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Abstract (English) 

This thesis focuses on two engineered C57BL/6 mice models used to study treatments for 

Progera Syndrome and HER2-positive cancers. The first study, conducted in collaboration with 

the National Research Council, Institute of Molecular Genetics - Unit of Bologna, is on 

LmnaG609G transgenic mice homologous for the genetic cause of Progeria Syndrome. The 

objective was to describe the model, giving information on the housing, breeding, welfare and 

progression of the disease. Similarities and differences between the model and human 

patients were highlighted and the acquired data will be essential in programming future 

studies using this animal model. Following this, a preliminary study was conducted on the 

mice, using a treatment of all-trans retinoic acid (0.4 mg/kg) combined with low doses of 

rapamycin (1 mg/kg) administered twice weekly intraperitoneally, in order to evaluate 

whether the mice’s lifespan was improved. Results comparing treated and untreated groups 

were not significant. However, the animal groups were small in number and only males were 

considered, so future research will be needed. The second study reports the use of HER2 

tolerant transgenic mice to investigate the efficacy of immunotherapy with oncolytic viruses. 

This study was performed in collaboration with the Department of Experimental, Diagnostic 

and Specialty Medicine, University of Bologna. The mouse demonstrated to be a reliable 

model since it enabled the development of implanted HER2 cancer and allowed the virus 

replication within the tumour. Animals did not show any side effects and the safe profile of 

the virus was confirmed. To date we tested the efficacy of two viruses: R-LM113 and R-LM113-

mIL-12. The latter gave better results, underlining the importance of the immune system in 

oncology and immune competent models in oncology research.  

In conclusion, we can state that both animal models considered in this thesis have 

demonstrated their appropriateness for testing specific therapies.  
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Abstract (Italiano) 

Questa tesi si focalizza su due modelli murini C57BL/6 geneticamente modificati per lo studio 

di terapie per la Sindrome Progerica e tumori HER2-positivi. La prima ricerca, in collaborazione 

con il Consiglio Nazionale delle Ricerche – Istituto di Genetica Molecolare di Bologna, studia il 

topo transgenico LmnaG609G portatore della modificazione genetica che causa la Sindrome 

Progerica. L’obiettivo è stato di descrivere il modello, dando informazioni sull’allevamento, 

sul benessere e sulla progressione della malattia. Similitudini e differenze tra il modello 

animale e il paziente umano sono messe in evidenza e tutte le informazioni acquisite saranno 

utili per programmare studi futuri. Sul medesimo modello, è stato condotto uno studio 

preliminare per valutare l’efficacia del trattamento con una combinazione di acido retinoico 

(0.4 mg/kg) e rapamicina (1 mg/kg) somministrato intraperineo due volte a settimana nel 

prolungare l’aspettativa di vita. I risultati non sono stati significativi, ma data la preliminarietà 

dello studio saranno necessari ulteriori approfondimenti. La seconda ricerca riporta l’utilizzo 

di un topo transgenico reso tollerante al recettore HER2 (sovraespresso in alcuni tumori) per 

investigare l’efficacia di virus oncolitici in immunoterapia. Questo studio è stato condotto in 

collaborazione con il Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale 

dell’Università di Bologna. Il topo si è mostrato un modello affidabile in quanto è stato in grado 

di sviluppare masse tumorali dopo iniezione di cellule murine trasdotte con HER2 e ha 

permesso al virus di replicare. Gli animali non hanno mostrato effetti indesiderati e l’alto 

profilo di sicurezza virale è stato confermato. Ad oggi è stata valutata l’attività di due virus: R-

LM113 and R-LM113-mIL-12. Il secondo ha dato migliori risultati, sottolineando l’importanza 

del sistema immunitario in oncologia e l’utilizzo di modelli animali immunocompetenti.  

In conclusione, si può affermare che entrambi i modelli animali si sono rivelati appropriati per 

testare l’efficacia di terapie mirate. 
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Chapter 1 

Introduction 

Ideal animal models of human diseases should reproduce as much as possible the species and 

diseases that are to be investigated through the model. Genetically engineered animals have 

brought to remarkable advances in biomedical research. In particular, knock-in mice, in which 

a desired mutated DNA sequence is exchanged for the endogenous sequence, are considered 

workhorses in hypothesis-driven studies. On one hand, it is possible to induce genetic diseases 

that are typical of humans, study their mechanisms and pathways, and test the effect of 

therapies on such disease. On the other hand, it is possible to make animals tolerant to human 

receptors used for targeted therapies, for example in cancerology. 

This thesis describes two researches conducted at the Department of Veterinary Medical 

Sciences, Alma Mater Studiorum - University of Bologna. Both researches were conducted 

under the guidance of- and in collaboration with other research groups which are experts in 

the specific topics discussed below. In particular, the partnerships were with the National 

Research Council, Institute of Molecular Genetics - Unit of Bologna (Chapters 4-5), and the 

Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna 

(Chapter 7). 

Chapter 2 defines the framework within all the thesis is done. This chapter discusses briefly 

on biomedical research, giving insights on the use of animals as models, regulations implicated 

with this kind of research and the role of veterinarians.  

Chapter 3 describes many aspects of Progeria Syndrome in humans (HGPS) in order to better 

understand the following research in Chapters 4 and 5. In fact, Chapter 4 describes the 

breeding, survival, growth, behaviour and phenotype of the transgenic LmnaG609G knock-in 

mouse model for the human HGPS. This model was generated in 2011 by Professor C. López-

Otín, University of Oviedo (Spain). The research described in this thesis gives additional 

information on the model, which was observed throughout a 2 years period. Phenotypic 

descriptions are very important when studying a disease through an animal model as 

discussed in Chapter 2. After a close and long study of the phenotype, similitudes and 

differences between the animal model and the HGPS patients are enlighten. 

Afterwards, based on the characterization of the murine form of HGPS, the most recent 

knowledge of the aging process, and the results obtained from some in vitro tests recently 
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performed, the research continued with a preliminary evaluation of a treatment using the 

aforementioned mouse model. In Chapter 5, a combination of rapamycin (RAPA) and all-trans 

retinoic acid (ATRA), was studied in both the LmnaG609G/G609G and LmnaG609G/+ models. RAPA-

ATRA, already successfully studied in vitro, are potentially able to increase progerin 

degradation and decrease its expression and might improve pathological features in vivo.  

The study reported in this thesis is only the beginning of a series of other preclinical studies 

that will be carried on. For example, on the basis of the results of Chapter 5, another 

preliminary study began testing higher doses of rapamycin. Also, we are testing the efficacy 

of an anti interleukin 6 receptor drug in ameliorating the mouse model’s phenotype. 

Chapter 6 briefly outlines topics that are useful to better understand the research described 

in Chapter 7. In particular, it outlines the importance of HER2 in oncotherapy, introduces to 

oncolytic virus-mediated immunotherapy and summarizes previous mouse models used to 

study HER2. HER2-positive cancers in cats and dogs are also briefly discussed in order to 

enlighten future possibilities using pets in clinical trials, simultaneously with humans. In fact, 

pets would benefit from innovative therapies and, at the same time, they would serve as 

additional models for humans. 

Chapter 7 reports an in vivo preliminary research using transgenic mice tolerant for HER2 

(HER2+/- C57BL/6) investigating the efficacy of immunotherapy with oncolytic viruses 

engineered at the Laboratory of Professor Campadelli-Fiume. Such preliminary research is 

meant to demonstrate the utility of HER2 transgenic mice as a model to study targeted 

therapies and in particular therapies involving the immune system. It also exemplifies why 

appropriate animal models are to date still useful in biomedical research, and it points out 

methods used to replace, refine and reduce animals in this experimentation.  

Once again, a number of other experimental studies using HER2 transgenic mice as models 

are ongoing. 

In Chapter 8 final conclusions on all the topics discussed throughout the thesis are drawn out. 
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Chapter 2 

Biomedical Research 

 

2.1 What is Biomedical Research? 

Biomedical research (BR) is a broad area of science that investigates and expands knowledge 

of biological processes and of causes of diseases through experimentation, observation, 

laboratory work, analysis, and testing. The aim of BR is to discover ways to prevent ill-health 

and to treat diseases and conditions that cause illness and death in both humans and animals. 

The contribution of many individuals with different backgrounds and skills, such as medical 

doctors, veterinarians, computer scientists, engineers, technicians, researchers, and a variety 

of scientists from different fields of the life sciences is essential for this kind of research. 

A key component of this field of science is made by models and model systems. A biomedical 

model is a surrogate for a human being, or a human biologic system, that can be used to 

understand normal and abnormal function from gene to phenotype, and can also provide a 

basis for preventive or therapeutic intervention in human diseases (NRC, 1998).  

We can broadly assemble the modern experimental models used in biology and medicine in 

two big categories: in silico methods (dry lab), based on the use of informatics and computer, 

and biological methods (wet lab), based on the use of purified molecules, cell cultures, 

perfused and isolated organs, and animal organisms, man included. The wet lab, in turn, is 

divided in in vitro, ex vivo and in vivo research (Garattini, 2007). Nowadays, we also talk of 

moist lab which sees both dry and wet lab staff working together in a multifunctional 

environment. 

In vivo research (from Latin meaning “in the living”) refers to experimentation undergone in 

or on the living tissue of the whole body of a living organism. This kind of research differs from 

ex vivo (“out from the living”) and in vitro (“within glass”) research which are conducted 

outside the organism using bacteria, cell, tissue and organ cultures isolated from a living 

organisms and used directly or after they have been ‘immortalized’. 

Biological systems are very complicated, it is then important to remember that only the use 

of the different experimental models in an integrated and complementary way can give useful 
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and global information. Each model has its own advantages and limitations, of which the 

researcher should be aware of. 

Preclinical studies and clinical trials are two forms of in vivo research. The first, involve non-

human animal models and is essential in order to discover more effective methods for 

diagnosing, treating, and curing diseases that affect both humans and animals. The latter, 

involve informed human volunteers, in order to measure the safety and effectiveness of drugs, 

procedures, or medical devices. 

It is important to understand that basic research, applied research, in vitro, ex vivo and in vivo 

research all together represent building blocks of biomedical research. Rarely in biology and 

medicine it is possible to talk about “alternative methods”, and more often we need to think 

in a complementary way.  
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2.2 Overview of the Drug Development Process  

A drug is a substance that, affecting the structure or function of the body, helps preventing, 

diagnosing or treating diseases. Before a drug can be placed on the market and prescribed to 

the animal or human population, it has to demonstrate that it is safe, active, effective and that 

it has a favourable risk-benefit ratio. It is easily understandable how behind prescription drugs 

there is a very challenging and complex process that can require many years of different types 

of studies, including preclinical ones and clinical trials.  

Pharmacological research is regulated by the Food and Drug Administration (FDA) in the 

United States, by the European Medicines Agency (EMA, known as EMEA - European Agency 

for the Evaluation of Medicinal Products until 2004) in Europe, and, specifically in Italy, also 

by the Italian Medicines Agency (AIFA). Preclinical and clinical studies undergo the agencies 

evaluation in order to get the approval for placing the drug on the market. Drug development 

and preclinical trials are long and expensive processes with a high attrition rate. In fact, less 

than 10% of the compounds tested in clinical trials gain approval from the FDA (Zambrowicz 

& Sands, 2003; Sharpless & Depinho, 2006), which is, together with the european EMEA, the 

most demanding authority for drug approval in the world (Kashyap et al., 2013). 

We will below take into consideration only, and briefly, in vivo preclinical and clinical studies. 

However, it is important to have in mind that these are only two of the numerous building 

blocks in biomedical research, and that the use of in silico, in vitro and ex vivo models give 

important preliminary data that need to be integrated and analysed together with data gained 

from in vivo models. 

 

Fig. 2.1: Overview of the drug development process from biochemical synthesis to clinical trials.  
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2.3 The Use of In Vivo Animal Models in Preclinical Studies 

Preclinical investigations include evaluations of drug production and purity, and, more 

importantly, laboratory animal studies. Animal studies are especially useful to explore the 

drug’s safety in doses equivalent to approximated human exposures, the pharmacokinetics 

(PK) (ie, drug absorption, distribution, metabolism, excretion, and potential drug–drug 

interactions), and pharmacodynamics (PD) (ie, mechanisms of action, and the relationship 

between drug levels and clinical response – known as PK/PD relationship). This data must be 

submitted for approval if the drug is to be further studied in human subjects (Umscheid et al., 

2011), or more in general in the animal species to whom the drug is designed for. 

In Europe, the use of animals for scientific purposes is regulated by the Directive 2010/63/EU 

on the protection of animals used for scientific purposes revising the Directive 86/609/EEC. 

This Directive was adopted on the 22nd of September 2010, and was received in Italy only in 

2014 with the legislative decree n. 26/2014. This will be discussed in Paragraph 2.6. 

Because animals are biologically similar to humans and are susceptible to many of the same 

diseases and health problems, researchers use animals as models during advanced stages of 

biomedical research. When animal models are employed in the study of human disease, they 

are frequently selected because of their similarity to humans in terms of genetics, anatomy, 

physiology, unlimited supply and ease of manipulation (Simmons, 2008). 

A useful definition of ‘animal model’ is “a living organism in which normative biology or 

behaviour can be investigated, or in which a spontaneous or induced pathological process can 

be investigated, and in which the phenomenon in one or more respects resembles the same 

phenomenon in humans or other species of animal” (Held, 1983). Animal models are a pivotal 

component of preclinical biomedical research and will undoubtedly continue to do so, as their 

complexity and lifespan essentially mimics that of humans (Mitchell et al., 2015). 

Furthermore, to date still nothing can substitute for the complex functions of the whole living 

organism. Researchers avoid the use of animals whenever it is possible, and continue to look 

for other methods not involving them. However, unfortunately, animals are still necessary in 

this area because it is impractical, illegal, and unethical to use humans in early phases of 

research. Furthermore, just as a few examples, physiological parameters (such as blood 

pressure), behavioural studies, together with many other types of research, cannot be 

analysed if not in a complex in vivo model. There are many debates on predictability of these 
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models for human translation; however, often, the animal model is still the best 

approximation available. 

Depending on the aim for what the animal models are used, they can be classified in 

exploratory, explanatory or predictive. Exploratory models are used to understand a biological 

mechanism (normal or abnormal), explanatory models to understand a biological problem, 

and predictive models to discover or quantify the impact of a treatment (Hau & Shapiro, 

2011). The extent of resemblance of the biological structure in the animal with the 

corresponding structure in humans has been termed fidelity (Hau & Shapiro, 2011). 

An animal model can also be considered homologous or isomorphic. The first, is one that 

shares the same cause of the disease with the target organism, the latter has a different 

disease cause but similar symptoms. However, often models rather be termed partial, not 

mimicking the entire human disease, even though they might be used to study certain 

aspects/treatments of the human disease (Hau & Shapiro, 2011). 

In vivo models are crucial in the human disease setting for both aetiopathogenesis and 

therapy. The possibility to have animal experimental models that closely resemble the human 

situation enables researches to evaluate the effect of drugs in a more complete and significant 

way compared to a hypothetical cellular model. 

Animal models of human disease can be divided in five big groups: spontaneous, induced, 

genetically modified, negative and orphan disease models (Hau & Shapiro, 2011). The first 

three are the most important ones. 

Spontaneous models. These models, when referred to laboratory species, primarily consist in 

strains that are the result of the breeding of selected animals with spontaneous gene 

mutations. For example, NOD/LtJ mice are a natural polygenic model for autoimmune type 1 

diabetes (Chaparro & DiLorenzo, 2010), nude and SCID mice reproduce different forms of 

immunodeficiency (Belizário, 2009), while MK/ReJ Nramp2mk/+ mice mimic microcytic anaemia 

(Fleming et al., 1997). In a wider concept, also companion animals can have spontaneous 

diseases that closely resemble the ones in humans and therefore can be considered 

spontaneous models of human disease. For example, many myocardial disorders in cats and 

dogs, such as the arrhythmogenic right ventricular cardiomyopathies, can serve to increase 

the understanding of the genetic basis of human disease, including development of improved 

diagnostic assays and assessment of clinical therapies (Fox et al., 2007a). Despite the utility of 
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spontaneous mutations, these events are infrequent, occurring at a rate of ~5×10−6 per locus 

(Stanford et al., 2001). 

Induced models, as the name implies, are healthy animals in which the condition to be 

investigated is experimentally induced. Early forward genetic approaches used radiation and 

chemical treatments to induce mutations (Doyle et al., 2012). For example, mutagenesis of 

mice using N-ethyl-N-nitrosourea (ENU), is still considered to be a very efficient method for 

obtaining mouse mutations in phenotype-driven screens (Salinger & Justice, 2008) and is still 

widely used in several national/international large-scale mutagenesis programs (for example: 

http://mutagenetix.utsouthwestern.edu/home.cfm). In fact, ENU produces random, single 

base-pair changes throughout the genome, and can produce a high frequency of mutant 

phenotypes (Carlson & Largaespada, 2005). Literature is also very rich of examples of diseases 

induced pharmacologically or through surgery, in which no genetic mutation is implied. Mouse 

surgical models led to pretty realistic brain and heart ischemic models used to validate 

pharmacological interventions, while advances in experimental surgery are nowadays very 

important to study therapeutic strategies using stem cells of different origin, especially using 

large animal models (Tarnavski, 2009; Harding et al., 2013). Also, pharmaceutical treatment 

with specific agents are able to reproduce human diseases. For example, the experimental 

autoimmune encephalomyelitis (EAE), obtained in the rat through injections of myelin basic 

protein (MBP), with all its weaknesses, is the most commonly used experimental model for 

the human inflammatory demyelinating disease, multiple sclerosis (MS). Many of the drugs 

that are in current or imminent use in MS have been developed, tested or validated on the 

basis of EAE studies (Constantinescu et al., 2011). However, few induced models completely 

mimic the aetiology, course, and the pathology of the target disease in the human (Hau & 

Shapiro, 2011). 

Genetically engineered animals have many applications in biomedical research. These include 

understanding of gene function, modelling of human disease to either understand disease 

mechanisms or to aid drug development, and xenotransplantation. Genetic engineering and 

embryo technology manipulation, has brought to remarkable progresses in biomedical 

research. The Canadian Council on Animal Care (CCAC) gives to genetically engineered animals 

the following definition: “an animal that has had a change in its nuclear or mitochondrial DNA 

(addition, deletion, or substitution of some part of the animal’s genetic material or insertion 

of foreign DNA) achieved through a deliberate human technological intervention” (Ormandy 



 9 

et al., 2011). However, this definition is broad, including those animals that have undergone 

induced mutations (by chemicals or radiations) and those that have been cloned. Transgenic 

animals, created through the addition, removal, or alteration of genes can represent quite 

remarkable and significant disease models (Hau & Shapiro, 2011). In this contest, mice are the 

first specie chosen for experiments (Hau & Shapiro, 2011). Nevertheless, researchers use 

technology to generate also transgenic rats (Filipiak & Saunders, 2006; Geurts et al., 2009) 

cats (Wongsrikeao et al., 2011), dogs (Hong et al., 2009), rabbits, pigs, sheep (Hammer et al., 

1985; Nohmi et al., 2017; Sper et al., 2017), goats, cattle, chickens (Wolf et al., 2000), zebrafish 

(Higashijima et al., 2000), and non-human primates (Sasaki et al., 2009), just to name a few 

(Ormandy et al., 2011). However, not always genetically engineered animal models reflect 

accurately the human condition, so the limitations of such models should always be taken into 

consideration (Wells, 2010). 

Negative models are species, strains or breeds in which a certain disease doesn’t develop. 

Their main application is in studies on the mechanisms of resistance that seek to gain insight 

into its physiological basis (Hau & Shapiro, 2011). 

Finally, an orphan model is a non-human species that has a naturally functional disorder that 

has not been yet described in humans, and that is recognized when a similar human disease 

is later identified. In this case, the literature generated in veterinary medicine may be useful 

when humans are discovered to suffer from a similar disease (Hau & Shapiro, 2011). 

The ideal model may not exist but it is important to seek for the most appropriate one. The 

meaning of this statement (i.e., appropriate model) is well described by Held (1983). The 

author premises that the animal model must be relevant, in other words it must be 

comparable to a phenomenon in the species we attempt to investigate through the model. 

Therefore, we need to consider the appropriate species and the appropriate level of 

microbiologic and genetic definition. First of all, the model should accurately reproduce the 

disease or lesion under study. Second, it should be available to multiple investigators and easy 

to export. Third, the species should be polytocous – producing multiple young at each birth. 

Fourth, the animal should be of a size that permits multiple biopsies of samples. Fifth, the 

model should be available in multiple species. Sixth, it should survive long enough to be 

usable. Finally, it should fit into facilities of most laboratories and it should be easy to handle 

by most investigators. These last criterions are understandable and reasonable; however, 

convenience should not be the determining factor in the selection of the model (Held, 1983). 
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Animal models have contributed greatly to our knowledge of a multitude of different 

biological processes (Mitchell et al., 2015) and have greatly improved the understanding of 

the cause and progression of human genetic diseases. Furthermore, they have proven to be a 

useful tool for discovering targets for therapeutic drugs. However, despite some treatments 

resulted promising in some animal models, these do not always translate to human clinical 

trials, especially in oncology. Most available animal models are made in mice, and they 

recreate some aspects of the particular disease. However, few, if any, replicate all the 

symptoms (Simmons, 2008). Ideally, more than one animal model should be used to represent 

the diversity seen in most human disorders. 

Independently from what the future holds for animal models, it is important to promote the 

sharing of resources, knowledge and effort toward the common goal of improving the health 

and well-being of all species and is providing to be a powerful adjunct to traditional laboratory 

animal models in a “one medicine” concept (Zinsstag et al., 2011).   
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2.4 Mice as Animal Models 

Rodents are the most common type of mammal employed in experimental studies. Among 

them, mice (Mus musculus) definitely hold the record. 

Human and mice probably share the most longer relationship between two mammals, even 

though their evolutionary lineages diverged more than 96 million years ago (Nei et al., 2001). 

It is interesting to note that in the last 10,000 years mice have been living side to side with 

humans, taking advantage of human food supplies and shelters, and have been a source of 

several human diseases (Doyle et al., 2012). Nonetheless, in the last 30 years also thanks to 

the new genetic technologies, mice have been our greatest ally in life science discoveries. 

For many years, the inbreeding of mouse strains has evolved into a genetic tool that has been 

essential for mapping and identifying genes with important implications for human biology 

and disease (Nguyen & Xu, 2008). Compared to other genetically tractable organism, Mus 

musculus offers a close insight of humankind in terms of similarity in the underlying tissue 

structure and organization, and especially physiology (Nguyen & Xu, 2008). In 2002, the 

genome of C57BL/6J, a very common used mouse strain in biomedical research, was 

sequenced for the first time, and it was no surprize when it was discovered that of ~30,000 

genes in both mice and humans approximately 99% are homologue (Mouse Genome 

Sequencing Consortium, 2002). 

Genetically defined mouse models, including inbred, recombinant inbred, consomic, 

congenic, outbred, and genetically modified strains, have now become easily available to 

research institutions through the world (International Mouse Strain Resource – IMSR).  

Currently, using the existing mouse strains (more than 24,000) and the genetically modified 

mouse embryonic stem cells (more than 209,000) that have been entered into the IMSR, there 

is the potential to generate over 200,000 mutant mouse strains (Fahey et al., 2013). The 

number of genetically defined mouse models is increasing and this trend is likely to continue 

as models are developed to answer questions about specific gene functions and gene–gene 

interactions (Fahey et al., 2013). 

As previously described, early studies of mouse genetics were based on breeding mice with 

selective spontaneous mutations. A second step was represented by induced mice mutations 

with chemicals or radiations. In addition to these early mutagenic approaches, other 

strategies have been developed and employed based on directed gene recombination events, 

such as “gene trapping” approaches and insertional mutagenesis (Doyle et al., 2012). 
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Genetically engineered mouse models (GEMMs) are widely used and have proven to be a 

powerful tool in the drug discovery processes (van der Weyden et al., 2011; Ericsson et al., 

2013; Lee, 2014), revolutionizing how we query gene function (Nguyen & Xu, 2008). “Gene 

trapping” is a strategy that relies on engineered recombination events to identify genes with 

provocative patterns of expression through the use of reporter genes such as beta-

galactosidase or Green Fluorescent Protein (GFP). In contrast, random integration mutants 

have been described based on retroviral DNA insertion in the mouse genome, recombination-

mediated events using transposons such as Sleeping Beauty and PiggyBac, and mutants 

resulting from DNA integration events associated with the production of transgenic mice 

(Doyle et al., 2012). Gene transfer technologies have allowed for novel genetic alterations 

approaching a specific gene of interest. Specifically, the abilities to introduce exogenous 

structural and regulatory gene sequences into the mouse genome (i.e., transgenic mice) 

and/or to ablate/modify the expression of specific endogenous mouse genes (i.e., knock-

out/knock-in mice) have alone propelled this animal to the forefront of biomedical research 

of human health and disease pathology (Doyle et al., 2012). The concept of genetically 

engineering a mouse is very simple: devise a specific genetic modification in a chromosome 

of embryonic stem cells (ES cells) and use these modified cells to create mice that can transmit 

the new feature to their offspring. The method’s straightforwardness rests on two principles: 

the ability to exchange specific chromosomal DNA sequences in mammalian cells by means of 

homologous recombination and the manipulation of embryonic stem cells in a way that allows 

inheritance of the genetic modification (Fig. 2.2) (Manis, 2007).  

 
Fig. 2.2: Overview of the creation of transgenic mice. 

DNA introduction into a pronucleus of a fertilized egg; random DNA integration into a single chromosomal 

location; injection of the eggs into a surrogate mother; the surrogate completes the gestation and produces mice 

with the transgene (only 2% of the injected eggs survive) (Adapted from Doyle et al., 2012). 
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Initially, a method was developed by which a specific gene in an ES cell could be inactivated. 

The genetically altered cell, after implantation into a surrogate mother, ultimately gives rise 

to a strain of mice that is homozygous for the inert gene ― the “knock-out mouse” (Fig. 2.3). 

This allows to use experimentally targeted mutations to test a gene’s functional role 

prospectively, differently from relying on spontaneous mutations. The generation of knock-

out mice lacking the Trp53 tumour suppressor gene (p53−/− mice) is a classic example of the 

usefulness of this technology to model human carcinogenesis (Donehower et al., 1992).  

 
 
Fig. 2.3: Production of knock-out mice. 

A) ES cells are transfected with DNA targeting construct containing specific regions of homology to the gene of 

interest; homologous recombination events occur leading to a 1-to-1 replacement of the endogenous gene with 

sequence derived from the targeting construct. B) Targeted ES cell clones containing the appropriate genetic 

changes that ablate expression of the gene of interest are transferred to the blastocoel cavities of 3.5 days 

blastocyst embryos and, in turn, the embryos are transferred to surrogate mothers where gestation is completed. 

ES cell-derived chimeric founder mice with varying degrees of chimerism are generated. Commonly, one or more 

high chimeric founders are backcrossed with mice of the background strain of interest (Adapted from Doyle et al., 

2012). 

 
Then, the “knock-in” method was developed, in which a mutated DNA sequence is exchanged 

for the endogenous sequence without any other disruption of the gene. With this method, it 

is possible to replace a gene sequence with a sequence of the investigator’s choice and to 

delete unnecessary sequences (Manis, 2007) (Fig. 2.4).  

Knock-in mice arose from a more sophisticated use of existing strategies employed in earlier 

gene targeting efforts rather than the development of new technologies/methods (Doyle et 

al., 2012). There are considered to be the “next-generation workhorses” of hypothesis-driven 
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studies whose goals are to define gene function and to integrate these definitions into broader 

models with which to explain organismal biochemistry and physiology (Doyle et al., 2012). 

 
 
Fig. 2.4: Production of knock-in mice. 

Gene knock-in mice similar to their earlier knockout counterparts are generated in the two-staged process 

described above. The DNA targeting construct not only contains specific regions of gene homology but also has a 

uniquely engineered mutation or sequence change such that the 1-to-1 replacement of the endogenous gene with 

sequence derived from the targeting construct following transfection into ES cells yields an allele in the genome 

of these cells containing this new sequence variant (Adapted from Doyle et al., 2012). 

 

Theoretically, mutant mice for every predicted gene can be generated through the ES cells 

approach. However, this procedure remains technically challenging, expensive and time-

consuming. Consequently, investigators are converting only selected individual ES cell lines in 

which there are indications that the mutated gene may be involved in the process of interest 

(Nguyen & Xu, 2008). 

In addition to ES cells, the germline stem cells (GSC) isolated from the neonatal mouse testis 

can also be genetically modified and transmitted upon injection into the testis (Kanatsu-

Shinohara et al., 2004). It is also possible that a population of GSC with different genetic 

alterations can be injected into a single male to produce multiple mutant progeny (Nguyen & 

Xu, 2008). Finally, somatic cloning provides another novel way to produce genetically modified 

animals (Aoi et al., 2008; Hanna et al., 2008). 

The use of the mouse is likely to be widened by humanizing the mouse, in other words this 

means that human tissues and cells or genes are reconstituted in the mouse. These mice 
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provide experimental models for directly studying the activities of human genes and their 

gene products and for developing and testing therapeutics against the human gene products 

(Nguyen & Xu, 2008). Mice with human “immune systems” were generated as early as 1988 

and they demonstrated their usefulness in studies of hematopoiesis, basic immunology, 

infectious disease, and autoimmunity (Shultz et al., 2012). Creating human “organs” (such as 

the liver) in mice is proving its importance in drug metabolism and viral hepatitis studies 

(Yoshizato et al., 2012). 

Mice have been widely used for genetic studies not only because their genomes are very 

similar to that of humans and can easily be manipulated, but also for other important reasons 

that make mice very close to the ideal animal model. First of all, the small size that makes the 

mice easy to breed in little spaces. The size also makes the mice ease to handle in daily routine 

procedures. A second important reason is the fact that mice reach sexual maturity very fast 

(between five and eight weeks of age), have high reproductive rates and relatively short 

lifespan. This makes it possible to easily expand experimental subjects into statistically 

relevant cohorts, observe different mice generations during a research, and follow the 

lifespan and quality of life during the whole life of the animal in a reasonable period of time. 

Furthermore, mice are easily available at relatively low costs and also inexpensive to raise and 

to maintain (Manis, 2007; Simmons, 2008). Last, but not least, what makes the mouse an 

attractive model is the large amount of available baseline phenotypic data (Kõks et al., 2016). 

Nevertheless, we always have to keep in mind that mice are not humans and despite all the 

progresses, strives and commitments in order to make mice always more sophisticated 

preclinical models, we need to know the potential limitations of extrapolating data from mice 

to humans. 

The most obvious and evident difference is the size. Humans are roughly 2500 times larger 

than mice and this has an influence, for example, on the metabolic rate (Perlman, 2016). Also, 

gross and histologic anatomy and pathobiology differences need to be considered each time 

researchers investigate on specific systems (Treuting & Dintzis, 2014). Important divergences 

can be found in the microbiomes and pathogen susceptibility (Perlman, 2016). The literature 

is rich of examples of therapies that work well in mice but are not efficacious in humans 

(Oehler & Bicknell, 2000; Monaco, 2003; Shepherd & Sridhar, 2003; Wood, 2003). Some of 

these results, can be explained for example by the important differences in the immune 

system of mice and humans (Mestas & Hughes, 2004; Zschaler et al., 2014). Finally, if on one 
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side domestication and breeding are essential for biomedical research, on the other hand they 

have increased the differences between the biology of these strains and that of wild mice, let 

alone human biology (Perlman, 2016). Furthermore, the genetic homogeneity that makes 

these strains valuable in the laboratory means, of course, makes them lack the genetic 

variation that characterizes outbred wild populations (Perlman, 2016). 

While it is hard to draw global significant differences between the two species, it is worth 

considering the possibility that any given response in a mouse may not occur in precisely the 

same way in humans.  
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2.5 C57BL/6 in Biomedical Research 

When overviewing recent publications on mice, it is clear that the most widely used mice 

strains in BR are C57BL/6 (Bryant et al., 2008) and BALB/c. Other strains, such as A/J mice, CD1 

mice, and ICR mice, are also often used. The majority of these animals are supplied by four 

major providers, The Jackson Laboratory, Charles River Laboratories, Taconic Farms and 

Harlan Laboratories. 

If a research is to be reliable and reproducible over time and place, and, more importantly, if 

it is to have the most potential for improving human health, it must be conducted with models 

whose genetic backgrounds are well-defined, stable and clearly communicated. The 

cofounding effect of the genetic background needs to be minimized in biomedical research 

and some of the following tips can be taking in consideration for this purpose. First of all, 

mutants with genetically well-defined backgrounds should be used (Linder, 2006; Yoshiki & 

Moriwaki 2006). Also, the appropriate use of control animals is essential. If a mutation arose 

spontaneously or was induced on a well-characterized inbred strain, the inbred strain is likely 

coisogenic (differs at only one locus) with the mutant and therefore the best control (Linder, 

2006). When possible, it is important to construct congenic, targeted mutation, transgenic 

and other genetically altered strains to controls that are coisogenic (Silver, 1995; Linder, 

2006). It is essential to construct congenics and transgenics on well-defined backgrounds and 

construct targeted mutation strains on well-defined ES cell lines (Linder, 2006). Early studies 

using ES cells to generate gene knock-out strains of mice were limited to the “129” genetic 

background strain (Draper & Nagy, 2007). The phenotypes resulting from these genetic 

manipulations vary in function of the background strains used. Also, it is expensive and time-

consuming backcrossing of founder animals in order to generate mice whose altered locus is 

consogenic with background strain commonly used such as C57BL/6 (Doyle et al., 2012). 

Fortunately, now it is possible to use ES cells derived directly from C57BL/6J or BALB/c having 

immediately their genetic backgrounds (Seong et al., 2004). It is important to consider the 

effects of environmental factors such as noise, light, home cage environment, handling and 

diet on gene expression and behavior (Crawley et al., 1997; Bailey et al., 2006). 

In light of the above, it is easy to understand why the most used strains are only a few and 

that the more these strains are used, the more we will know them and their backgrounds and 

the more they will continue to be used. In particular, C57BL/6 mice, also called "C57 black 6" 

or simply "Black 6", is an inbred strain that has the advantage of being genetically stable and 
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that is easy to breed. As previously said, Black 6 was also the first mouse strain whose genome 

was fully sequenced (Mouse Genome Sequencing Consortium, 2002). The application of 

C57BL/6 mice consists of three main areas. The most common one is to serve as physiological 

or pathological models for in vivo experiments. Secondly, they are often applied to build 

transgenic mice models. Lastly, C57BL/6 mice are used as a background strain for the 

generation of congenics with both spontaneous and induced mutations (Johnson, 2012). 

Different sub-strains of Black 6 exist, and their phenotypic differences have been studied 

together with some of the underlying genetic alterations (Bryant et al., 2008; Mekada et al., 

2009; Kumar et al., 2013). 

 
Fig. 2.5: C57BL/6. 

 

C57BL/6 strain was isolated from C57BL/10 prior to 1937 and was used to establish the 

C57BL/6J colony at The Jackson Laboratory in 1948. Such colony was then used to originate 

the C57BL/6N colony at the National Institutes of Health (NIH) in 1951. In 1974, Charles River 

Laboratory started their own sub-colony, C57BL/6NCrl from the 32nd generation of the 

C57BL/6N colony (Mulligan et al., 2008). In summary, multiple branches of the C57BL/6 

lineage arose across time and have been maintained as separate breeding colonies (Bryant et 

al., 2008). Isolation and genetic drift of these colonies resulted in the emergence of genetically 

distinct sub-strains. In fact, genetic drift can occur within 20 generations after separation 

(Bailey, 1977; Bailey, 1982), and also by random fixation of new mutations in sub-strains 

(Sluyter et al., 1999; Specht & Shoepfer, 2001). Many studies revealed genetic variations 

between both B6 lines and within the same inbred mouse strain (Bothe et al., 2004; Huges et 

al., 2007; Watkins-Chow & Pavan, 2008). However, the major genetic and phenotypic 

differences are across sub-strains more that within them. Though the phenotypes resulting 
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from specific allelic variants have often been characterized in detail, they can often be 

overlooked (Kõks et al., 2016).  

C57BL/6J sub-strain from Jackson Laboratories is probably the most used inbred strain and it 

carries several known allelic variants that could influence phenotypic outcomes of 

manipulations or treatments. This strain, indeed, is described to have low susceptibility to 

spontaneous tumours, high susceptibility to diet-induced obesity, moderate hyperglycemia 

and hyperinsulinemia because of the deletion in nicotinamide nucleotide transhydrogenase 

that impairs glucose tolerance (Toye et al., 2005; Freeman et al., 2006). Other strain specific 

differences are the high susceptibility to diet-induced atherosclerosis (Paigen et al., 1987), 

high incidence of hydrocephalus and malocclusion, high incidence of microphthalmia and 

other eye defects, low bone density (Beamer et al., 1996), and late-onset of hearing loss due 

to an allelic variant of the Cdh23 mutation (Johnson et al., 2006; University of Kentucky, 2017). 

Being Black 6 one of the most used mice in BR, it is easy to gather information on such strain. 

Many peer-reviewed published articles can be found and can help in the description of a new 

genetically modified B6 by eliminating characteristics of the background strain, therefore 

achieving more reliable data. 

Finally, understanding the health and well-being of the mice used in research enables the 

investigator to optimize research results and animal care (Burkholder et al., 2012). Knowing 

the genetic background enables to better interpret the results of genetic engineering. Black 6 

mice represent one of the best strains in our toolbox, and much translational knowledge can 

be gathered from the study of engineered models. 

As already said, an approach using different model organisms is the key answer to further 

understand human disorders and to limit confusing results deriving from the model 

background.  
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2.6 Animal Welfare, Ethics and the Role of Veterinarians in Biomedical 

Research 

Good science and good animal care go hand in hand. A sick or distressed animal does not 

produce the reliable results that a healthy and unstressed animal produces (Burkholder et al., 

2012). For this and many other ethical reasons, “animal welfare” intended as life quality is 

essential. The concept of “animal welfare” encompasses not only that the animals should be 

healthy, well fed, and housed in an environment that they might themselves choose, but also 

that they should be relatively free from negative states, such as pain, fear and distress, and 

capable of enjoying life. Animals should also be able to carry out behaviors and activities that 

they are strongly motivated to do (Fraser, 2008; Fenwick et al., 2009). 

Veterinarians are obviously vital in animal care. Indeed, they are significant contributors in 

biomedical research through the utilization of their specialized training in animal biology and 

medicine to model human physiology and disease. They can participate in biomedical research 

by directly initiating and leading research programs (principal investigators) or can contribute 

as co-investigators, research scientists, and technical advisors. Attending veterinarians not 

only provide evaluations of the care, treatment, housing, and use of all animals, but they also 

are a legally-mandated member of animal care and use committees. Using their specialized 

knowledge base, they provide technical instruction to researchers, collaborate and provide 

technical advice on experiments utilizing animals, and ensure animal well-being (NRC, 2004). 

Furthermore, they can play an important role in carrying out vigilance and monitoring of 

potential animal welfare impacts, especially in the research setting when new genetically 

engineered animal strains are being developed (Ormandy et al., 2011). 

All researches implicated in animal experimentation subscribe to “The 3 Rs Principle” which 

stands for reduction, refinement, and replacement. Reduction refers to methods that result 

in fewer animals being used to acquire the needed information. This, in some studies, 

eliminates the use of animals. Refinement concerns the manner in which the animals are 

treated. This includes new and more effective anesthetics and analgesics, species-appropriate 

housing, and enrichment activities. Replacement means using methods that do not involve 

whole animals. Computer models, cell and tissues cultures are examples. 

By using the “The 3 Rs Principle” to guide the ethical evaluation of animal use, the scientific 

community has been able to achieve important improvements in animal welfare. Today the 
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welfare of animals used in science is often substantially better than animals used in other 

ways. For example, a pig used in BR is most likely housed with a very good quality bedding and 

housing, will receive anaesthesia and analgesics before surgical procedures, and will have 

individualized veterinary care. This is in contrast with many of the living situation of typical 

grower pigs (Fenwick et al., 2009). 

The success of the “The 3 Rs Principle” is demonstrated by its acceptance and recognition by 

the scientific community, humane organizations, policy makers, and the general public 

(Fenwick et al., 2009). Since these principles were first described by the British investigators 

Russel and Burch in 1959 in response to the moral and ethical concerns associated with the 

use of animals in research (Russel & Burch, 1959; Flecknell, 2002), they have been embedded 

in national and international legislation and regulations on the use of animals in scientific 

procedures, as well as in the policies of organisations that fund or conduct animal research. 

The European Directive 2010/63/EU (revising Directive 86/609/EEC on the protection of 

animals used for scientific purposes) and the adopted Italian legislative Decree n. 26/2014, 

are firmly based on “The 3 Rs Principle”. With the new legislation, the scope is wider than 

before and includes foetuses of mammalian species in their last trimester of development and 

cephalopods, as well as animals used for the purposes of basic research, higher education and 

training (European Commission, 2017). A ‘procedure’ is described as “any use, invasive or non-

invasive, of an animal for experimental or other scientific purposes, with known or unknown 

outcome, or educational purposes, which may cause the animal a level of pain, suffering, 

distress or lasting harm equivalent to, or higher than, that caused by the introduction of a 

needle in accordance with good veterinary practice” (European Directive 2010/63/EU). The 

Directive lays down minimum standards for housing and care, regulates the use of animals 

through a systematic project evaluation requiring inter alia assessment of pain, suffering 

distress and lasting harm caused to the animals. It requires regular risk-based inspections and 

improves transparency through measures such as publication of non-technical project 

summaries and retrospective assessment. The Veterinarian is often directly addressed in the 

Directive and has a clear and important role in animal experimentation, being responsible for 

their welfare.  

In this Directive, the development, validation and implementation of alternative methods is 

promoted through measures such as establishment of a Union reference laboratory for the 

validation of alternative methods supported by laboratories within Member States (European 
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Commission, 2017). In Europe, EURL-ECVAM placed at the Joint Research Centre, Institute for 

Health and Consumer Protection (IHCP) in Italy, at Ispra, is designated to validate, develop and 

spread alternative methods and to publish recommendations in order to help the adoption of 

these alternative methods at an international level. The Italian Ministery of Health has 

nominated as “single point of contact” (Art. 47, European Directive 2010/63/EU) the “Centro 

di Referenza Nazionale per i Metodi Alternativi, Benessere e Cura degli Animali da 

Laboratorio” located at the Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia 

Romagna (IZSLER). 

The adoption of the stringent European Directive with the Italian legislative decree n. 26/2014 

had a quite clear effect on animal experimentation. The Italian Ministry of Health published 

in April 2017 (Gazzetta Ufficiale, Serie Generale, n. 95, 24 aprile 2017) data on the use of 

animals for experimental purposes during the year 2015, one year after the adoption of the 

new law. A decrease of 15,8% of animals used for experimental purposes in comparison to 

2014 was registered. Although the use of mice decreased in comparison to 2014, they still 

resulted the most used animals (64%) in experimental procedures, and of these 31% were 

used in applied and translational research. This demonstrates in some way that animals, and 

especially mice, will continue to serve as valuable models because unfortunately still the 

experimental models that are not in vivo are not sufficiently complex and reliable for 

biomedical research to go from in vitro and in silico models directly to human clinical trials. 

Though, alternative methods are becoming always more efficient and often adopted in order 

to reduce and replace animal use. However, “The 3 Rs Principle” premises that animal use for 

experimental research is acceptable. Indeed, there are questions that go beyond this tenant, 

animal welfare and health, and prompt the discussion of concepts such as intrinsic value of 

animals, which is separate from their value to humans, integrity or dignity, and naturalness, 

especially for what concerns engineered animals (Oritz & Elisabeth, 2004). In particular for 

genetic engineering it is hard to establish limits. On one hand, genetic engineering seems as 

the logical continuation of selective breeding, a practice that humans have been carrying out 

for years, and for most of the people human life is deemed more important than animal life. 

On the other hand, for some people genetic engineering can be seen as exaggerating the 

imbalance of power between humans and animals, and will upset the natural balance of the 

ecosystem (Ormandy et al., 2011). In addition, there may be those who feel strongly opposed 

to certain applications of genetic engineering, but more accepting of others. For example, 
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recent evidence suggests that people may be more accepting of biomedical applications than 

those relating to food production (Shuppli & Weary, 2010). Consequently, limits to genetic 

engineering need to be established using the full breadth of public and expert opinion. This 

highlights the importance for veterinarians, as animal health experts, to be involved in the 

discussion (Ormandy et al., 2011).
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2.7 Clinical Trials 

If a drug appears promising in preclinical studies, a drug sponsor can submit an investigational 

new drug (IND) application (in the United States) or a Clinical Trial Authorisations (CTA) 

application (in Europe) (Kashyap et al., 2013), that needs to be approved also by an ethics 

committee before phase trials are started. This application is a detailed proposal containing 

all kind of pre-clinical drug information and data, together with the investigator’s 

qualifications. After approval, the drug is studied through different phase trials (described 

below), and if it demonstrated to be safe and efficacious, the drug sponsor can then submit a 

New Drug Application (NDA) to the US-FDA, or the Marketing Authorization Application (MAA) 

to EMA. Following an extensive review by the authorities, often involving recommendations 

by external committees, it is decided if the drug can be granted an indication, and marketed. 

Once the drug achieved the final approval, it continues to be studied in phase IV trials, in which 

safety and effectiveness for the indicated population is monitored. To facilitate evaluation and 

endorsement of foreign drug data, efforts have been made to harmonize this approval process 

across the United States, Europe, and Japan through the International Conference on 

Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use 

(Umscheid et al., 2011). 

In general, clinical trials encompass a number of studies that can be classified based on the 

objectives (human pharmacology, therapeutic exploratory, therapeutic confirmatory, 

therapeutic use), or on the temporal phase in which they are collocated being these phases 

subsequent one to the other, and named Phase I, II, III, and IV. Regardless the taxonomy 

employed, these phases all together give complementary data on the value of a certain drug, 

and the studies vary among each other in the objectives, experimental design and type of 

patients involved (Apolone & Garattini, 2007). 

Prior experimentation and after approval of the experimental protocol by the authorities and 

ethics committee, people undergoing clinical trials sign an informed consent. The doctrine of 

the informed consent represents one of the most important changes introduced in biomedical 

ethics in the second half of the 20th century, and is based on people’s right of self-

determination. After all the atrocities seen in the “death camps” during the Second World 

War, were people were tortured with unapproved medical experimentation, the Nuremberg 

trials enshrined the principles on which human experimentation should settle. Another 

achievement was gained when in 1964 the World Medical Association approved with the 
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Declaration of Helsinki the “Recommendations guiding medical doctors in biomedical research 

involving human subjects”. The requirements listed in the Declaration of Helsinki are now 

adopted and incorporated in national laws regarding human medical research (Hick, 2007). 

 

Phase I. Phase I trials (synonymous with “dose-escalation” or “human pharmacology” studies) 

are the first instance in which the new investigational agent, that has been studied only in 

vitro and in vivo in animal preclinical studies, is studied in humans. These studies are usually 

performed open label and in a small number of healthy volunteers (a few dozen patients). 

These volunteers in a monitored environment and under strict medical control, receive single 

or repeated doses of the drug. Diseased volunteers are involved in phase I trials only in case 

of specific diseases such as malignant neoplasia where drugs are intrinsically too toxic to test 

on healthy volunteers and where no other therapeutic approved approaches are available. 

The aim of these studies is to test the safety and maximum tolerated dose (MTD) of a drug, 

human pharmacokinetics and pharmacodynamics, and drug–drug interactions (Umscheid et 

al., 2011). At the end of a well conducted phase I clinical trial different dosages have been 

identified, hypothesis have been made on possible negative effects of the drug, and PK/PD 

data is collected. 

 

Phase II. Once phase I trials are ended, the data achieved is used to set phase II trials, also 

referred to as “therapeutic exploratory” trials. These trials are usually larger than phase I 

studies, and are conducted in a small number of volunteers who have the disease of interest. 

They are designed to test safety, PK, and PD in bigger population samples (few hundreds of 

patients), but may also be designed to answer questions essential to the planning of phase III 

trials, including determination of optimal doses, dose frequencies, administration routes, and 

endpoints. In addition, they may offer preliminary evidence of drug efficacy by comparing the 

study drug with “historical controls” from published case series or trials that established the 

efficacy of standard therapies, by examining different dosing arms within the trial, or by 

randomizing subjects to different arms (such as a control arm) (Umscheid et al., 2011). At the 

end of phase II trials safety data are confirmed, the optimal dosage to bring in phase III is 

identified, together with the best patients to involve in the next trial in terms of age, type and 

severity of the disease (Apolone & Garattini, 2007). 
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Phase III. This stage of drug assessment is also referred to as a “therapeutic confirmatory,” 

“comparative efficacy,” or “pivotal trial” and it is crucial for confirming the therapeutic value 

of the medicine candidate. It is conducted in a larger and often more diverse target population 

and, apart from confirming the efficacy, it should identify and estimate the incidence of 

common adverse reactions. However, given that these trials are usually done on 300 to 3000 

subjects, they consequently have the statistical power to establish an adverse event rate of 

no less than 1 in 100 persons (Umscheid et al., 2011). This stage of experimentation can last 

3-5 years because many aspects need to be taken into consideration and monitored, such as 

lifespan, life quality, symptoms etc. These trials usually compare the effect of the tested drug 

to a standard therapy or a placebo, other times to non-treated patients. When this stage is 

concluded, all data from preclinical and clinical phase I-III trials are gathered and analysed in 

a dossier that undergoes authority evaluation (FDA, EMA, AIFA) in order to be placed on the 

market (Apolone & Garattini, 2007). 

 

Phase IV. Phase IV trials are also referred to as “therapeutic use” or “post-marketing” studies. 

These studies are done once a drug is approved and placed on the market. Primarily, they are 

observational studies aimed to recognize less common adverse reactions, and to evaluate cost 

and/or drug effectiveness in populations, diseases, or doses similar to or markedly different 

from the original study population (Umscheid et al., 2011). 

 

In the last decade, FDA and EMA, introduced guidelines for testing ‘micro-doses’ (less than 

one-hundred of the therapeutic dose) of drugs in humans, bypassing animal models. They are 

known as early “Phase 0” studies and are used to collect human data quickly by showing how 

the drug is distributed and metabolized in the body, and whether it hits the right molecular 

target (Marchetti & Schellens, 2007). 

 

Overall, it appears clear that the human being represents the final experimental model for the 

development of new therapeutic drugs. It’s also evident that humans as experimental models 

need to be used in conditions of maximum safety, and after a thorough evaluation of the 

risk/benefit ratio for the people involved. It is necessary that the developmental process of a 

new drug undergoes accurate in vivo preclinical experimentation using animal models. The 
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current trend of proposing clinical studies of new molecules on the base of simple in vitro 

studies is not always in the interest of the diseased patients. 

Biology and medicine are experimental sciences necessarily based on experimental models. 

As previously described these models need to be appropriate. The results, need to be 

significant and reproducible. In order to do so, modern research should be multidisciplinary, 

integrative and complementary, and should exploit advantages of each model used (Garattini, 

2007). 
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Chapter 3 

Hutchinson-Gilford Progeria Syndrome (HGPS) 

 

3.1 Hutchinson-Gilford Progeria Syndrome (HGPS) and Aging 

Aging is the natural effect of time and environment on the living organisms, and death is its 

end result. The physiological process of aging aims at the homeostasis of tissues through 

removal of cells bearing damaged genome sections or non-functional organelles (Evangelisti 

et al., 2016). Despite this process allows to avoid the neoplastic transformation of tissues and 

organs, it also causes the loss of stem cells and a reduction in extracellular components, which 

are also associated with inflammatory processes contributing to tissue degeneration.  

The number of older persons (aged 60 years or over) has increased considerably in recent 

years in most countries and regions, and this trend is projected to grow in the coming decades. 

Between 2015 and 2030, people aged over 60 years are projected to grow by 56%, from 901 

million to 1.4 billion, and by 2050, is projected to reach nearly 2.1 billion (United Nations, 

2015).  

Aging is the primary risk factor for numerous chronic, debilitating diseases, which impact 

quality of life of the elderly and their families, and consume a large portion of health care costs 

(Gurkar & Niedernhofer, 2015). If aging is a causal factor for such diseases is a critical question 

(Stewart, 2014). The growing trend of older people can be expected to have far reaching 

economic, social and political implications and, in particular, it puts pressure on health 

systems, increasing the demand for care, services and technologies to prevent and treat 

conditions associated with old age (United Nations, 2015). It has to be noted, that also pets’, 

their owners and veterinarians, face a whole new set of age-related conditions since pet’s 

lifespan has improved due to better veterinary care and dietary habits.  

For all these reasons, the improvement of knowledge about the mechanisms of aging 

represents an important goal of current research (Michaud et al., 2013). Clinical trials to treat 

aging are impractical and also preclinical models to test interventions to extend health- and 

lifespan are lengthy and expensive (Gurkar & Niedernhofer, 2015). One useful approach is to 

take advantage of mouse models that are engineered to age rapidly. 
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Diseases exist in which individuals age more rapidly than normal. Progeric laminopathies are 

human syndromic diseases associated with defects of the nuclear lamina protein lamin A/C, 

and they represent a paradigm of age-related diseases encompassing most of the disorders 

linked to normal aging. This is particularly true for Hutchinson-Gilford Progeria Syndrome 

(HGPS), which has arisen much interest in the research community for its particular 

characteristics. Interestingly, HGPS and normal aging share many cellular phenotypes, such as 

abnormal nuclear shape, loss of epigenetic marks and increased DNA damage, as well as tissue 

pathologies including reduced bone density and cardiovascular disease (Burtner & Kennedy, 

2010). In fact, HGPS patients exhibit accelerated atherosclerosis and die predominantly of 

myocardial infarction or stroke during their teenage years (Villa-Bellosta et al., 2013). 

Furthermore, it has recently been reported (Scaffidi and Misteli, 2006) that progerin, the 

mutant protein implicated in progeria pathogenesis, accumulates in tissues from 

physiologically aged individuals. 

Therefore, although Hutchinson–Gilford progeria syndrome is very rare, improving our 

knowledge of HGPS and searching for innovative and efficient therapies, is extremely 

important because not only it could help expanding the affected childrens’ lifespan and 

preserve their quality of life, but it may improve our understanding of aging-related disorders, 

in humans and animals, and the links with major physiological processes such as those 

involved in oncogenesis (Cau et al., 2014). 
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3.2 History of HGPS  

In 1886, Jonathan Hutchinson described for the first time a 3-years old boy with what for him 

was an ectodermal dysplasia (Hutchinson, 1886), and in 1895 he wrote a second brief report 

on a second patient. A few years later, Hastings Gilford described in detail these two patients 

and suggested to use the word “progeria” for this disease (Gilford, 1897; Gilford, 1904). The 

word “progeria” comes from the ancient Greek, pro meaning “before” and geras meaning “old 

age”. 

Hutchinson-Gilford Progeria Syndrome (HGPS), as its name suggests, involves premature aging 

in children. In this syndrome, the rate of aging is accelerated up to seven times that of normal 

(Rastogi & Mohan, 2008). However, patients with HGPS do not show all features usually 

associated with aging, such as increase in cataract formation or cognitive degeneration, 

therefore HGPS has been referred to as a ‘‘segmental’’ progeroid syndrome (Martin & Oshima, 

2000). HGPS normally leads to death at an average age of about 13 years, usually due to stroke 

or myocardial infarction (Merideth et al., 2008; PRF, 2017a); however, in some cases children 

died as early as 7 and some have survived till the age of 30 (Shankar et al., 2010).  

The interest in HGPS increased in 2003, when mutations in the gene encoding lamin A/C 

(Lmna) was discovered to be the cause of the disorder (De Sandre-Giovannoli et al., 2003; 

Eriksson et al., 2003). Before 2002, mutations at this level were already known to cause at 

least five different entities: Autosomal Dominant Emery-Dreyfuss muscular dystrophy, limb-

girdle muscular dystrophy type IB, dilated cardiomyopathy type 1A, Autosomal Recessive 

Charcot-Marie-Tooth type 2B1, and Familial Partial Lipodystrophy Dunnigan type (Hennekam, 

2006).  

 

  



 32 

3.3 Epidemiology of HGPS 

HGPS is a rare, fatal genetic condition characterized by features reminiscent of marked pre-

mature aging in children. The reported prevalence rate of the disease is one in eight million 

births, but if unreported or misdiagnosed cases are taken into account, the estimated birth 

prevalence is one in four million (Coppedè, 2013). Presently, there are 145 identified patients 

living with progeria in 46 countries (Fig. 3.1), 33 of which have a mutation in the lamin pathway 

but do not produce progerin (PRF, 2017a). The ratio of females to males is 1:1.5 and 97% of 

patients are white, however there is no explanation for this tribal discrepancy (DeBusk, 1972). 

This disease is generally not heritable because patients hardly reach the reproduction stage. 

Genetic studies report that the most possible form of inheritance is a periodic autosomal 

dominant mutation on the fertilizing ovum or sperm (Brown et al., 1985; Brown, 1987; 

Beauregard & Gilchrest, 1987). Normally, healthy patients do not pass it on to their children 

because it is genetically dominant (Korf, 2008; Shankar et al., 2010). To date, there are only 

two cases in which it became evident that a healthy parent can carry the Lmna mutation that 

causes progeria: one is a family from India that have five children with Progeria, the other one 

is a family from Belgium with two (Shankar et al., 2010).  

 

 

Fig. 3.1: Map indicating HGPS distribution around the world. This figure includes 112 children with classic 

Hutchinson-Gilford Progeria, all of whom have a progerin producing mutation in the Lmna gene, and 33 children 

in the progeroid laminopathy category who have a mutation in the lamin pathway but do not produce progerin 

(Adapted with permission and courtesy of the Progeria Research foundation 

https://www.progeriaresearch.org/meet-the-kids/). 
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3.4 Molecular Background, Cause and Pathogenesis of Progeria 

Many researchers screened progeria-affected patients and discovered that the disease is 

associated with mutations in the Lmna gene. The official name of this gene is “lamin A/C” and 

is also known as LMN1, LMNA_HUMAN and LMNC (Shankar et al., 2010). Lmna gene is located 

on the long (q) arm of chromosome 1, between position 21.2 and 21.3 (cytogenetic location: 

1q21.2-q21.3). The molecular position of Lmna is on chromosome 1:156, 084,460 to 

156,109,877 base pairs (Shankar et al., 2010). The nuclear lamins are type V intermediate 

filament proteins that are critically important for the structural properties of the nucleus 

(Dechat et al., 2010). Mutations in lamin proteins, primarily in the Lmna gene, are associated 

with over a dozen degenerative disorders (Gonzalo et al., 2017). These diseases are known as 

laminopathies and encompass a range of phenotypes with different tissue-specific 

pathologies, including muscular dystrophy disorders (e.g., Emery-Dreyfus Muscular Dystrophy 

or EDMD, Limb-Girdle Muscular Dystrophy Associated with Atrioventricular Conduction 

Disturbances or LGMD1B), peripheral neuropathies (e.g. Charcot-Marie-Tooth-Disease type 

2B1 or CMT2B), lipodystrophies (e.g. Familial Partial Lipodystrophy of the Dunnigan Type or 

FPLD), as well as systemic laminopathies such as Hutchinson Gilford Progeria Syndrome 

(HGPS), Atypical Werner Syndrome (AWS), Mandibuloacral dysplasia (MAD) and restrictive 

dermopathy (RD) (Worman et al., 2009; Vigouroux & Bonne, 2013; Gordon et al., 2014; 

Gonzalo & Kreienkamp, 2015; Vidak & Foisner, 2016; NIL, 2017).  

The Lmna gene encodes four type A lamins (A, C, CD10, and C2) via alternative splicing. Lamin 

A and C, identical up to residue 574, are the most ubiquitously expressed. Lamin C possesses 

five unique C-terminal residues, and lamin A is synthesized as a 664-residue prelamin A 

precursor that after post-translational processing results in a mature lamin A protein of 646 

residues. Prelamin A undergoes a process of maturation involving the CAAX box at the carboxy 

terminus. At the first stage of maturation farnesyl transferase adds a farnesyl group to the 

cysteine. Next, either Rce1 (FACE2 in human beings) or Zmpste24 (FACE1 in human beings) 

cleave the last three amino acids (AAX). At the next stage the isoprenylcysteine O-

methyltransferase (ICMT) methylates the farnesylated C-terminal cysteine. Another cleavage 

event of the last 15 C-terminal amino-acids by Zmpste24 is necessary to remove the carboxy 

farnesylated and methylated cysteine (Corrigan et al., 2005; Coppedè, 2013; Gonzalo et al., 

2017).  
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Lamin A is a scaffold protein located between the nuclear membrane and the peripheral 

chromatin and represent one of the building blocks of the nuclear envelope (Prokocimer et 

al., 2009). Lamins and their associated proteins are involved in maintaining the shape and 

mechanical strength of the nucleus. They are also involved in most nuclear activities, including 

chromatin organization, DNA replication, transcription regulation, RNA processing, linking the 

nucleus to all major cytoskeleton networks, apoptosis, meiosis and mitosis (Prokocimer et al., 

2009; Shankar et al., 2010), although the molecular details of some of these functions need to 

be better elucidated (Rusiñol & Sinensky, 2006). Overall, it can be stated that lamin A broadly 

influences nuclear structure and function (Broers et al, 2006). Schematic representations of 

the structure of lamin proteins, nuclear envelope, lamina and chromatin and of prelamin A 

are shown in Fig. 3.2, 3.3 and 3.4, respectively.  

 

 

 
Fig. 3.2: Schematic representation of the structure of lamin proteins. (A) The lamin monomer is divided into three 

domains, head, rod and a globular tail. The rod domain is composed of four coiled-coil regions (1A, 1B, 2A, 2B) 

that are connected through three short linkers (L1, L12, L2). Marked on the scheme are the Ig globular domain in 

the tail and the stutter (a discontinuity of the heptad repeat) in coil 2B. Also shown by colour code are the positions 

of the CDK-1 recognition site (absent in Ce-lamin), the sumoylation site in human lamin A, the nuclear localization 

signal (NLS) and the CAAX motif. (B) A model of lamin dimers. A pair of parallel coiled-coil rods forms the lamin 

dimer (yellow). The non-helical head and tail domains are coloured green and pink, respectively. The different 

sub-domains are indicated. In coil 2B the stutter leads to a local unwinding (Prokocimer et al., 2009; reproduction 

licensed). 
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Fig. 3.3: Schematic view of the nuclear envelope, lamina and chromatin. The inner nuclear membrane (INM) and 

the outer nuclear membranes (ONM) are joined at the nuclear pore complexes and separated by the nuclear 

lumen. The ONM and lumen are continuous with the endoplasmic reticulum (ER). Lamins (both A- and B-types) 

are shown as orange filaments; thicker at the nuclear periphery and thinner filaments in the nucleoplasm. 

However, the filamentous nature of the lamins, especially within the nucleus, remains hypothetical. Also shown 

are selected proteins of the INM including LEM-domain and SUN domain proteins, LAP-1, Nurim and LBR 

(boudreaux). These proteins represent only a small fraction of proteins of the INM. Also shown few examples of 

non-integral proteins that interact with lamins or with their associated proteins including actin, HP1, HA95, germ 

cell-less and BAF. The nucleoplasmic lamins also form specific protein complexes (not shown). INM SUN-domain 

proteins interact with ONM KASH-domain proteins, thus bridging between the nucleus and cytoplasmic structures 

including, actin (green), tubulin (yellow) and intermediate filament (not shown) networks and the centrosome 

(MTOC) (Prokocimer et al., 2009; reproduction licensed). 

 

 

 
Fig. 3.4: Prelamin A processing. Premature lamin A is going through four processing steps until it becomes a 

mature lamin A, including farnesylation of the cysteine at the carboxy terminus, cleavage of the three carboxy-

terminal amino acids (aaX) by either Zmpste24 or RceI, carboxymethylation of the farnesylated cysteine by 

isoprenylcysteine methyltransferase and cleavage of the 15 terminal amino acids, including the farnesylated and 

carboxymethylated cysteine, by Zmpste24 (Prokocimer et al., 2009; reproduction licensed). 
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In progeria patients, the most frequent detected mutation is a de novo autosomal dominant, 

single base substitution in Lmna gene at position 1824 (written as C1824T). Specifically, in over 

90% of progeria patients at codon 608 the cytosine is substituted with a thymine in exon 11 

(Shankar et al., 2010). This mutation in also noted as Gly608Gly or G608G, which is the position 

in the lamin A protein affected. Less frequently, other mutations were detected in HGPS 

patients, such as E145K, G608S, A57P, L140R, T528M, R527C, R644C, E145K, K542N, R471C, 

G608S, R133L, M540T, and T623S (Taimen et al., 2009; Ahmed et al., 2017). It still has to be 

determined how progeria arises from these other progeric mutations, as it is unclear if these 

mutations result in post-translational processing defects and/or retention of the farnesyl 

group (Stewart, 2014).  

G608G mutation is silent, not causing changes at the aminoacid level, though it activates a 

cryptic splice site that produces a mutant prelamin A protein with an internal deletion of 50 

aminoacids. This truncated prelamin A, termed progerin, is missing the second Zmpste24 

cleavage site, leaving the mutant protein permanently carboxy farnesylated and methylated, 

which cannot then mature to lamin A (Fig. 3.5).  

 
Fig. 3.5: Mutant splicing in HGPS patients. A mutation in exon 11 activates a cryptic splice site leading to 

deletion of 50 amino acid residues from the precursor protein, including the final Zmpste24 cleavage site, 

and accumulation of farnesylated progerin (Gonzalo et al., 2017; reproduction licensed). 
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Progerin is incorporated into the lamina and changes the structure of the macromolecular 

interaction, intra-nuclear architecture, and nuclear lamina that collectively have a prime effect 

on nuclear function (De Sandre-Giovannoli et al., 2003; Eriksson et al., 2003; Prokocimer et 

al., 2009; Ahmed et al., 2017) (Fig. 3.6). Primary fibroblasts from HPGS patients show drastic 

alterations (Fig. 3.7) in the nuclear shape, including loss of peripheral heterochromatin, 

thickened lamina, lobulation of the nuclear envelope, and clustering of nuclear pores 

(Hutchison et al., 2001; Scaffidi & Misteli, 2005). Existence of progerin alter mitosis that leads 

to changed histone modification patterns, downregulation of several nuclear proteins (Cao et 

al., 2007), mis-segregation of chromosome (McClintock et al., 2007), and DNA repair disorders 

(Manju et al., 2006). Progerin was found to cause defects in chromosome segregation in 

metaphase, to trap lamina components, and delay nuclear envelope reformation and the 

inner nuclear envelope proteins of the endoplasmic reticulum at the end of mitosis. In 

addition, progerin was also noted to relocate the centromere protein F from metaphase 

chromosome kinetochores causing binucleated cells, increase chromatin lagging and genome 

instability. Accordingly, accumulation of progerin-dependent defects with every round of 

mitosis leads cells towards premature senescence (Eisch et al., 2016). It is still not completely 

understood how all these changes lead to the signs and symptoms of HGPS and the reason of 

similarities and differences between HGPS phenotypes and those of aging. It is interesting that 

the cryptic splice site activated in HGPS to create progerin is also used at low frequencies in 

healthy individuals since increased progerin levels are also found in normal aging cells (Scaffidi 

& Misteli, 2006; McClintock et al., 2007; Prokocimer et al., 2013). 
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Fig. 3.6: Expression of progerin alters nuclear organization and genome stability. Cells from HGPS patients are 

characterized by a series of alterations including reduced expression of extracellular matrix (ECM) components, 

nuclear envelope blebs, clustering of nuclear pore complexes (NPC), loss of peripheral heterochromatin, and 

reorganized microtubules. Progerin expression also affects dynamics of nuclear envelope transmembrane 

proteins (NETs), including emerin, and their interactions with chromatin-associated proteins, such as BAF, 

transcription factors (TF) and chromatin modifiers. HGPS cells have higher levels of reactive oxygen species (ROS) 

and DNA damage, whereas LAP2 is downregulated (Gonzalo et al., 2017; reproduction licensed).  
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Fig. 3.7: Nuclear defects in HGPS cells. 

Immunofluorescence performed in primary normal human fibroblasts (NF) and HGPS patient derived fibroblasts 

(HGPS) with antibodies recognizing lamin A (green, top panels), histone modification H3K9me3 (red, medium 

panels), and H2AX (yellow, bottom panels), a marker of DNA damage. DAPI staining was used to demarcate nuclei 

(blue staining in all panels). Note how HGPS patient derived fibroblasts exhibit nuclear morphological 

abnormalities, decreased levels of H3K9me3, and accumulation of basal levels of unrepaired DNA damage, when 

compared to normal fibroblasts (Gonzalo et al., 2017; reproduction licensed).  
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3.5 Clinical Features in HGPS 

HGPS is normally diagnosed between the first and second year of life, although some typical 

features indicate the presence of the disease at birth. In 

fact, progeria develops a characteristic facial appearance 

including prominent eyes, a thin nose with a beaked tip, 

thin lips, a small chin, protruding ears with lacking lobules 

and facial cyanosis (due to insufficient blood oxygenation). 

It must be said that a characteristic visible vein across the 

nasal bridge is often the earliest symptom (Fig. 3.8), 

followed by the scalp veins (Hennekam, 2006).  

Slow growth rates appear sharply already during the first 

year of age; in particular height deficit, and, even more, 

weight deficit, are particularly suffered and the most 

severe changes occur after 2 years of age. On average, 

HGPS children gain 0.4–0.5 kg/year (Coppedè, 2013), and 

the weight curve runs almost horizontally from the age of 

2 years (Hennekam, 2006). The elderly patients have a 

mean weight of 14.54 kg with a mean height of 109 cm.  

Intra-abdominal fat in progeria children appears with a prominent belly. The loss of 

subcutaneous fat, typical of the disease, starts from six months of age and becomes more 

evident around 3-4 years of age. Such loss is primary seen in the limbs and thorax and then in 

the face. The buccal and pubic fat disappear last (Hennekam, 2006). Vanishing of intra-orbital 

and subcutaneous fat leads to the prominent appearance of eyes (no true exophthalmos is 

found), skin becomes thin, and blood vessels become more visible (Hennekam, 2006).  

Craniofacial abnormalities (Fig. 3.9; Fig. 3.12) are constantly seen in HGPS patients. In one 

study, thinning of the calvarium was seen in 95% of the individuals, in 91% of the cases 

accompanied by a paucity of scalp fat (Ullrich et al., 2012). A mottled appearance of the skull 

was seen in 59% of the patients. Two individuals had skull fractures, and prominent vascular 

markings of the bony calvaria were observed in 90% of the subjects. Craniofacial disproportion 

and a J-shaped sella were observed in almost 90% of the patients. Also, delayed closure of the 

anterior fontanel was seen in more than half of the cases (56%). Concerning oral maxillary, 

zygomatic arch, and parotid gland features, the authors observed a short mandibular ramus 

Fig. 3.8: Prominent vein across the 

nasal bridge is often the first 

symptom in patients (Hennekam, 

2006; reproduction licensed). 
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in 83% of the patients, with a gracile thin zygomatic arch in 50% of them. A shallow glenoid 

fossa with a hypoplastic or absent articular eminence and flattening of the mandibular condyle 

were seen in 43% of the patients (Ullrich et al., 2012). In another study, 45% of the children 

had a V-shaped palate, and 50% of them had disorganized dentition (Schmidt et al., 2012). 

Oral abnormalities such as two rows of teeth, ogival palate, ankyloglossia, delayed tooth 

eruption, vertical chewing where rotatory chewing is supposed to develop, hypodontia were 

noted, as also limited size of mandible and maxilla dental crowding (Batstone & Macleod, 

2002; Merideth et al., 2008). Generally, patients have a high-pitched voice. A prominent 

parotid gland was seen in all the children analysed. With regard to orbital features, Schmidt 

et al. (2012) reported hypotelorism in 86% of the children, and kinking of the optic nerves in 

89%.  

 
Fig. 3.9: Detail of face showing thin facial skin with excessive folding on forehead and cheeks, pseudo- 

protrusion of the eyes, thin nasal bridge, and collapsed, flattened and broad nasal tip (Hennekam, 2006; 

reproduction licensed). 

 

Between 6 and 12 months of age kids have swollen and thick skin with oedema. With time, 

skin becomes sclerodermatous (Fig. 3.10A) and erect and finally (between 6 month and 2 

years of age) the skin become dry (sometimes with fine scaling), thin, and atrophic. 

Sometimes, it is slightly erythematous. Many wrinkles are observed as also pigmented aged 
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spots (Fig. 3.10B). Skin over the bone fingers and toes becomes red and swollen, and the nails 

become dystrophic (Fig. 3.11) (Merideth et al., 2008). 

 

 

 

 
Fig. 3.10: A) Patient at 6 weeks of age showing early phase scleroderma. Note swollen skin, pitting, and 

predilection localization (lower abdomen, genitalia, upper legs). B) Hyperpigmentation. Small, spotty 

pigmentations with a cafe -́au-lait color or somewhat darker. Note predilection localization (neck, upper 

thorax); later on, hyperpigmentation can also be seen on the scalp (Hennekam, 2006; reproduction licensed).  

 

 

 

 

 

 

 
Fig. 3.11: Camptodactyly (fingers permanently bent) in a 7-year-old patient with dystrophic nails (Hennekam, 

2006; reproduction licensed). 
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Another persistent characteristic of HGPS is progressive alopecia (loss of hair, eyelashes and 

eyebrows) with few soft hairs persistent, usually uncoloured (Fig. 3.12).  Alopecia usually takes 

place within 6 months to 2 years, and between the ages of 2 years and 3 years most children 

become bald (Coppedè, 2013). 

 
Fig. 3.12: A typical Hutchinson-Gilford progeria syndrome “inverted triangle” face with a disproportionately 

hypoplastic midface and mandible. Alopecia (Guardiani et al., 2011; reproduction licensed). 

 

Cataracts have not been found in patients with HGPS. Strabismus and mild myopia is not 

uncommon. Unusual eye findings have been irregular nystagmoid movements, ptosis and 

Marcus–Gunn phenomenon, retinal arteriolar 

narrowing and tortuosity, photophobia and excessive 

ocular tearing (Hennekam, 2006; Coppedè, 2013; Goyal 

et al., 2014). Fifteen patients with HGPS have been 

enrolled in a prospective study to evaluate otologic and 

audiologic manifestations (Guardiani et al., 2011). All 

patients had small or absent lobules (Fig. 3.13), stiff 

auricular cartilages, hypoplasia of the lateral soft-tissue 

portion of the external ear canal that led to a shortened 

canal. A low-frequency conductive hearing loss in the 

250 Hz to 500 Hz range was observed in 86.4% of the ears, despite largely normal 

tympanometry. In addition, 71% of the patients had dry cerumen impaction, and 29% of them 

reported a history of recurrent otitis media (Guardiani et al., 2011). 

Fig. 3.13: A typical Hutchinson-Gilford 

progeria syndrome pinna with stiff 

cartilages and a small lobule (Guardiani 

et al., 2011; reproduction licensed). 
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Joint and bones abnormalities are common (Fig. 3.14), and often hip dislocation and fractures 

are observed in progeria patients. Joint mobility is normal at birth but decreases between 2 

and 3 years, initially in the knees followed by the elbows and fingers. Children develop a 

widebased, shuffling gait, caused by the combination of coxa valga and joint stiffness. At first, 

the muscles appear prominent due to the disappearing of subcutaneous fat, and then the 

muscle bulk also decreases. Some children present a torticollis and a cervicothoracic kyphosis. 

Moreover, with time osteopenia of the long bones develops. The basis of the joint and muscle 

problems in progeria has rarely been studied (Hennekam, 2006). 

 

 

Fig. 3.14: Legs of 8-year-old Dutch Patient 3. Note flexed knees, prominent joints, and decreased subcutaneous 

fat tissue. The mobility in the ankles was already severely limited (Hennekam, 2006; reproduction licensed).  

 

A comprehensive survey of the skeletal dysmorphisms observed in children with HGPS using 

conventional radiography was obtained from 39 children with the classic HGPS genotype 

(Schmidt et al., 2012). All patients had small clavicles, followed by coxa valga (Fig. 3.15A) and 

acroosteolysis, which were observed in more than 90% of the patients, and resorption of the 

distal clavicles and narrow apices, both present in 82% of the subjects (Schmidt et al., 2012). 

In general, it can be stated that osteolysis is often found at the distal phalanges (Fig. 3.15B), 

clavicles, mandible, neurocranium and viscerocranium of some patients. In classical HGPS, 

osteolysis seems to be restricted to these bones; however, there are also reports involving the 

first ribs. With the increment in mandibular osteolysis, retrognatia occurs (Ahmed et al., 

2017). During the first two years of life, the size of the chin shrinks, as also shoulders with a 

gradual narrowing of the upper part of the body (Rastogi & Mohan, 2008; Ahmed et al., 2017). 
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The skull of patients appears giant-sized in contrast to the body and face (Fig. 3.16C), and 

often fractures at this level occur during the final stage of the disease (Hennekam, 2006; 

Ahmed et al., 2017).  

No male patient is known to have fathered a child but a 23-years old woman with non-classical 

progeria gave birth to a healthy child (Corcoy et al., 1989). Breast development is usually 

completely absent. Marked hypoplasia of the nipples (but not true athelia) has been described 

several times. Menarche has been reported at 14 years, with subsequent irregular cycle (every 

2–3 months) (Hennekam, 2006). The mail reproductive organ remains small, with testes 

normally descended (Ahmed et al., 2017). 

Mental development and motor skills such as sitting, standing and walking are not affected. 

Children with progeria are often remarkably alert, active, cheerful with a normal psychosocial 

growth (Ahmed et al., 2017). HGPS patients do not display neurological aging to any significant 

extent (Mitchell et al., 2015), suggesting that the brain may be protected from, and/or 

insensitive to, and/or unaffected by, the expression of the progeria mutation (Baek et al., 

2015). 

 
Fig. 3.15: Human HGPS patient x-rays. A) Coxa Valga; B) Osteolysis of the distal phalanx of the 2nd and 5th finger; 
C) Relatively large neurocranium compared to the viscerocranium (especially the mandible), open anterior 

fontanel, thin cranial vault, and mild wormian bone formation at the occiput (Hennekam, 2006; reproduction 

licensed). 

 

A rare case of a 10-year-old boy with classical HGPS with hypoparathyroidism has been 

reported in Egypt (Kalil & Fargalley, 2012). Insulin resistance is common, occurring in about 

50% of affected patients, however without progression to diabetes mellitus (Coppedè, 2013).  

Cardiovascular disease (CVD) represents the main factor affecting mortality in HGPS 

individuals (myocardial infarction, stroke, congestive cardiac failure). Merideth et al., (2008) 

observed that few children had increased systolic and diastolic blood pressure. At 6-8 years of 

A 

B C 
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age, affected children slowly develop shortness of breath with easy fatigability and exertion, 

when blood pressure and pulse rates increase. Heart problems come into view sharply after 

birth and finally leading to abrupt death. The rapid progression of CVD in HGPS presents an 

opportunity to explore the natural history of human CVD, and a study performed on 26 HGPS 

patients and 22 matched controls revealed that the carotid–femoral pulse wave velocity was 

dramatically elevated in patients (Gerhard-Herman et al., 2012). Carotid duplex ultrasound 

echobrightness, assessed as a measure of arterial wall density, was significantly greater than 

age- and sex-matched controls in the intima–media, near adventitia, and deep adventitia, as 

was internal carotid artery mean flow velocity. Overall, those data demonstrated that, along 

with peripheral vascular occlusive disease, accelerated vascular stiffening is an early and 

pervasive mechanism of vascular disease in HGPS. 

In fact, the most evident post-mortem characteristic are cardiovascular abnormalities. 

Particularly, advanced coronary atherosclerotic lesions have been reported, with arteries 

frequently stenosed or occluded by plaques or narrowing of intramural arteries. Occlusion of 

the right coronary artery, lesions of the left anterior descending artery, and severe 

atherosclerosis of the aorta appear to be common (Qi & Xie, 2013). Valvular changes and 

pulmonary arterial lesions have also been reported in HGPS individuals (Qi & Xie, 2013).  

A recent cohort study that included 25 children with HGPS aimed to identify the neurovascular 

features, infarct type, topography, and natural history of cerebrovascular arteriopathy and 

stroke in these patients (Silvera et al., 2013). Neurovascular imaging revealed a unique 

vasculopathy, including distinctive intracranial steno-occlusive arterial lesions, basal cistern 

collateral vessels, and slow compensatory collateral flow over the cerebral convexities. 

Moreover, the authors identified early and clinically silent strokes as a prevalent disease 

characteristic in HGPS. Indeed, a radiographic evidence of infarction was found in 60% of 

patients, of which half were likely clinically silent (Silvera et al., 2013). Cerebral obstruction of 

blood supply may result in dysarthria, hemiplegia, and seizures (Dyck et al., 1987). 

Overall, the first cause of death is stroke, observed at the mean age of 9 years. Mean age of 

death is approximately 13 years, with a range of 7-30 years (Debusk, 1972; Hennekam, 2006; 

Rastogi & Mohan, 2008; Shankar et al., 2010; Ahmed et al., 2017). However, other death 

reasons are reported, such as infections (Ishii, 1976), pulmonary hypertension (Shiraishi et al., 

2001), complications of cardiac surgery (Corcoy et al., 1989), intracranial bleeding (DeBusk, 

1972; Stehbens et al., 1999), and convulsions (Gabr, 1960).  
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3.6 Aging, Cancer and Lamins 

It is interesting to note that comparative analysis of data on cancer incidence indicate that 

after a steady increase during adult life, the cancer incidence rate slows down at old age 

(above 70) for most sites of cancer development, as well as for all cancers combined (Anisimov 

et al., 2005). This phenomenon has been explained by detection bias, survival selection with 

old age of individuals that are less prone to cancer, and somatic aging. Ukraintseva and Yashin 

(2001, 2003) suggested that somatic aging might create conditions that oppose cancer 

development in older patients. First, the decline in the rates of metabolism, information 

processing and cell proliferation in an aging organism, might slow down the accumulation of 

some pathological changes in the human body. Second, the risk of cancer could diminish in 

the old simply because the proportion of senescent cells, less prone to malignant 

transformation, increases. Third, the physiological and metabolic changes that accompany 

ontogenetic transitions in an organism (for example, switching off reproductive function at 

the menopause) might change the spectrum of internal cancer-risk factors, resulting in 

decreasing vulnerability to some cancers. In is interesting to note, that also in HGPS patients 

there is not increased incidence in cancer. This case, is different from other premature aging 

syndromes, such as Werner syndrome, or others caused by mutations of DNA repair genes 

(Coppedè, 2013). Scientists from the National Cancer Institute (NCI) found that cells from 

HGPS patients contain a tumour protection mechanism that is mediated by bromodomain-

containing protein 4 (BRD4), a protein that is encoded by the BRD4 gene (NCI, 2014). In 

literature, osteosarcoma was described in two patients and was explained on the basis of a 

rearranged p53 gene implicated both in HGPS syndrome (Varela et al., 2005) and 

osteosarcoma cells (Masuda et al., 1987; Shalev et al., 2007). Indeed, accelerated senescence 

appears to be partially ameliorated by deleting p53, demonstrated by the fact that in vivo 

deletion of p53 improved the postnatal growth and viability in a mouse model of progeria 

(Varela et al., 2005). However, excluded the above-mentioned case, no other progeria 

children were reported to suffer from cancer. 

In general, nuclear laminas are currently emerging as an additional event involved in 

malignant transformation. The presumed association is multifactorial and affects 

tumorigenesis from its initial step to its advanced stage of metastatic spread. Lamins 

involvement in cancer-associated processes has been related, mainly, to their role as guardian 

of the nuclear architecture, their role in regulating basic nuclear activities that are implicated 
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in tumorigenesis, their multiple interactions with major cancer gene pathways and their role 

in chromosomal segregation control with its resultant impact on aneuploidy (Prokocimer et 

al., 2009). Studies have reported differential expression of A-type lamins in tumour tissues 

and have linked their absence to increased proliferation in a range of cancers, including ones 

of the skin, lung, thyroid, lymphatics and soft tissue (Stadelmann et al., 1990; Broers et al., 

1993; Venables et al., 2001; Tilli et al., 2003; Wang et al., 2015). Until Willis et al. (2008), no 

study was able to link either absence or presence of A-type lamins to tumour progression, 

although Venables et al. (2001) suggested that loss of expression of lamins A/C was correlated 

with enhanced proliferation rates in tumours and that downregulation of lamin A might have 

been a requisite of tumour progression. Willis et al. (2008) reported that lamin A but not lamin 

C is a potential biomarker of the stem cell niche in the colonic crypt and secondly, expression 

of lamin A/C in colorectal cancer (CRC) tissues is strongly correlated with mortality. Therefore, 

lamin A/C may represent a novel and important prognostic biomarker in CRC. Also, Wang et 

al. (2015) suggested that lamins might have some value in diagnosing thyroid tumours.  

It has also been reported that progerin is expressed in a number of human cancer cell lines 

and promotes tumorigenesis by increasing genomic instability in cancer cells (Tang et al., 

2010). 

On the basis of all the aforementioned, it is plausible to think that predisposition to cancer in 

HGPS might be in most cases masked by the short lifespan of patients (Shalev et al., 2007) and 

could be a potential issue if lifespan of patients is increased.  

Furthermore, given the efficiency of farnesyltransferase inhibitors (FTIs) in the nuclear 

architecture rescue of human HGPS fibroblasts and a broad spectrum of human cancer 

treatments, the targeting of progerin may open a new avenue for human cancer therapy 

(Sepp-Lorenzino et al., 1995; End et al., 2001; Capell et al., 2005; Young et al., 2005; Tang et 

al., 2010). 
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3.7 Diagnosis of HGPS 

Until 2003, there was not any definitive test to diagnose progeria. Diagnosis was based on the 

observation of the typical phenotype, as well as x-rays and urinary hyaluronic acid testing. It 

must be clear that signs are not fully evident until a child’s first or second year of age, and that 

some signs of HGPS can be confused with other progeroid syndromes. Therefore, misdiagnosis 

was a frequent event (PRF, 2017b). 

The measurement of hyaluronic acid in the urine, reported to be increased in HGPS children, 

was used for many years in diagnosis but it is now considered unreliable (Gordon et al., 2003). 

With the discovery of the cause of HGPS in Lmna gene, patient’s blood samples and a skin 

biopsy can be evaluated for the presence of the mutated gene. This, not only gives a definitive 

diagnosis, but also translates into earlier diagnosis and early medical intervention (PRF, 

2017b). 

Also, prenatal diagnosis is possible by analysis of DNA extracted from foetal cells obtained by 

amniocentesis usually performed at about 15-18 weeks' gestation or chorionic villus sampling 

at about 10-12 weeks of gestation. Since recurrence of the disease is extremely rare in the 

same family, this would be performed because of the improbable possibility of germline 

mosaicism in one of the parents (Shankar et al., 2010). Also, pre-implantation genetic 

diagnosis may be available for families in which the disease-causing mutation has been 

identified in an affected family member.  
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3.8 Treatments: What has Been Done and Future Strategies 

To date, no definitive therapy is proven to be effective for any of the progressive and 

deleterious aspects of HGPS. Patients are generally treated conservatively and following 

precautions and indications may improve their condition (Shankar et al., 2010). For example, 

low dose aspirin can help the cardiovascular signs, high-calorie dietary supplements can help 

in reducing weight loss, while physical therapy can help maintaining joint motion and muscle 

stretching and strengthening (Shankar et al., 2010; Ahmed et al., 2017). 

Therapeutic approaches for HGPS treatment can be intended to work at different levels and 

several strategies have been adopted to correct defects of HGPS. We can broadly summarize 

the approaches in the following main ones: to decrease the toxicity of farnesylated prelamin, 

to block the cryptic splicing site leading to mature progerin mRNA production, to reverse the 

cellular phenotypes, or to degrade progerin or farnesylated prelamin A within cells (Cau et al., 

2014; Gordon et al., 2014). 

The discovery of the cause of HGPS in 2003 represented a key element in therapy strategies 

studies. Since the pathological phenotypes seen in HGPS arise from a farnesylated, mutant 

prelamin A, inhibition of its farnesylation was thought to reverse these phenotypes. In 2005, 

many publications reported that the blebs observed in the nuclear membranes of cultured 

fibroblasts from HGPS could be eliminated by treatment with farnesyltransferase inhibitors 

(FTIs), drugs originally developed to potentially block the activation of Ras proteins in different 

cancers (Capell et al., 2005; Glynn & Glover, 2005; Mallampalli et al., 2005; Toth et al., 2005; 

Yang et al., 2005). The importance of Ras proteins in cell proliferation, differentiation and 

survival is well known, as also the relation of overactive Ras signalling with cancer.  

In 2006, Fong et al. demonstrated that FTIs ameliorated the pathology exhibited in a mouse 

model of progeria (Zmpste24-/-). Other in vivo studies on animal models of progeria treated 

with FTIs reported that cardiovascular defects, bone mineralization, and weight were 

improved, and lifespan was extended with this therapy (Yang et al., 2006; Capell et al., 2008). 

Still, it has to be said that these mice models had a fairly severe disease phenotype and died 

prematurely (Yang et al., 2008) and that FTI gave better results in cultured cells from human 

patients than in mouse models of progeroid syndromes. Indeed, only a small percentage of 

progerin/prelamin A seems to be unprenylated in FTI-treated animals. Potentially, FTI 

treatment could negatively affect B-type lamin dynamics, necessary for the nervous system 

and not only (Adam et al., 2013; Stewart, 2014). However, the results of these studies were 
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considered promising and led to propose FTIs as a possible treatment for HGPS (Rusiñol & 

Sinensky, 2006). So, on May 7th 2007 the first ever clinical drug trial began. Twenty-six patients 

were treated with lonafarnib (LON) administered orally twice per day (150 mg/m2) for a period 

of two years. Although control studies were not possible, LON appeared to be effective for 

progeria since every child showed improvement in one or more of four ways (i.e., gaining 

additional weight, better hearing, improved bone structure and/or flexibility of blood vessels) 

with some of the HGPS patients developing mild drug-related side effects (Gordon et al., 

2012). The benefit of FTI for progeria is controversial since after treatment donut-shaped 

nuclei in cultured cells and in tissues from wild type mice or from human progerin still appears. 

This phenomenon is linked to an increase of the proteasomal degradation of pericentrin, a 

centrosomal protein (Verstraeten et al., 2011). Stop mutations in pericentrin lead to dwarfism 

(Rauch et al., 2008) and to abnormalities in ataxia telangiectasia and Rad3-related (ATR)-

dependant DNA damage response (Griffith et al., 2008). FTI are known inhibitors of the 

histone deacetylase HDAC6 (Marcus et al., 2005; Zhous et al., 2009), whose main cytosolic 

targets are tubulin, tau and several other microtubule-associated proteins (Hubbert et al., 

2002; Ding et al., 2008; Zilberman et al., 2009). Therefore, FTI-induced nuclear shape 

abnormalities could result from defects in both mitotic spindle microtubules and in 

centrosome organization and functions (Kovacs et al., 2004). After the beginning of the first 

clinical trial, it was demonstrated that an alternative prenylation pathway, called geranyl 

geranylation, may be activated in the presence of FTIs, offering possible explanations for the 

only moderate efficiency of the FTI treatment (Yang et al., 2008).  

In 2007, Dr. Carlos Lopez-Otin, University of Oviedo (Spain), during a Progeria Research 

Foundation Scientific Workshop presented laboratory studies in which he demonstrated that 

zoledronic acid (ZO) and pravastin (PRA) administrated together improved disease in progeria 

cells and extended lifespan in different mouse models (Varela et al., 2008; PRF, 2017c). 

Pravastatin is a member of the drug class of statins and it is usually used for lowering 

cholesterol and preventing cardiovascular disease, while zoledronic acid is a bisphosphonate, 

usually used as a bone drug for improving osteoporosis, and to prevent skeletal fractures in 

people suffering from some forms of cancer (PRF, 2017c). They act as enzymes of the 

isoprenoid biosynthesis pathway, zoledronic acid inhibiting farnesyl-pyrophosphatase 

synthase and pravastatin inhibiting the 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) 

reductase (Varela et al. 2008). This synergistic combination offers the advantage of blocking 
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both the farnesylation and geranyl-geranylation of progerin/prelamin A, avoiding the 

alternative isoprenylation by geranyl-geranyl transferase I induced by FTI, already reported 

for Ras. This therapy was tested on the Zmpste24−/− progeria mouse model in which the aging-

like phenotypes improved, ameliorating growth retardation, loss of weight, lipodystrophy, 

hair loss and bone defects. Likewise, the longevity of these mice was substantially extended 

(Varela et al., 2008). So, in 2009 another small clinical trial started, and PRA and ZO were 

administered together with LON for 1 month in order to prove feasibility before moving to a 

larger efficacy trial. The drugs in this trial were well tolerated and a triple drug efficacy trial 

started. Comparisons of the results of such clinical trial with the ones of LON monotherapy 

treatment revealed a small additional bone mineral density benefit. However, osteoporosis is 

not a primary contributor to premature mortality in HGPS, so it is not clear that this represents 

a clinically relevant advance (Collins, 2016), even because no added cardiovascular benefit 

was noted with the addition of pravastatin and zoledronic acid (Gordon et al., 2016). 

Furthermore, this triple-drug regimen induced more donut-shaped nuclei than the treatment 

by FTI alone (Verstraeten et al., 2011), and increased plaque formation in the carotid and 

femoral arteries, as well as apparent acceleration of the extraskeletal calcification that are a 

feature of HGPS (Collins, 2016). To date, the three drugs are not used together in HGPS 

patients, but whether an FTI plus a statin (without the bisphosphonate) might provid benefits 

it is still unknown (Collins, 2016). 

As previously said, another strategy is to block the cryptic splicing site leading to mature 

progerin mRNA production. For this purpose, morpholino antisense oligonucleotides have 

been demonstrated effective in vitro in fibroblasts from HGPS patients (Scaffidi & Misteli, 

2005). Morpholinos are small modified oligonucleotides that can sterically block the cryptic 

splice site in exon 11 of progerin pre-mRNA resulting in a concentration-dependent decrease 

in progerin mRNA and protein levels, markedly reducing the accumulation of progerin and its 

associated nuclear defects (Scaffidi & Misteli, 2005; Osorio et al., 2011). The combined 

administration of two antisense oligonucleotides that block the aberrant splicing in Lmna 

caused by the c.1827C>T;p.Gly609Gly mutation reduced progerin amounts also in vivo (Osorio 

et al., 2011). In such study conducted by Osorio et al. (2011), the progerin expression resulted 

downregulated in the liver and in the kidneys, the treatment significantly lengthened the 

lifespan of LmnaG609G/G609G mice and ameliorated most of the phenotypical and molecular 

alterations (Osorio et al., 2011). These findings, together with the increasing evidence that the 
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use of oligonucleotides for correction of splicing defects, has growing therapeutic 

applications. The encouraging preliminary results initiated a set up of a new clinical trial that 

is currently under design (Cau et al., 2014), even though this novel strategy presents significant 

regulatory challenges (Collins, 2016).  

Still, some research groups targeted cellular HGPS phenotypes. Resveratrol, a stilbenoid 

activator of SIRT1, is a deacetylase involved in many cellular processes and that is showed to 

enhance health span in rodents (Vidak & Foisner, 2016). Resveratrol was also studied in 

Zmpste24−/− mice in which it slowed down weight loss and significantly extended lifespan (Liu 

et al., 2012a). The mechanism of the beneficial effect of resveratol in HGPS mice is unsure, 

but it has been shown that in the presence of progerin or prelamin A, SIRT1 exhibits reduced 

association with the nuclear matrix and decreased deacetylase activity, leading to rapid 

depletion of adult stem cells in Zmpste24−/− mice (Liu et al., 2012a). However, another study 

conducted with an osteoblast and osteocyte-specific progerin-expressing mouse model 

(Schmidt et al., 2012) did not reveal a beneficial effect of resveratrol (Strandgren et al., 2015). 

Thus, given that resveratrol is a natural product and that other more potent STACs exist, more 

detailed studies are needed to find out the links between A-type lamins and SIRT (Stewart, 

2014), and whether resveratrol is a potentially promising drug for HGPS treatment. Endisha 

et al. (2014) demonstrated that restoring SIRT6 expression, which is diminished in HGPS cells 

and in normal human fibroblast approaching replicative senescence, may partially give 

phenotypic improvements, impeding senescence and the formation of dysmorphic nuclei, but 

the mechanisms underlining these observations needs to be investigated.   

Another approach for treatment of HGPS aims at reducing progerin protein levels. 

Proteasomal degradation and autophagy are the two major cellular mechanisms involved in 

removing misfolded, mutant or aggregated proteins. Although a detailed study on potential 

pathways involved in progerin degradation has not been done so far, several observations 

suggest that progerin may be removed by activating macroautophagy (Vidak & Foisner, 2016). 

Treatment with rapamycin upregulates autophagy and extends lifespan from yeast to 

mammals (Jung et al., 2010; Madeo et al., 2010; Johnson et al., 2013). Rapamycin is known 

for its anti-aging properties in mice (Arriola Apelo et al., 2016) and this validates the theory 

that finding the cure for progeria may also benefit the entire aging population. Rapamycin 

raised great interest in the scientific community for its properties such as powerful antibiotic, 

antiproliferative and immunosuppressant (Chang et al., 1991). Mammalian target of 
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rapamycin (mTOR) is a protein kinase that controls cell 

growth, proliferation, and survival (Ballou & Lin, 2008). 

As a comment, it has been suggested that FTIs may 

indirectly affect mTOR by inhibiting the farnesylation 

of Rheb GTPase, an upstream activator of mTOR 

(Hanker et al., 2010). mTOR inhibition by rapamycin or 

its analogues may also mimic calorie restriction (CR) 

which is shown to counteract the onset of age-related 

diseases (Evangelisti et al., 2016). Moreover, it was 

hypothesized that mTOR inhibitors may reduce the 

age-associated inflammation, thus slowing down the 

progression of aging-related pathologies in humans 

(Fig. 3.16) (Evangelisti et al., 2016). Experimental 

studies demonstrated that rapamycin decreases the amount of progerin by 50%, improves the 

abnormal nuclear shape, extends the lifespan of progeria cells, and leads to autophagic 

degradation of toxic farnesylated prelamin A and progerin (Cao et al., 2011; Cenni et al., 2011; 

Graziotto et al., 2012). As a result of all the aforementioned findings, on April 2016 a new two-

drug clinical trial started assessing everolimus in addition to lonafarnib. The first stage of the 

study will determine the safest maximum dose of everolimus in progeria children, then, if 

toxicity is manageable, the efficacy of its combination with LON will be evaluated (Collins, 

2016). Everolimus is a semisynthetic rapamycin analogue (rapalogs), which has an improved 

oral bioavailability compared to rapamycin and is approved by the FDA (Evangelisti et al., 

2016).  

Other possible therapeutic agents include tyrosine-kinase inhibitors (blocking fibrosis via TGFβ 

signalling), again statins (activating the peroxisome proliferator-activated receptor gamma - 

PPARɣ - for adipogenesis) (Prokocimer et al., 2013), and also targeting the insulin-IGF1 

signalling pathway has been investigated in a progeroid mouse model (Mariño et al., 2010; 

Cau et al., 2014).  

In another recent study Vitamin D/Vitamin D Receptor (VDR) axis emerges as a new target for 

treatment of HGPS and potentially other lamin related diseases that show VDR deficiency and 

genomic instability (Kreienkamp et al., 2016). Because progerin expression increases with age, 

maintaining vitamin D/VDR signalling could keep the levels of progerin in check during 

Fig. 3.16: The mammalian target of 

rapamycin (mTOR) complex (mTORC1) 

signalling pathway contributes to aging 

through various cellular processes. Active 

mTORC1 activates stem cell turnover, 

cellular senescence and protein translation 

(arrows), while it inhibits autophagy. These 

conditions contribute to the aging of an 

organism (Evangelisti et al., 2016; 

reproduction licensed). 
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physiological aging. In fact, it has been demonstrated that HGPS cells reduce expression of 

VDR and DNA repair factors breast cancer gene 1 (BRCA1) and p53-binding protein 1 (53BP1) 

with progerin accumulation. Moreover, reconstituting VDR signalling via 1α,25-

dihydroxyvitamin D3 (1,25D) treatment improves HGPS phenotypes, including nuclear 

morphological abnormalities, DNA repair defects, and premature senescence (Kreienkamp et 

al., 2016).  

Inorganic pyrophosphate (PPi) treatment in vivo using LmnaG609G mice was demonstrated to 

ameliorate excessive vascular calcification caused by reduced extracellular accumulation of 

pyrophosphate that results from increased tissue-nonspecific alkaline phosphatase activity 

and diminished ATP availability caused by mitochondrial dysfunction in vascular smooth 

muscle cells (Villa-Bellosta et al., 2013). Future studies in HGPS mouse models are warranted 

to investigate whether treatment with PPi in combination with alkaline phosphatase or 

PHOSPHO1 inhibitors and FTI and statins is more beneficial than current strategies (Villa-

Bellosta et al., 2013). 

Other potential therapeutic agents include scavengers of reactive oxygen species (ROS). ROS 

are bioproducts of cellular metabolism that damage DNA bases and block the progression of 

replication, and are linked to physiological aging (Zhang et al., 2014). N-acetyl cysteine 

reduced the amount of unrepairable DNA damage caused by the increased generation of ROS 

(Pekovic et al., 2011; Richards et al., 2011; Lattanzi et al., 2012; Sieprath et al., 2012). Also, 

methylene blue, a mitochondrial-targeting antioxidant was studied (Gonzalo et al., 2017). 

Sulforaphane, an antioxidant derived from cruciferous vegetables, was observed to stimulate 

proteasome activity and autophagy in normal and HGPS fibroblast cultures, reversing the 

cellular hallmarks of HGPS and representing a promising therapeutic avenue (Gabriel et al. 

2015). Remodelin, is an inhibitor of N-acetyltransferase-10 able to rescue nuclear 

morphological abnormalities and proliferation defects, increase chromatin compaction and 

ameliorate the accumulation of DNA damage characteristic of progerin-expressing cells 

(Larrieu et al., 2014). Ongoing studies are monitoring the effect of remodelin on gene 

expression and evaluating its potential as a therapeutic strategy by using mouse models of 

progeria (Gonzalo et al., 2017). 

Another set of promising compounds are the retinoids (Swift et al., 2013; Kubben et al., 2016). 

It was recently shown that the Lmna gene promoter contains retinoic acid responsive 

elements, and that treatment with all-trans retinoic acid (ATRA) results in downregulation of 
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Lmna gene expression. In HGPS patient-derived fibroblasts, ATRA treatment reduces 

significantly progerin expression and was more effective than rapamycin. Interestingly, ATRA 

synergized with rapamycin in downregulating progerin levels, which in turn ameliorated a 

variety of progerin-induced phenotypes (Pellegrini et al., 2015). These data are particularly 

promising because the low doses of the drugs required for the combined treatment avoid the 

potential side effects associated with chronic treatment. Retinoids were also identified in a 

high-throughput, high-content based screening of a library of FDA approved drugs as a class 

of compounds able to revert cellular HGPS phenotypes (Kubben et al., 2016). These findings 

stress the importance of testing in vivo the efficacy of retinoids in ameliorating HGPS defects 

without inducing toxicity. 

Overall, these findings together suggest that compounds acting by decreasing progerin levels 

in the cell could represent a potent tool for new treatments. Autophagy-activating drugs could 

be particularly beneficial in progeria treatment, but prudent in vivo analyses have to be 

conducted before including them in clinical trials (Vidak & Foisner, 2016). 

The generation of HGPS-derived induced pluripotent stem cells (iPSCs) were reported for the 

first time by Zhang et al. (2011) providing a powerful new tool to unravel the molecular and 

physiological mechanisms of premature and normal aging (Misteli, 2011). Moreover, the 

HGPS-iPSCs, and their derivatives, are also useful for drug discovery (Misteli, 2011). iPSCs 

described by Zhang et al. (2011) are able to differentiate into five lineages, including vascular 

smooth muscle cells (VSMCs) and mesenchymal stem cells (MSCs), confirming their 

multipotency. These cells now offer a useful experimental system to probe the effect of 

progerin on the differentiation of various cell lineages, something that could not be done 

before because of the inability to obtain tissue samples from patients. These cells also opened 

the door to performing critical experiments, such as transplantation of HGPS-derived MSCs 

into the vasculature of animal models to probe the physiological mechanisms that participate 

in the vascular defects experienced by HGPS patients (Zhang et al., 2011). 

Lee et al. (2016) published a research article in which administration of JH4 (from the Janus 

kinase (JAK) family of tyrosine kinases) to LmnaG609G/G609G-mutant mice, resulted in a marked 

improvement of several progeria phenotypes and in an extended lifespan. Treated 

LmnaG609G/G609G mice survived up to more than 25 weeks, much more compared to controls 

(20 weeks of age), and this effect was even more obvious in LmnaG609G/+. JH4 is able to bind to 

progerin and block its interaction with lamin A/C. Being selective for progerin, there would be 
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very minimal and nonspecific side effects. Therefore, it was proposed as a new treatment 

strategy for HGPS and, eventually, for age-associated alterations involving nuclear envelope 

abnormalities (Lee et al., 2016). 

Lastly, there is increasing knowledge that during aging of mammalian cells/tissues, functions 

of many cytokines become abnormal and this leads to low-grade chronic inflammation, known 

as “inflammaging”, causing various age-related diseases (Puzianowska-Kuźnicka et al., 2016; 

Rath, 2017). It has been reported that a balance between the pro-inflammatory and the anti-

inflammatory cytokines would lead to adaptive aging delaying or escaping the diseases and 

resulting into healthy longevity. A breakdown of this balance, due to over-production of the 

pro-inflammatory cytokines, would result in accelerated aging, frailty, age-related diseases 

and reduced life-expectancy (Minciullo et al., 2016). The state of low-grade, persistent and 

chronic inflammation also leads to generation of excessive oxidative stress damaging cellular 

macromolecules, sub-cellular structures and disease phenotypes (Rath, 2017). Nuclear factor 

kappa-light-chain-enhancer of activated B cells (NF-kB) is a protein complex that controls 

transcription of DNA, cytokine production and cell survival, and it is involved in cellular 

responses to stimuli such as stress, cytokines, ultraviolet irradiation, heavy metals, free 

radicals, oxidized LDL, and viral or bacteria antigens. NF-kB hyperactivation has been related 

to the aging process (Adler et al. 2007), and is well documented in numerous age-associated 

diseases. NF-kB hyperactivation, together with the secretion of high levels of pro-

inflammatory cytokines, was demonstrated in two different mouse models of accelerated 

aging (Zmpste24–/– and LmnaG609G/G609G mice) (Osorio et al., 2012). In such study, inhibition of 

NF-kB signalling was obtained in Zmpste24–/–  mice thanks to a genetic technique based on the 

use of RelA-haploinsufficient mice (RelA+/-); in LmnaG609G/G609G mice inhibition was obtained 

pharmacologically using sodium salicylate. The inhibition of NF-kB signalling prevented the 

age-associated features typical of the models and extended their longevity (Osorio et al., 

2012). As it can be seen in Fig. 3.17, LmnaG609G/G609G mice had high serum levels of IL-6, which 

were linked to a systemic inflammation condition and immunological alterations (Osorio et 

al., 2012). The authors proposed that among the plethora of pro-inflammatory cytokines 

secreted by senescent cells, IL-6 together with chemokine (C-X-C motif) ligand 1 (CXCL1) and 

TNF-a, might have essential roles in progeria development by nonautonomous stimulation of 

surrounding cells through the activation of their cognate cell surface receptors and signal 

transduction pathways (Coppe et al., 2010; Freund et al., 2010). 
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Fig. 3.17: Serum determinations of IL-6, CXCL1, and TNF-a in 3-month-old Lmna+/+ (n = 5) and LmnaG609G/G609G (n = 

5) mice. Plot represents relative mean values 6 SEM. (*) P < 0.05; (**) P < 0.01, two-tailed Student’s t-test (Osorio 

et al., 2012; reproduction licensed). 

 

Interleukin 6 (IL-6) is a well-known cytokine, involved in a variety of processes such as 

development and differentiation, and promotes inflammation (Ershler, 1993). IL-6 

dysregulation is demonstrated to be a direct cause of physiologic decline with aging (Gomez 

et al., 2010; Puzianowska-Kuźnicka et al., 2016) and modulation of its production or effects 

could offer a major breakthrough in prevention and treatment of people at advanced old age 

(Maggio et al., 2006). In accordance to the current knowledge, acting against low grade 

inflammation and in particular inhibiting IL-6 may be beneficial in aging related disorders and 

thus, also in progeria patients.  

In conclusion, all these in vitro and in vivo animal studies, together with the results of the first 

clinical trials, show that it is possible to achieve improvements of the disease phenotypes. 

Also, the increasing knowledge on biological mechanisms involved in aging can help in finding 

new therapeutic strategies to improve HGPS patient’s conditions and also of the older people.  

However, for what concerns HGPS, we still need to better understand the underlying disease 

mechanisms to be able to tackle specific aspects of the disease in a more focused approach. 

It will also be important to elucidate which of the numerous pathways found to be impaired 

in HGPS are the most relevant. 
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3.9 Animal Models for HGPS  

Recent advances in defining molecular pathways implicated in aging have been obtained by 

the use of genetically tractable model systems, ranging from yeast, to flies and nematodes, to 

mice (Gurkar & Niedernhofer, 2015). Also, several animal models have been developed to 

study laminopathies. In particular for laminopathies, the most studied animals are the mouse, 

C. elegans and Drosophila. These last two are attractive especially for studying the basic 

functions of nuclear lamina genes and for understanding the mechanisms behind 

laminopathic diseases (Prokocimer et al., 2009). On the other hand, the mouse is interesting 

for life- and healthspan studies due to its relatively short lifespan and low cost of housing, 

genetic similarity to humans, genetic tractability, and the large amount of available baseline 

phenotypic data (Gurkar & Niedernhofer, 2015; Kõks et al., 2016). The development of animal 

models that phenocopy segmental progeroid syndromes, such as HGPS, are particularly 

interesting because not only they can provide experimental systems useful to investigate the 

basis of particular pathologies associated with aging, but they can also be used to perform 

preclinical testing of therapeutic strategies against these alterations (Osorio et al., 2009; 

Burtner & Kennedy, 2010). Genome maintenance mechanisms are generally highly conserved 

between species and for this reason mice defective in such pathways are important models 

(Gurkar & Niedernhofer, 2015). Since the discovery of the cause of HGPS many progeroid 

mouse models have been created, allowing the recent development of the first therapeutic 

approaches for this disease. 

It is important to keep into consideration that mice and humans may show different features 

or sensitivity to progeroid-causing alterations, and these differences have to be carefully 

understood to interpret results derived from the use of murine models (Osorio et al., 2009; 

Kõks et al., 2016). These differences should be interpreted with even more caution when 

translated to normal old mice and humans.  

Zmpste24-deficient mice is one of the existing animal models of accelerated aging, created in 

2002 and still in use in biomedical research. As previously described, Zmpste24 is the 

metalloproteinase involved in the post-translational maturation of prelamin A, and the result 

of its missing is the expression of farnesylated prelamin A which produces various progeroid 

phenotypes. At 4–6 weeks of age Zmpste24-/- mice start displaying growth retardation, 

alopecia, loss of adipose tissue, multiple spontaneous bone fractures, abnormal nuclear 
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morphology and premature death, as well 

as muscular dystrophy and dilated 

cardiomyopathy (Fig. 3.18) (Bergo et al., 

2002; Pendas et al., 2002). Only the year 

after the creation of this model, when the 

molecular cause of HGPS was discovered, 

the resemblance of these mice phenotype 

to the clinical features characteristic of 

HGPS were explained by the proteolytic 

defect (Osorio et al., 2009). A few years later, the first knock-in LmnaHG mice was engineered. 

This mice model yields exclusively progerin but no wild-type lamin A and lamin C, displaying 

phenotypes similar to HGPS children including alopecia, loss of subcutaneous fat, osteoporosis 

and premature death, but without cardiovascular defects (Yang et al., 2005). This model 

presented also other problems, such as difficulty in the maintenance of the model due to 

fertility issues of the heterozygous, and differences in the expression levels of progerin and 

the ratio progerin/normal lamin A/C compared to HGPS patients. Furthermore, the different 

genomic base of the model compared to the human disease doesn’t make this model suitable 

to test specific target drugs (Osorio et al., 2009). In contrast, a transgenic C57BL/6 mouse 

model that carries the mutated G608G human Lmna allele on a bacterial artificial 

chromosome (G608GBAC) develops progressive loss of vascular smooth muscle cells (VSMCs), 

which constitute the most common cause of death in HGPS patients, but did not show most 

of the other pathologies limiting its utility as a model of accelerating aging (Varga et al., 2006). 

Also, a mouse model exclusively expressing the non-farnesylated form of progerin (LmnanHG) 

was generated showing milder abnormalities and extended longevity compared to LmnaHG 

mice (Yang et al., 2008). This amelioration is comparable to that obtained in Zmpste24- 

deficient animals treated with a combination of statins and aminobisphosphonates capable of 

blocking efficiently prelamin A prenylation (Varela et al., 2008). Since accumulation of non-

farnesylated progerin also causes aging signs, blocking only progerin production might not be 

sufficient in reaching a complete efficacy (Yang et al., 2008). Davies et al. (2009), described a 

Lmna knock-in allele encoding a geranylgeranylated progerin that causes a progeroid 

phenotype, providing a formal demonstration of the toxicity of this alternatively modified 

protein (Osorio et al., 2009).  

Fig. 3.18: Photograph of two littermate progeny of a 

Zmpste24 heterozygote cross, at 3 months of age 

(Pendas et al., 2002; reproduction licensed). 
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Another mouse model, in which a point mutation in 

Lmna caused loss of exon 9 (LmnaL530P/L530P), also 

displayed phenotypes overlapping with HGPS 

(Mounkes et al., 2003; Hernandez et al., 2010) such as 

loss of subcutaneous fat, decreased bone density, 

osteoporosis, abnormal dentition, thin hyperkeratotic 

skin, growth retardation and death by 3-4 weeks of age 

(Fig. 3.19). The mechanism is still unclear and appears 

to be linked to the reduced expression of many genes 

encoding extracellular matrix (ECM) components, thus 

it may differ from that of the classical HGPS (Mounkes 

et al., 2003; Stewart, 2014).  

All the above-mentioned mice models have a C57BL/6 background (Bergo et al., 2002; Pendas 

et al., 2002; Mounkes et al., 2003; Yang et al., 2005; Varga et al., 2006; Yang et al., 2008; Davies 

et al., 2009). 

Finally, transgenic mouse models with tissue-specific progerin expression have been 

generated in addition to those expressing progerin ubiquitously (Sagelius et al., 2008; 

Rosengardten et al., 2011; Schmidt et al., 2012; Baek et al., 2015). However, their usefulness 

is limited when investigating therapies that should have an impact on all aspects of the 

disease. 

As we can see, several knock-out, knock-in and transgenic animal models have been used to 

provide valuable information on the role of alterations in the prelamin A post-translational 

maturation in accelerated aging and have been used to develop therapeutic strategies against 

progeroid symptoms (Osorio et al., 2009). However, all these mouse models described above 

only partially phenocopy HGPS patients and until 2011 new animal models were required to 

test in vivo anti-progeria therapies. Furthermore, none of the described mice were 

appropriate to test approaches such as those targeting the alternative splicing responsible for 

progerin production. This problem was addressed by Osorio et al. (2011), who created a 

knock-in mouse strain that carries a HGPS mutation in the mouse Lmna gene (Lmna G609G; 

1827C>T; Gly609Gly; Fig. 3.20). Mice that carry the Lmna G609G allele express lamin C, lamin A, 

and progerin (due to abnormal splicing of the endogenous Lmna mRNA), reproduce the same 

molecular situation present in HGPS patients and phenocopy the main clinical manifestations 

Fig. 3.19: LmnaL530P/L530P homozygous 

mice exhibit severely retarded growth 

and die early. The smaller 

LmnaL530P/L530P mouse weighed 5.37 g; 

the littermate (21.88 g) was wild type 

(Mounkes et al., 2003; reproduction 

licensed). 
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of the disease, including shortened life span, bone disease and cardiovascular aberrations 

(Osorio et al., 2011). This model has been used since its creation to test possible therapies for 

progeria patients (Osorio et al., 2011; Osorio et al., 2012; Villa-Bellosta et al., 2013; Lee et al., 

2016), and is considered to be the best animal model for preclinical drug testing not only for 

HGPS but also for normal aging where progerin accumulation is associated to the age 

pathologies (Osorio et al., 2012).  

Despite these considerations, no information on the housing and breeding of this model is 

available in literature, and the clinical manifestations of homozygous and heterozygous need 

to be studied and described more in detail and in a larger colony. 

 

 
Fig. 3.20: Generation of knock-in LmnaG609G mice. Schematic representation of the wild-type Lmna locus, targeting 

vector, and targeted allele. Positions of restriction enzyme cleavage sites and probes used for Southern blot 

analysis are shown (Osorio et al., 2011; reproduction licensed). 
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Chapter 4 

The Study of the LmnaG609G Transgenic Mice Phenotype 

 

4.1 Objective  

The overall objectives of this study were to characterize the LmnaG609G/G609G and LmnaG609G/+ 

phenotypes, and to describe the colony in a more detailed way compared to previous studies. 

In this study, many features of a large LmnaG609G colony were observed for a 2-years period. 

We gave a first description of the breeding and housing conditions and tried to underline the 

possible interference of the genotypic background with the phenotype expression. 

The final aim was to gather data that can help researchers using LmnaG609G mice for their 

investigations, in order to optimize the breeding and housing conditions, to thoroughly 

understand similarities and differences between the mouse model and human patients, 

pointing out confounding effects that could derive from the well known genetic background 

of C57BL/6.  

This study was conducted in collaboration with the National Research Council, Institute of 

Molecular Genetics - Unit of Bologna, Italy. 
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4.2 Materials and Methods 

All in vivo studies were performed at the Laboratory Animal facility of the Department of 

Veterinary Medical Sciences (DIMEVET), Alma Mater Studiorum – University of Bologna, with 

the authorization of the experimental protocol by the Italian Ministry in compliance with the 

Legislative Decree 26/2014 (Protocol number 653/2016-PR released on July 7th, 2016). An 

integration to the treatment protocol was prepared in December 2017. 

Furthermore, experimental procedures were carried out following Standard Operating 

Procedures (SOP). The three main SOPs followed were: 

1) SOP 7.5-02-01: Animal house management 

2) SOP 7.5-02-02: Conditions to be applied to the animal house locals 

3) SOP 7.5-02-03: Safeguard of the animals in the animal house. 

 

4.2.1 HGPS Mouse Model  

The HGPS transgenic mice were provided by Professor Carlos-Lopez Otín (University of 

Oviedo, Spain, Departamento de Bioquímica). Briefly, to generate the knock-in mouse strain 

carrying the HGPS mutation, the wild-type mouse Lmna gene was replaced with a mutant 

allele that carried the c.1827C>T;p.Gly609Gly mutation, which is equivalent to the HGPS 

c.1824C>T;p.Gly608Gly mutation in the human Lmna gene. The knock-in mice were produced 

with embryonic stem cells derived from a 129/OLA, microinjected to C57BL/6 blastocysts to 

produce chimeric mice that were then strain backcrossed to C57BL/6. Osorio et al. (2011) 

provided a detailed description on how the mouse model was created together with a first 

description of the model. Mice that carry the LmnaG609G allele express lamin C, lamin A, and 

progerin (due to abnormal splicing of the endogenous Lmna mRNA), reproducing the same 

molecular situation present in HGPS patients (Fig. 4.1). 

 
 
Fig. 4.1: Western (immuno) blot analysis of mouse adult fibroblasts obtained from the mice with the various 

genotypes used in the study of Osorio et al., 2011. Lamin A, lamin C, prelamin A, and progerin were detected with 

a monoclonal antibody against lamin A/C (Manlac-1) (Osorio et al., 2011; reproduction licensed). 
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4.2.2 Housing and Breeding  

Mouse breeding was conducted in the Laboratory Animal facility of Department of Veterinary 

Medical Sciences (DIMEVET), Alma Mater Studiorum – University of Bologna, starting from 

three heterozygous (LmnaG609G/+) progenitors (one male and two females) provided by 

Professor Otín, University of Oviedo (Spain). At the time of arrival, mice were two-month old 

and were kept in quarantine for acclimatization for 10 days. 

Mice were maintained under a 12 hours of dark/light life cycle (200 lux at the cage level) in an 

environment controlled for temperature (20-24°C) and humidity (40-70% relative humidity). 

Temperature and humidity were daily recorded via specific data logger, subjected to 

calibration as provided by DIMEVET Plan Quality for the calibration of instruments and 

facilities. 

The mice were housed with the same sex littermates in conventional polycarbonate cages, in 

accordance with the indications of the Italian Decree 26/2014 (Mouse Cage 1284L001, 365 

mm L × 207 mm W × 140 mm H, Tecniplast, Varese, Italy). Breeding pairs were housed in 

bigger cages (Mouse Cage 1291H001, 425 mm L × 266 mm W × 185 mm H, Tecniplast, Varese, 

Italy). 

Litter (Lignocel, Hygienic Animal Bedding) and the environmental enrichment (e.g. cardboard 

rolls, sizzle nest) guaranteed to the animals the opportunity to carry out the typical behavior 

of the species. 

The mice received standard chow (Teklad 20/18 Rodent Diet, Envigo, Udine, Italy) and water 

ad libitum. Animals ate while fully inverted by grasping onto the wire cage top. A subset of 

these mice (cage 1 to 30 - G1-G30), were fed also with moistened chow deposited on 

aluminium foils on the bottom of the cage starting approximately from the age of 10 weeks, 

in order to assure feed intake and weight maintenance to the less motile ones. 

Breeding pairs were composed of 2 females for each male starting from the age of 1-2 month 

until the age of 5-7 month. Since the mutation carried by these mice leads to premature aging, 

we hypothesize that LmnaG609G/+ has a shorter reproductive life than wild type (Lmna+/+) and 

they were retired before 1 year of age, differently from what suggested for this strain by 

Baumans (2007). To increase the probability of having LmnaG609G/+ and LmnaG609G/G609G mice 

instead of Lmna+/+, we favorited intercross breeding female LmnaG609G/+ × male LmnaG609G/+. 

However, in order to assure the maintenance of the strain we also coupled female Lmna+/+ × 

male LmnaG609G/+. According to Mendelian expectations, LmnaG609G/+ x LmnaG609G/+ generate 
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50% LmnaG609G/+, 25% Lmna+/+, and 25% LmnaG609G/G609G, while Lmna+/+ x LmnaG609G/+ generate 

50% Lmna+/+ and 50% LmnaG609G/+. It is important to underline that only the homozygous and 

heterozygous mice develop the disease, the first in a more severe way than the latter; wild 

type mice were used as controls. 

To assess if LmnaG609G/G609G were sterile or not, we bred two females LmnaG609G/G609G with one 

wild type male. Also, one male LmnaG609G/G609G was caged with two heterozygous females. 

Pups were kept with dams until an age of ~30 days in order to improve survival especially of 

the smaller ones (i.e., homozygous and heterozygous). During the weaning, they were 

identified via headset marking (Fig. 4.2), and the tissue clipped with this procedure, together 

with the tail tip, were used for the genotyping. This procedure was always conducted in deep 

general anesthesia (2.5% isoflurane in O2) using an anesthetic machine (Surgivet, Smith 

Medical Vet Division, Isotec 4 + LFY-1-a Medical Oxygen Concentrator, Biological Instruments, 

Besozzo, Varese, Italy). For the mouse identification, the letters L (for littermate) and G 

(indicating the number of the cage) were used and mice were numbered according to the 

marking on the ear (for example, “L1G1” i.e.: littermate number 1 in the cage number 1). The 

cages were distinguished by means of card on which date of birth, species, sex, genotype, 

parents, identification number of each animal, and eventually treatment, had been noted. 

 
Fig. 4.2: Headset marking. Based on the position of the left ear hole each mouse was identified by a number 

following the letter L. 

 

4.2.3 Genotyping 

Genotyping was carried out at the Laboratory of Medical Genetics, Fondazione Policlinico 

Torre Vergata, Rome (Dr Maria Rosaria D'Apice). Genomic DNA was extracted from a few mm3 
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of skin sample of the terminal, not ossified, part of the tail tip obtained during the headset 

marking, and from the ear tissue deriving from such procedure. 

 

4.2.4 Colony Health Surveillance and Animal Monitoring 

The mice colony was maintained in a conventional facility. Animal’s health status was 

monitored by exposing sentinels to the dirty bedding, water bottle and food from all the cages 

of the colony. The sentinels underwent the Federation for Laboratory Animal Science 

Associations (Felasa) annual complete profile monitoring, and testing was performed by 

Envigo (http://www.envigo.com). The investigation included the most common viruses, 

bacteria, mycoplasma, fungi and ecto- and endoparasites in laboratory mice. Protective 

personal equipment (PPE) was always used in order to limit contamination between humans 

and mice. 

The overall assessment of the health and welfare of the mice was conducted daily through an 

evaluation of the animals in their home cage. A hands-on exam was conducted twice weekly. 

During this exam mice were restrained on the top of the cage and felt with a finger running 

over the animal’s coat to feel for wounds or masses, and the hydration level was assessed 

(Burkholder et al., 2012). Since the animals did not have 

conditions such as tumours that can cause increase in body 

weight while breaking down fat and muscle, we preferred 

assessing health through weighing the mice twice weekly 

instead of using the body condition score method (Ullman-

Culleré & Foltz, 1999). The animals were weighted using a 

calibrated scale (Kern 440-47N, Kern & Sohn GmbH, Balingen, 

Germany) with a plastic container in which the mouse was 

placed (Fig. 4.3). Mice in reproduction were not weighted, and 

were only checked from the outside of the cage or during litter 

change and at weaning of the pups, in order to reduce stress 

connected to manipulation which could negatively influence 

reproduction. All observations were recorded on a dedicated register. 

 

 

 

Fig. 4.3: Mouse in a plastic 

container on a calibrated scale. 
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4.2.5 Grip Strength Test, Open Field Test, and Numerical Scoring System Specific for 

LmnaG609G Transgenic Mice 

Grip strength was evaluated using the inverted grid test (Brooks & Dunnett, 2009) for a subset 

of mice as described in other studies using HGPS mice models (Bergo et al., 2002; Fong et al., 

2004; Yang et al., 2006). Briefly, 5 males for each genotype were observed for 60 seconds at 

1, 2, 3 months of age, and for heterozygous and wild type also at 6 and 9 months of age, in 

order to test the ability of the mouse to remain clinging to the cage lid after it was turned 

upside down. The grid was slightly agitated before inverting it to increase animals grip. The 

test was repeated up to 3 times if animal did not succeed remaining attach to the cage lid for 

the 60 seconds of observation. 

The open field test (OFT) is widely used to measure locomotor activity and anxiety-like 

behaviour (Prut & Belzung, 2003). A subset of mice underwent the OFT at 1, 2, 3, 6 and 9 

months of age. A semi-transparent plastic white rectangular box (» 70 x 50 cm), was marked 

from underneath the surface with parallel lines both horizontal and vertical, forming a grid of 

35 total quadrants, each measuring » 9 x 9 cm (Fig. 4.4). With another indelible green marker, 

a central area of » 39 x 23 cm was delimited. The arena was placed at the center of the room 

and illuminated at about 200 lux. At the beginning of the test, each mouse was set in the 

middle of the arena and always the same two experienced operators during a 5 minutes 

period observed and recorded manually: travelled quadrants (Q), time spent moving (TM), 

time spent in the central area (TC), vertical movements (VM), freezing (F), grooming (G), feces 

(C) and urines (U). The operators were positioned as far as possible from the arena and 

remained still and quiet throughout each trial. The room was isolated from sound and 

unintentional interruptions were firmly avoided. 

 
Fig. 4.4: OFT arena. Total arena (» 70 x 50 cm) divided in 35 quadrants (» 9 x 9 cm each). The central area (» 39 

x 23) was delimited by the green marker. 
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A spray bottle with 30% alcohol was used before and after each OFT for a general wipe down 

of the arena. Each mouse was placed in a new cage rather than back with the cage mates, as 

reintroduction of the mouse may modify behaviour of mice not yet tested (Gould et al., 2009). 

Independently from the OFT, a numerical scoring system (NSS) specific for LmnaG609G 

transgenic mice was used to numerically describe mice conditions and to compare the 

different genotypes at the same time intervals. This scoring system was used at the end of 

each OFT. In particular, the parameters considered and the attributed scores are shown in 

Table 4.1. 

 

Parameter Animal Condition Score 

Fur Shiny, thick, black  1 
Still in good condition, however slightly jagged and streaked with grey 2 
Beginning of the periocular alopecia, jagged, streaked, opaque and slightly 
dirty fur 

3 

Periocular alopecia, thin, jagged, streaked, opaque and dirty fur 4 
Gait 

analysis 

Normal 1 
Unstable/duck walk 2 

Activity Active, lively, curious, jumps, runs, digs the litter 1 
Active, lively, does not jump, alternates time spent moving and time spent 
still  

2 

Active but not particularly lively, moves slowly  3 
Tends to stay still, trembles and is hypoactive  4 

Total Score  
 

Table 4.1: Numerical scoring system (NSS) specific for LmnaG609G transgenic mice. Grades were given always by 

the same operator. 3= best condition possible; 10= worst condition possible.  

 

4.2.6 Radiological Examinations 

Some of the mice were subjected to X-ray examination of the skull and spinal cord. 

Radiographic examinations and the values used to obtain good quality images are shown in 

Table 4.2.  

The total body X-ray examination of the animal sedated by protocol (2.5% isoflurane in O2 

using the anaesthesia machine), was performed in a single lateral view with the right 

decubitus. Care was taken to avoid overextension or flexion of limbs. Radiographs of mice not 

properly positioned, or that were under- or overexposed were excluded from the analysis. 

Equipment employed for the X-rays Remote controlled Mecall SUPERIX and 
methodical CR, Computed Radiology (FCR 

Capsula Fujifilm) 
kV 50 

mAs 2 (80 mA and 2.5ms) 
Table 4.2: X-rays equipment and values used in order to achieve good quality images. 
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Radiographic studies were evaluated by a single operator and performed with the 

collaboration of the Service of Diagnostic for Images in DIMEVET. 

In particular, progression of spinal deformity was evaluated by using the kyphosis index (KI) 

as described by Laws & Hoey (2004). Briefly, KI was calculated from a line drawn between the 

caudal margin of the last cervical vertebra to the caudal margin of the sixth lumbar vertebra 

(which usually corresponds to the cranial border of the wing of the ilium) divided by a line 

perpendicular to this from the dorsal edge of the vertebra at the point of greatest curvature 

(Fig. 4.5). 

 
Fig. 4.5: Kyphosis index (KI). KI was calculated from radiographs of anesthetised mice positioned in right lateral 

recumbency. KI = AB/CD (adapted from Laws and Hoey, 2004) 

 

4.2.7 Anaesthesia 

Isoflurane is a particularly suitable volatile liquid for anaesthesia. It is characterized by a wide 

safety margin and excreted by exhalation. Liver metabolism and different excretion routes are 

not significant. Gaseous agents, generally, have the distinct advantage of enabling a rapid 

recovery from anaesthesia, so the animal regains its homeostasis quickly (e.g. posture, 

temperature regulation) (Kaliste, 2007). 

Mice were placed in an induction box or chamber of the anaesthetic machine (Surgivet, Smith 

Medical Vet Division, Isotec 4 + LFY-1-a Medical Oxygen Concentrator, Biological Instruments, 

Besozzo, Varese, Italy) in the condition of 2.5% isoflurane in O2, and then, if needed, 

anaesthesia was maintained always with isoflurane using a face mask (Fig. 4.6). 

Anaesthesia was used during X-rays and at weaning for both the headset marking and to 

gather the tail tip in order to genotype the mice. 



 71 

 
Fig. 4.6: A) Anaesthetic machine; B) Mouse in the induction chamber receiving 2.5% isoflurane in O2. 

 

4.2.8 Humane Endpoints and Euthanasia 

The humane endpoint is defined as “the point at which pain or distress in an experimental 

animal is prevented, terminated or relieved” (NRC, 2011). Animals should be euthanized at 

the earliest possible point that will provide experimental data in order to minimize suffering 

(Burkholder et al., 2012). Animals were euthanized when they reached a total score of 10 or 

if one of the signs was evaluated with the highest score, according to the humane endpoints 

(HE) table outcome score (Table 4.3).  

Due to the effects of early senescence in homozygous and heterozygous animals, we expected 

to observe a number of clinical signs of natural aging that in another genotype at the same 

age would have indicated significant morbidity. In particular, considering that one of the aims 

of such research was the study of the lifespan, clinical signs of morbidity associated with aging 

were expected and necessary for the scientific aims and objectives of the study. Therefore, 

we tried to describe the humane endpoints as objectively as possible. However, when more 

subjective endpoints such as deterioration in general health or quality of life had to be used, 

the assessment relied on the veterinarian’s observation and judgment in consultation with 

the operators to assess if the endpoint had been reached. 

Euthanasia was carried out by administering an overdose of inhaled anesthetic (isoflurane 4%) 

in the induction chamber of the anesthetic machine.  
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Parameter Animal Condition Score 

Feature Normal 0 
 Poor grooming, index of mild depression of the sensorium 1 
 Matted fur 2 
 Significant loss of fur, curved posture 3 
 Lateral or abdominal decubitus or limb/limbs paralysis  4 
Intake of food 

and water 

Normal – Unknown: body weight < 5% 0-1 
Total anorexia: body weight < 15% 2 
Cachexia: poor general condition and evident weight loss 3 

Respiratory 

symptoms 

Normal respiratory rate 0 
Slight alterations of the respiratory rate 1 
Increased respiratory rate and abdominal breathing 2 
Decreased respiratory rate speed and abdominal breathing 3 
Marked abdominal breathing and cyanosis 4 

Spontaneous 

behavior 

Normal 0 
Slight alterations; excitability  1 
Decreased mobility and alert; solitary confinement 2 
Restless or very still; compulsive behaviours; circling, (repeated circular 
movements) as index of brain suffering 

3 

Induced 

behavior 

Normal 0 
Mild sensorium depression or exaggerated response to stimuli 1 
Moderate changes in typical behavior 2 
Violent or extremely low reaction 3 

Additional 

parameters 

Rotated ears outwards and/or back; sharpened snout; narrow and half-
closed eyes 

4 

 Rapid weight loss and severe dehydration 4 
Total Score   

 
Table 4.3: Standardized score table to evaluate animal suffering and define the humane endpoints. Experimental 

humane endpoints: the animal must be sacrificed when it reaches the score 10 of the table. The animal must be 

immediately sacrificed if it presents one of the signs evaluated with the highest score for a specific sign 4. The 

total score is classified as: 0-4 = Normal; 5-9 = Needs daily monitoring; 10 = Animal with initial distress signs; 11-

13 = Animal with distress signs; ≥ 14 = Severe distress (National Research Council, Institute of Molecular Genetics, 

Bologna).  
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4.2.9 Post-mortem Examinations 

The animals died of natural cause or were euthanatized by means of painless method in 

compliance with the humane endpoints.  

When possible, post-mortem examination was carried in the necropsy room of the Anatomo-

Pathological Service of DIMEVET. However, when not possible necroscopy was conducted 

directly at the Laboratory Animal facility and the following organs were isolated and fixed in 

10% neutral buffered formalin (NBF): lung, heart, thoracic aorta, kidney, liver, spleen, both 

interscapular and abdominal skin samples. All animals were subjected to histological 

examinations by the staff of the Anatomo-Patological Service of DIMEVET. 

Skull and hind limb bones were analysed by the Institute of Molecular Genetics CNR and Rizzoli 

Orthopaedic Institute. The first was analysed by μCT, the latter by a mechanical study 

validated for the femur of such mouse model. Data on mechanical study of the femor are not 

shown because still very preliminary. 

 

4.2.9.1 Histological Examinations 

Wild type Lmna+/+, heterozygous LmnaG609G/+ and homozygous LmnaG609G/G609G mice were 

analysed. Tissues fixed in 10% NBF were dehydrated with graded alcohols and embedded in 

paraffin according to standard procedures. 

Four-micron thick histologic sections were cut with a microtome and mounted on charged 

slides. Finally, the sections were stained with hematoxylin and eosin (H&E). Only on serial 

sections of aorta Periodic Acid-Schiff (PAS), and alcian blue (pH 1 and 2.5) stains were furthere 

planned to identify PAS positive glicoproteins or alcian blue positive at pH 1 sulphated mucins 

or alcian blue positive at pH 2.5 non-sulphated mucins. Observations were conducted using a 

microscope (Leica Microsytems SI, Cambridge CB1 3XJ, 12V/400MA), with magnification of 5x, 

10x, 20x and 40x. 

A specific grading system was used in order to depict skin and adnexa and aorta alterations 

(Fig. 4.7 and 4.8). In particular, skin grade 1 was considered normal with abundant adipose 

tissue in subcutis and numerous hair follicles having the hair bulbs in the adipose tissue layer; 

skin grade 2 had normal abundant adipose tissue but a mild reduction of hair follicles that 

start to lose their contact with subcutis; skin stage 3 had a complete atrophy or just scant 

multifocal remnants of adipose tissue and a moderate to severe reduction in hair follicles; skin 

grade 4 had a complete atrophy of adipose tissue and dermal fibrosis associated with rare hair 
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follicles (Fig 4.7). Aorta lesion were scored as grade 1 when showing normal feature with 

concentric multilayers (3-5) of leiomyocytes in the tunica media; grade 2 when showing 

presence of scant homogeneous and light eosinophilic material between the elastic fibers 

associated with multifocal decrease of cellularity in tunica media; stage 3 depicted a moderate 

multifocal discrete collection in tunica media interstitium of homogeneous and light 

eosinophilic material associated with a diffuse decrease in cellularity; grade 4 showed 

abundant eosinophilic material and severe decrease of cellularity (Fig. 4.8). 

The organs were analysed by two blinded veterinary pathologists.  

 
Fig. 4.7: Grading of the skin and adnexa (10x). 

 

 

 

Fig. 4.8: Grading of the myxoid lesion in the aorta wall (40x). 
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4.2.9.2 Skeletal Analysis and Bone Matrix Evaluation 

Skeletal morphological (μCT) examinations of the skull were performed at the Laboratory of 

Medical Technology Rizzoli Orthopaedic Institute (IOR). Such analyses were performed by a 

μCT Skyscan 1172 (mod. 1172, Bruker MicroCT, Konthich, Belgium) (Fig. 4.9). The instrument 

uses the cone beam method (Rüegsegger et al., 1996; Peyrin et al., 1998). 

This method provides images from which three-dimensional models can be reconstructed, so 

it is possible to measure volumes, surfaces, thicknesses and distances. 

Regarding the mouse skull, the samples were scanned in their test tube immersed in formalin. 

Each tube was wrapped in parafilm. The samples were scanned with 2 sub-scans, as they are 

larger than the field of view of the image. 

 

 
Fig. 4.9: μCT Skyscan 1172 (mod. 1172, Bruker MicroCT, Kontich, Belgium) for skeletal analysis. 

(http://www.directindustry.com). 

 

 

4.2.10 Statistical Analysis 

Statistical analysis of the differences between mouse cohorts or different conditions was 

performed with a two-tailed Student’s t-test. In experiments with more than two groups, 

differences were analysed by multifactorial one-way analysis of variance (ANOVA), and for the 

comparison of different groups in Kaplan-Meier survival plots, we used a log-rank (Mantel-

Cox) test. Records of pup genotypes observed were compared with expectations from the 

Mendelian segregation of alleles using chi-square tests or a binomial test (two tailed). 

Microsoft Excel and GraphpadPrism 7 softwares for Macintosh were used for calculations and 

plots, and expressed the results as the means±SEM.   



 76 

4.3 Results and Discussions 

 

4.3.1 Nest and Breeding Characterization  

The maintenance of the colony was guaranteed by 37 dams (7 Lmna+/+ and 30 LmnaG609G/+) 

and 25 males LmnaG609G/+ over a 2-year period of study. The colony was maintained inbred 

and reached 8 generations. Our colony produced a total of 282 pups (Fig. 4.10), of which 15% 

were LmnaG609G/G609G (of these 6% females and 9% males), 51% LmnaG609G/+ (of these 24% 

females and 27% males) and 32% Lmna+/+ (equally distributed between females and males). 

 
Fig. 4.10: Pie chart showing genotypes and sexes percentages of pups weaned in DIMVET’s colony. WT = Lmna+/+; 

HOM = LmnaG609G/G609G; HET = LmnaG609G/+; F = females; M = males. 

 

Weaned pups from heterozygous x heterozygous mating and heterozygous x WT mating are 

shown in Fig. 4.11 and Fig. 4.12, respectively. As it can be seen, when heterozygous mice were 

mated together 32.5% of the weaned pups were wild type, 48% heterozygous and 19.5% 

homozygous. Chi-squared test revealed that the difference between observed versus 

expected genotypes was significant (p = 0.0156). Especially homozygous mice were less than 

what expected. When heterozygous were mated with wild type mice, weaned pups were 36% 

wild type and 64% heterozygous. Binomial test (two tailed) revealed that the difference 

between observed versus expected genotypes was significant (p = 0.0479). It is interesting to 

note that, in general, mice carrying the mutation were mostly males. In light of the above, it 

is not possible to establish, but it is fair to think, that in some cases especially homozygous 

and females carrying the mutation might have died in utero. It is interesting to note that also 

in humans the ratio females to males with HGPS is in favor of males, being 1:1.5 (DeBusk, 

Total=282

16.67%  WT f
16.67%  WT m
24.11%  HET f
27.30%  HET m
6.03%  HOM f
9.22%  HOM m
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1972). In our colony, homozygous mice had a female to male ratio of 1:1.13, while 

heterozygous of 1:1.53, the latter being the same of the human ratio. 

 

Fig. 4.11: Pie chart. Genotype and sex of pup weaned from Het mating. WT = Lmna+/+; HOM = LmnaG609G/G609G; 

HET = LmnaG609G/+; F = females; M = males. 

 

 

 

Fig. 4.12: Pie Chart. Genotype and sex of pup weaned from WT x HET mating. WT = Lmna+/+; HOM = 

LmnaG609G/G609G; HETt = LmnaG609G/+; F = females; M = males. 

 

During their reproductive life, dams delivered the first successful litter starting from 57 days. 

Between births a mean of 36 days and 39 days was registered for LmnaG609G/+ and Lmna+/+ 

females, respectively. Considering that gestation period is usually of about 19 days for 

C57BL/6, the litters after the successful ones were probably lost, maybe due to the extended 

weaning period that made the reproduction cages often crowded and also to the fact that the 

dams did not have enough milk to feed all pups.  

Total=224

16.07%  WT f
16.52%  WT m
23.21%  HET f
25.00%  HET m
7.59%  HOM f
11.61%  HOM m

Total=58

18.97%  WT f
17.24%  WT m
27.59%  HET f
36.21%  HET m
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Our hypothesis that Lmna+/+ would be better damns compared to LmnaG609G/+ was not 

confirmed. In fact, both genotypes had an average of 2 litters during their reproductive life 

(range 1-4). Litter size were highly variable, ranging from 1 to 11 pups, however, for both 

genotypes, the average was 6 pups for each litter, which is more than what reported for 

C57BL/6J (Jackson Laboratory, 2007). Therefore, heterozygous males and females revealed to 

be reliable breeders. On the other hand, one of the two homozygous females in reproduction 

was never pregnant during a three-month period, while the second one got pregnant but died 

during premature delivery, together with fetuses. The homozygous male in reproduction did 

not succeed in impregnating two fertile heterozygous females. In light of this result and since 

generally mice reach sexual maturity at about 60 days of age, which is an already senescent 

age for homozygous LmnaG609G/G609G transgenic mice, they cannot be considered as breeders. 

However, they are not necessarily infertile as stated by Osorio et al. (2011). 

The total pre-weaning pup mortality was around 31%. This pre-weaning pup mortality is in 

accordance with previous studies conducted on C57BL/6 mice (Weber et al., 2013), even 

though mortality rates vary greatly among different studies (Weber et al., 2016). Considering 

that mouse pups are born without fur and therefore they are very sensitive to hypothermia 

(Weber et al., 2016), and that animal models of laminopathies have been proven to benefit 

from higher temperatures (Liao et al., 2016), we assumed that providing appropriate nesting 

material is very important to reduce pup mortality in our colony since maternal behavior, 

including nest building attitude, was not impaired. However, some pup deaths in the first few 

days after birth likely went unnoticed, since dams often scavenge dead pups. Furthermore, 

we tried to leave periparturient females undisturbed, which may have delayed or prevent the 

discovery of pup loss. In some cases, as previously said, rejection or cannibalism of the litter 

were observed, probably due to a lack of breast milk evidenced by the absence of “milk spot” 

in the dead pups. Such deaths commonly occurred by 1 or 2 days of age. 

Since birth, transgenic pups for the mutation evidenced a slower growth in comparison to 

Lmna+/+, suggesting lengthening the weaning period to ~30 days. Although, Baumans (2007) 

suggests weaning at 21 days, C57BL/6J mice are reported to normally benefit from being 

weaned at 28 days (Jackson Laboratory, 2007). Our strategy to wean at around 30 days of age 

resulted successful, and no post-weaning mortality was registered. 
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The headset marking revealed to be a fast and easy method to identify animals. Furthermore, 

no ear dermatitis, often related to ear tags used for identification (Burkholder et al., 2012), 

was registered. 

In cages overpopulated with pups from different litters, barbering of suckling pups by their 

mother or father was common (Fig. 4.13). After weaning, the fur of pups with barbering grew 

normally. No barbering was observed for breeding pairs, as also for “maternal” barbering in 

lactating mice performed by suckling pups. 

 

 
Fig. 4.13: Barbering of suckling pups by their parents. 

 

4.3.2 Colony Health Surveillance 

The two sentinels tested were negative to most of the relevant pathogens tested. However, 

they revealed that the colony was positive for Helicobacter hepaticus, Helicobacter rodentium, 

Helicobacter typhlonius (all detected through PCR), and Tritrichomonas spp. (detected 

through microscopy), detected in the intestinal material through PCR and microscopy analysis, 

respectively. Naturally acquired Helicobacter infections have been reported in all commonly 

used laboratory rodent species (Chichlowski & Hale, 2009; Charles River, 2017a). A study of 

mice derived from 34 commercial and academic institutions in Canada, Europe, Asia, Australia, 

and the United States showed that 88% of these institutions had mouse colonies infected with 

1 or more Helicobacter spp. (Taylor et al., 2007). Helicobacter infections could potentially 

interfere with in vivo experiments and biomedical research by affecting mainly the 

gastrointestinal system, in minor entity the reproductive system, and by developing some 

types of cancers (Chichlowski & Hale, 2009). However, no clinical symptoms, necroscopic signs 

of intestinal inflammation nor cancers were found in our colony that could have been linked 

to Helicobacter spp. infections, meaning that it is unlikely that these infections could have 
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interfered with the results of the study. Tritrichomonas spp. are common protozoa in the 

intestinal tract of rodents and are not considered to be pathogenic (Charles Rivers, 2017b). 

Once again, no clinical signs associated to protozoal infections were detected. 

In light of the infections detected, we decided to not treat the animals since we evaluated that 

the risk/benefit ratio of treating was in risk’s favor. Furthermore, the treatment could have 

interfered with the treatment study described in the next chapter. The animals, despite the 

signs linked to the genetic disease, always resulted clinically healthy and no necroscopic lesion 

could be linked to the above-mentioned infections. 

One of the two sentinels screened also resulted positive to Pasteurella pneumotropica 

infection, isolated through culture. Such gram-negative coccobacillus is quite common in 

laboratory populations, and usually infections are asymptomatic (Charles Rivers, 2017c). In 

our study, the only sign that could have been liked to this infection is the conjunctivitis seen 

in some animals. However, if clinically healthy, animals infected with Pasteurella 

pneumotropica are considered suitable for research purposes (Charles Rivers, 2017c). 

It is important to have knowledge of the colony infection status in order to eventually link the 

results to the infections and not the disease studied. 

It is interesting to note that ulcerative dermatitis (UD), an idiopathic, spontaneous, debilitating 

syndrome of laboratory mice, is typically a disease of aged C57BL/6 mice or genetically 

engineered mice on a C57BL/6 background, with prevalence rates ranging between 4.1% to 

21% (Hampton et al., 2012). However, genetic factors in sub-strains of C57BL/6 mice may play 

a role since very different results for prevalence, age and sex onset of UD were reported in 

different studies (Sundberg et al., 2011; Hampton et al., 2012). During our study, no lesions 

ascribable to ulcerative dermatitis were evidenced. 

 

4.3.3 Behavior and Clinical Signs 

C57BL/6 strain is usually “touchy” (Baumans, 2007), however in our LmnaG609G colony no 

aggressive behavior was ever seen towards the operators and mice acted comfortable when 

manipulated. Few aggressive behaviors were observed between cage mates. These were 

sporadic exceptions, observed only in males that fought to form a hierarchy especially after 

litter change. This behavior was limited by adding some old litter or paper tissue from the old 

cage into the new one. The week territorial behavior made it possible to cage males in groups 

up to 4 animals. In those rare cases in which animals were found with fight wounds (Fig. 4.14), 
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the animal responsible was identified and 

isolated from others. Animals with wounds were 

properly disinfected with iodate solution and 

wounds quickly healed without complications. 

Behavior-associated hair loss, known as 

barbering, includes plucking of fur or whiskers 

from cage mates (hetero-barbering) or onself 

(self-barbering), and is common in mice (Kalueff 

et al., 2006). In particular, it occurs often in 

C57BL/6 suggesting a strong genetic component 

(McElwee et al., 1999; Kalueff et al., 2006). In general, it is thought to be linked to a form of 

dominance in which animals co-operate (van den Broek et al., 1993). Barbering has also been 

negatively correlated with signs of aggressiveness (Kalueff et al., 2010) and is interpreted as a 

way to maintain social hierarchy in colonies. In other studies, it has been interpreted as an 

obsessive compulsive grooming disorder, often representing a stress-evoked response that 

can be limited with environmental enrichment. In our colony, adult group-housed mice 

displayed barbering in 12% of the cases (Fig. 4.15), which is lower that what reported for 

C57BL/6 in other studies (Long, 1972). Barbering behavior was not related to a specific 

genotype. Most frequent location of hair loss observed throughout the study was on the 

snout, neck, and head, which cannot be explained by self-barbering. Since all animals with 

barbering had healthy skin, no ulceration or inflammation no medical treatment was 

necessary. Our colony might have minimized potential aggression with this social behavior 

since fight wounds were found in very rare cases. However, in some occasion increasing 

environmental enrichment diminished the barbering confirming that this behavior in 

multifactorial and that it can be stress-evoked. 

  

Fig. 4.14: Fight wounds. 
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Fig. 4.15: Barbering. Note that the skin is healthy in these cases. Upper left: bald patch on neck and upper back. 

Upper right: barbering around the eyes and whiskers removal. Below: snout and whiskers barbering. Front leg 

self-barbering. 

 

Following weaning and for the first 5-6 weeks of age, all mice were lively, active, explorative 

and expressed the typical behavior of the species. When observed in their home cage mice 

were seen moving around the cage, grooming, eating, drinking and interacting with cage 

mates. All mice built nests using the suitable material provided, such as sizzle nest, tissue, and 

egg packs. They also could be seen enjoying playing with the plastic or cardboard rolls 

provided (Fig. 4.16). 

 

 
Fig. 4.16: Housing enrichment. Cardboard and plastic rolls, egg packs, paper tissue. 
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Apart from weight loss (as reported below), the first clinical signs associated with progeric 

syndrome arose at 5-6 weeks of age for LmnaG609G/G609G and at 20-32 weeks of age for 

LmnaG609G/+. These signs were noted during daily observation of the animals in their home 

cage and during the general body examination conducted twice weekly. The signs regarded 

especially the fur and the skin, the eyes and the skeletal system. 

For both homozygous and heterozygous mice, periocular alopecia was the first characteristic 

sign registered, followed by thinning and loss of hair from the limbs, nose and back (Fig. 4.17). 

Hair fragility and loss were evidenced by its presence on the gloves when animals were 

handled. Fur was evidently opaque, scruffy and rough compared to Lmna+/+ and with 

premature grey/white strikes (Fig. 4.17). 

 
Fig. 4.17: Fur comparison between Lmna+/+ mice (A) and LmnaG609G transgenic mice (B, C). Note the thick, shiny 

and glossy fur of the Lmna+/+ mice both in the dorsal and ventral area (A). In contrast, G609G transgenic mice 

have sparse and scruffy coat. Trunkal hair turned prematurely grey (B). Note the characteristic periocular alopecia 

(C). 
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The skin appeared to be thin, flaky, dry and sclerotic, and an erythema-like redness was clearly 

visible, particularly in the ventral area (Fig. 4.18). The irritation in the ventral area could have 

been enhanced from the contact of the litter with the skin considering the sparse fur on it. 

The severeness of the phenotype was much more evident in homozygous mice than in 

heterozygous. 

Although rarely, dystrophic nails were observed (Fig. 4.19). 

 

 

 
Fig. 4.18: Skin and fur in LmnaG609G transgenic mice. Above: Thin fur and erythema-like redness. 

Below: Opaque and dry fur. Streaked with grey, especially in the ventral area. 

 

  

 
Fig. 4.19: Dystrophic nails in a heterozygous mouse.  
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Ocular signs, never described in human patients, were very common. These signs included 

microphthalmia, anophtalmia, opacity of the cornea, and occurred in 50% of homozygous 

mice (Fig. 4.20). However, they were also evidenced in the heterozygous (17%), and more 

rarely in wild type (3%). C57BL/6 are known to have high incidence of microphthalmia and 

other eye defects (Smith et al., 1994; Fuerst et al., 2007; Burkholder et al., 2012), making it 

difficult to attribute these observation to the LmnaG609G transgenic mice and possibly being 

the expression of the genetic background. 

   
Fig. 4.20: Ocular signs in LmnaG609G transgenic mice. Note periocular alopecia (A), opacity of the cornea (B), 
microphtalmia (C). 

 

Transgenic mice also showed dental anomalies, confirmed by radiological and μCT analysis 

(see Paragraphs 4.3.7 and 4.3.9, Fig. 4.41 and 4.5). Mouse teeth’s grow throughout life and 

should meet in such a way that they grind on each other and on the feed to remain at a normal 

length. If the mandibular and maxillary teeth are not normally aligned and do not properly 

cloose, malocclusion occurs meaning that teeth may grow into the palate or out of the mouth. 

Malocclusion has been linked to trauma to developing teeth (cage lids, improper handling, 

fighting, too-hard food), but also a genetic basis is suggested by an increased incidence in 

certain strains, such as C57BL/6 (Fox et al., 2007b; Burkholder et al., 2012). In our study, we 

never found malocclusion, nor other dental alterations, in Lmna+/+ mice, while the incisors 

were splayed apart, thin, long or fractured in 13% of homozygous and 8% of heterozygous 

(Fig. 4.21) This condition was early diagnosed during the twice weekly clinical observation and 

malnourishment was an obvious consequence of malocclusion. In some cases, incisors grew 

splayed apart, thin and were prone to fractures (Fig. 4.21). Cleft palate was not observed. 
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Fig. 4.21: Normal teeth (A) compared to dental anomalies. B) Malocclusion, upper incisors extremely angled 

inwards; C) Long incisors splayed apart; D) thin, long and fractured incisors; E) fractured lower incisors and long 

upper incisors.  

 

Kyphosis (Fig. 4.22), reduced mobility and a “shuffling gait” of the hind limbs were assessed 

by clinical observation. Kyphosis was also assessed by X-rays (see Paragraph 4.3.7).  
 

 

 
 

Fig. 4.22: Kyphosis in LmnaG609G transgenic mice. 
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C57BL/6J mice tend to have more pups with hydrocephalus compared to other strains 

(Jackson Laboratory, 2007). This is a condition in which fluid builds up in the ventricles of the 

brain and does not distribute normally between the brain and the spinal cord (Burkholder et 

al., 2012). In our colony, 2 heterozygous mice were excluded from the study and euthanized 

before adulthood because were born with hydrocephalus (Fig. 4.23). Visibly these mice had a 

large rounded head and shortened muzzle since weaning. They were smaller than littermates 

and with time they developed lethargy and neurological abnormalities. During the OFT (data 

not presented) they would never stay still or do vertical movements, grooming or freezing, 

and would continue running compulsively in the peripheral area attached to the side of the 

arena, going only in one direction. 

 
Fig. 4.23: Hydrocephalus in a LmnaG609G/+. Left: 1.5 month old; Right: 2.5 month old. 

 

Dental anomalies, together with the reduced motility, reduced agility in climbing and/or 

standing to reach food, resulted in feeding difficulty for the affected animals. Consequent 

weakness and weight loss led to a severe state of apathy and cachexia rapidly reaching the 

HE. Starting from the end of March 2016 until July 2016, for 

a subset of mice (G1-G30) moistened chow was left on the 

cage floor, a more accessible position, in order to avoid 

feeding difficulties (Fig. 4.24). The strategy of adding 

palatable food on the cage floor is used by many research 

groups and is part of the refinement principle (Burkholder 

et al., 2012). In our study, this choice brought to good 

results because a general increase in body weight was 

observed, allowing the less motile animals to continue to 

eat (Table 4.4). This procedure was therefore considered to 

be useful to improve life conditions of the affected animals. However, adding moistened chow 

Fig. 4.24: Moistened chow. 

Homozygous mice eating. 
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was useful only for about two weeks after the initial weight loss. In fact, various factors linked 

to the disease eventually compromised the animal wellness and nutrition. Moistened food did 

not have an impact on lifespan (see Paragraph 4.3.5). Since this technique improves life 

quality of mice without interfering with lifespan it is considered a valuable refinement strategy 

to use in future studies. 

Animal/Date 18/3 21/3 23/3 25/3 30/3 1/4 6/4 8/4 12/4 

L1G6 M Het 27,5 21 21,1 21,8 19,9 23,7 23,9 25,2 25,8 
L3G6 M Het 28,2 28,1 28,2 28,3 27,1 27 27,7 29,7 28,8 

L4*5*G6 M Het  25,9 25,3 25,1 24,6 24,9 25,1 25,8 27,1 26,5 
L1G14 M Het 28,7 29,3 30,1 28,3 29,4 29,1 29,1 31,8 31,4 
L2G14 M Het 33,4 33 32,1 33 33,4 32,9 35,4 35,5 35,8 

L3G16 M Homo 20,2 19 16,5 18,9 18,8 18,1 18 20,6 20,8 
L1G17 F Homo 15,2 15,5 15,9 16,1 14,8 18,6 18,1 18,5 18,8 

L2G17 F Het 16,8 17,1 17,8 18 13,9 19,9 19,9 19,9 19,9 
L3G17 F Het 15,4 16,5 17,2 17,9 14,6 19,2 19,6 20 20,4 

L1G20 M Homo 16,1 16,8 17 18,2 18,7 18,9 18,2 20 17,3 
Table 4.4: Body weight changes of some heterozygous/homozygous mice before and after taking wet feed 

(March-April, 2016). The boxes highlighted in green show the increase in body weight. 

 

Tremors - involuntary rhythmic oscillation of body parts - were observed in 2/40 homozygous 

mice and 2/157 heterozygous mice. They were never observed in wild type mice. Tremors 

could be related to a possible hypoglycemic state or could derive from a neurological disorder 

(Louis, 2008). Moderate to severe hypoglycemia, not investigated in this study, was described 

for homozygotes and heterozygotes at 3 and 8 months of age, respectively (Osorio et al., 

2011). However, it is possible that shivering may have been confused for tremors. Since 

homozygotes and heterozygotes have thin fur and no fat the shivering could be a physiological 

response to hypothermia. Liao et al. (2016) demonstrated that termoneutrality (30°C) 

improved lifespan of a mouse model of laminopathies, reinforcing the idea that these mice 

could be more severely influenced by the temperatures commonly used in laboratory animal 

facilities. The fact that animal models of laminopathies benefit from higher environmental 

temperatures was also communicated during the International Meeting on Laminopathies 

2017 (oral communication) by different research groups working with such models.  

Overall, clinical signs related to the mutation were evident in both phenotypes. The fairly 

milder phenotype of LmnaG609G/+ mice, compared to LmnaG608G/+ HGPS patients, is in 

agreement with previous observations evidencing a higher tolerance of mice compared to 

humans to accumulation of prelamin A forms (Osorio et al., 2011). Both genotypes are reliable 

models of HGPS.  
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4.3.4 Body Weight and Growth  

 
Fig. 4.25: Cumulative plot of body weight versus age. Dots represent mean values, and bars indicate SEM. N=67 

wild type mice, n=10 homozygous mice, and n=52 heterozygous mice. 

 

As it can be seen in Fig. 4.25 HGPS wild type colony grew rapidly since birth and after weaning, 

reaching a relative plateau weight of 35 g for males and 25 g for females at 25 weeks. At 8 

weeks of age females weighted already 4.1±0.6 g less than males making weight sexual 

dimorphism quite evident. All wild type mice did not show any weight loss during the study 

period and were able to reach up to 50 g. 

As noted before (Osorio et al., 2011), HGPS colony transgenic for the mutation attained lower 

weights than respective wild type mice throughout the post-weaning period. In particular, 

between 45 and 48 days of age, mean values of each group indicated lower weights for both 

females and males LmnaG609G/+ compared to wild type of the same sex, in particular 0.6±0.4 g 

less for females and 0.6±0.6 g less for males. It is intuitive that this slight weight difference 

was hard to detect at weaning. The weight difference was more evident for LmnaG609G/G609G, 

males weighting 3.6±0.7 g less than Lmna+/+ males, and females weighting 2.3±0.4 g less than 

Lmna+/+ females, registered always between 45 and 48 days of age. The first sign associated 

with HGPS disease, in fact, included reduced growth rates. 

Since the number of animals enrolled in this phenotypic study were more than in previous 

studies, and since the sexual dimorphism was so evident and could interfere with the 

evaluation of data if considered cumulatively, we analyzed females and males in separates 

plots of body weight versus age (Fig. 4.26). 
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Fig. 4.26: Cumulative plot of body weight versus age in females (left) and males (right). Dots represent mean 

values, and bars indicate SEM. 

 

As it can be seen from Fig. 4.27, within the same genotype sex differences in weight were 

always significant (p < 0.05). 

 

 
Fig. 4.27: Cumulative plots of body weight versus age in the three genotypes (upper left: wild type; upper right: 

homozygotes; below: heterozygotes), distinguished by sex. Dots represent mean values, and bars indicate SEM. 

 

In accordance with the first description of these animals, no weight plateau was reached for 

homozygous. Males and females hardly reached a maximum of 20 g and 15 g, respectively, at 

about 9 weeks of age which was followed by a rapid weight loss. Contrarily, heterozygous mice 
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reached a plateau (males LmnaG609G/+ 28 g; females LmnaG609G/+  23 g) at about 20 weeks and 

maintained this weight until 30 weeks of age, when they progressively started to lose weight. 

Differences in sizes, and in weights between the Lmna+/+, LmnaG609G/+ and LmnaG609G/G609G 

were quite evident, as it can be seen in Fig. 4.28. 

 
Fig. 4.28: Size comparison between Lmna+/+, LmnaG609G/+ and LmnaG609G/G609G females from the same litter at 2 

months of age. 

  

4.3.5 Lifespan  

The lifespan of LmnaG609G transgenic mice is very short compared to a Lmna+/+ (Fig.4.29). 

C57BL/6 mice usually survive 18-22 months, females living longer than males (Russel, 1966). 

However, longevity is strain specific, and depends on several other factors resulting quite 

variable among research groups. The oldest Lmna+/+ mice in our study was a female and lived 

up to 23 months. 

 
 

Fig. 4.29: Kaplan-Meier survival plots for wild type mice (blue, n= 15), heterozygous mice (green, n=73), and 

homozygous mice (orange, n=15). 
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Homozygous mice (n=15) with the c.1827C>T;p.Gly609Gly mutation presented a premature 

death, reaching the humane endpoint at 108±4 days (Fig. 4.29). This result is consistent whith 

those reported by previous studies, in which mean lifespan ranges from 103 days to 107 days 

(Osorio et al., 2011; Osorio et al., 2012; Villa-Bellosta et al., 2013). If considered separately, 

females (n=8) had a lifespan of 101±5 days, while males (n=7) had a lifespan of 115±5 days. 

This difference between the two sexes of the same genotype resulted significant (p = 0.0131) 

(Fig. 4.30). Although moistened chow helped reducing weight loss (see Paragraph 4.3.3), it 

did not affect homozygous mice lifespan in a significant way (p = 0.46), meaning that this can 

be considered a good refinement technique not necessarily influencing life expectancy during 

drug testing. 

 
Fig. 4.30: Kaplan-Meier survival plots for homozygous females (pink, n=8), and males (light blue, n=7).  

 

Heterozygous mice (n=73), which develop the disease in a less severe way, reached the 

humane endpoint at 287±5 days (Fig. 4.29). Osorio et al. (2011) and Villa-Bellosta et al. (2013) 

reported a mean lifespan of 242 and 238 days, respectively. Once again, in our study females 

reached the humane endpoint earlier compared to males (Fig. 4.31). In fact, females (n=40) 

reached the HE at 266±6 days, while males (n=33) at 311±6 days (p < 0.001). Finally, also for 

heterozygous mice, moistened chow did not prolong life expectancy in a significant way (p = 

0.5).  
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Fig.4.31: Kaplan-Meier survival plots for heterozygous females (pink, n=40), and males (light blue, n=33).  

 

Considering dams and virgins separately, we noted that while virgins (n=30) lived 272±6 days, 

dams (n=10) lived 250±10 days. Shortened lifespan for breeding females has already been 

reported (Russel, 1966). On the other hand, means of male lifespan were not affected at all 

by reproduction. However, for both sexes, breeding did not affect lifespan in a significant way. 

In general, it has to be noted that in our study mean lifespan of LmnaG609G/+ was longer than 

in previous studies. In such studies (Osorio et al., 2011; Villa-Bellosta et al., 2013), no 

range±SEM for lifespan was reported and groups were small in numbers, having not more 

than 8 animals each. From their survival plots it can be deduced that ranges were quite wide. 

For this reason, we think that our results could be more reliable for individuating the real 

mean lifespan of LmnaG609G/+. Differences in mean lifespan of mice from the same inbred 

strains in different environments, demonstrate that life expectancy is influenced not only by 

genetic factors, but also by the environment. These factors, among others, include diet, 

temperature and humidity conditions, and husbandry procedures. Obviously, because of time 

of exposure, it is likely that genotypes surviving longer are more influenced by environmental 

factors compared to animals that normally survive less. 

From these results, it is clear that homozygous are more severely affected by the disease 

compared to heterozygous mice, and that when using LmnaG609G transgenic mice as an animal 

model to study the effect of drugs on lifespan it would be optimal to consider sex groups 

separately. Finally, reproduction and moistened chow, don’t affect lifespan in a significant 

way, and the latter should be considered as a needed refinement method for this model. 
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4.3.6 Grip Strength test, Open Field test and Numerical Scoring System Specific for LmnaG609G 

Transgenic Mice 

Gript Strength test. All mice retained normal grip strength even if they were very debilitated, 

differently from Zmpste24-/- mice (Bergo et al., 2002; Fong et al., 2004). The only difference 

between genotypes that was noted (registered as a note during the test) was that 

homozygous at 3 months of age, and heterozygous mice around 8-9 month of age, although 

remained clinging to the inverted grid, spent more time still compared to both when they 

were younger and compared to wild type mice. Younger animals of the same genotype and 

all wild type usually moved fast around the inverted grid, were curious and often looked 

underneath or groomed themselves remaining anchored to the grid with only 3 paws. 

Sometimes young animals voluntarily jumped off the grid. Osorio et al. (2011) in the 

supplementary material of their article, reported that LmnaG609G/G609G mice were significantly 

weaker than both heterozygous and wild type mice when forepaw strength was measured in 

dynes with a strain gauge sensor. However, such test measured only the forepaw strength of 

males which can be influenced by size and weight of the animals. The kind of test in our study 

was the same used for other mice models of progeria (Bergo et al., 2002; Fong et al., 2004; 

Yang et al., 2006) and therefore the results are comparable to such studies. However, this test 

might be less sensitive compared to the strain gauge sensor. As stated for LmnaHG/+, the 

absence of grip abnormality with the inverted grid test underline that these mice are a faithful 

model of human HGPS, since children affected do not show significant muscle weakness 

(Debusk, 1972), differently from what was seen in Zmpste24-/- (Bergo et al., 2002; Fong et al., 

2004). 

The Open Field Test (OFT) is not simply a measure of motor activity but involves other factors 

such as exploratory drive (curiosity), and fear (anxiety). When placed in the center of the arena 

mouse typically ran to the walled edge and then explored their way around the whole arena 

while remaining close to the wall. All the mice had the tendency to spend most of their time 

in close proximity to the walls of the arena, as can be seen in Fig. 4.32. This phenomenon is 

referred to as thigmotaxis (Gould et al., 2009). Means of vertical activity (VM) for homozygous 

mice were lower than for wild type or heterozygous mice. Old age groups are reported to 

exhibit reduction in vertical activity and center time compared with the younger age groups 

(Shoji et al., 2016). Time spent moving decreased with the age in all groups, with no 

differences between genotypes (Fig. 4.32), indicating that exploratory drive decreases with 
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age. Center time and activity, together with defecation, in the first 5 minutes, likely measure 

some aspect of emotionality (Gould et al., 2009). The number of quadrant crossed are 

reported in Fig. 4.32 for each genotype and time point considered. Differences were not 

significant among time points for each genotype, nor among different genotypes at the same 

age. Studies on age-related changes in behaviour in C57BL/6 revealed an age-dependent 

decline in locomotor activity (measured as distance travelled in cm) during the early testing 

period in a novel open field environment (Shoji et al., 2016). Such decrease was associated 

with increased anxiety-like behaviour with aging rather than a decline in locomotor activity 

itself (Shoji et al., 2016). In our study mice at the same age even if of different genotypes were 

exposed to the same stimuli during their whole life, so it is fair to think that anxiety-like 

behaviours are limited when comparing different genotypes at the same age. However, in 

order to detect differences between genotype in distance travelled other methods, such as 

number of infrared beams breaks, which are more precise and accurate, are probably 

necessary. Furthermore, since high variability is typical in the OFT, a large number of animals 

should be considered for each group, which was not possible in our study. Freezing was not 

often seen in animals. However, this is a parameter difficult to detect. Grooming was quite 

common in all animals at every age (Fig. 4.32), confirming, in part, that the bad conditions of 

the fur were not due to a decrease in the animal self-care.  

It was interesting to note that during the 5 minutes during which the OFT was conducted (plus 

another couple of minutes for weighting the mice and evaluating the health conditions), 

animals lost between 0 and 0.7 g. Apparently, homozygous lost less weight during the testing. 

However, it needs to be considered that weight loss is linked to the general weight which is 

significantly lower in homozygous. In fact, when using the ratio (weight loss/weight)*100 no 

difference was significant among groups (Fig. 4.32). 

It has to be kept in mind that despite standardization, OFT tests vary greatly across labs 

(Crabbe et al., 1999). Thus, experiments characterizing mutants may yield results that are 

individual to a particular laboratory and also our results are comparable intra but not interlab. 

Moreover, considering the high variability between individuals, groups should be numerous. 

Till date, we had the chance to consider only 3 homozygous mice in our analysis, which is a far 

too small group to use for statistical analysis for OFT. Furthermore, tests are still being 

conducted and yet we haven’t gathered data for OFT of older heterozygous and wild type 

mice. Nevertheless, conducing the OFT we got the idea that LmnaG609G transgenic are active, 
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lively and social till the very end of their life when their health condition worseness very 

quickly. Heterozygous mice at 6 months of age and homozygous mice at 3 months of age are 

smaller than wild type littermates, they weigh less, have marked kyphosis, show premature 

aging fur but they still act in a similar way to their siblings.   

 

 
 

Fig. 4.32: Bars and boxes graphs representing wild type (WT) mice at 1 (n=17), 2 (n=17), 3 (n=17), 6 (n=9) months 

of age, heterozygous (Het) mice a 1 (n=8), 2 (n=7), 3 (n=6), 6 (n=5) months of age, and homozygous (Hom) at 1 

(n=3), 2 (n=3) and 3 (n=3) months of age. TC= Time spent at the center; VM= Vertical movements; TM= Time spent 

moving; Q= Numbers of quadrant crossed. Time is expressed in seconds. 

 

Objective indices of phenotypic alterations can be useful in following the progression of a 

disease. Based on this consideration we proposed a numerical scoring system (NSS) specific 

for LmnaG609G transgenic mice that gives values (from the best to the worst condition possible, 

3 to 10) considering parameters such as fur, gait and activity (Table 4.1). This assessment 

revealed to be fast and easy to use. As it can be seen from the scores given after each OFT 
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(Fig.4.33), wild type mice had a nice fur, were active and walked normally until the last 

observation (6 months of age). This was not true for transgenic mice. LmnaG609G/+ did not show 

much difference from wild type mice up to 3 months of age. At 6 months, the NSS was 

significantly higher in LmnaG609G/+ (p = 0.0249). The final score was influenced especially by the 

fur and skin conditions. However, at 6 months of age they were still very active. 

LmnaG609G/G609G were more severely affected and at 3 months of age already reached a mean 

score of 6. Again, the final score was influenced especially by the fur and skin conditions.  

 

 
 

Fig. 4.33: Numerical scoring system used to describe the health conditions of Lmna+/+, LmnaG609G/+ at 1, 2, 3 and 

6 months of age and of LmnaG609G/G609G at 1, 2 and 3 months of age. 
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4.3.7 Radiological Examinations  

The acquisition of an abnormal posture (hunched-up) and kyphosis characterized this mouse 

model of progeria, as already reported by Osorio et al. (2011). Kyphosis was also observed by 

in vivo clinical observations (Fig. 4.20), and during necroscopy. The seriousness and the onset 

of these features depended on age and genotype (Fig. 4.34).  

 
Fig. 4.34: Kyphosis index for wild type mice (WT), heterozygous (Het) and homozygous (Hom) mice, at different 

ages. Severity of kyphosis depends on age and genotype. 

 

No wild type animals had relevant alterations that could be seen with the X-rays up to 300 

days of age, KI means were always above 4, and incisors were always normal (Fig. 4.35). 
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Fig. 4.35: X-rays of a wild type mice at 300 days of age (above). Note the normal anatomy of the mouth and 

disposition of the incisors. Abundant adipose tissue. Kyphosis indexes of wild type mice at different ages (below). 

 

KI indexes of the heterozygous mice at weaning (30 days) had no significant differences 

compared to wild type mice (Fig. 4.36), differently from homozygous. 

 
Fig. 4.36: KI of wild type mice (n=4), heterozygous (n=5) and homozygous (n=3) LmnaG609G transgenic mice at 30 

days of age.  

 

Kyphosis index for heterozygous mice was significantly lower than wild type mice starting from 
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condition was extremely amplified (Fig. 4.38). The spinal scoliosis was always at the level of 

the chest stretch. 

 

 

 
Fig. 4.37: KI for heterozygous mice at 30, 60, 125, 200, 260 and 300 days of age (left). Kyphosis gets worst with 

age. Comparison between KI of wild type mice and heterozygous at 200 days of age (right). 

 

 

 

 

 

 
 
Fig. 4.38: X-rays of the same heterozygous mice at 300 days (above) and 336 days (below). KI index went in 36 

days from 2.52 to 1.60. 
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Also, abnormalities of the incisors were common (Fig. 4.39). 

 
Fig. 4.39: Heterozygous mice at 260 days of age showing abnormalities in the incisors. Lower incisors grow within 

the palate because of malocclusion. 

 

Homozygous mice at 30 days of age already had a lower KI compared to wild type mice (Fig. 

4.36). This difference was significant and got progressively worst in a short amount of time 

(Fig. 4.40 and Fig. 4.41). Also, lower incisors presented progressively a more flattened profile 

while the upper incisors showed an abnormal curvature with consequent malocclusion (Fig. 

4.41). Moderate reduction of the abdominal fat was also evident compared to wild type mice 

of the same sex and age.  

No differences in kyphosis nor in the skull were evidenced between sexes of same genotype 

and age. 

 
Fig. 4.40: KI for homozygous mice at 30, 60, 90 and 110 days of age. Kyphosis got worst with age. 
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Fig. 4.41: Same homozygous mouse at 40 days (above) and at 90 days (below). KI index went from 3.03 to 2.18. 

Note how at 90 days (below) malocclusion is present. 

 
Comparison between the wild type mice, the heterozygous and homozygous mice can be seen 

in Fig. 4.42. 

 

 
Fig. 4.42: Comparison between a wild type (WT) mouse at 170 days, and heterozygous (HET) at 125 days and a 

homozygous (HOM) at 110 days. 
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Kyphosis arising in human normal aging is often related to osteoporosis through deformity of 

the vertebral bodies (Cummings & Melton, 2002), or to annulus degeneration (Resnick, 2002). 

Furthermore, in humans with conditions that lead to a reduction of vertebral support could 

result in thoracolumbar deviation in a ventral or dorsal plane (lordosis or kyphosis, 

respectively) or a lateral deviation of the spine due to the effect of gravity (scoliosis) (Laws & 

Hoey, 2004). In mice, due to the quadrupedal gait, conditions such as neuromuscular 

weakness would result in development of only kyphosis (Laws & Hoey, 2004). Human patients 

with HGPS often present scoliosis and cervicothoracic kyphosis (Chawla et al., 1986; Monu et 

al., 1990; Rodriguez et al., 1999; Hennekam, 2006). The early onset of spinal deformity in 

LmnaG609G transgenic mice could be attributable to osteoporosis, being causally similar to what 

happens in normal aging. However, in several transgenic mice, kyphosis was linked to 

osteosclerosis (Dabovic et al., 2002), growth plate abnormalities (Iba et al., 2001), and 

muscular dystrophy (Burkin et al., 2001), compression deformities, wedging or fractures. In 

our study, radiographs were not of sufficient resolution to allow the evaluation of such 

changes that cannot therefore be excluded.  
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4.3.8 Pathological/Histological Observations 

Tissues were surveyed at autopsy and by microscopic analysis. No consistent gross pathology 

was found in the external ear, skin, brain, testis, ovary, skeletal muscle, bone, liver, spleen, 

kidney, or heart for both genotypes of LmnaG609G transgenic mice. However, some alterations 

were registered confirming the in vivo observations, such as the size reduction, the moderate 

to severe kyphosis in the first thoracic vertebrae, a generalized loss of fat deposits, the 

presence of alopecic areas and dental malocclusion for all LmnaG609G transgenic mice.  

Kyphosis was never observed in wild type mice (0/7), as also for skin alterations (0/7) (Fig. 

4.43A and B). However, when the grading system was applied on 7 wild type three were 

graded 1, three graded 2 and one graded 3. 

In one case there was a moderate hypoplasia of the lymphoid tissue and expansion due to a 

round cell tumour. In this case there was also hypoplasia of the adipose tissue of the subcutis. 

No appreciable alterations at the level of the aorta were observed (0/4)(Fig. 4.43C). They were 

all graded 1 using the specific grading system. 

 

 

 

 
Fig. 4.43: H&E staining of skin (A, B), aorta (C) and spleen (D) from wild-type mice. Note normotrophic and 

normoplasic skin with well-developed hair follicles and subcutaneous fat (grade 1) (A, B). No appreciable 

alterations at the level of the aortic wall (C) which shows a good cellularity (grade 1). Normotrophic spleen (D). 
(Anatomo-Pathological Service of DIMEVET). 
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Twenty-nine LmnaG609G/+ transgenic mice were examined. They all suffered from kyphosis. In 

all animals, alopecia associated with reduction in number of follicles (mainly in the catagen 

phase) was observed, as also dermal fibrosis. Using the grading system two heterozygotes 

were graded 2, eight graded 3 and nineteen graded 4 (Fig. 4.44A). 

The alterations at the level of the aortic wall were frequent (21/24) with a reduction in the 

cell number, in the thickness of the tunica media and a multifocal accumulation of weakly 

basophil material likely attributable to mucopolysaccharides (Fig. 4.44C). When the grading 

system was used in heterozygotes three arteries resulted graded 1, two graded 2, fourteen 

graded 3 and five graded 4.  

 
 

 

 
Fig. 4.44: H&E staining of the abdominal skin (A), spleen (B) and aorta (C) from an heterozygous mice. Note the 

atrophy of hair follicles and the absence of subcutaneous fat (A) (grade 4), the hypotrophy of the spleen (B) and 

the cell reduction and a slight myxoid degeneration at the level of the aortic wall (C) (grade 4) (Pathological 

Service of DIMEVET). 
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Nine LmnaG609G/G609G transgenic mice were examined. All of them suffered from kyphosis. 

Alopecia associated with reduction in number of follicles and dermal fibrosis was seen for 8/9 

subjects. Two animals were graded 2, three graded 3 and four graded 4 (Fig. 4.45). The 

subcutaneous fat was completely missing in all animals. The alterations at the level of the 

aortic wall were present in all animals. Seven aortas were available, two of which were graded 

2, two graded 3 and three graded 4 (Fig. 4.45). 

 

 

 
Fig. 4.45: H&E staining of the skin (A), spleen (B) and aorta (C) from an homozygous mice. Note the atrophy of 

adipose tissue and the disappearance of hair follicles (A) (grade 4), the hypotrophy of the lymphoid tissue in the 

spleen (B), the cell reduction and a myxoid degeneration at the level of the aortic wall (C) (grade 3) (Pathological 

Service of DIMEVET). 
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The histochemistry of the aorta revealed that the basophilic material seen with H&E was 

composed by non-sulphated mucins and not by sulphated mucins or glicoproteins (Fig. 4.46).  

 

 
Fig. 4.46: Aorta stained with A) PAS, negative for glicoproteins; B) alcian pH 1, negative for sulphated mucins and 

GAG; C) alcian pH 2.5, positive for non-sulphated mucins (Anatomo-Pathological Service of DIMEVET). 
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The grading system for skin and aorta lesions revealed significant differences (p < 0.05) 

between both genotypes of transgenic animals and Lmna+/+, but not between LmnaG609G/+ and 

LmnaG609G/G609G (Fig. 4.47). 

 

 

 
Fig. 4.47:  Skin (above) and aorta (below) grading scores of transgenic animals who were sacrificed because they 

had reached the humane endpoint, and of wild type mice at the same age (controls). Differences between 

transgenic and wild type mice were significant, but not between heterozygous and homozygous mice.  

 

Important cardiovascular alterations in terms of vascular smooth muscle cells at the level of 

the medial layer of the aortic arch were also found in LmnaG609G/G609G transgenic mice from 

Osorio et al. (2011), together with alteration of depolarization of the heart ventricular wall. 

However, these alterations were not graded nor evaluated for heterozygous mice. Villa-

Bellosta et al. (2013) found an important vascular calcification in LmnaG609G mice revealed by 
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planimetric analysis of Alizarin Red–stained aortic cross sections. Such calcification was linked 

to a reduced extracellular accumulation of pyrophosphate resulting from the increased tissue-

nonspecific alkaline phosphatase activity and the diminished ATP availability caused by 

mitochondrial dysfunction in vascular smooth muscle cells (Villa-Bellosta et al., 2013). 

Premature death of LmnaG609G transgenic mice could be linked to the cardiovascular 

alterations found, which also occur in HGPS patients and during normal aging. However, other 

causes, such as malnutrition, cannot be excluded.  

Interstitial pneumonia (5/7 wild type; 22/27 heterozygotes; 7/8 homozygotes) and 

hypoplasia/atrophy of the spleen lymphoid tissue (1/7 wild type; 6/24 heterozygotes; 2/6 

homozygotes) (Fig. 4.44B and 4.45B) were non-specific changes observed in all genotypes. 

However, the use of sterile caging for this mouse model is highly recommended and would 

represent a preventive strategy useful for future studies using LmnaG609G transgenic mice.  
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4.3.9 μCT Analysis 

Individual bony elements are conserved between mouse and human skulls (Fig. 4.48). Analysis 

of the craniofacial skeleton of LmnaG609G transgenic mice using μCT scans helps establishing 

parallels in human and mice phenotypes resulting from the same genetic alteration. 

 
Fig. 4.48: Mouse and human skulls. Color-coding shows correspondence of structures between the species. The 

interparietal bone (bright blue on the mouse skull) is an example of a skull bone that exists in the more primitive 

(mouse) form, but not in the more derived human skull (Ritchsmeier et al., 2000; reproduction authorized). 

 

Transgenic mice had an abnormal skull shape. The bone reliefs were less marked and the 

indentations of the sutures between cranial bones were morphologically reduced in 

heterozygous and homozygous mice in relation to wild type ones (Fig. 4.49). Transgenic mice 

also had lower micrognathia (small mandible) causing malocclusion. The consequence of such 

micrognathia is that mutant mice regularly showed incisors anomalies in both implantation 

and morphology of the incisors. In particular, upper incisors had an increase of the curvature 

(reduced radius). The lower incisors of wild type mice were triangular in shape when 



 111 

dissected, whereas the ones of mutant mice were cylindrical and showed a more flattened 

profile (Fig. 4.49).  

Human HGPS patients normally have a relatively large neurocranium compared to the 

viscerocranium (especially the mandible) (Hennekam, 2006), similarly to what can be seen in 

LmnaG609G transgenic mice. In particular, in humans the chin has a normal size and shape and 

becomes smaller after 1–2 years. There is osteolysis of the viscerocranium, but the osteolysis 

of the mandible is more marked and causes retrognathia. Both the horizontal and ascending 

rami become smaller with age, and the mandibular angle increases (often to about 150 

degrees) (Hennekam, 2006). The decrease in size of the maxilla and mandible causes crowded 

teeth (Hennekam, 2006) in parallel to what it could be seen in transgenic mice. 

 
 
Fig. 4.49: Top view of skulls. Surface renderings of μCT of the skull of wild-tipe (A), heterozygous (B) and 

homozygous (C) mice. The bone reliefs and the sutures between cranial bones were less marked in heterozygous 

and homozygous mouse compared to wild-type (Laboratory of Medical Technology Rizzoli Orthopaedic Institute, 

Bologna). 

 

Moreover, in the lateral view of the skull μCT scans showed absence of a small segment in the 

left zygomatic arch of homozygous mouse (Fig. 4.50). Osteolytic lesions of the zygomatic arch 
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were also evidenced in another mouse model of progeria (Yang et al., 2006). Some form of 

osteolysis is invariably present in any human patient with HGPS and can be found also at the 

mandible, neurocranium, and viscerocranium (Hennekam, 2006). 

The skull of homozygous mice was smaller than that of their wild type counterparts, however 

they were not microcephalic since skull dimensions were proportional to their reduced body 

dimension and weight, contrary to what reported by de Carlos et al. (2008) in another 

progeroid model. Human patients are not microcephalic and usually vault appears bigger than 

the face only because of the decrease in viscerocranium size (neurocranium remains near 

normal) (Hennekam, 2006). 

 

 
 
Fig. 4.50. Lateral view of skull. μCT of the skull of wild-type (A), heterozygous (B) and homozygous (C) mice. 

Micrognathia in both transgenic mice (B, C) is indicated with the red arrows. Micrognathia caused dental 

malocclusion. The red circle in the LmnaG609G/G609G (C) mice indicates an osteolytic lesion of the zygomatic arch 

(Laboratory of Medical Technology Rizzoli Orthopaedic Institute, Bologna).  
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4.4 Conclusions 

Detailed phenotypic data are being increasingly incorporated into studies and are particularly 

important when investigating longevity and comorbidities associated with aging. 

Because genome maintenance mechanisms are generally highly conserved between species, 

mice can represent valuable models to study genetic alterations, pathways and possible 

treatments to address certain aspects of aging (Gurkar & Niedernhofer, 2015). 

As seen in Chapter 3 (Paragraph 3.9), mouse models intended to mimic human HGPS have 

not always yielded precisely the anticipated phenotype, reflecting the complexity of this 

disorder and the underlying mechanisms. Osorio et al. (2011) engineered on a well-known 

genetic background (C57BL/6) a mouse model with the same genetic mutation of human 

HGPS and gave a first description of transgenic LmnaG609G mice, concentrating on the 

homozygous mice. 

Our first goal was to define in detail the phenotype and breeding characteristics of LmnaG609G 

transgenic mice. Both the homozygous and heterozygous were considered. This study 

represents the first description of this model over a long period (2 years), with special 

attention to reproduction, weaning, growth and expression of specific symptoms. 

Homozygous mice for the mutation were born with a lower frequency compared to what 

expected by Mendelian’s proportion, they were not sterile but could not successfully deliver 

pups. Fortunately, heterozygous mice could be mated together, females being good breeders 

such as wild type mice. This mouse model not only shares the same genetic cause of human 

HGPS, but in this study, we observed that both genotypes (homozygous and heterozygous) 

manifest most of the described human signs and symptoms (Table 4.5). There are many 

similarities between the disease of interest in humans and the animal model: shorter life 

expectancy, reduced body growth, hair loss, absence of subcutaneous fat, dry skin, decreased 

mobility, skeletal and cardiovascular problems. 

It has been stated that homozygous mice represent a better model of human HGPS than 

LmnaG609G/+ heterozygotes (Osorio et al., 2011). However, in our opinion, this depends on the 

aim of the research. For example, homozygotes live around 108 days and show signs of the 

disease really soon after weaning, making it difficult to test the efficacy and the safety of 

chronic treatments starting early in life, before symptoms may appear. Therefore, when 

evaluating chronic treatments heterozygous mice could be more appropriate models. 
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Furthermore, if not only lifespan but also quality of life is taken into consideration, it might be 

easier to follow progression of signs and symptoms which occur more slowly in heterozygous.  

Feature Human HGPS LmnaG609G transgenic mice 

Growth  Sever growth deficiency. Kids are 
shorter and weight less 

Severe growth deficiency in 
homozygotes, moderate in 
heterozygotes. Mice are smaller in size 
and weight 

Hair/Coat 

alterations 

Balding, downy hair with the 
tendency to curl, absence of 
eyebrows and eyelashes, scarce or 
absent body hairs 

Periocular alopecia and thin coat. 
Opaque and rough hair. Fur 
prematurely has grey strikes 

Ocular alterations Not reported Microphthalmia, anophthalmia, 
opacity of the cornea more frequently 
observed in homozygotes then in 
heterozygous. However, these 
alterations should be further 
investigated because they might be 
connected to the C57BL/6 background 

Skin alterations Moderate scleroderma; thick, thin, 
dry and atrophic skin; oedema 

Dry, thin and with erythema-like 
redness 

Lipodystrophy Expressed Expressed 
Cardiovascular 

alterations 

Expressed Expressed 

Mobility Decreased 
Cervicothoracic kyphosis, scoliosis 
Shuffling gait 

Decreased 
Cervicothoracic kyphosis 
Shuffling gait 

Osseous apparatus   
Acra Osteolysis of the distal phalanges; 

nails dystrophia 
Nails dystrophia 

Clavicles Narrow shoulders Undetectable 
Mandible Retrognathia Reduced and flattened mandible 

Micrognathia 
Viscerocranium Small; decreased size of the maxilla 

and mandible with 
crowding of teeth 

Micrognathia with dental 
malocclusion 

Neurocranium Mild; normal size dependent on the 
growth of the brain; vault relatively 
large compared to the face; delay in 
cranial suture closure 

Normal skull size. Bone reliefs and the 
sutures between cranial bones are less 
marked 

Lifespan 13 years of age 108 days homozygotes* 
287 days heterozygotes* 
*significant differences among sex groups 

Ratio 

females:males 

affected 

1:1.5 (only heterozygous) 1:1.13 (homozygous) 
1:1.53 (heterozygous) 

 
Table 4.5: Comparison between G609G transgenic mice and human HGPS. HGPS patients are all heterozygotes 

LmnaG608G/+. Mice are more tolerant than humans to accumulation of prelamin A forms and both heterozygous 

and homozygous survive. However, although the signs and symptoms are the same in heterozygous and 

homozygous mice, LmnaG609G/G609G are affected earlier in life compared to LmnaG609G/+. 
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Furthermore, we evidenced a significant difference between females and males in terms of 

weight trends and lifespan. In researches using this animal model, such differences should be 

kept in mind and groups of tested animals should be constructed accordingly. 

Human patients commonly have a lifespan of 13 years, strokes being the first cause of death. 

In mice, important alterations have been evidenced at the thoracic aorta level, but it is hard 

to establish if this could be the spontaneous cause of death. In fact, in parallel with the worsen 

of the signs, animals result malnourished and eventually they had to be euthanized because 

for this reason they reached the humane endpoint. 

Our description will help other research groups in choosing breeding strategies and mice 

housing, together with helping to maintain the focus on the signs and symptoms described as 

most characteristic of the mouse model and eliminating confounding signs deriving from the 

C57BL/6 genetic background, such as eye defects. The outcomes of this study should 

represent, together with previously published data, the starting point for planning future 

researches on preclinical treatment trials. The study of this animal model of progeria allowed 

to find out how much the murine model pathological features resemble phenotypically the 

human disease, as well as to define to which extent this mutation influences all aspects of 

breeding these animals.  

Till date, this is the best animal model for the study of pathway mechanisms and a rapid model 

in preclinical studies to treat HGPS. In regard to natural aging, as other mice models, LmnaG609G 

transgenic mice are not perfect models. Generally, mice models of accelerated aging are 

generated to ask specific questions about the physiological function of a protein (Baker et al., 

2004; Niedernhofer et al., 2006) or to test a specific hypothesis about the contribution of 

particular type of damage to aging (Kujoth et al., 2005; Trifunovic et al., 2004). There is often 

incomplete overlap between the histopathologic lesions seen in rapidly aging mice and those 

commonly associated with normal aging indicating that models are segmental or tissue 

specific. However, the mice that were generated to model a human progeroid syndrome have 

translational potential (Chen et al., 2013; Niedernhofer et al., 2006) for discovering 

therapeutics for rare diseases and potentially aging in the general population (Gurkar & 

Niedernhofer, 2015). Moreover, aging results from a complex interplay between genetics and 

the stresses placed on it by its particular environment. The genetic background of mice has an 

important role in modifying the penetrance and expressing of clinical manifestations of DNA 

repair deficiencies. Environmental factors, including housing conditions, infectious agents, 
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and diet likely play a role in the expression of aging phenotypes in mouse models, and perhaps 

also in humans (Collis & Tabak, 2014; Gurkar & Niedernhofer, 2015).  
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Chapter 5 

Treatment in LmnaG609G Transgenic Mice 

Preliminary testing 

 

5.1 Objective 

The bases of this preliminary research can be found in one main published article (Pellegrini 

et al., 2015). Such article reported that all-trans retinoic acid (ATRA) acted synergistically with 

low-dosage rapamycin (RAPA) reducing both progerin and prelamin A and increasing the lamin 

A to progerin ratio in human’s HGPS fibroblast.  

The aim of this preliminary study, was to assess the validity of the model evaluating the effect 

of in vivo treatment with ATRA-RAPA at low dosages using both homozygous and 

heterozygous LmnaG609G transgenic mice. The desired effect was to extend lifespan of treated 

animals, and, secondarily, to improve the disease phenotype. 
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5.2 Materials and Methods 

 

5.2.1 Animal Model and In Vivo Techniques 

Facilities, housing and breeding, animal model and techniques are the same as the ones 

described in Chapter 4.  

The animals used to study the efficacy of ATRA+RAPA treatment were chosen within the up-

above described colony. Only male mice were used, and in particular, 10 heterozygous 

(LmnaG609G/+) mice and 10 homozygous (LmnaG609G/G609G) mice were selected for this study. 

 

5.2.2 Treatment 

Mice were treated twice weekly (after weight recording) by intraperitoneal injection (IP). Mice 

were held by the nape of the neck and extended by pressing the tail to the palm of the hand. 

They were tilt with the head slightly towards the ground (head lower than the hind end) in 

order to allow the abdominal viscera to shift cranially and minimize accidental puncture of 

abdominal organs at site of injection. The abdominal wall was penetrated in a line parallel 

with the mouse backbone and at an approximate 30-40° angle to the abdominal wall (Miner 

et al., 1969). The lower quadrants are posterior to a line connecting the anterior junction of 

the hind legs to the body. The stomach, cecum and bladder, important targets for misplaced 

injections, lie on the left side of the peritoneal cavity; for this reason, we preferred the lower 

right quadrant to the lower left quadrant (Fig. 5.1). Syringe of 1 mL were used with 26 G needle 

Gauge. The treatment was injected after reaching room temperature.  

 

 
Fig. 5.1: Intraperitoneal injection. 
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Rapamycin and all-trans retinoic acid treatment (ATRA+RAPA) was prepared at the Institute 

of Molecular Genetics CNR, Unit of Bologna. Aliquots were prepared (2 mL vials) and properly 

stored at -20°C for not more than 3 months. Freeze-thaw cycles were avoided and aliquots 

were defrosted, brought at room temperature and vortexed prior to the injection. 

The combination of the two drugs (ATRA+RAPA) justified the lower dosage in comparison to 

the ones found in literature (Woodrum et al., 2010; Kwok et al., 2012). The dose regimen used 

in such study was 1 mg/kg of rapamycin and 0.4 mg/kg of all-trans retinoic acid, twice weekly. 

 

Study 1. ATRA+RAPA LmnaG609G/+  

Five LmnaG609G/+ male mice received ATRA+RAPA starting from 6 weeks of age and throughout 

their whole life. Five mice of the same genotype and sex were used as negative controls for 

this treatment. Animals were euthanized when they reached the humane endpoint.  

 

Study 2. ATRA+RAPA LmnaG609G/G609G  

Five LmnaG609G/G609G male mice received ATRA+RAPA starting from 6 weeks of age and 

throughout their whole life. Five mice of the same genotype were used as negative controls 

for these treatments. Animals were euthanized when they reached the humane endpoint. 

 

5.2.3 Animal Procedures 

Most of the procedures are the same of the ones described in Chapter 4, such as for animal 

care and monitoring, X-rays, euthanasia, and histology. Particular care was taking in 

monitoring the animal’s weight, since we have previously seen that the “aged” animal had 

feeding difficulties. Slight modifications were made to the histological grading system of the 

skin. In fact, it was noted that the grade assigned to skin and adnexa of the same section varied 

between two experts. This difference was due especially to discrepancies between the grade 

assigned to the adipose tissue and to the skin/adnexa conditions. Therefore, it was decided to 

implement the grading system considering separately the adipose tissue and the skin/adnexa, 

as shown in Tables 5.1 and 5.2. Then the scores described in Table 5.1 and 5.2 were added to 

each other and the final condition (Table 5.3) was considered for skin final grading and 

statistical analysis. 
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Skin alteration - description Score Image 

 

Normal - Normal skin with numerous hair follicles 
having their bulb in the adipose tissue 

 

0  

 

 
 

Mild - Mild reduction of hair follicles that start to lose 
their contact with subcutis 
 

1  

 

 
   
Moderate - Moderate to severe reduction of hair 
follicles 
 

2 

 
   
Severe - Rare hair follicle 3 

 
   

 
Table 5.1: Skin grading system. Grades normal, mild, moderate and severe are described and associated to their 

score. Skin sections EE, 4X as examples. 
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Adipose tissue - description Score Image 

 

Normal - Normal abundant adipose tissue 
 

 

0  

 

 
 

Mild - Normal abundant adipose tissue and multifocal 
reduction  
 
 

1  

 

 
   
Moderate - Small amount of adipose tissue 
 
 

2 

 
   
Severe - Atrophy of adipose tissue 
 

3 

 
   

 
Table 5.2: Adipose tissue grading system. Grades normal, mild, moderate and severe are described and 

associated to their score. Skin sections EE, 4X as examples. 

 

Grade Final skin score 

Normal 0-1 
Mild 2 

Moderate 3-4 
Severe 5-6 

 
Table 5.3: Grading system for skin. Final scores derive from the sum of the skin/adnexa (Table 5.2) and the adipose 

tissue (Table 5.3).  
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5.2.4 Statistical Analysis 

We performed statistical analysis of the differences between treated and untreated mice with 

a two-tailed Student’s t test. In experiments with more than two groups (KI), differences were 

analyzed by multifactorial one-way analysis of variance (ANOVA). For lifespan comparison of 

different groups in Kaplan-Meier survival plots, a log-rank (Mantel-Cox) test was used. 

Graphpad Prism 7 software for Macintosh was used for calculations and results are expressed 

as means±SEM or medians. 
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5.3 Results  

 

Study 1. LmnaG609G/+ 

Five LmnaG609G/+ mice were treated with 1 mg/kg of rapamycin and 0.4 mg/kg of all-trans 

retinoic acid, twice weekly. Results were compared with untreated mice. 

No animals showed side effects imputable to the treatment. The median survival of treated 

and untreated mice was 292 and 291, respectively. Maximum survival was 368 days for 

treated mice and 313 for untreated mice. However, the difference in lifespan among groups 

was not significant (p > 0.05) (Fig.5.2).  

 
Fig. 5.2: Kaplan-Meier survival plots for treated (A+R) and untreated (NT) LmnaG609G/+ mice. 

 

Weights during life of both groups did not vary significantly.  

During the open field test (OFT) the two groups of animals acted the same way, crossing the 

same number of quadrants and doing the same quantity of vertical movements. They also 

reached the same scores with the numerical scoring system (NSS) described in Paragraph 

4.2.5 used to grade the health status of LmnaG609G transgenic mice. When comparing skin 

scores, aorta scores and kyphosis index among groups no differences were significant (p > 

0.05) (Fig. 5.3). However, we must say, that the first aim of the treatment was to increase the 

lifespan of the animals and that all the animals considered in this study were sacrificed 

because they had reached the humane endpoint. This, did not make it possible to evaluate 

histological improvements during the life of the animals at scheduled times, which should be 

considered in future studies. 
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Fig. 5.3: Comparison between treated (A+R) and untreated (NT) LmnaG609G/+ mice for skin score, aorta score and 

kyphosis index. Ns= not significant (p > 0.05). 

 

Lifespan is affected by many factors, and longer the life is more impact these factors might 

have on it. High variability in lifespan in heterozygous groups may reflect such influence. 

Furthermore, a life-long therapy administrated IP in mice can accumulate many errors, adding 

variability to the results. 

Doses were chosen based on in vitro testing that showed improvements in the amount of 

progerin in fibroblast from HGPS patients treated with low doses of rapamycin and all-trans 

retinoic acid. We speculate that the low dosage in our study, was not sufficient in reducing 

progerin in vivo. Thus, dosages might have to be increased in order to detect some effects on 

the animal model of HGPS.  
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Study 2. A+R in LmnaG609G/G609G 

This Study has the same aim of Study 1 with the only difference that LmnaG609G/G609G mice were 

used. Some researches believe that such genotype is the best animal model available for 

preclinical testing of both therapeutic approaches to HGPS and age-related pathologies 

derived from accumulation of progerin. Therefore, 5 mice were treated with 1 mg/kg of 

rapamycin and 0.4 mg/kg of all-trans retinoic acid, twice weekly. Results were compared with 

untreated mice. 

Median survival of A+R treated and untreated mice were 115 and 114, respectively. Maximum 

survival was 128 days for treated mice and 121 for untreated mice. No significant differences 

(p > 0.05) were evidenced in the two groups survivals (Fig. 5.4) and body weights.  

 
Fig. 5.4: Kaplan-Meier survival plots for treated and untreated LmnaG609G/G609G mice. 

 

When comparing skin scores, aorta scores and kyphosis index among groups no differences 

were significant (Fig. 5.5). 

 

 
Fig. 5.5: Comparison between treated (A+R) and untreated (NT) LmnaG609G/G609G mice for skin score, aorta score 

and kyphosis index. Ns= not significant (p > 0.05). 
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This study was performed in homozygous male mice that have an average lifespan of only 115 

days (Chapter 4), and treatments were started around 50 days of age, when reduced weight 

among other symptoms are already evident. Starting treatment earlier might have a favorable 

outcome. However, like in Study 1, we suggest that higher doses are needed in order to make 

ATRA+RAPA treatment effective.  
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5.4 Discussions and Conclusions 

Following the approval of the experimental protocol (July 2016), preclinical studies were 

started in order to improve pathological features of the LmnaG609G transgenic mice and 

prolong their lifespan. In this regard, we tested a combination therapy of all-trans retinoic acid 

and rapamycin. Human HGPS patients carry the Lmna mutation in heterozygosis, however 

some researches think that the progeroid mice carrying the same mutation in homozygosis 

(LmnaG609G/G609G) might be a better animal model than the heterozygous since mice evidenced 

higher tolerance to humans when it comes to accumulation of prelamin A forms (Osorio et al., 

2011). As discussed in Chapter 4, both models have their pros and cons. Therefore, we 

conducted this study using both genotypes. Furthermore, we compared data from the same 

sex groups since differences in lifespan resulted significantly different between males and 

females. In several published preclinical studies (Osorio et al., 2011; Osorio et al., 2012; Lee et 

al., 2013) sex of the treated animals was not specified. Some of the traits examined in those 

studies, such as bone density and resistance, lifespan and weight trends could be influenced 

by sex-linked biological factors and it is not possible to asses if treatment impacts to a greater 

extend males or females. Villa-Bellosta et al. (2013) when evaluating pyrophosphate 

treatment using only males LmnaG609G/G609G, did not observe differences in body weight and 

mortality. However, the post-mortem analysis demonstrated a statistically significant 

reduction in aortic calcification of treated mice compared to the untreated, which was the 

treatment target. 

The IP injection is made through the abdominal wall into the peritoneal cavity. Substances 

diffuse across the peritoneal membrane which is a semipermeable membrane, lined with a 

capillary bed. The blood vessels supplying and draining the abdominal viscera, musculature 

and mesentery, constitute a blood-filled compartment into which drugs can diffuse from the 

peritoneum. However, there is no visual confirmation that the injection has been correctly 

administered (as there is, for example, with the intravenous or intradermal routes). For this 

reason, correct technique is particularly important (Das & North, 2007). One of the major 

consequences of IP injection failure may be a substantial increase in the apparent variability 

of the measured responses (Das & North, 2007). Some form of ‘partial’ administration of the 

IP injection may also contribute to the variability of the responses (Das & North, 2007). If 

properly done as described in Paragraph 5.2.2, IP injection is easy and efficient and usually 

achieves successful outcomes of drug research due to accurate, reliable, convenient dosing 
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with reproducible results because of the large absorbing surface area at the site of injection. 

Furthermore, compared to other available routes IP causes less distress, assures full 

administration of the drug and prevents environmental degradation (which could happen 

when administering through beverage or feed). 

Setting up of therapeutic trials for rare diseases, such as HGPS, is very challenging because of 

the lack of extensive clinical longitudinal studies with homogeneous evaluation parameters 

on cohorts of patients, which hinders the definition of homogeneous therapeutic outcome 

measures and endpoints (Osorio et al., 2011). Also, multicentric trials are difficult to organize 

because of the very low number of patients within a single country, which hampers the strict 

application of identical protocols in various participating clinical investigation centers (Osorio 

et al., 2011). Using a well-known animal model that mimics the phenotypic traits of humans 

helps overcoming such problem.  

All-trans retinoic acid (ATRA) is the carboxylic form of vitamin A, and it is known to play a 

major role in a number of physiologic pathways such as cell proliferation, embryogenesis, 

differentiation, morphogenesis, and inflammation (Mark et al., 2004). At a dose of 0.5 mg/kg 

administered IP three times a week for nine weeks it was able, alone, to suppress the clinical 

and histologic signs of arthritis in a mice model of rheumatoid inflammation (Kwok et al., 

2012). Furthermore, ATRA treatment was able to reduce the amount of progerin in HGPS cells 

and was more effective than rapamycin treatment alone (Pellegrini et al., 2015). ATRA efficacy 

in reducing progerin was elicited by the combination with low doses of rapamycin (Pellegrini 

et al., 2015).  

Rapamycin is an inhibitor of mTOR kinase that has been demonstrated to increase animal’s 

(from worms to mice) lifespan in a number of studies. Rapamycin is thought to operate as a 

gerosuppressant, meaning that it inhibits the cellular conversion to a senescent state (the so-

called geroconversion), a fundamental process involved in aging and age-related pathologies 

including cancer (Blagosklonny, 2014). For example, 4 mg/kg IP every other day for six weeks 

in old C57BL/6 increased mice lifespan (Chen et al., 2009). Anisimov et al. (2010, 2011) 

reported that FVB/N HER2/neu mice and 129/SV female mice treated with 1.5 mg/kg SC three 

times a week for two weeks and 2 weeks each month, respectively, had an increased lifespan 

and the treatment prevented age related weight gain. Such treatment was still effective in 

prolonging lifespan in FVB/N HER2/neu when the dose was decreast at 0.45 mg/kg SC 

(Popovich et al., 2014), starting at 4 and 5 months of age. However, a lack of effect of 
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rapamycin on the mean lifespan was reported when starting treatment at 2 months of age, 

and this result was explained by some deaths in mice during early age and thought to be 

accidental or related to the effects of rapamycin at very young age (Popovich et al., 2014). 

When administered encapsulated in feed, rapamycin increased median and maximal lifespan 

in both females and males mice (Harrison et al., 2009; Miller et al., 2014). In particular, 

rapamycin was demonstrated to increase lifespan more in females than in males (Miller et al., 

2014), and this result was correlated to lower levels of rapamycin in females’ blood. Although 

blood levels of rapamycin could have been related to feed consumption, it was concluded that 

females are likely to have higher blood levels of rapamycin than males, at any age, given equal 

doses of the drug (Miller et al., 2014). Selman et al. (2009) reported that lifespan was 

increased in females, but not in males, of Sirtuin 6 kinase 1 knock out mice with a C57BL/6 

background. Again, Lamming et al. (2012) demonstrated that inactivation of mTORC1 

increased lifespan in females but not in males. The mechanisms through which rapamycin 

prolongs lifespan are still uncertain. Even though rapamycin was thought to be effective 

because it causes tumour suppression, some research groups separated the anti-cancer and 

anti-aging activity of the drug (Anisimov et al., 2011; Wilkinson et al., 2012; Kondratov & 

Kondratova, 2014). Rapamycin, as any other drug, has side effects in humans mostly related 

to high doses (Blagosklonny, 2014; Kondratov & Kondratova, 2014). Also, life-long chronic 

exposure to rapamycin, while preventing most age-related diseases and extending 

healthspan, was shown to increase incidence of cataracts and some other alterations in mice 

(Wilkinson et al., 2012). However, the ability of rapamycin to work at low doses makes it 

substantially more attractive as a candidate for a preventive medicine (Kondratov & 

Kondratova, 2014). Rapamycin, acting as a mTOR inhibitor, was shown to contribute to 

progerin degradation by activating autophagy (Bjedov & Partridge, 2011), and in vitro studies 

reported promising results in its use as a therapeutic approach to Progeria syndrome (Cao et 

al., 2011; Cenni et al., 2011; Mendelsohn & Larrick, 2011), especially when used at low doses 

in combination with ATRA (Pellegrini et al., 2015). In April 2016, a phase I clinical trial started 

(and is still ongoing) to determine the maximum tolerated dose of everolimus (rapalog) that 

is taken in combination with Lonafarnib in human patients with HGPS (PRF, 2017c). 

In this preliminary study, a combination of low dose rapamycin (1 mg/kg) and all-trans retinoic 

acid (0.4 mg/kg), administered during the whole animal’s life twice weekly starting from 6 

weeks of age were tested in LmnaG609G/+ and LmnaG609G/G609G transgenic male mice. 
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Differences in survival analysis of treated and untreated groups did not reveal significant 

differences for both genotypes. However, maximal survival was 55 days longer for treated 

heterozygous compared to untreated, and 7 days longer for treated homozygous. Increasing 

the number of animal for group might lead to significant differences. Moreover, dose related 

drug sensitivity could differ among sexes; therefore, it might be interesting to evaluate the 

effects of such treatment in females who might be more influenced by the treatment. We also 

did not observe changes in mean weights between groups. It must be noted that ATRA is 

known to induce body fat loss by activating brown adipose tissue, reducing lipogenic 

capabilities and increasing oxidative metabolism and thermogenesis in white adipose tissue 

depots and skeletal muscle (Amengual et al., 2010). Also, treatment with rapamycin is 

reported to prevent weight gain related with aging (Anisimov et al., 2010; Anisimov et al., 

2011). However, we did not register weight loss of the treated group compared to untreated 

group likely indicating that this does not occur for low doses of ATRA+RAPA administered long-

term in such mouse model.  

Treated mice did not exhibit changes in the open field test, differently from rats treated with 

1 and 3 mg/kg of rapamycin (Lu et al., 2015).  

Questions about safe dosage of ATRA+RAPA administered chronically, timing in starting the 

therapy still need to be answered and are extremely important. In fact, a study demonstrated 

that rapamycin was successful in prolonging lifespan when administered starting from 4 

months of age but not at 2 months (Popovich et al., 2014). 

Other studies are needed to investigate weather treatments with higher dosages of the tested 

therapies, starting at different time points, and the combination of such therapy with farnesyl-

transferase inhibitors and statins could be more beneficial than current strategies. 

Thanks to the collaboration with the Institute of Molecular Genetics CNR, Bologna, studies 

aiming to prolong lifespan and increase life quality of LmnaG609G transgenic mice are still 

ongoing. 
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Chapter 6 

Animal Models of HER2-positive Cancers, and Oncolytic 

Virus-Mediated Immunotherapy 

 

6.1 Introduction 

Topics dealt with in this chapter are needed in order to better understand the experimental 

study discussed in Chapter 7. In particular, these topics include HER2-positive cancers and 

treatments with targeted drugs, oncolytic virus-mediated immunotherapy and animal models 

for preclinical testing of HER2-positive cancer treatment. A brief discussion on difficulties 

encountered when translating preclinical results to clinical testing is also held. 
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6.2 HER2 

The year 2017 marks exactly three decades since the Human Epidermal Growth Factor 

Receptor 2 (HER2) was functionally implicated in the pathogenesis of human breast cancer 

(Slamon et al., 1987). This finding established the HER2 oncogene hypothesis for the 

development of some human cancers (Moasser, 2007). 

While HER2 is used in reference to the human gene and protein, c-erbB-2 is used to refer to 

the gene across humans and rodents, and neu for the rodent counterparts (Moasser, 2007). 

Neu was initially described as a transforming oncogene in a carcinogen induced rat brain 

tumour model (Shih et al., 1981). Four years later, in an independent study, an EGFR-related 

gene was found to be amplified in a human breast cancer cell line and was named Human 

Epidermal Growth Factor Receptor 2 (King et al., 1985). Subsequent cloning of two other 

related human genes and the post-genome characterization of the human kinome completed 

the description of this family of four members (Kraus et al., 1989; Plowman et al., 1993; 

Manning et al., 2002; Moasser, 2007), therefore composed by EGFR (HER1, erbB1), HER2 

(erbB2, HER2/neu), HER3 (erbB3), and HER4 (erbB4).  

The HER2 is a proto-oncogene encoding a 185 kDa transmembrane glycoprotein, as well 

named HER2, described in different tumours and animals (de las Mulas et al., 2003; Ma et al., 

2013). Such glycoprotein is a tyrosine kinase receptor that has a similar structure in all HER 

family members. The structure is made of a glycosylated extracellular domain (ECD), an 

hydrophobic transmembrane domain, and an intracellular domain with tyrosine kinase 

activity. When specific ligands bind to the ECD they cause a conformation change that leads 

to dimerization. Such dimerization induces tyrosine kinase phosphorylation and downstream 

signalling causing cell migration and proliferation, as well as cell survival (Barthelemy et al., 

2014). However, this is not true for HER2 for which no specific ligands have been identified 

and is constitutively present at the cell surface in an active conformation (Fig. 6.1). Therefore, 

it is considered an optimal partner for dimerization of other HER proteins and it has been the 

goal of novel targeted cancer therapies. 
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Fig.6.1: Schematic overview of the structural basis for HER receptor dimerization and activation.  

HER1, HER2 and HER3 have a closed conformation. When the ligand binds to them it creates an extended 

conformation, allowing for receptor homo- and heterodimerization. The dimerization leads to the C-terminal 

tyrosine phosphorylation, creating phosphotyrosine binding sites for binding of adaptors, signalling molecules 

and regulatory proteins. HER2 is fixed in the active conformation and therefore ready to interact with other HER 

receptors (adapted with permission from Wieduwilt & Moasser, 2008). 

 

Significant differences were thought to be present between human and rodent genes: while 

human HER2 appears to hold tumorigenic potential through overexpression alone, rodent neu 

appears to require mutational activation (Moasser, 2007). However, recently rare types of 

human lung cancers that have HER2 kinase domain mutations, conferring increased kinase 

activity without overexpression, might be in contrast with previous observations. To date, to 

little is known on such domain to challenge the overexpression model (Moasser, 2007).  

What is a fact, it that overexpression of HER2 correlates in humans with more aggressive clinic 

pathologic features, drug resistance or sensitivity to specific chemotherapy and specific 

hormonal therapy regimens in breast cancer (Slamon et al., 1987; Revillion et al., 1998; Sahin, 

2000). In node-positive breast cancer it may be associated with worse outcomes even at low-

level expression (Gilcrease et al., 2009). Apart from breast cancer, HER2 overexpression and 

amplification has been detected in many other human tumours, including gastric, 

oesophageal, endometrial, ovarian, salivary gland, oropharynx, bladder, pancreatic, lung and 

melanoma cancers (Hirsch et al. 2002; Khan et al. 2002; Latif et al. 2003; Glisson et al., 2004; 

Hansel et al., 2005; Mimura et al. 2005; Morrison et al., 2006; Yano et al., 2006; Marín et al., 

2010; Ma et al., 2013; Pagni et al., 2013). Numerous transgenic mouse models have validated 

the theory that HER2 has an important role in tumorigenesis. 
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6.3 HER2 Diagnosis 

As it can be seen from the following paragraph, the development of anti-HER2 therapeutic 

agents represents a great success in individualized therapy, especially for what concerns 

HER2-positive breast cancers. Therefore, in a standard day of routine diagnostic practice HER2 

scoring, along with the assessment of other prognostic and predictive factors, is undoubtedly 

one of the topic moments in terms of breast cancer pathology (Sapino et al., 2013). 

Obviously, it is mandatory to have a proper sampling and biopsies need to account for tissue 

heterogeneity. From a laboratory point of view, different methodological approaches are 

available.  

The first step is the assessment of HER2 protein overexpression in immunohistochemistry 

(IHC) (Marques et al., 2016). A four-tier scoring system is contemplated in which, depending 

on the final score, further tests could be needed in order to confirm eligibility to treatment 

(Wolff et al., 2007; Sapino et al., 2013). It has been demonstrated that there is a number of 

false negative/false positive depending on the use of the scoring system (Perez et al., 2012; 

Wolff et al., 2012), so IHC is not considered to be robust (Sapino et al., 2013).  

HER2 gene amplification is present in 85–90% of the cases (Ratcliffe et al., 1997; Isola et al., 

1999; Hoang et al., 2000; Jimenez et al., 2000; Johnson et al., 2000), and three main methods 

are approved to detect it. In particular: 

- fluorescence in situ hybridization (FISH) 

- chromogenic in situ hybridization (CISH) 

- silver in situ hybridization (SISH). 

FISH was considered for many years to be the gold standard method for detecting HER2 

amplification, but is not very practical for routine histopathological laboratories. Thanks to the 

development of a “fast FISH” (IQFISH) with a 98% concordance with traditional FISH 

(Matthiesen & Hansen, 2012), the turnaround time output has been shortened.  

There are many issues on reproducibility and reliability of HER2 testing and the American 

Society of Clinical Oncology (ASCO)/College of American Pathologists (CAP) published a special 

article that serves as a guideline for HER2 testing (Wolff et al., 2014). 
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6.4 HER2 Targeted Drugs 

Targeted cancer therapies interfere with specific molecules that are involved in growth, 

progression and spread of cancer. Targeted cancer therapies are also sometimes called 

"molecularly targeted drugs," "molecularly targeted therapies," "precision medicines," or 

have other similar names (NCI, 2017).  

Several drugs have been developed and are in clinical use to block the HER pathway (Patel et 

al., 2014). In 1998, trastuzumab, a monoclonal antibody directed against HER2, was the first 

monoclonal antibody and HER-directed therapy approved by the FDA for metastatic breast 

cancer therapy (Slamon et al., 2001). Trastuzumab is commonly used in combination with a 

wide range of chemotherapy agents (Patel et al., 2014) as a first line treatment for HER2-

positive metastatic breast cancer. It is also approved in combination with chemotherapy, for 

the treatment of HER2-positive metastatic cancer of the stomach or gastroesophageal 

junction (Herceptin, 2017). It is thought to cause death of HER2 overexpressing cells through 

mechanisms involving induction of apopstosis, inhibition of HER2 cells proliferation signalling 

and antibody-dependent cell-mediated cytotoxicity (Arteaga et al., 2012).  

Lapatinib is a HER1/HER2 kinase inhibitor that blocking signal transduction pathways has 

demonstrated activity in HER2 overexpressing breast cancer and was approved in 2007 as 

second-line therapy for metastatic breast cancers (Rusnak et al., 2001; NCI, 2011). 

Pertuzumab is a recombinant humanized monoclonal antibody approved in combination with 

chemotherapy and trastuzumab for the first-line treatment of HER2-positive metastatic breast 

cancer and for the neoadjuvant therapy of HER2-positive (NCI, 2013). It acts by blocking HER2 

to dimerize with other HER receptors, such as with HER3, by binding to the extracellular 

dimerization domain II of HER2 (Patel et al., 2014). Thus, pertuzumab, targets a different 

epitope from that of trastuzumab, which blocks the signalling pathway without affecting 

dimerization (Barthelemy et al., 2014). 

Ado-trastuzumab-emtansine (T-DM1) is a new class of antibody–drug conjugate that has 

recently shown superior clinical activity, combining the effect of trastuzumab with a cytotoxic 

agent. The conjugate is internalized via receptor-mediated endocytosis in HER2 

overexpressing cells, and an active derivative of DM1 is subsequently released by proteolytic 

degradation of the antibody moiety within the lysosome (Lambert & Chari, 2014). Such 

delivery system improves the therapeutic index and minimizes exposure of normal tissue 

(Verma et al., 2012; Patel et al., 2014). 
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Most of HER2 targeted therapies are approved for breast cancer. However, many therapies 

are being investigated in preclinical and clinical trials for other HER2-positive cancers. 

Targeted therapies are currently at the centre of anticancer drug development. Despite the 

success of single agents targeting the HER family, there are a number of escape mechanisms 

from HER-targeted therapies suggesting both acquired and de novo mechanisms of drug 

resistance (Patel et al., 2014). A single-agent block might provide an escape mechanism 

through the redundancy in the input layer of the network (Patel et al., 2014). Many studies 

have demonstrated that single-agent HER2 targeted therapies are efficacious but that the 

response is incomplete. Only a subset of HER2-positive cancers responds to current targeted 

therapy, and resistance is especially driven by alterations in HER2 signalling pathway rather 

than its surface expression (Menotti et al., 2009). Thus, more effective and innovative 

therapies are needed against this tumour target.  

Oncolytic virotherapy is an emerging treatment modality which uses competent replicant 

viruses to destroy cancers (Russel et al., 2012). Viruses can be genetically modified to 

recognize some receptors as targets; in these cases, receptors that are uniquely expressed or 

overexpressed by tumour cells, such as for HER2 glycoprotein, are chosen. Specific targeting 

of cancer cells is obviously essential for oncolytic virotherapy (Russel et al., 2012). Often, it is 

also important to detarget the viruses from their natural receptors (Cattaneo et al., 2008; Gao 

et al., 2008). A number of oncolytic viruses (OVs) which induced tumour regression in animal 

models of human cancers are now being assayed in clinical trials (Leoni et al., 2015). Some of 

these are under trial for HER2-positive cancer treatment (NIH, 2017).  
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6.5 Oncolytic Virus-Mediated Immunotherapy 

As previously mentioned, oncolytic virotherapy uses the ability of viruses to replicate and kill 

target cells and simultaneously spread to other target cells (Nanni et al., 2013). This concept 

is not completely new since throughout the twentieth century several mini trials or case 

reports described the use of crudely prepared clinical or laboratory viral isolates for 

oncotherapy (Chiocca, 2002). Only in 1991 the first anticancer virus was engineered and used 

in a preclinical model of human glioma (Martuza et al., 1991). Since then, many viruses have 

been genetically modified to generate replicating oncolytic agents that target tumour cells 

with varying extent of cancer specificity (Leoni et al., 2015). Interest in OVs has been increasing 

based on a better understanding of viral biology, tumour immunology and molecular genetics 

(Kaufman et al., 2015).  

The outcome of viral infections can vary greatly depending on the pathogenic nature of the 

virally encoded genes, interactions between the virus and the host immune system and the 

ability of the virus to replicate and/or induce latency following infection (Kaufman et al., 

2015). OVs are thought to mediate antitumor activity through two main mechanisms: 

selective replication inside cancer cells that causes cell lysis, and induction of systemic 

antitumor immunity (Kaufman et al., 2015). In particular, the immune response to oncolytic 

viruses is apparently an important component of the antitumor effect (Kaufman et al., 2015). 

In fact, OV-lysed tumour cells release 1) tumour associated antigens; 2) viral Pathogen-

Associated Molecular Patterns (known as PAMPs - such as, capsids, DNA, proteins etc); 3) 

Danger-Associated Molecular Patterns (known as DAMPs - such as heat shock proteins, ATP, 

uric acid etc); and cytokins (type 1 IFN, TNFα, IFN γ, IL-12). The release of these components 

is important for inducing innate and adaptive immune responses against cancer cells. The 

innate immune response is not antigen specific, does not lead to lasting immune memory and 

doesn’t increase with repeated exposure to the antigen. Key partecipats of innate immunity 

are macrophages, neutrophils, natural killer (NK) cells, and dendritic cells (DCs). The adaptive 

immune response starts when DCs ingest an antigen, migrate to the peripheral lymphoid 

tissue, and mature into antigen-presenting cells. T-lymphocytes are then activated. Especially 

cytotoxic CD8+ T cells have been demonstrated to be important in mediating tumour rejection 

because of their ability to reach sites of established tumour growth, where they mediated 

anti-tumour immunity upon antigen recognition (Kaufman et al., 2015; Aurelian, 2016). 
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Nonetheless, the co-participation of the immune system could represent a limit since 

neutralizing antiviral responses, especially mediated by the innate immunity, may block virus 

replication and ongoing infection of tumour cells (Kaufman et al., 2015; Aurelian, 2016). Such 

ability of the immune system to neutralize the virus depends on many variables, but especially 

on the virus characteristics and on the tumour microenvironment (Kaufman et al., 2015). 

Chronic activation of innate immunity appears to be correlated with poor OVs treatment 

prognosis (Aurelian, 2016). Clinical efficacy is therefore a delicate balance between these 

factors, among others.  

Oncolytic viruses (OVs) encompass a broad diversity of DNA and RNA viruses that are naturally 

cancer-selective or can be genetically manipulated in order to gain selectivity (Chiocca & 

Rabkin, 2014). OVc are based on adenovirus, herpes virus, reoviruses, retroviruses, measles 

viruses, vaccinia viruses and many other types. 

In 2004 in Latvia, a non-genetically engineered oncolytic, non-pathogenic enteric cytopathic 

human orphan type 7 (ECHO-7) virus adapted and selected for melanoma (Rigvir), was 

approved for melanoma therapy in humans (Babiker et al., 2017). In 2006, the oncolytic virus 

H101, a modified adenovirus, was approved in China, for the treatment of squamous cell 

carcinoma of head and neck (Xia et al., 2004; Babiker et al., 2017). In October 2015, 

talimogene laherparepvecan (T-VEC, Amgen), an herpes simplex virus type 1–derived OV, was 

the first FDA approved OV for intratumoral treatment of melanoma. T-VEC is able to replicate 

selectively in tumour cells and has been engineered to provoke anticancer immunity via 

expression of granulocyte-macrophages colony-stimulating factor (GM-CSF) (Lawier & 

Chiocca, 2015). To date, other OVs completed phase I and II clinical trials for glioblastoma, 

other solid tumours, as well as for leukemia and lymphoma (Aurelian, 2016). It is important to 

note that all OVs trials haven’t so far had serious adverse events, and that the tolerable and 

safe profiles make combination treatments feasible. Apparently, one of the most promising 

strategies is to combine OVs with T cell checkpoint inhibitors, which are potent agents with 

activity in a wide range of cancers. In particular, studies suggest that patients with tumours 

expressing high levels of programmed cell death 1 ligand 1 (PDL1) may have an improved 

response to T cell checkpoint inhibitors. As oncolytic viruses often induce INF release in the 

local tumour microenvironment, and IFN is known to upregulate PDL1 expression on tumour 

cells, this combination is especially interesting (Kaufman et al., 2015).  
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OVs safety can be achieved through various mechanisms, most importantly by virus 

attenuation (Mineta et al., 1995; Hunter et al., 1999). An alternative approach to attenuation 

has been to design OVs fully retargeted to cancer-specific receptors and detargeted from 

natural receptors, especially for what concerns herpes viruses (Campadelli-Fiume et al., 2016). 

Herpes simplex virus type 1 (HSV-1) is a double-stranded DNA virus, member of 

alphaherpesvirus family and a major human pathogen that causes skin lesions, rashes and can 

infect peripheral nerves and enter a latent stage (Kaufman et al., 2015). This virus can infect 

epithelial cells by viral surface glycoproteins, neurons through surface nectins and the immune 

cells through the herpesvirus entry mediator (HVEM) (Kaufman et al., 2015). Fortunately, HSV-

1 has a large genome (152 kb), in which about 30 kb encode genes that are not essential for 

viral infection. This means that there is space to insert heterologous sequences and also that 

it can be relatively easy to genetically manipulate and to detarget it from its natural receptors. 

Furthermore, in the worst-case scenario, there is the possibility to control any unwanted 

replication in humans by acyclovir treatment (Menotti et al., 2008; Leoni et al., 2015). For 

these reasons among others, HSV-1 represents a highly promising OV.  

OV antitumor activity can be enhanced by transgene arming, including monoclonal antibodies, 

proapoptotic genes, antiangiogenic and antivascular proteins, enzymes that degrade 

extracellular matrix and inflammatory cytokines (Aurelian, 2016). As previously said, for 

example, T-VEC expresses the immunostimulatory cytokine GM-CSF. Arming OVs with 

immune-enhancing cytokines capable of boosting the host’s immune response to effectively 

attack tumour cells appears promising. In particular, a number of OVs that harbour IL-12 has 

been demonstrated to have an enhanced anticancer immune response. IL-12 is one of the 

most important anticancer cytokines, and its effect is mediated by the activation and 

recruitment of DCs, cytotoxic NK and cytotoxic T cells and by an antiangiogenic effect (Alkayyal 

et al., 2016). 

Special challenges in OVs development remain the need for more practical clinical trials 

designs, validated PK/PD assays, biosafety issues and non-traditional regulatory, 

manufacturing and commercialization issues (Kaufman et al., 2015). 
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6.6 HER2 Animal Models and Translational Relevance in Veterinary Medicine 

Most of the animal models for HER2 have been used to demonstrate the histopathology, 

oncogenic signalling pathways initiated by aberrant overexpression of HER2 in cancers, and 

oncogenes-tumour suppressor genes at molecular levels interactions (Fry et al., 2016).  

For example, canine mammary gland carcinomas have epidemiological, clinical, morphologic 

and prognostic features similar to those of human breast carcinoma, for which they are 

thought to be suitable natural models (de las Mulas et al., 2003; Frese, 1986; Nerurkar et al., 

1989; Withrow & MacEwn, 2001). In particular, a HER2 homologue with 92% amino acid 

identity has been described in canine mammary tumours, known as “dog epidermal growth 

factor receptor 2 (DER2)”, with similar biological implications as those in human breast cancer 

(Singer et al., 2012; Fazekas et al., 2016). Also, the percentage of HER2 protein overexpression 

among mammary carcinomas in humans and dogs are similar (de las Mulas et al., 2003). 

However, no amplification of the c-erbB-2 oncogene was detected in the canine tumours, 

while the human species, depending on the diagnostic techniques, show oncogene 

amplification in 85–90% of the cases overexpressing the protein (Ratcliffe et al., 1997; Isola et 

al., 1999; Hoang et al., 2000; Jimenez et al., 2000; Johnson et al., 2000). Thus, canine mammary 

carcinomas would be suitable natural models of that subset of human breast carcinomas with 

HER2 protein overexpression without gene amplification (de las Mulas et al., 2003), especially 

considering the high incidence of such cancer in dogs. In fact, incidence is estimated to be at 

50%, of which 40 to 50% are diagnosed as malignant (Baba & Catoi, 2007). More importantly, 

it is clear that dogs with naturally occurring HER2-positive cancer would not only act as animal 

model patients for human disease, but would gain individual benefit by participating in a 

clinical trial (Paoloni & Khanna, 2008; Queiroga et al., 2011) (Fig. 6.2). 

Highly variable levels of HER2 expression have been also recorded in feline mammary 

tumours. The numbers of positive tumours range from 5.5% to 90% in different studies, 

probably due to antibody selection, which is the criteria for assessing expression, among other 

issues (de Maria et al., 2005; Millanta et al., 2005; Winston et al., 2005; Ordas et al., 2007; 

Rasotto et al., 2011; Hughes & Dobson, 2012). Some authors have demonstrated a correlation 

between HER2 expression and overall survival (Millanta et al., 2005), however a recent study 

indicated that HER2 might have less prognostic potential in feline mammary tumours than 

woman breast cancer (Rasotto et al., 2011). As for dogs, reports showed low HER2 mRNA 

levels and no gene amplification in HER2-positive feline mammary carcinoma (Ordas et al., 
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2007; Soares et al., 2013). If on one side further research is needed in order to prove if the 

feline mammary carcinoma can be a model for human breast cancer, on the other hand the 

high prevalence of HER2 overexpression can be a great opportunity to study specific targeted 

drugs (Marques et al., 2016). 

 

 
Fig. 6.2: How clinical trials in canine cancer patients could contribute to the development of novel precision 

medicine options in human and veterinary oncology. 

Again, animal patients with similar spontaneous diseases to humans are usually left out during 

the drug development process, even though they could serve as “real life” models for human 

diseases and are a missing link between the laboratory setting of animal experimentation and 

the “real life” conditions (Fazekas et al., 2016). Studying pets such as cats and dogs with 

naturally developing cancers is likely to provide a valuable perspective that is distinct from 

that generated by the study of human or rodent cancers alone (Paoloni & Khanna, 2008). 
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In the animal experimentation setting, especially mice have been used as models and have 

been crucial to increase knowledge about oncogenic mechanisms. However, these models can 

also be used in preclinical studies to test the efficacy of HER2 targeted therapies.  

Since 1980’s a number of transgenic mice have been developed, mostly to study human breast 

cancer. The first transgenic model investigating the role of HER2 in carcinogenesis was in 1988, 

when Muller et al. (1988) used the mouse mammary tumour virus (MMTV) to activate the c-

neu (activated c-neu referred as neu-NT) gene providing transgenic mice that spontaneously 

developed mammary tumours in a short latency time (Muller et al., 1988). Since then, as it 

can be seen from Table 6.1, MMTV-neu-NT, both on FVB or balb/c backgrounds, have been 

useful not only to study oncogenic mechanisms but also to study a number of targeted 

therapies and vaccines. Although MMTV-neu-NT models among others (briefly described in 

Table 6.1) expressing the neu gene are interesting and useful, there is about 10% difference 

between rat and human erbB-2 proteins (Yamamoto et al., 1986). When immunized with 

human erbB-2 DNA even though females developed less tumours, both humoral and cellular 

immunity were not detected and whether tolerance to rat neu was overcome remained 

uncertain (Pupa et al., 2001). Therefore, neu-transgenic models might not be suitable for 

investigating the efficacy of therapeutics targeted to the human HER2. After some failed 

attempts (Stocklin et al., 1993), a transgenic mouse tolerant for HER2 syngeneic to C57BL/6 

background was established (Piechocki et al., 2003). Such HER2 transgenic mouse was 

achieved using the whey acidic protein (WAP) promoter (in light blue in Table 6.1). HER2 mice 

were tolerant to human HER2 and permissive to the out-growth of tumours expressing HER2 

without generating an antibody response, and did not show spontaneous tumour growth 

(Piechocki et al., 2003). This model is considered to be valuable to test vaccinations and the 

activity of oncolytic viruses and immunotherapy against different tumour types expressing 

HER2. One year after this model, Finkle et al. (2004) developed another mouse model of 

human HER2-overexpressing breast cancer under the control of the MMTV promoter. 

Most of HER2/neu transgenic models have been achieved by transgene integration using 

MMTV promoter, with the exception of Piechocki et al. (2003) who used whey acidic protein 

(WAP) and achieved a model that doesn’t develop spontaneous cancers. The animal models 

used in experimental designs should be chosen on the basis of the aim of the study. 



 143 

Overall, it is important to recognise both the strengths and the weaknesses of engineered 

models and models of naturally cancer development, such as dogs and cats. They may be 

appropriately used and integrated into a comprehensive drug-development programme.  

It has been recommended that therapeutic agents, especially in oncology, should not only be 

evaluated in rodents, but also in higher animal species (Mak et al., 2014).
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Mouse model Phenotype/ 
Pathology 

Mean latency of 
tumours 

Use  Main studies outcomes Reference 

MMTV-neu-NT (in 
mouse lineage 
TG.NF) 

Early, multiple 
mammary tumours 

3 months of 
age, short 
survival 

First transgenic model created 
using the mouse mammary 
tumour virus (MMTV) to 
activate the c-neu 

Results suggested that activated neu 
overexpression could drive mammary 
carcinogenesis in a single step 

Muller et 
al., 1988 

MMTV-neu-NT Mammary tumours 
stochastically 

5-10 months  Longer tumour latency provided evidence that 
carcinogenesis could depend on the site of 
integration of the transgene and on the 
transgene copy number 

Bouchard 
et al., 1989 

MMTV-neu-NT 
  

  Three generation description 
of the animal model 

Neu oncogene can induce tumours in all the 
tissues where it is expressed at high levels 

Lucchini et 
al., 1992 

MMTV-neu-NT on 
FVB background 
(wild type) 

Focal mammary 
tumour after long 
latency 

40 weeks of age Establishment of a transgenic 
mice on FVB background  

Over expression of neu in the mammary 
tumours was associate with elevated neu 
intrinsic tyrosine kinase activity and the de novo 
tyrosine phosphorylation of several cellular 
proteins. Many mice developed secondary 
metastatic tumours in the lung after long 
latency 

Guy et al., 
1992 

MMTV-erbB2 
(human variant) 

Histopathological 
analysis suggests 
that preneoplastic 
lesions in kidney 
and lung most 
likely caused organ 
failure and the 
early death of the 
transgenic mice 

Death at 4 
months 

To study the pathogenicity of 
the human c-erbB-2 oncogene 
was evaluated in transgenic 
mice 

Description of the model Stocklin et 
al., 1993 

MMTV-neu-NT on 
Balb/c and FVB 
background 

Invasive 
carcinomas of all 
10 mammary 
glands 

33 weeks of age 
for balb/c; 48-
49 for FVB 

Ability of IL-12 in preventing 
tumours 

Tumour inhibition was associated with: 
mammary infiltration of reactive cells; 
production of cytokines; inducible nitric oxide 
synthase; reduction in microvessel number  

Boggio et 
al., 1998 
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Mouse model Phenotype/ 
Pathology 

Mean latency of 
tumours 

Use  Main studies outcomes Reference 

K14-erbB-2 Severe hyperplastic 
lesions of skin, hair 
follicles, 
oesophagus, 
perinatal lethal 

 To investigate erbB-2 role in 
the skin 

Skin is sensitive to erbB-2 signalling, suggesting 
an important role for this receptor in epidermal 
growth, differentiation and hair follicle 
morphogenesis 

Xie et al., 
1998 

K5.neu  Severe hyperplastic 
lesions of skin, 
oesophagus, 
papillomas, early 
death 

 To investigate erbB-2 role in 
the skin 

ErbB2 signalling has an important role in 
epidermal proliferation and carcinogenesis 

Bol et al., 
1998 

MMTV-neu-NDL 
neu deletion 

  To assess the importance of 
neu activation during 
mammary tumorigenesis, 
altered receptors harboring in-
frame deletions within the 
extracellular domain were 
expressed in transgenic mice 

Co-expression of erbB-2 and erbB-3 may play a 
critical role in the induction of human breast 
tumours, and raise the possibility that activating 
mutations in the erbB-2 receptor may also 
contribute to this process 

Siegel et 
al., 1999 

K14-rtTA/TetRE-
ErbB2 'Tet-On' 

Rapid doxycycline 
induction of 
hyperplastic lesions 
in skin, hair 
follicles, 
oesophagus, 
regress without 
doxycycline 

 To investigate conditional 
expression of the erbB2 
oncogene in skin 

ErbB2 plays important roles in both 
development and maintenance of hair follicles 
and diverse squamous epithelia. The model may 
be useful in studying transgenes with perinatal 
toxicity 

Xie et al., 
1999 

MMTV-neu-NT on 
Balb/c and FVB 
background 
 
 
 

  Ability of systemic IL-12 to 
hamper progressive stages of 
mammary carcinogenesis 

IL-12 interfered with progression of early 
preneoplastic lesions while later treatments 
where less effective 

Boggio et 
al., 2000 
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Mouse model Phenotype/ 
Pathology 

Mean latency of 
tumours 

Use Main studies outcomes Reference 

MMTV-Cre Late mammary 
tumours 

12-17 months To generate transgenic mice 
that carry the activated neu 
oncogene under the 
transcriptional control of the 
endogenous neu promoter 

Mammary tumorigenesis in neu mouse models 
require the amplification and commensurate 
elevated expression of the neu gene 

Andrechek 
et al., 2000 

NN60, TNT Abnormal 
involution, focal 
mammary 
abnormalities in 
multiparous 
females  

Between 1 and 
2 years 

To generate two breast cancer 
mouse models: one expressing 
rat wild type neu, the other 
expressing rat mutant neu, 
both under the control of the 
normal mouse neu promoter 

Minor perturbations in amplified neu 
expression are sufficient to alter mammary 
development and induce malignant 
transformation 

Weinstein 
et al., 2000 

BK5.erbB2 Spontaneous 
papillomas, some 
of which converted 
to squamous cell 
carcinomas 

Starting from 6 
weeks of age. 
Survive 6-12 
month 

To investigate the constitutive 
expression of erbB2 in 
epidermis of transgenic mice 

The important role of erbB2 signalling in 
epidermal growth, development and neoplasia 

Kiguchi et 
al., 2000 

MMTV-neu-NT on 
FVB background 

  To test a DNA vaccine in 
preventing mammary tumour 
development 

The xenogeneic HER2 DNA sequence was able 
to break immune tolerance to rat neu in 
transgenic mice and induced protective 
immunity, possibly based on different 
mechanisms including aspecific and 
inflammatory immunological responses 

Pupa et al., 
2001 

BK5.erbB2 Gallbladder 
adenocarcinomas 

Starting from 3 
months of age. 
Survive 6-12 
month 

To investigate the constitutive 
expression of erbB-2 in 
gallbladder epithelium 

The transgenic mouse obtained was proposed 
as a new animal model for studying biliary tract 
carcinogenesis 

Kiguchi et 
al., 2001 

MMTV-neu-NT on 
Balb/c 
background 
 
 

  Inhibition of mammary 
carcinogenesis by systemic 
interleukin 12 or p185neu 
DNA vaccination 

Elicitation of nonspecific and specific immunity 
could be beneficially used in individuals with a 
high risk of developing tumours 

Di Carlo et 
al., 2001 
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Mouse model Phenotype/ 
Pathology 

Mean latency of 
tumours 

Use Main studies outcomes Reference 

MMTV-neu-NDL, 
neu-NDL-YB, neu-
NDL-YD 

  To investigate the role of the 
neu autophosphorylation sites 
in transforming its signalling 

Grb2 and Shc play important and distinct roles 
in ErbB-2/Neu-induced mammary 
tumorigenesis and metastasis 

Dankort et 
al., 2001 

MMTV-
rtTA/TetO-NeuNT 

Rapid mammary 
tumours and 
frequent lung 
metastasis 

6 weeks The tetracycline regulatory 
system to conditionally 
express activated neu in the 
mammary epithelium of 
transgenic mice was used to 
determine the impact of 
tumour progression on the 
reversibility of neu-induced 
tumorigenesis 

Neu-initiated tumorigenesis is reversible Moody et 
al., 2002 

WAP-HER2 
C57BL/6 

None of the tissues 
expressing HER2 
demonstrated 
obvious 
abnormality. Mice 
were healthy and 
had a normal 
lifespan 

 To Engineer a mice model 
suitable to test HER2 vaccines 

Animal were immune tolerant to human HER2 Piechocki 
et al., 2003 

MMTV-HER2 Adenocarcinoma 
with areas of solid, 
tubular, and 
papillary growth 
cellular 
polymorphism with 
mitosis and lung 
metastasis 
 
 
 

28 weeks To study the effectiveness of 
early and prolonged treatment 
with the murine form of 
trastuzumab/Herceptin in 
MMTV-HER2 model 

The study suggested a potential benefit of early 
treatment with Herceptin in HER2-positive 
primary breast cancer 

Finkle et 
al., 2004 
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Mouse model Phenotype/ 
Pathology 

Mean latency of 
tumours 

Use Main studies outcomes Reference 

MMTV-neu-NT   Virus-like replicon particles of 
Venezuelan equine 
encephalitis virus containing 
the gene for HER2/neu were 
tested by an active 
immunotherapeutic approach 

Breast cancer growth and tumorigenesis was 
inhibited 

Wang et 
al., 2005 

Pbsn-neu Prostatic 
intraepithelial 
neoplasia and 
invasive prostate 
cancer 

1-2 years To investigate the implications 
of HER2 in human prostate 
cancer 

HER2 alone does not play a significant role, but 
its heterodimerization with HER3 promotes 
tumorigenesis  

Li et al., 
2006 

MMTV-neu-NT on 
Balb/c 

  Efficacy of an adenovirus 
vaccination against neu 
ocongene 

The vaccination gave was useful in preventing 
tumorigenesis 

Gallo et al., 
2007 

MMTV-neu (wild 
type) 

  To identify tumorsphere 
forming unit (TFU) and 
tumour-initiating cells (TIC) in 
the transgenic model 

TFU-based screens can be useful to target 
tumour-initiating cells in HER2+ breast cancers 

Liu et al., 
2007 

MMTV-neu (wild 
type) 

  To investigate the antitumor 
activity of brassins (natural 
products derived from plants) 

Brassin might be useful as the structural basis 
for a new class of compounds with in vivo 
anticancer activity mediated through the 
inhibition of 2,3-dioxygenase 

Banerjee et 
al., 2008 

MMTV-NIC   To explore the in vivo 
significance of ShcA gene 
during mammary 
tumorigenesis 

It was demonstrated that signalling 
downstream from the ShcA adaptor protein is 
critical for breast cancer development 

Ursini-
Siegel et 
al., 2008 

MMTV-neu-NT on 
Balb/c 
background 
  

  To investigate the antitumor 
immunity generated following 
CD11c-targeted protein 
vaccines 
 

Delivery of tumour antigens to DCs induced 
potent immune responses and had 
antitumoural activity  

Wei et al., 
2009 
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Mouse model Phenotype/ 
Pathology 

Mean latency of 
tumours 

Use Main studies outcomes Reference 

PTNE-deficient -
MMTV-NIC 

  To address the biological 
impact of conditional 
inactivation of PTEN on ErbB-
2-induced mammary 
tumorigenesis 

Disruption of PTEN accelerated the formation of 
multifocal and highly metastatic mammary 
tumours – such mice may be a valuable tool to 
test the efficacy of treatments targeting PTNE 
and HER2 

Schade et 
al., 2009 

D16HER2- LUC   To examine the ability of 
Δ16HER2 to transform 
mammary epithelium in vivo 
and to monitor Δ16HER2-
driven tumorigenesis in live 
mice 

 Marchini et 
al., 2011 

MMTV-neu-NT Multiple tumours 
involving the entire 
mammary 
epithelium 

18-20 weeks of 
age in 35-50% 
of mice 

Testing anticancer drug 17-
allylamino-17-demethoxy- 
geldanamycin (17-AAG; 
tanespimycin), which inhibits 
the molecular chaperone 
HSP90 

 Rodrigues 
et al., 2012 

 

MMTV-neu (wild 
type) 

  To investigate a marker to 
predict outcome of targeted 
HER2 treatments 

17-gene Her2-TIC- 
enriched signature (HTICS) resulted to be a 
powerful prognostic that can be used to identify 
high risk patients that would benefit from anti-
HER2 therapy 

Liu et al., 
2012b 

MMTV-neu (wild 
type) 

  To identify and characterize 
the putative TICs in the 
MMTV-Her2/neu transgenic 
mouse model 

A technique was developed to highly enrich TICs 
from mammary tumours of MMTV-neu mice, 
unravelled their properties and identified the 
cooperative integrin β3- TGFβ signalling axis as 
a potential therapeutic target for HER2-induced 
TICs 
 
 

Lo et al., 
2012 
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Mouse model Phenotype/ 
Pathology 

Mean latency of 
tumours 

Use Main studies outcomes Reference 

MMTV-NIC; 
ablation of p110a 
and p110b 

MMTV-NIC;p110a 
revealed 95% 
survival at 225 days 

 To elucidate in vivo roles of 
two commonly expressed 
class Ia phosphatidylinositol 3 
kinase (PI3K) in oncogenic 
receptor signalling 

p110b-based was demonstrated to have a 
regulatory role in receptor-mediated PI3K 
activity and p110a was identified as an 
important target for treatment of HER2-positive 
disease 

Utermark 
et al., 2012 

MMTV-neu (wild 
type) 

  To suggest a guideline for 
development of prognostic 
signatures and discuss future 
directions 

 Liu et al., 
2013 

MMTV-neu (wild 
type) 

  To predict drug 
responsiveness 

Murine-derived gene signatures can predict 
response even after accounting for common 
clinical variables and other predictive genomic 
signatures, suggesting that mice can be used to 
identify new biomarkers for human cancer 
patients 

Usary et al., 
2013 

MMTV-HER2; 
MMTV-rtTA; 
TetOp-HA-
PIKCAH1047R 

Rapidly growing, 
large, multiple 
tumours; increased 
angiogenesis, lung 
metastasis; 
epithelial-
mesenchymal 
transition; 
mammospheres 

76 days To investigate the role of 
aberrant activation of the 
phosphatidylinositol 3-kinase 
(PI3K) pathway in diminishing 
response to HER2-directed 
therapies 

PIK3CAH1047R accelerates HER2-mediated breast 
epithelial transformation and metastatic 
progression, alters the intrinsic phenotype of 
HER2-overexpressing cancers, and generates 
resistance to approved combinations of anti-
HER2 therapies 

Hanker et 
al., 2013 

MMTV-neu-NT on 
FVB background 

  Comparison of prophylactic 
and therapeutic immunisation 
with an HER2 fusion protein 
and immunoglobulin V-gene 
repertoire analysis 
 

100% effective as a prophylactic treatment, but 
ineffective as a treatment 

Mukhopa-
dhyay et 
al., 2014 
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Mouse model Phenotype/ 
Pathology 

Mean latency of 
tumours 

Use Main studies outcomes Reference 

MMTV-neu-NT on 
Balb/c 
background 
  

  Review article focusing on the 
role of tumour 
microenvironment, 
oncoantigens and antitumor 
vaccinations 

A better understanding of antigens critical for 
cancer outbreak and progression, and of the 
mechanisms that regulate the interplay 
between cancer and stromal cell populations is 
needed to develop anticancer strategies  

Conti et al., 
2014 

MMTV-neu (wild 
type) on FVB 
background 

  shRNA Kinome screening of 
targets for HER2 breast cancer 
therapy 

TANK-binding kinase 1 (TBK1) may be a 
therapeutic target of HER2+ breast cancers in 
combination therapy 

Deng et al., 
2014 

MMTV-HER2Δ16 Tubular 
adenocarcinoma 
consisting of outer 
pale cells, 
an intermediate 
darker fusiform 
cells, and an inner 
zcells with pinkish 
cytoplasm  

17 weeks To better understand the 
impact of d16HER2 on tumour 
pathobiology and therapeutic 
response  

d16HER2 revealed to be a signalling axis for 
decreased risk of relapse after trastuzumab 
treatment 

Castagnoli 
et al., 2014 

MMTV-neu-NT   To study HER2 acquired 
resistance to target drugs 

Acquired resistance to HER2 inhibitors might be 
mediated, by HER4 

Canfield et 
al., 2015 

MMTV-neu-NT on 
Balb/c, and 
transgenic IL-15 
knockout 
(IL15KO/MMTV-
neu-NT) 

  To investigate the role played 
by IL-15 in HER2/neu driven 
mammary carcinogenesis and 
in its immunoprevention 

IL-15-regulated NK and CD8+ memory cells 
played a role in long-lasting immunoprevention 

Croci et al., 
2015 

MMTV-neu-NT   To evaluate the intradermal 
electroporation to deliver a 
HER2/neu DNA vaccine 

Intradermal EP vaccination method revealed to 
be promising 

Lamolinara 
et al., 2015 

MMTV-neu (wild 
type) 

  To evaluate if mda-7/IL-24 
could suppress mammary 
tumour development 

IL-24 might be used for prevention/treatment 
of human breast cancer 

Li et al., 
2015 
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Mouse model Phenotype/ 
Pathology 

Mean latency of 
tumours 

Use Main studies outcomes Reference 

MMTV-NIC PTEN 
on FVB 
background 

  The use of this transplantable 
tumour model provided a 
powerful preclinical tool with 
which to test potential novel 
drug combinations in resistant 
tumours 

 Creedon et 
al., 2016 

 

Table 6.1: Some published articles from the 1980s to date using transgenic mouse models engaging HER2/neu. The outcomes of researches are briefly summarized. 
*In light blue the model used in the study presented in the following Chapter.  
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6.7 Preclinical vs Clinical Oncology 

There is urgent need to improve reproducibility and translatability of preclinical data in 

oncology. Even if during the last two decades several new cancer drugs were approved, built 

on robust preclinical data, the inability of industry and clinical trials to validate results from 

the majority of publications on potential therapeutic targets suggests a systemic problem 

(Begley & Ellis, 2012). Since there is high need in oncology of new drugs, the low success rate 

of clinical trials can be in part explained by the fact that a large number of drugs with not 

optimal preclinical data enter them. However, this is not the only reason.  

Drug development abundantly relies on literature, therefore good quality published data is 

essential. Unfortunately, published data was demonstrated to be not always reliable, even 

when found on prestigious journals (Prinz et al., 2011). Several reasons for the lack of 

reproducibility have been listed, such as incorrect statistical analysis, insufficient sample size, 

and competition among laboratories (Prinz et al., 2011). The “published or perish” culture in 

academia could be conflicting with the integrity of research. Competitive academic 

environments were demonstrated to increase both scientists’ productivity and their bias 

(Fanelli, 2010). When willing to confirm research findings, only a 11% reproducibility was 

achieved, despite the efforts to overcome technical differences (Begley & Ellis, 2012). 

Apart from these reasons, in particular for oncology, many drawbacks can be found for animal 

models. For example, xenograft models lack the broad molecular transformation events that 

occur in human tumours. Also, the animal stromal component of the tumour is a different 

microenvironment compared to the one in humans, and has an effect on drug response which 

is often not reflective of the primary tumour. Genetically-engineered mouse models 

circumvent some limitations as they can, for example, be immune competent, but they still 

suffer from having rodent-derived stroma (Hutchinson & Kirk, 2011). Nonetheless, even if the 

models might be immune competent, mice might not have the same elevated levels of 

circulating immunosuppressive cytokines and various immunological checkpoints, explaining 

why some promising cancer vaccines did not give the expected results in clinical trials (Mak et 

al., 2014). Some targeted agents have lower attrition rates compared to non-targeted agents 

(Hutchinson & Kirk, 2011), even if in some cases also targeted molecular approaches did not 

result in clinical efficacy despite remarkable success in mice (Mak et al., 2014).  

Many aspects can be considered responsible for the high attrition rate from preclinical to 

clinical studies. Despite everything, animal models have been and are still considered to be 
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fundamental before new drugs can enter clinical trials. Scientists operating in preclinical 

studies, can help preventing further drug failures by identifying the correct drug target, using 

appropriate preclinical models (Hutchinson & Kirk, 2011), evaluating the reproducibility of the 

results in different models and in different settings. Lastly, it is fundamental to integrate 

results from different models in order to gather complete data before starting clinical trials. 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  



 155 

Chapter 7 

Oncolytic Virus-Mediated Immunotherapy in WAP-HER2 

Transgenic Mice  

Preliminary Testing 

 

7.1 Objectives 

Oncolytic viruses (OVs) and OV-mediated immunotherapy are emerging as promising 

approaches in human patients in the context of targeted cancer treatment. 

Introduction of a fully replicant-competent oncolytic virus into a tumour for which the virus is 

highly specific theoretically allows the spread of the virus, cell deaths and/or lysis, and escape 

of progeny virions that can go on to infect other surrounding tumour cells in subsequent 

waves. Incorporating immune stimulatory transgenes into the virus genome may also improve 

long-term antitumor immunity by directing the immune responses to the tumour.  

The aim of this study was to evaluate the use of immune competent C57BL/6 mice, engineered 

to be tolerant to the human HER2 receptor (therefore able to develop HER2-positive tumours) 

and that don’t develop spontaneous tumours, in order to study the efficacy of retargeted 

oncolytic viruses that can selectively enter in tumour cells that express such receptor. The 

clinical impact of the HER2 oncogene is supported by the fact that it is overexpressed in human 

breast and ovary carcinoma, and in a number of other cancers. HER2 is currently a drug target 

in oncotherapy. 

To validate tolerance of HER2+/- mice, we first demonstrated the ability of two cancer murine 

cellular lines transduced to express HER2, previously selected through in vitro testing, to grow 

in such transgenic mice. Then, two HER2 retargeted herpes viruses with oncolytic activity, one 

of them also expressing IL-12, were injected in the subcutaneous tumours of such animal 

model. Short term and long term systemic immunity was assessed administering challenge 

injection of cancer cells in animals that survived following OV treatment of the primary 

tumour. 
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Such study was possible only thanks to the collaboration with Professor Campadelli-Fiume and 

her research group, in particular Dr Leoni, from the Department of Experimental, Diagnositic 

and Speciality Medicine (DIMES), Alma Mater Studiorum – University of Bologna.  

This study represents the rationale for future research using this animal model in oncolytic 

virus-mediated immunotherapy, and other investigations are to date ongoing at DIMEVET in 

collaboration with DIMES. 
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7.2 Materials and Methods 

All in vivo studies were performed at the Laboratory Animal facility of the Department of 

Veterinary Medical Sciences (DIMEVET), Alma Mater Studiorum – University of Bologna, with 

the authorization of the experimental protocol by the Italian Ministry in compliance with the 

Legislative Decree 26/2014 (Protocol number 738/2016 released on July 7th, 2016). SOPs 

followed are the same of the ones in Chapter 4.2. 

 

7.2.1 HER2 Mouse Model 

HER2 transgenic mice were bought from the Jackson Laboratories through Charles River (stock 

number 010562). Heterozygous females and males between 8 and 12 weeks of age were 

employed for the experiments. The use of HER2 transgenic mice, constructed as described by 

Piechocki et al. (2003), was necessary since such human receptor would be recognized as non-

self by the mouse immune system and consequently neoplastic cells growth expressing HER2 

would be hindered. The 3 R Principle was followed during the planning of the in vivo 

experiment and during the study itself. Replacement of animals was not possible since no in 

vitro alternative method that can substitute the complexity of an in vivo model is to date 

available in order to evaluate the efficacy of oncolytic viruses, especially considering that the 

immunological system of the animals are essential for the desired outcomes. Reduction of 

animals used for the experimental proposes was achieved by the preliminary in vitro tests ran 

at the laboratory of Professor Campadelli-Fiume. The in vitro tests allowed to choose the best 

murine cell lines engineered to express HER2 in which the viruses could effectively replicate 

and consequentially cause lysis. Furthermore, groups of animals were the smallest possible in 

terms of animal number still being able to have significance in such preliminary testing when 

comparing with controls. Finally, special attention was given to the animal’s welfare. 

Refinement was guaranteed through the daily monitoring of the animals and the use of the 

humane endpoints (Table 7.1) to objectively establish pain and distress in mice. If pain was 

assessed, critical evaluation of the methods available for the alleviation of pain were 

undertaken. 

 

7.2.2 Oncolytic Herpes Simplex Virus Type 1 (o-HSV) 

Two viruses were employed in this study and both of them were engineered at the Laboratory 

of Professor Campadelli-Fiume by Dr Laura Menotti. 
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R-LM113 was achieved as described in Menotti et al. (2008). Briefly, such virus was obtained 

by simultaneously detargeting from nectin1 and HVEM and retargeting to HER2 by moving the 

site of single-chain antibody insertion at residue 39 and by deleting amino acid residues 6 to 

38 (Menotti et al., 2008). The resulting recombinant, R-LM113 (Fig. 7.1), was able to 

selectively enter and spread from cell to cell only via HER2. 

 

 

Fig. 7.1: R-LM113 Retargeted Herpes Simplex Virus 1 Recombinant Capable of Entering Cells Solely via HER2 
(Courtesy of Proessor Campadelli-Fiume). 
 

The second virus employed in this study, R-LM113-mIL-12, is the same of R-LM113 but 

engineered to express murine interleukin 12 (IL-12), and designed to induce local and systemic 

antitumor immunity and favour a Th1 response (Fig. 7.2). 

 

Fig. 7.2: R-LM113-mIL-12 Retargeted Herpes Simplex Virus 1 Recombinant Capable of Entering Cells Solely via 
HER2 and expressing interleukin 12 (Courtesy of Professor Campadelli-Fiume) 
 

 

7.2.3 Preliminary In Vitro and In Vivo Tests 

At the Laboratory of Professor Campadelli-Fiume, four mice tumour cell lines were transfected 

with lentivurs in order to express HER2 (line A-HER2, Line B-HER2; Line C-HER2; Line D-HER2). 

Viral replication on all tumour cell lines for both R-LM113 and R-LM113-mIL-12 viruses was 

evaluated at 24 and 48 h after inoculation and measured as plaque forming unites per millilitre 

(PFU/mL). Virus replication was satisfactory for lines A-HER2 and B-HER2 which were 
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therefore selected for in vivo studies (Fig. 7.3), even though apparently both viruses showed 

a 1 to 2 log reduction in PFU/mL in line B-HER2 compared to line A-HER2. 

 

Fig. 7.3: R-LM113 and RLM113-mIL-12 replication in mice tumour cell line A-HER2 and line B-HER2 compared to 
control (SK-OV3). Values expressed as PFU/mL at 24 and 48 h after inoculation (Courtesy of Professor Campadelli-
Fiume). 
 

Consequentially, a preliminary in vivo test was conducted. The cell lines (A-HER2 and B-HER2) 

were administered subcutaneously (300 µL of PBS containing 2x10⁵ cells) in HER2 transgenic 

mice. When the tumour was appreciable, R-LM113 was injected intratumorally and animals 

were sacrificed at 24 and 48 h after injection. The observation of tumours in fluorescence 

revealed that in vivo replication of the virus in cell line B-HER2 was lower than in cell line A-

HER2, differently from what was evidenced by in vitro testing. Therefore, only cell line A-HER2 

was chosen for further in vivo testing. 

 

7.2.4 Housing and Breeding 

Housing conditions (temperature, humidity, light, cages, litter, environmental enrichment) 

were the same of Paragraph 4.2.2. 

Mouse breeding was started from 12 HER2 heterozygous and 9 wild type mice. Animals were 

kept in quarantine for 10 days prior entering the facility. Breeding pairs were made of 2 wild 

type females and 1 heterozygous male, mated just after weaning and until dams were able to 

deliver successfully. Pups were weaned between 25 and 30 days of age, caged in sex groups 
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and identified using the headset marking as described in Paragraph 4.2.2 (Fig. 4.2). Tissue 

samples deriving from the tail tip or from the ear during the headset marking were used for 

genotyping.  

 

7.2.5 Genotyping 

Genotyping was conducted at Professor’s Campadelli-Fiume laboratory, at the Department of 

Experimental, Diagnostic and Specialty Medicine, University of Bologna. DNA was extracted 

from mouse tail or ear sample following standard procedures using Nucleo Spin® Tissue 

(Machery-Nagel) kit and analysed in PCR with the following set of primers: HER2 forward 

9735GAGCCGCGAGCACCCA, and reverse 9736GGTGGGCAGGTAGGTGAGTTCC; internal 

positive control forward oIMR7338CTAGGCCACAGAATTGAAAGATCT, and reverse 

oIMR7339GTAGGTGGAAATTCTAGCATCATCC. DNA fragments were separated by 

electrophoresis on agarose gel. 

 

7.2.6 In Vivo Testing 

Before any experiment was started, animals were shaved on the left flank or on the right flank 

to better identify the injection area for establishment of primary tumour or challenge, 

respectively. Every injection (tumour cells or viruses) was done with the mice under 

anaesthesia with 2.5% isoflurane in O2 (as described in Paragraph 4.2.7). 
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Study 1. R-LM113 vs R-LM113-mIL-12 

Thirty-three anesthetized mice were injected subcutaneously (SC) with 300 µL of PBS 

containing 2x10⁵ cells of line A-HER2 on the left flank (Fig. 7.4) at day 0. 

 

 

Fig. 6.4: Anesthetized mice receiving subcutaneous injections of tumour cells transfected with lentivirus in order 

to express HER2 (line A-HER2). 

 

The experimental groups were the following ones. 

Group 1: Control group. Thirteen animals (6 females and 7 males) were used as controls and 

received 300 μL PBS. 

Group 2: R-LM113 group. Ten animals (3 females and 7 males) were injected with 300 μL of 

PBS with 1x10⁸ PFU/mice of R-LM113. 

Group 3: R-LM113-mIL-12 group. Ten animals (6 females and 2 males) were injected with 300 

μL of PBS with 1x10⁸ PFU/mice of R-LM113-mIL-12. 

Animals were treated at days 3, 6, 12, 18 post implantation (p.i.). Therefore, the first 

treatment (3 days p.i.) started before the mass was appreciable. When the mass was present, 

treatment was administered intratumorally, otherwise it was administered subcutaneously in 

the injection area. Mass size was registered at days 6, 12, 18, 21, 26, 35, 40 p.i. 
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Study 2. Early vs late treatment with R-LM113-mIL-12  

 

Part A) 

Twenty-two anesthetized mice (groups 1, 2, and 3) were injected SC with 300 µL of PBS 

containing 2x10⁵ cells of line A-HER2 on the left flank (day 0).  

The experimental groups were the following ones. 

Group 1: Control group. Six animals (4 females and 2 males) were used as controls and 

received 300 μL PBS. 

Group 2: Early treatment group. Eight animals (5 females and 3 males) were injected with 300 

μL of PBS with 1x10⁸ PFU/mice of R-LM113-mIL-12 starting from day 3 p.i.. 

Group 3: Late treatment group. Eight animals (4 females and 4 males) were injected with 300 

μL of PBS with 1x10⁸ PFU/mice of R-LM113-mIL-12 starting from day 10 p.i.. 

Group 1 and Group 2 were treated at 3, 7, 10 and 14 days p.i.. 

Group 3 was treated at 10, 14, 17 and 21 days p.i.. 

When the mass was present treatment was administered intratumorally, otherwise it was 

administered subcutaneously in the injection area. 

At day 18 p.i. animals that hadn’t reached the humane endopoint undergone a second 

injection (challenge) of 2x10⁵ cells of line A-HER2 on the right flank. The use of the challenge 

had the aim of simulating the growth of a metastatic tumour and was used to evaluate if the 

treatment of the primary tumour with the virus was able to develop a protective immune 

response. For such challenge, the following control group was used. 

Group 4: Challenge control group. Six mice (4 females and 2 males) received 2x10⁵ cells of line 

A-HER2 on the right flank at day 18. 
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Part B)  

Some animals from Study 2, who hadn’t developed the mass in part A of the study, received 

a second challenge injection of 2x10⁵ cells of line A-HER2 on day 82, always on the right flank. 

In particular, groups were the following ones: 

Group 1. Second challenge control group. Such group was made of five animals (3 females and 

2 males) receiving tumour cells for the first time. These animals age-matched group 2. 

Group 2. Second challenge group. Such group was made of seven mice, five mice of which (3 

females and 2 males) from the early treatment group of part A, and two mice (1 female and 1 

male) from late treatment group of part A.  

Such challenge was needed to evaluate if the protective action was able to be long-term 

effective. 
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7.2.7 Humane Endpoints 

Study endpoints are essential in biomedical research using animal models, and must be 

addressed for every animal in the study. We used a standardized score table to evaluate 

adverse effects, pain or distress for each animal (Table 7.1). The effective use of such 

endpoints required properly trained and qualified operators performing both general and 

study specific observation of the research animals at appropriate time points. 

 

Parameter Animal Condition Score 
Feature Normal 0 

 Poor grooming, index of mild depression of the sensorium 1 

 Matted fur 2 

 Significant loss of fur, curved posture 3 

 Lateral or abdominal decubitus or limb/limbs paralysis  4 

Intake of food 
and water 

Normal – Unknown: body weight < 5% 0-1 

Total anorexia: body weight < 15% 2 

Cachexia: poor general condition and evident weight loss 3 

Respiratory 
symptoms 

Normal respiratory rate 0 

Slight alterations of the respiratory rate 1 

Increased respiratory rate and abdominal breathing 2 

Decreased respiratory rate speed and abdominal breathing 3 

Marked abdominal breathing and cyanosis 4 

Spontaneous 
behavior 

Normal 0 

Slight alterations; excitability  1 

Decreased mobility and alert; solitary confinement 2 

Restless or very still; compulsive behaviours; circling, (repeated circular 

movements) as index of brain suffering 

3 

Induced 
behavior 

Normal 0 

Mild sensorium depression or exaggerated response to stimuli 1 

Moderate changes in typical behavior 2 

Violent or extremely low reaction 3 

Additional 
parameters 

Rotated ears outwards and/or back; sharpened snout; narrow and half-

closed eyes 

4 

 Mass sizes bigger than 1500 mm3, ulcerated or that interfere with the 

animal ability of eating and drinking* 

4 

 Abdominal distention associated with fluid pressure causing 10% 

increase in weight* 

4 

 Subcutaneous tumour ulceration exceeding the size of 2 mm 4 

Total Score   

 
Table 7.1: Standardized score table to evaluate animal suffering and define the humane endpoints. Experimental 
humane endpoints: the animal must be sacrificed when it reaches the score 10 of the table. The animal must be 
immediately sacrificed if it presents one of the signs evaluated with the highest score for a specific sign 4. The 
total score is classified as: 0-4 = Normal; 5-9 = Needs daily monitoring; 10 = Animal with initial distress signs; 11-
13 = Animal with distress signs; ≥ 14 = severe distress.  
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The increase in weigh was not considered to be a reliable parameter to detect animal’s 

suffering since muscular atrophy or malnutrition caused by the subcutaneous tumour could 

have theoretically masked the increase of weight caused by the mass size. The mass size was 

considered to be a more reliable factor, together with the body condition score (BCS) (Fig. 

7.5).  

 

Fig. 7.5: Body condition score (adapted from Ullman-Culleré & Foltz, 1999). 

 

The most important parameter taken into consideration was the mass volume. In fact, being 

the tumour subcutaneous, no general symptoms were expected. However, animals were 

constantly closely observed.  

The mass was assessed twice weekly by its measure using a digital caliper (Digital Reading 

Stainless Steel Vernier Caliper, 150±0.02mm, Biological Instruments, Besozzo, Varese, Italy) 

while mice were conscious. The two longest perpendicular axes in the x/y plane of each 

tumour were measured by always the same operator familiar with collecting caliper 
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measurements of tumours in mice. The depth was assumed to be equivalent to the shortest 

of the perpendicular axes, defined as y. As in standard practice (Euhus et al., 1986; Tomayko 

& Reynolds, 1989), measurements were calculated according to the following equation: 

 

Tumour volume: xy2/2 

 

Mice were sacrificed when tumour size reached the ethical limit of 1500 mm3.  

If the mass’s skin appeared to be thin and red (Fig. 7.6) the animal was carefully monitored in 

order to rapidly detect skin ulceration. If ulceration exceeded 2 mm, was itchy, became 

necrotic or infected animals were considered to have reached the humane endpoint.  

 

 
 

Fig. 7.6: A) Red and thinned skin at the mass level; B) tumour ulceration. 

 

Finally, if tumours were considered to interfere with eating or impaired ambulation, animals 

were considered to have reached the humane endpoint. 

It has to be noted that epidermis, adipose tissue, fur, as well as human variability in measuring 

and volume estimation might all contribute in adding imprecision to the mass’s volume 

measurement (Ayers et al., 2010). Nowadays, other techniques, such as ultrasound, are 

considered to be more precise in this type of experimentation. However, most of the 

published research articles in this field use digital calipers and measurements were considered 

to be reliable and adequate for the study. 

 

7.2.8 Statistics 

Data were analysed using GraphPad Prism 7 for Macintosh and evaluated through growth 

curves. Kaplan-Meier with log-rank test was used to study survivals. Statistical significance was 

determined at the level of p < 0.05.  
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7.3 Results and Discussions 

 

7.3.1 Housing and Breeding 

Heterozygous HER2 mice (HER2+/-) displayed a normal phenotype and were indistinguishable 

to their wild type littermates. Genome recognition was possible only through genotyping as 

described in Paragraph 7.2.5. No apparent pathology was observed in all animals, and no mice 

had spontaneous tumour growth as previously described by Piechocki et al. (2003). Transgenic 

and wild type C57BL/6 were quite touchy towards operators. Often mice, especially males, 

caged together needed to be separated because they were aggressive and caused each other 

fight wounds. 

Heterozygous males were good breeders such as wild type female. Mating between 

heterozygous mice was never performed, since a previous study showed that HER2+/+ are 

embryonic lethal (Yong et al., 2015). In an 8-month period, dams showed a mean time 

between delivery of 34 days. Litters were made of 46,83% heterozygous and 53,17% wild type 

mice. Females were kept in reproduction for 5-8 months, depending on the needs of the 

planned experimentation. Mean pup litter size ranged between 1 an 9, with a mean of 5 pups 

per litter. 

 

7.3.2 In Vivo Testing 

Among all humane endpoints considered by the protocol, mass volume and ulceration were 

the only ones positive since animal’s conditions always resulted negative for every other 

parameter considered in Table 7.1 for humane endpoints. In some cases, cutaneous 

ulceration occurred, but was always of size < 2 mm and spontaneously healed. 

The scientific aims and objectives were accomplished without adverse effects, pain or distress 

to the animal. 
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Study 1. R-LM113 vs R-LM113-mIL-12 

As it can be seen from Fig. 7.7, all animals from the control group (group 1) developed the 

tumour. Most of them had appreciable masses starting from day 7 p.i.. This provides evidence 

of the validity of HER2+/- transgenic mice as a model for the development and growth of HER2 

cancers and, therefore, the possibility to study innovative targeted treatments for HER2-

positive cancers in immune competent animal models.  

 

Fig. 7.7: Spaghetti graph for tumour’s growth in group 1 (PBS control), group 2 (R-LM113) and group 3 (R-LM113-
mIL-12). No animals were tumour free at the end of the observation time for group 1, three animals out of ten 
were tumour free for group 2, and, nine animals out of ten were tumour free in group 3. 

  
In group 2 receiving R-LM113, the tumour’s growth was inhibited in three animals which were 

negative for the presence of the mass at the end of the observation time. Four animals showed 
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reduced tumour growth compared to controls and such growth was delayed compared to 

group 1. However, three animals out of ten showed a trend similar to that seen in group 1. 

On the other hand, nine mice out of ten of group 3, receiving R-LM113-mIL-12, were negative 

for the tumour at the end of the observation time. Five animals had small masses (between 

20 and 80 mm3 in size) which arose delayed (day 12-22 p.i.) compared to group 1. In four of 

these five animals, the mass rapidly disappeared and the remaining one had a small mass (40 

mm3) on day 40 p.i. 

 

Fig. 7.8: Tumour mass volume on day 17 (left) and on day 21 (right) p.i. 

 

As it can be seen from Fig. 7.8, the different trend in tumour’s masses volumes seen in group 

2 was not significant on days 17 and 21 p.i., due to the effect of the three animals who 

developed the tumour in a similar way to the controls. On the other hand, differences in 

volumes were significant (p < 0.05) between group 1 and group 3 (Fig. 7.8). 

The first virus administration occurred before any mass could be detected. R-LM113-mIL-12 

revealed to be better than R-LM113 in preventing HER2-positive mass growth and showed an 

increased oncolytic activity presumably attributed to the expression of IL-12. This study 

underlines how in vivo studies are essential. In particular, in vitro tests showed a better 

replication of R-LM113 compared to R-LM113-mIL-12 but this was the opposite in the in vivo 

study. In accordance with previous studies, this provides evidence of the main role played by 

the immune system as an effector of antitumor therapy and underlines the need to conduct 

such preclinical research in immune competent animals, since in vitro strategies are not able 

to reproduce the complexity of the in vivo immune system.  

Because of the results of study 1, we pursuit studying only R-LM113-mIL-12 in the following 

study.  
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Study 2. Early vs late treatment with R-LM113-mIL-12  

 

Part A) 

In study 1 we assessed that line A-HER2 cells start forming a mass around day 7 p.i. Therefore, 

we studied the difference in oncolytic activity of R-LM113-mIL-12 when administrated early 

(when the mass is yet not present, i.e. 3 days p.i.) or late (when mass is usually already 

palpable, i.e. 10 days p.i.). 

 

 

Fig. 7.9: Spaghetti graphs for tumour’s growth in group 1 (PBS control), group 2 (R-LM113-mIL-12 starting from 
3 days p.i.) and group 3 (R-LM113-mIL-12 starting 10 days p.i.). No animals were tumour free at the end of the 
observation time for group 1, five animals out of 8 were tumour free for group 2, and two out of 8 were tumour 
free in group 3. 
 

As seen in Fig. 7.9 all animals from group 1 showed a fast and exponential growth of the 

tumour in accordance with Study 1.  

Five out of eight animals from group 2, receiving early treatment with R-LM113-mIL-12 

haven’t developed a mass during all the study. In the three animals with the mass, one showed 

a fast tumour growth and was sacrificed at 25 days, while the other two reached the humane 
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endpoint for mass size and were sacrificed at days 38 and 45 p.i.. However, these two mice 

underwent the challenge injection on day 18 p.i. (see below). 

Late treatment in group 3 inhibited tumour’s growth only in 2 animals out of eight. Of the six 

animals with cancer growth, four were sacrificed at day 24 p.i because mass sizes reached the 

humane endpoint, while the remaining two although having a delayed growth were sacrificed 

at day 38 and 45 p.i., respectively, however receiving the challenge injection on day 18 p.i. 

(see below). 

 
Fig. 7.10: Kaplan Meier survival plot for group 1 (n=6), group 2 (n=8) receiving early treatment, group 3 (n=8) 
receiving late treatment. The arrow indicates challenge injection of line A-HER2 cells on day 18 post primary 
tumour implantation. 
 

Apparently, both treatments provided improved survival rates compared to the controls (Fig. 

7.10). However, percent survival was significant (p < 0.05) compared to the control group only 

when the early treatment with R-LM113-mIL-12 was provided (Fig. 7.10). 

On day 18 p.i. all animals from group 2 and group 3 who were alive and hadn’t reached the 

human endpoint received a challenge injection of line A-HER2 cells on the right flank. 

The new control group (group 4), who never received tumour cells injections neither virus 

injection before, showed a normal growth of the mass as previously described in control 

groups. 

Of the seven animals from group 2 receiving the challenge injection none of them showed 

tumour’s growth on the right flank. Two animals from this group were however sacrificed at 

day 38 and 45 p.i., respectively, because the size of the primary tumour reached the humane 

endpoint. It is to note that during the 10 and 17 days, respectively, after the injection of the 
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challenge in such two animals, no growth was registered for the challenge tumour. Therefore, 

it is fair to think that an adaptive immunity against line A-HER2 cells was developed in these 

two animals. 

Two of the four animals of group 3 surviving the primary tumour at day 18 p.i. and receiving 

the challenge never developed any mass. The remaining two mice were sacrificed at day 38 

and 45 p.i. because the size of the primary tumour reached the humane endpoint, but no 

secondary mass developed. 

Obviously, these differences between group 1 and 2 and between group 1 and 3 were 

significant (p < 0.05) (Fig. 7.11). 

 

Fig. 7.11: Comparison between groups in challenge’s growth, measured on day 38 p.i. 

 

Part B) 

The animals who survived Study 2 - part A undergone a second challenge injection on day 82. 

 

 

Fig. 7.12: Tumour’s growth following second challenge injection. 
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All animals from the control group developed a mass. Of the seven animals tested in part A, 

only two developed a mass, one of which regressed spontaneously (Fig. 7.12 and 7.13). The 

other animal was sacrificed because the mass reached the humane endpoint.  

 

Fig. 7.13: Comparison between groups in challenge’s growth, measured on day 110 p.i. 

 

These results, underline how the adaptive immunity was long-lasting. It is fair to think, in 

accordance with previous studies, that CD8+ T cells responding to released tumour-associated 

antigens are of primary importance for such protective role. The development of this study 

will have to take into consideration, for example, the presence of tumour infiltrating 

lymphocytes (TILs), and particularly CD8+ TILs, which were already found to be associated with 

improved overall survival in some kind of cancers (Sato et al., 2005; Hamanishi et al., 2007; 

Hwang et al., 2012; Kotoula et al., 2016).  
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7.4 Conclusions 

HER2 mouse model was already demonstrated to be tolerant to HER2-positive tumours, 

differently from wild type mice who show high levels of immunogenicity against the HER2 

antigen (Yong et al., 2015). Neu, the rat homologue of the human HER2, has about 10% 

difference with the human receptor, therefore mice models tolerant for neu aren’t the best 

models to study targeted therapies and immunotherapies. In our study, we demonstrated 

that the transgenic mice well tolerated the growth of tumours deriving from a specific murine 

cancer line of transduced HER2 cells. Thus, the mouse demonstrated to be a reliable model 

for such cell line. We also showed, how in vivo experimentation is to date essential since in 

vitro models are not always able to simulate the complexity of organisms and not always can 

predict the experimental outcomes. The HSV-1 viruses tested in this study have the 

characteristic that they are not attenuated. The specificity for tumour cells was gained by 

detargeting HSV-1 from its natural receptors and targeting them to HER2, an important 

receptor overexpressed in a number of cancers and correlated with poor prognosis. R-LM113 

is an “unarmed” oncolytic virus which in vitro replicated better than R-LM113-mIL-12, which 

is “armed” with IL-12. However, in vivo, R-LM113-mIL-12 gave better results, underlining the 

importance of the immune system in fighting cancer. This result was not surprising and is in 

accordance with previous studies that report the need of in vivo experiments in immune 

competent models to better define the role of the immune system in enhancing antitumor 

activity (Thomas et al., 2016). 

Intratumoral injection ensured high-dose delivery to the target, minimized systemic reactions, 

and limited complement and antibody-activation of the OV (Lawler & Chiocca, 2015). In this 

preclinical study, the intratumoral injection permitted bypassing the tumour architectural 

barrier. It has to be noted, that this type of administration is limited to tumours that are 

physically accessible (subcutaneous in our case) by palpation or direct imaging. However, the 

immune systemic antitumor response overcame such limitation, as seen with the challenge 

experiments. In fact, the viruses were injected directly intratumorally, entered the tumour 

cells, replicated causing cell death and/or lysis, and progeny virions escaped to the 

surrounding cells in subsequent waves (Lawler & Chiocca, 2015). Nonetheless, a potent 

antitumor T-cell response was likely to have occurred, and not only the infected tumour was 

eliminated but also challenge tumours growth was inhibited after 18 and 82 days, showing an 

important adaptive immunity response. 
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The most important conclusion that can be drawn from our results is that repeated 

administration, starting when the mass is still not palpable, of both R-LM113 and R-LM113-

mIL-12 viruses resulted in a high percentage of tumour free mice for the time interval of 

examination. The mice receiving the viruses but that we not tumour free, showed however an 

evident delayed tumour growth. When expressing mIL-12 the virus was more effective. 

Furthermore, animals who did not develop the primary tumour after early and late treatment 

with the oncolytic virus expressing mIL-12, were protected from the onset of a challenge 

tumour, after 18 and 82 days.  

IL-12 is one of the most important anticancer cytokines and has been demonstrated to 

enhance anticancer immune response. Its systemic administration to cancer patients causes 

excessive clinical toxicity and severe side effects (Lasek et al., 2014). Different methods are 

being tested by scientist in order to decrease IL-12 systemic toxicity, or in order to deliver it 

directly intratumorally (Tugues et al., 2015). Taking advantage of OV oncotropism and the 

wide genome platform offered by HSV-1 for manipulation, a virus was engineered in order to 

deliver IL-12 directly within the tumour environment. No side effects were noted in the 

preclinical animal model. Safety profiles for oncolytic viruses are usually very high, especially 

if they have as only target the receptors overexpressed on tumour cells. Once the virus 

encounters a non-tumour tissue it self-exhausts and cannot revert to wild type tropism. The 

very tolerable safety profiles of OVs, and their ability to modulate the tumour 

microenvironment provides a rational strategy for combination treatment with other cancer 

agents to improve therapeutic responses (Kaufman et al., 2015). 

Limitations to the application of such viruses in clinical situations could be represented by the 

extent of immunosuppression in patients with treated but progressing advanced tumours, 

which may contribute in decreasing efficacy (Lawler & Chiocca, 2015). Tumour size and 

heterogeneity can also be a limit to virus biodistribution, as also hypoxic environments 

(Kaufman et al., 2015). For example, in our study, when treatment was initiated late and when 

tumour mass was already detectable, percent survivals were lower. Furthermore, the overall 

effectiveness of OVs can depend on the susceptibility of cancer cells to undergo apoptosis. In 

fact, if this happens too rapidly, the virus doesn’t have the time to replicate and spread within 

the tumour and the amount of active virus within it decreases and might not be sufficient.  
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Finally, following such preclinical testing, these innovative therapies should be considered for 

clinical trials even in dogs and cats with HER2-positive cancers. Constructing an oncovirus on 

the canine herpesvirus (CHV-1) might improve replication and infectivity of the virus. 

In conclusion, HER2 immunocompetent transgenic mice are an ideal system to investigate the 

activity of OVs that are engineered to target specifically human HER2, both if they are 

“unarmed” or “armed” with cytokines. Such model is able to develop HER2 cancers and gives 

the possibility of investigating new targeted therapies in which the immune system has an 

important role. Our translational pilot study provides preliminary evidence supporting that 

non-attenuated retargeted oHSV-1 might be an effective treatment agent for HER2-positive 

cancers. 
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Chapter 8 

Final Conclusions 
 

Biomedical research has changed substantially in the last few decades thanks to 

complementary methods that are able to partially substitute the use of laboratory animals. In 

order to test new treatments in human/animal clinical trials the use of laboratory animals is 

unfortunately still a law requirement since no alternative method can mimic such complex 

biological systems. Furthermore, it would be unethical to test directly on humans or domestic 

animals. Fortunately, standards for animal care have increased, and authorities, scientists, 

veterinarians and other members of the laboratory team are taking their obligation seriously 

to provide the best possible care for laboratory animals, in order to guarantee their welfare. 

Moreover, it is increasingly evident that the better care provided to laboratory animals 

produces more reliable research data. 

Among all animal models, mice are used most often because of many characteristics that 

make them close to an ideal model. In particular, genetically engineered mice models have 

proven to be powerful tools in understanding the mechanisms of genetic diseases. They have 

also been useful in testing novel treatments. We have seen how C57BL/6 has proven optimal 

for this purpose and it is one of the strains most employed in biomedical research. 

All this is the framework in which the two research projects discussed in this thesis are 

developed. Both projects were conducted in parallel during the three years PhD course in the 

Laboratory animal facility of the Department of Veterinary Medical Sciences, University of 

Bologna. Both studies employed engineered mice models constructed on a C57BL/6 genetic 

background, and the know-how gained with one project positively influenced the other. 

The first research is on a knock-in transgenic model homologous for the genetic cause of 

Hutchinson-Gilford Progeria Syndrome, a very rare human genetic disease (affecting 1 out of 

8 million births) that causes accelerated aging. The model was created by professor Otín in 

2011, and a first description was provided in Osorio et al. (2011). When a new genetic line is 

created, a detailed description of its phenotype must be undertaken. This includes 

information on how to maintain the line and its phenotype, with details relating to the onset 

of changes and disease progression, and information on how to manage their welfare 

effectively. The detailed and structured description of the mouse phenotype also enabled us 
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to answer in depth the question “How much does the model resemble the human disease?”. 

Similarities and differences between patients and mice were highlighted, and background 

confounding effects were pointed out. The description will be of use to research groups in 

programming their studies, both for the breeding and housing of LmnaG609G transgenic mice 

and the use of the model in drug testing. Data collected will be useful also because of the 

translational potential of the mouse model in understanding the physiological aging process.  

Since a combination of low dose of rapamycin (RAPA) and all-trans retinoic acid (ATRA) was 

successful in vitro in reducing progerin, the question “Do ATRA and low doses of RAPA 

treatment improve the phenotype of LmnaG609G transgenic mice and prolong their lifespan?” 

was answered. The dose regimen used in such study was 1 mg/kg of rapamycin combined with 

0.4 mg/kg of all-trans retinoic acid, twice weekly, starting from 6 weeks of age. Differences in 

survival analysis, weight trends and other parameters taken in consideration were not 

significantly different between treated and untreated groups. However, this was a preliminary 

study which considered only males, and animal groups were small in number. The doses used 

in this study were considered to be safe, since animals did not show side effects associated 

with the drugs. Slightly higher doses, especially of rapamycin, are now being tested in our 

facility. The collaboration with the National Research Council, Institute of Molecular Genetics, 

Bologna, will continue and, in addition to the question as to the right dose to use, we will 

address questions such as whether sex influences the treatment outcomes and the best timing 

to start the treatment. Moreover, we are studying other promising treatments using the 

described mouse model. 

The second research described in this thesis used immune competent C57BL/6 mice, 

engineered to be tolerant to the human HER2 receptor (overexpressed in a number of human 

and pet cancers) to study the efficacy of retargeted oncolytic viruses that can selectively enter 

in tumour cells that express such receptor. The viruses under study were created at the 

Laboratory of Prof. Campadelli-Fiume (DIMES, Bologna) by Dr Menotti (Menotti et al., 2008), 

and specifically were R-LM113 and the same virus modified in order to express IL-12 (R-

LM113-mIL-12). Following in vitro preliminary research conducted at the Department of 

Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum – University of 

Bologna, two out of four murine cancer cell lines transfected with lentivirus in order to express 

HER2 were selected for the in vivo study. The viruses were able to successfully replicate in 

vitro only in these two cell lines. Further preliminary in vivo testing brought about the decision 
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to test only one murine cancer cell line in which virus replication gave better results as 

opposed to from what was evident during in vitro testing. The research addressed these 

questions: 1) “Is the mouse tolerant to the growth of specific cancer murine cell lines 

transduced to express HER2?”; 2) “Which of the two tested oncolytic viruses replicates 

better in the tumour in vivo?”; 3) “Is the model able to produce a protective immune 

response against secondary tumours?”. The mouse demonstrated to be a reliable model 

since it enabled the development of HER2 cancer cell lines and allowed the virus to replicate 

within the tumour. Animals did not show any side effects and the safety profile of the virus 

was confirmed. R-LM113-mIL-12 gave better results compared to R-LM113, underlining the 

importance of the immune system in fighting cancer and the importance of an immune 

competent model in oncological research. R-LM113-mIL-12 was able to produce an adaptive 

immune response that protected mice from the development of secondary tumours up to 82 

days post primary tumour implantation. These results represent the rationale for future 

research in this field using HER2+/- C57BL/6 as models to investigate the safety and efficacy of 

oncolytic virus-mediated immunotherapy and show how in vitro research is still not sufficient 

in preclinical testing. 

In conclusion, we can state that both animal models considered in this thesis were revealed 

to be appropriate for testing specific therapies.  

It is important to underline that biomedical research using preclinical animal models needs to 

consider the welfare of the animals essential, both for ethical reasons and for the quality of 

the research data. Veterinarians are obviously vital for animal care; because of their special 

training, their contribution is essential during in vivo research. 

Finally, it should always be kept in mind that any given response in a mouse may not occur in 

precisely the same way in humans, and that data acquired through in vivo preclinical studies 

should be complemented by in vitro and ex vivo research. Moreover, it is important to report 

also negative preclinical outcomes in order to minimize the failure rate of clinical testing based 

on translation of preclinical data.  
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