Current Control 

(FOC) in distributed winding Induction Machines 

 

A typical machine control aims to generate the desired torque with the highest efficiency and 

the lowest torque ripple. Therefore, the machine design and control are often optimised for 

producing the most sinusoidal field in the airgap minimising the reduction of torque density 

(the final design is usually a compromise for the two requirements). In order to simplify the 

model equations, the field in the airgap is considered to have only the lowest space harmonics 

that can be independently controlled by a multiphase machine control. For distributed windings 

(not sectored), this means to consider the odd harmonics multiple of the pole pairs number (p). 

In case of three-phase machines, this is equal to consider a sinusoidal field in the airgap with 

polarity equal to p. Then, the current control is still considered the one that aims to maintain all 
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the current space vectors equal to zero but the main one (p-th). As a further simplification, the 

considered winding are multi three-phase and not sectored, as the ones presented in Chapter 3 

(this allows considering a reduced number of independent space vectors also if they are 

asymmetrical windings, defined with a redundant transformation). The model is presented for 

a squirrel cage rotor, aware that the same conclusion can be done for a SPM one. 

These assumptions allow writing all the equations of the previous section as follows. 

 

Simplified model for distributed multiphase windings 

 

Under the simplified hypothesis above, the new set of equations for the stator, ISC loop and 

rotor is presented here below. 

 

Stator Phase Voltage Space Vector Equation 
 

The stator voltage space vector equation for the p-th space is: 
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For the higher order independent spaces (up to the pm-th): 
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and for the zero sequence: 
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ISC loop Equation 
 

The ISC loop voltage equation is:  
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Rotor Cage Space Vector Equation 
 

The squirrel cage voltage space vector equation for the p-th space (being the only analysed 

space vectors in case of three-phase winding): 
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with: 

2

2

0
,

sin

2
h

N
h

RLN
L bb

hcage

















. 

For the higher order independent spaces of the stator winding (up to the pm-th): 

  
  

dt

eid
M

dt

id
LLliR

mfjh

sc
hfr
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hcagerhhrrh

 

 ,

,

,,0 . (4.95) 

The detection algorithm can be now introduced from the simplified equations presented in this 

last subsection. 
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Detection algorithm: concept 

 

The proposed detection algorithm is based on the analysis of the direct and inverse sequences 

of the different stator voltage space vectors (sequence impedances). 

 

Voltage space vector analysis for detection algorithm 
 

The voltage space vector equations (4.90)-(4.92) can be rewritten considering the voltage drops 

related to the ISC fault (with or without additional HR conditions) as: 
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ppsp vv
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,,

,

, 



,  (4.96) 

with: 

  pHRpHRppHR RiRiv 2,

*

0,,
2

1
 ,  (4.97) 

and the ISC current direct contribution: 
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di
eMMl

m
irrN

m
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,

22
,  (4.98) 

where in reality also the rotor reaction, realted to the term: 

 
dt

eid
M

mjp

pr

prs



,

, , 

is affected by the short circuit fault, as described later. 

For the higher order independent spaces (up to the pm-th): 

 hISChHRh vvv ,,  ,  (4.99) 

with: 

  )(,

*

)(,,
2

1
phHRpphHRphHR RiRiv   ,  (4.100) 

and the ISC direct contribution:  
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where in this case all the rotor cage effects are considered related to the ISC fault because the 

stator phase currents do not generate these field harmonics in the considered current control and 

model simplification. 

Finally, for the zero sequence: 

 
0,0,0 ISCHR vvv  , (4.102) 

with: 

  *

,0,
2

1
pHRpHR Riv  ,  (4.103) 

and the ISC current contribution: 

   









dt

di
MlirrN

m
v sc

scscHRfISC

2
0, .  (4.104) 

The proposed detection method is based on the solution of the equations presented here above 

for the evaluation of the sequence impedances. 

 

Detection algorithm 
 

When the stator is supplied with a main space vector trajectory which is a circumpherence 

covered at constant speed 
tj

pp eIi  , the voltage space vectors are expected to have a direct 

and an inverse sequences (compensating or neglecting the higher order harmonics of the back 

electromotive force) as: 

 
   invhVdirhV tj

invh

tj

dirhinvhdirhh eVeVvvv ,,,,

,,,,

 
 .  (4.105) 

Therefore, the detection algorithm is based on the analysis of the following space vector 

indexes: 

 
p

dirh

dirh
i

v
x ,

,  ,        
*

,

,

p

invh

invh
i

v
x  .  (4.106) 

The simplified model is quite a good approximation for describing the HR faults as described 

in the next section (Section 4.5). However, for the analysis of the ISC faults there are more 

approximations and the effect of the cage must be better highlighted. This analysis is done in 

Section 4.6. 
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The following section presents the HR detection algorithm based on the equations of this last 

paragraph. 

 

 High Resistance Fault Detection Algorithm with Ideal 

Current Control (FOC) 

 

In the considered Field Oriented Control (FOC), the current space vectors are controlled to zero 

but the fundamental one (p-th), which is controlled to the reference value needed for controlling 

the torque and in general also the rotor flux (as happens in IM, but also for PM machines in 

flux weakening operation): refpp ii , and 0 phi  (if phi  does not depend from pi ). 

In particular, for the hypothesis of the model and the control technique, for a given rotor speed 

also the rotor linked flux space vector hr , in a squirrel cage IMs are zero for all the spaces but 

the p-th one. Instead, in an SPM machine they are vectors with constant magnitude that can be 

predicted and compensated. Therefore, the p-th space voltage equation is: 

    )(,

*

)(,

,

2

1
phHRpphHRp

prp

ppsp RiRi
dt

d

dt

id
LLliRv  


.  (4.107) 

Instead, for the higher order spaces ( 0 phi ): 

  
dt

d
RiRiv

hr

phHRpphHRph

,

)(,

*

)(,
2

1 
  ,  (4.108) 

where 
dt

d hr ,
 represents the possible back-emf in case of SPM rotor. Instead, in case of IM 

dt

d hr ,
 is zero according to the considered control technique for all the spaces but the main one. 

For the main space, the rotor flux space vector pr , in an IM depends from the stator current 

control, and in an SPM machine it is usually known. Therefore, the 
dt

d hr ,
 terms can be 

evaluated in the control algorithm (as the voltage drop on the expected resistance and total 

inductance of the main space,  
dt

id
LLliR

p

pps  ) and the effect of the HR fault hHRv ,  can be 

discriminated from them as below. 

Considering a steady state working condition (
tj

pp eIi  ), the detection algorithm defined by 

(4.105) and (4.106) can be used for the HR detection as follows. 

The HR detection equations result as: 
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and eventually: 

   0

*

, vRi pHRp  .  (4.110) 

Equations (4.109) are the main HR detection equations. It is interesting to note that for each h-

th space it is possible to evaluate two resistance space vector equations. Therefore, for each 

independent space available in the current control there is an increased number of degrees of 

freedom that can be exploited for detecting the HR fault. The next subsection highlights the 

advantage of the redundant system of equations for the improved accuracy of the HR detection 

algorithm. 

Hereafter, for the HR detection analysis the equations are written in electrical degrees. Indeed, 

in distributed winding multiphase machines (not sectored) the HR fault does not affect the field 

in the airgap, which remains symmetrical under the different pole pairs. 

 

Advantages of redundant equations in the HR detection algorithm for improved accuracy 

 

The possibility to have a redundant system of HR detection equations is exploited for improving 

the accuracy of the proposed algorithm. In particular, here below it is explained how the method 

allows also to eliminate from the analysis possible unbalances in the leakage inductances of the 

different phases.  

An asymmetry in the phase leakage inductances can be analysed in the same way of a phase 

resistance unbalance. The main difference is that the voltage drop is related to the derivative of 

the current space vectors (and not just the current vector).  

The resulting voltage space vector equation at steady state (
tjeIi 

11  , considering the model 

in electrical degrees) for the main space is: 

 
dt

d
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with: 
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The voltage space vector equations for the higher order spaces are: 

 
dt

d
vvv
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invhdirhh
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 ,  (4.112) 

with: 
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Finally, the homopolar voltage equation is: 
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  , (4.113) 

with the space resistances and leakage inductances defined as: 
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The same detection algorithm used for the HR detection can be used for the High Leakage 

inductance (HL) detection, or better to define a method that allows discriminating the HR 

detection from an unbalance in the phase leakage inductances (HL). 

In the following equations, the rotor effects are neglected to simplify the analysis, knowing that 

they can be evaluated according the machine topology and control technique. 

The resulting detection algorithm would result in the following steady state equations: 
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and for the higher order spaces (h=3, 5, …, m-2): 
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  (4.115) 
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It results that a full detection of the passive impedances unbalance (resistances and leakage 

inductances) can be achieved only if one of the two contributions can be neglected. The h-space 

passive impedance unbalance is defined as: 

 hHLhHRhH lLjRZ ,,,  .  (4.116) 

One possibility to overcome this problem and discriminate between the resistances and leakage 

inductances is to carry out a sensitivity analysis varying the control frequency ( ). The 

constant part of the space vector passive impedance with the frequency is the HR resistance 

space vector, while the part that changes linearly with the frequency is the HL leakage 

inductance space vector. 

Another approach is to couple the detection equations in order to avoid a change in the control 

algorithm (frequency and eventually speed). Equation (4.115) can be rewritten as: 
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Resulting in the final detection algorithm equations: 
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  (4.118) 

which is valid for h=2, 4, 6, …, m-3 (m-2 if m is an even number).  

For the zero component (average resistance increase), the equation remains as: 

   s
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HLHR RLLlj
i

v
LljR 22 1
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0,0,   .  (4.119) 

Therefore, the detection algorithm for the zero sequence of the space impedance results as: 
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  (4.120) 

It is immediate to note that the zero sequence HR and HL (average resistance and leakage 

increase) detection is significantly affected by the machine parameters (self inductance and 

normal leakage and resistance parameters) plus the effect of the main contribution of the rotor 

(implicit in all the voltage space vector equations). Instead, the HR and HL space vectors are 

only affected by the rotor flux control (in case of IM) or evaluation (in case of SPM machine). 
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Finally, in case of a symmetrical winding with an odd number of phases, the missing space 

vector equations are: 

 

   



















*

1

),2(

)1(,)1(,

0)1(,1)1(,1

2
i

v
lLjR

vlLijRi

invm

mHLmHR

mHRmHR





  (4.121) 

Therefore, in a machine with an odd number of phases there are three scalar equations related 

to the m-1 components and four degrees of freedom (two for the resistance and two for the 

leakage). Therefore, the system cannot be completely solved if there are both an HR and an HL 

unbalances. The proposed solution is based on the use of only the not zero sequence equations 

(being the star connection voltage measurement usually not available) considering one of the 

two asymmetries as: 
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Instead, in case of an asymmetrical multi three-phase distributed winding with an even number 

of phases, the missing equations are: 
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Therefore, the analysis of the star connection voltage is more complicated (the information on 

an odd impedance space vector is not easy to consider when an inverse transformation based 

on the even space vectors is used) and only the m-1 sequence component is used to evaluate the 

m-space impedance as: 
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  (4.124) 

 

Star connection constraints 
 

For optimising the dc link voltage or for fault tolerance, multi three-phase machines are often 

fed by independent three-phase converters, and each resulting three-phase winding subsystem 

is connected to an independent star. 

The difference between the multi three-phase configuration and the single star is that the multi 

three-phase has a reduced number of degrees of freedom. In particular, the control of the 

homopolar currents of the three-phase subsystems must not be implemented. Indeed, if there 
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were an offset in the current measurements of one three-phase subsystem, the presence of a PI 

controller that aims to maintain the homopolar current to zero would diverge in order to try to 

change the current value. In other words, the reference voltages would be forced to be 

theoretically equal to the plus or the minus of the DC link voltage with a consequent loss of the 

current control and just an effect on the voltage of the star connection. In reality, the zero 

sequence control interacts with the other PI regulators when the voltage limit is reached and if 

the other spaces are prioritised in the voltage limits management algorithm it would still be 

possible to control the machine. It is clear that it is better to avoid the zero sequence current 

control in a three-phase star connected winding. Indeed, the HR detection algorithm would 

detect a wrong resistance (theoretically infinite) between the various three-phase star 

connections. 

Therefore, the star connection reduces the degrees of freedom in the current control and in the 

detection algorithm, because the information on the zero sequence three-phase resistances is no 

more evaluated by a redundant number of resistance current space vectors and a reduced 

accuracy is expected. Indeed, from the previous analysis if there is more than one star 

connection, a reduction of the degrees of freedom makes the decoupling between resistance and 

leakage variations more complicated. 

The proposed HR detection algorithm is completely defined for some case studies of 

symmetrical and asymmetrical distributed windings in the next two subsections respectively.  

 

High Resistance Faults in Symmetrical Multiphase Machines (odd phases) 

 

In a symmetrical multiphase winding with an odd number of phases, the machine model can be 

defined in electrical degrees and with a symmetrical transformation with an odd number of 

variables (one for each phase), as: 
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The odd current space vectors in a standard FOC are controlled to zero but 
1i  and the detection 

algorithm is based on analysis of the odd voltage space vectors defined in the equations (4.118), 

(4.122) and (4.120), reported here below: 
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for h=2, 4, 6, …, m-3, plus 
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and 
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Once the resistance space vectors are defined, the evaluated phase resistances are calculated by 

the general inverse transformation for odd symmetrical windings based on the even space 

vectors: 
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e
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 . 

Here below the equations are presented for a three-phase and a nine phase symmetrical winding. 

 

Three-Phase Symmetrical Winding 
 

For a symmetrical three-phase winding (standard), it is possible to evaluate the resistance space 

vectors by the direct and inverse components of the current and voltage space vectors as: 
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and in case of having also the star connection voltage measurement, an improved accuracy can 

be obtained considering the zero information given by the zero sequence as: 
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Finally, the phase resistances are evaluated as: 
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 (4.131) 

It is worth noticing that in a three-phase winding there are not redundant resistance space 

vectors that can be used to improve the accuracy of the model or discriminate between an HR 

and an HL asymmetry. 
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Nine-Phase Symmetrical Winding (Nine-Phase, single star connections) 
 

The HR detection algorithm for a symmetrical nine-phase winding (with a single star 

connection) results from the following equations. 
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  (4.132) 

where the redundant space vectors are in the first equation system and the not redundant are in 

the second one. In case of having also the star connection voltage measurement, an improved 

accuracy for the 8th resistance space vector can be obtained considering also for the information 

given by the zero sequence: 

         018,18, viRiR HRHR  .  (4.133) 

The phase resistances are evaluated as: 

 














)1(

9

2

,

8

2

0,
2

1 xjh

hHR

h

HRsx eRRRR
even



. (4.134) 

The detection algorithm for a nine phase symmetrical IM has been verified analytically and by 

experimental tests. The obtained results are presented in Section 4.10. 

 

Nine-Phase Symmetrical Winding (Triple Three-Phase star connection) 
 

As mentioned before, in case of a phase number multiple of three, it is also common to opt for 

a multi three-phase winding layout (realising a system of symmetrical three-phase subsystems 

shifted in the space). 

The difference between the triple three-phase configuration and the nine-phase (single star) one, 

is that the triple three-phase has a reduced number of degrees of freedom. In particular, the 

control of the homopolar currents of the three-phase subsystems must not be implemented. 
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The HR detection algorithm could be implemented for each three-phase subsystem (T-th, with 

T = A, B or C) independently, as mentioned for the standard three-phase winding as: 
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plus the possible information obtained from the star connections measurements, and: 
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However, the multi-harmonic control of the machine is more likely based on the space harmonic 

control. Therefore, the detection algorithm is based on a reduced number of equations. In 

particular, the 3rd voltage space vector equation is not considered in the algorithm, resulting in 

the following set of equations: 
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The phase resistances are still evaluated by (4.134). The difference is that 2,HRR and 4,HRR  are 

evaluated by a redundant set of equations anymore (a reduced accuracy is expected if the 

voltages of the star connections are not measured).  

In the next subsection, the HR detection algorithm is analysed for asymmetrical six-phase and 

twelve-phase machines. 

 

High Resistance Fault in Asymmetrical Multi Three-Phase Machines (even phases) 

 

In an asymmetrical distributed multi three-phase winding with an even number of phases, the 

machine model can be still defined in electrical degrees and with a symmetrical redundant 

transformation, as: 
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The odd current space vectors in a standard FOC are controlled to zero but 
1i  and the detection 

algorithm is based on the analysis of the odd voltage space vectors defined in the equations 

(4.118), (4.124) and (4.120), reported here below: 
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for h=2, 4, 6, …, m-2, 
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and 
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Once the resistance space vectors are defined, the evaluated phase resistances could be defined 

by the inverse transformation for asymmetrical windings based on the even space vectors as: 
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with m
j

e 2

2

  . As mentioned in Chapter 2, it is essential to verify that the analysed system can 

be solved by the simplified inverse transformation (4.141). 

The next paragraphs present the HR detection equations for a six-phase and twelve-phase 

asymmetrical windings. 

 

Six -Phase Asymmetrical Winding (Six-Phase, single star connection) 
 

In case of a six-phase asymmetrical winding, the phase resistances can be evaluated by the 

multiphase resistance space vectors) as: 
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where x indicates the position of the phase in the redundant representation. The HR detection 

algorithm evaluates the resistance space vectors as: 
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As for the machine with an odd number of phases, the zero sequence equation could be used as 

an additional fault index. It is interesting to note that in this case, the sixth resistance space 

vector is a real number ( 6,HRR ). Therefore, the decoupling between the resistances and leakages 

asymmetries is easier to be implemented just considering the real part of the detected value. 

The complete impedance detection equation is: 
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Six-Phase Asymmetrical Winding (Double Three-Phase star connection) 
 

In case of a double three-phase winding, the star constraint makes the control of the 3rd current 

space vector impossible. Therefore, the HR detection equations result as: 
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As mentioned in the previous paragraph, a possible solution to easily discriminate between a 

HR and HL asymmetrical behaviour could be obtained from the analysis of the *

1

,5
2

i

v inv
 term. 

If it is a real number the fault is an HR, otherwise it is an HL condition. However, the sixth 

space resistance is: 
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 0,,0,,6,
2

1
BHRAHRHR RRR  . 

This means that its value is a good index of unbalance between the two three-phase subsystems, 

but if there is an unbalance in only one of them, 6,HRR  gives an averaged result of the 

phenomena. 

 

Twelve -Phase Asymmetrical Winding (Twelve -Phase, single star connection) 
 

The same approach used to model the phenomena in a six-phase machine can be used for a 

twelve-phase machine. The resulting detection equations are: 
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Also in this case the zero sequence equation could be used as an additional fault index.  

Finally, the phase resistances are evaluated as: 
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  (4.146) 

In this case, the twelfth resistance space vector is a real number ( 12,HRR ). Therefore, as in a six-

phase machine the decoupling between the resistances and leakages asymmetries might be 

implemented by analysing the asymmetry in this space as: 
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Twelve-Phase Asymmetrical Winding (Quadruple Three-Phase star connection) 
 

In case of a quadruple three-phase winding, the star constraint makes the control of the 3rd and 

9th current space vectors impossible. Therefore, the HR detection equations result as: 
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As for the double three-phase machine, a possible solution to easily discriminate between a HR 

and HL asymmetrical behaviour could be done from the analysis of the 
*

1

,112
i

v inv  term. If it is a 

real number the fault is an HR, otherwise it is an HL condition. However, in this case: 

 0,,0,,0,,0,,12,
2

1
DHRCHRBHRAHRHR RRRRR  . 

This means that its value is a good index of unbalance between the two pairs of not neighbouring 

three-phase subsystems, but if there is an unbalance in only one of them, 12,HRR  gives an 

averaged result of the phenomena. 

The advantages in the HR detection for single star multiphase windings can be considered an 

additional parameter of the system reliability when the winding is compared to its multi three-

phase layout. 

This paragraph concludes the proposed HR detection algorithm. The next two sections show 

the ISC fault detection algorithm. The following sections present the obtained simulation and 

experimental results. 

 

 Interturn Short Circuit Fault Detection with Ideal 

Current Control in Multiphase Machines 

 

In this section, the equations presented in Section 4.4 are analysed to show how the ISC loop 

makes the space equations interact between each other in case of multiphase machines. Then 

the model is simplified to the case of a three-phase machine to develop an analytical model that 

can represent the fault in steady state conditions.  
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Simplified model for distributed multiphase windings – space couplings caused by ISC 

fault in squirrel cage Induction Machines 

 

The stator voltage space vector equations for an IM (4.90)-(4.92) are rewritten here below. 

 

Stator phase voltage equations 
 

For the main space the voltage vector equation is: 
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For the higher order independent spaces (up to the p(m-2)-th for odd phase symmetrical 

windings, or (m-1)-th for even phase asymmetrical windings): 
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For the zero sequence: 
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ISC loop equation 
 

The ISC loop voltage equation (4.93) is:  
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  (4.151) 

Rotor cage Space Vector equation 
 

The squirrel cage voltage space vector equations (4.94)-(4.95) are, for the p-th space (being the 

only analysed space vectors in case of three-phase winding): 
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For the higher order independent spaces of the stator winding: 
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Space coupling caused by the ISC current in squirrel cage IMs 
 

The field in the airgap produced by the stator phase currents is considered as an ideal field 

(sinusoidal with p pole pairs). Therefore, the higher order harmonics in the airgap field are 

caused by the short circuit current which interact with all the considered rotor spaces by the 

following term in (4.153): 
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This term is the only source of electromotive force in the higher order spaces representing the 

rotor. Furthermore, the short circuit current interacts with all these rotor current space vectors 

because of the following term in (4.151): 
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It results that the evaluation of the ISC current is affected by the solution of all the considered 

rotor space vector equations (4.152)-(4.153). In case of SPM machine there would be the 

relative space back-emf independent from the short circuit current. 

Because in general the ISC current generates a contribution of voltage drop in all the stator 

space vector equations, all the direct and inverse sequences of the voltages are function of the 

simultaneous solution of all the rotor space vector equations with the ISC loop and the main 

stator voltage space vector equations. However, this analysis has not been done yet for a 

multiphase winding with more than three phases. 

The next subsection describes the same analysis, but for an SPM rotor.  

 

Simplified model for distributed multiphase windings – space couplings caused by ISC 

fault in SPM machines with sinusoidal MMF of the rotor magnets 

 

In a multiphase SPM machine, the short circuit current does not affect the rotor field (at least 

until the machine is working in linear conditions and there are not demagnetisation phenomena). 

However, each PM field harmonics interact with the ISC loop and generate a contribution to 
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the ISC current as happens for the current space vectors of a squirrel cage rotor. Therefore, in 

general each of these components generates a ripple in the ISC current and an additional effect 

in all the stator voltage space vectors. If the PM field can be simplified as a sinusoidal one, the 

analysis is significantly simplified as follows. 

 

Stator phase voltage equations 
 

For the main space, the voltage space vector equation is: 
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For the higher order independent spaces (up to the pm-th): 
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For the zero sequence: 
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ISC loop Equation 
 

The ISC loop voltage equation (4.93) is:  
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  (4.157) 

In a FOC of the machine, the stator currents are at the electrical frequency of the rotor. 

Therefore, all the equations can be solved considering only this frequency.  

In particular, the ISC loop equation (4.157) can be completely solved as function of only the 

fault parameters (
scr , fN  and eventually also

HRr ). Then, the stator voltage space vectors in 

steady state condition are expected to have a direct and inverse sequence at the frequency of 
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the stator current and their values can be defined by substituting the short circuit current 

equation. This analysis is left for future works.  

In the next section, the equations for a squirrel cage IM with an ISC fault are simplified for a 

three-phase winding in order to have a complete analytical steady state equation for the ISC 

current and the voltage space vector sequences. The following sections present the analytical 

and experimental results. 

 

 Interturn Short Circuit Fault Detection Algorithm 

with Ideal Current Control in Three-Phase Squirrel 

Cage Induction Machines 

 

In this section, the model is analysed in steady state condition, aware that this assumption results 

in neglecting the transient behaviour of the fault. The transient model of the machine has been 

simulated and the results are presented in the following section, but it is clear that an analytical 

model of the stead state phenomena is important to describe the behaviour of a fault such an 

ISC one, which is defined by many variables. 

 

Simplified model for ISC fault detection in Three-Phase IMs 

 

In the simplified model of three-phase machine with and ISC fault, only the fundamental 

harmonic in the airgap is analysed. Therefore, the resulting equations of the simplified space 

vector model for a three-phase IM affected by an ISC fault are as follows. 

 

Stator phase voltage equations 
 

For stator voltage space vector equation is: 

   
 

  .
22

2

1

,

)1()1(

,

,2,

*

0,

dt

di
eMMl

m
irrN

m

dt

eid
MRiRi

dt

id
LLliRv

scjp

pfs

zp

sc

zp

scHRf

jp

pr

prspHRpHRp

p

ppsp

f

m













 





  (4.158) 

The zero sequence voltage equation is: 
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ISC loop Equation 
 

The ISC loop voltage equation (4.93) is:  
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Rotor Cage Space Vector Equation 
 

The squirrel cage voltage space vector equation (4.94) for the p-th space is: 
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The equations above have been used to simulate the machine transient behaviour in case of ISC 

fault. In the next subsection, the equations are solved considering a steady state scenario. 

 

Simplified model for ISC fault detection in Three-Phase IMs at steady state conditions 

  

This paragraph defines the steady state equations for the short circuit current and the phase 

voltages once the current space vector pi  is defined by a standard FOC. 

If the main current vector is controlled as a vector moving at constant speed on a circular 

trajectory, it can be defined as: 

 
tj

pp eIi  . (4.162) 

In this condition, the stator voltage space vector is expected to have a direct and inverse 

sequence as:  

 
   invVdirV tj

invp

tj

dirpp eVeVv ,,

,,

 
 . (4.163) 

Instead, the rotor current space vector (under the hypothesis of sinusoidal field in the airgap) is 

expected to have a direct and inverse sequence but at a frequency which is function of the slip 

(or load torque as well). In particular, the main squirrel cage current space vector is expected 

to be as: 
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and the short circuit current as: 
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In this condition, the machine equations in case of steady state ISC and sinusoidal field in the 

airgap can be simplified as follows.  

The stator voltage space vector equation becomes as: 
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(4.166) 

The ISC loop equation in steady state conditions results as: 
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The rotor cage space vector equation is: 
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 (4.168) 

In order to solve the equation system it is possible to consider separately the direct and inverse 

sequences resulting in the various equations. 
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The rotor voltage equation (4.168) results for the direct sequence as: 
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 (4.169) 

and for the inverse sequence as: 
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At this point, the rotor direct and inverse sequence equations can be substituted in the ISC loop 

equation (4.167) and the stator voltage equation (4.166). 

The stator voltage space equation becomes: 
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while the ISC loop equation, making explicit the real components, results as: 
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(4.172)  

As expected, the ISC loop equation can be analysed in the same way considering the direct or 

the inverse sequence component of the short circuit current, being one the conjugate of the 

other.  

 

Interturn short circuit current and voltage space vector sequences 
 

Considering only for the direct sequence component, the ISC equation results as: 
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(4.173)  



CHAPTER 4 

272 

 

Finally, from the ISC current it is possible to evaluate the direct and inverse voltage space vector 

in the current reference frame. Theoretically, the PI regulators will give as output this voltage 

space vector sequences from the converter in order to have the desired current control. The 

direct sequence voltage space vector in the reference frame synchronous with the current space 

vector is: 
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(4.174) 

The inverse sequence voltage space vector in a reference frame synchronous with the conjugate 

of the current space vector is: 
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(4.175) 

At this point, because of the complexity of the problem, only the inverse voltage space vector 

is analysed. However, it is clear that the same analysis can be carried out considering also for 

the direct sequence of the voltage space vector separating the components related to the fault 

from the ones related to the healthy machine behaviour.  
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Fault index 
 

Equation (4.175) is analysed to evaluate the expected fault index in case of ISC fault, where the 

fault index is defined as: 
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.  (4.176) 

The fault index represents the impedance of the direct-inverse sequence (related to the effect of 

a direct current sequence on the inverse voltage sequence). 

It is worth noticing that usually the current control for the direct and inverse sequences is 

defined in the rotor flux reference frame (standard FOC algorithm). This means that the direct 

sequence reference frame is synchronous with rp , and the inverse sequence reference frame 

is synchronous with rp , . In this case, the output voltage space vector from the inverse 

sequence PI regulators can still be divided by the conjugate of the reference d-q axis current of 

the direct sequence, and to get the fault index it must be rotate of the angle of the current space 

vector in the rotor flux reference frame: 
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  (4.177) 

Therefore, FOCinvdqpx v   ,, , where FOC  is the angle of the current space vector in the rotor 

flux reference frame (FOC control) and invdqpv ,,  is the phase of the inverse sequence voltage 

space vector in the reference frame synchronous with the conjugate of the rotor flux. The same 

result is obtained evaluating the direct-inverse sequence impedance as: 
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x  . (4.178) 

The equation of the diagnostic index ( x ) is quite complicated, as it is the expression of the 

short circuit current ( sci ). Indeed, they are both function of the following variables: 

- The short circuit fault resistance ( scr ); 

- The number of short circuited turns ( fN ); 

- The magnetic axis of the short circuit loop ( f ); 

- The magnetic axis of the faulty phase (
z ); 

- The resistance increase in the faulty phase in the ISC loop ( HRr ) and eventually also in 

the other phases; 

- The rotor speed (
dt

d m ); 
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- The machine current control ( pi ). 

The last two variables (
dt

d m  and pi ) are known. Instead, the fault position ( f  and z ) and 

the fault size ( fN ) and advancement ( scr ) are four degrees of freedom. In particular, the last 

two ( fN  and scr ) define the magnitude of the short circuit current. Eventually, also the increase 

of resistance in the short circuited turns ( HRr ) and in the different phases outside the short 

circuit loop ( xHRR , ) could be considered as additional degrees of freedom as defined by (4.76).  

In this section, the model of an ISC fault has been simplified to allow easily implementing a 

transient simulation. Then, a further simplification has been done considering the steady state 

equations on the assumption of an ideal current control. The evaluation of the ISC current and 

the impedance of the direct-inverse sequence have been defined from the steady state model. 

Their analytical expressions are used in Section 4.9 to understand how an ISC behaves in a 

three-phase squirrel cage IM and which information can be derived by the measurement of the 

direct-inverse sequence impedance. Therefore, the direct-inverse sequence impedance is chosen 

as diagnostic index for the analysis of the ISC fault. 

The next section compares the transient model with some experimental results obtained with a 

voltage control of a three-phase IM. The aim is to validate the model and the hypotheses behind 

it. 

 

 Analytical and Experimental Results: High 

Resistance and Interturn Short Circuits in Three-

phase Induction Machines with V/f Control 

 

This initial analysis shows the validation of the proposed model for a three-phase IM in case of 

HR and ISC faults. In particular, a series of V/f machine control tests at half the rated speed 

(about 750 rpm) and no load, 10 Nm and 20 Nm have been carried out in order to understand 

if the proposed model allows discriminating between an HR and an ISC fault (the rated torque 

is at about 27 Nm). Furthermore, the analysis is done to highlight how much the load affects 

the fault behaviour. The V/f control is set at 145 V (peak phase voltage) and 25 Hz electrical 

frequency in order to have almost the rated rotor flux. In the first subsection the prototype that 

is used for the experimental tests is presented, summarising how it has been manufactured. 

Then the transient simulations in Matlab/Simulink are compared with the experimental results 

for the healthy machine and in case of HR and ISC faults. 
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Test rig and prototype 

 

This subsection shows how a prototype of nine-phase squirrel cage IM for HR and ISC tests 

has been prototyped. The prototype is an industrial three-phase machine (M.G.M Motori 

Elettrici S.p.A – BA 112 MB4) with a rewound stator.  

Fig. 4.7 shows the initial prototype and the winding scheme [10]. The copper has been removed, 

and a new winding has been manufactured (as shown in Fig. 4.8). The new winding 

significantly differs from the previous one also if the same turns per coil and fill factor are 

maintained. In particular, the new prototype has a nine-phase open end winding layout with the 

possibility of testing many interturn short circuit fault configurations. The open end winding 

layout allows configuring the machine as a standard three-phase or a symmetrical nine-phase 

one (the asymmetrical nine-phase winding is not analysed). The rewinding of the prototype has 

been possible thanks to Lucchi R. Elettromeccanica s.r.l.  

Fig. 4.9 shows the test rig with the final prototype (left) and the winding scheme (right). It is 

interesting to note that the new winding allows for many layout and fault configurations, with 

clear advantages for a medium and long-term research activity. 

 

 

Fig. 4.7 – Three-phase IM BA 112 MB4 from M.G.M. Motori Elettrici S.p.A (left) and winding scheme (right). 
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Fig. 4.9 - New prototype of nine phase IM and test rig (left top), new winding scheme (right) and electrical winding scheme 

of the phase U1, where the are many additional terminals for interturn short circuit tests (left bottom). 

 

 

Fig. 4.8 – Rewinding process from the original three-phase machine to the new customized winding. 
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Table 4.1 lists the main machine parameters of the machine in its three-phase winding 

configuration. 

 

The next subsections show the comparison between the transient simulations (in 

Matlab/Simulink) and the experimental results obtained on the machine in healthy conditions 

and with HR and ISC faults. 

 

Healthy Machine 

 

The healthy machine behaviour is simulated and verified by experimental tests to compare the 

healthy machine with the faulty one. The simulations are carried out with a Matlab-Simulink 

model based on the equations (4.158)-(4.161). Hereafter, only the steady state results are 

reported. In all the graphs, the d-q reference frame is synchronised with the starting phase of 

the direct sequence of the current space vector in the acquisition period. The small black circle 

represents the starting phase of the direct sequence (always zero, being the plot rotated in its 

reference frame), while the red rhombus represents the starting phase of the inverse sequence 

current space vector in the same d-q reference frame. 

 

Table 4.1 - Main machine parameters in its three-phase winding configuration. 

IEC Duty Cycle S1 Inner Diameter [mm] 110 

Poles 4 Active Length [mm] 140 

Power (𝐤𝐖) 4.0 Slots Number (Nc) 36 

International Protection code IP 55 Bars Number (Nb) 28 

P-P Voltage (𝐕𝐫𝐦𝐬) 𝚫/𝐘 220/380 Phase Pole Slots (q) 3 

Insulation Class F Stator Resistance (Rs) [Ohm] 1.303 

Speed (𝐫𝐩𝐦) 1440 Stator Leakage Inductance (Ll) [H]  0.0111 

Phase current (𝐀𝐫𝐦𝐬) 𝚫/𝐘 16.6/9.6 Rotor Resistance (Rr′) [Ohm] 1.383 

Power Factor Cos 𝛗 0.83 Rotor Leakage Inductance (Llr′) [H] 0.0114 

Fundamental Frequency (𝐇𝐳) 50 Mutual Inductance (M′) [H] 0.172 

Efficiency (%) 83.7 Stator Inductance (Ls) [H] 0.183 

Airgap (𝐦𝐦) 
0.7 

 

Rotor Inductance (Lr′) [H] 0.183 

The upper character “ ’ ” is used for the parameters of the equivalent circuit. 
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Simulation results 
 

Fig. 4.10 shows the currents and current space vector trajectory of the simulated healthy 

machine at no load conditions. As expected the current space vector has a circular trajectory 

and the inverse sequence of the current is zero. 

 

Experimental results 
 

The experimental tests have been performed by using the drive presented in Fig. 4.11. Fig. 4.12 

shows the scheme of the test setup and the connections of the coils for realising the three-phase 

winding configuration. Fig. 4.12 also shows how the HR and ISC faults have been realised. 

Fig. 4.13 shows the phase currents and the current space vector trajectory for the healthy 

machine.  

 

 

Fig. 4.10 - Matlab-Simulink simulation V/f control with healthy machine. Phase currents (red, blue and green) and short 

circuit current (purple) at the top; current space vector trajectory at the bottom. 



High Resistance and Interturn Short Circuit Faults 

279 

 

 

 

Fig. 4.11 - Drive used for the V/f experimental tests on the prototype in its three-phase winding configuration. Control 

board (left) and inverter (right). The DSP of the control board is a TMS320F2812. 

 

Fig. 4.12 - Test setup scheme (top), terminal box connections for three-phase winding configuration and setup for the ISC 

and HR tests (bottom). 
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As it is better explained in the next section, there is a series of small asymmetries in the machine 

(probably because of the manufacturing related to the not standard winding design) that makes 

the current space vector trajectory slightly elliptical. Indeed, the current on the U phase (blue 

in Fig. 4.13) is slightly smaller, and from the trajectory of the current space vector, the 

asymmetrical behaviour seems related to a higher resistance value in the U phase.  

Instead, for the same voltage and frequency all the phase currents are smaller compared to the 

simulation results because of the parameter uncertainties. Indeed, some experimental tests and 

FEA have been carried out in order to match the simulated model with the prototype, but 

because of missing data on the lamination there are uncertainties mainly related to the cage 

geometry and mechanical parameters. However, for this analysis, the following results have 

been considered sufficient and further tests for the matching of the parameters have not been 

carried out. 

 

 

 

 

Fig. 4.13 - Experimental tests V/f control with healthy machine. Phase currents (red, blue and green) and short circuit 

current (purple) at the top; Current space vector trajectory at the bottom. 
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High Resistance faults 

 

The machine behaviour in case of HR condition has been validated introducing a resistance in 

the series of each phase turns. In this subsection, only the results with an increase of 1.85 Ohm 

are presented. This value is the same used for the ISC analysis in order to simplify the 

understanding of the tests and have a significant asymmetrical behaviour of the machine in case 

of fault. However, it is clear that the two fault conditions are significantly different and not 

comparable in terms of fault resistance. 

 

Simulations 
 

Fig. 4.14 shows the current space vector trajectories at no load when a HR of 1.85 Ohm is 

connected in series to one of the three phases in each plot. As expected by (4.107), in case of a 

V/f control, the introduction of a HR generates an inverse current sequence. 

 

 

 

 

Fig. 4.14 - Matlab-Simulink simulation V/f control with High Resistance fault (1.85 Ohm additional) in the mentioned 

phases. Current space vector trajectories [2A/div]. 
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Experimental results 
 

Fig. 4.15 shows the same analysis of Fig. 4.14 carried out by experimental tests (the test setup 

is described in Fig. 4.12). The qualitative behaviour is almost as expected by the simulations in 

Fig. 4.14. The main difference is that the trajectories are all shifted of an offset (because of the 

not perfect match of the model parameters, as already mentioned). 

 

 

 

 

 

 

 

 

 

 

Fig. 4.15 - Experimental results V/f control with High Resistance fault (1.85 Ohm additional) in the mentioned phases. 

Current space vector trajectories [2A/div]. 
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Interturn Short Circuit faults 

 

The ISC faults have been performed considering the same fault resistance used for the HR ones 

(1.85 Ohm). The main goal is to show that the proposed model can properly simulate this fault 

in such a way that it result in different space vector trajectories according to the fault topology 

and location in the different coils. The short circuits are simulated and tested for a full coil short 

circuit (1/6 of the phase, 28 turns), as shown in Fig. 4.12. 

 

Simulations 
 

Fig. 4.16 shows the current space vector trajectories in case of an ISC fault, comparing the same 

fault in the three phases and, only for the phase V, also in the three different coils under one 

pole pair. It is worth noticing that if the fault happens in a different pole pair the behaviour is 

exactly the same, and from the measurements the difference cannot be detected if there are not 

additional sensors (as thermocouples or searching coils). 

 

 

Fig. 4.16 - Matlab-Simulink simulation V/f control with Interturn Short Circuit fault at no load (1.85 Ohm short circuit 

resistance) in the mentioned phases and coils. Current space vector trajectories [2A/div]. 
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Fig. 4.17 shows the phase currents and the short circuit current in case of short circuit of the 

central coil (coil 2) of the U phase at no load and with 10 and 20 Nm load torque. 

 

 

 

 

 

 

 

 

Fig. 4.17 - Matlab-Simulink simulation V/f control with Interturn Short Circuit fault on the U phase at no load (top), 10 

Nm (centre) and 20 Nm (bottom) (1.85 Ohm short circuit resistance) in the mentioned phases and coils. Phase currents 

(red, blue and green) and short circuit current (purple). 
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Experimental results 
 

Fig. 4.18 and Fig. 4.19 show the experimental results of the same tests. The no load currents 

are zoomed to better see the phase and short circuit currents behaviour. It is interesting to note 

that the magnitude of the short circuit current is almost independent from the load (torque), 

while its phase significantly changes (this is because of the high fault resistance). The other 

important result is that the short circuit current has almost a sinusoidal waveform at the stator 

electrical frequency independently from the load condition (allowing to simplify the model 

considering only the fundamental frequency). 

 

 

 

 

 

 

 

 

Fig. 4.18 - Experimental results V/f control with Interturn Short Circuit fault at no load (1.85 Ohm short circuit resistance) 

in the mentioned phases and coils. Current space vector trajectories [2A/div]. 
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Fig. 4.19 - Experimental results V/f control with Interturn Short Circuit fault on the U phase at no load (top), 10 Nm 

(centre) and 20 Nm (bottom) (1.85 Ohm short circuit resistance) in the mentioned phases and coils. Phase currents (red, 

blue and green) and short circuit current (purple). 
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High Resistance and Interturn Short Circuit faults: Comparison with V/f control 

 

Table 4.2 summarizes the Matlab-Simulink and experimental results. In the table it is 

highlighted the fact that the short circuit resistance when the short circuit do not happen is 300 

Ohm and not infinite. Indeed, this approximation was needed for the numerical solution of the 

Matlab-Simulink model (having a current in the model that is too small increases the simulation 

efforts, while with 300 Ohm resistance the short circuit effect is still negligible for the analysis 

but allows a much faster solution). The phases of the current sequences are different between 

the simulations and the experimental tests (for the already mentioned reasons). However, the 

relative phases with the various tested faults are almost as expected.  

Table 4.2 – Simulation of a faulty three-phase IM. Results comparison. 

 Faulty phase 
Faulty 

coil 

𝑹𝒔𝒄 

[Ohm] 

𝑵𝒇𝒓𝑯𝑹 

[Nm] 

𝑻 

[Nm] 

𝑰𝒊𝒏𝒗 

mag 

[A] 

 𝑰𝒊𝒏𝒗 

phase 

[deg] 

𝑰𝒊𝒏𝒗 

mag 

[A] 

𝑰𝒊𝒏𝒗 

phase 

[deg] 

N
o

 L
o

a
d

 

 Matlab-

Simulink 
Experimental 

Short circuit fault (phase discrimination) 

U 2 1.85 0 0 0.426 322 0.6034 289 

V 2 1.85 0 0 0.426 202 0.4463 182 

W 2 1.85 0 0 0.426 82 0.5260 41 

Short circuit fault (coil discrimination)   

V 1 1.85 0 0 0.475 234 0.5095 207 

V 2 1.85 0 0 0.426 202 0.4463 182 

V 3 1.85 0 0 0.364 170 0.3892 149 

High resistance fault (phase discrimination)   

U - (300) 1.85 0 0.776 234 0.6029 226 

V - (300) 1.85 0 0.776 114 0.4731 98 

W - (300) 1.85 0 0.776 354 0.6225 333 

L
o

a
d

 

Short circuit fault (load sensitivity)   

U 2 14.3 0 10 0.061 342 0.1499 331 

U 2 1.85 0 10 0.424 346 0.4885 22 

U 2 14.3 0 20 0.059 353 0.1933 326 

U 2 1.85 0 20 0.419 356 0.4658 14 
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Fig. 4.20 shows the phase and short circuit currents at no load when the short circuit resistance 

is decreased from 14.3 to 1.85 Ohm. The current space vector trajectory is presented in the same 

figure, to highlight that at no load conditions the phase of the current space vector for quite high 

short circuit resistance values does not significantly change. The obtained results are similar to 

the one proposed in [9], with the difference that the ISC faults are also compared with the HR 

ones as in [3]. The simulation and experimental analysis was useful to validate the model for 

the analysis presented in the next section, where the detection algorithm is analysed in case of 

an ideal vector current control of the machine, showing the dependence of the detection 

algorithm to the fault and machine behaviour.  

 

 

 

 

 

 

 

Fig. 4.20 - Experimental results V/f control with Interturn Short Circuit fault on the U phase at no load varying the short 

circuit resistance from 14.3 to 1.85 Ohm. Phase currents (red, blue and green) and short circuit current (purple) on the 

top; current space vector trajectory on the bottom. 
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 Analytical Results of ISC fault detection for Three-

phase IMs 

 

In order to have a better understanding of the ISC phenomena, the steady state analysis of the 

fault is evaluated analytically under the hypothesis of ideal current FOC control as described in 

Section 4.7. Therefore, the ISC analysis is carried out considering the direct-inverse sequence 

impedance as fault index: 
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In case of a HR fault the index represents the asymmetrical phase resistance configuration as: 
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In case of an ISC fault, the fault index ( x ) has a much more complicated expression. The fault 

index equation is derived by (4.175) as: 
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(4.181) 

Introducing the conjugate of the short circuit current space vector (4.173), the final fault index 

in steady state condition and with the hypothesis of sinusoidal field in the airgap is: 
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(4.182) 

Hereafter, the analytical evaluation of the amplitude of the short circuit current and the 

magnitude and phase of the fault index given by (4.182) are presented, showing how they are 

affected by the following variables: 

- The short circuit fault resistance ( scr ) 

- The number of short circuited turns ( fN ) 

- The magnetic axis of the short circuit loop ( f ) 

- The magnetic axis of the faulty phase (
z ) 

- The resistance increase in the faulty phase in the ISC loop ( zHRR , ) 

- The rotor speed (
dt

d m ) 

- The electrical frequency ( ), or in other words the slip: 






dt

d
p

s

m

 . 

It is interesting to note that the fault index is independent from the magnitude of the stator 

current space vector ( pi ). Indeed, it represents the direct-inverse sequence impedance. 

Compared to a three-phase SPM machine, the main additional parameter is the slip of the rotor 

flux compared to the rotor. The slip can be evaluated directly from the FOC and the 

measurement of the rotor speed, or can be evaluated (in case of sensorless control of the IM). 

However, the different behaviour of the machine with the various working conditions (slip) 

makes the diagnosis of the ISC fault much more complicated than the HR one. 

Some figures are presented here below in order to understand how the diagnostic index depends 

from the fault parameters and the working condition. All the analysis is carried out at rated 

current (9.6 Arms) and frequency (50 Hz).  



High Resistance and Interturn Short Circuit Faults 

291 

 

Fig. 4.21 shows the detection parameters x defined by (4.182) in case of HR fault, with fault 

resistance up to about 1 Ohm, and in case of ISC of the central coils of the three phases 

(highlighted with different colours). The short circuit resistance varies from 20 Ohm to zero 

(full short circuit). The machine is operating at no load conditions. As expected, the trajectories 

of the diagnostic index in Fig. 4.21 are straight lines in case of HR fault in one phase, and the 

phase of the diagnostic index depends only from the faulty phase. Instead, in case of ISC, the 

trajectories have the shape of a spiral with a different phase of the detection parameter for 

different short circuit resistance values. In both the cases, the magnitude of the fault index 

increases with the fault severity. 

Fig. 4.22 presents the same machine behaviour, but considering for all the possible fault 

locations (1st, 2nd and 3rd coil of each phase). While the HR fault position do not affect the 

machine behaviour, the position of the ISC fault in one phase changes the phase of the inverse 

sequence of the voltage and therefore also the phase of the diagnostic index. In Fig. 4.22 the 

fault position is highlighted for the U phase (red), where with a square and a rhombus are 

distinguished the ISC faults in the first and the last coils of the U phase. 

In the following figures, the ISC faults are presented only for the fault in the central coil (2nd) 

of the U phase. 

 

 

Fig. 4.21 - Detection parameter x at no load and rated frequency (50 Hz). HR connection up to about 1 Ohm and ISC 

detection with full short circuit of the central coil (28 turns) for each phase and short circuit resistance from 20 Ohm to 0 

resistance (complete short circuit). 
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Fig. 4.23 shows the detection index when the slip is changed from 0 (no load) to 0.1. The rated 

load condition (0.04 slip) is highlighted with a blue rhombus. As can be noticed, also the slip 

affects the detection index both in terms of magnitude and in terms of phase.  

Fig. 4.24 shows what is found to be the most critical ISC fault parameter: the number of short-

circuited turns. The results presented in Fig. 4.24 are at rated speed and load (0.04 slip). With 

black circles are highlighted the values of the detection index in case of full coil short circuit 

(28 turns) for different short circuit resistance values (from zero to 1 Ohm, as shown in Fig. 

4.25). For the same short circuit resistance all the possible number of short-circuited turns are 

presented (up to the single turn ISC fault). Fig. 4.25 shows the peak value of the evaluated short 

circuit current for the same working conditions of Fig. 4.24. It is important to notice that, also 

if the detection index does not change significantly its magnitude when the fault affects a 

reduced number of turns, the short circuit current is significantly higher (up to 15 times the 

rated current in case of complete ISC of one turn).  

The short circuit current decreases with the increase of short-circuited turns for small values of 

short circuit resistance. For higher values, the short circuit current becomes higher with a higher 

number of short-circuited turns. This obtained results are in agreement with the ones obtained 

by FEA in [11]. Indeed, for small short circuit resistances the fault impedance is mainly 

inductive and therefore it decreases with the number of short-circuited turns. For high fault 

resistance values, the impedance becomes mainly resistive and related to the fault resistance 

itself, resulting in a higher short circuit current in case of more turns (higher ISC loop emf). 

The critical resistance value is about 0.1 Ohm in the simulated machine (0.05 Ohm in [11]). 

 

Fig. 4.22 - Detection parameter x at no load and rated frequency (50 Hz). HR connection up to about 1 Ohm and ISC 

detection with full short circuit of the different coils (28 turns) for each phase and short circuit resistance from 20 Ohm to 

0 resistance (complete short circuit). The coils are identified with a different symbol only for the phase U. 
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Fig. 4.23 - Detection parameter x at different slip values and rated frequency (50 Hz). ISC detection with full short 

circuit of the central coil (28 turns) of the U phase and short circuit resistance from 20 Ohm to 0 resistance (complete 

short circuit).  

Fig. 4.24 - Detection parameter at rated slip and rated frequency (50 Hz). ISC detection with a variable number of 

short circuited turns from 1 to 28 (one coil) of the U phase and short circuit resistance from 1 Ohm to 0 resistance 

(complete short circuit). 

 

x
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The last analysis is related to the effect of the resistance increase in the short-circuited turns. 

This phenomenon can be expected in case of a high short circuit current (heat source). Fig. 4.26 

and Fig. 4.27 show the detection index and the short circuit current at rated working conditions 

and a variable number of short-circuited turns when their resistance is increased up to twice the 

nominal value. In case of a small number of short-circuited turns, the short circuit current and 

the magnitude of the detection index significantly decrease with an increase of the turns 

resistance. Instead, in case of a higher number of short-circuited turns, the resistance increase 

in the ISC loop do not affect significantly the machine behaviour. The effect is similar to the 

one explained in the analysis of the short circuit resistance. 

The ISC detection in case of machine FOC has not been proved by experimental results yet. 

However, the analysis of the detection index shows that it is possible to discriminate between 

a HR fault and an ISC looking at the phase of the detection index. However, the discrimination 

of the fault criticality (number of short-circuited turns and short circuit resistance) are not 

predictable. Indeed, the fact that the diagnostic index changes its phase with the faulty coil 

results in some values that can be related to an important ISC fault (reduced number of short 

circuited turns with high short circuit current) or a less significant one (high number of short 

circuited turns with a small short circuit current).  

In the next section, the HR detection algorithm is verified by analytical and experimental results 

in case of a nine-phase machine with a single star. Instead, the theory of the ISC detection has 

not been analysed for the multiphase machine, but the equations presented in this chapter are 

already general for the ISC detection in multiphase machines.  

 

 

Fig. 4.25 – Short circuit current at rated slip and rated frequency (50 Hz). The number of short circuited turns varies from 

1 to 28 (one coil) of the U phase and short circuit resistance from 1 to 0 Ohm. 
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Fig. 4.26 – Detection parameter x at rated slip and rated frequency (50 Hz). The number of short circuited turns varies 

from 1 to 28 (one coil) of the U phase, the short circuit resistance is zero (full short circuit) and the short circuited turns 

have a resistance that increases from 1 to 2 times the normal value. 

 

Fig. 4.27 – Short circuit current at rated slip and rated frequency (50 Hz). The number of short circuited turns varies from 

1 to 28 (one coil) of the U phase, the short circuit resistance is zero (full short circuit) and the short circuited turns have 

a resistance that increases from 1 to 2 times the normal value. 
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 Analytical and Experimental Results of High 

Resistance Detection in Nine-Phase Induction 

Machines 

 

This section shows the results of the HR detection algorithm for the same prototype presented 

in Section 4.8 (squirrel cage IM) configured in a symmetrical nine-phase winding layout (the 

asymmetrical and symmetrical winding configurations have been explained in Chapter 2).  

The detection algorithm is based on equations (4.132)-(4.134), with the nine-phase machine 

connected in a single star configuration. In particular, the winding is a triple three-phase one in 

a nine-phase configuration (single star connection) as the one in Fig. 4.28. The phases of the 

inverters are named as U, V and W and the inverter numbered as 1, 2 and 3. The experimental 

tests are performed at no load and 300 rpm with 4 A of d-axis current, aware that the working 

condition should not affect the results. 

The detection algorithm is described by the equations here below: 
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  (4.183) 

Finally, the phase resistances are evaluated as: 

 

 

Fig. 4.28 – Symmetrical triple three-phase machine concept (left) and magnetic axes (right). In blue, green and orange 

are highlighted the U, V and W phases of the three inverters (1, 2 and 3). 
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The following subsection presents and compare the analytical and experimental results. 

 

High Resistance Fault Detection 

 

The analytical results are adapted to the experimental tests. Indeed, the phase resistances are 

not exactly equal in the healthy machine (probably because of the customized winding process). 

Therefore, an offset is introduced in the analytical model in order to match the analytical and 

experimental results. The offset is based on the evaluation of the healthy machine behaviour as 

in the next paragraph. 

  

Healthy Machine 
 

Fig. 4.29 and Fig. 4.30 show the resistance space vectors (or in other words the behaviour of 

the detection index x  in case of HR fault) and the evaluated phase resistances when the 

machine is healthy. While the analytical results are just matched with the experimental ones in 

order to take into account for the offset of the machine when there is not a fault condition, the 

experimental results are defined from the measured currents and the reference voltages. In order 

to obtain an improved performance of the machine and the detection algorithm, the dead times 

and the voltage drops on the switching devices have been compensated in the control algorithm. 

Therefore, the real phase voltages are expected to be almost equal to their reference values.  

Fig. 4.29 shows the analytical resistance space vectors (and the zero sequence) related to the 

defined values of phase resistances. Fig. 4.30 shows the resistance evaluation from the 

experimental tests in the same resistance condition. 

This test was only needed for setting the initial phase resistances in the analytical model. 
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Fig. 4.29 – Analytical results for the HR detection in the healthy machine matched with the prototype. Zero sequence (top 

left) 2nd and 4th space (top centre) and 6th and 8th spaces (top right) of the detection vectors. Evaluated Phase resistances 

for the U, V and W phases of each inverter (bottom). In blue, green and orange are highlighted the U, V and W phase 

resistances. 

 

Fig. 4.30 – Experimental results at no load, 4A of magnetizing current and 300 rpm speed. HR detection in the healthy 

machine. Zero sequence (top left) 2nd and 4th space (top centre) and 6th and 8th spaces (top right) detection vectors. 

Evaluated phase resistances for the U, V and W phases of each inverter (bottom). In blue, green and orange are highlighted 

the U, V and W phase resistances. [1V=1Ohm]. 
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HR fault in phase U, V and W of inverter 1 (0.345 Ohm of additional resistance) 
 

Fig. 4.31 shows the expected phase resistances and resistance space vectors when the phase U 

of the inverter 1 has an additional resistance of 0.345 Ohm in series. Fig. 4.32 shows the 

resistance and related space vectors evaluated by the experimental tests, when the phase 

resistance is placed between the end of the U phase on the inverter 1 and the star connection as 

in Fig. 4.12 for the three-phase winding configuration. 

Thanks to the matching of the initial resistance values and the improved detection algorithm, 

that exploits all the direct and inverse voltage space vectors according to (4.183), there is a good 

match between the experimental and analytical results.  

Fig. 4.33 and Fig. 4.34 show the analytical and experimental results obtained for the same HR 

condition, but in the V phase of the inverter 1. Finally, Fig. 4.35 and Fig. 4.36 show the results 

for the phase W of the same inverter.  
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Fig. 4.31 – Analytical results for the HR detection of an HR fault of 0.345 Ohm in the phase U of the Inverter 1. Zero 

sequence (top left) 2nd and 4th space (top centre) and 6th and 8th spaces (top right) of the detection vectors. Evaluated Phase 

resistances for the U, V and W phases of each inverter (bottom). In blue, green and orange are highlighted the U, V and 

W phase resistances. 

 

Fig. 4.32 – Experimental results at no load, 4A of magnetizing current and 300 rpm speed. HR detection with 0.345 Ohm 

of additional resistance in series of phase U of inverter 1. Zero sequence (top left) 2nd and 4th space (top centre) and 6th 

and 8th spaces (top right) detection vectors. Evaluated phase resistances for the U, V and W phases of each inverter 

(bottom). In blue, green and orange are highlighted the U, V and W phase resistances. [1V=1Ohm]. 

 

 



High Resistance and Interturn Short Circuit Faults 

301 

 

 

 

Fig. 4.33 – Analytical results for the HR detection of an HR fault of 0.345 Ohm in the phase V of the Inverter 1. Zero 

sequence (top left) 2nd and 4th space (top centre) and 6th and 8th spaces (top right) of the detection vectors. Evaluated Phase 

resistances for the U, V and W phases of each inverter (bottom). In blue, green and orange are highlighted the U, V and 

W phase resistances. 

 

Fig. 4.34 – Experimental results at no load, 4A of magnetizing current and 300 rpm speed. HR detection with 0.345 Ohm 

of additional resistance in series of phase V of inverter 1. Zero sequence (top left) 2nd and 4th space (top centre) and 6th 

and 8th spaces (top right) detection vectors. Evaluated phase resistances for the U, V and W phases of each inverter 

(bottom). In blue, green and orange are highlighted the U, V and W phase resistances. [1V=1Ohm]. 
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Fig. 4.35 – Analytical results for the HR detection of an HR fault of 0.345 Ohm in the phase W of the Inverter 1. Zero 

sequence (top left) 2nd and 4th space (top centre) and 6th and 8th spaces (top right) of the detection vectors. Evaluated Phase 

resistances for the U, V and W phases of each inverter (bottom). In blue, green and orange are highlighted the U, V and 

W phase resistances. 

 

Fig. 4.36 – Experimental results at no load, 4A of magnetizing current and 300 rpm speed. HR detection with 0.345 Ohm 

of additional resistance in series of phase W of inverter 1. Zero sequence (top left) 2nd and 4th space (top centre) and 6th 

and 8th spaces (top right) detection vectors. Evaluated phase resistances for the U, V and W phases of each inverter 

(bottom). In blue, green and orange are highlighted the U, V and W phase resistances. [1V=1Ohm]. 
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 Conclusion 

 

High resistance connections and interturn short circuits are among the most probable faults 

related to the deterioration and ageing of electrical machines. The online early detection of these 

faults is essential to meet high levels of reliability in critical systems as the ones required in 

MEA applications.  

The presented model of these faults in multiphase SPM and squirrel cage IMs is based on the 

winding function approach. 

Initially, a general multiphase machine is considered and, theoretically, all the field harmonics 

in the airgap are taken into account. Then, the model is simplified considering only for the 

lowest field harmonics that is possible to independently control by the stator currents. The 

voltage equations are rewritten in terms of space vector representation. A transient 

Matlab/Simulink model of a three-phase squirrel cage IM is developed from the resulting space 

vector equations. 

Based on the assumption of an ideal control of the stator currents, the transient model is 

simplified considering a steady state working condition. The equations of the direct and inverse 

sequences of the voltage space vectors are evaluated.  

A diagnostic index (correspondent to the sequence impedance) is defined for each space vector 

equation by the elaboration of the voltage and current space vector sequences. The same 

detection method is proposed for both HR and ISC faults. 

The detection algorithm for HR faults is presented in its general shape, adding some 

improvements in terms of detection accuracy and showing the advantage of having a reduced 

number of star connections in multiphase machines. Analytical and experimental results 

validated the algorithm. 

The ISC detection algorithm is analysed in deep for a three-phase IM. The ISC transient model 

is simulated and compared with experimental tests with an open loop V/f control of the 

machine. Then, the analytical model of the steady state behaviour with an ideal current control 

is presented. Instead, the closed loop control and the proposed detection algorithm has not been 

verified by experimental tests yet. However, the analytical results are in agreement with the FE 

and experimental analyses published by other research groups.  

The basis for the development of an ISC detection algorithm in multiphase machines have been 

presented and will be implemented in future works, and better results than the one for the three-

phase topology are expected.  

The fault detection algorithm is based on a redundant system of PI regulators (direct and inverse 

PIs for each independent current space vector, as the ones needed in the case of the optimised 

open phase fault tolerant control described in Chapter 3). These PI regulators allow 

compensating the HR fault by adapting the voltage waveforms to the new machine impedances 

obtaining the desired output currents. Instead, how to better control the machine when an ISC 

fault is detected (without considering the shutdown solution) is still an open question. 
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Modelling of Multi Three-

Phase Sectored Machines for 

Radial Force Control 
 

 

The bearing element is one of the most critical component when dealing with high rotational 

speed and reliability of electrical machines [1]. The magnetic levitation would allow to 

overcome the aforementioned issues as well as to eliminate the bearing friction, maintenance 

and monitoring [2].  

Nowadays, Active Magnetic Bearings (AMB) are the most exploited technology for the 

levitation. They are employed in several industrial and commercial applications such as 

compressors, spindles, flywheels and generators where high rotation speed is a requirement 

[3-5]. However, magnetic bearings generally lead to an increased overall length of the 

machine, added weight and higher cost of the drive. To this regard, Bearingless Motors (BMs) 

offer the advantage to generate both torque and suspension force in a single machine 

structure, consequently maximizing the power to weight and power to volume ratio.  

The most exploited method to produce a controllable suspension force consists of providing 

the BMs with two separate windings, one responsible for motoring (torque generation) and 

the other for levitation (force generation). Several papers can be found in the literature 

adopting the two-winding configuration for bearingless operation [6-8]. However, the 

additional winding is still not a completely embedded solution. Therefore, different solutions 

have been proposed more recently, among which the multiphase BM is one of the most 

promising since it presents simpler construction, higher power density and better fault 

tolerance capabilities [9-11]. 
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Multi Sector Permanent Magnet machines (MSPM) as a possible multiphase machine 

solution for radial force control  

 

In this thesis, the MSPM multiphase winding configuration is analysed in terms of radial force 

control performance. The sectorization concept refers to a design in which a set of multiphase 

windings are supplied by different VSIs, and each of these resulting systems is located in a 

different stator area (sector), as in Fig. 5.1 for a triple three-phase sectored machine. 

A multi-sector machine can be controlled as a system of redundant three-phase machines with 

coupled shafts, as in [12], but this approach to control a MSPM can be adopted only if the 

inverters under each sector are working exactly in the same way and the manufacturing and 

assembly asymmetries can be neglected. As soon as the currents in the sectors are differently 

controlled, the machine must be analysed by using a multiphase model, as the one presented 

in Chapter 1. The complexity of the control of such a system emerges when a detailed analysis 

is carried out to allow a radial force control, or if asymmetries and faults are taken into account 

in order to avoid performance deterioration [13-16].  

In this thesis, radial force controls are proposed. The control algorithms exploit the SVD 

technique to generate appropriate magnetic field harmonics in the airgap responsible for both 

torque and suspension force generation [13, 14].  

The SVD approach is an alternative solution to the methods based on the pseudo inverse 

matrix [17, 18] that have already been proposed for the analysis of MSPM machines. 

The method is verified for the two degrees of freedom bearingless operation, controlling the 

radial position of the rotor while removing one bearing. Simulations and FEA results are 

provided to determine the force control performance and efficiency.  

 

 

 

Fig. 5.1 – Triple three-phase sectored winding for a SPM machine. Machine drawing and winding layout. 
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Finally, experimental tests are performed to validate the proposed technique for the machine 

prototype, consisting in a conventional 18 slots - 6 poles PMSM with a re-arranged winding 

in a triple three-phase sectored configuration.  

 

 Modelling of Multi Three-Phase Sectored Stator 

Windings 

 

A brief introduction to the multi three-phase sectored windings have been presented in the 

Chapter 2 (Section 2.2). Here below the analysis is extended and examined in depth. 

In general, a multiphase sectored machine has an identical multiphase winding under each 

pole pair. The only difference with a standard multiphase machine with p pole pairs is that in 

a sectored one the phases located in each pole pair are not series (or parallel) connected with 

the phases under the others pole pairs. If the phases are controlled equally under the pole pairs, 

the model can be simplified to a standard multiphase one (in electrical degrees). Instead, if the 

phases in each pole pair are independently controlled, the model must be defined in the most 

general way as described in Chapter 1. Therefore, the model is developed describing the 

spatial quantities in mechanical angles and all the field harmonics in the airgap are taken into 

account. 

The proposed model is initially generalized to whatever multi three-phase sectored winding, 

and then it is simplified to the triple three-phase layout in order to focus the analysis on the 

prototype under study. The hypothesis of the model are the same presented in Chapter 1. In 

particular, the method is based on the hypothesis of neglecting the tangential component of 

the magnetic field in the airgap. To make the analysis easier, only full pitch windings are taken 

into account (where full pitch means a 180 electrical degrees pitch). 

 

General SVD model – additional transformation 

 

Each three-phase subsystem of a multi three-phase machine can be completely described by 

the standard three-phase transformation. 

As discussed in Chapter 3, the currents of each T-th three-phase subsystem are well 

represented by the following three-phase transformation: 
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where the subscripts T and P are used to represent the T-th three-phase subsystem located in 

the P-th pole pair. The subscripts U, V and W are used to define the phases of each three-

phase subsystem as shown in Fig. 5.1. The general transformation is: 
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with the relative inverse transformation: 
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where 1UZ , 2VZ  and 3WZ  are the indexes that represent the phases of each three-

phase subsystem. 

The space vector transformation (2.53) allows defining the overall machine current space 

vectors as: 

 
 1

2

1

2 




xh

Ns
j

x

Ns

x

h ei
m

i



.  (5.5) 

However, because of the hypotheses of the used transformation, all the phases must have the 

same coils geometry (in terms of winding in the slots). The phases are only placed in different 

stator areas, the pitch of the coils of each phase is the same ( p/  in mechanical radians) and 

so are their relative positions ( y ), number ( CN ) and turns number in each one ( N ). It results 

that for a three-phase subsystem in one pole pair, the angle that defines the position of each 

phase is in the position of the mechanical magnetic axis of the considered phase, in the radial 

outgoing direction and never in the opposite direction. This allows defining a symmetry in the 

axis of the full winding. This means that the general transformation is always a symmetrical 

one and it is not defined according to the common convention for the positive currents as in 

(5.3). The general transformation (3.45) results as: 
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  (5.6) 

where UTPx ,  is the number that identifies the slots where the central phases of each three-phase 

subsystem start, considering that the first phase of the first three-phase subsystem under the 

first pole pair is in the first slot: 1,1,1 Ux  ( 1, UAx  in Fig. 5.1). Note that if there are more slot 
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per pole and per phase (q), it is enough to consider an equivalent number of machine slots 

equal to 
q

N
N S

S ' in (5.6) as described in Chapter 2. 

Introducing (5.4) in (5.6) and considering all the three-phase subsystems independently star 

connected ( 00, TPi , according to the rules that are commonly used to design a winding for 

the machine torque control), it is possible to write (3.45) with the following simplifications: 
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It is possible to introduce the two following new constants, depending on the winding layout 

and the harmonic order: 
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By (5.7), (5.6) becomes: 
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Because there are six slots (or equivalent stots if q is different from 1) for each three-phase 

subsystem, UTPx ,  is equal to TPNx TUTP  )1(6, . The equation that describes the machine 

current space vectors as function of the standard three-phase ones is: 
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The following set of current space vectors, named hereafter as “additional current space 

vectors”, is introduced in order to simplify the space vector equations: 
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Where hmTi ,  and hnTi ,  represent the contributions of the current of all the three-phase 

subsystems under the different pole pairs that have the same electrical position (  1
2

T
Ns

p
 

electrical radians) to the full current space vector of h-th space ( hi ). Note that this approach is 

similar to the one described in Chapter 3 for defining the current sharing technique of not 

sectored multi three-phase machines. 

The final current space vector equation for a multi three-phase sectored machine is: 
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The general inverse transformation of (5.11) is (2.54): 
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,   (5.12) 

evaluated in terms of current in the phase starting in the x-th slot (if there is not a phase starting 

in the x-th slot, (5.12) results in a zero value). 

For the properties of the symmetrical transformation (2.5), and considering that the machine 

slots are in general an even number, (5.12) results also as (2.17). 
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Equation (5.12) takes into account for two real current space vectors ( 0i  and 2/Nsi ) and 

22/ SN  complex current space vectors. Therefore, the total number of current space vector 

components is SN , that is twice the number of the phase currents (degrees of freedom of the 

system). Furthermore, the effective degrees of freedom are significantly reduced because of 

the star connection of the three-phase subsystems. This means that the model is defined for a 

redundant system of variables. However, the machine current space vectors can be evaluated 

by (5.11) with the additional set of current space vector defined by (5.10). The additional 

variables in (5.10) are reducible to the degrees of freedom of the machine, noticing that it is 

possible to define the following relationships: 
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and 
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It results that there are 
2

2p
NT

 (
2

1p
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if p is an odd number) independent additional 

current space vectors hMTi ,  and hNTi ,  plus 
TN  independent current space vector STi  (plus 

TN  

independent current space vector 
T

pi
2

if p is an even number). There are in total
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1
, if p is odd) 

additional current space vectors that completely describe the machine behaviour. Each 

additional current space vector is represented by its real and imaginary parts, resulting in pNT2  

independent variables for describing the system. Because the total number of independent 

three-phase subsystems is equal to pNT
 and each three-phase subsystem has two degrees of 

freedom for its current control (three currents and a star connection constraint), the effective 

degrees of freedom in the current control of the machine is pNT2 . This result is important, 
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because allows completely describing the machine behaviour and defining its control 

algorithm considering only the independent additional vectors ( hMTi , , hNTi ,  and STi ). 

 

 Transformation and inverse transformation: summary 
 

In order to take into account for the degrees of freedom of the current control of a multi three-

phase sectored machine, the proposed general transformation (5.11) is: 
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where the current space vectors hmTi ,  and hnTi ,  are fully defined by (5.14) and (5.15) for pNT
  

( pNT
 is the total number of three-phase subsystems) additional independent vectors  

( hMTi , , hNTi , , STi  , plus 
T

pi
2

 if p is even). 

Once the independent additional vectors ( hMTi , , hNTi ,  and STi ) are defined, it is possible to use 

(5.11) and finally (5.13) for evaluating the phase quantities from the space vector ones as: 
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General SVD model – Voltage equations for MSPM machines 

 

The general voltage equation for a MSPM multiphase machine (2.94) is: 
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,  (5.16) 

As done in Chapter 2, the mutual leakage inductances between the different phases are 

neglected (in other words hlM  is zero), leading to: 

 
dt

d

dt
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LliRv hh

hsh


 ,  (5.17) 

where the linked flux space vector h  takes into account for the self inductance of the h-th 

space and the PM linked flux. 

If the magnets are symmetrical and equal in each pole pairs, their effects in terms of space 

vector equations is defined as in an electrical model of the machine by (2.145). Adding the 
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magnet pitch shortening parameter 
PMSh  (reduction of the magnets pitch in per unit), the 

magnet related linked flux space vector is:  
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(5.18) 

The self linked flux component is still defined by (2.117) as: 

 hhhself iL, , (5.19) 

with the h-space self inductance defined as: 
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The final voltage space vector equation for a MSPM machine results as: 
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LLliRv hPMh
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 .  (5.20) 

To define (5.20) it is also possible to take into account for the reduced degrees of freedom of 

the system considering only the existing phases in the generation of the linked fluxes produced 

by the armature itself. This analysis is presented in the following subsection. 

  

MSPM particular SVD model – Voltage equations for MSPM machines 

 

In order to verify the general method, it is also possible to reduce the number of variables in 

the definition of the linked flux space vector h . This can be done reanalysing the linked flux 

space vector equation considering only the linked fluxes with the existing x-th phases: 
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with the reduced number of considered variables, if the anisotropy of the magnetic circuit is 

neglected, it is possible to separately consider the magnets effect hPM .  from the mutual effect 

with all the other spaces generated by the armature field  hmutual ,  as: 
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 hmutualhPMh . (5.22) 

The magnet effect is still described by (5.18), while the mutual effects with the other spaces 

are taken into account in the analysis of the term  hmutual ,  defined as: 
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that can be written as well as: 
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alternatively, introducing the partial mutual space vector inductances, 


hm  and 


hm , as: 
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It is worth to note that in the general model the 


hm  and 


hm  parameters are always zero or 

equal to SN , while considering only the m existing phases, they can be equal to m or others 

complex numbers. 

The equation of the armature related linked flux could be simplified as: 
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 (5.26) 

Considering the space vector relationships, (5.22) results as: 
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with the new complex parameters, named as “mutual space vector inductances”, defined as:

    












 
0y

NyNhyNhh SSS
mmM  ,     













 
0y

NyNhyNhh SSS
mmM  , 

    











 2/2/

0

2/ SSSSS NyNhNyNh

y

hN mmM ,     











 SSSSS NyNhNyNh

y

hN mmM
0

. 

It results that the mutual space vector inductances for the analysed machine are evaluated as: 
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The final voltage space vector equation for a MSPM machine results as: 
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 .  (5.28) 

The equivalence of (5.20) and (5.28) has been numerically verified for a case study of triple 

three-phase MSPM machine. 

 

General SVD model – Torque and Force for MSPM machines 

 

Torque equation 
  

The general torque equation for a SPM machine can be evaluated as described in Chapter 1, 

adding the effect of the PM pitch shortening and considering only the components related to 

the odd harmonics multiple of the pole pairs number p, as: 
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where: 
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with the direct (+) and inverse (-) sequence torque constants related to the h-th armature 

current space vector as: 
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 , 

where 
PMSh  is the PM pitch shortening in p.u.. It is worth noticing that only the field 

harmonics odd multiple of p are considered in the torque equation. Therefore, the torque is 

only related to the additional current vectors STi  (
TNT ,...,2,1 ) defined in (5.14). 

 

Force equation 
 

The general force equation for an electrical machine can be evaluated as described in Chapter 

2 by (2.257) as: 
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. (5.31) 

It is interesting to note that the radial force (the resultant of the magnetic pressure acting on 

the rotor) is generated by the interaction of the odd and even field harmonics, no matter how 

they are generated. It results that it is also possible to apply a force on a laminated 

ferromagnetic rotor without windings or magnets by just a proper control of the stator currents. 

Fig. 5.2 shows this physical principle, considering two field harmonics with different 

polarities generated by two windings. Multiphase machines, with suitable winding designs as 

the sectored one, can generate field harmonics with different polarities too. 

In this thesis, the focus is on the radial force control of isotropic MSPM machines with multi 

three-phase windings. The hypothesis of isotropic machine results in neglecting the 

eccentricities in the model. 

Considering a MSPM machine, the magnetic field in the airgap H  is the sum of the armature 

field (produced by the stator currents) and the magnets one.  
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Equation (2.47) defines the harmonics of the magnetic field for a multiphase winding as: 
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with 
ahK  the winding factor related to the h-th field harmonic (2.45). For a multi three-phase 

sectored machine with full pitch windings, the winding factor is defined as: 
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Equation (2.134) defines the harmonics of the magnetic field for a SPM symmetrical rotor as: 
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 (5.34) 

where 
PMSh  is the PM pitch shortening in p.u.. 

It results that the force components can be separated in four terms as: 

 PMPMcuPMPMcucucu FFFFF ,,,,  , (5.35) 

where: 

 

 

Fig. 5.2 – Force generation principle for a solid rotor machine in a dual-winding configuration. In black it is represented 

the magnetomotive force distribution of a 4-poles winding; in red it is represented the magnetomotive force distribution 

of a 2-poles winding. The two distributions represent the magnetomotive forces of typical three-phase star connected 

machines, defined by their α-β components. 
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In a standard SPM machine, the PM field harmonics are only odd multiples of the pole pairs 

number, as in (5.34). Therefore, for a given ( oddph )-th order PM field harmonic (
oddphPMH , ), 

the ( 1oddph )-th PM field harmonics are even ones, and therefore they are always equal to 

zero in a standard magnets geometry. It results that all the components in (5.39) are always 

zero ( 0, PMPMF ). This is no more true if the magnets are asymmetrical or partially 

demagnetised. 

Equations (5.37) and (5.38) are exactly equal. Therefore, (5.35) is written in terms of the two 

following components: 
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with hskewK ,  defined by (2.137) as: 
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and considering the PM field harmonics with the amplitude obtained in one skew slice and 

with the phase as the magnetic axis of the overall skewed machine. 

The resulting force equation is: 

 
PMcu FFF  , (5.42) 

being aware of the meaning of the two components: the first one represents the radial force 

produced by the interaction between the currents related field harmonics (as shown in Fig. 

5.2); the second one represents the radial force produced by the interaction between the 

currents and the magnets related field harmonics. 



Modelling of Multi Three-Phase Sectored Machines 

319 

 

Force equation: current components 
 

The first component of the radial force can be evaluated by (5.32) and (5.33) as: 
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(5.43) 

with the new parameters, named current force constants, defined as: 
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Force equation: magnet and current components 
 

The second component of the radial force can be evaluated by (5.32), (5.33) and (5.34) as: 
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(5.45

) 

with the new parameter, named magnet force constant, defined as: 
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The force constants (current and magnet ones) are used to evaluate the force resulting from 

the current control of MSPM machines. 
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 Modelling of a Triple Three-Phase Sectored Machine 

(three pole pairs) 

 

The general model for MSPM machines is simplified and in deep analysed in this section for 

the machine shown in Fig. 5.1. The machine has a single three-phase winding in each pole 

pair ( 1TN ) and three pole pairs ( 3p ). The machine parameters used for defining the 

analytical model are shown in Table 5.1. 

 

SVD transformation – Current space vectors 

 

Considering a triple three-phase MSPM as the one in Fig. 5.1, (or Fig. 2.10 as well) the space 

vector transformation (3.45) is: 
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It can be written by (5.11) with 1TN  as: 
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According to (5.14), (5.15) and (5.7), the transformations for all the independent current space 

vectors are, neglecting the T subscript ( 1T ), as: 
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with: 
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(5.50) 

The current space vectors are considered in two categories because of their physical meaning. 

The main current space vector ( 3i ) and the auxiliary ones ( hi  with 9,...1,0h ) are directly 

related to the field harmonics with the same order. The additional current space vectors ( Mi , 

 

Fig. 5.3 – 18 slots and 3 pole pairs sectored winding 9-phase machine. The starting slots of the phases and their 

magnetic axes are highlighted with crosses in the slots and lines in the back iron respectively. 

Table 5.1 – Machine main parameters used in the model. 

Parameter Value Unit Parameter Value Unit 

Slots Number 18  Magnet thickness 4 mm 

Phase Pitch 180 el deg Magnet skew 0.5 slot 

Active Length 91 mm Skew slices 3 slices 

Turns Number 22 series Remanence 1.235 T 

Average airgap radius 24.3 mm PM Pitch reduction 17 (=100/6) % 

Tot. airgap 5 mm Relative permeability 1.05  
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Ni  and Si ) are used for taking into account of the machine current constraints according to 

the winding design, being directly related to the conventional current space vectors describing 

each three-phase subsystem. 

The current space vectors related to the Mi  and Ni  additional vectors (first system of (5.49)) 

are always zero if the machine is controlled in the same way in all the pole pairs. Therefore, 

Mi  and Ni represent what is different in the currents under the various pole pairs. On the other 

hand, the space vectors related to Si  (second system of (5.49)) represent what is equally in 

the currents under the various pole pairs.  

It is easy to conclude that in a standard machine control, the only additional space vector 

needed to control the machine is Si . Indeed, Si  is equal to the 3rd current space vector (p=3), 

which is the main current vector of the equivalent model of the machine developed in electrical 

degrees.  

As already mentioned, in case of a multi three-phase winding in each pole pair, there are in 

general 
TN vectors that can be used for the machine control in electrical degrees ( STi ). 

The inverse transformation (5.13) for the triple three-phase sectored winding is: 
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Triple Three-Phase MSPM machine – Voltage Equations by General Method 

(redundant) 

 

The voltage equation for a three pole pairs triple three-phase MSPM, neglecting the mutual 

leakage inductances between the different phases, (5.20) is:  

  
dt

d

dt

id
LLliRv hPMh

hhsh
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 ,  (5.52) 

where the h-space magnets back emf is:  
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(5.53) 
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and the h-space self inductance is defined as: 
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. 

Table 5.2 shows the space self inductances. The advantage of the general model is that the 

space vector equations are completely independent. This allows controlling the machine as a 

sum of three-phase machines electromagnetically independent between each other (one every 

two degrees of freedom of the machine control). 

 

Triple Three-Phase MSPM machine – Voltage Equations by Particular Method 

 

The voltage equation for a three pole pairs triple three-phase MSPM, neglecting the mutual 

leakage inductances between the different phases, (5.28) is: 

 
dt

d

dt

di
M

dt

id
M

dt

id
M

dt

id
LliRv hPM

hhh
h

hsh
.9

9

8

1

*










 













 



 ,  (5.54) 

where the stator winding factor is:  
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Therefore, the space vectors of the magnet linked fluxes is:  
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(5.55) 

The mutual space vector inductances for the analysed machine are evaluated as: 

Table 5.2 – Self inductance space parameters in H . 

h 0 1 2 3 4 5 6 7 8 9 

1 0 778.46 

 

601.9
7 

 

375.54 

 

170.41 

 

39.99 

 

0 26.57 

 

72.58 

 

93.86 
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Defining a machine model for the spaces from 0 to 9, as discussed in the previous subsection 

(for the current space vector analysis in (5.49)), it is possible to analyse which spaces may 

interact and how do they interact by Table 5.3 and Table 5.4. These tables show that all the 

mutual space vector constants are real numbers. 

Table 5.3 and Table 5.4 allow completely solving the voltage space vector equations given 

the current space vector values. 

The obtained results have been numerically compared with the one derived by the general 

model, leading to the same solution. 

The drawback of the particular model is that the space vector equations are coupled between 

the various spaces even this coupling is just analytical, as verified by the numerical validation 

of the general model. It results that by using the general model it is possible to consider 

separately the control of the different spaces as if they would represent different equivalent 

three-phase machines acting on the same rotor, while the particular approach leads to 

additional calculation for the correct emf compensation. 

Table 5.3 – Matrix of the machine space vector inductances in μm (direct sequence interactions 


hM ,and 2/ShNM ) 

h\ρ 1 2 3 4 5 6 7 8 9 

1 389.2 0.0 0.0 56.8 0.0 0.0 0.0 0.0 0.0 

2 0.0 300.9 0.0 0.0 13.3 0.0 0.0 0.0 0.0 

3 0.0 0.0 187.7 0.0 0.0 0.0 0.0 0.0 0.0 

4 259.5 0.0 0.0 85.1 0.0 0.0 8.8 0.0 0.0 

5 0.0 200.6 0.0 0.0 20.0 0.0 0.0 24.2 0.0 

6 0.0 0.0 125.1 0.0 0.0 0.0 0.0 0.0 31.2 

7 0.0 0.0 0.0 56.8 0.0 0.0 13.3 0.0 0.0 

8 0.0 0.0 0.0 0.0 13.3 0.0 0.0 36.2 0.0 

9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 46.9 

0 0.0 0.0 125.1 0.0 0.0 0.0 0.0 0.0 -15.6 
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Triple Three-Phase MSPM machine – Torque and Force 

 

The torque and force equations (2.217) and (5.42) are simplified to the specific winding and 

analysed aiming to define a suitable machine control. 

 

Torque equation 
 

The torque equations (5.29)-(2.217) result from only the odd multiple of p current space 

vectors, associated to the additional current vector Si  ( 3iiS  ) as 
PMTTT

T
T  33

9

2
. 

Therefore, the torque can be defined as: 
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with: 
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Force equation 
 

The force equation (5.42) results as: 

 
PMcu FFF  , (5.57) 

where: 

Table 5.4 – Matrix of the machine space vector inductances in H  (inverse sequence interactions 


hM ) 

h\ρ 1 2 3 4 5 6 7 8 

1 0.0 200.6 0.0 0.0 0.0 0.0 0.0 -12.1 

2 259.5 0.0 0.0 0.0 0.0 0.0 -4.4 0.0 

3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

4 0.0 0.0 0.0 0.0 -6.7 0.0 0.0 0.0 

5 0.0 0.0 0.0 -28.4 0.0 0.0 0.0 0.0 

6 0.0 0.0 -62.6 0.0 0.0 0.0 0.0 0.0 

7 0.0 -100.3 0.0 0.0 0.0 0.0 0.0 24.2 

8 -129.7 0.0 0.0 0.0 0.0 0.0 8.8 0.0 
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with the current force constant hcuK , : 
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and: 
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with the magnet force constant  1, hhPMK : 
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(5.61) 

 

Torque constants  
 

Table 5.5Table 3.2 shows the machine torque constants for the direct sequences of the 

armature field harmonics, comparing also them in per unit (p.u.) to the fundamental torque 

constant. In the same table, there are also the electrical frequencies of the torque ripples in per 

unit to the fundamental electrical frequency. This means that the real mechanical frequencies 

of these ripples are 3 times higher than the electrical ones. The lowest frequency torque ripple 

is at 18 times the mechanical frequency of the rotor. The amplitude of the torque ripples in 

p.u. of the fundamental torque are named 

,PMT  in Table 5.5. Indeed, the analysed machine has 

a single three-phase subsystem in each pole pair (T=1). Therefore, the torque ripples are 

directly related to the control of the fundamental torque component (as in the control of a 

conventional three-phase machine). 

The simplified torque constants are compared with the evaluated for the real design ones, that 

is with a skew of half slot, obtained dividing the magnets in three segments along the axial 

direction. Furthermore, the model takes also into account for the magnet pitch shortening of 

1/6 the magnet full pitch (0.17 in per unit to the theoretical pitch of a SPM rotor: π/3 radians 

for the analysed machine). As known, the rotor design allows significantly reducing the torque 

ripples losing in machine torque density.  

Table 5.7 shows the machine torque constants for the inverse sequences of the armature field 

harmonics. 



Modelling of Multi Three-Phase Sectored Machines 

327 

 

The analysis of the torque components leads to the definition of a torque control based on only 

the fundamental field harmonic (the p-th, with p equal to 3 in this case). The simplified torque 

equation results as:  

  *3

S

j

TPM iejKT m , (5.62) 

with: 

 
5008 0.

2

6/11
sin

4
9 3,03,0,, 







 
  




 skew

M

Mr
PMTT K

B
LRNKK . 

This approach to the torque control is typical for three-phase machines, where the torque ripple 

are just a result of the main component control. The idea is proposed again in the next 

paragraph for the force control definition. 

 

Force Constants 
 

Table 5.6 shows the current force coefficients, while Table 5.8 and Table 5.9 show the magnet 

force constants for the h-1 and h+1 harmonic interactions respectively. 

Table 5.5 – Table of the machine torque constants for the direct sequences of the armature field harmonics 
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y
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yPMTPM iejKiejKT mm   
frequency  

p.u. 

Ideal SPM (no skew) With skew and magnet short  

0 

3,0,,PMTK =0.5246 

3,0,,PMTK =0.5008 0 

  


3,,, yPMTK  




3,0,,

3,,,

PMT

yPMT

K

K
 



3,,, yPMTK  





3,0,,

3,,,

PMT

yPMT

K

K
 

 

1 

7,PMT  0.075 0.143 -0.012 -0.025 6 

2 

13,PMT  0.040 0.077 0.004 0.007 12 

3 

19,PMT  0.028 0.053 -0.003 -0.006 18 

4 

25,PMT  0.021 0.040 0.002 0.004 24 

5 

31,PMT  0.017 0.032 -0.005 -0.011 30 

6 

37,PMT  0.014 0.027 -0.013 -0.025 36 

7 

43,PMT  0.012 0.023 0.003 0.006 42 

8 

49,PMT  0.011 0.020 -0.001 -0.002 48 

9 

55,PMT  0.010 0.018 0.002 0.003 54 

10 

61,PMT  0.009 0.016 -0.001 -0.002 60 
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As for the torque analysis, the force contributions have significantly different magnitudes for 

the same amount of current. It results that the force produced by the interaction between the 

only armature field harmonics generate force components with a lower efficiency (the related 

force constants are limited) than the related to the interaction between the magnets and 

armature field harmonics ones. Indeed, the magnet force constants are significantly higher, 

and the force equation can be simplified as:  

    
mm j

PM

j

PMPM eiKeiKFF
 3

44,3

3*

22,3


 , (5.63) 

Table 5.7 – Table of the machine torque constants for the inverse sequences of the armature field harmonics 
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frequency  
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Ideal SPM (no skew) With skew and magnet short  
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3,0,,PMTK =0. 5246 
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yPMT

K

K
 

 

1 

5,PMT  0.105 0.200 0.019 0.037 6 

2 

11,PMT  0.048 0.091 -0.005 -0.010 12 

3 

17,PMT  0.031 0.059 0.002 0.003 18 

4 

23,PMT  0.023 0.043 -0.002 -0.004 24 

5 

29,PMT  0.018 0.034 0.001 0.002 30 

6 

35,PMT  0.015 0.029 -0.015 -0.030 36 

7 

41,PMT  0.013 0.024 0.000 -0.001 42 

8 

47,PMT  0.011 0.021 0.001 0.002 48 

9 

53,PMT  0.010 0.019 0.000 0.000 54 

10 

59,PMT  0.009 0.017 0.001 0.002 60 

 

Table 5.6 – Table of the current force constants  

h hcuK ,   1

*

,

1







 hhhcu

h

cu iiKF  

1,

,

cu

hcu

K

K
 h hcuK ,   1
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 hhhcu
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cu iiKF  
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1 1,cuK  0.150 1.000 11 11,cuK  0.000 0.000 

2 2,cuK  0.100 0.667 12 12,cuK  0.000 0.000 

3 3,cuK  0.050 0.333 13 13,cuK  0.002 0.011 

4 4,cuK  0.015 0.100 14 14,cuK  0.003 0.019 

5 5,cuK  0.000 0.000 15 15,cuK  0.003 0.017 

6 6,cuK  0.000 0.000 16 16,cuK  0.001 0.007 

7 7,cuK  0.005 0.036 17 17,cuK  0.000 0.000 

8 8,cuK  0.008 0.056 18 18,cuK  0.000 0.000 

9 9,cuK  0.007 0.044 19 19,cuK  0.001 0.005 

10 10,cuK  0.003 0.018 20 20,cuK  0.001 0.010 
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Table 5.8 – Table of the magnet force constants for the h-1 components of the armature field harmonics 

h 
    mm

odd

hj

hhhPM

hj

hhhPM

h
h

PM eiKeiKF
 3

1313,3

3*

1313,3

1









  

Ideal SPM (no skew) With skew and magnet short 

  
2,3PMK =22.714 

2,3PMK =21.6869 

   1, hhPMK   

2,3

1,

PM

hhPM

K

K   
 1, hhPMK   

2,3

1,

PM

hhPM

K

K   

3 2,3,PMK  22.714 1.000 21.687 1.000 

9 8,9,PMK  1.893 0.083 1.200 0.055 

15 14,15,PMK  0.649 0.029 0.115 0.005 

21 20,21,PMK  0.324 0.014 -0.054 -0.002 

27 26,27,PMK  0.194 0.009 -0.048 -0.002 

33 32,33,PMK  0.129 0.006 -0.013 -0.001 

39 38,39,PMK  0.092 0.004 0.008 0.000 

45 44,45,PMK  0.069 0.003 0.011 0.001 

51 50,51,PMK  0.053 0.002 0.003 0.000 

57 56,57,PMK  0.043 0.002 -0.005 0.000 

      

 

Table 5.9 – Table of the magnet force constants for the h+1 components of the armature field harmonics 

h 
    mm

odd

hj

hhhPM

hj

hhhPM

h
h

PM eiKeiKF
 3

1313,3

3*

1313,3

1









  

Ideal SPM (no skew) With skew and magnet short 

  
2,3PMK =22.714 

2,3PMK =21. 6869 

   1, hhPMK   

2,3

1,

PM

hhPM

K

K    1, hhPMK   

2,3

1,

PM

hhPM

K

K   

3 4,3,PMK  11.357 0.500 10.843 0.500 

9 10,9,PMK  1.514 0.067 0.960 0.044 

15 15,15,PMK  0.568 0.025 0.101 0.005 

21 22,21,PMK  0.295 0.013 -0.049 -0.002 

27 28,27,PMK  0.180 0.008 -0.044 -0.002 

33 34,33,PMK  0.121 0.005 -0.013 -0.001 

39 40,39,PMK  0.087 0.004 0.008 0.000 

45 46,45,PMK  0.066 0.003 0.010 0.000 

51 52,51,PMK  0.051 0.002 0.003 0.000 

57 58,57,PMK  0.041 0.002 -0.005 0.000 
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with the magnet force constant: 
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Torque and Force Main Constants and simplified Control Equations (summary) 
 

From the torque and force equations, it is possible to define the reference current space vectors 

for the machine control algorithm. 

The main torque and force equations (5.62) and (5.63) are: 

  *3

S

j

TPM iejKT m ,  

and 
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.
  

The voltage space vector equations (5.54) are:  
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or, with the proposed general model (5.52):  

  
dt

d

dt

id
LLliRv PM

s
3.3

333


 ,  (5.64) 

  
dt

id
LLliRv s

2
222  ,  (5.65) 

  
dt

id
LLliRv s

4
444  .  (5.66) 

The advantage of the general approach is that the independence between the space vector 

equations is highlighted, while in the particular study of the machine (without a redundant 

analysis) the independence is hidden under the constraints of the system that are defined by 

(5.49). Hereafter, the general approach is considered. 
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 Force and Torque Control of a Triple Three-Phase 

Sectored Machine 

 

The degrees of freedom of the current control (6 DoF in total) allow controlling the machine 

by means of up to three independent current space vectors (6 vector components in total). 

In particular, as it is usually done in the torque control of three-phase machines, the control is 

defined for the field harmonics related to the higher torque constant (the p-th one in 

mechanical degrees). The same approach is used to define which field harmonics to take into 

account for the radial force control. Therefore, the torque and force equations are easily 

simplified as (5.62) and (5.63) in order to consider the control of only three space vectors. 

Therefore, the control of the analysed machine must properly select the value of the current 

space vectors of order 2, 3 and 4 for controlling the torque and the force. 

 

Control equations (multi synchronous reference frames) 

 

The third current space vector is controlled as the main space vector of a standard PM machine 

with a FOC. Indeed, it is possible to write the simplified torque equation, considering the 

current space vector Si  in the reference frame synchronous with the d axis of the rotor (the d 

axis is chosen as centred with one magnet north pole):  

  qd

jj

SS jiieieii mm

33

3

3

3 
. 

The torque control equation results from (5.62) as: 

        qTqdTS

j

TPM iKjiijKiejKT m

333

*3
.  

The same approach is used for the force control, defining what is here named as Force Field 

Oriented Control (FFOC). The force equation (5.63) can be analysed in its two main 

components: 

    
mmF j
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j
eiKeiKFFFeF

 3

44,3

3*

22,342


 . (5.67) 

The first force component 2F  can be controlled by considering the second current space vector 

in a reference frame synchronous with the force vector in the rotor reference frame  

(
  F

q

F

d

jF jiieii Fm   22

3

22


) as: 

         FmFmF jF

q

F

dPM

jjjF

q

F

dPM

j
ejiiKeeejiiKeFF

   222,3

33

222,322
. (5.68) 
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The same is done for the second force component 4F , but synchronizing it with the conjugate 

of the force vector in the rotor reference frame (
F

q

F

d

jjF jiieeii Fm   44

3

44


). The resulting 

force equation for the fourth space contribution is: 

         FmFmF jF

q
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dPM

jjjF
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j
ejiiKeeejiiKeFF

   444,3

33

444,344 . (5.69) 

In the respective reference frames, all the three current space vectors (complex numbers) have 

one component that is useful for the control of the desired quantity (magnitude of the torque 

or force component) and one that does not gives any contribution.  

In particular, the d-axis component of the 3rd current space vector in the rotor flux reference 

frame does not affect the torque production (it can be just used in order to reduce the magnet 

back-emf in order to work in flux weakening operation). Regarding the force control 

equations, the components of the 2nd and 4th current space vectors on the q-axis of the relative 

reference frames contribute to the force in the wrong direction and therefore they are likely to 

be controlled to zero. 

Therefore, the current control of the 3rd space vector is defined as: 
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di , (5.70) 

while the current control of the 2nd space vector is defined as: 
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and the current control of the 4th space vector is defined as: 
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F
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qi . (5.72) 

The voltage space vector equations are (5.64), (5.65) and (5.66). In addition, the tuning of the 

PI regulators can be defined by the standard control procedures that are used for the d-q control 

of three-phase machines. The only difference is that the 2nd and 4th spaces do not need a 

compensation of the PM back-emf (feedforward control). In general, the tuning of the three 

current space vector regulators is different for each, but the method is the conventional one. 

 

Radial Force Control: F2/F ratio (F2pu) 

 

An important difference between the force and the torque equations is that two independent 

current space vectors can generate the radial force. As mentioned above, both the force 

contributions must be controlled in such a way that they generate a positive effect to make the 

radial force follow its reference value. This allows considering in (5.67) the two force 

components in phase with the reference force: 
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with the relationship 1,4,2  pupu FF  that must be verified in order to follow the reference 

force. Therefore, the force control equations can be written as: 
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, (5.74) 

and: 
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The control variable puF ,2  is a degree of freedom of the machine control. Indeed, there are six 

degrees of freedom in the current control of a triple three-phase machine. Three degrees of 

freedom are used to keep the useless component of each current space vector equal to zero 

(minimising the machine losses), one degree of freedom is used for the torque control and 

another for the force control. It results that there is an additional degree of freedom that is 

available in the control: the ratio 
42 / FF  or 

F

d

F

d ii 

42 /  as well. Fig. 5.4 shows the control scheme 

of the drive under study. The force is controlled in its x and y components. In the scheme, the 

force control is done in an open loop configuration, but it can also be done in closed loop 

depending on the availability of force sensors, or position sensors as in Fig. 5.4. The control 

of the torque is developed as in a standard three-phase machine acting on the q –axis 

component of the 3rd current space vector in the rotor field reference frame, with the 

compensation of the back emf produced by the magnets. The control of the 2nd and 4th spaces 

is defined in different reference frames as described above. The voltage space vectors are used 

to define the desired phase voltages by means of (5.50), (5.49) and (5.51) referred to the 

voltages. To avoid using three inverse transformations, the following subsection defines a 

direct inverse transformation for the voltages. The same approach can be used for the currents 

if it is needed for the control algorithm, as happens in case of machine fault (discussed later). 

 

 

 

Fig. 5.4 – Triple three-phase MSPM machine control scheme for torque and radial force. 
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Triple Three-Phase Inverse Transformation: From the multiphase space vectors to the 

three-phase ones 

 

The current voltage space vectors related to the machine torque and force control are related 

to the 2nd, 3rd and 4th spaces: 
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with:  
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and: 
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(5.78) 

From (5.76) it is possible to define the additional space vectors  SNM yyy .,  as function of the 

multiphase ones used for the machine control  432 ., yyy  as: 
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(5.79) 

From (5.78) it is possible to define the standard three-phase space vectors  1,1,1, ,, CBA yyy  as 

function of the additional ones  SNM yyy .,  as: 
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Substituting (5.79) in (5.80), it is possible to write: 
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(5.81) 

Considering the α-β components, (5.81) becomes: 
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with: 
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This relationship allows finding the standard α-β components for each three-phase subsystem 

once the α-β components of the general space vectors are defined. In terms of voltage control, 

the α-β components for each three-phase subsystem are used to define the desired modulation 

technique (usually SVM or PWM) as in a standard three-phase machine. 

The resulting transformation in matrix form is: 
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(5.83)  

The inverse of the transformation matrix allows also defining the general space vectors once 

the three-phase space vectors are known. 

 

 Force Control of a Triple Three-Phase Sectored 

Machine: optimised control for minimum stator 

copper Joule losses 

 

As discussed in the previous section, the force control is based on the exploitation of two 

current space vectors. How much one or the other space vector is involved in the force control 

depends on the choice of the  variable. 

It is possible to choose the control variable  in order to minimize the stator copper Joule 

losses in the radial force production. Here below the analytical solution of the minimization 

problem is explained and the optimised  value is defined as function of the machine 

parameters. 

Equations (5.70), (5.74) and (5.75), written in the rotor d-q reference frame are: 
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The related three-phase space vector components result from (5.82) and (5.81) as: 
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They can be rewritten as: 
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with: 
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The stator copper Joule losses related to the three-phase subsystems (3.48), written in the d-q 

reference frame are: 
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resulting as:  
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Simplifying, it results that: 
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It is possible to separate the term of the torque generation from the force ones as: 
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Introducing the parameters related to the force control FdK  and FqK  the force related Joule 

losses expressed in function of the control variable puF ,2  are: 
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Therefore, the minimum of the force related copper Joule losses is defined by: 
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resulting in: 
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(5.98) 

This puF ,2  value is the one that allows generating the reference radial force with the minimum 

stator copper Joule losses. An in-deep analysis of this control variable is presented in the 

sections of the simulation and finite element results. 

 

 Current Sharing Technique for Triple Three-Phase 

Machines (Radial Force Control and Compensation) 

 

In the previous section, it has been proposed a torque and radial force control based on the 

exploitation of all the machine degrees of freedom. In particular, the control algorithm is based 

on maintaining the torque control (and if needed the flux weakening) as in a standard three-

phase machine, while the force control is based on the choice of the control variable puF ,2 . The 

puF ,2  optimisation for the stator copper Joule losses minimisation was proposed as a possible 

solution. 

In this section and in the following one, the method is enhanced for the torque and force 

control of the machine in case of current sharing technique and three-phase open fault. 

The evaluation of the undesired radial force is carried out, developing fault tolerant controls 

that aim to compensate them. Force control equations in case of current sharing and open 

phase faults are also presented. 

 

Radial Force Evaluation in case of Current Sharing Control (standard method) 

 

The current sharing control of a sectored triple three-phase machine is defined as: 
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The three-phase open fault can be analysed as a particular case of current sharing control, and 

it is well described by (5.78), according to the faulty three-phase subsystem, as: 
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depending on if the faulty inverter is A, B or C respectively, or if a current sharing control is 

commanded, with  1 CBA KKK .  

In terms of current space vectors, the fault constraint results from (5.76) as:  
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(5.101) 

It results that if the current sharing coefficient are different, the 2nd and 4th current space 

vectors are no more equal to zero. The resulting radial force can be described by (5.67), 

considering the fault constraints for the 2nd and 4th current space vectors and introducing the 

current sharing control variable: 
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Considering a standard torque FOC (without showing the flux-weakening behaviour for sake 

of simplicity), the 3rd current space vector is controlled as mj

qejii
3

33

 , and the force equation 

becomes: 
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Because 
*XBXA  can be also written as    XBXBAXBXBXBXA  2*

, the 

force can be evaluated as: 
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 (5.104) 

The force in case of current sharing results as the sum of three components, a constant force 

dcF  plus a rotating rotatingF  and a pulsating component pulsatingF  at twice the rotor electrical 

frequency (six times the rotor mechanical frequency):  
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 , (5.105) 

with magnitudes and phases defined as: 
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For a given current sharing configuration, the force vector is expected to rotate on an elliptical 

trajectory shifted by an offset in the x-y plane. The ellipsoid is defined by a sum of a direct 

and an inverse vector rotating at the same speed but in opposite directions and with different 

phases and amplitudes. Therefore, the force can be also analysed as: 
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  , (5.107) 

with:  
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If there is a current sharing control for each inverter, the open fault behaviour is just a 

particular case of current sharing behaviour (as explained in Chapter 3). Therefore, the 

analysis is the same with just one current sharing coefficient equal to zero and the other equal 

to 1/2. 

It results that the current sharing control of a sectored MSPM machine must be considered 

with caution, as already shown in previous research works [15, 16, 19].  

In the next subsection, the radial force control principle with an advanced current sharing 

technique is proposed. This method can be also used for defining a FTC in case of one three-

phase subsystem open phase fault when the two others are working with the advanced current 

sharing algorithm. The new current sharing control is introduced, as it has been done in 

Chapter 3, because the force control and FTC are not possible in case of basic current sharing 

algorithm. Indeed, the basic current sharing control already sets all the degrees of freedom of 

the machine control.  

 

Current Sharing advanced control of MSPM machines and Radial Force control 

 

As described in Chapter 3, it is possible to define a different current sharing algorithm for the 

control of the d-axis and q-axis components of the main current space vector (related to the 

torque generation). The idea is to define a current sharing only for the q-axis components of 

the three-phase subsystems and compensate (or control) the generated force by means of the 

d-axis component. 

This can be done reconsidering (5.102) for the d-axis components, knowing that the current 

sharing technique on the q-axis is defined by the current sharing complex number: 
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j

qC

j

qBqAqABC eKeKKK  . 

The additional current space vectors can be written considering the constraints on the q-axis 

control of the 3rd space. In the d-q rotor reference frame the resulting equation is: 
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(5.108) 

The effect on the force caused by the q-axis components is described by (5.103), while for the 

d-axis components, the 2nd and 4th current space vectors are evaluated as: 
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(5.109) 

Introducing the d-axis space vector considering the three-phase components: 
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the space vectors can be rewritten as: 
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The force equation for the d-axis components (5.67), results as:  
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 (5.111) 

Therefore, the space vector 


ABCdi3  generates three force components as: 

  mm j

inverseABCdABCd

j

directABCdABCddcABCdABCdABCd eFieFiFiF
 6
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  , (5.112) 

with:  
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To eliminate the force ripples caused by the current sharing control or to control the force to 

a desired value, the resultant force must be controlled according to the following relationship: 

 
  ABCdABCq FFF 33 . (5.113) 

That means it is possible to write: 
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Therefore, the force control (or elimination, if F is set equal to zero) can be obtained by: 
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(5.115) 

The solution becomes unique if there is one sector open phase fault ( 03 

Tdi  with T equal to 

A, B or C) or if the overall d-axis component of the 3rd space vector is maintained equal to 

zero: 
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1
3333  

CdBdAdd iiii . 

On the other hand, it is also possible to have a unique solution optimising the d-axis 

component of each three-phase subsystem for minimising the total stator copper Joule losses 

needed to generate the desired 


ABCdi3  space vector: 
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The optimised solution can be found considering the d-axis related copper losses as: 
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Substituting the 


ABCdi3  constraint, the following relationship can be written: 
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deriving by 


Cdi3 , the 


Cdi3  value that allows minimising the stator copper Joule losses in the 

generation of the 


ABCdi3  control vector is found as: 
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Substituting this result in the 


ABCdi3  equation, it results: 
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Considering the real and imaginary part of the last equation, the B and A sectors d-axis 

components are evaluated as: 
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and: 
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(5.121) 

Finally, the C sector component is evaluated by (5.118).  

Equations (5.120), (5.121) and (5.118) together with (5.115) allow controlling (or avoiding) 

the radial force minimising the stator copper Joule losses while q-axis control of each three-

phase subsystem (inverter) is independently controlled in order to define the desired power 

sharing among the subsystems. 

 

Radial force control for equally distributed q-axis currents (advanced current sharing) 
 

If the active power is likely to be equally distributed, (5.115) can be used to maintain the q-

axis current sharing constant equal to 1/3 (equal distribution of the mechanical power and zero 
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related force generation, 0, qABCK ), and the d-axis components can be used to control the 

force by (5.120), (5.121) and (5.118) without affecting the equal power sharing operation with: 
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 . (5.122) 

In case of one sector open phase fault ( 03 

Tdi  with T equal to A, B or C) or if the overall d-

axis component of the 3rd space vector is maintained equal to zero ( 03333  

CdBdAdd iiii ) 

the minimisation of the stator copper losses cannot be defined because to generate 


ABCdi3  with 

only two components there are not control DoFs. 

Hereafter, the machine is considered as a unique triple three-phase system, without 

considering the current sharing control. This means that the constraint of the active power 

distribution among the three-phase subsystems is not more taken into account. 

 

 Radial Force FTC in case of Three-Phase Open 

Phase Fault 

 

In this section, the force control for a triple three-phase sectored machine in case of three-

phase open fault is presented. 

It is worth noticing that in case of two inverters open fault the degrees of freedom of the 

system are reduced to two. Therefore, there are no more enough degrees of freedom for 

controlling both the torque and the force. It is possible to produce only the force (by using all 

the two degrees of freedom of one three-phase subsystem) or only the torque (as in a standard 

three-phase machine). As previously explained, if an open phase fault (or current sharing) 

happens when the machine is torque controlled and there is not a force control, there are 

undesired forces acting on the rotor.  

The FTC proposed in the next subsection is based on the exploitation of the 2nd and 4th current 

space vector in the force production without affecting the space related to the torque control 

(the 3rd one). In other words, the FTC aims to maintain the overall q-axis component of the 

3rd space vector at the value required from the torque control and the overall d-axis component 

equal to zero (or to a different value in case of general flux weakening). The sharing of these 

current vector components among the three inverters has been considered in the previous 

section. 

In the following subsection, the FTC algorithm exploits also the overall d-axis component of 

the 3rd space vector with an optimised technique that aims to minimise the stator copper Joule 

losses, still considering the machine as an overall multiphase system rather than controlling it 

by current sharing techniques for the different inverters. 
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Radial Force Equation in case of Three-Phase Open Fault (independent 3rd space 

control) 

 

If a current sharing technique is abandoned, the compensation of a three-phase open fault can 

be investigated maintaining the same control of the 3rd current space vector. 

The three-phase open fault is described in terms of additional current space vector constraints 

by (5.78) as: 
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(5.123) 

with the current space vector of the faulty subsystem equal to zero 01, Pfi  with Pf  the faulty 

three-phase subsystem under the pole pair P (P=A,B or C). Therefore, there are three possible 

equation systems for the open phase constraint: 
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(5.124) 

depending on if the faulty inverter is A, B or C respectively. 

In terms of additional current space vectors, the fault constraints result from one of the 

equations in (5.80) as: 
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(5.125) 

Choosing to keep the main current space vector ( 3iiS  ) independently controlled from the 

FTC algorithm, it results that the FTC is defined by a constraint that makes the additional 

current space vectors Mi  and Ni  depend from the main one by the following relationship: 
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The resulting radial force is defined by (5.67) as: 
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with: 
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Therefore, the force can be written in terms of additional space vectors as: 
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(5.129) 

It results that it is still possible to control the radial force by means of the remaining degrees 

of freedom resulting by the constraints in (5.126). In particular, in case of two faulty three-

phase subsystems (
1P  and 

2P ), the force equation results by the solution of the following 

equation system: 
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 (5.130) 

However, as already mentioned, this faulty scenario is quite rare and in order to define a force 

control there are no more enough degrees of freedom for a torque control. 

Instead, in case of a single three-phase subsystem (P-th) open fault there are still four available 

degrees of freedom to control the radial force (2 DoF) and the torque (1 DoF). The equation 

system to be solved results as: 
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(5.131) 

The system can be solved by substituting Ni from the second equation of (5.131) in the first 

one as: 
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that is rewritten as: 
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 (5.133) 

Equation (5.133) allows evaluating the reference additional current space vector Mi  for the 

definition of the force control equation as follows.  

The conjugate of (5.133) is: 

 

    

    

     .
3

1

3

1

3

1

)1(
3

4

3

44,3

3

22,3

*3

24,3

3

22,3

)1(
3

2

3

44,3

3

22,3

*

M

Pj
j

nPM

j

mPM

M

j

mPM

j

nPM

Pj

S

j

nPM

j

mPM

ieecKecK

iecKecK

eiecKecKF

mm

mm

mm























 (5.134) 

Equation (5.134) can be rewritten as: 
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 (5.135) 

Substituting (5.135) in (5.133) results in the FFTC equation: 
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(5.136) 

Equation (5.137) can be simplified as: 
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introducing the following variables: 
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. 

The FFTC control is based on defining the additional space vectors related to the force by 

(5.137) and (5.131) as: 
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 (5.138) 

This allows controlling the radial force by the two remaining healthy three-phase subsystems 

considering also the effect of the torque control. 
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Radial Force Compensation in case of Three-Phase Open Fault (F=0) 

 

If the radial force control is not required, it is possible to just compensate the radial force 

rising from the torque control of the machine, by an open loop control based on the 

simplification of (5.138) as: 
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 (5.139) 

An improved solution can be found if also the d-axis component of the 3rd current space vector 

in the rotor reference frame is considered as a variable. 

 

Radial Force FTC in case of Three-Phase Open Fault – optimised algorithm 

 

In the previous analysis, all the degrees of freedom of the current control have been used in 

the FFTC in order to maintain completely independent the control of the main current space 

vector from the FFTC. However, the d-axis component of the 3rd current space vector might 

be used to have an additional variable in the FFTC algorithm. 

In this subsection, the proposed FTC algorithm exploits also the d-axis component of the 3rd 

space vector with an optimised technique that aims to minimise the stator copper Joule losses 

in the torque and radial force control in case of one three-phase subsystem open fault. 

The equation system that describes the radial force in case of one sector open phase fault 

(5.131) is rewritten considering as constraint only the q-axis component of the 3rd current 

space vector in the rotor reference frame (to not affect the torque control with the FFTC): 
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(5.140) 

where now the only constraint is that the q-axis component of the 3rd current space vector 

must be equal to its reference value defined by the torque control:
  refqq ii ,33 . 

This constraint can be directly added in the FFTC equation (5.138) as: 
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resulting as: 
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This means that in order to generate the desired force, considering also the torque control  

(


qi3 ), it is needed to control the new current vector FFTCi  defined as: 
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The related three-phase space vectors can be evaluated by (5.80) as:  
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Therefore, it is possible to write the following relationship: 
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(5.145) 

The aim of the proposed improved FTC is to control the radial force by minimizing the total 

stator copper Joule losses defined by (3.48) as: 
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3
 CCBBAAsJ iiiiiiRP  ,  (5.146) 

where the equation is now written in the stator reference frame. 
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The square of the magnitude of the three-phase current space vectors in the Joule losses 

equation can be rewritten in a suitable way as: 

  *

1,1,

*

1,1,

*

1,1,
2

3
CCBBAAsJ iiiiiiRP  .  (5.147) 

In order to simplify the problem, hereafter the solution is found for the sector A open phase 

fault. Therefore, the copper losses can be written as: 
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The space vector relationships (5.145) result as:  
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Written in a reduced shape as: 
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with the new variables:  
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Substituting the three-phase current space vectors in the copper losses equation it results: 
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The 


di3 value that minimizes the stator copper Joule losses (being 


di3  the only variable in 

(5.152)) can be found as: 
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Resulting in the final FTC equation in case of sector A open phase fault: 
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with: 
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Substituting the optimised 


di3  equation in (5.144) allows defining the optimised control 

algorithm. It is clear that this solution is more complicated than the previous one where 


di3  is 

not considered as a control variable for the FTC. 

 

 Finite Element Simulation Results (Magnet software) 

 

This section shows FE simulation results for the machine prototype in Fig. 5.1. The simulated 

torque and force are related to the current rating of the machine (about 5 Nm torque or 200N 

force) or to the force needed to levitate the rotor (about 20-25 N).  

A first in-deep FEA is carried out for matching the main control parameters defined in the 

control equations (5.84): 
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 (5.155) 

The force control variable puF ,2  is analysed to understand how it affects the performance of 

the radial force control, and evaluate the machine behaviour at the optimised working point 

defined by (5.98). Indeed, this working point is found for the machine control considering the 

minimization of the stator copper Joule losses, but an analytical evaluation of the iron losses, 
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the force ripples and efficiency has not been done. Therefore, the following FE results aim to 

clarify the effects of the puF ,2  control variable.  

Finally, the machine performance in case of one sector open phase fault with and without FTC 

are presented. 

 

Torque and Radial Force control parameters ( TK ,  2,3PMK  and  4,3PMK ) 

 

The control parameters TK ,  2,3PMK  and  4,3PMK  have been matched in an open loop current 

control in FE linear simulations in magnet. In particular, the matching technique is based on 

an iterative simulation loop for each constant. The rotor is rotated of 360 mechanical degrees 

and each current space vector, synchronised with its reference system, is controlled in open 

loop with a fixed amplitude. The resulting torque (for a give 


qi3  value) or the resulting force 

(for a given 
F

di2 or 
F

di4  value) are exported in the simulation post processing and stored. Each 

control parameter is defined dividing the magnitude of the measured torque (or force) by the 

magnitude of the controlled space vector. 

Table 5.10 shows the three control parameters resulting from the FEA. The skew effect has 

been considered running three simulations (one for each skew slice) with the rotor rotated of 

the various skew angles and averaging the obtained results. 

The mismatch can be reduced with a better choice of the radius of the airgap used for the 

evaluation of the machine control parameters. In particular, the torque constant is almost 

matched if the radius is chosen almost as the radius of the rotor lamination. However, the 

result shows that the evaluation of the force constants is not as good as the one obtained for 

the torque main constant. In particular, the mismatch is of about 50% for both the force 

parameters.  

Hereafter, the FEA control parameters are used. Indeed, the FE simulations better represent 

the machine behaviour than the analytical model. 

 

 

 

Table 5.10 – Table of the machine control parameters (FEA) 

 Analytical  

(2D R=0.0243 ) 

Analytical  

(skew R=0.0243) 

Analytical  

(skew, R=0.02093) 

FEA  

(2D) 

FEA  

(skew) 

Units 

TK  0.5246 0.5008 0.4314 0.4337 0.4313 Nm/A 

2,3PMK
 

22.71 21. 69 18.67 9.60 9.426 N/A 

4,3PMK
 

11.36 10.84 9.34 17.85 17.55 N/A 
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Torque and Radial Force control (optimised control): 

 

According to the FE matched parameters, the puF ,2  control variable that allows controlling the 

radial force minimising the total stator copper losses (5.98) is: 
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Therefore, the optimised working point is with a puF ,2 value of about 0.25. This means that the 

optimised radial force control for the stator copper Joule losses is with almost one quarter of 

the radial force generated exploiting the 4th order field harmonic and three quarter by the 2nd 

one.  

 

Flux density and slot current density (FEA view) 
 

Fig. 5.5 shows a view of the flux and slot current density for different puF ,2  values. The 

machine is rotating at 3000 rpm at 5 Nm torque in all the views. Except from the left views, 

the commanded force is 200 N on the y-axis. 200 N is about the rated force of the machine at 

no load, and it is almost 10 times the rotor weight force. It can be observed that having a puF ,2  

value equal to about 0.25 results in more uniform current and flux density distributions.  

 

 

 

 

 

Fig. 5.5 – Flux and slot current density views. Rated torque at no force condition (left) and with 200N force control 

(right). The F2pu value is increased from zero to 1 (from left to right). 
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Stator copper Joule losses and distribution 
 

Fig. 5.6 shows the stator copper Joule losses as function of the puF ,2  variable at rated torque 

with and without force control. Fig. 5.7 shows the losses of each three-phase subsystem at 

rated torque and 200 N force.  

The minimum Joule losses are reached for the expected puF ,2  value of about 0.25. In particular, 

this value allows a homogeneous distribution of the copper losses between the inverters, 

reducing the probability of having localised hot spots and related acceleration of the insulation 

ageing. In Fig. 5.6 a simplified evaluation of the levitating performance (20 N force) is also 

highlighted with an asterisk 

 

 

 

 

Fig. 5.6 – Stator copper Joule losses as function of the F2pu variable. Rated torque without force (blue), with 20 N 

(green) and with 200 N (red). 

 

 

Fig. 5.7 – Stator copper Joule losses in the different three-phase subsystems as function of the F2pu variable. Rated 

torque with 200 N force. 
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Iron losses 
 

Fig. 5.8 shows the iron losses as function of the puF ,2  variable at rated torque with and without 

force control. The iron losses at rated torque and 200 N force are also plotted in their different 

components (eddy and hysteresis) for both the stator and the rotor. The minimum of the losses 

is still at about 0.25 puF ,2 . Indeed, this can be explained by the more uniform distribution of 

the stator currents that allows reducing the concentration of the armature flux in reduced areas.  

However, the iron losses do not change as much as the copper losses with or without force 

control. Indeed, in this machine design most of the iron losses are related to the flux generated 

by the magnets and the armature current effect is a secondary effect. This result significantly 

depends from the machine topology.  

 

 

 

 

 

 

 

 

Fig. 5.8 – Iron losses as function of the F2pu variable. Rated torque without force (black), with 20 N (brown asterisk) 

and with 200 N (red). Iron losses distribution (only for 200 N force t rated torque) 
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Efficiency 
 

Fig. 5.9 shows the efficiency as function of the puF ,2  variable. The efficiency is evaluated 

considering only the copper and iron losses (the extra-losses as friction and ventilation related 

ones, are neglected). As in the previous analysis, the efficiencies at rated torque with and 

without force control are compared. It is worth noticing that the electrical efficiency drop 

related to the force control needed for the levitation is theoretically negligible for the 

considered case study. Indeed, in case of a force load of about 10 times the rotor weight the 

efficiency decreases of about 2.2 percent (from 95.91% to 93.79%). This result can be 

considered as a benchmark to compare the proposed solution with alternative levitation 

systems. 

Fig. 5.10 summarizes the FEA for the losses and efficiency comparing the rated torque 

performance with and without radial force control. As already mentioned, the efficiency of 

the torque and force control for the analysed machine mainly depends from the stator copper 

Joule losses.  

 

 

 

 

 

 

Fig. 5.9 – Efficiency as function of the F2pu variable. Rated torque without force (dashed), with 20 N (light blue 

asterisk) and with 200 N (continuous). 
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Fig. 5.10 – Losses and efficiency as function of the F2pu variable. Rated torque without force (dashed), with 20 N 

(asterisk) and with 200 N (continuous). Iron losses (green), copper losses (red) and efficiency (blue).  
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Torque and Force ripples 
 

In order to understand the open loop torque and force performance, the results of a transient 

FE simulation are presented here below, where: the machine is controlled at rated torque (5 

Nm) and speed (3000 rpm) with a constant force (25 N) and then a force synchronous with 

the rotor (as in case of dynamic mass unbalance of the shaft). The puF ,2  value is 0 (a,d), 0.5 

(b,e) and 1 (c,f). Fig. 5.11 shows the resulting force components of the transient simulation. 

It is clear that higher value of puF ,2  result in increased force ripples. Fig. 5.12 shows the open 

loop control of a 200 N force with the puF ,2  variable increasing linearly with the time from 0 

to 1 in order to highlight that the optimised 0.25 puF ,2  value is still a good working point for 

the reduction of the force ripple. 

 
Fig. 5.11 – Machine radial force control at 5 [Nm] torque. The radial force control is 25 [N] static (a, b, c) and 25 [N] 

dynamic (d, e, f). The ratio F2pu is 0 (a, d), 0.5 (b, e) and 1 (c, f). 

 

Fig. 5.12 – Radial force ripple at rated torque and speed with 200 N. F2pu varies from 0 (t = 0 s) to 1 (t = 0.02 s). 

 



CHAPTER 5 

362 

 

Fig. 5.13 and Fig. 5.14 show the resulting torque and phase currents of the same simulation 

presented in Fig. 5.11. As already investigated, the current distribution in the sectors are more 

homogeneously distributed with puF ,2  values far from 0 or 1 (0.25 is the optimised working 

point). Instead, the torque performance are completely independent from the radial force 

control (the iron saturation is not significantly affected by the current control), independently 

from the puF ,2  value. 

 

 

 

Fig. 5.13 – Machine torque when the reference is 5 Nm and the force is 25 N static (a, b, c) and dynamic (d, e, f). The 

F2pu value is 0 (a, d), 0.5 (b, e) and 1 (c, f). 

 

 

Fig. 5.14 – Machine phase currents when the reference is 5 Nm and the force is 25 N static (a, b, c) and dynamic (d, e, 

f). The F2pu value is 0 (a, d), 0.5 (b, e) and 1 (c, f). 
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Radial Force Evaluation in case of Three-Phase Open Fault (standard torque control) 

 

Fig. 5.15 shows the phase currents of a basic control of a multi three-phase machine in case 

of one inverter fault (the three-inverters remain in faulty condition for 1/3 of the simulation 

each). The three inverters are independently torque controlled in an equally distributed power 

sharing approach. In case of fault, the phase currents in the remaining healthy inverters are 

increased in order to maintain the torque to the reference value (5 Nm). The torque is not 

shown, because there are not differences from the torque in Fig. 5.14. Instead, as described 

from (5.105) or (5.107), setting the current sharing coefficient of the faulty inverter equal to 

zero, the faulty condition results in a radial force acting on the rotor. Fig. 5.16 shows the 

theoretical and FE force vector trajectory. The force vector is expected to rotate on an elliptical 

trajectory shifted by an offset in the x-y plane. The ellipsoid is defined by a sum of a direct 

and an inverse vector rotating at the same speed but in opposite directions and with different 

phases and amplitudes. The force simplified equation (5.107) is: 

mm j

inverseABCDqqABC

j

directABCDqqABCdcABCDqqABC eFiKjeFiKjFiKjF
 6

,33

6

,33,33

 
.
  

The mismatch between the theoretical and FE result is represented by the additional force 

components that have been simplified in the definition of the model, but it seems that for a 

first analysis of the phenomena the approximation is acceptable. 

 

Fig. 5.15 – Currents in one sector open winding configurations with standard redundant symmetrical three-phase 

current control. The torque is 5 Nm. 
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The radial force evaluation is essential to understand how much this fault is critical in the 

analysed machine, but also to compare the fault tolerant control with the standard one. At 

rated torque and one missing inverter, the radial force has a mean value of about 44 N and the 

ripple of about 65 N peak to peak. This can produce bearing damages and rotor vibrations. 

The maximum phase current in the standard controlled faulty machine, in Fig. 5.15, is 17.3 A, 

when in healthy conditions it is 11.6 A. As expected from the current sharing theory, the 

needed current in the faulty machine is 3/2 times the value of the healthy case. 

 

 Radial Force Compensation at Rated Torque (id3=0 FTC) 

 

Fig. 5.17 and Fig. 5.18 show the currents and radial force components of a transient FE 

simulation. The machine is firstly healthy and controlled with the standard torque control (a); 

then the fault happens in sector A (b); then it is compensated for the radial force due to the 

 
Fig. 5.16 – Simulated radial force (F) and analytical radial force evaluation (F E) in one sector open winding 

configurations with standard redundant three-phase current control. Force vector trajectory (a) and its x-y components 

(b). The torque is 5 Nm. In the legend, with A, B and C (red-purple, green-yellow and blue-black) the open winding 

conditions of the respective sectors are identified. 



Modelling of Multi Three-Phase Sectored Machines 

365 

 

fault in (c); finally, it is compensated for the force in no load conditions (0 Nm) (d). In the 

first fourth of the reported simulation, the machine is healthy and it is controlled as a three-

phase machine (a). As expected, the machine symmetry allows having zero radial force. The 

only force, which appears, is the rotor weight, but it is neglected in the FE simulation because 

it is easily evaluable (about 25 N in the simulated machine). Then the machine faulty 

behaviour is simulated when the standard control is maintained (b). The radial force in case 

of fault is still the same of Fig. 5.16. Then the machine is compensated for the radial force in 

an open loop control by the basic fault tolerant algorithm (5.139) (c). The compensation is not 

complete, due to other radial force contributions neglected in the model. Comparing (b) and 

(c), the compensation allows reducing the radial force mean value from 44 to 9 N (about 5 

times), and the ripple is also significantly reduced from 65 to 11 N (about 6 times). Also if the 

analysis of the fault tolerant radial force ripple frequencies is not furtherly investigated, it must 

be noted that, in the standard fault control, the main radial force ripple has a frequency of 

twice the main electrical frequency, while in the new fault tolerant control there are more and 

smaller harmonic components with higher frequencies.  

  

 

 

Fig. 5.17 – Currents with 5 Nm torque and 0 N reference radial force. Healthy machine (a), standard open windings 

control (b), radial force compensation by fault tolerant control (c) and, radial force fault tolerant control at no load (d). 

 



CHAPTER 5 

366 

 

 

 

Radial Force Fault Tolerant Control at Rated Torque (id3=0 FTC) – constant force 

 

Fig. 5.19, Fig. 5.20 and Fig. 5.21 show the currents, radial force components and torque of a 

transient FE simulation similar to the previous one, but in case of a radial force reference value 

of 25 N in the vertical direction. This value is lightly higher than the force needed to release 

the bearings from the rotor weight (20 N).  

The performance of the fault tolerant radial force control is better at no load (d). This result is 

in agreement with (5.137), because the presence of a torque control introduces an additional 

force term that must be compensated in order to control the force to the desired value.  

It is also clear that the radial force control performance when the machine is faulty are lower, 

due to the increase of stator Joule losses and iron losses. Indeed, when the fault happens, also 

without considering the radial force, the currents increase of 3/2 to reach the desired torque, 

as in (b). To compensate for the toque-related radial force there is a further increase (c) that is 

 

Fig. 5.18 – FE radial force values with 5 Nm torque and 0 N reference radial force. Healthy machine (a), standard open 

windings control (b), radial force compensation by fault tolerant control (c), radial force fault tolerant control at no load 

(d). 
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significantly reduced at no load operation (d). It results that one sector open phase fault makes 

some of the healthy phases, and the respective VSI, likely work in an overload condition. 

The torque performance, presented in Fig. 5.21 is not affected by the force control also in case 

of one sector open phase fault and radial force FTC. This is an interesting result in term of 

force and torque control decoupling. 

 

 

 

 

Fig. 5.19 – Currents with 5 Nm torque and 25 N reference radial force. Healthy machine (a), open phase behaviour with 

standard machine control (b), radial force fault tolerant control (c), fault tolerant radial force control at no load (d). 
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Fig. 5.20 – FE radial force values with 5 Nm torque and 25 N reference radial force. Healthy machine (a), standard open 

phase control (b), radial force compensation by fault tolerant control (c), radial force fault tolerant control at no load (d). 

 

Fig. 5.21 – Machine torque when the reference force is 25 N. The torque is 5 Nm (a,b,c) and 0 Nm (d). Healthy machine 

(a), faulty machine without fault tolerant control (b), radial force fault tolerant control (c), and radial force fault tolerant 

control at no load (d). 
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Radial Force Fault Tolerant Control at Rated Torque (id3=0 FTC) – direction criticality 

 

Fig. 5.22 and Fig. 5.23 show the currents and the radial force components resulting from a 

radial force FTC commanding a rotating force synchronous with the rotor in case of sector A 

open phase fault. This simulation is presented in order to highlight the asymmetrical behaviour 

of the machine. The asymmetrical distribution of the healthy phases results in an increased 

current request in some critical rotor positions. Therefore, in these positions also the additional 

force components are more important, resulting in a deterioration of the FTC performance. 

 

 
Fig. 5.22 – FE currents values with 5 Nm torque and 25 N rotating reference radial force. Sector A open fault and FTC 

algorithm. 

 
Fig. 5.23 – FE radial force values with 5 Nm torque and 25 N rotating reference radial force. Sector A open fault and 

FTC algorithm. 
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 Numerical (Matlab-Simulink) Simulation Results 

 

This section presents the results of numerical simulations done with Matlab-Simulink. The 

machine model used in the simulation is a FE-based one, developed by Giorgio Valente of 

Nottingham University. The model is derived by means of multi-static non-linear FE 

simulations. For each static simulation, the rotor is rotated of a small angle and each sector is 

fed with current values in the range of operating conditions. The obtained torque and x-y 

forces are stored in form of lookup table in the Simulink model and a linear method has been 

used to interpolate the lookup table elements. This model is used for avoiding time-consuming 

FE co-simulations, meanwhile having a good numerical representation of the system. 

The aim of the numerical simulations is to verify the controllability of the system before 

testing it on the machine prototype, and validate the proposed control algorithms. The machine 

control scheme is proposed in Fig. 5.24, where two additional PID regulators are introduced 

to represent the closed loop control for the two DoF bearingless operation. The bearingless 

operation is simulated considering also the eccentricity effect by a linear effect matched by 

FEA and the x-y position of the shaft is constrained in a circle of 150 μm radius, simulating 

the effect of a backup bearing setup (as in the experimental tests). 
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Fig. 5.24 – Control scheme of the prototype for two DoF bearingless operation. 
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Radial Force Open Loop Control 

 

Fig. 5.25 shows the results of a simulation where the force is open loop controlled. The 

reference force is rotating at the same speed of the rotor and its magnitude increases with the 

square of the rotor speed up to the rated force (200 N) at 3000 rpm. This force might represent 

the needed for compensating a dynamic mass unbalance. It is implicit that, for a proper 

compensation, the rotor-dynamic behaviour must be well predicted [20]. At first, a speed ramp 

from 0 to 3000 rpm (rated speed) is commanded. At 0.5 s a load equal to the rated torque is 

applied. The reference force is finally set to zero at 0.8 s. The simulation is reported only for 

a 0.25 puF ,2  value. The currents are shown in terms of space vectors of the overall machine 

and three-phase current vectors for each inverter. While the first ones are shown in the 

synchronised reference frames, the second ones are referred to the rotor reference frame as in 

a standard machine FOC. This result is particularly interesting, because it verifies the 

possibility to have zero steady state errors in the current PI regulators owing to the 

synchronisation of the space vectors in different reference frames. This is no more possible if 

a control of the standard three-phase current vectors is implemented. The only case where the 

same result is obtained are the no force control or the case of a constant reference force (as 

the rotor weight compensation). In these cases, the synchronisation of the three-phase current 

vector in the rotor reference frame as in a standard FOC allows having constant current 

reference values as in the space vector algorithm. In all the other cases, the SVD approach 

results in a better control implementation. Indeed, it is well known that the performance of a 

PI regulator deteriorates when a sinusoidal input rather than a constant one is applied. The 

following simulation results are related to the three-phase open fault behaviour with and 

without FTC.  
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Fig. 5.25 – Numerical simulation of a speed transient at no load from 0 to 3000 rpm, followed by a torque step of 5 Nm 

(at 0.5 s). The radial force is synchronous with the rotor as in a dynamic mass unbalance until 0.8 s, when the force is set 

to zero again. The speed, torque (a) and force (b), the d-q currents of each sector (c-e) and the d-q current space vector 

components (f-h) are plotted. 

 



CHAPTER 5 

374 

 

Radial Force Open Loop Compensation (With detection delay) 

 

Fig. 5.26 and Fig. 5.27 show the result of a standard machine control with a three-phase open 

fault (at t = 0.15 s). At the beginning, the control becomes unstable because the current control 

algorithm is implemented by the space vector approach. At t = 0.2 s the open loop FTC 

described by (5.139) is implemented for compensating the radial force generated by the torque 

control in case of fault. Fig. 5.27 shows the currents of the three-phase inverter and the current 

space vectors of the controlled spaces. It can be noticed that the FTC allows stabilising the 

machine current control. The force in Fig. 5.26 goes slowly to almost zero with the FTC. 

 

 

Fig. 5.26 – Machine start up and rated torque step (t=0.05 s), followed by sector A open phase fault (t=0.15 s) and radial 

force open loop compensation (t=0.2 s). 
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Fig. 5.27 – Machine start up and rated torque step (t=0.05 s), followed by sector A open phase fault (t=0.15 s) and radial 

force open loop compensation (t=0.2 s). Three-phase d-q currents of the three sectors (top) and synchronised current space 

vector components (bottom). 
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Radial Force Open Loop Compensation (instantaneous) 

 

Fig. 5.28 and Fig. 5.29 show the same simulation of the previous subsection, but with the FTC 

activated at the same time of the fault (at t = 0.15 s). In this case, the currents and the force 

reach the steady state operation in a short time. The q components of the three-phase current 

vector in Fig. 5.29 increase their average value mainly for the torque production in order to 

maintain the same 3rd space current vector. This control technique can be used for example in 

parallel to the converter protections, as the de-sat fault detection, in order to improve the 

machine behaviour. 

 

 

Fig. 5.28 – Machine start up and rated torque step (t=0.05 s), followed by sector A open phase fault with instantaneous 

radial force open loop compensation (t=0.15 s). 
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Fig. 5.29 – Machine start up and rated torque step (t=0.05 s), followed by sector A open phase fault and instantaneous 

radial force open loop compensation (t=0.15 s). Three-phase d-q currents of the three sectors (top) and synchronised 

current space vector components (bottom). 
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Bearingless Operation and FTC (early compensation) – rated torque and rated force 

 

The following simulation is used to summarise the bearingless control with and without three-

phase open fault. However, because without a FTC, the machine behaviour becomes unstable 

and there are huge currents and forces and the bearingless operation results not feasible, the 

working condition with only the fault is not presented. Instead, to add a possible scenario to 

the already presented ones, Fig. 5.30, Fig. 5.31 and Fig. 5.32 (top) show the effect of the FTC 

activation before that the fault happens. The fault can also not happen and the FTC can be 

used to keep zeroing the currents in one inverter. Only in Fig. 5.32 (bottom) it is shown that 

also without current or voltage limitations, the control without FTC algorithm does not allow 

the machine levitation in case of one inverter open fault, and the rotor is pushed in the 

uncontrolled position defined by the position of the faulty subsystem. 

Fig. 5.30 and Fig. 5.31 show a start-up and torque step as in the previous simulations, with the 

difference that during all the simulation there is an active control of the x-y shaft position in 

a two degrees of freedom bearingless operation.  

 
Fig. 5.30 – Machine start up and rated torque step (t=0.05 s), followed by rated force step (t=0.1 s). FTC operation 

without fault for zeroing the sector A currents (t = 0.15 s) and open phase fault of sector A keeping the FTC active (t=0.2 

s). 

. 
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Fig. 5.31 – Machine start up and rated torque step (t=0.05 s), followed by rated force step (t=0.1 s). FTC operation 

without fault for zeroing the sector A currents (t = 0.15 s) and open phase fault of sector A keeping the FTC active (t=0.2 

s). Three-phase d-q currents of the three sectors (top) and synchronised current space vector components (bottom). 
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The x-y position of the shaft is shown in Fig. 5.32 (top), where it is possible to notice that the 

starting position of the shaft is in the negative y direction and there is a transient to centre the 

shaft.  

Furthermore, at t = 0.1 s there is a load force increasing up to the rated force (200 N) which 

remains until the end of the simulation. At t = 0.15 s the FTC is activated in order to bring the 

currents in the inverter A to zero while controlling the torque and the force simultaneously to 

their rated values. At t = 0.2 s the inverter A is unconnected setting the current exactly equal 

to zero. It is interesting to note that the machine behaviour before and after the physical open 

of the inverter A is almost the same, owing to the good performance of the FTC. 

 

 

 

Fig. 5.32 – x-y shaft position in a two DoF bearingless operation with rated force and rated force control at rated speed 

with sector A open phase fault with FTC (top) and without FTC (bottom). 
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Bearingless Operation and optimised current sharing control – rated torque and rated 

force 

 

The following simulation is used to summarise the bearingless control in case of an advanced 

current sharing of the q-axis component of the three-phase inverters (power sharing) as 

described in Section 4.5. 

Fig. 5.33 and Fig. 5.34 show a start-up and torque step as in the previous simulations, with the 

x-y shaft position control in a two degrees of freedom bearingless operation. At the beginning 

the control is an equal power sharing. At t = 0.05 s there is a load force increasing up to the 

rated force (200 N). At t = 0.1 s a matryoshka power sharing is commanded. Finally, since t 

= 0.15 s the inverter B is working with a negative power sharing coefficient and the two others 

with the same positive one. It results that the B inverter is controlled in generating mode, while 

the A and C converter must provide twice the power if compared to the equal control. Indeed, 

they have to compensate the power of the B inverter plus producing the power that it generates. 

The bearingless operation is obtained as in Fig. 5.32 (top), therefore the x-y shaft position is 

not shown for this simulation. 

 

Fig. 5.33 – Start up and rated torque step (t=0.025 s), followed by rated force step (t=0.05 s). Advanced current sharing 

control: equal distribution (until t = 0.1 s); matryoshka current sharing (t=0.1-0.15 s); three-phase subsystem B 

generating (from t = 0.15 s). 

. 
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Fig. 5.34 – d-q components of the three-phase current space vectors (top) and the general ones (bottom). Start up and 

rated torque step (t=0.025 s), followed by rated force step (t=0.05 s). Advanced current sharing control: equal distribution 

(until t = 0.1 s); matryoshka current sharing (t=0.1-0.15 s); three-phase subsystem B generating (from t = 0.15 s). 
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Bearingless Operation with Optimised FTC – Minimum copper Joule losses 

 

Fig. 5.35, Fig. 5.36 and Fig. 5.37 compare the basic and optimised FTC described in Section 

4.6 for the sector A open phase fault with a bearingless control.  

The simulation is divided in two parts. In the first one (until 0.2 s), the machine is working at 

rated torque (5 Nm). In the second part (from 0.2 s until the end of the simulation) the machine 

is working at rated torque and rated force (200 N). In both the parts, for half the time the 

machine is controlled with the basic FTC and for the next half with the optimised FTC.  

The bearingless operation is obtained with both the FTC, but as expected the optimised one 

allows significantly reducing the stator copper Joule losses. Furthermore, the maximum peak 

phase current is also significantly reduced (as in Fig. 5.37). 

 

Fig. 5.35 – Start up and rated torque step (t=0.025 s), followed by rated force step (t=0.2 s) with sector A open phase 

fault. Basic FTC (t=0-0.1 s and 0.2-0.3 s) and optimised FTC (t=0.1-0.2 s and 0.3-0.4 s). 

. 
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Fig. 5.36 – d-q components of the three-phase current space vectors (top) and the general ones (bottom). Start up and 

rated torque step (t=0.025 s), followed by rated force step (t=0.2 s) with sector A open phase fault. Basic FTC (t=0-0.1 s 

and 0.2-0.3 s) and optimised FTC (t=0.1-0.2 s and 0.3-0.4 s). 
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Fig. 5.37 – Phase currents. Start up and rated torque step (t=0.025 s), followed by rated force step (t=0.2 s) with sector 

A open phase fault. Basic FTC (t=0-0.1 s and 0.2-0.3 s) and optimised FTC (t=0.1-0.2 s and 0.3-0.4 s). 
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 Experimental Results 

 

Fig. 5.38 shows the test rig used for the experimental analysis. This rig is available at the 

University of Nottingham and has been assembled and designed by Giorgio Valente. Other 

members of the power Electronics, Machine and Control (PEMC) group have designed the 

various components. I coded the multiphase machine control on the uCube control platform 

in order to realise the experimental tests summarised in this section. 

Fig. 5.38a shows the three three-phase inverters connected to the same dc bus. Each inverter 

is connected to one of the MSPM motor winding (Fig. 5.38c). The inverters, equipped with a 

standard IGBT power module with 10 kHz switching frequency, are independently controlled 

by means of the centralized control platform in Fig. 5.38b [21]. The control platform 

communicates with the inverter gate drivers by means of fibre optic cables. In order to realize 

a bearingless drive with two mechanical degrees of freedom, the tilting movement and axial 

displacement are constrained by a self-alignment bearing mounted on one side of the shaft. 

The other side is free to only move along the x-y axes within a certain displacement, given by 

 
Fig. 5.38 – Experimental test setup. The three three-phase inverters (a), the control board (b), the machine MSPM 

prototype and test rig (c), and the rotor shaft with the displacement sensors (d). 



Modelling of Multi Three-Phase Sectored Machines 

387 

 

the clearance of the backup bearing. Fig. 5.38d shows the two displacement probes mounted 

on the backup bearing housing along the x-y axes. The machine parameters are listed in Table 

5.11. 

The experimental tests have been performed to validate the radial force control technique in 

an open loop control and for a two degrees of freedom bearingless operation. The tests are 

reported only for a 0.25 puF ,2  value in the control algorithm. 

 

Radial Force Open Loop Control 

 

Fig. 5.39 and Fig. 5.40 show the experimental results for a force open loop control. The 

reference force is rotating synchronous with the rotor. The aim is to evaluate the possibility to 

compensate for example a dynamic mass unbalance of the shaft. Similar results have been 

obtained in the simulation presented in Fig. 5.25. Not having an available force transducer, 

the force is just supposed to follow the reference value, and only the force direction has been 

measured by the shaft position on the backup bearing as in Fig. 5.40. It is worth noticing that 

the initial position of the shaft in all the experimental tests depends on the final position 

reached in the previous simulation and it is not in the negative y direction (as expected in case 

of considering only the rotor weight), because of the eccentricity force. The eccentricity effect 

is easily understandable thinking about the minimization of the system energy principle that 

generates the reluctance force. 

The maximum speed is limited to 600 rpm for avoiding the damage of the backup bearing, 

being the shaft position constrained only by it. The magnitude of the reference force increases 

with the square or the rotor speed up to 200 N at 600 rpm (the rated force). As expected in the 

simulation in Fig. 5.25, the current space vector components in the synchronised reference 

frames are constant at stead state condition. This allows having theoretically zero stead state 

error. Instead, Fig. 5.41 shows the phase currents, where it is clear that standard d-q PI 

regulators for the three-phase current space vectors are not enough to ensure zero steady state 

error. 

Table 5.11 – Main machine parameters. 
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Fig. 5.39 – Experimental results of a speed transient at no load from 0 to 600 rpm. The radial force is synchronous with 

the rotor as in a dynamic mass unbalance. The speed, torque (a) and force (b), the current space vector components (c-e) 

and the total stator copper losses are plotted. 
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Fig. 5.40 – x-y shaft position. Experimental results of a speed transient at no load from 0 to 600 rpm. The radial force is 

synchronous with the rotor as in a dynamic mass unbalance. The x-y shaft position is only constrained by a backup bearing 

with 150μm radius. 
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Radial Force Control in Bearingless Closed Loop Operation (stand still) 

 

Fig. 5.42 shows the experimental results of the bearingless operation at stand still. At about 

0.22 s the bearingless control of the machine is turned on. After a short transient needed to 

bring the shaft from the backup bearing boundary to the centre, the steady state operation is 

reached. As expected from the previous analysis, the copper Joule losses needed to levitate 

the rotor are negligible.  

Fig. 5.43 shows the x-y position of the shaft axis and the backup bearing boundary. Small 

mismatches of the position of the position sensors makes the starting position be internal to 

the backup bearing constraint, but this is just an offset in the measure related to a slight 

imprecision of the position probe placement. 

 

 

 

 

 

 

Fig. 5.41 – Phase currents in the three three-phase inverters. Experimental results of a speed transient at no load from 0 

to 600 rpm. The radial force is synchronous with the rotor as in a dynamic mass unbalance. The steady state condition is 

at rated peak currents. 
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Fig. 5.42 – Stand still bearingless operation experimental results. 
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Radial Force Control in Bearingless Closed Loop Operation (rated speed - 3000 rpm) 

 

Fig. 5.44 shows the experimental results of the bearingless operation at rated speed in steady 

state operation. The copper Joule losses needed to levitate the rotor are still small. However, 

some ripples in the shaft position generate higher work needed to centre the rotor and an 

increase of the related losses. 

Fig. 5.45 shows the x-y position of the shaft axis and the backup bearing boundary. Increasing 

the speed results in a worse position control, but the performance of the bearingless control is 

still good. The shaft axis always remains inside a circle of 30 μm radius (highlighted with the 

internal dashed circumference). 

 

 

Fig. 5.43 – x-y shaft position: measured. Stand still bearingless experimental results. 
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Fig. 5.44 – Bearingless operation at rated speed (3000 rpm): experimental results. 
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Radial Force Control in Bearingless Closed Loop Operation (transient up to 3000 rpm) 

 

Fig. 5.46 and Fig. 5.47 show the speed transient from stand still up to the rated speed in the 

bearingless operation. After the initial shaft positioning, the rotor position always remains 

inside the 30 μm radius from the backup bearing centre. Only for a short instant (t = 0.44 s) 

the position exceeds this value until almost 50 μm. The copper Joule losses during the transient 

are almost the same as in steady state operation. 

 

 

 

Fig. 5.45 – x-y shaft position: measured. Rated speed bearingless operation (3000 rpm). 
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Fig. 5.46 – Bearingless operation for a speed transient from 0 to 3000 rpm: experimental results. 
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Radial Force Control in Bearingless Closed Loop Operation (bearingless control 

activation at 1000 rpm) 

 

Fig. 5.48 and Fig. 5.49 show the machine behaviour when it is speeded up to 1000 rpm (1/3 

the rated speed) without bearingless control, and suddenly the bearingless control is activated 

(t = 0.6 s). Even in this case the steady state bearingless operation is reached in about 0.02 s.  

This test might represent the feasibility of a drive with implemented a fault tolerant algorithm 

that activates a bearingless machine control in case of bearing fault. Of course, this is just a 

first step for the development of such a technology. 

 

 

 

Fig. 5.47 – x-y shaft position: measured. Speed transient from 0 to 3000 rpm in bearingless operation. The initial transient 

for centring the shaft at stand still is also shown. 
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Fig. 5.48 – Speed transient from 0 to 1000 rpm (t = 0.3 s), and bearingless control activation (t = 0.6 s). Experimental 

results. 
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Fig. 5.49 – x-y shaft position: measured. Speed transient from 0 to 1000 rpm (t = 0.3 s) without position control, and 

bearingless control activation (t = 0.6 s). Experimental results. 
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 Conclusions 

 

This chapter presented an in-deep analysis of multi three-phase sectored PM machines 

(MSPM), taking into account also for the generated radial force. The general MSPM model is 

simplified for the case of a triple three-phase layout, in order to define a suitable machine 

control verifiable by the available prototype. 

The general control algorithm shows the possibility of using more degrees of freedom for the 

definition of the radial force control. Therefore, the method is optimised for minimising the 

machine losses, considering all the degrees of freedom of the machine. The efficiency and 

performance are presented and compared for different reference values of the force. 

The proposed algorithm allows also controlling the torque and the radial force in various 

working conditions. In particular, different techniques are proposed for managing the power 

sharing between the three-phase subsystems, and the case of one three-phase open fault.  

The performance in open and closed loop of the various control algorithms are compared by 

means of FEA and Matlab-Simulink simulations. 

The theory is verified for a prototype of triple three-phase MSPM machine assembled for a 

two degrees of freedom bearingless configuration.  

Experimental tests validate the model prediction, showing that controlling the radial force and 

using it for the rotor levitation is feasible.  

Further experimental tests will be done in the next future to validate all the other control 

techniques, providing also radial force measurements for an improved analysis.  

To conclude, the radial force space vector control of a multi three-phase sectored machine is 

feasible. In case of current sharing or open phase faults, the sectored machines show a worse 

behaviour because of the radial force appearing. However, by means of a reliable machine 

model, it is possible to compensate these forces. Furthermore, the same techniques used for 

avoiding the forces in case of asymmetrical machine behaviour can be exploited for the radial 

force control. 

 

 

 

 

 

 

 

 

 



CHAPTER 5 

400 

 

References: 

 

[1] T. Baumgartner, R. M. Burkart, and J. W. Kolar, "Analysis and Design of a 300-W 

500 000 - r/min Slotless Self-Bearing Permanent-Magnet Motor," IEEE Transactions 

on Industrial Electronics, vol. 61, pp. 4326-4336, 2014. 

[2] T. F. A. Chiba, O. Ichikawa, M. Oshima, M. Takemoto, and D. G. Dorrell, Magnetic 

bearings and bearingless drives: Elsevier, 2005. 

[3] A. H. Pesch, A. Smirnov, O. Pyrhönen, and J. T. Sawicki, "Magnetic Bearing Spindle 

Tool Tracking Through mu-Synthesis Robust Control," IEEE/ASME Transactions on 

Mechatronics, vol. 20, pp. 1448-1457, 2015. 

[4] S. Y. Zhang, C. B. Wei, J. Li, and J. H. Wu, "Robust H - infinity controller based on 

multi-objective genetic algorithms for active magnetic bearing applied to cryogenic 

centrifugal compressor," in 2017 29th Chinese Control And Decision Conference 

(CCDC), 2017, pp. 46-51. 

[5] C. Peng, J. Sun, X. Song, and J. Fang, "Frequency-Varying Current Harmonics for 

Active Magnetic Bearing via Multiple Resonant Controllers," IEEE Transactions on 

Industrial Electronics, vol. 64, pp. 517-526, 2017. 

[6] A. Chiba, M. A. Rahman, and T. Fukao, "Radial force in a bearingless reluctance 

motor," IEEE Transactions on Magnetics, vol. 27, pp. 786-790, 1991. 

[7] T. Schneider and A. Binder, "Design and Evaluation of a 60 000 rpm Permanent 

Magnet Bearingless High Speed Motor," in 2007 7th International Conference on 

Power Electronics and Drive Systems, 2007, pp. 1-8. 

[8] X. Sun, Z. Xue, J. Zhu, Y. Guo, Z. Yang, L. Chen, et al., "Suspension Force Modeling 

for a Bearingless Permanent Magnet Synchronous Motor Using Maxwell Stress 

Tensor Method," IEEE Transactions on Applied Superconductivity, vol. 26, pp. 1-5, 

2016. 

[9] S. Serri, A. Tani, and G. Serra, "A method for non-linear analysis and calculation of 

torque and radial forces in permanent magnet multiphase bearingless motors," in 

International Symposium on Power Electronics Power Electronics, Electrical Drives, 

Automation and Motion, 2012, pp. 75-82. 

[10] B. Li, J. Huang, L. He, and H. Zhaowen, "Analysis and control of seven-phase 

permanent-magnet bearingless motor with single set of half-coiled winding," in 2014 

IEEE 23rd International Symposium on Industrial Electronics (ISIE), 2014, pp. 2080-

2086. 

[11] J. Huang, B. Li, H. Jiang, and M. Kang, "Analysis and Control of Multiphase 

Permanent-Magnet Bearingless Motor With a Single Set of Half-Coiled Winding," 

IEEE Transactions on Industrial Electronics, vol. 61, pp. 3137-3145, 2014. 

[12] A. Galassini, A. Costabeber, C. Gerada, G. Buticchi, and D. Barater, "A Modular 

Speed-Drooped System for High Reliability Integrated Modular Motor Drives," IEEE 

Transactions on Industry Applications, vol. 52, pp. 3124-3132, 2016. 

[13] G. Sala, D. Gerada, C. Gerada, and A. Tani, "Radial force control for triple three-phase 

sectored SPM machines. Part II: Open winding fault tolerant control," in 2017 IEEE 

Workshop on Electrical Machines Design, Control and Diagnosis (WEMDCD), 2017, 

pp. 275-280. 

[14] G. Sala, D. Gerada, C. Gerada, and A. Tani, "Radial force control for triple three-phase 

sectored SPM machines. Part I: Machine model," in 2017 IEEE Workshop on 

Electrical Machines Design, Control and Diagnosis (WEMDCD), 2017, pp. 193-198. 



Modelling of Multi Three-Phase Sectored Machines 

401 

 

[15] M. Barcaro, N. Bianchi, and F. Magnussen, "Faulty Operations of a PM Fractional-

Slot Machine With a Dual Three-Phase Winding," IEEE Transactions on Industrial 

Electronics, vol. 58, pp. 3825-3832, 2011. 

[16] L. Alberti and N. Bianchi, "Impact of winding arrangement in dual 3-phase induction 

motor for fault tolerant applications," in The XIX International Conference on 

Electrical Machines - ICEM 2010, 2010, pp. 1-6. 

[17] G. Valente, L. Papini, A. Formentini, C. Gerada, and P. Zanchetta, "Radial force 

control of multi-sector permanent magnet machines," in 2016 XXII International 

Conference on Electrical Machines (ICEM), 2016, pp. 2595-2601. 

[18] G. Valente, L. Papini, A. Formentini, C. Gerada, and P. Zanchetta, "Radial force 

control of Multi-Sector Permanent Magnet machines considering radial rotor 

displacement," in 2017 IEEE Workshop on Electrical Machines Design, Control and 

Diagnosis (WEMDCD), 2017, pp. 140-145. 

[19] L. Alberti and N. Bianchi, "Experimental Tests of Dual Three-Phase Induction Motor 

Under Faulty Operating Condition," IEEE Transactions on Industrial Electronics, vol. 

59, pp. 2041-2048, 2012. 

[20] S. Zhou and J. Shi, Active Balancing and Vibration Control of Rotating Machinery: A 

Survey vol. 33, 2001. 

[21] A. Galassini, G. L. Calzo, A. Formentini, C. Gerada, P. Zanchetta, and A. Costabeber, 

"uCube: Control platform for power electronics," in 2017 IEEE Workshop on 

Electrical Machines Design, Control and Diagnosis (WEMDCD), 2017, pp. 216-221. 

 

 

 





 

 

403 

 

  

 

Design and Control of 

Segmented Multi Three-Phase 

SPM Machines 
 

Multiphase machines, compared to the standard three-phase ones, give more advantages in 

terms of reliability and efficiency, becoming always more suitable for high performance and 

fault tolerant applications. Multiphase motors allow exploiting more degrees of freedom in the 

generation of the armature field, which can be useful to obtain a higher torque density and 

efficiency, and reduced torque ripples [1]. Furthermore, suitable fault tolerant algorithms 

might be exploited to overcome fault conditions and/or to detect them [2, 3]. In general, a 

multiphase drive requires an “extended field oriented control” able to control the air-gap field 

harmonic components, and a multiphase modulation technique for the inverter can be used to 

increase the DC-bus exploitation [4]. Among the different multiphase machine topologies, the 

multi three-phase one has the advantage to use a standard three-phase inverter technology.  

The multi three-phase machine can be wound with symmetrical three-phase windings. In this 

case, each three-phase system winding is shifted from the others of a fixed and defined angle. 

This winding configuration allows better exploiting the air-gap magnetic field control [5], as 

described in Chapter 2, 3 and 4. Another possible solution is the sectored one, based on the 

redundant structure idea. This solution has been analysed in Chapter 5 and other works [6], 

where two three-phase windings are separately arranged in different stator sectors. This 

separation of the subsystems results in an asymmetrical magnetomotive force distribution 

(source of radial force if the sectors are controlled with different current values), but allows 

also avoiding the subsystems overlapping, achieving higher electromagnetic independence. 

In this chapter, a triple three-phase sectored winding configuration is analysed as the one of 

Chapter 5. The generalisation of the segmentation theory has been limited to some topologies, 

because of the particular design under study. A sectored machine can be viewed as three 

machines that are exploded and joined together to realize the triple three-phase design.  

To emphasize the decoupling between the three-phase subsystems, the concept of segmentation 

is introduced. The idea is to increase the sector independence (mechanical, electromagnetic, 

thermal) without losing in machine performance. Previous works on stator segmentation have 

been carried out for manufacturing issues [7, 8] or improving the motor performance [9, 10], 
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but in this thesis this idea is applied for the first time to a distributed winding multi three-phase 

sectored machine to improve both the performance and the fault tolerant behaviour.  

 

Sectored and Segmented motor design - Concept  

 

The idea of sectorization is used to define an electrical machine in which each three-phase 

winding is arranged in a different stator area and supplied by a three-phase inverter. On the 

other hand, the concept of motor segmentation refers to the introduction of an additional 

material between the machine stator sectors.  

Some of the sectored and segmented analysed designs are shown in Fig. 4.1, where the basic 

sectored winding is the SDa (first design at the top and on the left, the same of Chapter 5).  

Hereafter, the most important kind of analysed segmented designs are named as “SDx”, where 

x is the letter that distinguishes the different topologies as in Fig. 4.1. 

Once the segmentation is introduced in the design optimization process, many new degrees of 

freedom must be taken into account. 

 The main design variables, shown in Fig. 6.2, can be summarized as:  

- segmentation thickness;  

- segmentation material and shape;  

- sector slots and teeth design.  

The rotor, the external stator diameter, the rated torque and the iron area (in order to limit the 

effects of iron saturation on the design) are chosen as design constraints. 

Fig. 6.3 shows the unsegmented design (SDa), which is the starting topology for the 

segmentation design. Indeed, a sectored design (as SDa) is a particular segmented one with zero 

segmentation thickness. 

 

Segmentation Thickness 
 

The segmentation thickness is the size of the gap introduced between the machine stator sectors. 

This gap is represented by the geometrical parameter
es  (named as external segmentation), 

shown in Fig. 6.2. The segmentation thickness affects the decoupling between the sectors, but 

also the available space, in each of the three-phase sectors, to design the stator slots and teeth. 

If this available space decreases, the coil pitch inevitably changes, and this is a new useful 

degree of freedom for the design. For example, the coil pitch can be exploited to reduce the 

most relevant armature fields (as the 5th or/and the 7th). Furthermore, the segmented machine 

control technique (presented in the following sections) strongly depends from the segmentation 

thickness if standard windings are used. 
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Segmentation Material and Shape 
 

Once the segmentation thickness 
es is defined, the resulting available area can be optimized 

to improve the fault tolerant machine behaviour or to reduce the machine torque ripple. This 

area can also be exploited for an additional cooling system. It is possible to have a full iron 

segmentation (as SDb), an air based segmentation (as SDc), or a hybrid segmentation  

 

 

Fig. 6.1 – Triple three-phase sectored designs with different segmentation layouts. The original not segmented design is 

the a) left top. 

 

 

Fig. 6.2 – Triple three-phase sectored design and segmentation concept. The figure also shows the main segmentation 

parameters. 
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(as SDd - SDf). In this area, it is also possible to introduce also a central segmentation 
cs  

(named as central segmentation), as shown in Fig. 6.2.  This further degree of freedom in the 

design of the sectors has been investigated. The idea is to understand if there might be 

advantages in distributing the slots in a different position and the design of the central 

segmentation might be useful to improve the machine performance. 

 

Sector Slots and Teeth Design 
 

The sectors teeth thickness is the same for all the topologies shown in Fig. 6.1 (i.e. they have 

almost the same iron exploitation). Therefore, the slots area is reduced. The turns per phase 

number can be maintained the same as the SDa design or can be modified (as described in the 

following sections) with different turns in the central phase 
cN  compared to the external ones 

eN of each sector. This aims to recreate a more symmetrical magnetomotive force distribution.  

 

Summary of the Segmentation Design Degrees of Freedom  

 

To summarize the approach used for the analysis of the segmentation idea, the list of design 

variables that has been considered (referring to Fig. 6.2) is: 

- 
es : external segmentation thickness (angle) 

- 
cs : central segmentation thickness (angle) 

- 
ec NN / : ratio between the turns of the central phases over the external ones 

 

Fig. 6.3 – Triple three-phase sectored design: layout SDa, without segmentation. The turn number is N for each phase. 
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- Material and shape of the areas into the 
es  and 

cs  arcs. 

In order to understand how the segmentation affect the control performance, the next section 

describes the relationships between the currents and the resulting armature field harmonics in 

segmented machines. 

 

 Field Analysis of a Triple Three-phase Sectored and 

Segmented SPM 

 

The electromagnetic model of the machine has been developed considering the segmentation 

material as full iron and neglecting the slotting effect. Therefore, the machine is analysed with 

the assumption of isotropic magnetic circuit. This allows significantly simplifying the machine 

model for understanding how the segmentation affects the magnetomotive force distribution. 

The effects of the additional segments reluctance has been studied by FEA, as it is usually done 

for the analysis of the end-effects in linear machines. Indeed, the assumption of considering 

only the radial component of the magnetic field in a layout such as SDc would result in having 

a zero flux density under the segmentation angle
es , while in reality the flux in that area is 

not zero but the flux path depends on the segments geometry, as shown in Fig. 6.4.  

In the proposed analysis the time dependence is implicit and the machine equations have been 

written in mechanical angles, it means that the main harmonic field is the p-th one ( p ), 

with p the pole pairs number. The main parameters are defined as: R  the average air-gap 

radius;   the whole air-gap thickness including the permanent magnets; N  the turns per slot 

number in the SDa machine design (and xN the actual number in the x-th phase); y the coil 

 

Fig. 6.4 – Zoom of the flux view of the SDc design in the segmentation arc. 
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pitch angle; xPi  the current in the x-phase under the P-sector, identified following the stator 

anticlockwise (i.e. P(A)=1, P (B)=2 and P (C)=3 in the triple three-phase layout). 

 

General SV model of a segmented and sectored machine 

 

Each three-phase subsystem of a multi three-phase machine can be completely described by the 

standard three-phase transformation. 

As discussed in Chapter 3 and 5, the currents of each T-th three-phase subsystem are well 

represented by the following three-phase transformation: 
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TNT ,...,2,1 , pP ,...,2,1 , (6.2) 

where the subscripts T and P are used to represent the T-th three-phase subsystem located in 

the P-th pole pair. The subscripts U, V and W are used to define the phases of each three-phase 

subsystem. The multi-space three-phase transformation is: 
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with the relative inverse transformation: 
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where 1UZ , 2VZ  and 3WZ  are the indexes that represent the phases of each three-

phase subsystem. 

The particular geometry of the slot position makes the definition of a suitable symmetrical 

transformation impossible. Therefore, the h-space current vector hi   is defined by the following 

asymmetrical transformation (similar to (5.6)): 
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which can be simplified as:  
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with slot  the angle between two consecutive slots defined as: 
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The h-th harmonic of the Fourier series of the armature field (2.47) is: 
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For a multi three-phase sectored machine with a single coil per phase, the armature field 

harmonics can be defined as: 
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with y  the phase pitch. In the proposed segmented design, the phase pitch is: 
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 .          (6.10) 

Assuming that the machine is controlled with the same currents in each three-phase subsystem 

(standard machine control), the SPM machine can be analysed in the same way under each pole. 

Therefore, the control technique is defined for the main electrical field harmonic (p-th), while 

the torque ripple and iron losses are also related to the other electrical field harmonics.  

The general torque equation under the assumption of isotropic magnetic circuit and symmetrical 

SPM rotor (2.250) is: 
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adapted to a sectored and segmented triple three-phase machine (one coil per phase), it results 

as: 
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simplified as: 
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Because in a segmented design the current space vector phi  is defined by an asymmetrical 

transformation (6.6), the torque equation cannot be simplified as done in Chapter 2, 3 and 4, 

and each current space vector must be considered as unique (there is not a reasonable 
ZN  

number for which there is a repetition of the current space vectors like hhN ii
Z

 ). 

Furthermore, the current space vectors odd multiple of 3 times the pole pair number (3kp, with 

k an odd number) are usually related to the homopolar currents of the three-phase subsystems. 

Instead, in a segmented design they are related also to the three-phase current space vectors. 

Indeed, the 3kp-order current vectors are defined as: 
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resulting in: 
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If there is not a segmentation ( 0
cses ), remembering that k is an odd number, the 

equation becomes: 
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Only if also the turn number is the same in all the phases ( NNN ec  ), it results (according 

to (3.42)): 
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If the three-phase subsystems are independently star connected, all these components are zero 

( 03 kpi ).  

If one of the previous assumption cannot be done, the PM field harmonics of order 3kp interacts 

with the armature field harmonics of the same order generating additional torque ripples.  

The model is simplified for a triple three-phase segmented machine in the next subsection, 

where the design variables are exploited in order to optimise the machine performance. 

 

SV Model of a Triple Three-Phase Segmented and Sectored SPM Machine 

 

Hereafter the equations refer to the studied SPM machine, it means a triple three-phase one  

( 3p and 1TN ). 

Each independently star connected three-phase subsystem can be completely described by: 
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with the relative inverse transformation: 
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where 1UZ , 2VZ  and 3WZ  are the indexes that represent the phases of each three-

phase subsystem. 

The h-space current vector hi  is defined as: 
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with the slot pitch: 
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The armature field harmonics are defined as: 
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with the phase pitch: 
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The torque equation is: 
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The rotor design is the same of Fig. 6.5. The design analysis has been carried out knowing that 

the harmonic spectrum of the PM flux density without segmentation and slotting effects has 

also harmonics that are odd multiples of 3 times the poles number.  

 

Fig. 6.5 – Permanent magnet flux density with and without slotting effect. FEA view. Machine with and without slots (left 

and right). 
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Fig. 6.5 shows the permanent magnet flux view with and without slots (as expected the flux 

density is different because of the different reluctance of the magnetic circuit, but the analysis 

is used only to easily filter the slotting related harmonics by the magnet geometry related ones).  

Fig. 6.6 and Fig. 6.7 show the waveforms of the radial component of the flux density in the 

airgap and the relative FFT.  

Because the 3rd electrical harmonic of the PM flux is comparable with the 5th and the 7th ones, 

its effect is taken into account in the analysis of the segmentation geometry performance 

(mainly for the related torque ripple). 

 

 Machine Control and Winding Design 

 

The machine torque control corresponds to the control of the armature field, which is mainly 

described by the control of the main harmonic 3H  defined by (6.18). To have a constant torque 

it is needed to maintain the q-axis component of the armature field in the rotor reference frame 

constant. In a standard control it means to have 
3H  constant, and so 3i . If the machine is 

symmetrically controlled (
CBA iii  ), 3i  is obtained by (6.16) with 3h . In this case, the 

phase currents can be well represented by the standard three-phase current space vector of one 

sector by (6.14), below for the sector A, as: 

   WAVAUAA iiii ,,,
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2
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2


j

e . (6.21) 

Hereafter, the machine is considered with the same current control for each three-phase 

subsystem (
CBA iii  ). Under this assumption, it is easily possible to associate the generic 

current space vectors with the standard three-phase one.  

The connecting relation, substituting (6.15) in (6.16), is: 
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noticing that 
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3
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 Ph

P

  is always zero for h not multiple of three, otherwise it is equal to 3, 

(6.22) results as: 
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Fig. 6.6 – Permanent magnet flux density without slotting effect. 

 

Fig. 6.7 – Permanent magnet flux density with slotting effect. 
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It is worth noticing that in a not segmented design slot is equal to 
18

2
slot

 and 

NNN ec  , therefore, (6.23) is the standard three-phase multi harmonic transformation: 
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If k is an odd multiple of 3 (if it is even it does not affect the torque), it results: 
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If k is a multiple of 3z-1 with z even (if z is odd the space vector is even and it does not affect 

the torque), it results: 
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If k is a multiple of 3z+1 with z even (if z is odd the space vector is even and it does not affect 

the torque), it results: 
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Instead, if there is a segmentation (6.23) can be just rewritten introducing: 

618

2 cses
slot





, 

as:  

 

.
3

1

3

1

26

2

3

2

26

2

3

2

*

26

2

3

2

26

2

3

2

3












































csescses

csescses

jhjhj
e

jhjhj
ec

A

jhjhj
e

jhjhj
ec

Ah

eee
N

N
eee

N

N

N

N
i

eee
N

N
eee

N

N

N

N
ii





      (6.28) 

Realising that 3

2
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jhjh
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  if h is odd (the even harmonics generate only iron losses): 
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It is useful to introduce the new segmentation parameter: 

2
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 . 

With the   parameter, the space vector equation for the field harmonics odd and multiple of 

the pole pairs number is: 
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      (6.30) 

Analysing (6.30) it is worth noticing that there are two ways to have a rotating main current 

space vector 3i constant: design the phase windings with a different number of turns per phase; 

maintain the standard winding design and change the control algorithm in order to have the 

same vector magnitude 3i  for whatever position of the space vector trajectory. 

 

Torque Ripples in Segmented Machines 

 

In a standard machine control, at steady state conditions, the trajectory of the three-phase space 

vectors 
Ai  (

CBA iii  ) is a circumference followed at constant speed, as: 
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The resulting overall machine space vectors become: 
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The main one result as: 
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Therefore, the main current vector in the rotor reference frame ( mj
ei

3

3


) has a reduced direct 

sequence and presents an inverse sequence. The main current vector can be described as:  

 mm jj
eiiei

 6

33

3

3


  ,     (6.34) 

with the direct sequence: 
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and the inverse sequence: 
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The resulting main torque contribution results by (6.20) as: 
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Therefore, the segmented design has a reduced torque constant and the standard control 

generates a torque ripple at six times the rotor frequency (twice the electrical frequency,

pff me / ). 

The average torque can be increased by a higher value of the phase current. Instead, in order to 

avoid a huge torque ripple, the second term of (6.37) must be minimised (ideally controlled as 

zero). In order to obtain this result, in the following section are proposed two techniques that 

aim to: 

- maintain a standard machine control (with the three-phase current space vector having 

constant steady state magnitude) and compensate the magnetomotive force distribution 

by a different turn number in the central phase of each sector ( ec NN  ); 

- control the phase currents imposing a control of the overall machine (direct flux control 

by setting the reference 3i  and by it defining the reference three-phase current vectors 

CBA iii  ). 
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New Winding Design for Standard Current Control 

 

If a standard three-phase control is used, the steady state torque of a segmented machine is no 

more constant. Indeed, there is a torque ripple at twice the electrical frequency ( pff me / ), 

related to the second term of (6.37), or as well related to (6.36). However, the ripple can be 

eliminated by choosing a proper number of turns in the central phase of each sector compared 

with the turns of the external phases. Indeed, (6.36) is always zero if the following turn number 

relationship is satisfied: 

.
23

2
cos223

2

23

2

12







 








 cses
jjjj

e

c
csescses

eeee
N

N 




      (6.38) 

It is interesting to note that (6.38) must be positive and both cN  and eN  must be integer in order 

to define a feasible winding design. Therefore, the following constraint on the segmentation 

angles must be verified: 
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resulting in: 
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while the physical constraint would be: 
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Therefore, if the total segmentation is in a range: 

3

2

3


 cses

, 

it is impossible to define a turn number that allows avoiding the torque ripple defined by the 

second term of (6.37). However, such a big segmentation would also significantly reduce the 

average torque described by the first term of (6.37), or in other words, the current control would 

demand huge reference currents. 

Having a winding design with a turn number in agreement with the relationship (6.38) allows 

defining the reference phase currents as in a standard three-phase machine (or as a standard 

triple three-phase sectored machine as well). However, the control technique is not immediate 

when this winding solution is used. Indeed, the resistances and the back electromotive forces 

(for both the magnet flux and the armature one) are not symmetrical in each sector phases. 

Therefore, there is an inverse voltage sequence request in the machine control, and it is 

necessary to have an additional regulator to maintain a zero inverse current sequence. This 
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problem has already been deeply analysed in literature for other control techniques [2, 3], and 

has been deeply explained in Chapter 3. 

 

Segmented Machine Control Technique for Standard Windings Designs 

 

If the machine is designed with a standard winding layout, a new control technique is needed 

to have a constant steady state torque (at least for the main torque contribution). The proposed 

control technique is based on the relationship between the main current space vector 3i  and the 

three-phase one Ai , obtained by (6.30) with h=1 and its conjugate as: 
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and by (6.30) with h=1: 
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Therefore, for a given main vector 3i  controlled as: 
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the current space vector of each three-phase subsystem 
CBA iii   must be controlled with a 

direct and inverse sequence as: 

 invAdirAA iii ,,   ,      (6.43) 

with: 
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and: 
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It results that the control of a segmented machine design needs a direct and inverse current PI 

regulator as in case of a layout with a different turn number in order to make the resulting 

vector move on a circumference at constant speed (to generate a constant torque). If this 

happens,  are vectors moving on elliptical trajectories. 

3i

CBA iii 
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Fig. 6.8 shows the machine control scheme of a segmented triple three-phase machine, 

highlighting the necessity of having twice the current regulators for having zero steady state 

error related to the inverse current or voltage sequences. 

 

 Coil Pitch, End Effect and Cogging Torque in 

Segmented Sectored Machines 

 

Because the stator segmentation changes the coil pitch, this parameter can be exploited to 

reduce the most relevant armature fields. On the other hand, this causes an asymmetry in the 

stator geometry that introduces a torque ripple that can be seen as a machine end effect. This 

section presents these phenomena in order to show how deal with them. 

 

Coil Pitch 

 

Fig. 6.9 shows the effect of the coil pitch on the armature flux density when only the external 

segmentation es  is changed (all the physical range is analysed, 
3

2
0


 es

), while the 

internal segmentation cs  is zero. The same result is obtained if only the central segmentation 

is changed maintaining the external segmentation to zero. The reference torque is the same (to 

be more precise, the main current vector is constant and equal to 103 ji 
 A) and the main 

torque ripple is compensated by the current control ( 03 i ). The parameters of the analysed 

unsegmented machine are the one in Table 6.1. 

 

 

Fig. 6.8 – Control scheme of a triple three-phase segmented machine design. 
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As shown in Fig. 6.9, it is possible to completely eliminate the 5th or the 7th harmonic and the 

related torque ripples. It must be noticed that a higher segmentation causes a lower main 

harmonic field and a reduction of the slot areas, so it is preferable to find a solution with a small 

thickness. Furthermore, the segmentation thickness increases the 3rd harmonic produced by the 

armature field. Therefore, the analysis of the pitch shortening must consider also the electrical 

harmonics multiple of three (3p), as already discussed.  

Fig. 6.10 shows the effect of the coil pitch on the armature flux density when both the central 

and the external segmentation cs  and es  are equally changed (all the physical range is 

analysed, 
3

2
0


 cses

). 

 

Fig. 6.9 – Coil pitch effect as function of the external (or internal) segmentation thickness. 

Table 6.1 - Main machine parameters of SDa design 
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By observing Fig. 6.9 and Fig. 6.10, having both an internal and external segmentation does 

not significantly help to reduce the higher armature field harmonics. This result makes the 

exploitation of an internal segmentation not significantly useful for the machine design. Indeed, 

cs  affect the harmonic reduction as es , but it results in reducing the distance between 

windings of different sectors. Instead, increasing es  makes the sector phases being located 

in isolated areas around the stator circumference, improving the sectors decoupling. Because of 

these observations, the cs parameter is no more considered hereafter. 

It is interesting to note that in order to generate the reference main vector ( 103 ji 
), the needed 

phase currents increase with the segmentation thickness. The overall thickness values higher 

than 60 degrees (30 degrees in Fig. 6.10) result in huge required currents. Furthermore, the 

segmentation reduces the available slots area significantly increasing the current density. 

Therefore, the analysis focuses on angle up to 30 degrees (15 degrees in Fig. 6.10). 

 

End Effect and Cogging Torque 

 

It is well known that to deal with the end effect in the linear machine design is possible to shape 

the end geometries by Finite Element Analysis (FEA) and optimization algorithms. Similar 

solutions can be adopted for the segmented motor design, but with the difference that the 

machine is still a rotary one. The segmentation end effect depends on the segmentation 

thickness, and even more on the segmentation material. FEA analysis has been performed to 

analyse the different design solutions.  

On the other hand, an alternative solution has been deducted on the idea of having the smallest 

polar stator symmetry. It means that it is possible to design a segmented machine adding some 

 

 

Fig. 6.10 – Coil pitch effect as function of the segmentation thickness. The internal and external segmentation thicknesses 

are equally increased of the angle shown in the x-axis. 
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empty slots (without flowing currents) in the gap between two sectors (as in SDf with one added 

slot between the sectors). This solution allows having a symmetrical stator geometry and, in 

this way, the torque ripple can be analysed as a cogging torque. This concept comes from the 

fractional number of slots per pole and per phase machines, where the cogging torque is reduced 

and its frequency in increased. For the analysed segmented machine, there are two interesting 

solutions: the 21 slots and the 24 slots. Because of the already described drawbacks of a larger 

segmentation thickness, the 24 slots design has been discarded. 

The mechanical cogging torque frequency in a p2 -poles 
SN -slots machine, rotating at 

mechanical frequency 
mf , is 

   mslotscogging fNplcmf ,2 ,   (6.46) 

where lcm  is the least common multiple. The relative electrical frequency is 

pff coggngelcoggnig /,  . In the analysed machine design, the first solution (adding 1 empty slots 

between each sector pair) is the one with 21 slots (SDf). The relative cogging torque frequency 

is 42 
mf , and it is a lucky design solution, because it corresponds to a segmentation thickness 

of about 17 degrees. This means, from the analysis shown in Fig. 6.9, that the 7th harmonic 

armature field is deleted. Because of the high number of possible designs, only the SDb, SDc 

and SDf layouts (Fig. 6.1) results are presented hereafter. All of them have a segmentation with 

es of about 17 degrees. 

 

 FEA Simulation Results 

 

The analytical and theoretical results have been verified by FEA in Magnet™ (Infolytica). The 

SDa machine main data are reported in Table 6.1. 

 

Performance - Healthy Machine Behaviour 

 

The torque performance analysis is carried out at about rated current (10 A peak), and in all the 

following figures the FFT spectra are translated from the SDa FFT spectra (SDa is the design 

with zero segmentation thickness) for a good comparison between the designs. 

 

Armature Field 
 

The decision of the segmentation thickness has been carried out to delete some harmonic fields 

in the air-gap, as discussed in Section 6.3. With 10 A peak current and a standard machine 

control (  moving on a circular trajectory at constant speed), the armature flux in the CBA iii 
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SDa-SDc and SDf designs is as in Fig. 6.11 and Fig. 6.12. The difference between the two 

figures is that in Fig. 6.11 there are the maximum values obtained when the machine is in the 

configuration of maximum magnitude of the 3i  current space vector ( 3i  moves on an elliptic 

trajectory). Instead, in Fig. 6.12 the main vector 3i  has its minimum value. The magnitude of 3i  

 

Fig. 6.11 – Coil pitch effect caused by an external segmentation of 17 degrees. Maximum values. 

 

Fig. 6.12 – Coil pitch effect caused by an external segmentation of 17 degrees. Minimum values. 
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directly affects the magnitude of the armature field 3H  (or the flux density 3B  as well). Half 

the difference between the minimum and the maximum value of each flux density harmonic is 

the inverse sequence of that harmonic, while the average of the two values is the magnitude of 

the direct sequence. In order to compare the FEA results with the analytical, Fig. 6.13 shows 

the analytical result, where the negative values are related to the minimum values of the flux 

density magnitude for a better understanding. The result obtained for a 17 degrees segmentation 

is highlighted with a vertical red line. There is a good qualitative match with the expected 

magnitudes given by Fig. 6.11 and Fig. 6.12. The even harmonics multiple of p (p=3) are not 

presented in Fig. 6.13 because they do not affect the torque, while in Fig. 6.11 and Fig. 6.12 

they are maintained for highlighting that they exist and they should be considered in the analysis 

of the iron losses. Instead, they do not affect the torque and neither the radial force (the resulting 

radial force is always zero in a standard machine control also in case of segmentation). 

As predicted by (6.16) and (6.18), the 21st (7th electrical) armature field is almost eliminated in 

all the new designs and the 15th (5th electrical) is significantly reduced. The 9th (3rd electrical) 

harmonic is significantly increased by the segmentation, but this is almost inevitable in a 

segmented design. Other interesting solutions can be founded at about 24 segmentation degrees 

(the 7th harmonic is eliminated) or at 40 degrees (the 3rd harmonic is eliminated).  

However, as already mentioned increasing the segmentation angle reduces the main harmonic, 

and it affects the machine slot current density caused by the reduction of the available area for 

the slots. Therefore, in order to avoid a significant reduction of the performance, the 17 degrees 

segmentation seems a suitable solution for a triple three-phase segmented machine. 

The new control technique aims to eliminate the inverse sequence of the main current vector 3i  

in order to minimise the related torque ripple. Fig. 6.14 shows the analytical effect on the flux 

harmonics generated by the proposed control. The resulting main harmonic has no more the 

inverse sequence (the minimum and maximum values are the same). The effect on the other 

flux harmonics is just a result of the current control and is inevitable. 

 

Fig. 6.13 – Coil pitch effect as function of the external segmentation thickness with standard machine control. Maximum 

flux harmonic values (positive) and minimum flux harmonic values (negative). 
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Cogging Torque 
 

Fig. 6.15 shows a comparison between the cogging torques of the investigated designs. 

As predicted by (6.46), the cogging torque main harmonic is at 18 mf and 42 mf for the SDa and 

SDf designs respectively, with a reduced amplitude for the SDf one. Instead, the cogging torque 

of the SDb and SDc designs is significantly worse. This is because for both there is a stator 

 

 

Fig. 6.14 – Coil pitch effect as function of the external segmentation thickness with proposed machine control. Maximum 

flux harmonic values (positive) and minimum flux harmonic values (negative). 

 

Fig. 6.15 – Cogging Torque (no load torque). 
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reluctance with periodicity 2p (2p=6). Therefore, (6.46) results in an additional cogging effect 

(if it can still called like this) that generates a ripple with the lowest frequency at 6 mf . 

Fig. 6.16 shows the flux views varying the thickness of the air gap in the segmented design. 

Moving from a SDb design (full iron) to a SDc one (full air) the end effect of the segmentation 

changes in terms of related cogging torque, and iron saturation. Even an intermediate design is 

significantly different from the SDf one. Indeed, the interruption of the back iron generates an 

important reluctance effect in the magnetic circuit. 

 

Torque – New Control Technique 
 

Fig. 6.17 shows the torque with a standard machine control. From the spectra in Fig. 6.17, it is 

possible noticing a huge increase of the torque ripple at 6 mf  (2 elf ) at on load conditions. 

To overcome this ripple, the new control described by (6.44) and (6.45) is applied. Fig. 6.18 

shows the resulting torque. The inverse field of the main harmonic is almost deleted with the 

new control (with worst results for the SDc design). This control allows having comparable 

torque performance between the SDa, SDb and SDf designs. It is important to notice that the 

torque ripple at 6 mf  (2 elf ) is also related to the presence of the 3rd electrical flux harmonic. 

Indeed, the 3rd harmonic interacts with the permanent magnets generating a torque ripple at 6

mf  and another at 12 mf  having an inverse sequence with almost the same magnitude of the 

direct one. part of the ripple at 12 mf  is also generated by the 5th harmonic direct sequence, 

while the ripple at 18 mf is only generated by the 5th harmonic inverse sequence (here it is named 

 

Fig. 6.16 – Flux view depending on the segmented area design moving from an SDb to an SDc design typology. 
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inverse sequence the one that appears in all the three-phase machines also without 

segmentation) because the 7th harmonic is eliminated by the phase pitch shortening. 

Furthermore, for the SDb and even more for the SDc designs, the segmentation cogging torque 

acts generating torque ripples at the same frequencies (6, 18, … mf ). Therefore, the new control 

technique might be adapted in order to completely eliminate the ripple at 6 mf  (2 elf ) by a FEA 

 

Fig. 6.17 – Torque with 10 A peak current and standard machine control. 

 

Fig. 6.18 – Torque with 10 A magnitude of the main current space vector (3rd) and new machine control. 
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approach to consider of all these additional effects. However, the advantages of the new control 

already help to improve significantly the torque performance of the machine as in Fig. 6.18. 

Table 6.2 summarizes the different design performance with the new control technique. The 

same slot fill factor used to simulate the different designs explains the higher phase resistance 

and Joule losses values. 

 

SDd Torque – New Winding Design 
 

As mentioned in Section 6.2, it is possible to use a standard current control (in terms of 

definition of the reference phase currents) by means of a suitable winging layout. In particular, 

(6.38) defines the ratio of the turns between the central and external phases which allows 

minimising the torque ripple related to the inverse sequence of the main field harmonic.  

The SDf machine is the one with better performance (especially at no load). Therefore, Fig. 

6.19 shows the results of the new winding solution with different turns in the different phases 

only for the SDf design. In this case, the central windings have 16 turns rather than 22. As can 

be seen from Fig. 6.19, the new winding solution defined by (6.38) results in having almost the 

same performance of the new control technique in terms of resulting torque. The difference is 

just related to the approximation owing to the fact that the turn number must be an integer. 

It is clear that whatever is the technique used to reduce the main torque ripple, the advantage 

makes the machine behave in a significantly different way. Indeed, the new control allows 

reducing the main torque ripple of about 20 times (from about 5% to about 0.25%). The machine 

torque performance with the new control algorithm becomes comparable with the ones of the 

original SDa design. Instead, the new design shows significantly better no load performance. 

 

Table 6.2 – Performance with 10 A magnitude of the main current space vector (3rd) with new control technique. 
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 Fault Tolerant Behaviour 

 

In order to have an understanding of the independence between the sectors introduced by the 

segmentation, the fault tolerant behaviour has been evaluated in terms of sectors decoupling, 

and for open winding and short circuit faults. 

 

Inductances Analysis 
 

In terms of fault tolerant behaviour, one of the most significant parameter is the ratio between 

self and mutual phase inductances. In a sectored multi three-phase machine, and even more in 

a segmented one, the mutual inductance value between phases of different sectors becomes the 

most important for this analysis [6]. Table 6.3 shows the self and mutual inductances for the 

designs with 17 degrees of segmentation thickness. 

It has been found that the SDb and SDf are the same in terms of self and mutual inductances. 

As expected, a better solution is obtained with the full air segmented design (SDc).  

The geometries with a complete segmentation, as SDc, are the one with higher electromagnetic 

and thermal insulation between the sectors, but this solution is the one that shows the higher 

torque reduction and has a more critical mechanical structure then the standard cylindrical one. 

Having three stator slices rather than one single block means also to change the manufacturing 

 

Fig. 6.19 – Torque with 10 A magnitude of the main current space vector (3rd). Comparison of the proposed control 

techniques and winding design. 
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process and the housing design. This solution is particularly attracting for manufacturing stator 

processes, for example if a stator open shape is desired for sintered soft magnetic material 

solutions or for a cheaper and automated windings process.  Because this is not the purpose of 

this study, these additional advantages of a complete segmented solution are not furtherly 

analysed. However, the possibility to design a multi three-phase machine with a complete 

insulating segmentation for fault tolerant issues or manufacturing processes has been verified 

by FEA. 

 

Open Phase and Short Circuits  
 

In terms of one sector open phase behaviour, it is possible to compensate the fault just 

increasing the reference current amplitudes in the healthy phases of 3/2 times. As deeply 

analysed in Chapter 5, this control technique is not the only one, and many considerations must 

be done in terms of radial forces and asymmetrical behaviour. However, for the aim of this 

chapter, this simplified approach is used to understand the effect of the design segmentation on 

the machine fault tolerance.  

The open phase performance results to be almost the same in all the designs.  

Instead, the short circuit machine performance for a one-sector three-phase short circuit fault is 

increased in the segmented designs, with reduced torque, radial force ripples and short circuit 

currents. Table 6.4 shows the FEA results of these tests. 

 

 Machine Prototype and Thermal Analysis 

 

The experimental results for the validation of the control and performance analysis have not 

been carried out yet. However, the prototype has been manufactured, and the drawings of the 

machine design plus few pictures of the machine are presented here below. Furthermore, it is 

Table 6.3 – Inductance matrix components. Self and mutual inductances between phases of the same sector (highlighted) 

and of different sector (black). The mutual inductances with the phase UA and VA are shown in the top (yellow) and bottom 

(blue) respectively. The mutual inductances with the phases of the other sectors with UA and VA are shown in the other 
columns (black) 
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briefly presented an idea for the exploitation of the segmented design for an improved cooling 

system. The increased thermal decoupling between the sectors in a sectored design is validated. 

 

Machine Design 

 

Fig. 6.20 and Fig. 6.21 show the machine prototype and 3D CAD. The main differences with 

the original design are in the stator that has now 21 slots rather than 18, and the windings of the 

central phases that have the possibility to reduce the turn number, as shown in Fig. 6.22. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6.4 – Three-phase open phase and short circuit fault (design comparison). In case of open phase fault, the FTC 
increases the currents in the healthy phases of 3/2 times the reference magnitude of the main current vector (3rd). 
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Fig. 6.20 – Manufactured stator prototype. 

 

 

Fig. 6.21 – 3D CAD of the prototype 

 

Fig. 6.22 – Winding design for the segmented machine prototype. 
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Thermal Analysis for Future Developments 

 

A study of the thermal behaviour of the machine has started, with the idea of analysing the 

possibility of exploiting the empty slots for introducing a thermal cooling of the machine that 

would allow reducing the thermal coupling between the sectors.  

A Matlab-Simscape model has been developed, based on the references used for the developing 

of the software MotorCad. Indeed, MotorCad does not allow the simulation of a full machine 

with an asymmetrical thermal behaviour between the different slots. Fig. 6.23 shows the 

machine thermal behaviour evaluated by the Simscape model when the machine is healthy and 

working with 10 A phase peak current. In the same figure, it is presented the temperature 

increase in case of sector A open phase fault (the temperatures are reported in one of the 

remaining healthy sectors). Fig. 6.24 shows the result given by the MotorCad model. For the 

limitation of the software, only the healthy case is simulated. 

The thermal model has been also compared with some experimental tests done on an available 

prototype of SDa design. Fig. 6.25 and Fig. 6.26 show the thermocouples arrangement. Fig. 

6.28 shows the experimental measurements when the machine is healthy and then one sector is 

open and the two others are controlled compensating the torque reduction. Fig. 6.27 shows the 

results given by the Simscape simulation. The model is still not matched in terms of cold plate 

modelling. Furthermore, for the analysis of the SDf thermal behaviour some data about the 

effect of the empty slots are needed. Indeed, the thermal behaviour significantly depends on the 

manufacturing of the end windings and the eventual cooling of the empty slots. Fig. 6.29 shows 

the idea behind the cooling of the empty slots. 

 

Fig. 6.23 – Evaluated thermal behaviour with Simscape. Healthy machine (left) and one sector open phase fault (right) at 

rated conditions. 
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A cooling system between two stator teeth, close to the air-gap and so to the magnets, can be 

useful for critical applications where the external temperature is high, but also if the housing 

diameter is restricted and an external cooling system is not allowed. The presence of a cooling 

system between the stator sectors also follows the idea of thermal insulated three-phase 

subsystems. With the SDf stator geometry the iron tangential thickness between the sectors is 

still one tooth. This choice avoids iron saturation, because the main flux flowing through the 

stator teeth and from the segmentation areas is the permanent magnet one, and that is why 

having less percentage of iron in the segmentation areas inevitably implicates a higher iron 

exploitation with more saturated volumes. One of the main drawbacks of the segmented 

solution is that, if the same iron exploitation is desired and the internal and external stator 

diameter are not a degree of freedom, the slot area inevitably decreases. A smaller slot area 

causes higher Joule losses if a standard slot fill factor (for example 0.45) is kept. However, the 

possible advantages of this new design can also justify a more expensive winding process to 

increase the slots fill factor (for example 0.60) and maintain the same Joule losses.  

The degree of freedom available for the central segmentation cs  has been neglected because 

it did not show performance and sector insulation advantages. However, the internal gap might 

be reintroduced as an alternative solution to improve the cooling system exploiting an additional 

empty slot in the middle of each sector. 

While the thermal advantages related to a segmented design with additional slots (or ducts in 

general) has still to be validated, the thermal tests and simulations done on the original sectored 

machine SDa validated the increased thermal decoupling resulting from a sectored design. 

 

Fig. 6.24 – Evaluated thermal behaviour with MotorCad. Healthy machine. 
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Fig. 6.25 – Thermocouples arrangement: FRONT. The thermocouples are highlighted with the signature [(TC)] in purple. 

 

Fig. 6.26 – Thermocouples arrangement: REAR. The thermocouples are highlighted with the signature [(TC)] in purple. 
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Fig. 6.28 – Experimental results. Healthy machine with 5Arms standard current control (about half the rated current), 

and with sector A, B and C three-phase open faults with standard fault compensation (the current is increased in the 

remaining healthy phases up to 7.5 Arms). 

 

Fig. 6.27 – Simscape simulated results. Healthy machine with 5Arms standard current control (about half the rated 

current), and with sector A, B and C three-phase open faults with standard fault compensation (the current is increased 

in the remaining healthy phases up to 7.5 Arms). 
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 Conclusion 

 

An overview of the segmentation design for a triple three-phase sectored SPM machine has 

been presented. A new control technique is proposed to overcome the drawbacks introduced by 

the stator segmentation. As a possible alternative to the new machine control, a different 

winding design allows having almost the same machine performance. Both the methods have 

been validated by FEA. The effect of the segmentation on the coils pitch, the cogging torque, 

and the segment end effects have been analysed by analytical evaluations and FE transient 

simulations.  

Between the proposed stator geometries, the one with a complete air segmentation, such as 

SDc, has the higher decoupling between the sectors, but it shows worse performance. Instead, 

the chosen design (SDf) has significantly better performance. The feasibility to increase the 

sector decoupling (mechanical, magnetic and thermal) by the stator segmentation has been 

proven for all the designs, with also advantages in short circuit faults. A prototype of the final 

design (SDf) has been manufactured in order to verify the control techniques by experimental 

tests. 

This chapter concludes this thesis. All the presented works aim to improve the performance and 

the reliability of electrical machines. In particular, for the multiphase topology.  

Open circuit (Chapter 3), high resistance connections and interturn short circuit (Chapter 4) 

faults have been deeply analysed. The proposed radial force controls for bearingless control 

(Chapter 5) might also be useful to prevent bearing faults or eventually compensate a failure of 

the bearing system, and the segmented machine design (Chapter 6) seems an interesting solution 

for increasing the machine reliability without significantly affecting the performance. 

All the research work, carried out during the doctorate and presented in this thesis, aims to give 

a contribution to the state of the art of multiphase electrical machines for the development of 

high performance drives with improved reliability.  

 

Fig. 6.29 – Exploitation of the empty slots for improving the machine cooling. Concept. 
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Abstract  
 
Advances in power electronic and machine control techniques are making the inverter-fed 

drives an always more attractive solution. Because of the number of inverter legs is arbitrary, 

also the number of phases results as a further degree of freedom for the machine design. 

Therefore, the multiphase winding is often a possible solution.  

 

Due to the increasing demand for high performance and high power variable speed drives, the 

research on multiphase machines has experienced a significant growth in the last two decades. 

Indeed, one of the main advantages of the multiphase technology is the possibility of splitting 

the power of the system across a higher number of power electronic devices with a reduced 

rating. A similar result can be obtained by using multi-level converters. However, the 

redundancy of the phases leads to an increased reliability of the machine and to the introduction 

of additional degrees of freedom in the current control and the machine design. 

 

This work aims to study and analyze the highly reliable and fault tolerant machines. It proposes 

innovative solutions for multiphase machine design and control to meet the safety-critical 

requirements in “More-Electric Aircraft” (MEA) and “More Electric Engine” (MEE) in which 

thermal, pneumatic or hydraulic drives in aerospace applications are replaced with electric ones.  

 

Open phase, high resistance and short circuit faults are investigated. Fault tolerant controls and 

fault detection algorithms are presented. Radial force control techniques and bearingless 

operation are verified and improved for various working scenarios. Fault tolerant designs of 

multiphase machines are also proposed. 
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Academic activities  
 
Summary of the research activity 

The aim of the research program was to study and analyze the highly reliable and fault tolerant 

AC machines and to propose innovative solutions for multiphase machines. In particular, to 

develop new control algorithms to meet the safety-critical requirements in “More-Electric 

Aircraft” (MEA) and “More Electric Engine” (MEE), in which thermal, pneumatic or hydraulic 

drives in aerospace applications are replaced with electric ones.  

This first year I’ve been involved on the faults diagnosis in electrical drives, specifically on the 

multiphase ones. The research activity focused on high resistance and interturn short circuit 

faults. I designed a new winding for an induction machine and I realized suitable prototype (in 

collaboration with the company Elettromeccanica Lucchi, Rimini). In particular, the prototype 

is has a nine-phase winding with the possibility to test many short circuit conditions. 

Meanwhile, I started analyzing the control of power flows in multi three-phase drives. The aim 

was to verify the possibility for a multi three phase drive to supply different and independent 

systems or lines (battery, ups, different voltage lines).  

In the second year, I started developing new control algorithms for the compensation of open 

phase faults and I worked on the short circuit diagnosis for the induction machine prototype 

manufactured in the first year. New fault tolerant controls have been developed to compensate 

the open phase faults in quadruple three-phase induction machines. These controls have been 

tested on a scaled down prototype of Starter-Generator for MEA applications. In the same year, 

I spent six months at the Department of Electrical and Electronic Engineering - University of 

Nottingham, United Kingdom, in cooperation with Prof. Christopher Gerada. The main 

proposed goal of the project was to study and analyze the feasibility of the stator segmentation 

of a nine-phase permanent magnet machine to improve its performance and fault-tolerant 

behavior in case of fault. In the period abroad, I started analyzing also the possibility to control 

the radial force in multiphase machines. In particular, with the aim of developing two degrees 

of freedom bearingless control. 

The third year has been focused on the improvement of the models and control techniques 

developed in the previous ones, and to verify some of the theoretical results by simulations and 

experimental tests both in Bologna and Nottingham Universities. 

During the doctorate, I developed a general model of multiphase machine able to model it in 

healthy conditions and also in case of faults. I developed innovative control algorithms based 

on the definition of "extended" field oriented control, namely an algorithm that is able to control 

not only the fundamental component of the air-gap field but also other harmonic components.  

I simulated the models and the control algorithms by means of numerical simulations (mainly 

in Matlab-Simulink) and finite element analysis (in Flux v.12 and Magnet-Infolytica). 

I used and programmed three different DSPs (Digital Signal Processor) to control the different 

drives needed to carry out the experimental tests. 
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