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ABSTRACT  

   

Over the last century, X-ray crystallography has been established as the most 

successful technique for unravelling the structure-function relationship in molecules. For 

integral membrane proteins, growing well-ordered large crystals is a challenge and hence, 

there is room for improving current methods of macromolecular crystallography and for 

exploring complimentary techniques. Since protein function is deeply associated with its 

structural dynamics, static position of atoms in a macromolecule are insufficient to unlock 

the mechanism.  

The availability of X-ray free electron lasers presents an opportunity to study 

micron-sized crystals that could be triggered (using light, small molecules or physical 

conditions) to capture macromolecules in action. This method of ‘Time-resolved serial 

crystallography’ answers key biological questions by capturing snapshots of 

conformational changes associated with multi-step reactions. This dissertation describes 

approaches for studying structures of large membrane protein complexes. Both macro and 

micro-seeding techniques have been implemented for improving crystal quality and 

obtaining high-resolution structures. Well-diffracting 15-20 micron crystals of active 

Photosystem II were used to perform time-resolved studies with fixed-target Roadrunner 

sample delivery system. By employing continuous diffraction obtained up to 2 A, 

significant progress can be made towards understanding the process of water oxidation. 

Structure of Photosystem I was solved to 2.3 A by X-ray crystallography and to 

medium resolution of 4.8 A using Cryogenic electron microscopy. Using complimentary 

techniques to study macromolecules provides an insight into differences among methods 

in structural biology. This helps in overcoming limitations of one specific technique and 

contributes in greater knowledge of the molecule under study.  
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CHAPTER 1 

INTRODUCTION 

 

1.1 Shapes tell stories: relationship between structure and function 

Biomolecules are the architects of life. All biological function depends on the molecular 

events that are directed, modulated and performed by intricate biological machines that 

are essentially, proteins, nucleic acids, carbohydrates, lipids or complex combinations of 

them. The main theme of structural biology is to understand how the function and 

dynamics are performed by inspecting the 3D arrangement of atoms. Structural 

similarities have been portrayed by biomolecules performing similar functions. For e.g., 

proteins with low sequence homology can belong to the same ‘class’ owing to presence of 

similar structural motifs and functional properties. Hence, details about the molecular 

arrangement of biomolecules can contribute to the advances in understanding their roles. 

Several techniques have been developed for studying complex molecular structures 

and among them, X-ray crystallography, electron microscopy and nuclear magnetic 

resonance have been greatly established.  Each of these methods presents the researcher 

with complimentary approaches towards studying molecules of interest. Knowledge 

obtained via structural studies has been used for research in rational drug discovery, in 

understanding biochemical pathways for cellular processes and in biotechnological 

advances to name a few. 

Understanding structures of bio-macromolecules can help us understand how they can 

be altered to manipulate the function and this has significant implications in various areas 

of study. This dissertation discusses progress made using structural biology toward 

understanding the core biological phenomenon of oxygenic photosynthesis.  
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1.2 Oxygenic Photosynthesis 

Photosynthesis is the process by which plants, algae and cyanobacteria convert solar 

energy into useful chemical energy to drive metabolism. Over the last 2.5-3 billion years, 

photosynthesis has led to the oxygenation of our planet, enabling evolution of complex 

higher life. Hence, photosynthesis is a fundamental biological process with significant 

impact on Earth’s ecology. Studying photosynthesis has direct implications in harnessing 

solar energy as fuel, global warming, agriculture, nanotechnology and research associated 

with free radicals.  

 

Photosynthetic organisms have specialized organelles called chloroplasts that are 

composed of membrane stacks named ‘thylakoids’ (depicted in Figure 1.1). The integral 

membrane proteins in the thylakoid membrane perform the light harvesting and energy 

conversion processes through a series of redox reactions. These (Photo) Reaction Centers 

 

Figure 1.1: Light and dark reactions in photosynthetic organisms 
 

Both kinds of reactions occur in the chloroplast. The reactions triggered by light take 
place in the thylakoid where the oxidation of water releases oxygen, protons  and 
electrons. The energy of the light reactions is harnessed in production of ATP and 

NADPH, which drive the carbon fixation in the stroma. 
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(RCs) may contain a 4Fe-4S cluster (Type I) or a quinone molecule (Type II) as their 

terminal electron acceptor. Based on the organism, the light reactions might be oxygenic 

(involving both Type I and Type II RCs) or anoxygenic (involving either a Type I or II RC).  

Although, many of the characteristics among all photosynthetic organisms are conserved, 

billions of years of evolutionary divergence has resulted in differences in metabolic 

pathways and protein structures. All descriptions involved in this thesis are applicable for 

oxygenic photosynthesis studied in cyanobacteria, Thermosynechococcus elongatus (T. 

elongatus).  

The major photosynthetic protein complexes and their orientation in the thylakoid 

membrane are represented in Figure 1.2. The electron transfer reactions initiate at 

Photosystem II (PSII) which is a Type II RC. Photons captured by an internal chlorophyll 

system of PSII are used to initiate charge separation at the center of the complex. 

Subsequently, 4 electrons are extracted in 4 charge-separation steps, oxidizing 2 

molecules of water to generate molecular oxygen, 4 protons and 4 electrons at the Oxygen 

Evolving Complex (OEC) of PSII. The electrons ultimately reduce a mobile Plastoquinone 

(PQ) twice, which binds 2 protons from the stromal side to form Plastoquinol (PQH2) and 

is released into the thylakoid membrane. This PQH2 serves as a mobile electron and proton 

carrier and is exchanged with PQ pool in the membrane (Loll et al., 2005). 

The PQH2 eventually diffuses through the membrane and docks at the binding pocket 

of the cytochrome b6f complex. Here, the 2 electrons are utilized for reducing 2 molecules 

of Plastocyanin (PC) or cytochrome c6. The protons from PQH2 are released in the lumen 

of the thylakoid, contributing to the electrochemical gradient across the membrane.  

Both cytochrome c6 (Fe based) and PC (containing Cu) are soluble carriers of single 

electrons that transfer the electron to Photosystem I (PSI) (Type I RC). The light-induced 

charge separation event in PSI transfers the electrons from the lumenal side to the stromal 
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side of the thylakoid membrane to the final electron acceptor, Ferredoxin (Fd). Once 

reduced, the Fd molecule undocks from PSI, diffuses into the stroma for binding with 

Ferredoxin: NADP+ reductase (FNR). Upon taking up 2 electrons from Fd molecules, 

NADP+ + H+ is  reduced to NADPH. Also, the electrochemical gradient generated across 

the thylakoid membrane is used in the production of ATP from ADP and inorganic 

phosphate (iP) by the ATP-synthase protein complex.  

 

 

Figure 1.2: Photosynthetic apparatus 
 

Image showing structures solved by X-ray crystallography. Shown are (a) the 
major proteins involved in the light reactions of oxygenic photosynthesis 

including the electron and proton transport; and (b) their functional 
components. Membrane orientation depicted is the lumen below and the 

stroma above. Figure originally from Fromme and Grotjohann (2008) 
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NADPH, ATP and fixed CO2 are utilized to drive the dark photosynthetic reactions 

(Calvin cycle), which eventually stores the energy harnessed from the sun in the form of 

carbohydrates and other useful molecules. Structure and function of PSII and PSI are 

described in depth in Chapter 2 and Chapter 4 of this thesis respectively.  

 

1.3 X-ray crystallography of proteins 

Since the discovery of diffraction of X-rays by crystals over a century ago, X-ray 

crystallography has developed into an indispensable tool for structural biologists and 

material scientists. Over the years, the technique has helped researchers answer key 

scientific questions, recognizing the method with high success rate and credibility. 

Because of the immense contributions of crystallography, 2014 was celebrated as the 

International year of Crystallography by UNESCO and International Union of 

Crystallography for promoting education and general public awareness across 53 

countries. This section will briefly summarize the  background of the technique specifically 

with respect to protein crystallography. Detailed reviews on this well-established 

technique can be found elsewhere such as Woolfson, 1997 or Rupp, 2010. 

 

1.3.1. History: Impact of 100 years of crystallography 

William Conrad Röntgen first discovered X-rays in 1895 and was later awarded the 

first Nobel Prize in Physics in 1901, but Max von Laue and his co-workers discovered that 

the interaction of X-rays travelling through a crystal yields diffraction that is dependent 

on the nature of the crystal. Their pioneering work acquired them the Nobel Prize in 

Physics in 1914 and laid the foundations for using x-rays to study chemical structures 

through the use of crystalline material.  
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Subsequently, the father and son duo of William Henry Bragg and William 

Lawrence Bragg discovered in that X-rays could be used to determine the position of atoms 

within a crystal and unravel the 3D structure of molecules (Bragg, 1913). This study, which 

was mainly done on diamonds and salt crystals, was recognized with a Nobel Prize in 1915. 

Since then, X-ray Crystallography has been employed to understand vital biological 

structures like cholesterol, penicillin, vitamin B12, insulin, the DNA double-helix, 

ribosomes, integral membrane G-protein coupled receptors etc. This has led to 28 Nobel 

recognitions to 45 awardees over the decades in physics, chemistry and physiology or 

medicine.  

 
 

Figure 1.3: Comparison of total structures solved vs experimental 
method 

 
Based on the statistics on RSCB Protein Data Bank on 08 April 2018, 89.5% 
of all structures were solved by X-Ray crystallography. NMR (8.7%) and EM 

(1.5%) constituted the majority of the remaining structures.  
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The impact of X-ray crystallography on structural biology is highlighted in Figure 

1.3 which summarizes all submitted entries for structures of biological molecules based on 

the technique used for analysis. As seen in the figure, X-ray crystallography is by far the 

most successfully used technique for structure determination. 

 

1.3.2. Principle of studying crystals using X-rays 

Crystallography harnesses the property of coherent scattering of electromagnetic 

radiation by ordered molecules in a lattice. By definition, crystals are made of 

translationally repeating copies of the same molecule in a periodic fashion generating  a 

3D pattern of identical unit cells in a lattice. Due to the translational symmetry inherent 

in a crystal, a defined phase relationship of the scattered waves occurs and the collective 

sum of scattered amplitudes leads to constructive and destructive interference. 

Interference of light by a crystal is dependent on the specific geometry of the lattice planes. 

In particular, at specific angles for a defined wavelength of light as a function of lattice 

geometry, this can result in fully constructive interference, leading to an increased 

amplitude of the scattered wave that is proportional to the square of the number of planes 

contributing to it.  The bright spots created by this constructive interference are seen as 

‘Bragg peaks’ . Their appearance is explicitly dependent on the parameters  as described 

by the Bragg equation described in Figure 1.7.  
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The intensity of the Bragg peaks is dependent on the scattering cross-sections of the 

atoms constituting the molecule under study and the number of unit cells in the specific 

direction. Hence, the scattered intensity depends on the size of the crystal (Holton and 

Frankel, 2010). The integrated intensity is proportional to the crystal volume relative to 

the unit cell volume i.e. crystal size and scattered intensity are directly correlated. Thus, 

larger crystals of the same molecules and same crystal packing  produce higher intensity 

Bragg spots than small crystals. 

 

 

 
 
 
 

Image from Lavina et.al., 2014 describes the requirement for 
constructive interference of light. If d is the spacing between the 

lattice planes,	q the scattering angle and l the wavelength of 
incident radiation, the scattered waves would be in phase only if 2d 

sin q = nl (where n is an integer).  
 

Figure 1.1: Bragg’s representation of the condition for 
diffraction. 
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1.3.3. Advances at Third generation synchrotrons  

For collecting data at synchrotron sources, the goniometer head (with a mounted 

crystal) is rotated in the X-ray beam along one or multiple axis for collecting diffraction 

patterns in different orientations. To ensure that all angles are represented, the crystal of 

mounted at an angle to the crystal axis or a second rotation set is collected in a different 

orientation. To reduce overlap of reflections, the rotation is usually performed in small 

angles (0.1-2°). A data-set typically contains a 100-300 patterns from (usually) a single 

crystal and since they are collected as a rotational series, their orientation with respect to 

each other is known. 

 

 

 
Figure 1.5: Simplified strategy for data collection for traditional 

crystallography. 
 

Crystalline sample is mounted on the goniometer head and frames of 
diffraction data are collected in the oscillation mode by rotating the crystal 
until all planes in the crystal have met the Bragg condition. These frames 
represent diffraction in different orientations and upon integration can 

yield  the amplitude of the structure factors. However the phase is lost and 
have to be retrieved independently to determine the 3D structure of the 
molecule under study. Image edited from He et.al., Advances in X-ray 

Analysis, 2000. 
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One of the key advances that have greatly contributed to the development of X-ray 

crystallography is the progress in X-ray sources. Synchrotrons have been used for 

diffraction studies since 1970s but second generation synchrotrons along with improved 

data collection strategies brought the time required to collect a complete data-set down 

from days to hours. Modern third generation synchrotrons feature  much higher brilliance 

(~1018 units), small angular diversion of the beam, and a wide range of wavelength tuning-

ability. This was largely due to upgrading the design  of synchrotron rings and introduction 

of beam undulators.  

Introduction of X-ray optical systems for generating a ‘microbeam’ have contributed 

in reducing the focal size (low beam divergence) while maintaining the flux. The full-

width-half-maxima (FWHM) of the beam generated may vary between 10-100 µm in 

diameter, the most recent beamline development at NSLS allows for a 2 um beam focus 

Particularly note-worthy of the new optical systems are ultra-smooth Kirkpatrick-Baez 

mirrors (KB-mirrors) that are a double (crossed) mirror system that can generate beam 

sizes up to 0.16 x 0.21 µm at 20 keV (Eng et al., 1998). The focal length is tunable making 

the set-up versatile and a key advantage of superior focusing techniques is low background 

scattering, leading to the ability to collect data from smaller crystals.  This improvement 

of beam brilliance and an increase in available flux permitted structure  analysis of 15-20 

µm crystals. Note that the size of the crystal required also depends on the unit cell size, 

essentially the number of unit cells in a crystal and the content of the unit cell as well as 

the order of the crystals are main determinants for the intensity and intensity of the 

diffraction patterns. 
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1.3.4. Radiation damage 

X-rays are ionizing and exposure for even a few nanoseconds can damage protein 

crystals. This destruction may be due to primary damage i.e. caused by photoelectric 

absorption of X-rays by atoms (leading to photoionization of electrons) or secondary 

damage caused by the  ejected electrons leading to a cascade of formation of radicals that 

change  the electronic structure of the molecules (Garman, 2010). Continued radiation 

damage eventually disrupts chemical bonds and finally the global crystalline order of the 

crystal,  leading to increases of the mosaicity (discussed in section 1.3.5) and the loss of 

crystalline order, where the Bragg peaks become broader finally terminating the 

diffraction ability of the crystal (Meents et al., 2010).  

The critical dose for damage depend also on the elements present in a crystal and 

therefore damage can occur faster at specific sites of the molecule. This is often 

experienced locally by cofactors, with high-Z metals being more prone to damage (Holton, 

2009). Site specific damage is also commonly seen in the reduction of disulfide bonds, 

decarboxylation of acidic side-chains, and loss of hydroxyls or methylthio groups. Many 

of these forms of damage have been discussed in Figure 1.6. While  third generation 

microfocus beamlines permit diffraction studies with 20-50 µm crystals X-ray damage is 

even more imminent with increase in intensity and smaller beam-focus. ‘Dose 

accumulation’ affects crystal integrity and leads to decrease in scattered intensities 

(Holton, 2009). Also, the local damage caused by radiation at specific residues might begin 

at much lower dose and can go undetected, leading to inaccuracies in the structures 

determined. Hence, the allowed dose must depend on the biomolecule and if crystals are 

more susceptible to damage, a lower dose of radiation is necessary. 

Radiation based damage also restricts the experiments that can be done at a 

synchrotron. Redox-active systems are often metallo-proteins and they undergo rapid 
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photo-reduction with accumulation of X-ray doses. The crystals might continue to diffract, 

but the structures solved are of damaged metallic centers (Hirata et al., 2014). This is 

contrary to the purpose of structural elucidation and might lead to erroneous conclusions.  

 

 

Figure 1.6: Modes of induction of radiation damage 
The image from Warkentin et.al. 2013 is a depiction of the processes in 
progression of damage induced in crystals upon exposure to X-rays. a) 

photoelectric effect causes ejection of electron, b) generation of several low 
energy electrons, c) bond breakage, d) radicals may attack other parts of the 

protein leading to a damage cascade, e) conformational changes are 
induced in side chains / flexible loops due to chemical damage in the 

structure, f) displacement / reorientation of individual damaged molecules, 
g) Potential for deformed lattice domains causing increased mosaicity, h) 
Global plastic damages leading to crystal cracking and  loss of diffraction. 
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To combat the problem of radiation damage, in the early 1990s cryo-cooling was 

introduced for studying protein crystal structures. The crystals are introduced to highly 

concentrated cryogenic protectants (e.g. glycerol, sucrose, polyethylene glycol) and flash 

frozen in liquid nitrogen. The cryogenic agents promote formation of vitreous “ice” upon 

freezing and  retain protein crystal integrity. Data collection proceeds under a stream of 

liquid nitrogen to maintain the crystals between 70-100 K. This leads in  radiation damage 

to be decreased but not completely diminished  (described in Figure 1.7) because the 

vitreous-solvent matrix slows the diffusion of destructive radicals across the crystal 

(Henderson, 1995).  

 

 
 
 
 
 

Image from Warkentin et.al., 2013. Damage (e.g. atomic displacements) 
inducing processes occur very quickly, and , damage accumulates over time. The 
damage is reduced by cryo-cooling  since free diffusion of radicals is restricted 

by the frozen mother liquor. The shaded area represents the range of timescales 
relevant for data collection.  

 

Figure 1.7: Time scales for damage by X-ray diffraction at 
cryogenic and room temperatures. 
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1.3.5. Other limitations of traditional crystallography  

A major shortcoming of conventional macromolecular crystallography is the need 

for large well-ordered crystals due to the damage problem discussed above. Growing large 

well-ordered crystals is often a challenge, especially for protein complexes, membrane 

proteins, active enzymes or larger bio-macromolecular structures (like viruses). The 

amount of sample available is sparse and does not readily form large 3D lattices. While 

these difficult to crystallize  macromolecules can sometimes yield a shower of 

microcrystals in crystallization screens, expanding that into conditions for large crystal 

growth often remains a challenge (Mueller et al., 2015). Hence, the ability for collecting 

usable data from microcrystals would be highly beneficial. 

Also, large crystals often contain multiple mosaic blocks and imperfections in their 

alignment and orientations manifest as inherent growth defects in crystals (Nave, 1998), 

the larger the crystal is, the higher is the degree of long range disorder. This ‘mosaic 

angular spread’ results in broad ‘streaks’ instead of Bragg spots upon X-ray diffraction and 

such patterns present challenges for data processing. The effect of mosaicity in large 

crystals will be  discussed further in Chapter 4 with an example from PSI. 

For a time, cryo-cooling helped in reducing  radiation damage, but with increased 

beam-intensity at microfocus beamlines, crystals cannot handle prolonged exposure to 

high dose radiation and only few diffraction patterns can be collected for small crystals 

before the onset of radiation damage even under cryogenic conditions. Another 

shortcoming of cryo-protection is that the ideal conditions for a specific cryogen need to 

be identified and this  process is based on trial and error. The sub-optimal use of cryogenic 

agents can lead to crystal dissolution, increase in mosaicity or cracking. The rate of cooling 

also needs to be explored , because faster or slower freezing may further increase mosaicity 

(Nave, 1998) in crystals and has significant impact on the quality of diffraction.  
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Finally, time resolved crystallography allows for understanding conformational 

changes associated with the dynamics of the molecule permitting knowledge of the 

structure-function relationship. At synchrotrons, the duration of the reactions that can be 

studied is limited to the picosecond time-scale based on the pulse length of Laue exposures 

(Neutze and Hajdu, 1997; Schotte et al., 2012) (described further in section 1.4.4.). For 

trapping intermediates in ultra-fast reactions like bond breakage or trans-cis 

isomerizations that happen in the fs time scale, there is a need for shorter pulses with 

enough flux to generate interpretable diffraction data. 

 

1.4 Nano-crystallography 

In obtaining useful data from X-ray crystallography, the ability to de-convolute 

the Bragg spots with respect to the background is essential. As discussed in Section 1.3, 

strategies to increase the intensity of scattered peaks for improved signal to noise ratio 

are to a) either use a larger crystal, b) prolong the exposure of crystal to X-rays or c) 

increase the incident photon flux on the sample, or some combination of the three.  

 

1.4.1. Motivation  

Crystal growth is often challenging and usually, large crystals have inherent long-

range disorder (mosaicity) that restricts the resolution of usable diffraction spots. 

Preparation of crystals for cryo-protection presents further complications for sample 

preparation. Also, data collection at cryogenic temperatures may induce structural 

distortions in the molecules since they are not in their physiological conditions. Exposure 

of the crystals to incident X-ray beam for even short time-scales of nanoseconds induces 

global and local damage (explained in Figure 1.10) even at cryogenic temperatures. For 

traditional crystallography, in order to collect diffraction in all orientations, multiple 
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frames are collected using the same crystal and over time, dose accumulation leads to 

insurmountable damage. Furthermore, samples containing high-Z centers are more 

susceptible to damage and can tolerate lower overall doses of X-rays. 

For studying reactions at the molecular level, small crystals permit a more uniform 

and rapid diffusion of the substrate throughout the crystal, leading to more homogenous 

transitions of all molecules under study (Schmidt, 2013). The overall brilliance generated 

at third generation synchrotron sources does not permit the use of weakly diffracting 

nanocrystals for diffraction-based structural studies. The novel approach of femtosecond 

nano-crystallography overcomes these shortcomings thereby permitting the study of 

irreversible, ultra-fast biological reaction dynamics at room temperature. 

 

1.4.2. Diffraction before destruction 

As early as in 1980s, it was hypothesized that the duration of the incident X-rays 

was related to the progression of radiation damage and thus, if data acquisition was 

sufficiently rapid, it couldenable collection of ‘damage-free’ diffraction patterns. The 

effects of ultra-short 5-10 femtosecond (fs) pulses on both single particles and clusters of 

molecules were calculated by Hajdu and co-workers (Neutze et al., 2000). Their molecular 

dynamics-based findings predicted that high-intensity femtosecond X-ray pulses are so 

brief that they pass through the sample before the onset of damage and can yield useful 

diffraction data describing the term ‘diffract before destroy’. 
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The study analyzed the time-scales of damage in a lysozyme molecule in the gas 

phase that interacts with an intense X-ray pulse (dose corresponding to 3x1012 photons (12 

keV) per 100 nm diameter spot, making the effective dose to be 3.8x106 photons per A2). 

The impact of incident photons leads to photo-ionization of the inner atomic electrons. 

Consequently, these ‘positively charged’ atoms experience strong repulsive forces leading 

to a Coulomb explosion of the molecules under study as depicted in Figure 1.8. 

 

 
 

Coulomb explosion of T4 lysozyme can be induced by radiation damage. 
Image from Neutze et.al., 2000. a) describes protein molecule exposed to 

an X-ray pulse (FWHM of 2 fs) and follows the progress of its 
disintegration with time. This describes the time period for which the 

molecule remains intact under specified conditions (5-10 fs) b) Lysozyme 
exposed to the same number of photons as a, but here the FWHM of the 

pulse was 10fs and c) depicts the behavior of lysozyme when exposed to X-
ray pulse with FWHM of 50 fs.  

 
For all conditions, the sum of X-ray intensity was fixed at 3x1012 photons 

(12 keV) per 100 nm diameter spot (i.e. 3.8x106 photons per A2). 
 
 

Figure 1.8: Diffraction before destruction 
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Thus, according to the principle described, extremely short X-ray pulse durations 

can allow the diffraction to out-run the radiation damage. The photons in the bright X-

ray pulse subsequently destroy the molecule but scattering information has already been 

obtained before the molecule is destroyed. 

 

1.4.3. Advent and principle of X-ray Free Electron Lasers 

The ‘diffract before destroy’ principle is based on extremely short (5 - 10 fs) X-ray 

pulses with extremely high photon flux. As fore-mentioned in Section 1.3.3, third 

generation synchrotrons are able to provide bright and microfocused beams, but the 

brilliance (~1018-22 brilliance units) is not high enough to study nanocrystals or single 

particles. Also, there was a need for ‘short pulses’ of X-rays that could potentially outrun 

radiation damage and hence fourth generation X-ray sources were conceptualized.  

X-ray free electron lasers (XFELs) can generate hard X-rays that are several orders 

of magnitude brighter than third generation synchrotrons (up to1032 brilliance units). The 

first hard X-rays with 50 fs pulse duration were reported to be generated at Linac Coherent 

Light Source (LCLS) in 2009. Since then, 3 more XFELs of with varying beam parameters 

have been developed all over the world with 4 (LCLS, SACLA, PAL-XFEL and EuXFEL) 

being currently available to users. 
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XFELs are starkly 

different from 

synchrotrons because 

they are linear 

accelerator-based 

sources. Electrons ejected 

from the source are 

accelerated and are forced 

on a wiggling path over a 

mile through an array of 

alternating periodic 

dipoles (undulators) 

(depicted in Figure 1.10). 

The movement leads the 

electrons to emit X-rays 

and the interaction with 

these X-rays leads to bunching of the electrons. Electrons that are in phase with the 

electromagnetic wave are accelerated at the same pace, while adding energy to the lagging 

electrons to bring them in phase. This manifests as electron ‘bunching’ where tuned 

electrons travel at the same phase and emit extremely coherent radiation with respect to 

each other, adding to the amplified flux. The resultant photons produce a strong 

electromagnetic field that influences electron bunches that are downstream from it to be 

better defined, and hence this principle of pulse generation is called Self-Amplified 

Spontaneous Emission (SASE). Due to the iterative coupling between the two fields, there 

 

 
 

Over the years, the need for higher flux has driven the 
x-ray sources to be brighter and several upgrades of 

synchrotron sources have led to both increase in 
photon flux and beam coherence. The SASE principle 

yields extremely short and yet intense pulses leading to 
amplified peak brilliance for XFELs when compared to 

traditional synchrotrons. Image from www.psi.ch 
 

Figure 1.9: Increased brightness of X-
ray sources. 
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is a non-linear increase in emission and this allows for emittance of extremely bright, 

ultra-short duration of X-ray pulses. 

For utilizing the characteristics of an XFEL beam, several complimentary methods 

have been developed. Firstly, crystallization methods for growing homogenous nano / 

microcrystals using batch method or free-interface diffusion (Kupitz et al., 2014) have 

been established. For protein crystals that are very stable and that readily form large 

crystals, methods are generated for obtaining smaller crystals by “crushing” large crystals 

by systematic homogenization using a Hampton seed-bead (Cat # HR2-320) or glass 

beads (Kupitz et al., 2017). Another area of method development was creating strategies 

for delivering sample to the X-ray interaction region. Crystals cannot withstand more than 

one XFEL pulse, so in order to match the high repetition rate, rapid regeneration of 

crystals was necessary. This influenced the naming of the technique as ‘serial femtosecond 

crystallography’ (SFX) as microcrystals serially interact with a fs X-ray laser pulse. For 

samples that have mother liquors compatible with hydraulic pump-based systems, gas 

dynamic virtual nozzle (GDVN) (DePonte et al., 2008) has proven to be very effective. 

Using this method microcrystals in random orientation can be injected through a fine glass 

capillaries and the resulting ‘jet’ of microcrystals is focused using an inert gas and this 

permits stable data collection with minimum beam jitter and background scattering.  

While being the working horse for sample delivery, they run with high flow rates 

of 10 - 20 ul / min and were therefore difficult to use for samples, where only a small 

amount of microcrystals was  available. More recently , a viscous sample  injector has been 

developed, which reduces the flow rate to 1 – 200 nl / min (Weierstall et al., 2014) and 

using this injector, methods have been developed to deliver crystals in viscous media. They 

can either be grown in the viscous media (favorable for crystals that grow in lipidic cubic 

phases) or crystals can be embedded into viscous media after crystallization has already 
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be performed.  The viscous media that have shown promising results include  lipid-cubic-

phase (LCP) (Fromme et al., 2015), agarose (Conrad et al., 2015), oil-free hyaluronic acid 

(Sugahara et al., 2016) or high molecular weight poly-ethylene glycol (Martin-Garcia et 

al., 2017), These experiments were performed at XFEL and have recently also been used 

for serial crystallography data collection at synchrotron sources. Fixed target approaches 

(Fuller et al., 2017; Roedig et al., 2015) also reduce sample consumption and have been 

proven immensely successful.  

In addition, progress in detector technology, data reduction and data analysis 

(Hart, Barty et.al. 2012, White et.al. 2012,) have paved the way for application of the 

technique in various fields. Here, one major biological application of XFELs i.e. studying 

the dynamics of proteins using time-resolved fs crystallography will be discussed.  

 

1.4.4. Time-resolved experiments to study protein dynamics 

The combination of high photon flux and extremely short pulses of XFELs and 

related technological advances have enabled visualization of symmetric single particles, 

scattering envelopes of molecules in solution, crystals grown in-vivo, damage sensitive 

metalloproteins etc. Difficult to crystallize integral membrane proteins (e.g. GPCRs) that 

form only microcrystals in LCP have also been studied extensively using fs XFEL pulses 

(Caffrey et al., 2014; Liu et al., 2013).   A striking contribution made by serial femtosecond 

nano-crystallography is in the study of structural dynamics of macromolecules. 

Protein function is deeply associated with its structural dynamics. Static position 

of atoms in a macromolecule contribute to our global understanding of its shape but in 

order to study the mechanism of a multi-step reaction, changes in the protein 

conformation at different time-points need to be visualized. Hence, ‘time-resolved’ 



  22 

crystallography involves obtaining snapshots of the protein in action and then putting 

them together to form ‘molecular movies’. 

 

The principle of time-resolved crystallography is based on initiating a reaction in  

all molecules in the crystal and imaging the conformational changes at specified time-

points along the course of the reaction. Depending on the nature of the study, the reaction 

initiation can done by  using light (pump-probe), by mixing with small molecules 

(substrate, inhibitors , ligands) or physical factors (temperature, pH etc.). 

First time resolved crystallography experiments were done at synchrotrons, where 

large crystals and a polychromatic ‘pink’ beam was used for Laue diffraction. Since, the 

 
 
 
 
 

Undulators induce SASE that generates bright X-ray pulses. These are focused 
using KB-mirrors into the interaction region with sample that maybe 

delivered using Gas Dynamic Virtual Nozzle (GDVN), Viscous gel injector or 
fixed target approaches. Diffraction patterns generated are collected by 
CSPAD pixel array detector. Image edited from Johansson et.al., 2017. 

Figure 1.10: Strategy for using XFELs for serial femtosecond 
crystallography. 
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Bragg condition is dependent on the wavelength, a solution for constructive interference 

at a given angle and at a fixed wavelength can be represented as a sphere in the reciprocal 

lattice called Ewald sphere. In a Laue experiment, the X-ray beam has a broad bandwidth 

of 1 – 5 %. The Ewald sphere has  different radii based on the energy of the incident beam 

and  thereby multiple planes in a crystal meet the Bragg condition at once. Thereby a large 

part of the reciprocal space can be probed . However the reflections become very closely 

spaced and the patterns are difficult to index. 

The range of wavelength in the case of a pink beam, helps in collecting complete 

reflections covering a large continuous range of the Ewald sphere. Also, the complete 

spectrum has significantly more photon flux, leading to improved scattering caused by 

different energies.  As a large part of the Ewald sphere is covered in one shot, fewer 

diffraction patterns are needed for a complete data set in comparison to monochromatic 

data collection. However, large crystals that are not very prone to X-ray damage are 

necessary.   

Unfortunately, using the traditional approach for obtaining X-ray pulses, the 

shortest time duration that can explored using shutter systems  is about 100 picoseconds. 

This excludes key biological processes because light absorption, bond breakage, and 

isomerizations of molecules occur over a few fs. Radiation damage caused by the broad 

spectrum is also significantly larger and the lack of cryo-preservation (in order to study 

reaction dynamics) leads to damage both in the molecules and the crystal lattice. Non light 

driven systems are even more difficult to study as the rate of diffusion of chemical agents 

across the crystal generates heterogeneous states in different molecules in the crystal and 

this could take several seconds. Assuming that does not affect crystal diffraction, the 

electron density maps generated by such crystals will be inconclusive because it would 

represent different conformations and the resultant structure would have inaccuracies. 
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Additionally, since one diffraction pattern is not sufficient for generating enough Bragg 

reflections for solving a structure and collecting a dataset involves initiating the reaction 

more than once. This restricts the application of this method for studying irreversible 

reactions (Moffat, n.d.). 

As described earlier, SFX utilizes a new crystal for each shot, potentially 

outrunning radiation damage. The extremely short X-ray pulses generated by an XFEL 

permit trapping short-lived reaction intermediates (Pande et al., 2016) and the high beam-

brilliance permits analysis of weakly scattering microcrystals, that can be uniformly 

excited leading to homogenous progression of the state of all molecules in the crystal. The 

strategy for TR-SFX at XFELs is discussed further in Chapter 2 and 3 using PSII as an 

example. 

XFELs permit specialized experiments that need ultrashort pulses or for studying 

damage-free structures of proteins or single particles. With rapid advances being made in 

synchrotrons and other complimentary techniques like cryo-electron microscopy and 

micro electron diffraction, many avenues are now available for studying the structures of 

macromolecules, but SFX at XFELs is considered to be the primary method for time 

resolved studies of biomolecules. Also, more XFELs have been made available for the 

researchers over the last year and this has permitted support for a growing user-base.  

 

1.5 Cryogenic Electron Microscopy 

Crystallization of macromolecules and more importantly producing well-

diffracting, large crystals can require significant cost in protein production and effort in 

crystallization spanning decades of time (Ng et al., 2003). SFX overcomes disadvantages 

with respect to radiation damage inherent in standard methods of X-ray diffraction 

(Chapman et al., 2011; Schlichting, 2015), but producing large amounts of homogenous 



  25 

microcrystals needs a lot of sample, skill and precision. Also, restraining protein molecules 

in a crystalline state may select for a single molecular conformational state or  might 

induce structural artifacts that do not reflect the physiological state, especially for the 

surface residues and points of crystal contacts (Singh et al., 2018). 

With recent advances, Cryogenic Electron Microscopy (Cryo-EM) has emerged as 

a powerful tool for structural biologists. In 2015, a buzz was created in the scientific 

community when Nature Methods recognized Cryo-EM as ‘the Method of the Year’. 

Subsequently, the technique was greatly acknowledged when Dubochet, Frank, and 

Henderson were awarded the ‘Nobel prize in Chemistry’ in 2017 for conceptualizing, 

pioneering, and making the technique applicable for biological samples (CALLAWAY, 

2017). 

The key advantage that distinguishes Cryo-EM is the ability to study 

macromolecules in a frozen hydrated state (discussed further in Section 5.3). Moreover, 

for Single Particle Imaging (SPI) methods there is no need for crystals, large production 

of protein or large national facilities for data collection which make the technique more 

universally accessible and versatile to study a larger realm of macromolecules. For other 

techniques such as Cryogenic Electron Tomography (CryoET) (Lučić et al., 2005), which 

has the potential to image frozen hydrated cells to organoids at molecular resolutions, the 

ability to address truly native assembly states in a physiologically relevant context is now 

possible. Microcrystalline electron diffraction (MicroED) is also available and proven 

electron diffraction of micron to nanometer sized crystals can achieve medium to high  

resolution structures of even large  protein complexes (Rodriguez et al., 2017). 

The recent technological advances (described in section 1.5.2.),  especially the 

introduction of direct electron detectors which allow to correct for electron damage by fast 

frame rates, which allows for extrapolation to the structure of the molecule before it was 



  26 

damaged by the electron beam brought fast advances in the Cryo-EM field. Before these 

advances it was believed that high  resolution structures determined by  by SPI and Cryo-

EM in general would be limited to highly ordered icosahedral complexes in the 

megadalton size range like viruses. In 2014, Lu and co-workers were able to solve a 4.5 A 

structure of a 170 kDa asymmetrical membrane protein (γ-secretase) involved in 

Alzheimer’s disease (Lu et al., 2014). Shortly thereafter, a 2.2 A structure of β-

galactosidase bound to its inhibitor was solved (Bartesaghi et.al., 2015), proving the 

potential for solving high  resolution structures using Cryo-EM. 

Cryo-EM has been established for  biomolecules after systematically overcoming 

challenges with respect to lack of contrast, establishing cryo-conditions that minimize 

sample disruption , instrumentation, image correction and processing. The major 

breakthrough was propelled by the development of the CMOS-APS direct electron detector 

 

 
 

Statistics were retrieved on 08 April 2018. A total of 5998 maps have been 
reported with 456 maps being solved in 2018. This steep slope indicates the 

increase in popularity of Cryo-EM among structural biologists. 
 

Figure 1.11: Sum of all density maps released in EMDB for 
biomolecules. 
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and the ability to overcome the resolution loss created by beam induced motion and 

ionization that occurs during imaging of frozen hydrated material as well as the poor signal 

to noise ratio (SNR) in low dose images of weak phase objects. 

According to the Electron Microscopy Data Bank (EMDB), there is a steep slope of 

upwards trend in structures of biological macromolecules being solved using Electron 

Microscopy as depicted in Figure 1.11. The following sections briefly summarize  the 

principals involved in cryo-EM and describe aspects that have contributed to the success 

of this new and burgeoning technique.  

 

1.5.1. Transmission Electron Microscopy 

The first electron microscope was invented by Ernst Ruska and Max Knoll in 1931 

at the Berlin Technische Hochschule with the first commercial instruments being available 

in 1939. These instruments only achieved 10 nm resolutions due to the primitive 

electromagnetic lenses, however the wavelength of an electron beam (controlled by the 

acceleration voltage), is 3.70 pm at 100 KeV and 1.96 pm at 300 keV. This is much smaller 

than that of visible light photons (250 nm to 800 nm) or even x-rays (0.01 nm to 10 nm) 

and thereby has the potential to  permit visualization of sub-Angstrom features in modern 

Aberration Corrected EMs (ACEMs). These modern aberration corrected EMs allow 

visualization of the arrangement of atoms, electronic bonds and band gaps in hard 

material, but traditionally, had limited resolution in soft matter such as biological 

macromolecules because of the large  ionizing strength of the high voltage beams, that lead 

to massive damage of the sample. Further challenges are  the weak phasing power 

provided by the low atomic number atoms in biological macromolecules, and the need for 

imaging in a high vacuum environment that is incompatible with hydrated samples.  
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Initially, to overcome these limitations, biologist dehydrated their samples, 

embedding them in plastic resins for thin sectioning and induced contrast with heavy 

metal atom stains specific for  biological functional groups such as phosphates and amines. 

These steps limited the resolution and native state of the macromolecules in cells and 

tissues. The development of cryogenic TEM first allowed the introduction of hydrated 

samples into the high vacuum environment of the electron microscope, while also 

reducing the effects of the ionizing electron beam on soft materials and the molecular 

artefacts induced by dehydration and heavy atom staining. This vitrification (Adrian and 

Dubochet et.al., 1984), thus overcame significant limitations in imaging of soft matter by 

electron sources. 

Electron microscopes utilize high voltage potentials to accelerate electrons from a 

point source filament called an electron gun. Unlike x-rays, electrons are readily focused 

due to their inherent negative charge using a series of electromagnetic lenses. Electron 

beams require 10-9 Torr vacuum to maintain coherence but otherwise an EM shows 

similarities to an optical light microscope with condenser and objective lenses. 

There are multiple interactions that can occur at the level of the specimen but these 

can most simply be understood as either elastic scattering or inelastic scattering. In elastic 

scattering, the energy of the electrons is not altered by the scattering event and these 

electrons are used for imaging. Inelastically scattered electrons interact with the specimen 

and can induce a number of spectroscopically relevant events that are useful in 

determining elemental composition and arrangement, but generate noise in images and 

contribute to chromatic aberration (Buban et al., 2010) (David Williams and Barry Carter, 

“Transmission Electron Microscopy: A textbook for material sciences”). 
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Image formation, simply put, arises from elastically scattered electrons selected by 

an aperture, focused by the objective lens generating an amplitude contrast and further 

passed through projector lens for magnification before being recorded.  

 

1.5.2. Resolution revolution  

Several factors limit the resolution of structures generated by EM, but the most 

prevalent reasons are not related to the optics of the modern electron microscopes in use 

today which can achieve point resolutions of 1.9 A readily in TEMs and 0.8 A in ACEMs.  

The key factors that limit biological macromolecular resolution are sample drift and bean 

 

 
Seen in the image is the path of the electrons in a 
Transmission Electron Microscope and various 
components used to focus the electron beam. 

Image from Kuntsche et.al., 2011.  
 

Figure 1.12: General schematic of a TEM. 
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induced motions as well as damage of the sample generated by its interaction with the 

electron beam, which blur images. Further factors are sample heterogeneity or 

conformation flexibility which limit the ability to correctly sort the particles into 

subclasses which is needed to allow for averaging of  molecules.  The electron beam is 

much more damaging than X-rays as interaction of electrons with matter is 1000 times 

stronger that interaction with X-rays. The electron induced damage thereby very fast 

destroys the molecules. Collaborative efforts in various fields have contributed towards 

achieving near-atomic resolution  and this ‘resolution revolution’ can be attributed to the 

following key factors. 

 

1.5.3. Progress in instrumentation 

In modern electron microscopes, the electron source is a highly coherent Field 

Emission Gun (FEG). Electrons are emitted when a strong positive field (> 106 V/m) is 

created by the anode placed near the sharp field emission tip, made of tungsten (W) 

(Galvin, 1997). FEGs work better than former thermionic sources because they produce 

colder point electron sources in the filament, with lower thermal energy spread i.e. more 

spatial and temporal coherence. The electron beams thus generated are further focused by 

spherical lenses. Improved focusing lenses with lower spherical and chromatic 

aberrations, also contribute towards improvement in the coherence of the beam. 

Furthermore, using advanced energy filters, in-elastically scattered waves can be filtered 

out in the column, leading to increased SNR (Orlova and Saibil, 2011). 

Optimization in sample preparation techniques by employing various strategies for 

vitrification (discussed further in section 5.3) have greatly contributed to preserving the 

sample during freezing by avoidance of ice-formation. Plunge freezing (Dobro et al., 2010) 

can be performed by using several automated freezing robots by Leica, FEI or Gatan. These 
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offer various features that may be suitable for specific samples and the superior quality of 

the vitreous “glass-like” ice is highly reproducible for numerous grids (Thompson et.al., 

2016). Efficiency of data collection for Cryo-EM was enhanced by automation using 

software packages like UCSFImage (Li et al., 2015), Leginon (Suloway et al., 2005) and 

SerialEM (Mastronarde, 2005). 

In order to harness the complete potential of Cryo-EM, higher SNRs are desirable 

and the increased efficiency of detectors has played a significant role here. Previously used 

scintillator based charged coupled devices predicted the location of transmitted electrons 

with low detective quantum  efficiency (Wu et al., 2016). The new generation of Direct-

electron Detection Devices (DDD) use complimentary metal-oxide semiconductor 

(CMOS) cameras that have a faster read-out that permit collection of dose-fractionated 

image stacks (Grigorieff, 2013). Using these stacks, correction of stage or beam-induced 

motion can be performed, thus, extracting the high resolution features of the images 

collected (Campbell et al., 2012). DDDs and data collection as stacks also present a 

strategy to exclude high-frequency noise produced by radiation damage in later frames (Li 

et al., 2013)  thereby enabling high resolution  structure determination approaching a 

resolution close to 2 A. 

 

1.5.4. Improvements in image processing 

Since the images obtained by Cryo-EM are 2D projections of a 3D structures, 

interpreting such superimposed structures can be difficult (Egelman, 2016). A 

breakthrough that permitted error-minimized  3D classification was the development of 

statistical algorithms based on maximum-likelihood procedures (Sigworth, 2016). At low 

SNRs, this method is less susceptible to initial model bias and over-refinement. 

Subsequently, several alternatives of this approach have been developed and currently, 
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regularized likelihood approaches in the RELION software package (Scheres, 2012) have 

proven to be powerful for both 3D classification and high-resolution reconstruction, 

leading to their immense popularity.  

Beam-induced motions in sample (discussed further in Section 5.5.2) have been 

monitored by using the movie mode of the DDDs (Campbell et al., 2012). These motions 

are caused by both expansion of the carbon film and radical generation in the sample. 

Correction of these motions lead to improvement in SNR for individual particle images 

and leads to overall improvement in resolution by ‘unbluring’ the images (Bai et al., 2015). 

Finally, improvements in computer hardware have allowed for larger reconstructions to 

be computed by 64-bit memory addressing and faster CPUs. 

Collectively, improvements associated with Cryo-EM have contributed towards 

understanding of biological systems, without the need for crystallization, making it 

increasingly popular with structural biologists. All techniques in structural biology 

discussed here, have specific advantages compared to each other and when used 

complimentarily, are advancing our ability to study complex systems and attain accurate 

knowledge that is relevant to the scientific community.  

 

1.6 Objectives of this thesis 

A greater understanding of the structural details of proteins involved in 

photosynthesis would contribute in mechanistic details of both excitation energy and 

electron transfer. Using TR-SFX, nanocrystals can be illuminated “on the fly” and 

resultant changes in protein conformation can be captured by interaction of the crystals 

with the XFEL beam, potentially without radiation damage. This presents an opportunity 

to evaluate changes in the oxygen-evolving cluster of PSII, unlocking the secrets of 
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effectively trapping solar energy in Photosynthesis which might be applied in the future 

for artificial systems. 

The structure of PSI from the thermophilic cyanobacterium TS elongatus has been 

solved to 2.5 A (Jordan et al., 2001) by X-ray crystallography. But long range disorder 

indicated by high  mosaicity has prevented improvement in the structure for more than a 

decade. The goal of this part of my thesis was to develop  innovative methods for growing 

well-ordered large crystals to improve the resolution of the Photosystem I structure. This 

would contribute in our understanding of interactions between chlorophylls with other 

cofactors and our understanding how PSI achieves a quantum efficiency of close to 99.99 

% for the excitation energy transfer.  Also, PSI can exist in the membrane of cyanobacteria  

as monomers, trimers and tetramers in different organisms and their inter-monomer 

interactions are not completely understood. A higher resolution structure would help in 

understanding the advantages provided to the organism because of oligomerization of PSI. 

Another objective that is  explored in this thesis is using PSI as a model protein for 

Cryo-EM. Comparing structures generated by complimentary techniques would help 

validate the structure of PSI, eventually enabling the structural elucidation of difficult to 

crystallize large complexes involved in photosynthesis. 
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This chapter is a published review in Methods in Enzymology (vol 557 in 2015) on 

PSII and time-resolved studies at XFELs. Described here are details of protein 

purification, crystallization, characterization, sample delivery, data analysis and data 

interpretation for a typical TR-SFX experiment. My contribution was in writing the 

sections describing protein microcrystallization techniques and characterization of 

microcrystals. I also edited the manuscript and incorporated referee comments before 

resubmission. Copyright clearance from Elsevier has been procured (Appendix B). 

 

Abstract 

Photosystem II (PSII) is a membrane protein supercomplex that executes the 

initial reaction of photosynthesis in higher plants, algae and cyanobacteria.  It captures 

the light from the sun to catalyze a transmembrane charge separation. In a series of four 

charge separation events, utilizing the energy from four photons, PSII oxidizes two water 

molecules to obtain dioxygen, 4 protons and 4 electrons.  The light reactions of 

photosystems I and II (PSI and II) result in the formation of an electrochemical  

transmembrane proton gradient that is used for the production of ATP. Electrons that are 
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subsequently transferred from PSI via the soluble protein ferredoxin to ferredoxin-NADP+ 

reductase that reduces NADP+ to NADPH.  The products of photosynthesis and the 

elemental oxygen evolved sustain all higher life on Earth.  All oxygen in the atmosphere is 

produced by the oxygen evolving complex (OEC) in Photosystem II, a process that changed 

our planet from an anoxygenic to an oxygenic atmosphere 2.5 billion years ago.  In this 

chapter, we provide recent insight into the mechanisms of this process and methods used 

in probing this question. 

 

2.1 Introduction 

Two and a half billion years ago oxygenic photosynthesis evolved resulting in the 

drastic oxygenation of Earth’s atmosphere which led to an explosion of biodiversity and, 

eventually, the evolution of higher organisms.  Photosystem II (PSII) is crucial to oxygenic 

photosynthesis.  As indicated by the close homology of the OEC across many species, it 

has only substantially evolved once and the core functions and structure have been 

maintained through billions of years of evolution.  PSII is large membrane protein 

complex made up of 19 protein subunits and over 50 non-covalent cofactors.  During 

photoactivation, the OEC of this massive complex proceeds through a five state 

photochemical reaction, the Kok cycle, over the course of which four charge separations 

occur (Fig 1).  One electron and one proton are extracted in each of the charge separation 

events, leading to two water molecules being deconstructed until the formation of 

dioxygen each cycle.  Photosystem II is able to oxidize water, driven by visible light and 

catalyzed by earth abundant metals at a low overpotential of +1.1 V (Wydrzynski et.al., 

2006).  However, with such a high redox potential, it operates at the limit of the stability 

of biomolecules. The unraveling of the mechanism of water splitting in PSII is one of the 

major goals in bioenergetics as it would open the door to the development of synthetic 
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oxygen evolving systems that combine the major catalytic features of PSII with the stability 

of artificial systems.  

 

The first static structure of PSII was determined to 3.8 Å in 2001 (Zouni).  The 

resolution was increased subsequently (Ferreira et al., 2004; Loll et al., 2005; Umena et 

al., 2011) and the highest resolution structures are now available at the near atomic 

resolution of 1.9 Å (Suga et al., 2015; Umena et al., 2011).  In order to understand the 

catalytic mechanism at work, time resolved studies with microsecond time resolution are 

needed to explore the multiple photoexcited states in the Kok cycle (Renger, 2012).  

 

 
Figure 2.1: Schematic of the Kok cycle showing photo induced kok cycle 

progression 
 

S-state transition from the dark S1 state to the S4 state where oxygen evolution 
occurs followed by a final photoexcitation returning the PSII to the dark S1 state.  

PQB is reduced at each excitation, leaving and being replaced by a fresh PQB upon 
arrival at the S3 and S1 states.  Figure originally published in Kupitz and Basu et al., 

Nature 2014. 
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Traditional macrocrystallography is unable to unravel the structure of the OEC in its 

different oxidation states due to site specific radiation damage of the OEC by X-ray 

photoreduction (Yano et al., 2005).  X-ray absorption fine structure spectroscopic studies 

have indicated that the manganese ions in the OEC possess a high propensity to site 

specific X-ray induced reduction (Allakhverdiev, 2005).  A bias may also arise with cryo-

cooled crystals as data are collected far removed from biologically relevant temperatures.  

The recently developed method of serial femtosecond X-ray crystallography (SFX) has 

been used to investigate the structure of selected photoexcited states of PSII (Kern et al., 

2014, 2013; Christopher Kupitz et al., 2014).  Very recently, X-ray free electron lasers 

(XFELs) have also been used to determine the first high resolution undamaged dark 

structure of Photosystem II based on serial data collection on large cryo-cooled crystals 

(Suga et al., 2015). 

Fundamentally, SFX is based upon using highly coherent, extremely brilliant,   

femtosecond hard X-ray pulses to collect thousands of X-ray diffraction snapshots on a 

hydrated stream of small crystals at room temperature (Chapman et al., 2011), enabling 

diffraction information to be obtained before the ensuing Coulomb explosion destroys the 

molecules including each measured crystal (Neutze et al., 2000).  In this way, radiation 

damage is “outrun” in the data collection and samples can be probed at more biologically 

mimetic conditions compared to traditional protein macrocrystallography.  Furthermore, 

by using a fresh crystal to produce each diffraction pattern, time-resolved photoexcitation 

processes can be probed by coupling an optical pump probe to the sample prior to 

interaction with the X-ray beam (Aquila et al., 2012; Neutze and Moffat, 2012; Spence et 

al., 2012).  For the first time, irreversible processes are now able to be probed in a time 

resolved experiment due to the use of discrete crystals for each diffraction pattern.  A delay 

time between the optical pumping and beam interaction as well as the number of times 
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the sample is flashed with light can be modulated to explore different transitory states.  

Recent work has advanced the knowledge of the structure and further advancements will 

ultimately be able to resolve the mechanism of photosynthetic water splitting and oxygen 

evolution.  The method of time-resolved SFX (TR-SFX) has the potential to lead to a 

“molecular movie” of photosynthetic water splitting in the future.  In this book chapter 

recent advancements of methods developed for TR-SFX of Photosystem II will be 

summarized and compared. 

 

2.2. Isolation of Photosystem II   

All structures solved so far from PSII are based on Photosystem II isolated from 

the thermophilic cyanobacteria Thermosynechococcus elongatus (T. elongatus) (Ferreira 

et al., 2004; Kern et al., 2014, 2013; Kupitz et al., 2014; Loll et al., 2005) and 

Thermosynechococcus vulcanus (TS vulcanus) (Kamiya and Shen, 2003; Suga et al., 

2015; Umena et al., 2011). As Photosystem II undergoes the process of photodamage and 

repair (Aro et al., 1993) the reproducible growth of large qualities of the cyanobacteria is 

an essential prerequisite of all functional studies.  Our group uses a large 122 L 

photobioreactor that has been developed together with the Pulse Institute, that controls 

temperature, pH, CO2 and air flux and measure cell density which can be coupled to the 

light intensity for growth of TS elongatus for reproducible growth of the cells at low light 

conditions to minimize photodamage.  The complete isolation procedure from cell harvest 

to growth of crystals is performed in one setting within 48 hours under dim green light 

which involves 3 re-crystallization steps.  The methods have recently been published in 

Kupitz et al., 2014 Phil. Trans. R. Soc. B.  
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2.3. Crystallization for studies with FELs 

Due to X-ray damage, macromolecular crystallography requires very large single 

crystals of PSII on the order of millimeters in size to allow for a shift of the crystals after 

each image during data collection. However, even with an extremely careful shift strategy 

such as applied in Umena et al., 2011, photoreduction is difficult to minimize, leading to a 

photoreduced structure of the OEC. 

SFX studies depend on a continuously fresh stream of small crystals to obtain 

diffraction before destruction.  This leads to the need for size homogeneous nano or 

microcrystals (on the order of 500 nm - 5 µm) created using novel crystallization 

techniques.   New methods have been developed by our team using free interface 

crystallization to allow for reproducible growth of large quantities of microcrystals of PSII 

with a very narrow size distribution of centered around 1 um3 as described in Kupitz et al., 

2014, Phil. Trans. R. Soc. B.  We will discuss the different methods used for the growth of 

PSII microcrystals below in more detail. 

 

2.3.1. Batch methods and establishing the phase diagram 

The batch method describes crystallization through a homogenized solution 

containing the protein and precipitant.  Initial trials to establish knowledge of phase 

space are easily accessible using this method, owing to the highly controllable and 

quantifiable solution environment.  Seed crystals can be added at different points in 

phase space and monitored to map out the phase diagram.  Seed crystals will dissolve in 

the non-saturated zone, grow without additional nucleation in the metastable zone and 

induce nucleation of additional crystals in the nucleation zone.  Particularly important is 

that the amount of induced nucleation scales with distance from the border between the 



  46 

metastable and nucleation zones, permitting optimization of conditions with respect to 

yield, crystal size and homogeneity. 

 

2.3.2. Free interface diffusion  

Figure 2.1 shows a schematic of the free interface diffusion (FID) method developed 

for the growth of PSII nanocrystals that have been used for our TR-SFX studies (Kupitz et 

al., 2014).  The method is based on the idea that in order to develop a so called “shower” 

 

 
 
 
 

 (a) shows a minimal mixing layering scheme between the protein (green) and the 
precipitant (white).  This results in few small crystals originating at the interface.  
(b) shows the precipitant being dropped through the protein, creating a slightly 

larger mixing zone than (a), resulting in a large shower of microcrystals.  (c) shows 
the time progression when the experimental setup depicted in (b) is subjected to 

centrifugation, expediting the formation of crystals and causing a pellet of size 
homogeneous crystals to form.  Figure originally published in Kupitz et al., 2014. 

 

Figure 2.2: Stepwise procedure depicting FID and FID centrifugation 
nanocrystallization techniques. 
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of small crystals, one must rapidly access a point in the nucleation zone of phase space so 

that a high nucleation rate is achieved.  This provides an alternative to vapor diffusion 

experiments where it is often difficult to control crystal growth at high supersaturation. 

The following procedure describes a way to access the phase space.  This construction 

also results in the deposition of crystals into a pellet, which can be easily collected and 

allows for further quenching and control of crystal density. Free interface diffusion has 

been used for growth of larger crystals in a traditional setup, where crystallization occurs 

inside a capillary (Ng et al., 2003) By use of thin capillaries, diffusion is slowed so larger 

crystals are grown along a concentration gradient (McPHERSON, 1990).  In contrast, for 

growth of nanocrystals rapid nucleation is desired. The precipitant, which has a higher 

density than the protein solution, is slowly added dropwise to the protein solution (see fig 

2.2). The drops of precipitant passing through the protein solution cause the protein to 

interact with a high concentration of precipitant. This continues as the dense precipitant 

forms a layer underneath the solubilized protein. The interface between the two solutions 

allows for rapid nucleation. Once the crystals reach a certain size, they sediment into the 

precipitant where their growth is quenched. Centrifugation immediately after the 

formation of the interface not only results in crystals that can be seen within 30 minutes 

but also results in a more homogenous size distribution of crystals due to a rapid density 

separation.  Thereby, the FID method provides an intrinsic quenching of crystal growth 

and a uniform size distribution for PSII crystals of 1 µm ± 500 nm (C. Kupitz et al., 2014). 

 

2.3.3 Quenching 

Once a yield of crystals has been determined to be at an acceptable size and 

distribution, it is desirable to quench any further growth prior to diffraction or during 

sample delivery.  While the FID setup has a temporary quenching mechanism, it is not 
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sustainable due to the slow onset of equilibrium and complete mixing of the layers.  It is 

important to remove the free protein that could lead to growth of existing crystals, further 

leading to clogging of injectors and a broader size distribution of crystals.  Once the 

crystals form a pellet, the supernatant is removed and replaced by stabilization buffer that 

contains 1.25 times of all solutes in the crystallizing precipitant solution.  This ensures the 

stabilization of existing crystals, both in the absence of free protein and through the 

presence of a more thermodynamically unfavorable solute environment, enabling a strong 

preference for PSII molecules to remain in the solid crystal phase.  

 

2.3.4 Quantification of natural plastoquinone and addition of PQdecyl 

In order to investigate conformational changes at both the acceptor and donor site 

of PSII and to allow multiple laser excitation steps, it is important to verify the quinone 

content of the PSII in the crystals. PQB is a mobile electron carrier and light exposure must 

therefore be avoided during all preparation steps to ensure high occupancy of the QB 

bindings site with PQ.   We have determined the PQ content of our crystals using high 

pressure liquid chromatography (HPLC) with a (C-18) column after each PEG 2000 

precipitation step.  The protein was then subjected to a pigment extraction using acetone 

according to the previously published protocol (Patzlaff and Barry, 1996). The presumed 

ratio of chlorophyll a to PQ is 76:4 at full quinone occupancy in T. elongatus. The area 

under each peak was integrated to obtain a ratio between chlorophyll a and PQ in the 

extracted sample. From this ratio, a percentage of PQB occupancy was calculated from an 

average value taken from 3 HPLC runs.  This resulted in occupancies of 91.8 % before 

initial crystallization, 88.4 after the first recrystallization, 86.4 after the second 

recrystallization and 81.1 %  after the third recrystallization step. 
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After two optical events, QB becomes doubly reduced to PQ2- and leaves the 

binding site as PQH2 and thus needs to be replaced for further oxidation to occur in 

order to reach the S4 state. However, PQ is extremely difficult to obtain by synthesis or 

purification due to poor solubility caused by the long isoprene tail.  As a substitute, a 

derivative of PQ with the same head group but an N-decyl chain instead of the isoprene 

tail, referred to as PQdecyl, was synthesized.  This PQdecyl was added to the crystals so that 

it could repopulate the binding site after the departure of the native PQH2.  Thus the 

addition of the PQdecyl allows for the S4 state to be reached even when the protein is not in 

its’ natural membrane environment.  

 

2.4. Detection and characterization of nano and microcrystals 

2.4.1. Optical microscopy  

During all crystallization trials, drops taken from an individual experiment can be 

imaged using optical light microscopy, by which crystals > 1um can be detected. 

However, one must be cautious drawing conclusions from optical microscopy (OM) 

alone since the size of the crystals are on or past the edge of what is visible and reliance 

on OM alone cannot identify nanocrystals < 1 um.  One of the most useful methods in 

OM is the use of polarized light to check for birefringence since protein crystals often 

possess refractive anisotropy. This can help distinguish between crystalline protein and 

amorphous precipitate, provided crystals are > 1 um. Another caution should be 

mentioned that many salts are also birefringent and, since the birefringence signal will 

scale with the size of the crystal, crystals that are on the order of 1 µm or less will not be 

recognizable as such by birefringence.  

 



  50 

2.4.2. Ultraviolet fluorescence microscopy  

The use of ultraviolet fluorescence microscopy (UVM) allows the confirmation of 

protein in the crystals via tryptophan fluorescence. This is complimentary to OM when 

trying to determine whether or not a birefringent signal comes from a salt or protein 

crystal. Diffuse signal can also indicate under-saturated conditions or the presence of 

free protein amongst crystals. In the general case of non SONICC active protein crystals 

(see section 2.4.3) that may have low birefringence or have a birefringent salt as a 

precipitant, discrete spots in a UVM image can provide an alternative indication of 

crystals. 

 

2.4.3. Second order non-linear imaging of chiral crystals  

The second order non-linear imaging of chiral crystals (SONICC) technique is an 

ideal method for detecting crystals of a chiral molecule with non-centrosymmetric 

crystals, which is common among protein crystals (Wampler et al., 2008).  When a 

substantially intense electric field is produced by a laser pulse, molecular dipoles are 

induced.  In the case of a chiral crystal, these induced dipoles are anisotropic on their 

potential energy surface and allow the sampling of nonlinear, even numbered higher order 

polarizability terms such as the second generation harmonic (frequency doubling) 

(Haupert and Simpson, 2011).  Enhanced signal can be measured at half the wavelength 

of the incident pulse, indicative of chiral crystals due to constructive interference provided 

by the ordered lattice.  PSII is crystallized in space group of P212121 which is SONICC active 

and provides positive confirmation of crystals too small to image optically, distinguishing 

them from amorphous precipitate or identifying them in a visibly clear drop. Protein 

crystals as small as 100 nm in size can be detected with SONICC (Wampler et al., 2008).  

Second harmonic generated signal was measured at 532 nm, indicative of a two photon 
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process that is only enhanced by the presence of crystals with anisotropic unit cells and is 

negligible otherwise. 

 

2.4.4. Dynamic light scattering  

Dynamic light scattering (DLS) allows the calculation of particle size and size 

distribution by using a temporal autocorrelation function of the scattered light signal over 

time in tandem with the Stokes-Einstein equation for particle radius.  This comes from the 

stochastic Brownian motion of particles resulting in a time dependent scattering intensity 

caused by interference with the surrounding particles.  The first order autocorrelation 

function is 𝑔(𝑞; 𝜏) = 𝑒)*+,-. as a function of the scattering radius q with delay time τ being 

parameterized.  The diffusion coefficient, Dt, can then be identified and further used to 

calculate the hydrodynamic radius, r, assuming a sphere with known viscosity, η, at a 

temperature T. Through computational Fourier decomposition, multiple signals can be 

identified in the raw data leading to measurement of size dispersion.  Thus, once other 

methods have been employed to confirm the existence of crystals, DLS provides the ability 

to monitor size and homogeneity at various time intervals during crystallization. 

 

2.5. Time-resolved crystallography of PSII using FELs 

The TR-SFX approach using FELs allows for the determination of the structure of 

undamaged biomolecules at room temperature, as diffraction occurs before destruction 

takes place (Barty et al., 2012).  Furthermore, time resolved studies can be performed 

where a reaction is initiated by light or rapid mixing, even on irreversible processes due to 

the serial delivery of the single crystals in a liquid jet where each femtosecond X-ray pulse 

hits a new crystal. 
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Time resolved studies in crystallography were pioneered with the Laue method 

which uses a relatively polychromatic “pink” beam and large crystals to study light induced 

reversible reactions. Pioneering work has been done with the p21-GTP complex and PYP 

(Rajagopal et al., 2005; Šrajer et al., 2001). However Laue crystallography cannot be used 

for the study of the S-state cycle of Photosystem II due to the X-ray induced reduction of 

the metal cluster of the OEC. Further limitations are the limited light penetration of the 

large crystals, prohibiting a uniform population of transitory states.  SFX overcomes these 

problems and opens a new window of opportunity for time resolved studies towards 

molecular movies of biomolecules at work.  

 

2.5.1. Considerations for PSII in TR-SFX 

For time resolved studies it is important that a sufficient population of the protein 

molecules must be in the same state when the crystal is probed by the X-rays in order to 

elucidate changes in the electron density of conformationally active localities. Thus, for 

light-induced time resolved experiments, it is imperative that crystals be small enough so 

that a high majority of the molecules in the crystal are excited by a saturating laser flash.  

Furthermore, when processing serial data it is important that Bragg diffraction intensities 

be comparable between.  This leads to the need for size homogeneous nano or 

microcrystals (on the order of 500 nm to 5 µm) to allow maximal uniform excitation from 

the optical pump laser. 

Recently, the dark state of Photosystem II was investigated at the FEL at SACLA 

by a group led by Jian-Ren Shen (Suga et al., 2015).  In this study they collected FEL data 

on PSII crystals using an alternate fixed target approach whereby they solved the first high 

resolution undamaged dark structure of Photosystem II based on data collection of very 

large single crystals at cryogenic temperatures (Suga et al., 2015). The dark structure was 
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determined at 1.9 Å resolution and showed smaller distances between Mn atoms of the 

metal cluster of the OEC compared to the first high resolution structure of PSII based on 

data collection at synchrotrons (Umena et al., 2011).  In this incredibly vast experiment, 

data were collected on 336 individual large crystals of millimeter size with femtosecond 

X-ray pulses at the FEL in SACLA. To minimize progression of X-ray damage, data were 

collected under cryogenic conditions with a defocused beam (1 µm). With the FEL’s 

relatively large beam focus, the crystals had to be translated 50 µm between each shot. 

While this breakthrough work led to the first undamaged high resolution structure 

of the dark state of PSII, time resolved studies, however, will be very difficult using this 

setup as uniform light excitation cannot be achieved with large single crystals. 

Additionally, data collection at cryogenic temperatures would not allow progression of the 

S-states beyond the S2 state which is reached after a single laser excitation.  

When the PSII is excited, light is captured by a large antenna system and the 

excitation energy is transferred into the center of the complex, where charge separation 

takes catalyzed by the primary donor P680. The charge is passed through an electron 

transfer chain from P680 through chlorophyll a, a pheophytin, the plastoquinone PQA and 

finally to the terminal acceptor plastoquinone PQB.  After two charge separation events,  

PQB is doubly reduced to PQ2-, picks up two protons and leaves the binding site as 

plastoquinol PQH2. 

Once PQH2 departs, it is subsequently replaced by another PQB from the PQ pool 

located in the photosynthetic membrane.  P680+ is concurrently reduced by extracting one 

electron at a time from 2 substrate water molecules bound at the OEC via the redox active 

tyrosine.  After 4 electrons have been extracted in subsequent charge separation events, 

oxygen is evolved. The OEC consists of a cubanoid Mn4O5Ca cluster which undergoes four 

corresponding oxidation events and cycles through the Kok cycle. In the absence of light, 
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PSII’s ground state is S1 state where one positive charge has already been accumulated in 

PQB. The oxidation states of the four manganese atoms in the OEC is currently under 

debate but one likely scenario consists of oxidation states of (+3+3+3+4) for the S0 state 

(+3+3+4+4) for the S1 ground state, (+3+4+4+4) for S2, (+4+4+4+4) for S3, and 

(+4+4+4+5) for S4. In order to ensure that the desired excited states (S2 and S3) are being 

reached, it is necessary to verify the enzymatic activity (oxygen evolution) and quinone 

exchange.   

 

2.5.2. The pump probe experiment 

In the time resolved SFX experiments an optical pump laser is used to excite the 

crystals preceding interaction with the probe XFEL beam.  This technique necessitates a 

laser excitation scheme with the goal to achieve a maximum excited population amongst 

PSII molecules in the crystals in each pump pulse and allowing for uniform evolution of 

transition states between each pump.  Two different setups have been developed for TR-

SFX studies on PSII.  

In the experimental scheme described (Kupitz et al., 2014), the crystals are 

delivered to the FEL beam in a fast running jet (10 m/s) at ambient temperature and 

hydrated in their mother liquor. The experimental setup is depicted in Figure 2.3.  The 

optical laser pulses were triggered by the linac coherent light source (LCLS), meaning that 

the time delay between the flashes is known exactly and is independent of the flow rate of 

the liquid jet. The fast running jet uses high amounts of sample at a flow rate of 10 µL/min.  

However, it ensures that the sample is fully replenished before the next FEL pulse arrives, 

eliminating the possibility of upstream excitation or damage. Data are collected 

simultaneously in pulse by pulse alternating light and dark sets, where the pump lasers 

are triggered with a frequency of 60 Hz synched to the 120 Hz LCLS FEL pulses. To 
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reiterate, this manifests as one snapshot being a “dark” snapshot with the next one being 

“light” snapshot and so on, resulting in 60 dark images and 60 light images collected per 

second. This ensures that all variables during data collection are identical for the light and 

dark data sets.  Data was also collected without any laser excitation and comparison shows 

that the data of the purely dark runs and the alternating dark/light runs are identical.  The 

laser excitation scheme is shown in the bottom of Figure 3.  Delay times of 210 µs between 

flashes 1 and 2 and 560 µs between flash 2 and the "probing" with the FEL pulse were 

used, corresponding to three times the measured time constants of the OEC progression 

from   the S1 state to the S2 state  and from the S2 state to the S3 state (Dekker and 

Grondelle, n.d.).  Data in the literature for the electron transfer between PQA and PQB 

greatly vary and are in the range of 200-800us. Future planned studies will extend the 

time points to up to 2ms.  

Ideal time delays between flashes should be in the range between 200 µs and 2 ms 

to study the conformational changes associated with electron transfer at the acceptor site 

and oxidation of the Mn4CaOx cluster at the donor site. A variation of time delays, 

including longer time delays up to 2 ms and an improvement in resolution of the structural 

model are important to the resolution of conformational changes at atomic detail in any 

future work. 
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An alternative approach used by Kern et al. (Kern et al., 2014, 2013) for TR-SFX 

studies. In this approach, the crystals are delivered to the FEL beam in a slow running jet 

where the sample is exposed to light by flowing across multiple windows in the nozzle. In 

this setup, the time delays between the first sets of laser excitations are dictated by the 

flow rate of the sample in the nozzle and only the last flash is triggered by the incoming 

FEL pulse.  While this sample delivery method has the advantage of low sample 

consumption, it is limited in that the time delay for the first set of flashes is determined by 

the flow rate, which is often not constant and also varies within the nozzle as there is an 

 

 
Experiment where the S1 and S3 states are probed alternately at 60 Hz 

each.  The optical pump laser scheme is shown at the bottom, indicating 
delay times of 210 µs between the first and second pump and 570 µs 

between the second pump and interaction with the FEL beam, allowing 
population of the S2 and S3 states respectively.  Figure originally 

published in Kupitz et al., Nature 2014. 
 

 

Figure 2.3: Diagram of the experimental setup for the TR-SFX 
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order of magnitude difference in the flow rates of the center and sides of the nozzle. This 

limits the setup to long time delays between the flashes with an average time delay between 

the first flashes on the order of 500 ms.  This number is only a rough estimate as the flow 

rates have not been directly determined and were instead estimated from volume filled 

into the reservoirs and the time the sample ran out (Kern et al., 2014).  Regardless, these 

long time delays inhibit realizing the conformational changes at the acceptor site as PQA- 

is oxidized by side reaction with oxygen in 2-3 ms before arrival of the second electron (de 

Wijn and van Gorkom, 2001).  

In summary, the most commonly successful sample delivery method for TR-SFX 

to date is the gas dynamic virtual nozzle (GDVN) which uses amplified liquid pressure and 

gas focusing to deliver the sample (DePonte et al., 2008).  It has not only be used for the 

TR-SFX studies on PSII but also formed the basis for the first TR-SFX study that reached 

atomic resolution, using the photoactive yellow protein as a model system (Tenboer et al., 

2014). Using the lipidic cubic phase (LCP) as a delivery media allows for minimal sample 

consumption with flow rates on the order of nL/min (Weierstall et al., 2014).  This media 

has also been shown to successfully support membrane protein crystals with data sets 

solved with less than 0.5 mg (Liu et al., 2013).  However, the crystals must be grown in the 

LCP, necessitating possibly new conditions, and the optical density of the material and 

slow flow rate is prohibitive towards pump probe studies.  Another recent approach to SFX 

sample delivery is through the use of a nanoflow electrospinning microjet (Sierra et al., 

2012). This method conserves sample by use of an applied electrical current to induce an 

electrospinning jet, as opposed to gas focusing, and the use of a viscous media such as 

glycerol to control droplet formation which allows a flow rate for PSII crystals around 3 

µL/min (Kern et al., 2013).  While this balances the need for sample conservation with a 

jet that is able to be optically pumped, the nature of the jet only allows for delay times on 
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the order of seconds and concern arises with regards to structural artifacts generated by 

the applied voltage on the protein. A primary drawback is sample consumption with 

typical flow rates of 10-15 µL/min but this allows access to the microsecond time range for 

pump probe experiments and avoids any possible upstream scattering excitation.   

 

2.5.3 Evaluating PSII SFX data 

For this work (Kupitz et al., 2014), the program Cheetah (Barty et al., 2014), 

developed specifically for SFX data, was used for background correction and hit-finding.  

The patterns were then indexed and merged using the CrystFEL software suite (White et 

al., 2012) and refined with the Phenix software suite (Adams et al., 2002). In SFX each 

diffraction snapshot represents a thin slice through reciprocal space, resulting in each 

measured reflection representing only a partial measure of scattering factor. 

Furthermore the intensity between individual X-ray shots varies by more than 200%.  In 

light of this, the determination of accurate structure factors requires a high multiplicity 

of Bragg intensities with a recommended minimum of 50, a sharp contrast to traditional 

synchrotron crystallography.  A multiplicity of > 600 for the dark data set and > 300 for 

the double flash data sets (putative S3 state) have been achieved in the Kupitz et al. 

experiment (2014).  Kern et al. (2014) applied a specific program for data evaluation.  A 

key difference between this program and Cheetah is that it uses resolution to select 

images, leading to low multiplicity of the data in the higher resolution shells.  By 

contrast, the hits are selected in Cheetah according to a threshold of spots at a selected 

signal to noise ratio. 
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2.5.4. Structural changes of PSII in the Kok cycle 

In Kupitz et al. the structure of PSII was solved at 5.0 Å and 5.5 Å for dark and 

double excited data sets respectively. Large changes were detected in the unit cell 

constants between the dark S1 state and the double flash putative S3 state, which are 

reversed in triple flash experiments.  

Despite the large changes of the unit cell constants, the overall dimensions of PSII 

do not increase as shown in the overlay of the transmembrane helices in Figure 4d.  

However, larger differences are detected in the acceptor side loop regions and the non-

heme iron coordinated thereby (Fig.5).  After PQH2 is formed and leaves the QB binding 

site, an empty binding site ensues which could trigger the changes of the loops structures 

 

 
 
  
 

(a) The dark (S1 ground) state (b) The doubly excited (putative S3 state) (c) 
Ribbon and loop model of PSII with labeled subunits  (d) Overlay of S1 and 
putative S3 states, revealing conformational changes evolved in progression 
through the Kok cycle.  Figure originally published in Kupitz et al., Nature 

2014. 
 

Figure 2.4: Electron density omit maps at 1.5 σ of the 
PSII homodimer. 
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and the expansion of the unit cell constants.  The fact that all crystals undergo this change 

in unit cell constant is an independent indication for the homogenous progression of PSII 

in our crystals through the Kok cycle. This change is reversible as it is reversed in a 3-flash 

experiment where PQdecyl is incorporated to allow for the binding site to be filled before the 

third flash arrives. 

In order to detect conformational changes of the OEC and avoid phase bias 

simulated annealed omit maps were calculated of the OEC and its protein environment 

(see  Fig. 6a,6b).  These omit maps tentatively show changes in the OEC and surrounding 

environment.  From the omit map shown in Fig. 6b, an elongation of the Mn4CaOx portion 

of the OEC can be seen in the S3 state with respect to the S1 dark state.  This may allow for 

the second substrate water molecule to bind between the ‘dangler’ Mn4 and the Mn3CaO4 

cubane-like structure during the S-state transition.  This is in agreement with hybrid 

density functional theoretical modeling (Isobe et al., 2012) which has shown that the 

substrate water has a probable minimum on its potential energy surface when coordinated 

 

 
 

Overlay of omit maps for the dark S1 (green) and double flash (putative S3 s (white) 
state. (A) view of the transmembrane region of  Photoystem II along the membrane 

plane (B)  more detailed view of the acceptor site which contains the binding sites for 
PQA and PQB. Note the non-heme iron (red sphere) and the loop regions exhibiting 

significant conformational changes between the two states.  Figure originally 
published in Kupitz et al., Nature 2014. 

 

 

Figure 2.5: Overlap of omit maps 
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by the Mn4 and modulated by the O5 (Fig. 6c).  Furthermore, a decrease in Mn-Ca2+ 

distances seen through extended X-ray absorption fine structure spectroscopy, pointing 

to a change in the character of the Mn4-O5 bond that would occur during elongation.  

The observed electron density changes shown in Fig. 6 agree with the recent 

theoretical studies of Isobe and coworkers (Isobe et al., 2012), who predicted a "breakage" 

of the dangler Mn from the cubane cluster in the S3 state.  In addition to the elongation of 

the electron density in the direction of the dangler Mn, the overall dimensions of the 

Mn4CaO5 cluster appears to shrink in the S3 state, and the distance between the Ca and 

the 3 Mn in the cluster decreases, as part of the Ca sticks out of the electron density map 

in the S3 state.  Extended x-ray absorption fine structure (EXAFS) studies on Photosystem 

 

 
 

(a) and (b) exhibit the S1 and S3 states respectively at 1.5σ.  In (b), the blue 
represents the S1 state whereas the yellow represents the S3 state for 

comparison.  (c) shows the crystal structure from the 1.9Ǻ structure of the 
OEC from Umena et al.  (d) shows the proposed S3 state derived from DFT 

calculations performed in Isobe et al. Figure originally published in Kupitz et 
al., Nature 2014. 

 

Figure 2.6: Simulated annealing omit maps of the OEC. 
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II where the Ca was substituted with Sr showed very similar spectra in S1 and S2, indicating 

that no significant changes occur in the Mn-Mn or Mn-Ca distances in this S2-state 

transition, while significant changes in EXAFS spectra were observed in the S3 state 

(Pushkar et al., 2008), which included the prediction that the distances between Mn and 

Ca would shrink in the S3 state.  Experimental findings in Kupitz et al. (2014) support a 

shrinking of the Mn4CaO5 cluster in S3 which would support the hypothesis of a 

condensation of the Mn4CaO5 cluster in S3 based on the Jahn-Teller (JT) effect which has 

also been studied in several model Mn compounds (for more details on studies on Mn 

model compounds see Yamaguchi et al., 2013 and references therein).  Mn-O distances 

derived from recently published model Mn-O and Mn3Ca-O cubane structures (Kanady et 

al., 2011; Mukherjee et al., 2012) indicate that Mn-O distances depend on the oxidation 

states of the Mn-ions.  The average Mn (II)-O distance is 2.2 Å, the average Mn (III)-O 

distance is 2.0 Å and shrinks to 1.8 Å for the Mn (IV)-O distance .  Based on X-ray 

absorption and emission spectroscopy, two models exist for the oxidation states of the 

Mn4CaO5 in S3, which is either described as Mn (III)(IV)3 or Mn (IV)4 (Dau et al., 2012; 

Yano and Yachandra, 2007). In the model of S3 where all Mn ions have reached the Mn 

(IV) oxidation state, a significant shrinking of the dimension of the cluster is expected due 

to the JT distortion with the average Mn-O distance being reduced to 1.8 Å (Yamaguchi et 

al., 2013). The shrinking of the overall dimensions of the metal cluster, which is supported 

by our maps of the putative S3 state, appears to be the first experimental indication of the 

role that the JT distortion plays in the mechanism of water splitting (Kanady et al., 2011). 

Changes are also visible in the protein environment of the metal cluster.  These are 

much more difficult to interpret and validate at low resolution than the changes of the 

metal cluster and have to be confirmed at higher resolution.  While the dark state SA omit 

map (Figs. 4a, 5a) matches the structural model of dark state (Umena et al., 2011), there 
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are significant changes visible on the SA omit map of the double flash putative S3 state. 

The SA-omit map of the putative S3 state is suggestive of conformational changes which 

may indicate movement of the CD loop (including the ligand D170) away from the cluster. 

If this could be confirmed at higher resolution, it would indicate that ASP170, which 

provides ligands to both Ca and the danger Mn in the dark state, may not be a ligand in 

the higher S-states. The loop between the transmembrane helices A and B (AB loop) may 

change its confirmation so that it moves closer to the metal cluster. A density feature 

connects this loop at the position of Asp61 to the dangler Mn of the metal cluster in the 

putative S3 state. Mutagenesis studies and recent spectroscopic evidence also support the 

current interpretation. Mutagenesis experiments have questioned Asp170 as a ligand in 

the higher S-states, as mutants still show 80% oxygen evolving activity and the FTIR 

spectra are not significantly altered in mutants of Asp170 (Debus, Strickler, Walker & 

Hillier, 2005).  While Asp61 only serves as a second sphere ligand in the 1.9 Å crystal 

structure (Umena, Kawakami, Shen & Kamiya, 2011) mutagenesis studies indicated an 

important role in the water oxidation process as the S2 to S3 transition is blocked in Asp61 

mutants (Debus, 2014; Dilbeck et al., 2013; Pokhrel and Brudvig, 2014). 

At low resolution an interpretation of changes in the protein environment is 

challenging and the question may arise: how robust are these changes in the SA omit map? 

Three validation tests have been performed, comprised of the annealing temperature of 

the SA omit map (Figure 7a), splitting of the data for both the dark and light data sets in 

half and calculation of the SA omit maps with the split data sets (Figure 7b), and 

calculation of the SA omit maps for the light and dark states using exactly the same 

structure factors (Figure 7c).  The results in Figure 7 and the comparison with the SA omit 

map in Figure 6 shows that the changes of the metal cluster and its protein environment 

between the dark and putative S3 state are visible in all cases.  
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(A and B)  Comparison between SA omit-maps of the two halves of the 
randomly split dark data set (S1) at the contour level of 1.5 σ (A) and 

Comparison between SA omit-maps of the two halves of the double-excited 
data set (S3) at a contour level of 1.5 σ (B). (C and D) Comparison between 
two SA omit maps made at two different start temperatures (2000 K and 

5000 K) for S1 state at 1.5 σ level (C) and the comparison between the two SA 
omit maps made at two different start temperatures (2000 K and 5000 K) 

for S3 state at 1.5 σ contour level (D). (E and F)  SA-omit maps calculated at 
500 K with the same hkl values at 1.5 contour level for the dark data set (E) 

and the double flash data set (F). 
 

Figure 2.7: Structure validation by SA omit maps. 
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2.6. Summary 

The structures of PSII in the S1 and S3 states were determined at 5.0 and 5.5 Ǻ 

respectively by TR-SFX. The experiments required new developments in crystal growth 

and crystal characterization so that a high density of microcrystals of Photosystem II of 

very homogenous size could be achieved.. Uniform growth of nano and microcrystals 

requires knowledge of the phase diagram and analytical techniques such as SONICC and 

DLS are crucial to detection and characterization.  Using the pump-probe TR-SFX setup, 

radiation free snapshots of the S-state cycle can be  recorded at biological temperatures,  

allowing for deeper understanding of the enzymatic mechanism behind PSII.  Future 

developments may eventually lead to an evolution from snapshots of transitory states to 

molecular movies, enabling thorough understanding of enzymatic mechanisms such as 

PSII.  Elucidating the mechanism of photosynthetic water oxidation and oxygen 

evolution is critical to the understanding the underlying photosynthetic mechanism and 

holds high potential for applications such as renewable energy and membrane protein 

bioengineering. 
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CHAPTER 3 

RECENT ADVANCES IN TIME-RESOLVED SERIAL FEMTOSECOND 

CRYSTALLOGRAPHY OF PHOTOSYSTEM II 

 

Chapter 2 discusses the steps involved in purification and crystallization of PSII 

for performing time-resolved crystallography with microcrystals at XFELs. In order to 

understand the mechanism of oxidation of water, a time-resolved two-flash study has been 

described where the structure of PSII was visualized in the dark (S1) and double-excited 

(S3) state. The results described in chapter 2 presented an insight into structural changes 

associated with the transition of the OEC through the Kok cycle (Figure 2.1), however the 

details of the S-state transition were restricted due to the lack in high resolution features 

(resolution cutoff was 5 A for the dark structure and 5.5 A for the S3 structure) (Kupitz et 

al., 2014). The primary goal for the subsequent experiments was to improve the diffraction 

quality of microcrystals for performing three-flash experiments with PSII to potentially 

trap the transient S4 state. For this, extensive optimizations have been made in cell culture, 

protein preparation, crystallization, sample delivery and data analysis and this chapter 

explores the aspects that have contributed most significantly.  

The process of oxidation of water performed by PSII is a multi-step redox reaction 

that splits water into molecular oxygen (O2), electrons and protons using light energy. As 

described in section 1.2, all products of this process are essential for survival of higher life 

on Earth. Additionally, the scope of understanding the details of charge separation in PSII 

that drives the water splitting process has great implications for the development of 

artificial photosynthesis and also may have an impact on improving the efficiency of 

natural photosynthesis in crops, making this study vital in the field of photosynthesis.  
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3.1. Culture growth for T. elongatus 

Cyanobacterial growth has been studied extensively (Kuan et al., 2015) and based 

on the organism of interest, optimum conditions have been defined. For thermophilic 

cyanobacteria, temperature and pH controlled photo-bioreactors are known to work best. 

Our initial precultures were grown in a simple setup consisting of 10 L Nalgene cell culture 

bottles (as illustrated in Figure 3.1 B). These were later improvised using 10 L bioreactors 

(Figure 3.1 A) and large scale growth was performed in Medusa bioreactor (Figure 3.1 C). 

 

Figure 3.1: Cell pre-culture and Medusa bioreactor 
 

A) Pre-culture bioreactor equipped with heated water-bath and flow-meter to adjust the 
air-low to the growing culture B) Pre-culture Nalgene tanks with stirring heat-plates 
were connected to an aquarium pump (not seen) for effective air-flow and C) 120 L 
Medusa photo-bioreactor was used for large-scale culture growth. The bright white 

fluorescent lights are seen in close proximity to the glass tubes containing 
cyanobacterial culture. The culture travels from the central column of the bioreactor 

to the dark tank underneath, then moves to the upper glass chamber through the 
thinner columns at the periphery. The ladder provided access to top of reactor for 

introducing media and bioreactor maintenance. 
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3.1.1. Preparation of inoculum 

The Nalgene set-up (Figure 3.1 B) consisted of heated stirring plate and a 10 L 

bottle that was equipped with a lid for aseptic transfer for introducing a gas-flow/ aeration 

pipe that was connected to an aquarium pump. The lid also permitted a temperature probe 

to be introduced in the medium for maintaining  optimum temperature conditions for cell 

growth. The stirring heat plate was kept at 50 C to prevent heat damage to the plastic bottle 

and the stir plate over time. The culture was between 47 - 50 C. While the Nalgene set-up 

was easy to build and maintain, to ensure rigorous aeration of the medium, a 10 L 

bioreactor was assembled (Figure 3.1 A). In this case, the reactor was heated using a water-

bath set to 56 C. Air enriched with 2% CO2 from gas-lines was passed through a filter 

(Speedaire by Grainger, Cat# 4ZL48) before introducing in the bioreactor via a flow-

meter. This permitted the use of high pressure regulators that provided much more gas-

flow in the form of bubbles than aquarium pumps. The Autoclaved Nalgene bottles or 

bioreactor were filled with BG-11 medium and warmed up to 56 C. Additional 

micronutrient solution is also necessary for sustained growth of the cells. The composition 

and protocol for preparing the medium and micronutrient solution are described in 

Appendix 1. The solutions were prepared freshly with purified milli-Q water but were not 

autoclaved before use. 

At the start of a culture cycle, about 5 g of frozen pellet of cells (not thawed) was 

introduced in the warm buffer (56 C) and dark adapted, where the 10 L chambers were 

covered with foil to prevent any light contamination. This ensured that only the most 

viable cells survived and ferociously grew to yield superior cells during the subsequent 

large scale culturing. The culture density was closely monitored by measuring the 

absorbance of the cell culture at 720 nm. At this wavelength, the photosynthetic apparatus 

does not absorb significant amount of light and the absorbance values can be attributed to 
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the scattering of particles i.e. cell density. Once the pre-culture reached O.D. values of 0.15 

at 720 nm (takes 5 - 7 days), the protecting foil layer was removed and the culture was 

permitted to grow in light available in the room.  

Hereafter, the culture was monitored every day. Temperature was maintained 

between 50 - 58 C and pH between 7 - 8. Additionally, the absorbance spectrum of the 

culture (400 – 800 nm) was also measured. As the culture grew, flood lights were directed 

to permit the culture to grow with sufficient light at all time. When the culture reached the 

optimum density of 0.4 O.D. units at 720 nm, it was used to inoculate the 120 L Medusa 

bioreactor (Figure 3.1 C).  

 

3.1.2. Considerations for 120 L culturing  

For large scale culturing, 100 L of medium was warmed to 56 C and 10 L of pre-

culture was added to the buffer. Remaining solution (12 L) was compensated using 

purified water at 56 C. For effective adaptation, the lights on the bioreactor were turned 

off overnight and the part of the bioreactor exposed to sunlight was covered using metal 

protective shields, while fluorescent room light was kept on. Next day, a sample of the 

culture was monitored to check if the cells had started  to grow. When the culture regained 

absorbance of 0.15 O.D. units at 720 nm, lights were turned on and metal shields were 

removed to promote further cell growth. Figure 3.2 describes a typical trajectory of 

spectrums for a growth period in Medusa. Gradual increased absorbance throughout the 

spectrum indicates overall health of the cells and their photosynthetic components.  

During the growth period, two factors were closely monitored in the absorbance 

spectrum. Firstly, the peak seen at 620 - 650 nm corresponded to the light-harvesting 

phycobillisome antennae proteins. If this was the major peak seen in the spectrum, it 

indicated towards stress caused by inadequate light exposure to the cells. This may be 
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because of high cell density or low light intensity. If high absorbance values were observed 

at 620 – 650 nm at low cell density, incident light intensity was increased to rectify the 

low light stress. Secondly, the peak at 680 nm was monitored for the peak maxima. This 

was usually observed to be at 680.5 or 681 nm. If this shifted to values below 680 nm, the 

batch of cells was not used for isolating PSII and for subsequent rounds of culturing, the 

light intensity was decreased to prevent any photodamage.  

 

Figure 3.2: Series of Absorbance spectra for T. elonagtus during cell 
growth 

  
 Spectra obtained everyday were compared to observe trends seen in overall 

culture. Increased absorbance at 720 nm indicated increased cell density. Both 
the peaks observed at short wavelength (430-450 nm) and at longer wavelength 

of 680 nm corresponded to chlorophyll moleules. The peak at 620-650 nm 
indicated presence of phycobili-proteins. Light intensity was maintained such 

that the peak at 650 was lower than the peak at 680.  
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Indeed cells grown at low light have a ratio of PSI to PSII of (about 8:1) so PSI with 

an absorption max of 681 nm dominates the spectrum. While these cells have more PSI 

than PSI the PSII is of better quality as it experience less photodamage. At higher light 

intensity  the ratio of PSI to PSII (with an absorption max of 672.5 nm) shifts with PSI 

trimer being actively degraded, however up to 70% of the PSII is in the process of repair 

and so the quality of PSII is not suitable for crystallization. 

 Light conditions were maintained using Medusa’s illumination system. At 

inoculation, the culture was kept at 0 % light intensity (fluorescent bulbs were turned off). 

Once the culture started to grow, the % illumination was increased to 30 %. Hereafter, 

every day the intensity was gently increased by 20% per day and by the 5th day after 

inoculation, the light intensity was maximum i.e. 100 % illumination, (controlled by the 

 

Figure 3.3: Absorbance at 720 nm monitored after inoculation 
 

As seen in the curve, Day 7 was the day of harvest and it was soon after it 
reached the logarithmic phase. Permitting cells to overgrow beyond 0.6 
O.D. units in Medusa usually resulted in stress due to inadequate light 

exposure that was indicated by increase in phycobilins. This also resulted 
in slower rate of cell division and onset of the stationary phase of a growth 

curve.  
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knob on the controller). The air-flow was maintained at ‘max’ at all time with ‘auto’ mode 

and maximum CO2 concentration permissible. The temperature was maintained at 56 C.    

As mentioned above, the absorbance values at 720 - 750 nm were seen due to the 

scattering of cells. As soon as the culture reached 0.4 (O.D. units) at 720 nm, the culture 

was harvested to ensure that the it was still in the log phase. As seen in Figure 3.3, gradual 

increase in absorbance at 720 nm indicated higher cell density i.e. cell growth. When the 

value crossed 0.4 O.D. units, the culture was considered ‘ready’ for harvest. The first 

growth cycle in Medusa lasted between 4 – 7 days. For large scale culturing, in order to 

maximize the yield, continuous culture was maintained. In this process, 70 L of the culture 

was harvested and the remaining 50 L of cells were diluted with additional medium for 

further cell growth for next harvest, which would be in 3 – 5 days. 

 

3.1.3. Cell harvest and storage 

 70 L of culture from Medusa was collected in a large plastic container for harvest. 

The first stage of concentration was performed using Cole Parmer’s Masterflex Peristaltic 

Pump tangential flow filter system (Cat# 200-1558). This  set-up is a positive displacement 

pump/filter setup where a constant fraction of solvent is flowing through the tangential 

filter  and can be discarded while the cells are concentrated in each of the flow cycles. The 

filter was primed using 10 L of purified water to wash away any residue of old cleaning 

solutions or cells. Cell culture collected from Medusa was then introduced in the 

filter/pump system via pipes without introducing any air into the system. The pump valve 

was set midway to ensure that half of the solution was concentrated by flowing above  the 

filter and half was discarded as flow through. The discarded buffer was clear and gradually, 

the recirculated culture became denser as the total volume decreased such that all culture 

could be accommodated in the filter unit. 
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 Then, the concentrated cell suspension was collected from the pipe and filter unit. 

The direction of flow was then reversed and cells were collected in a fresh 5 L plastic beaker 

by flushing the system with purified water. When the cell suspension was collected, the 

direction of flow was reversed again to ensure that all cells were obtained. At this stage, 

the suspension had the volume of about 2 – 2.5 L. These initial steps were carried out fairly 

quickly to prevent the culture from cooling down to room temperature. The beaker with 

the collected cell suspension was stored in a bigger container of hot water to keep the cells 

as warm as possible to keep the cells viable. 

 The collected cells were spun down at 7000 g at room temperature in 4 - 6 (250 

mL) centrifuge bottles. The discarded supernatant was clear indicating that cell were 

intact during cell harvest.  After the first centrifugation round, additional cell suspension 

was added on top of the initial pellet and centrifugation was continued until all cells were 

separated from the supernatant. When all the culture was concentrated, the cell pellets 

could be harvested. The centrifuge bottles were inverted on paper towels to discard any 

fluid. Runny pellets were not preferred for isolation of PSII since they indicated a mixture 

of viable and dead cells. Cell pellets were scooped out of the centrifuge bottles in one swift 

motion using a spatula and collected in a pre-weighed ziplock bag. Up to 2 pellets of 20 – 

30 g each were stored (at -80 C) in a bag but the bag was folded to make sure that the 

pellets don’t freeze together during storage. Cryoprotectants were not added to the cells as 

they can kill the cells and also because they might interfere with the downstream isolation 

and purification procedures. Date of harvest, absorption maxima around 680 and other 

culturing details were mentioned on the bag. Typically, for 70 L of culture at absorbance 

of 0.4 units at 720 nm, 50 – 60 grams of T. elongatus cells were harvested and stored at -

80C until further use.  
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 The peristaltic pump set-up was thoroughly cleaned to prevent older cells from 

contaminating future harvests. First another 10 L of purified water was passed through 

each direction of flow. Next, 10 L of hot water (~ 50 C) was passed in each direction of 

flow. For intensive cleaning, both ends of the pipes were connected and hot water was 

circulated throughout the set-up for  10 – 15 minutes. This water was discarded and the 

set-up was refilled with hot water. This time, the water was passed in the opposite 

direction of flow for 10 – 15 minutes. This was followed by 10 L of 10 % bleach solution, 

which was passed through each direction of flow to avoid fungal or bacterial growth. 

Finally, the set-up was cleaned by flushing 10 L of purified water from each direction of 

flow and the set-up was stored in purified water to prevent the filter from drying out and 

compromising subsequent harvests.  

  

3.2. Cell disruption, isolation of thylakoids and detergent screen for establishing 

conditions for solubilization of PSII 

Kupitz et.al (2014) describes the PSII isolation, purification and crystallization in 

great detail. Briefly, the cells are disrupted by passing them twice through a microfluidizer 

(Microfluidics Model M-110 L) on ice. Cell debris is removed by centrifugation at 11,000 g 

for 10 min at 4C, followed by two washing steps with buffer (20 mM MES at pH 6, 10 mM 

CaCl2, 10 mM MgCl2). For solubilization  of PSII, the thylakoids were resuspended in  a 

small volume of 20 – 30 mL buffer (20 mM MES at pH 6, 10 mM CaCl2, 10 mM MgCl2, 

200 mM D-mannitol, 20 % glycerol) and the chlorophyll concentration was determined 

as described in Porra et.al (1989) by extracting 80% acetone with a molar extinction 

coefficient of 76,780.  

In order to optimize the  solubilizing conditions, the effective detergent 

concentration (protein : detergent ratio) was varied. The initial conditions described in 
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Kupitz et.al. were solubilization at 0.74 mM chlorophyll  and 1 % b-DDM, with 

solubilization for 60 minutes at room temperature. A systematic study was conducted 

where  the  concentration of chlorophyll  and detergent at solubilization was studied. For 

the same batch of cells, thylakoid membranes were adjusted to a chlorophyll concentration 

of 0.74 mM and were divided into four sections. PSII was extracted at different detergent 

concentrations of 0.5%, 0.6%, 0.7% and the previously established 1% b-DDM and yield, 

oxygen evolving activity as well as resulting crystal quality was compared. The results are 

shown in Figure 3.7 and they indicate that higher quality of  intact PSII and subsequently 

crystals of improved order for serial femtosecond crystallography were achieved at a 

detergent concentration of 0.5  %.  

 

3.2.1. Anion-Exchange chromatography  

Strong interactions with ion-exchange medium can cause disassembly of fragile 

PSII dimers. To avoid this, a weak tentacle anion-exchange resin was used for purification  

of the detergent solubilized PSII. The material used was Toyopearl DEAE 650-M (Tosch 

Biosciences LLC, Cat # 07988) beads with long and flexible linkers with diethylaminoethyl 

exchange groups attached to the charged groups of the protein,  allowing a gentle 

interaction between protein and resin. 

The resin was packed in XK 26/70 columns (70 cm length, 26 mm inner diameter) 

(GE healthcare Cat # 18-1000-71), using 1.5 times (15 mL/min) the flow-rate used for 

purification based on the recommendation from the manufacture. New resin was washed 

in purified water to remove any fines and the clean resin was allowed to settle for 30-60 

minutes. Excess water was removed from the resin and this concentrated material was 

poured into clean column housing. A reservoir was connected to the top of the column and 

the material was compressed using FPLC (AktaPure, GE Healthcare) at 5 ml/min. 
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Gradually, the flow-rate was increased by 1 ml/min, every 10 minutes. Eventually, at 15 

mL/min, the column was permitted to pack for about an hour with purified water. The 

final pressure with connected lines was desired to be less than 0.4 MPa. Next,  the resin 

was exposed to high salt (buffer B) A150 (20 mM MES pH 6.0, 10 mM CaCl2, 10 mM MgCl2, 

150 mM MgSO4, 20 % glycerol, 0.02 % b-DDM) for 1 column volume (~ 300 mL) to ensure 

uniform packing throughout the column. The void volume of a packed column was 

determined to be ~ 200mL. 

Preparation of thylakoid membranes and protein solubilization has been 

extensively discussed in section 4.3.1. Prior to chromatography, the membrane extract was 

ultracentrifuged to remove insolubilized debris. During this time, the columns were 

equilibrated with 10 % buffer B against buffer A (20 mM MES pH 6.0, 10 mM CaCl2, 10 

mM MgCl2, 20 % glycerol, 0.02 % b-DDM) for 2 column volumes at a flow rate of 10 

ml/min till stable conductivity of ~3.4 mS was achieved. The column was maintained at 4 

C using a cooled water jacket connected to a water bath. The top 80 % of the solution 

obtained after ultracentrifugation in the ultracentrifuge tubes contained PSII and was 

collected in a graduated cylinder to measure the sample volume. The chlorophyll 

concentration of the retrieved extract was determined (as described in section 4.3). 

Membrane extract equivalent to 18 µmoles of chlorophyll was separated in a fresh 

graduated cylinder and diluted 1:4 using buffer A. This was done to minimize the 

interaction time of PSII with high detergent concentrations, that could potentially cause 

further protein degradation. This prepared sample aliquot was manually applied on the 

column after filtering through 0.22 µ syringe filter. 

During anion exchange chromatography, a program with constant flow-rate was 

run to ensure consistency among all the runs as described in Table 3.1. The column was 

equilibrated with 10 % buffer B. Figure 3.4 describes that all unbound material was washed 
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off the column at 10 % buffer B (15 mM MgSO4) using 3 column volumes of buffer. 

Wavelengths of 280, 672 and 681 nm were monitored to verify that  PSI and PSII remained 

on the column while other components of the extract (like traces of phycobillisomes) were 

washed off the column before increasing the salt concentration. After the sample was 

applied on the resin, slowly the salt concentration was increased to wash loosely bound 

material.  

The chromatogram shown in Figure 3.4 shows the absorbance at 280 nm (all 

protein material) during the run. The wavelength of 672 nm (in purple) corresponds to 

PSII and 681 nm (red) corresponds to PSI. 

% A150 Volume (mL) at flow rate 10 

mL/min 

10 100 

10/13 680 

13/28 300 

100 300 

10 300 or till conductivity returned 

back to 3.4 mS 

 

Table 3.1: Scheme for chromatography in purification of PSII dimers 
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After removal of unbound material, weakly bound protein molecules like 

monomers of PSI and PSII were eluted with 13 % buffer B (19.5 mM MgSO4). When the 

monitored wavelengths had returned to baseline (indicating removal of the monomeric 

PSI and II, PSII dimers were eluted at 28 % buffer B (42 mM MgSO4) and the 

corresponding fractions collected. Strongly bound PSI trimers were washed off at 100 % 

buffer B and the column was re-equilibrated with 10 % buffer B before loading the next 

aliquot for purification. FPLC buffers (A & B) contained 20 % glycerol for maintaining the 

stability of PSII. But glycerol hinders the crystallization of PSI, which is crystallized at low 

ionic strength. Hence, for most preps, PSI was discarded and not isolated during the PSII 

preparation. In order to isolate PSI, a procedure was developed recently by Jesse Coe 

(dissertation, School of Molecular Sciences, ASU 2018) from the last column run of a PSII 

preparation, which involves intensive buffer exchange to wash off the glycerol on the 

column before PSI is eluted. The purified fractions of PSII dimers were collected and 

concentrated using a 100 kDa cutoff centrifugal filter (Millipore Amicon Ultracell 100 

kDa) immediately after elusion. These were spun at 4000 RCF at 4 C using a swinging 

bucket rotor (SLA-3000). Since the capacity of each filter was 15 mL, they needed to be 

refilled every 10 minutes to accommodate for all available purified PSII to ensure that the 

filter was not running dry. The centrifugation was permitted to continue till all excess 

buffer was removed and the protein was concentrated to about 1 mM chlorophyll.  

If precipitation was not being performed right away, PSII was concentrated to 6 – 

8 mM chlorophyll and frozen using liquid nitrogen. Additional 20% glycerol was added to 

concentrated PSII solution using positive displacement pipettes. This solution was sucked 

into plastic capillary (bull-semen tubes) ensuring that an air bubble was left between the 

filter and PSII solution and also the PSII solution and the end of the capillary. About 350 

– 400 µL of solution was introduced per capillary and rapidly frozen in shallow container 



  86 

of liquid nitrogen. These capillaries were then stored in cryotubes in cryo-canes at liquid 

nitrogen temperatures. 

  

3.2.2 Further purification and crystallization of PSII  

PSII isolated with varying  concentrations of detergent during extraction was 

crystallized in parallel to minimize discrepancies. The chlorophyll concentration of the 

PSII adjusted to 0.5 mM using buffer C (100 mM PIPES  pH 7.0, 5 mM CaCl2, 0.03% β-

DDM). Batch precipitation (as described in section 2.3.1) using buffer D15 (100 mM PIPES 

pH 7.0, 5 mM CaCl2, 15 % PEG 2000) was performed in 50 mL falcon tubes, using equal 

volume of precipitant as the volume of protein solution available. Final protein and 

precipitant concentration of the solution was 0.25 mM chlorophyll with 7.5 % PEG 2000. 

The solution was incubated at 4 C for an hour without stirring to allow  PSII nano/ 

microcrystals to form. PSII complexes  that are damaged and free chlorophylls remain in 

the supernatant, leading to purification by crystallization.  

A droplet of precipitate/ nanocrystals was used for imaging the material using a 

light microscope and then the precipitate spun down at 5000 RCF for 10 minutes, This 

was then gently dissolved in buffer C by pipetting mixing. The solution obtained was 

checked for absence of lumps and uniform homogenization was ensured. Chlorophyll 

concentration of the protein solution was determined and adjusted to 0.5 mM, followed 

by another precipitation using buffer D13 and another hour of incubation at 4 C. The final 

purification step was repeating the steps with D11 precipitation with the pellet obtained 

from the previous step. This yields 10-20 µm sized crystals after 6 - 12 hours of incubation 

at 4 C in complete darkness (falcon tubes wrapped in Al foil).  
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As explained in section 3.2, a 

screen of 0.5 - 1 % b-DDM was 

performed in order to analyze if 

excess detergent causes harmful 

structural changes in the protein 

due to ‘over-solubilization’. In 

order to examine the differences in 

crystal quality among the protein 

extracted, batch crystallization 

was performed using capillaries 

aimed at growth of large crystals 

that are suitable for X-ray 

diffraction at our home X-ray 

source. PSII precipitant obtained 

from D11 step (5.5 % PEG 2000) 

was dissolved in minimal volume 

of buffer C and its concentration 

was adjusted at 5 mM chlorophyll. 

10 µL of prepared protein solution 

was mixed on a clean parafilm 

with equal volume of precipitant 

D4 to D10 (corresponding to 2-5 % 

final PEG concentration) in 0.25 % 

increments. The prepared solution 

was sucked into glass capillaries 

 

Figure 3.5: Crystallization results  from 
varying concentration of PEG 2000. 

 
Panels a-d indicate capillaries at varying PEG 

concentrations from 5-2 %. As seen in the 
figure, decreasing concentration of precipitant 

yields few larger crystals due to lower 
nucleation that leads to availability of more 

protein for growth of the existing  nuclei 
resulting in larger crystals. At 5 % PEG (panel 

a), amorphous precipitate is also seen 
surrounding the crystals, indicating harsh 
precipitation leading to loss of protein that 

could be crystallized. 
Image from Ingo Grotjohann. 
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(inner diameter = 500 µm) and incubated at 20 C for 3-5 days. The results are summarized 

in Table 3.2. 

 

3.2.3. Observations and Results 

The experiment was set-up in triplicates and the best observed capillary is 

reported in Table 3.2 

 

 

 

%PEG
à 
 

%b-
DDM 

2 2.25 2.5 2.75 3 3.25 3.5 3.75 4 

 
0.5 %  

 

clear, 
no 

crystals 

clear 150-200 
um 

diamonds 

250-300 
um 

diamonds 

large  
300-450 
um & 

med 150-
200 um 

diamonds 

150-400 
um sharp 
diamonds 

 

Fine 
particles 

 
 
 
 

Fine 
particles 

 
 
 
 

Fine particles  
 
 
 

 
0.6 % 

no 
crystals 

Clear 
still 

growing 
no 

crystals 

No 
crystals 

Random 
shaped 
80-150 
um ~20 
crystals 

Rectangul
ar / 

diamond-
like 50-
100 um 
crystals 

~50-75 
µm 

diamond 
shaped 

Fine 
particles 
stuck to 

tube 

20-50 
µm sharp 
diamond

s 
~100 

Fine particles  
amorphous 
precipitate 

seen 

 
0.7 %  

 

 
clear, 

no 
crystals 

 
 

clear, no 
crystals 

 
 
 
 

clear, no 
crystals 

200-300 
um 

diamonds, 
still 

growing 

 300 um 
diamonds 
 
 
 

300-400 
um 

random 
shaped, 

some 
boats 

 

Large 250-
300 um & 
medium 
100-200 

um 
diamonds 

 

Fine 
particles 

Fine particles 

 
1 % 

>150 
µm 

 

Fine 
needles 

large 
diamonds 
>100 µm 

>100µm 
diamond 
shaped 

Large 
diamonds 

250 µm 

>150 µm 
sharp 

diamonds 
 

Sharp 
diamond 
shape 50-

100µm 
 

Fine 
particles 

Fine particles 

 
Table 3.2 : Crystals observed after 3 days 

  
The table indicates % of b-DDM used for PSII extraction against % PEG used for 

crystallization. Note that crystallization of all capillaries was performed at 0.015 % b-
DDM and only the detergent concentration at membrane solubilization was variable. 

Conditions marked in bold were harvested and used for diffraction analysis.  
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Larger crystals were seen at lower PEG concentrations due to limited nucleation 

(phase diagram described in section 4.4.1). The conditions highlighted in bold in Table 3.1 

were harvested in buffer E8 (100 mM PIPES pH 7.0, 5 mM CaCl2, 8 % PEG 2000, 0.015% 

β-DDM) by breaking capillaries in a glass well. Crystals were fished using appropriate 

sized loops and X-ray diffraction was performed at room temperature in dim green light. 

Larger crystals were seen at lower PEG concentrations due to limited nucleation 

(phase diagram described in section 4.4.1). The results indicate that slightly higher PEG 

 

Figure 3.6: Sample of capillary with grown crystals 
 

Sharp crystals of PSII were seen in various capillaries described in Table 
3.2. This figure depicts crystals grown at 3.25 % PEG 2000 with 0.5 % b-
DDM extraction. Crystals seen have sharp edges with the average size of 

about 100 µm 
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concentrations are required for crystallization for PSII extracted with increasing detergent 

concentration. Crystals grown under the conditions highlighted in bold in Table 3.2 were 

harvested in buffer D8 (100 mM PIPES pH 7.0, 5 mM CaCl2, 8 % PEG 2000, 0.015% β-

DDM) by breaking capillaries in a glass well. Crystals were fished using appropriate sized 

loops and X-ray diffraction was performed at room temperature in dim green light.  

The crystals of protein extracted at 1 % b-DDM were studied against protein 

extracted at 0.5 % b-DDM. X-ray diffraction data was collected at the home X-ray source 

(Rigaku microfocus rotating anode X-ray generator Micromax-007HF). Best diffraction 

obtained at both conditions has been described in Figure 3.7. The 5.53 A shadow in a) is 

due to scattering of the loop which held the crystal. The absence of that ring from b) merely 

indicates that the loop was not in the path of X-rays during data collection. The crystals 

were subjected to 30 seconds of exposure and 5 images were taken from each crystal at -

90°, -45°, 0°, 45° and 90° in order to cover 180° across the crystal. Best diffraction 

obtained from all conditions that were analyzed have been enlisted in Table 3.3. Overall, 

PSII isolated at 0.5 % b-DDM produced the best diffracting crystals. Diffraction patterns 

highlighted in grey have been compared in Figure 3.7.  
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Figure 3.7a: Best diffraction from crystals from PSII isolated at 1 % b-DDM 
 

 

Figure 3.7b: Best diffraction from crystals grown from PSII isolated at 0.5 % b-
DDM. Details have been explained in Table 3.3 
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Extracting membrane proteins from their natural bilayer environment often 

requires an excess of detergent (Seddon et al., 2004). But even mild non-ionic detergents 

like long chained b-DDM (structure described in figure 4.7) can have detrimental effects 

on the protein upon prolonged exposure at high concentrations. Over-solubilization may 

remove smaller outer subunits from the protein complex and that in turn might lead to 

decreased protein stability, leading to poor quality of X-ray diffraction from resulting 

crystals. One significant conclusion drawn from this analysis is to reduce the detergent 

concentration during the extraction process, in order to restrict over-solubilization of 

membrane proteins and obtain protein at higher stability for crystallization and X-ray 

structure analysis. 

3.3. Microseeding for microcrystallization 

Dimers of PSII purified by Anion-Exchange chromatography were further purified 

by a series of crystallization steps. These steps are described in section 3.2.2. The final 

%PEGà 
 

%b-DDM 

2.5% 2.75% 3% 3.25% 3.5% 

0.5 % 6.3 A 4.35 A 4.8 A 5.1 A  

0.6%  7.1 A 6.6 A   

0.7%   8.2 A 9.6 A 7.8 A 

1%  13.8 A 11.3 A 14.1 A  

 
Table 3.3: Best diffraction obtained from PSII crystals 

 
% b-DDM at protein extraction vs % PEG at crystallization. The two boxes 
highlighted in grey correspond to the diffraction patterns shown in figure 
3.7. In column labeled 3% a clear trend of worsening quality of crystals is 

seen in direct correlation with % b-DDM used for membrane 
solubilization with 0.5 % showing best results.   
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purification step was carried out extremely carefully at final conditions of 0.25 mM 

chlorophyll concentration crystallized with 5.5 % PEG 2000 by incubation dark at 4 C for 

6 – 12 hours after the PEG solution was added.  

 

3.2.1. PSII crystals have different morphologies 

PSII is  an extremely difficult to crystallize protein and thereby the consistent 

reproducible growth of large amounts of 10-15 µm sharp crystals has been a challenge. 

Different batches of protein behave differently under the same conditions. For example, 

at the final purification step (D11 precipitation), using the exact same set-up, with same 

buffers, after identical incubation conditions, two representative batches of crystals 

appear drastically different (fig 3.8). This is usually seen in different batches of protein 

from different batches of cells. This may also be caused due to Ostwald ripening where 

small rigid units redeposit on each other to create larger particles. Since the solution 

reaches the supersaturated phase too fast, secondary nucleation occurs at the surface of 

growing crystals leading to appearance of large crystal-clusters as seen in fig 3.8B. When 

 

Figure: 3.8: PSII microcrystals have different morphologies 
 

PSII preparations named a) Rosemary and b) Thyme were crystallized in 
parallel using batch method in identical conditions of 5.5 % PEG 2000.  

Image was captured after 14 hours of incubation at 4 C in the dark.  
 

A

 

B
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exposed to X-rays, these exhibit increased mosaicity and diffract poorly. They are 

particularly unusable for TR-SFX since they cannot be homogenously illuminated and can 

clog injector based delivery systems. 

In order to prepare large amounts of homogenous crystals, various methods were 

employed. Free interface diffusion and Free interface diffusion centrifugation (Kupitz et 

al., 2014) have been optimized for 1-5 µm crystals. For larger 15-20 µm crystals, the batch 

method has yielded better results (both methods have been described in section 2.3). In 

order to minimize crystals from growing into each other, various protein and precipitant 

concentrations were explored but that did not result in remarkable progress. Another 

approach was to terminate crystallization after 2 hours of precipitation by removing the 

uncrystallized protein and adding excess of precipitant buffer (100 mM Pipes pH 7.0, 5 

mM CaCl2, 20 % PEG 2000, 0.015 % b-DDM). The primary challenge with preparing 

samples suitable for SFX was that every crystal preparation behaved differently and there 

was an urgent need to have a large number of crystals of similar size, shape and diffraction 

quality. This challenge was overcome by microseeding procedures. 

 

3.2.2. Preparation of seed stock 

Since nucleation needed to be controlled, the supersaturated metastable zone of 

the phase space was explored. Providing microseeds at this step enhanced total crystal 

yield and the morphology of resulting crystals were identical to the crystals used for 

seeding. In other attempts, performing the seeding step twice or ‘double seeding’ 

contributed in considerable improvement in diffraction resolution (Dods et al., 2017). 

Optimum seed stock was prepared by combining 100 µL crystal pellet obtained 

from D11 with 500 µL of precipitant buffer (100 mM Pipes pH 7, 5 mM CaCl2, 9 % PEG 

2000) in a 1.5 mL microcentrifuge tube. 25 mg of 425-600 µM sized glass beads (Sigma 
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Cat # G9268) were added to the crystal suspension. This tube was vortexed for 5 seconds 

and placed on ice for 10 seconds. This was done to prevent crystal dissolution by sudden 

increase in sample temperature. The vortex - ice cycle was performed for 10 cycles and 

resulting ‘seed stock’ was faint green in color.  

 

3.2.3. Precipitation at 9 % PEG 2000 

The seed stock was diluted 1:100 in cold precipitant solution D7-10 (100 mM Pipes 

pH 7, 5 mM CaCl2, 7-10 % PEG 2000). The pellet obtained from D11 precipitation was 

gently dissolved in buffer C, chlorophyll concentration was determined and adjusted to 

0.5, 0.6 and 0.7 mM. The precipitate solutions + seeds were gently mixed until 

homogenous and then, added dropwise to stirring PSII solution at 4 C. Once the 

 

Figure 3.9: Schematic representation for micro-seeding 
 

Seeds were introduced in cold precipitant solution (D7-D10) in 1:100 
ratio by volume. Equal amounts of precipitant was added to volume of 

protein available at 0.5 - 0.7 mM chlorophyll. Most reproducible results 
with homogenous crystals at 20 µm were observed at final 

concentrations of 0.3 mM chlorophyll with 4.5 % PEG 2000.  
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precipitation was complete, the solution was permitted to mix for another 30 seconds, stir-

bar was removed and sample was incubated for 30 - 40 hours at 4 C in the dark. 

 

3.2.4. Results 

Addition of seeds made from either sharp crystals grown at D11 or 1-5 µm crystals 

grown at D13 resulted in dramatic improvements in crystal morphology. If crystallization 

was performed at 4.5 % PEG 2000 in the absence of seeds, very little protein was 

crystallized and about 90 % of PSII would remain in solution. Introduction of seeds at 4.5 

% PEG 2000 permitted crystal growth at the metastable zone. By separating the steps of 

nucleation and crystal growth, crystallization conditions could be explored and better 

diffracting crystals could be grown.  

 The microseeding procedure could be used successfully to make uniform 15 – 20 

µm PSII crystals from ALL preps (shown in Figure 3.10). In the past about half the preps 

would yield crystalline clusters that were not suitable for TR-SFX since the excitation 

would not be suitable, they restrict smooth operation of the GDVN systems and can also 

be poorly diffracting with multiple low resolution patterns. The ability of using all protein 

for the final experiment was a significant achievement which ensured that all preps yielded 

good quality crystals that could be utilized for Time-resolved pump-probe experiments, 

which eventually meant that all protein that was isolated and crystallized was suitable for 

use i.e. more efficient use for available protein.  
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Figure 3.10: Effect of microseeding 
 

Panel on the left are images of crystal preparations obtained from D11 
precipitation. Crystals shown in image 3.8A were crushed and added to 

lower precipitate D9 in order to grow bigger crystals. The scale-bar in each 
image was set to 30 µm and homogenous 15-20 µm PSII crystals were 

obtained. 
It must be noted that image on the left and the right is that of the SAME 

protein preparation. 
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3.3. Characterization of PSII activity as microcrystals  

As explained in section 2.5.1, PSII molecules transition through 5 oxidation states 

(S-state transition) in the photo-cycle and each S state has varying life-times upon photo-

excitation. Section 2.3.4 introduces that, in presence of light and electron acceptors, active 

PSII molecules are able to catalyze the transfer of electrons from water to QB, generating 

O2. As PSII in the dark is predominantly in the S1 state, under flashing light, majority of 

the evolved O2 is expected to be at the 3rd flash, as PSII transitions from S1 to S4 and then 

to the S 0 state.  

 

3.3.1. Experimental set-up of Clark based microcell 

Functional characterization of the four-step photocatalytic cycle in PSII crystals is 

essential for TR-SFX studies. The objective is homogenous transition of all molecules in 

the crystal through the S states in the Kok cycle using laser flashes. This presents some 

challenges because X-ray crystallography cannot determine the oxidation states of atoms 

or distinguish among molecules in different oxidation states. For this purpose, other 

supplementary techniques like X-ray emission spectroscopy (Yano et al., 2005); (Pushkar 

et al., 2010), Fourier transform infrared spectroscopy (Kato et al., 2018), EPR 

spectroscopy (Han et al., 2008), extended X-ray absorption fine structure (EXAFS) 

(Grundmeier and Dau, 2012) etc. have been employed in the literature. Described here is 

a method for understanding S-state advances by analysis of flash-induced O2 yield. 

In order to ensure saturation of photochemical steps, it was essential to illuminate 

all molecules in the crystal uniformly. Hence, a short flash of high light intensity was 

essential to maintain clean state transitions. For this purpose, a high pressure Xe flash 

lamp exciting PSII in the or visible spectral region was used with FWHM of 1 µs. The 

optical energy delivered was optimized based on the yield of O2 at the third flash.  
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   The measurements were carried out 

in the home-built microcell (Ananyev & 

Dismukes, 1996), using a Pt-Ir electrode 

covered by a thin membrane. The 75 % Pt 

+ 25 % Ir alloy ensured long term 

mechanical stability and chemical 

resistance, i.e. homogenous electrode 

surface. Placing the membrane between 

the electrode and the sample prevented 

diffusion of added electron acceptors 

(different types of quinones) to the 

electrode surface. O2 yield was directly 

proportional to the current required to 

reduce O2.  

PSII crystals were diluted to 0.015 

mM chlorophyll in buffer D11 + 0.02 % b-

DDM for maximum sensitivity of the 

experiment. At higher concentrations, 

saturations were not observed in the first 

4 flashes, because too high crystal density  

prevented the transmission of saturating 

light throughout the sample volume. The dilutions were made in crystal stabilization 

buffer (100 mM Pipes pH 7.0, 5 mM CaCl2, 11 % PEG 2000, 0.015 % b-DDM). Small 

organic quinones were used as electron acceptors to maximize O2 yield. These were 

directly introduced into the sample by pipette mixing. The sample holder was covered by 

 

Figure 3.11: Assembly of 
electrochemical O2 microcell 

 
The sample holder and direction of 

flashing light have been illustrated with 
the red arrow. The electrode is placed 

underneath the sample holder 
separated by a semi-permeable 

membrane. So, the order of 
components bottom to top were: 

electrode, membrane, sample in sample 
holder, covered by glass slide, topped 

with Xe lamp. 
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a glass slide to maintain near-anerobic conditions in the sample. This was done because 

O2 from air can accept electrons from the QB2- sites and interferes with analysis (Ananyev 

& Dismukes, 1996). 

 

3.3.2. Effect of electron acceptors on O2 yield of PSII 

Due to the nature of S-

state mechanism, 3 sequential 

flashes would advance the 

centers from (dark) S1-> S2-> 

S3-> S4* states. Only the PSII 

molecules progressing to S3 

state can go through the 

transient S4 state and 

spontaneously move to S0 by O2 

evolution. Hence, in an ideal 

kok system that is dark 

adapted, O2 would be expected 

to release at flash numbers 3 + 

4n (n=0, 1, 2…) (Vinyard et.al, 

2013) (depicted in Figure 3.13). 

This 4-flash based transition 

through the kok-cycle is 

visualized as 4-period 

oscillations in PSII. 

 

Figure 3.12: Effect of electron acceptors on 
yield of flash-induced O2 

 
Grey curves indicate average yield from the first 
4 flashes (YP) in comparison with average yield 
from steady state (YSS). The decrease in overall 
yield can be attributed to the accumulation of 
quinol form during continued illumination.  
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The effect of several 

electron acceptors was 

analyzed on the O2 yield. 

These were 2,6-dichloro-

1,4-benzoquinone (DCBQ), 

2,6-dimethyl-1,4-

benzoquinone (DMBQ), 2-

phenyl-1,4-benzoquinone 

(PPBQ) and ferricyanide 

(FeCN). The O2 yield seen 

for the first 4 flashes (1 

cycle) was compared to the 

yield seen at steady state of 

PSII molecules in presence 

of various acceptors. These 

have been normalized and 

plotted in Figure 3.12. The 

synchronization and 

thereby the oxygen yield 

decreases with the number 

of cycles due to misses and 

double hits.  Furthermore 

the amount of electron 

acceptor decreases due to 

the accumulation of the 

 

 
 

Figure 3.13: O2 yield at corresponding light 
flashes 

 
A) depicts O2 yields seen upon exposure of PSII 

crystals to 30 continuous flashes of light in 
presence of various electron acceptors. PPBQ 
shows the highest O2 yield and FeCN shows 

highest number of oscillations. 
B) compares FeCN as a sole acceptor compared to 

FeCN in combination with PPBQ. Inset shows 
expansion of oscillations at higher flash numbers 

in PPBQ + FeCN compared to PPBQ alone.  
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reduced quinols during continuous illumination The O2 oscillation can be prolonged  upon 

replenishing the supernatant with fresh quinones, indicating no damage to PSII molecules 

in crystals.  

As seen in figure 3.12, the combination of PPBQ with FeCN yielded the maximum 

O2 evolution, this is expected as FeCN reoxidizes the quionol to quinoneThe concentration 

of quinones was optimized at 400 µM, whereas that of FeCN was optimized at 2 mM based 

on O2 yield titrations. PPBQ is a quinone with very low solubility that was made available 

to PSII by dissolving it in DMSO. FeCN, on the other hand is a water-soluble oxidant that 

has the potential to oxidize the quinol form of PPBQ. 

PSII microcrystals grown by the method described in section 3.2, efficiently 

perform water oxidation for 1 cycle even in the absence of external electron acceptor 

(control, black curve in fig 3.13A) and this confirms the presence of intrinsic quinones at 

both the QA and QB plastoquinone binding sites. Addition of PPBQ, as an artificial quinone 

electron accpetor enhances the O2 evolution and permits PSII to oscillate through several 

cycles of the kok-cycle. For TR-SFX experiments, PPBQ was added to dark-adapted PSII 

microcrystals to ensure highest activity of crystals when excited with 1-3 pump laser pulses 

for capturing intermediates of the S-cycle. 

 

3.4. Sample delivery using Fixed-target Roadrunner 2 

Advances in X-ray sources and increased popularity of Serial Crystallography have 

increased the demand on improved faster frame-rate detectors and novel sample delivery 

techniques, both at synchrotrons and XFELs. Due to the high brilliance of XFEL pulses, 

the crystals in its path are damaged by a single X-ray pulse. Along with the repetition rate 

of  120 Hz, there is an absolute need for fast sample exchange between shots.  
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Sample delivery for SFX has been established  using liquid jets generated by use of 

a Gas Dynamic Virtual Nozzle (DePonte et al., 2008) (Set-up explained in figures 1.13 and 

2.3). This method has been adapted for several experiments and can be manipulated to 

yield jets focused down to a few micrometers. But still only about 1 in 10,000 crystals 

interacts with X-ray pulses. Also, due to the construction of the capillary, larger better 

diffracting crystals (more than 20 µm) have to be filtered out before sample delivery to 

avoid clogging events. Liquid jets present another disadvantage of background scattering. 

This is particularly adverse for small weakly diffracting crystals whose diffraction signal 

might be buried in the background. Finally, the sample for liquid injection is stored in a 

reservoir and during the course of the experiment, the crystals can settle, leading to 

inhomogeneity in delivery, clogs or back pressure. A few anti-settling devices (Lomb et al., 

2012) have been explored for this purpose, but during data collection, eventually, crystals 

continue to settle. With Roadrunner2, (Roedig et al., 2017) fixed target systems are 

currently able to utilize all pulses of the XFEL (LCLS) and overcome shortcomings of the 

injector based approach. 

 

3.4.1. Experimental set-up for Roadrunner2 

The Roadrunner setup consists of high-precision x and y precision motor driven 

scanning stages mounted on a horizontal translation stage and a vertical rotation axis 

(orientation depicted in figure 3.15). A high-magnification inline microscope was used to 

visualize samples and their support structure. In order to minimize the background 

scattering signal, single-crystalline silicon wavers were  used as the substrate material for 

the micro-patterned chips (Roedig et al., 2015) which contain holes or wells in which the 

crystals reside. The X-ray beam is focused to the central hole in each well, thereby 
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minimizing the background signal. The experiments are performed in a closed humidified 

Helium filled chamber which decreases the number of photons scattered by air.  

 

The chips are aligned in the path of the XFEL and scanned such that each pulse 

encounters a new  pore. The windows of the silicon chips used for fixed-target 

experiments can manufactured  according to the size of the crystals under study, thereby 

permitting SFX of larger microcrystals (15-50 µm) that diffract more strongly to be 

investigated by SFX.  

 

Figure 3.14: Technical overview of Roadrunner goniometer 
 

The goniometer consists of three main components: an inline sample-viewing 
microscope, a high-precision scanning unit for fast scanning, and a motorized 
beam pipe unit. All components are mounted on a common support frame to 
achieve high mechanical stability. The minimum possible distance between 
sample and detector surface is 50 mm and this allows for the collection of 

high-resolution diffraction data. Image from Roedig et.al., 2017 
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3.4.2. Considerations for conducting time-resolved experiments using fixed-

target approaches 

For TR-SFX with Roadrunner2, special adjustments needed to be made. In order 

to prevent light exposure of neighboring crystals, pores on the chip were enclosed in 

compartments that were more like funnels. Both the pump laser pulses and the XFEL 

pulses were introduced to the chip compartment via an inline microscope as shown in 

figure 3.15.A  

A dichroic aperture was placed very close to the surface of the chip (3mm) which  

guarantee a illumination spot of 100x 25um, which prevented  illumination of neighboring 

 

 
 

Figure 3.15: Simplified representation of TR-SFX using 
Roadrunner2 

 
Top image shows the strategy for laser excitation for TR-SFX of PSII where 

pump and probe pulses were introduced through the in-line microscope and 
the bottom scheme indicates the laser excitation scheme for three-flash 
excitation of PSII crystals. The focal size of pump laser and chip raster 

scanning speed  was adjusted to ensure that the same compartment received 3 
laser flashed before x-ray pulse.  

 

Flash 1- 500us-> Flash 2 -> 1000us -> Flash 3 -> 50, 200, 600, 1200, 2000us-> X-ray

X-ray pulses
Laser pulses
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wells. An additional infra-red LED was installed in the He chamber to visualize the chip 

for initial alignment. 

200 µL of crystal suspension was applied gently at the center of the silicon chip. 

Without disturbing the chip, the droplet was spread uniformly over the windows under 

the humidified stream of air, which prevented immediate crystal dehydration. The mother 

liquor rapidly filled the micro-chambers  and formed a meniscus. Excess solvent was 

removed by bringing a wedge of Whatman No.1 filter paper in close contact with the 

bottom side of the chip. This blotting process needs to be done carefully, because the chips 

are fragile and some mother liquor needs to be retained on the chips to conserve hydrated 

crystals. Crystals that are larger than the pore-size were retained on the chip.  

 

 

 

 

 

 

  

 

Figure 3.16: Assembled chip before and after sample loading 
 

Panel A) depicts a silicon chip mounted on a holder with a magnetic base 
that connects to the Roadrunner goniometer head. Also seen is a sleeve 

(containing cotton pad soaked with buffer) used to cover the loaded chip to 
prevent crystal dehydration. B) is an image of a chip loaded with ~ 50 % 

coverage of pores. This was further optimized for maximum coverage 
without microcrystal overlap to prevent multi-crystal hits because of over-

crowding of crystals. 
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Following the blotting event, a sleeve (depicted in figure 3.17) that contained a 

cotton pad soaked with buffer (100 mM Pipes pH 7.0, 5 mM CaCl2, 11 % PEG 2000) was 

gently slid on top of the chip to maintain the moisture in the crystal surrounding. This 

sleeve was ultimately covered in foil and black cloth to keep the crystals well-hydrated and 

dark-adapted. 

 

3.4.3. Humidity control is necessary to prevent crystal dehydration 

Initial experiments of SFX with PSII microcrystals without photoexcitation were 

performed in the MFX (Macromolecular femtosecond crystallography) hutch at LCLS. 

Over the course of four 12-hour shifts, data on 15-20 µm PSII crystals was collected on 33 

chips resulting in 744,404 hits. Most hits obtained were valid and the final indexing rate 

was 83 % leading to 621,303 indexed diffraction patterns. But, upon initial analysis, the 

unit cell dimension ranges  were much broader (+/- 5 A in one dimension) compared to 

 

Figure 3.17: Loaded chip are susceptible to dehydration 
 

After crystals are deposited on the chip surface, excess mother liquor 
is blotted from the other side of the chip. As seen in the figure, soon 

after the blotting event, if the chip is left exposed to air, the crystals at 
the edges begin to dry out. In order to collect data without crystal 
dehydration, excessive humidification of the He chamber (> 99% 

humidity) was essential. 
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sample delivery in a jet and showed an oscillation pattern that was co-related to the pattern 

of the raster scan. The  maximal resolution of diffraction obtained also showed similar 

oscillation, indicating the crystal shrinkage and/or swelling was affecting the quality of the 

crystals. This was largely attributed to the uneven distribution of  humidity in the He 

chamber. This led to the crystals along the edges of the chip to dry out  faster, while crystals 

close to the inlet of humidified He seemed to swell showing larger unit cell constants than 

what has been observed in the liquid jet  and this led to the oscillations based on the 

pattern of the scan. 

 

 

 

Figure 3.18: Humidity set-up to maintain crystal hydration. 
 

Image depicts a series of bottles of water in a water bath set to 50 C. Gas is 
bubbled through these bottles and the resultant ‘wet’ He is introduced in the 

chamber with the goniometer head.  
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For recent experiments, to ensure uniform hydration across the silicon surface, the 

humidification chamber was re-built to allow for uniform humidification and 4 humidity 

sensors were installed (one at each corner of the chamber) which were closely monitored 

and their values recorded during data collection of each chip. In the first experiment, the 

incoming helium gas was bubbled through a network of bottles containing bubbling warm 

(50 C) water to ensure that the gas was as ‘wet’ as possible, which led to the “over-

humidification” and crystal swelling in the first experiments. In the optimized new setup 

used for the time-resolved experiments  the water temperature was set to 25C. Humidity 

sensors were installed at 4 check-points in the chamber  (flow-chart depicted in figure 

3.20), to ensure constant humidity at 98-99%. Any changes in these conditions would lead 

the crystals to dry out, shrink or swell and thereby and lose or decrease their diffractive 

capacity. The status of the humidity and gas flow in the hutch was monitored using a 

control panel (as seen in figure 3.20). This indicated if loose connections caused a 

disconnect in the path of the He gas through the network of bottles, temperature at every 

component of the humidity pathway and % humidity at the 4 humidity sensors that were 

installed in the He chamber was recorded.. If humidity detected by any of the sensors in 

the chamber was below 98 %, the controller would alert the user twith a “humidity is low 

alarm” so we could double check the components involved in the system.  

Better regulation of humidity certainly minimized the variations in unit-cell 

parameters that were previously seen, but slight fluctuations are still present. Further 

analysis of the miore than 250 000 patterns obtained from the time resolved fixed-target 

experiments would reveal how much of the data is suitable for data analysis and structure 

determination. By resolving these challenges in future investigations, fixed target 

approaches can become mainstream for sample delivery at XFELs. 
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3.4.4. Efficiency of fixed-target vs injection systems  

Depending on the hole size and distance between the holes, one chip may provide 

between 40 000 and  100,000 pores. Because of high loading density of crystals  that can 

be achieved and the very precise and synchronized movement of the stage with respect to 

X-ray pulses, hit-rates (fraction of X-ray pulses interacting with crystal) with Roadrunner2 

can approach 80 %, resulting in very efficient use of microcrystals. Thus, one successful 

chip can potentially yield enough patterns to solve the structure of the molecule under 

study. In comparison, liquid jets yield average hit-rates of 10 - 30 % which can go down to 

 

Figure 3.19: Humidity and Temperature controller 
 

The figure depicts a cartoon of all components involved in the humidity 
control. This was constantly monitored for optimal humidity when a chip 

loaded with PSII crystals was mounted in the chamber. Bottom left 
indicates the 4 sensors installed in the corners of the He chamber and if any 
of these detected less than 98 % humidity, an alert was highlighted (as seen 

bottom right).  
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0.1-5 % for crystals larger than 10 µm. Also, in order to maintain the stability of the jet, 

sample needs to be flown at a constant speed of approx..  10 m/second and most of the 

crystalline sample ends up being wasted.  

The amount of sample consumed by fixed target chips was an order of magnitude 

lower than injection systems because of the size of crystals and chip-holes were optimized, 

most crystals could be brought to interact with XFEL pulses. Setting up Roadrunner 

system and aligning the chip is complex and time consuming, but the rewards of the time 

invested both in sample preparation and data collection were reaped.   

3.5. Updates from data analysis 

As stated in chapter 2, SFX data are evaluated using special software packages 

(Cheetah and CrystFEL). The updated version of Cheetah efficiently performs hit-finding, 

frame sorting, identifies & integrates Bragg spots and prepares all selected frames for 

subsequent analysis (Barty et al., 2014). The improvements in the software packages has 

not only enhanced the percentage of patterns indexed, but has also impacted overall 

quality of data. Since each crystal diffraction pattern is a still image and thereby all 

reflections are “partials” and there is shot-to-shot variation in crystal size, crystal 

orientation as well as X-ray energy and intensity between pulses in SFX, ten-thousands of 

diffraction patterns are required for one time point in a TR-SFX experiment. One  key 

features of the Cheetah software is that, on each detector pixel (Hart 2012) in each image, 

background subtraction was performed prior to accurate Bragg peak characterization 

(Barty et al., 2014). As described in section 2.5.3, CrysttFEL was used for merging and 

scaling the data (White et.al., 2012).  
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3.5.1 Summary of data collected using injection vs fixed target approaches  

 

 

 

Figure 3.20: Schematic representation of patterns collected by SFX 
of PSII 

Plotted are indexed diffraction patterns obtained by injection and fixed target 
systems 

 
 

Month / 

Year 

Hits Indexed Excitation Strategy 

08 / 2008 -- -- 1 Flash, Laser not recorded 

01 / 2012 169,626 58,962 (34.7%) Dark, 1 Flash and 2 Flash 

alternate, 2 Flash 06 / 2012 53,614 19,681 (36.7%) Dark, 3 Flash alternate (210, 

570, 250) 11 / 2014 59,798 22,812 (38.1%) 1 Flash alternate 

10 / 2015 94,958 35,257 (37.1%) Dark, 2 Flash and 3 Flash 

alternate 08 / 2016 76,565 59,700 (77.9%) Dark, 3 Flash alternate 

11 / 2016 744,404 621,303 

(83.5%) 

(83.5%) 

Dark 

09 / 2017 863,112 485,875 

(56.3%) 

Dark, 3 Flash 

Table 3.4: The table enumerates data collected at PSII beam-times at 
LCLS.  

The final two rows highlighted in grey are experiments performed by fixed 
target delivery system. All previous experiments used GDVN injection 

systems. 
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Liquid injection systems were perfectly suited for LCLS’s high repetition rate of 

120 Hz. With Roadrunner2, the ability to utilize all pulses of the XFEL was extended to 

fixed-target systems (Roedig et al., 2015). Table 3.3 and fig 3.21 summarize results of SFX 

performed with PSII. But the dramatic increase in number of indexed patterns had so far 

limited benefits since the unit cell dimensions were not constant. This was seen with 

samples of various protein crystals and it is a severe current limitation of the fixed target  

sample delivery technique. Attempts to interpret the collected data are underway, which 

include subdividing the data sets based on the unit cell dimensions as a basis for evaluation 

of the  time-resolved experiments but the groundwork for all components involved in the 

experiment has been laid.  

 

3.5.2. Improved resolution  

 

Figure 3.21: Electron density of pheophytin of PSII to 3.3 A 
 

Improved resolution in diffraction contributes to better definition in 
electron density that can be seen at the tail and as the lack of density at 

the center of pheophytin. 
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As discussed in section 3.2, microseeding was attempted for growing homogenous 

15-20 µm crystals. The enhanced size of the micro-crystals, greatly improved the quality 

of data reported in Chapter 2. Currently, the electron density from contributing Bragg 

reflections extends up to 3.3 A (fig 3.22). 

 

3.5.3. Extending resolution beyond Bragg limit 

Kupitz and Basu et.al. (2014) presents notable progress in understanding the 

mechanism of S-state transition, where the dark state structure of PSII was solved to 5 A 

and two-flash S3 state was solved at 5.5 A. In order to improve upon the results, near-

 

Figure 3.22: Diffraction pattern of PSII microcrystals shows 
strong diffused scattering. 

SFX of 15-20 µm PSII crystals shows Bragg peaks restricted well 
within the water ring, but diffused scattering is seen at higher 

resolution.  
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atomic resolution structures of (1.5 -2 A) of intermediate states are necessary to visualize 

O=O bond formation and changes in the OEC. But for large membrane protein complexes 

like PSII, it is extremely challenging to grow well-diffracting crystals.  

Upon close observation of the data collected on 15-20 µm crystals, it was 

discovered that while the Bragg diffraction was cutoff in the medium resolution range of 

4-5 A, the patterns contained coherent diffused scattering streaks that extended well 

beyond the Bragg peaks, as seen in figure 3.23. These continuously modulated diffraction 

intensities can be utilized to improve the structure solved by simply considering the Bragg 

reflections. 

The defining aspect of a crystal is translational symmetry, i.e. regularity over a long 

range of order which results in the constructive interference of the waves diffracted from 

each molecule into narrow Bragg peaks. If one of the molecules that makes up the 

structural units of a crystal is slightly displaced from the ideal lattice by an amount s, the 

phase of the diffracted wave from this unit is changed by 2ps/d at the scattering angle of 

2q, where d is the resolution (Ayyer et.al., 2016). For random displacement s of all 

molecules along a given co-ordinate, and if q indicated 1/d,  Bragg intensities would 

diminish according to the Debye-Waller factor i.e. exp(-4p2q2s2) (Borie 1965). In such a 

condition, while the Bragg peaks are lost, an incoherent sum of the molecular Fraunhofer 

diffraction of individual molecules arises to compensate for the energy of Bragg peaks as 

shown in figure 3.24.   

The observation of this phenomenon has implications as it gives access to the 

single molecule diffraction pattern modulated by the space group packing of the molecules 

in the unit cell. This continuous diffraction allows high sampling of reciprocal space, 

avoiding the phase problem experienced in Bragg diffraction. By using iterative phasing 

algorithms (Miao et.al., 1999) (Chapman et al., 2006) of coherent diffractive imaging and 
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aligned molecule diffraction, continuous diffused scattering (created by translational 

displacement of molecules) can be used to obtain a real-space image of the molecule 

beyond the Bragg limit (Ayyer et al., 2016).  

The details steps for utilizing diffused scattering to improve the resolution of the 

resultant structure of PSII are discussed in Ayyer et.al., 2016. Essentially, the Bragg and 

continuous diffraction were treated as two distinct sources of data for the same structure. 

Starting with a known model of PSII, electron density was generated map was generated 

by molecular replacement to 4.5 A by using the Bragg peaks. This map was then used to 

 

Figure 3.23: Diffraction depends on translational correlation 
between individual units 

 
Image from Chapman and Fromme (2017) describes how the lattice order 

can contribute to continuous diffraction. The requirement is that the 
ensemble needs to be of identical objects that are in the same orientation. a) 
a gas of aligned objects gives rise to the incoherent sum of their molecular 

transforms, b) a crystal with slight translational disorder consists of both the 
Bragg peaks to a lower resolution and single molecule diffraction to higher 

resolutions, c) Periodic array of scattering molecules in perfect crystals 
produces coherent spots. 

 

 



  117 

generate a low-resolution binary mask of the smoothed molecular envelop of single PSII 

dimer, which can generate a 3D image of electron density by iterative phasing of the 

continuous diffraction.  Iterative phasing of the continuous diffraction data from 4.5–3.3 

A was then performed on the collected continuous diffraction data using the difference-

map algorithm (Elser, 2003) and constrained by the 4.5 A support.  

After the phasing converged, the phases and amplitudes from the combined 

diffraction sphere were Fourier transformed to produce a 3.3 Å structure. Through 

averaging of multiple random starts, a self-consistent electron density to 3.5 Å was 

achieved and validated by Fourier shell correlation and the phase retrieval transfer 

function (Shapiro et al., 2005). Further refinement of this structure was performed using 

a pseudo-crystallographic method (Fischer et al., 2015). Resultant significant 

improvement in resolution following the incorporation of continuous data can be seen in 

figure 3.25. Helices show a much better definition of side-chains and the co-factors are 

also visualized to a greater extent with better fit between the electron density and the 

structural model generated. 

Data collected at XFEL generated by ultrashort coherent pulses do not contain 

dynamic disorder among the molecules and hence, only the static disorder (that 

contributes to continuous diffraction) is captured. The restricted Bragg resolution in the 

PSII microcrystals is caused by intrinsic disorder that maybe caused by weak crystal 

contacts or thermal motions within the crystals, leading to translational disorder of the 

position of PSII molecules in the crystals. While the translational disorder is an intrinsic 

feature of the PSII crystals , which is independent from the size of the crystals,  small 

crystals have lower growth based disorder like mosaicity and this permits the diffused 

scattering to be evaluated much more precise than when data are collected from larger 

crystals at Synchrotron sources where high mosaicity leads to a broadening of the diffuse 
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scattering. Thereby SFX at XFELs is ideally suited to take benefit of the random small 

translational displacement that can be evaluated by the technique described above 

(Chapman and Fromme, 2017).  

 

Figure 3.24: Electron density maps of regions of PSII 
 

Described here are selections showing improvement between structures from 
Bragg data only (green, left), from the diffraction sphere including continuous 

diffraction and Bragg derived scaffolding (blue, center) and post pseudo-
crystallographic refinement (orange, right). s indicates the contour value of 

the electron density map. a) and b) show the Non-heme iron coordinated by 2 
His residues from D1 (chain A) and 2 from D2 (chain D) contoured at 1.5 and 

4 s; c) Part of an a-helix (chain T) shows better fit of the side chains in the 
density; d) Helices of chains Y and Z show more details and better agreement 

to the model at increased resolution when continuous diffraction is 
considered; e) Detailed view of a section of chain Z depicts that using only the 
Bragg diffraction, no electron density is visible around the side chains of Trp, 
Lys and Arg, but the model fits better into the map when using the continuous 

diffraction. Image from Ayyer et.al., 2016. 
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Using micro-seeds for growing 15-20 µm crystals contributed to significant improvement 

in diffraction quality of crystals as explained in section 3.5.2. In addition, strong 

continuous diffused scattering is seen beyond the Bragg peaks and this can be utilized to 

further improve the structure. Using micro-seeds for growing 15-20 µm crystals 

contributed to significant improvement in diffraction quality of crystals as explained in 

section 3.5.2. In addition, strong continuous diffused scattering is seen beyond the Bragg 

peaks and this can be utilized to further improve the structure. 

Optimization of conditions in all aspects of the experiment have greatly 

contributed in overall improvement of data quality. PSI flat-panel bioreactors are built for 

uniform exposure to the growing cell culture. The resulting culture is robust and provides 

 

Figure 3.25: Continuous diffraction data collected in PSII 
microcrystals. 

 
Shows an YZ slice through 3D merge of experimental continuous diffraction 
data-set and b) is the simulation of the diffraction pattern obtained from a 

single PSII molecule. Highlighted are the similarities seen in the features of 
both images. Resolution rings correspond to 3.5 and 2.5 A, indicating that in a) 

when diffused scattering data is incorporated along with Bragg reflections, 
resolution can be greatly improved to 2.5 A. 
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consistent protein preparations. Decreasing the concentration of detergent for membrane 

extraction was a remarkable change. Over-solubilization by prolonged exposure to high 

concentration of detergent can damage exposed sub-units of the protein. Since these are 

not involved in the crystal contacts, precipitation and crystallization can continue, but the 

quality of crystals is inferior as shown by diffraction data in Table 3.2.   

Free-interface diffusion was optimized for growing 1-5 µm sized crystals. But 

growing larger 15-20 µm crystals needed controlled environments. Since a large amount 

of sample is required for SFX, batch method was extensively perfected using 50 mL falcon 

tubes. Technique of microseeding was established using crushed PSII crystals to grow 

sharp crystals for all PSII preparations. The activity of these crystals was texted using a 

clark-based microcell. Maximum O2 evolution was seen in the presence of PPBQ and FeCN 

and the crystals continue to oscillate through the S-cycle for more than a 100 light pulses, 

confirming the PSII activity at room temperature for SFX studies.  

TR-SFX was performed on PSII at the MFX hutch of LCLS using Roadrunner 

goniometer system. Although the fixed target approach needs 1/10th of the fraction of the 

sample needed and provides more diffraction patterns, oscillations in the unit cell 

dimensions are seen. This challenge needs to be resolved but for now, Roadrunner system 

is promising for samples with limited amount of crystals that are not compatible with 

viscous medium. Bragg peaks of the data collected resulted in a dark structure of PSII 

solved to 3.3 A. But continuous diffraction extends to the edge of the detector and when 

combined with the Bragg data can result in improvement of the structure up to 2 A. 

Photosystem II continues to fascinate researchers and the mechanism of oxidation 

of water is highly sought after using many techniques. By using TR-SFX, structural details 

upon light excitation are being explored and a high resolution structure of active PSII can 

resolve the conflicting theories proposed by enthusiasts of photosynthesis.  
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CHAPTER 4 

HIGH RESOLUTION STRUCTURE OF PHOTOSYSTEM I TO 2 A 

 

Photosystem I (PSI) is a large membrane protein ligand complex which is central 

for oxygenic photosynthesis. PSI primarily functions as a Type I Reaction Center (RC) to 

convert light energy into chemical energy. As described in Chapter 1., PSI is responsible 

for the light-induced charge-separation that transfers an electron from the luminal side 

(from plastocyanin) to the stromal side (to ferredoxin i.e. Fd) of the thylakoid membrane. 

This electron-transfer catalyzed by PSI provides the very negative redox potential for the 

 

 
 

Figure 4.1: Z-scheme of Photosynthesis 
 

Energetic representation of photo-initiated energy transfer through the thylakoid 
membrane in oxygenic photosynthesis. From oxidation of water at PSII to 

reduction of NADP+, the electron travels an energetically downhill pathway 
through a series of proteins and cofactors. This is powered by the photon 

absorption events at the reaction centers PSII (P680) and PSI (P700). Image 
from Govindjee and Wilbert Veit (2010) 
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reduction of NADP+ and H+ to NADPH, that further contributes the reduced hydrogen for 

the photosynthetic dark reactions.  

Upstream from PSI, Photosystem II (PSII) can utilize light up to λ=680 nm for 

charge separation and for electron transfer reactions in PSI, this limit is at λ=700 nm. 

These different limits of providing efficient energy for charge separation were crucial for 

the discovery of two distinct photosystems and are described as Emerson enhancement. 

The organization and orientation of photosynthetic protein complexes in the thylakoid 

membrane has been depicted in Figure 1.2. Upon photo-excitation, the linear electron 

transport of oxygenic photosynthesis progresses by the electron transfer from PSII via 

cytochrome b6/f complex to PSI and this is represented by the so called Z-scheme (Figure 

4.1) of oxygenic photosynthesis.  

 

4.1. Structure of Photosystem I 

4.1.1. Components of PSI 

Cyanobacterial PSI is a trimer of heterodimers (1056 kDa) (Figure 4.2) where, each 

monomer is made of 12 protein subunits and 127 non-covalently bound cofactors. The 

composition of these cofactors per monomer is described as 96 chlorophyll molecules, 22 

carotenoid molecules, 3 4Fe-4S clusters (FX, FA, FB), 4 lipid molecules, 2 phylloquinone 

molecules and 1 Ca2+ ion (Jordan et al., 2001). The diameter is approximately 200 Å with 

a stromal hump that extends out of the thylakoid membrane by 40 Å.  

The large heterodimer at the center of the PSI molecule is formed by protein 

subunits PsaA and PsaB, which act as a joint RC and core antenna complex. Both subunits 

have 11 transmembrane helices and together they co-ordinate 79 of the 96 antenna 

chlorophylls. Most of the carotenoids also show hydrophobic interaction with PsaA or 
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PsaB (Jordan et al., 2001). With respect to the electron transport chain, PsaA and PsaB 

also co-ordinate majority of the co-factors, containing P700, the electron acceptors A, A0, 

A1, and the first 4Fe-4S cluster Fx as depicted in Figure 4.3.  

The core subunits of PsaA and PsaB are surrounded by 7 smaller protein subunits 

in the membrane: PsaF, PsaI, PsaJ, PsaK, PsaL, PsaM and PsaX. Of these, PsaI, PsaL and 

PsaM are involved in the trimerization, whereas PsaF, PsaJ, PsaK and PsaX interact with 

the membrane and are located towards the periphery of the monomer. The stromal hump 

of PSI comprises of PsaC, PsaD and PsaE subunits. While PsaC contains the 4Fe-4S 

clusters FA and FB, PsaD has been shown to be necessary for the stable assembly of PsaC 

 

Figure 4.2: Structural overview of PSI 
 

Cyanobacterial trimer of PSI as viewed normal to the thylakoid 
membrane from the stromal side. The structure was solved to 2.5 A 

resolution (PDB: 1JB0) (Jordan et.al., 2001). 
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and PsaE for docking Fd molecules (Kubota-Kawai et al., 2018) and PsaD along with PsaA 

has been reported to interact with phycobilisomes for excitation energy transfer.   

 

4.1.2. The electron transfer chain of PSI 

The electron transfer chain of PSI (described in Figure 4.4) consists of 6 

chlorophyll molecules, 2 phylloquinones and 3 4Fe-4S clusters. The chlorophylls 

associated with PsaA and PsaB loosely follow the pseudo-C2 symmetry exhibited by the 

 
 

Figure 4.3: Proteins and cofactors in PSI 
 

View of PSI parallel to the membrane plane. Depicted in the image 
antennae chlorophyll molecules (green) among the transmembrane 
helices, subunits in the stromal hump (PsaE, PsaC and PsaD) and 

4Fe-4S clusters associated with the hum (red and yellow). Image from 
Fromme 2008. 
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protein subunits and have an average center to center distance of 9.9 Å within this network 

(Jordan et al., 2001). This allows for strong excitonic coupling and efficient Förster energy 

transfer and helps explain the extremely high quantum efficiency for the excitation energy 

transfer and trapping (99%) found in PSI. Upon absorption of light, the energy is funneled 

from this antenna system to the primary donor in PSI, P700.  

In 1JB0, P700 was identified to be a heterodimer of chlorophyll a and chlorophyll a’ 

(Jordan et al., 2001), the so-called ‘special pair’, arranged perpendicular to each other with 

a resulting π-stacked coupling. Once the light energy reaches it, a strongly reducing excited 

state (P700*) is formed which initiates charge separation to become P700+. Illustrated in 

 
Figure 4.4: Apparatus for electron transport in PSI 

 
Schematic representation showing the general positions and cofactors 

involved in the electron transport chain of PSI (Jordan et.al., 2001). P700 
is a heterodimer of one chlorophyll a molecule and another chlorophyll 
a’ molecule. A and A0 are chlorophyll a molecules, A1 are phylloquinone 

molecules and Fx, FA, FB are 4Fe-4S clusters. Image has been edited 
from Photosynthetic protein complexes: A structural approach by Kraub 
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Figure 4.4, the electron transfer pathway within PSI can proceed along two different paths, 

the so-called A- and B- branches corresponding to cofactors mainly bound by PsaA and 

PsaB respectively. On both sides, these branches consist of two chlorophyll a molecules 

followed by a phylloquinone at which point the paths merge at Fx. Fx is the first of the three 

iron-sulfur clusters in PSI and it lies along the membrane-normal pseudo-C2 axis between 

PsaA and PsaB. It is the only membrane intrinsic 4Fe-4S cluster as the two downstream 

clusters, FA and FB, both reside in the stromal hump, coordinated by PsaC. 

The chlorophylls most proximal to P700, termed A, partner with P700 to form the 

charge separated state P700+/A-. There is even evidence to support the charge separation 

initiating at A (Muller et al., 2010). Consecutive reduction then proceeds to A0, another 

chlorophyll, followed by A1, a phylloquinone. Though both A- and B-branches are active, 

they have very different rates in electron transfer with the A-branch showing a much 

slower (~200 ns) electron transfer from A1 to Fx than in the B-branch (~10 ns) (Guergova-

Kuras et al., 2001). Fx is coordinated by four cysteine residues (very common in natural 

iron-sulfur clusters) in PsaB that are strictly conserved. 

 

4.1.3. PSI and Ferredoxin  

Ultimately, Fd is the terminal acceptor for PSI, unless for Fe-deplete conditions, 

flavidoxin is known to replace Fd. Based on the charge-density map studies of PSI, the 

binding pocket proposed was close to the terminal 4Fe-4S cluster, FB. Based on further 

analysis by mutagenesis, all subunits of the stromal hump PsaC, PsaD and PsaE were 

hypothesized to be involved with Fd docking (Fischer, 1998).  

Interestingly, in spinach, the redox potentials from FA and FB were reported as -

540 mV and -590 mV respectively. This suggests that the transfer from FA to FB is 

energetically uphill and that is a disparity with all previous steps in the transport chain 
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(Brettel, 1997). This suggests that, in the absence of an acceptor, the electron would favor 

localization at FA. Upon Fd binding, the changes in the chemical environment favor the 

electron transport. This mechanism would avoid creation of reactive superoxide, since FB 

is closer to the exposed surface when compared to FA that is buried deeper towards the 

membrane (Grotjohann and Fromme, 2005). 

 

4.1.4. Co-factors of PSI 

As described in Section 4.1.2., the electron transfer takes place at the RC at the 

center of the protein complex. The role of antenna chlorophylls is to capture light and 

transfer the excitation energy to the P700 reaction center where charge separation takes 

place. The arrangement of antenna chlorophylls (shown in green in Figure 4.5) in PSI is 

such that each chlorophyll has several neighbors and the center-to-center radius is less 

than 15 A, so energy can be efficiently transferred to the center of the complex via multiple 

pathways.  

PSI also has chlorophyll molecules that absorb at l > 700 nm, called ‘red’ or ‘long-

wavelength’ chlorophylls. The reasons for red shift of the chlorophyll’s absorption maybe: 

strong excitonic coupling with neighboring chlorophylls, interaction with protein residues 

leading to the variation in the fifth ligand of the Mg2+ or the influence of the protein’s 

electrostatic field.  These pigments contribute by increasing the spectral width of the light 

absorbed by PSI or by funneling the excitation energy to the center of the complex. The 

location and function of these specialized chlorophylls is under investigation but their 

knowledge would explain the mechanisms involved in evolution or adaptation of 

cyanobacteria for trapping solar energy.  

Carotenoids absorb energy in a spectral region complementary to that of 

chlorophylls, and thus, act like accessory pigments. Also, they are necessary for structural 
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assembly and stabilization of the entire pigment-protein complex (Wang et al., 

n.d.)(2004). Most importantly, the 22 carotenoids in PSI fulfill a specific function of 

photo-protection, where they quench the excited triplet state of chlorophyll, preventing 

singlet oxygen generation and eventually, photo-oxidative damage. The carotenoid triplet 

state generated during the quenching process is lower in energy and hence, does not 

contribute in radical generation. They simply return to their ground state by dissipating 

the excess energy as heat.  

In the co-factor assembly of PSI (Figure 4.5), 4 lipid molecules have been assigned. 

3 of these are molecules of phosphatidyl-glycerol (PG) and 1 is mono-galactosyl-diacyl-

 

Figure: 4.5: Co-factors in the PSI monomer,  
as viewed from the stromal side.  

 
Transmembrane helices are depicted as cylinders and all loops have 

been omitted. The 6 chlorophylls and 2 phylloquinones of the electron 
transport chain are centrally localted and labeled in blue, 90 

chlorophylls of the core antenna are green, 22 caroteinoids are light 
grey and 4 lipid molecules are colored dark grey.  
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glycerol (MDGD). 2 of these lipid molecules (seen in Figure 4.5 near helices K and J of 

subunit PsaA and PsaB), are closely associated with the electron transport chain and are 

hypothesized to stabilize the structure. In Synechocystis sp. mutants, it was proven that 

PG is essential for photoautotrophic growth (Domonkos, 2004). Also, the reason for the 

difference in rates of electron transfer between the two branches is not understood and 

the lipids may play a role in that. 2 other PG molecules are localized at the periphery of 

the molecule, one at the membrane exposed surface (associated with PsaX) and might be 

stabilizing this subunit; The other PG molecule is seen at the monomer-monomer 

interface, associated with the chlorophyll PL1. In this case, PG is proposed to assist with 

excitation energy transfer or with oligomerization. 

 

4.2. Motivation 

The structure of PSI provided the basis for structure based understanding of 

excitation migration in light harvesting system of the core antenna of PSI (Şener et al., 

2004). The first determination of position and orientation of the chlorophylls in the 

network of chlorophyll antenna molecules in PSI enabled calculations of potential 

connectivity and rates of excitation transfer between individual chlorophyll molecules 

(details discussed in Section 4.6.2.). Yet, the precise dynamics of excitation transfer in PSI 

are not fully understood and this is an active field of study (Konrad et al., 2014). 

The questions: why PSI in cyanobacteria is a trimer and what is the advantage for 

oligomerization of monomers, have been of interest to the scientific community. In the 

first high resolution structure of PSI (Jordan et al., 2001) a trimeric form has been 

described (Fromme et al., 2001) and the trimeric form of PSI has also been studied in most 

classes of cyanobacteria. But over the last few years, two other prominent oligomerization 
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states have emerged. PSI in pea plants is a monomeric PSI-LHCI supercomplex that 

consist of 12 core subunits and 4 light-harvesting proteins in the LHCI antenna complex, 

156 chlorophylls, 32 carotenes and 14 lipids have been found to be associated with this 

monomeric structure (Mazor et al., 2015). PSI in dimeric and tetrameric forms had been 

reported in cyanobacteria Anabena (Watanabe et al., 2011), and a medium resolution 

structure of tetramer from another cyanobacteria Chroococcidiopsis sp was solved using 

cryo-electron microscopy to 6.1 A (Li et al., 2014). The explanations for these 

 

Figure 4.6: Representative forms of PSI in nature 
 

Structures of a) monomeric PSI-LHCI supercomplex from Pisum sativum 
from Mazor et.al., 2015; b) PSI trimer from T. elongatus from Jordan et.al. 

2001 and c) The dimer of dimers i.e. tetrameric PSI isolated from 
cyanobacterial Chroococcidiopsis sp. from Semchonok & Li et.al 2016. The 
subunits of all three complexes are highlighted in different colors. The T1 

and T2 in c) indicate the two kinds of interfaces between the dimers. 
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oligomerization states and their evolutionary implications remain unclear. Representative 

structures of all three forms of PSI have been described in Figure 4.6.  

On the same lines, the subtle differences and interconnectivity between individual 

monomers in PSI is also matter of much interest. Asymmetric unit of a crystallographic 

space group is a smallest possible closed part of space, that can be repeated to fill the entire 

lattice using symmetry operations of the specific space group. For 1JB0, the 

crystallographic space group was assigned as P63 . This hexagonal order indicates higher 

order of symmetry and the 3 fold trimeric axis was one of the crystallographic axes. 

According to Matthews coefficient (Matthews 1968; Rupp 2003), only the PSI monomer 

was seen in the asymmetric unit and eventually the structure solved was that of a single 

monomer. Since PSI is known to be a trimer, all structural details of the monomer were 

simply triplicated for all intents and purposes. This may have simplified data processing, 

but differences among the monomers cannot be visualized in such a dataset. Collecting 

more data at various orientations and solving the structure with lower symmetry 

operations, would enable the entire trimer to be in the asymmetric unit and thereby, 

differences among the monomers can be visualized.  

At higher resolution, the interconnecting subunits would also be better defined to 

understand monomer-to-monomer interaction. Additionally, the number and network of 

carotenes largely varies among the known structures. Further exploration is needed to 

understand if this plays a role in efficiency for photo-protection during light stress or 

transmission of harvested light. Finally, even with several structural models of PSI, a few 

aspects of the light harvesting and charge separation function remain unclear i.e. what is 

the role of the red antenna chlorophylls and why it varies between species, whether charge 

separation is unidirectional or bidirectional, how activity of one monomer affects the 

other, changes in protein-complex and its environment based on light changes etc. An 
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updated, higher resolution model of PSI would aid towards understanding these key 

evolutionary and functional aspects. 

 

4.3. Isolation and purification of PSI 

PSI was purified as previously described (Fromme and Witt, 1998) with 

modifications. T. elongatus cell growth has been discussed in Section 3.1.1. During their 

log phase at a cell density of 0.6 O.D. at 750 nm, the cells were were spun down for 10 

min at 7000 g and stored frozen in the form of 20 – 30 gram pellets at – 80 C without 

any cryo protecting agents as cells do not survive incubation with cryo-protectants. 

 

 
4.3.1. Preparation of thylakoid membranes  

For isolating the membranes, T. elongatus cells (20 – 30 g) were resuspended by 

vigorous shaking in warm cell suspension  buffer (20 mM MES at pH 6.4, 10 mM CaCl2, 

10 mM MgCl2). The cell suspension was then centrifuged at 7,400 g for 10 min using a 

fixed angle rotor (SLA-1500, Beckman Coulter), with a Sorvall RC-3C Plus centrifuge 

(Beckman Coulter) at 24 C. The cell pellet obtained was gently resuspended in lysis buffer 

(20 mM MES pH 6.4, 10 mM CaCl2, 10 mM MgCl2, 500 mM D-mannitol) to obtain a dense 

homogenous suspension. Protease inhibition upon cell lysis was prevented by adding 

PMSF (phenylmethylsulfonyl fluoride) dissolved in Dimethyl Sulfoxide at the desired final 

concentration of 0.5 mM. 

The dense cell suspension was passed through a 16-32 mesh wire sieve to separate 

non-homogenized pellet chunks and gently poured into the glass reservoir of the 

microfluidizer (Microfluidics Model M-110 L) for cell breakage. The principle for lysis 

using a fluidizer is forcing the suspension through a narrow channel, under tremendous 
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pressure which would induce a large shearing force that would effectively break the cell 

wall and cell membrane without the need for pre-incubation of the cells with lysozyme, 

which had previously been used to break down the cell walls of the T. elongatus cells before 

lysis. The standing pressure for such lysis was optimized to be 12 kpsi for breaking on T. 

elongatus cells.   

Three wash steps were performed to eliminate membrane associated and 

cytoplasmic proteins. The recovered thylakoid membrane pellet was kept chilled during 

the wash steps which were cycles of centrifuging the membrane suspension at 18,270 g for 

10 min at 4 C, isolating the pellet, homogenously resuspending in wash buffer followed by 

another centrifugation step. The first supernatant was frozen at -80C, which could be used 

for isolation of the phycobillisomes as described in Fromme et.al., IUCrJ, 2015. 

 

4.3.2. Membrane solubilization 

The washed thylakoid pellet was resuspended in minimum volume of wash buffer 

and the chlorophyll concentration was  very accurately determined. For this, 3 µL sample 

was added to 1 mL 80 % acetone solution. Upon contact with acetone, the proteins are 

denatured by vigorously mixing it using a vortex and pigment molecules were extracted. 

The 400 – 800 nm absorbance spectrum of the pigment extract is recorded using a UV-

VIS spectrophotometer (DU 800 Beckman Coulter) and the absorbance at 664 nm and 

710 nm were utilized for calculating the concentration of chlorophyll using Beer – 

Lambert’s law with a molar extinction coefficient of Chl a in acetone of 76780 (Porra et al., 

1989). 

The Chl concentration of thylakoid suspension obtained was adjusted to 1.5 mM 

chlorophyll using wash buffer. For membrane protein solubilization, detergent solution 

was added to isolated membranes at concentrations much higher than the detergent’s 
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critical micellar concentration (CMC). These excess detergent molecules would act by 

displacing constituents of the lipid bilayer, thereby extracting the intact protein complexes  

into solution enclosed by a detergent micelle. The detergent of choice was b-dodecyl 

maltoside (DDM) for its long chained tail (12 carbon) and gentle nonionic maltose head 

group (as depicted in Figure 4.7). The CMC for b-DDM is at 0.01 %, but for the purpose of 

protein solubilization, 1% stock solution was gently added to the prepared membranes 

while the solution was stirring. The final optimized conditions for this step were 

membranes at 0.75 mM chlorophyll concentration with 0.5 % b-DDM.  

The suspension  was permitted to incubate for an hour at room temperature while 

keeping it light tight. The recovered suspension was centrifuged at 50,000 rpm (184,000 

g) using a Ti 70 rotor under vacuum at 4 C using an Optima – 100K centrifuge (Beckman 

Coulter catalogue # 393253) for 90 min. This permitted the cell debris and unsolubilized 

membranes to form a pellet and extracted protein-detergent micelles were recovered in 

the supernatant.  

 

 

Figure 4.7: Structure of b-dodecyl maltoside 
 

For a membrane protein molecule isolated in a detergent micelle, the 
transmembrane helices are stabilized by the detergent tail. As a result, the 

hydrophilic head group orients itself towards the solvent, thus ‘solubilizing’ 
the membrane protein. 
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4.3.3. Anion exchange chromatography 

The PSI trimers were concentrated in the lowest 30% of the supernatant on top of 

the pellet that was obtained from the ultracentrifugation step. For further purification, 

2/3rd of the supernatant was discarded since it contained PSI monomers and PSII 

molecules and the remaining solution was gently poured into a graduated cylinder to 

measure volume of the sample. This recovered membrane extract was filtered using a 0.2 

µm syringe filter and its chlorophyll concentration was measured as described in section 

4.2.2.  

Anion-exchange chromatography was performed for purification of PSI trimers 

using an empty column (XK 50/60, GR Healthcare, Cat # 28-9889) (inner tube length 60 

cm, diameter 5 cm ). The column was packed with TOYOPEARL DEAE-650M (Tosoh 

Bioscience, Cat # 07974) that is a weak anion exchanger. The effective volume contained 

in the resin slurry (void volume) was ~1100 mL. As preparation for purification, columns 

were packed using high salt buffer (20 mM MES pH 6.4, 150 mM MgSO4, 0.02% b-DDM) 

at twice the flow-rate used for purification (i.e. packing flow-rate was 50 mL/min, running 

flow-rate was 25 mL/min). This was based on resin manufactures instruction to ensure 

homogenous packing and uniform conditions of pressure and flow throughout the column 

during purification.  

Prior to chromatography, the columns were chilled to 4 C using a cooler connected 

to the column jacket. The packed resin was first washed with 100 % high salt buffer B (20 

mM MES pH 6.4, 150 mM MgSO4, 0.02% b-DDM) to remove any bound molecules. 

Following the wash step, the column was  equilibrated with 30 % buffer B (20 mM MES 

pH 6.4, 45 mM MgSO4, 0.02% b-DDM), for 2 column volumes (~2250 mL) till 

conductivity of the flow-through was stabilized. The centrifuged extract was portioned out 

such that only 50 µmoles of chlorophyll was being applied to each column run for good 



  140 

separation of all components. Since PSI trimers bind very strongly to the resin, all other 

proteins were washed at 20 mM MES pH 6.4, 100 mM MgSO4, 0.02% b-DDM, at constant 

flow rate of 25 mL/min. A band of bound PSI was obtained before eluting the protein using 

100 % buffer B (20 mM MES pH 6.4, 150 mM MgSO4, 0.02% b-DDM). 

 

4.3.4. Crystallization by ultrafiltration as the final purification step 

The fractions of PSI trimer peak  were pooled and concentrated using a 400 mL 

Millipore stirred cell concentrator (EMD Millipore Catalogue # 5122). The ultrafiltration 

membrane used was of 100 kDa cutoff (Pall Life Sciences, Part # OM100076) and was pre-

soaked in water at 4 C. The assembled ultrafiltration unit with purified PSI was placed on 

a stirring plate at 4 C in dim green light and permitted to concentrate at less than 10 psi 

 

Figure 4.8: Chromatogram for PSI purification. 
 

Green line indicates % Buffer B, orange is for conductivity of the flow-through 
and blue is the read-out of the in-built spectrometer at 280 nm. Loosely 

bound PSII dimers and PSI monomers are separated during the wash step 
and the right major peak is the eluted PSI trimers at 150 mM MgSO4  
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applied to the set-up using compressed Argon. This gentle pressure would ensure that the 

eluting high salt buffer is filtered through the membrane. The set-up was monitored to 

ensure that the membrane is not permitted to run dry, making the protein forming of 

aggregates. 

 

Once the sample volume is concentrated to about 10 mL, the volume of the sample 

is measured  using a pipette and chlorophyll concentration is determined . In the case of 

PSI, crystallization is carried out by lowering the ionic strength which reduced the protein 

solubility. As salt concentration is decreased, the surface of the protein is depleted of 

counter ions, which allows direct crystal contacts to be formed between positively charged 

groups of molecule A with negative groups of molecule B. Crystallization at low ionic 

strength is thereby mediated by increase of IONIC interaction, in contrast to 

 

Figure 4.9: Parts of a Millipore ultrafiltration  
stirring cell. 

 
This set-up is used for concentrating purified PSI and for 

desalting because of its gentle concentrating feature that can 
be easily adjusted by decreasing the gas-pressure applied or 

stirring speed of the magnetic stir-bar. 
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crystallization at high ionic strength where hydrophobic interactions are increased. For 

the final purification step, the concentrated protein was desalted using crystallization 

buffer (5 mM MES pH 6.4, 0.02% b-DDM) to dilute the concentrated solution to the 

desired salt concentration. Since the starting solution had 150 mM MgSO4 and final 

desired salt concentration is 6 mM MgSO4, by using the relationship between molarity and 

concentration and estimated initial volume of protein sample, the required amount of 

crystallization buffer required to be added was calculated. The dilution has to be done 

dropwise to hinder formation of amorphous precipitate.  

The diluted solution was permitted to gently concentrate again using the Millipore 

stirring cell at 4 C. Crystallites formed and grew in the solution and eventually settled as a 

mat on the filtration membrane, obstructing the buffer to freely pass through and the rate 

of filtration slowed down. When the volume reached about 10 mL, stirring was stopped, 

pressure was released and crystallites were permitted to further grow  for 12 hours.  

 

4.3.5. Sedimentation to segregate crystallites 

At this stage, the purified PSI sample is a mixture of crystals ranging from 1 -  250 

microns in size. The bigger crystals are usually microcrystals grown into each other and 

need controlled recrystallization. On the other hand, the micron sized small crystals are 

perfect for experiments at an XFEL. So, the crystals were separated by sedimentation. 

Using a small amount of crystallization buffer, all the crystallites are harvested 

from the ultrafiltration membrane into a 15 mL falcon tube. If crystals were stuck to the 

stirring set-up, they were gently washed off using a 1 mL micro-pipette. The harvested 

crystals were portioned out in 500 µL aliquots in 1.5 mL reaction tubes and allowed to 

settle for 10 minutes.  
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After the incubation, the dark supernatant was separated into fresh reaction  tubes 

and permitted to settle, this time for 20 minutes. The pellet obtained from the first settling 

step was combined and additional crystallization buffer was added to ensure the crystals 

are well hydrated. 

After the second sedimentation step, the supernatant started losing its blackish-

green color, since the bigger crystals had settled into the pellet. The supernatant thus 

obtained was separated into fresh reaction tubes again and pellets were combined with 

extra crystallization buffer. An image of crystallites separated in the second sedimentation 

step of 20 minutes is included as Figure 4.4. Crystals seen were up to 20 µm in size. 

 
 

Figure 4.10: Optical microscopic image of PSI micro-crystals. 
 

During sedimentation, crystals are segregated by size. This image is a 
representation of crystallites that sediment in 20 minutes by gravity at 4C. 
The green background of the image is due to the presence of a green screen 

and not free PSI protein.   
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The following third and fourth sedimentation steps were performed for 30 and 40 

minutes respectively and the final supernatant obtained was devoid of any color i.e. free 

PSI protein or crystals. The crystal pellets obtained from the third and fourth 

sedimentation steps were ranging from 1 – 5 µm in size for the 30 min settling step and 

sub micrometer for the 40 min settling step and were found to be directly suitable for 

nano-crystallography (Chapman et al., 2011). 

 

4.4. Crystallization of PSI  

For decades, X-Ray crystallography has been employed to understand the large 

membrane protein complexes involved in photosynthesis. Specifically for PSI from T. 

elongatus, the 2.5 A structure of monomeric PSI was solved first at 6 A in 1993 (Krauss, 

1993) then resolution was improved to 4 A (Klukas et al., 1999) until the first high 

resolution structure was solved in 2001 (Fromme et al., 2001; Jordan et al., 2001). But 

further improvements in the structure were hindered because large PSI crystals display 

intrinsic long range disorder. This mosaicity i.e. misalignment of crystalline mosaic blocks 

during crystal genesis leads to restriction in diffractive properties of the crystal.  

Various approaches were tried for making better ordered crystals by further 

optimization of the original  crystallization protocol that lasted 4 - 6 days but, while 

diffraction spots were visible beyond 2.5 A the data could not be evaluated to higher 

resolution due to the high mosaicity caused by long range disorder in the crystal. The 
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method as described in Section 4.3.2., shortens the incubation time of various steps, 

thereby restricting mosaicity and improving diffractive ability of crystals. 

 

4.4.1. Exploring the phase diagram for crystallization of proteins 

The alternate approach for crystallization of proteins utilizes the concept that is 

‘reverse of salting in’ i.e. reducing the solubility of the protein by reducing the ionic 

strength of the solution and by inducing electrostatic interactions at high protein 

concentration (Fromme et.al. 1998).  

 

 

Figure 4.11: Diffraction Pattern collected at Advances Photon 
Source in 2011.  

 
Crystal diffracts well, but analysis is restricted to medium resolution 
because of spot merging, caused by inherent long range disorder in 

crystals. This leads to ambiguous indexing and incorrect structure factors.    
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At lower levels of supersaturation, in the metastable zone, introduction of 

previously grown crystals provides a path for the seeds to further add more protein 

molecules on their periphery and grow into larger crystals (Bergfors, 2003). By performing 

seeding as a separate step, the optimal conditions (protein and precipitate concentration) 

for nucleation and specific conditions for crystal growth can be performed under optimal 

conditions (reaching the nucleation zone can be achieved either fast by rapid dilution, 

slower by dialysis against low ionic strength buffer or can be reached by concentrating the 

protein at low ionic strength). Depending on the ionic strength and the protein 

 
 

Figure 4.12: PSI was crystallized under lower ionic strength.  
 

Various strategies i.e. homogenous nucleation, macroseeding or 
microseeding can be employed to explore the metastable zone of the phase 
diagram. Microseeding with a slightly larger gradient of salt concentration 

yielded PSI crystals with great diffraction quality and low mosaicity as 
described in section 4.3.2. 
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concentration as well as the speed of crystallization, crystals ranging from 100nm to 10um 

can be grown and used for microseeding.  If well-ordered 10 – 100 µm sized crystals are 

available, macroseeding can be utilized.  

 

4.4.2. Macro-crystallization of PSI using dialysis 

For the purpose of gentle exchange of precipitant during the time course of a 

crystallization experiment, either the technique of vapor diffusion or dialysis can be 

utilized. The principle of dialysis is using a semi-permeable membrane that separates the 

protein from the precipitant and by gradually changing the precipitant concentration, 

supersaturation is achieved and the system eventually reaches the metastable zone in the 

solubility curve. The biggest advantage of using dialysis is, the technique permits gentle 

manipulation of crystallization conditions without compromising on the required high 

protein concentration. Additionally, the reaction chamber can be transferred to another 

vessel and gradual change in precipitant concentration can continue without loss of 

protein sample.  

Having mentioned that, the probable reason why dialysis is less popular than vapor 

diffusion for protein crystallization is the lack of pre-assembled reactors. The dialysis cells 

are quartz tubes that can break or rupture the semi-permeable membrane leading to the 

loss of sample. But with careful handling, dialysis can yield great results. This is especially 

true for samples like PSI that crystallize under low ionic strength. 

As explained in section 4.2.4., ultrafiltration of purified PSI is the final step for 

protein purification because this step yields crystallites of PSI. Previously, both micro and 

macro seeding procedures were employed for growing large PSII crystals (Fromme et.al. 
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1998). But the resulting crystals have been mosaic and diffracted to limited resolution. To 

improve this process, the macroseeding step using medium sized (~ 100 µm) crystals was 

identified as the place for optimization.  

As crystals mature and the free available protein in their vicinity depletes, their 

growth halts. Their surface is very smooth, the outermost layer of the crystals being 

complete and thereby has no steps that allow the next layer to grow easily. But, reusing 

these matured crystals as seeds might present certain challenges. The completed  edges of 

a mature crystal are thermodynamically less favorable for formation of a new layer (fewer 

new crystals contacts than in case of a surface with steps) and thereby instead of crystal 

growth, secondary nucleation is a very common event, where small crystals grow from the 

surface of the seed crystal in all directions (porcupine crystals). If seeding conditions are 

perfectly optimized, the seed  crystal would dissolve in the beginning, but once 

supersaturation is achieved, (as dialysis progresses reaching the supersaturated zone at 

 
 

Figure 4.13: Dialysis for PSI macro-crystallization. 
 

Vessel containing the protein and precipitate solutions separated by a 
semi-permeable membrane (cut off 100 KDa). The precipitant solution 

rises in the plastic tubing by capillary action and interacts with the 
protein solution across the membrane. To change the crystallization 

condition, the assembled reaction chamber can be removed and 
introduced to a fresh vessel with a different precipitate concentration. 
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high protein concentration and very low salt concentration), the seed crystal starts to grow 

into one large crystal. The problem with this approach is finding and reproducing the 

perfectly optimized condition.  

As opposed to that, the use of microcrystals that are still growing presents fewer 

experimental  challenges and if the seed is introduced in the metastable zone, new layers 

of protein molecules can be added to the  growing crystal without the requirement of 

partially dissolving the seed crystals. This method of microseeding can yield fewer, larger, 

better ordered crystals.  

In order to test if microcrystal seeds work better, a fresh dialysis experiment was 

set-up. PSI at 20 mM chlorophyll concentration (80 mg/ml) was dialyzed against 5 mM 

MES pH 6.4, 0.02% b-DDM, 30 mM MgSO4 for only 3 hours instead of 24 hours. A few 

freshly growing microcrystals (~ 10 µM) were introduced in the dialysis set-up using the 

seeding loop and permitted to equilibrate against buffers with lower salt concentrations 

i.e. 5 mM MES pH 6.4, 0.02% b-DDM, 6 - 10 mM MgSO4 for 18 hours. As explained in 

section 4.2.4., at 6 mM MgSO4 and at these protein concentrations, spontaneous 

 

Figure 4.14: Harvested PSI crystals. 
Crystals grown at 9 mM MgSO4 yielded best results. 
Crystals harvested were needle like and 2–2.5 mm in 

the longest dimension. 
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nucleation can occur, so very small crystals were obtained at this condition.  Overall, all 

gradient conditions yielded in successful crystallization and largest crystals were obtained 

at 9 mM MgSO4.   

 

4.4.3. Crystal freezing and data collection  

The dialysis set-up is extremely efficient and yields good quality crystals. But 

careful crystal handling for data collection is essential for utilizing their complete 

potential. Since PSI crystals completely dissolve or are destroyed in the presence of  PEG 

or glycerol solutions (which are often used for other proteins as cryo-protectants), sucrose 

had been identified as an appropriate cryo-protectant. The concentration of the anti-freeze 

agent has to be high enough to prevent cubic ice formation in crystals during the flash 

freezing process. Here, high viscosity of concentrated sucrose solution poses several 

challenges for crystal freezing.  

PSI crystals are harvested in glass wells after disassembly of the dialysis cell. This 

had to be done with a steady hand and gentle care to not squish the large crystal in the 

process. The crystal was then fished out using an appropriately sized cryo loop and 

introduced to sequentially higher sucrose concentrations, which were prepared in buffer 

(5 mM MES pH 6.4, 0.02% b-DDM) without salt. At sucrose concentration of 1.4 M, the 

crystals achieved the neutral buoyancy with respect to the freezing solution. As a final 

freezing step, crystals were introduced to a 1.5 mL reaction tube containing ~ 1 mL of 5 

mM MES pH 6.4, 0.02% b-DDM, 10 mM MgSO4, 2 M Sucrose. The tube was turned upside 

down because the crystals float on top of the dense 2M sucrose solution and turning the 

tube upside down prevented any possible crystal dehydration. This setup was permitted 

to incubate at room temperature for 1 hour.  
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Finally, the prepared crystal was gently removed and flash frozen using liquid 

nitrogen in cryo loops for data collection to synchrotron sources. The frozen crystals 

were mounted on the goniometer head at the Advanced Light Source, beamline 501. The 

data set was collected using an ADSC 315 CCD detector at the wavelength of 0.97 A. The 

oscillation / frame was 0.33°, 360 frames were collected, corresponding to 120° total .  

 

4.5. Analyzing the collected data 

Processing diffraction data is mathematically complex but with the help of several 

software packages and program suites, well established algorithms can be utilized for 

 

Figure 4.15: Diffraction pattern of PSI crystals.  
 

Data collected at Advanced Light Source in 2013. As highlighted in the zoomed 
in image fraction, diffraction was better than 2.5 A and data was finally 

analyzed to 2.3 A. The new crystallization strategy resulted in better diffracting 
crystals with significantly lower inherent disorder i.e. mosaicity. 
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analysis. One such example is the Collaborative Computational Project, Number 4 (CCP4) 

suite (Winn et al., 2011) which presents an exhaustive and effective pathway for data 

processing. 

The previously solved structure of PSI (PDB ID: 1JB0) was in the hexagonal space 

group of P63 with unit cell dimensions of a = 281.00 Å, b = 281.00 Å, c = 165.20 Å, a = b 

= 90°	and g = 120° (Jordan et.al. 2001). But the new data set did not comply with the 

original space group parameters. The new structure could only be solved by application of 

the monoclinic space group of P21 which indicates a difference in arrangement of protein 

molecules with respect to crystal packing. Updated unit cell parameters are a = 277.67 Å, 

b = 164.93 Å, c = 283.05 Å, a = 90° b = 120°	and g = 90°. In  space group P21, the entire 

PSI trimer  is represented in the asymmetric unit. This permits visualization of inter-

monomer differences and details of inter-monomer connectivity. 

Indexing and spot-finding was performed using XDS software package (Kabsch, 

2010). After assignment of the diffraction spot parameters, diffracted intensities were 

integrated. An important parameter of data quality is completeness, i.e. coverage of all 

theoretically possible unique reflections within the measured data-set (Arkhipova et al., 

2017). Data collected for the new PSI crystals covered 120° orientation in the crystal. For 

the lower symmetry space group of P21, this yielded a completeness of 80 %. To increase 

the completeness of the data-set, additional diffraction data was collected which 

contributed towards completing the measured intensities. Since two crystals were 

involved, additional scaling and merging procedures were necessary. The program 

BLEND from the CCP4 suite prove suitable for this (Foadi et al., 2013). The result of 

rigorous scaling and merging by BLEND was an .mtz file with optimal merged data 

statistics for further processing.  
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For further steps, the approach of Molecular Replacement (MR) was used where, 

the phase component of the structure factors of the known model (1JB0) were utilized to 

calculate the new structure factors. The quality of the electron density map was finally 

improved during refinement. This is done by maximizing the agreement between the 

diffraction data and the model generated by MR. The strategies employed provide 

flexibility based on the experiment, data quality, resolution range and corresponding 

restraining parameters (Adams et al., 2002). The software package of PHENIX (Python-

based Hierarchical ENvironment for Integrated Xtallography) was used for MR and 

several rounds of refinement for generating the best data statistics. 

Eventually, one of the output files generated was the final model in .pdb format 

that can be viewed and adjusted by hand for finer structural details. COOT 

(Crystallographic Object-Oriented Toolkit) (Emsley et.al. 2004) was used for structure 

visualization and final model building & verification. The data statistics are described in 

Extended Data Table 4.1. 

Table 4.1: Data table of PSI 
Wavelength 1.0 and 0.977 A 

Resolution range 48.78 (2.3) 
Space group P 1 21 1 

Unit cell dimensions a = 277.67 Å, b = 164.93 Å, c = 283.05 Å, 
a = 90° b = 120°	and g = 90° 

Multiplicity 3.0 (2.2) 
Completeness (%) 92.14 (75.70) 
Mean I/sigma (I) 4.5 (1.3) 
Wilson B-factor 34.51 

R-merge 0.152 (0.592) 
R-meas 0.192 (0.862) 
CC1/2 0.969 (0.418) 

Reflections used in refinement 905,239 (78,099) 
Average mosaicity 0.24 

Reflections used for R-free 18,378(1,663) 
R-work 0.216(0.308) 
R-free 0.246(0.318) 

Number of non-hydrogen atoms 75347 
macromolecules 52608 

ligands 20811 
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solvents 1928 
Protein residues 7131 

RMS (bonds) 0.015 
RMS (angles) 1.99 

Ramachandran favored (%) 93.18 
Ramachandran allowed (%) 5.56 
Ramachandran outliers (%) 1.26 

Rotamer outliers (%) 2.20 
Average B-factor 35.53 
macromolecules 34.29 

ligands 38.55 
solvent 36.84 

 

4.6. Improvements in the PSI structure  

Since the structure of PSI was already solved (PDB: 1JB0), the overall goal was to 

improve upon the structure and validate it. With  improvements in data processing 

software and better data quality, the electron density maps generated during refinement 

 

Figure 4.16: Structure of PSI trimer 
Here different subunits are indicated with a 

different color. Overall structure of PSI is 
very similar to 1JB0, but here the entire 

trimer could be evaluated as one particle. 
 

 

 

 

Figure 4.17: Sideview of all 
cofactors in PSI trimer 

All cofactors of PSI are 
concentrated in the 

transmembrane region of the 
complex, with the exception of 

4Fe4S clusters that are associated 
with PsaC in the stromal hump as 
seen in top of each monomer in 

the image.  
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were  superior for the new data set. This led to a few structural revelations which are 

enlisted here.  

 

Figure 4.18a: All cofactors in PSI monomer by subunit 
 

Cofactors are segregated based on the  subunit they are associated with. 
A is depicted in green, B in white, C in pink, D in yellow, I in light blue, J in 

cyan, K in dark blue, L in orange and M in brown. 
 

 

Figure 4.18b: All cofactors in PSI monomer by molecule 
 

Cofactors assigned in PSI have been sorted based on the molecule. Green is 
for chlorophyll, Phylloquinone is illustrated in blue, 4Fe4S clusters in yellow, 
b-carotene in orange, and 5 types of lipids (shown in brown, cyan, red, white 

and purple) assigned are described in further detail in section 4.6.3 
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4.6.1. Chlorophyll tails were completed 

 

In the original structure of PSI solved in 2001 (Jordan et.al. 2001) due to the lack 

of electron density, phytol tails of several chlorophyll molecules could not be assigned  in 

the structure and were therefore not modelled in. This was especially seen for peripheral 

chlorophylls which interact with or are partially embedded into the detergent micelle 

and thereby may have more degrees of freedom leading to them being less ordered in the 

crystal lattice and hence, they do not feature well defined electron densities. For 19 

chlorophyll molecules per monomer (out of 95) (shown in fig 4.19) (enlisted in Table 

4.2), the electron density of the phytol tails was improved and re-assignment was 

 

 
Figure 4.19: Location of chlorophyll molecules completed in PSI 

monomer 
 

Chlorophylls associated with subunit A has been shown in green, B in 
cyan and F in yellow.  
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performed  based on the electron density for the complete chlorophyll molecules. The 

previously incomplete chlorophyll-models  were replaced by chlorophylls with the full 

phytol tail and the carbons in the tails were oriented by either another post-refinement 

step or by aligning the carbon atoms by hand.  

It must be noted that all re-assigned chlorophylls are antenna molecules and do 

not affect the assignment of chlorophylls that are components of electron transfer. The 

network of antenna chlorophylls contributes in shedding light into potential pathways of 

excitation energy transfer to the primary electron donor P700. 

Subunit of PSI 
associated with 

chlorophyll 

Residue no.  

PsaA 1105, 1110, 1112, 1113, 1115, 1116, 
1120, 1129, 1135, 1137, 1139 

PsaB 1201, 1208, 1214, 1220, 1222, 
1227, 1230 

PsaF 1301 
 

Table 4.2: Residue details of chlorophyll molecules re-assigned 
 

 
 

Figure 4.20: CLA 1115 in 1JBO vs new structure 
 

Availability of sharper electron density permitted the completion of phytol tails. 
19 such chlorophylls were completed but all of them are accessory chlorophylls.  
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4.6.2. Other co-factors have been identified  

In addition to chlorophyll molecules, other lipid molecules were also re-assigned 

based on the shapes of the electron density (listed in Table 4.3) (illustrated in figure 4.20). 

These include a b-DDM molecule and LMG associated with subunit A and a Digalactosyl-

diacyl-glycerol (DGD) molecule associated with subunit B. DGD is an abundant thylakoid 

lipid in the chloroplast that has been hypothesized to be associated with either 

biogenenesis or stability of PSI in Arabidopsis thaliana (Holzl et.al., 2009)  

Additionally, a lutein molecule ((3R,3’R,6S)-4,5-Didehydro-5,6-dihydro-b,b-

carotene-3-3’-diol) was assigned in place of a b-carotene in subunit J. Luteins are 

abundant xanthophylls in higher plants (Pisum sativum) and were found in PDB: 4Y28 

and reported in Mazor et.al., eLife, 2015. These co-factors are known to bridge the 

surrounding chlorophylls and also provide photo-protection by chlorophyll triplet 

quenching (Dall’Osto et al., 2006) 

The functional implications of this updated co-factor system needs to be explored 

further but as of now, it is difficult to conclude if the new cofactors change our knowledge 

of excitonic coupling  in PSI.  Especially, the presence of lutein indicates potential 

pathways of non-photochemical quenching that might be present in cyanobacterial that 

are comparable to plants.   
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Table 4.3: Differences in co-factors between old and new PSI structures 
Subunit 
of PSI 

associated 
with co-
factor 

 
 

1JB0 

 
 

New structure 

PsaA 45 chlorophylls 45 chlorophylls (CLA) 
 6 b-carotenes 6 b-carotenes (BCR) 
 1 4Fe-4S cluster 1 4Fe-4S cluster (SF4) 
 1 phylloquinone 1 phylloquinone (PQN) 
 2 1,2-Dipalmitoyl-

phosphatidyl-glycerole 
2 1,2-Dipalmitoyl-phosphatidyl-

glycerole (LHG) 
  1 Dodecyl-b-D-maltoside (LMT) 
  1 1,2-Distearoyl-monogalactosyl-

diglyceride (LMG) 
   

PsaB 42 chlorophylls 42 chlorophylls (CLA) 
 7 b-carotenes 7 b-carotenes (BCR) 
 1 phylloquinone 1 phylloquinone (PQN) 
 1 1,2-Dipalmitoyl-

phosphatidyl-glycerole 
1 1,2-Dipalmitoyl-phosphatidyl-

glycerole (LHG) 
 1 1,2-Distearoyl-

monogalactosyl-diglyceride 
1 Digalactosyl-diacyl-glycerol (DGD) 

   
PsaC 2 4Fe-4S clusters 2 4Fe-4S clusters (SF4) 

   
PsaF 1 chlorophyll 1 chlorophyll (CLA) 

 1 b-carotene 1 b-carotene (BCR) 
   

PsaI 2 b-carotenes 2 b-carotenes (BCR) 
   

PsaJ 2 chlorophylls 2 chlorophylls (CLA) 
 3 b-carotenes 2 b-carotenes (BCR) 
  1 (3R,3’R,6S)-4,5-Didehydro-5,6-

dihydro-b,b-carotene-3-3’-diol (LUT) 
   

PsaK 1 chlorophyll 1 chlorophyll (CLA) 
   

PsaL 1 Calcium ion 1 Calcium ion (CA) 
 3 chlorophylls 3 chlorophylls (CLA) 
 2 b-carotenes 2 b-carotenes (BCR) 
   

PsaM 1 chlorophyll missing 
 1 b-carotene 1 b-carotene (BCR) 
   

PsaX 1 chlorophyll 1 chlorophyll (CLA) 
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All non-chlorophyll ligands in 1JBO. b-carotenes are marked in orange, cyan 
is used for LHG, 4Fe-4S cluster is shown in yellow, phylloquinone in blue 

and LMG in red 
  

 

New cofactors assigned in PSI structure are marked in color. b-DDM 
molecule is marked in green, DGD is marked in blue, LUT molecule is 

indicated in yellow and LMG is marked in red. 
 

Figure 4.21: Details of non-chlorophyll ligands in 1JB0 in 
comparison with the new PSI structure 
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4.6.3. Mystery of the missing chlorophyll 

 

Figure 4:22: Connection between neighboring monomers in PSI. 
 

The largest excitation transfer rates are indicated and chlorophyll assigned as M1 
was identified to be functioning as a part of the next monomer since it is strongly 

connected to the neighboring monomeric chlorophylls. In absence of this key 
molecule, an excitation was suggested to be trapped in the monomer, where it had 

started. Image from Sener et.al., Journal of Chemical Physics, 2004.   
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Based on the chlorophylls assigned in 1JB0, several calculations were made to 

study excitation migration in the PSI trimer (Şener et al., 2004). These suggested a 

clustered  network of strongest excitonic couplings  of chlorophyll molecules which formed 

the basis for the calculation of  their energy transfer  rates. 

Only the chlorophylls close to the monomer monomer boundary were proposed to  

contribute to the inter-monomer excitation transfer. The chlorophyll M1 (residue 1601)  

was determined to be key in inter-monomer excitation interactions. In an attempt to 

understand how excitation transfer would occur in monomeric PSI, the boundary 

chlorophylls were negated from the estimations. This led to the cross-monomer trapping 

probability to drop from 39.7 % to 29.7 % (Şener et al., 2005).  

Unfortunately, after careful deliberation and several rounds of refinement, the 

chlorophyll in subunit M could not be assigned in the electron density map and is there 

not anymore present in the new structure. Deleting the chlorophyll molecule yields better 

data quality statistics. In the refined structure only 95 chlorophylls were included (without 

M1). The lack of chlorophyll M1 was also seen in recently published structure from 

mesophilic Synechocystis sp. PDB 5OY0 (Malavath et al., 2018). 

Implications of this missing key chlorophyll are worth exploring further. A 

question that arises from these deductions are: Was the chlorophyll lost during 

purification and crystallization? But since this is independently proven by the updated 

structure and the one published by Malavath & Nelson et.al., it seems highly unlikely. The 

purification and crystallization protocols employed by both groups is vastly different and 

that simply adds to the deduction of a missing chlorophyll M1.  

Second follow-up question would be: what does this mean for inter-monomer 

excitation cross-over? This remains yet to be determined. Since chlorophylls from 

monomeric PSI in plants associate with antenna molecules from LHCI, perhaps the newly 
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assigned co-factors hold an explanation for alternate routes of excitation transfer. Also, 

since the chlorophyll molecules are more complete and more their position and 

orientation could be more accurately , determined, the excitation energy pathways in the 

PSI trimer  need to be recalculated and pathways need to be reassigned.  

 
4.6.4. More details seen in K-subunit 

The density for the peripheral subunit K for 1JB0 was not well defined and 

therefore this was the only subunit that was solely modelled as a C-alpha backbone trace 

as side chains could not be assigned. With improved data quality and better defined  

electron density maps, the amino acid side chain became visible and could be built into 

the electron density map. Following several rounds of refinement, the two transmembrane 

helices  fit  into the corresponding electron  density and the connecting loop could be 

identified. 

 

 

 

Figure 4.23: Location of K sub-unit 
 

Subunit K from monomer I, g from subunit II and T from subunit III are 
highlighted un magenta, blue and green respectively. 
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Figure 4.24a: Transmembrane helices in PSI monomer (Side view) 
 

Shown in the image are all helices that could be identified by their available 
densities. Subunit A is shown in green, B in cyan, C in dark blue, D in white, 

J in yellow and constructed helices on K subunit are in magenta.  
 
 

 
 

Figure 4.24b: Transmembrane helices in PSI monomer (Top view) 
 

Shown in the image are all helices that could be identified by their available 
densities. Subunit A is shown in green, B in cyan, C in dark blue, D in white, 
J in yellow, L in brown, M in lime green and  the 2 constructed helices on K 

subunit are in magenta. 
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4.7. Conclusions and Future work 

We are still in the process of refinement and interpretation of the new improved 

Photosystem I trimer structure. As of now, the current model is 2.3 A structure of trimeric 

PSI the following cofactors were assigned.  

Updated approaches in crystallization of PSI yielded better diffracting, better  

ordered crystals that diffracted to 2.3 A and showed a strongly decreased average 

mosaicity (0.24°). The new software BLEND in the CCP4 suite, enabled rigorous merging 

and scaling of data collected from two different crystals to increase the completeness of 

the dataset. Also, the significant advances in refinement strategies of PHENIX, helped in 

producing an electron density map with a better defined electron density map  and 

eventually, a superior model.  

Various chlorophyll molecules showed better defined electron density in the 

improved map, which allowed for the assignment of their complete phylol tails. Hence, the 

updated structure is now more complete and chlorophylls are better assigned . The 

incomplete K subunit was rebuilt by hand and refined for an assignment of most amino 

acids. Finally, due to a key missing chlorophyll, the existing understanding of excitation 

energy transfer among PSI monomers is challenged and needs to be explored further. 

The structure shows very good data statistics and that indicates accuracy in 

structure factors. Additionally, the advantages of oligomerization in cyanobacteria remain 

unclear. Since higher plants contain a monomeric super-complex of PSI with 4 LHCI 

proteins, the study of  the differences between the excitation transfer in different 

organisms is very interesting. The new 2.3 A structure could be used as a basis for 

improved excitation migration calculations in cyanobacterial PSI and this would help 

understand the reasons for high efficiency of excitation energy transfer in PSI. 
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As explained in Chapter 3, with the advent of XFELs and improvement of fixed 

target approaches, there is a possibility of further improving the resolution of the PSI 

structure. Using thousands of single snapshot SFX diffraction patterns of well-ordered PSI 

micro crystals, the structure may be further pushed to near-atomic resolution.   
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CHAPTER 5 

 

EXPLORING CRYOGENIC ELECTRON MICROSCOPY FOR STUDYING MEMBRANE 

PROTEINS AS PHOTOSYSTEM I 

 

5.1. Motivation for Cryo-EM 

As discussed in Chapter 4, PSI forms monomeric, trimeric and tetrameric 

assemblies in different organisms, but the functional differences afforded by 

oligomerization state are not fully understood. Moreover, the inter-monomer interactions 

with respect to excitation energy migration of PSI is a critical scientific question where 

accurate structural assignment of cofactors would play a key role in assigning the probable 

pathways. Another topic of great interest also mentioned in Chapter 4 is whether there 

were differences among the monomers of the PSI trimer with respect to their structure 

and if there is a preference for a specific monomer to undergo charge separation and how 

this would affect the activity of other monomers in the trimer.  

The 2.3 A structure described earlier, shows good data statistics and density for 

both proteins and cofactors. The newly assigned K sub-unit greatly contributes in our 

understanding of how the monomers come together for oligomerization. But during post-

refinement, the three monomers were treated like triplicates for the efficient use of 

computational resources and time. This overlap of monomers unfortunately prohibits 

visualization of differences (if any) among the monomers.  

Electron Microscopy (EM) has proven to be a versatile tool to study the structure 

of macromolecular complexes and the distinct advantages of using Cryo-EM for structural 

elucidation have been discussed in Section 1.5. Using the Single Particle Imaging (SPI) 
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mode of Cryo-EM, the entire PSI trimer could be treated as one asymmetric particle and 

inter-monomeric differences could be identified. Moreover, if crystallization of the protein 

was inducing structural artifacts leading to inaccuracies, they can be recognized by SPI 

because rapid vitrification permits the protein to be in a more native physiological state. 

Also, PSI purified by techniques explained in Section 4.2 is of superior quality, produces 

well diffracting crystals and has been extensively used as a model protein for nano-

crystallography (Chapman et al., 2011; Hunter and Fromme, 2011). Exploring differences 

in density maps generated by complimentary techniques like Cryo-EM would be greatly 

insightful for structural biologists studying membrane proteins.  

 

5.2. Sample optimization for Cryo-EM 

5.2.1. Negative staining 

As explained in Section 1.5, Dubotchet et.al. revolutionarized single particle EM by 

introducing the concept of specimen vitrification, but lack of heavy scattering atoms 

results in low contrast in EM images. Prior to investing efforts for sample preparation with 

Cryo-EM, in order to confirm the suitability of a purified specimen for SPI, a few aspects 

need to be considered. Primarily, sample homogeneity and stability with respect to 

composition and conformation needs to be tested. Another important feature is sample 

dispersion in thin vicinal volumes at the concentrations that are suitable for cryogenic 

plunge freezing. Thus, initial screening of different batches of sample by negative 

screening is a fairly quick method for obtaining preliminary understanding if PS1 would 

withstand thin vicinal films, adopt a preferred orientation, or disperse into single 

quaternary molecular species. 

Negative staining embeds biological material in a layer of heavy atom stain for 

improved electron contrast. This method of staining easily permits visualization of 



  171 

biological assemblies such as virus and fibers as unstained areas amid a black background. 

This quickly allows assessment of homogeneity, oligomeric state, particle dispersion etc. 

that helps in optimizing conditions prior to performing Cryo-EM (Ohi et.al., 2004). In this 

technique, the sample deposited on the EM grid is surrounded by heavy atoms that acts as 

a mordent to support the biological assembly as it is dehydrated. The electron diffraction 

in negative stained images is solely due to the heavy atoms because they have a much high 

electron potential due to their high atomic number, which limits the achievable resolution 

to 25-15 Angstroms or the atomic diameter of the heavy metal salt. Although images 

obtained by negative stain will never be appropriate for high resolution imaging, the short 

time to obtain well resolved images of biological assemblies in stain make it a good test for 

assembly state and biochemical readiness of preparations prior to cryogenic imaging. 

In preparation for negative staining, PSI crystallites obtained as described in 

section 4.2.5 were gently dissolved in a small volume of 5 mM MES pH 6.4, 0.02% b-DDM, 

100 mM MgSO4 buffer. The protein obtained was extremely concentrated (~ 100 mM 

chlorophyll) and was consequently diluted to the final optimized conditions for negative 

staining i.e. 1 mM chlorophyll using the buffer containing 5 mM MES pH 6.4, 0.02% b-

DDM, 30 mM MgSO4.  

Uranyl acetate was chosen as the staining solution due to its high contrast and 

stability. The resolution that could be achieved with this stain was about 2 nm, which 

would easily resolve the assembly state of the PS1 monomers and the dispersion of the 

sample. The working solution of 2% was prepared by dissolving 0.2 g of uranyl acetate to 

10 mL of boiling deionized water. This solution was then syringe filtered through 0.22 µm 

filter and wrapped with Al foil for longer term storage of the light sensitive salt.  
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For negative staining, a carbon coated EM grid was placed on a glass slide and glow 

discharged using a splutter coater / glow-discharge system for 2 minutes with gentle 

plasma (Aebi and Pollard, 1987). The carbon layer could be hydrophobic and the process 

of glow-discharging deposits ions on the grid surface to make them negatively charged i.e. 

hydrophilic for easy aqueous sample application. A clean piece of parafilm was set-up to 

as a work clean surface and scored to prevent contamination between droplets. The freshly 

prepared grid was placed on a 5 µL droplet of diluted sample with the carbon side of the 

TEM grid facing the drop. Following 2 minute incubation, excess solution was blotted from 

the carbon surface by touching it to a piece of Whatman no.1. The grid was then 

successively placed on 2, 15 µL, 2% UA staining solutions on the parafilm and incubated 

10-15 seconds with excess staining solution blotted using the filter between each drop. The 

 

 
 

Figure: 5.1: Negative Staining of PSI trimers. 
 

The PSI trimers are homogenously dispersed on the grid in a mono-layer. The 
image obtained displays particles of similar size indicating stability of the trimer 

in these buffer conditions. 
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stained grid was dried completely prior to imaging on the Philips CM-12 TEM. PS1 trimers 

were observed at 40,000X nominal magnification.  

Negative staining presents numerous advantages for molecular examination such 

as high contrast, and speed of procedure, as well as requiring less complex 

instrumentation and skill. Disadvantages of this technique derive from the drying of 

sample on the grid during the staining process, because this rids the hydration shell of the 

protein, causing distortions in its conformation. Moreover, variations in stain thickness 

can lead to regions of molecule being unrepresented as it is not surrounded by the heavy 

atom salts (Hoenger et.al., 1996). Despite this shortcomings, the  ability to quickly assess 

a complex in high contrast conditions, albeit at limited resolution with acceptable 

artefacts, makes it a good place to start ones single molecule examination.  

 

5.2.2. Plunge freezing for Cryo EM 

Cryogenic specimen preparation allows for the preservation of biological 

molecules in amorphous water where projection images contain the diffracted electrons 

primarily from the biological molecules (Ohi et al., 2004). To obtain vitrification of water, 

the specimen is applied to a 200-400 mesh copper grid covered with a holey carbon film, 

blotted, and then rapidly flash-frozen to prevent the water from forming ice crystals. 

Water has one of the highest heat capacities of most liquids and drawing the heat from the 

liquid fast enough to avoid water molecule reorganization and expansion to form either 

cubic of hexagonal ice requires the use of a special cryogen, ethane or propane (cooling 

rate ~ 105 K /sec). The heat capacity of the cryogen at liquid nitrogen temperature is such 

that unlike nitrogen, it does not phase transition to a gas upon heat absorption from the 

grid. The thickness of the sample being vitrified is limited in plunge freezing to 5 microns, 
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which far exceed the thickness through which electrons can pass at 300 KeV acceleration, 

which is about 1 micron.  

PSI protein concentration optimized for negative staining was 1 mM chlorophyll. 

The recommended concentration for plunge freezing is about an order of magnitude more 

concentrated with respect to negative staining. Protein concentration for vitrification was 

optimized to be 10 mM chlorophyll and the specimen volume was adjusted using buffer: 5 

mM MES pH 6.4, 0.02% b-DDM, 30 mM MgSO4 buffer. 

  

 

Figure 5.2: The plunge freezing device.  
 

FEI Vitrobot fitted with a humidity and temperature controlled chamber. The 
grid is held by tweezers in the center of the device (left). Sample can be added 
through an opening aperture on either side of the sample chamber (middle). 
After a predetermined incubation time, blotting is carried out automatically 
by filter paper blotting pads mounted on pivoting levers at each side of the 
sample. After a set blotting time (blotting pressure is also adjustable) the 

sample held by forceps is rapidly plunged into LN2-cooled ethane liquid or 
slush. The liquid ethane/nitrogen container is mounted directly below the 

specimen chamber during plunging and moves down for transfer of the grid 
to a suitable grid box (right). The sample must be kept in cold nitrogen, below 
the de-vitrification temperature ≈ -150°C, throughout the process and during 

transfer to a grid storage box. The frozen sample can then be stored under 
LN2 until ready for viewing in the TEM. Image and caption from Goldie 

et.al., 2014.  
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A foam reservoir was filled with liquid nitrogen to cool the small copper vessel that 

hold the liquid ethane. Ethane was condensed in the vial at 3 PSI until it filled the cup. The 

blotting during the plunge freezing process takes place in a temperature and humidity, 

controlled chamber, which was regulated at 16˚C and near 100 % relative humidity. Two 

robotic arms hold Schleicher-Schull 595 blotting paper and remove the excess liquid from 

the grid surface leaving only a vicinal film in the carbon holes, blot times varied from 3-6 

seconds before emersion into the liquified ethane as is depicted in Figure 5.2.b.  

 

 

 

Figure: 5.3: Steps for plunge-freezing 
 

Molecules of interest are preserved in a thin layer of amorphous ice 
embedded in the holes in the carbon film on the grid. Image from Murata 

et.al., 2017.  
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5.2.3. Sample optimization 

The grids used for electron microscopy are coated with amorphous carbon which 

act like a substrate for vitrification. But at higher magnification, this carbon appears grainy 

and can obstruct the signal from the particles by increasing the background noise. The 

solution to this problem was to make perforations in the carbon layer and vitrification 

takes place in these ‘holey’ carbon grids. 

Membrane proteins with detergents in their buffer have different surface 

properties when compared to other macromolecular specimens. PSI molecules showed a 

high tendency to adsorb strongly to the surrounding carbon, thereby leading to the 

depletion of particles in ice. Several strategies were utilized for overcoming this hurdle for 

effective sample preparation.  

 

 

 

 

 
Figure 5.4: PSI molecules had higher affinity for the amorphous in 

holey grids. 
 

As observed in the images, the holes where the particles can be imaged for 
single particle imaging are empty and all particles are accumulated on the 

carbon surface. 
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Strategies employed for improving sample distribution on grid: 

As explained in section 5.2, glow discharging makes the grid surface hydrophilic. 

Varying times of discharge from 5 seconds to 5 minutes were tried to experiment with the 

surface charges. Also, the sample concentration, salt concentration and blotting times 

were also manipulated. Additionally, graphene oxide was also deposited on commercially 

available grids according to successful studies by Pantelic (Pantelic et al., 2010). But, the 

hydrophobic affinity between the detergent micelle around PSI and amorphous carbon 

was extremely strong and it makes the protein molecules adhere to the carbon and lie on 

their transmembrane side as seen in Figure 5.4 (b).  

In order to overcome this issue, the grids were pre-primed with buffer containing 

all salts and detergent (5 mM MES pH 6.4, 0.02% b-DDM, 30 mM MgSO4) prior to sample 

application. This additional step would ensure that both the holes and the carbon have 

comparable hydrophilicity for sample application. The parafilm work station was set-up 

to avoid dust contamination. A 5µL droplet of buffer was placed on the surface and the 

carbon side of the grid and was permitted to interact with it for 2-3 minutes. This ‘wet’ 

grid was mounted on the tweezers for plunge freezing. This time, a factor of dilution was 

expected due to presence of buffer on the grid and hence, 5x the anticipated concentration 

of sample i.e. 5 µL of PSI at 0.5 mM chlorophyll was applied to the grids. Blotting was 

optimized for 2 blotting events of 3 seconds each and sample was frozen as explained in 

section 5.3. 

The detergent buffer priming step had significant effects on the sample 

preparation. PSI trimers in ice do show some preferential alignment because the 

transmembrane helices show affinity for the hydrophobic air-water interface, but many 

trimer molecules were seen distributed on the carbon surface in random orientations (as 

seen in Figure 5.5) and this permitted for SPI.  
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5.3. Data collection  

 
Grids were screened for intact regions of well-formed vitreous ice and automated 

data collection was performed using SerialEM (Mastronarde, 2005) on Titan Krios 

microscope operated at the voltage of 300 kV equipped with K2 Summit direct electron 

detector (Gatan ™). A total of 2,100 micrographs were collected at the magnification of 

22,500x and the exposure time was limited to 6 seconds to minimize radiation damage 

making effective dose of 2 electrons / A2 / frame. Each micrograph stack contained 30 

frames with data being collected at 0.2 frames / second.  

 

 

Figure 5.5: Micrograph of PSI trimers. 
 

After successful detergent priming, the PSI molecules showed no 
preferred affinity for the carbon surface and can be located in vitreous 

ice in random orientations.  
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5.4. Image processing  

Since the interaction between the specimen and electron is inelastic, phase 

contrast needs to be increased by introducing a slight defocus of 1-5 microns for visualizing 

the particles. Additionally, the lens systems have inherent spherical aberration (Cs) and 

both these factors affect the acquired images. Before the data can be processed, the images 

need to be corrected appropriately to ensure accurate and optimal results.  

 

5.4.1. Correction of Contrast Transfer Function 

The images collected by EM at focus does not generate much contrast and 

imperfect imaging conditions (defocusing to generate contrast) lead to loss of information 

due to phase and amplitude modulation (Frank, 2009). This systematic alteration, 

Contrast Transfer Function (CTF) is a quasi-periodic sine function in reciprocal space. 

CTF models the parameters of the actual object, thus permitting estimation of the 

distortions present in the recorded image (Jeong et.al, 2013). The periodicity of CTF 

depends on a number of aspects associated with the instrument as described by the CTF 

formula. 

 

For a perfect image, the transfer function would be +1 throughout. But for images 

collected, the CTF suppresses the spatial information and wherever the function goes to 

negative, CTF inverts the contrast in images (phase flip by 180°). Since defocus (z) is the 

 

Here, Cs is the spatial aberration coefficient of the lens system,  
z is the extend of defocus during data collection,  

q is spatial frequency and  
λ indicates the wavelength of the incident electron beam. 
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only parameter being manipulated during the experiment, it determines the exact 

locations of zero crossing (where no contrast is transferred and information is lost).  

The high-resolution details of an image are dampened by an envelope function of 

CTF. This ‘CTF decay’ (as seen in Figure 5.6) maybe caused by a number of factors 

including loss of spatial coherence at the source, image drift, thickness of vitreous ice, 

variations in voltage (chromatic aberrations), variation in lens current etc. The frequency 

of decay is also directly proportional to the image defocus, thus images collected at a large 

defocus might boost the contrast for low resolution features, but consequently weaken 

high resolution signal, restricting useful information (Cheng et al., 2015).  

 

 

Figure: 5.6: The effect of envelop functions and defocus on CTF 
 

The Y axis indicates the value of CTF and the X axis is the spatial 
frequency. As seen in the figure, the value and location where the value 
of CTF is zero is dependent on the defocus. Loss of CTF at higher spatial 

frequency i.e. CTF decay is caused by imperfect imaging conditions. 
Image from spider.wadsworth.org  
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For correcting the CTF, several images at different defocus settings are utilized 

such that the resulting combined values for CTF, cover the entire Fourier space with no 

gaps. The program CTFFIND4 was employed to calculate and correct for defocus and 

astigmatism for the data collected. Exact values for defocus parameters were calculated by 

fitting a model of the microscope’s CTF to an image’s amplitude spectrum (Rohou and 

Grigorieff, 2015). The calculated CTF pattern are fit to the semi-circular oscillations in 

intensity that are induced by the CTF (Thon rings) that can be seen in the power spectrum 

of the image. For restoring the amplitudes, the FT of each image is multiplied by the CTF. 

Then, all equivalent views are combined and divided by the square of sum of all CTFs. 

Additionally, the Wiener filter constant is also considered in CTF correction, represents 

the SNR in the data, which varies for each sample. 

 

 

Figure 5.7: Effect of correction of Fast Fourier Transform on the sum 
of all collected images. 

 
The CTF ripples are superimposed on a background of incoherent scattering. 

Upon background fitting, the corrected FFT shows a more accurate view of the 
CTF ripples. This is an essential step for accurate estimation of defocus for CTF 

correction. Image of collected PSI data. 
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In addition to correcting the amplitude, CTF is also corrected for phase. Wherever 

the value of contrast is found to be negative, CTF correction results in ‘phase flipping’ 

which essentially means a flip in image contrast. This results in white particles to appear 

‘darker’ in corrected micrographs.  

 

5.4.2. Motion Correction 

In addition to instrumentation based corrections, the motion induced in the 

specimen as it is exposed to the electron beam causes significant blurring and eventually 

leads to loss in contrast in the collected images. This beam induced motion in specimen is 

believed to be caused by two major factors: build-up of a positive charge on the specimen 

 

Figure 5.8: Schematic beam induced motion seen in both ice 
layer and carbon film. 

  
As the particles suspended in ice are illuminated, the carbon support film 

expands slightly and this causes the hole to shrink. At the same time, 
radiolysis of solvent and macromolecules produces radicals in the ice 
layer. Both of these effects produce random motion in the particles.  

Image from Brilot et.al, Journal of Structural Biology (2012).  
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due to the reaction of the specimen with the high energy electron beam  (Brinka et.al, 

1998) and also, because of radiolysis of both the sample and the vitrified medium (Glaeser, 

2008). Changes have been reported in both the carbon and the ice layer and this leads to 

both rotational and translational motion in the particles.  

It has been experimentally proven that this motion is worst at the beginning of the 

exposure. To negate the particle rotation and translation upon exposure to the electron 

beam, movies are recorded at the rate of up to 40 frames / second. Frame alignment and 

averaging techniques are used to reduce the blurring of the images caused due to the beam 

induced motion. Accumulation of 5-10 electrons / A2 dose on the sample before opening 

the camera shutter is known to boost the high-resolution signal (Brilot et.al., 2012). This 

is captured by the low-noise image recording by direct electron detectors (Milazzo et al., 

2011), since the electron dose can be fractionated over a series of frames.  

MotionCorr2 is universally accepted program for correcting beam induced sample 

motion corrected on movie stacks. It corrects for both global and non-uniform local 

 

Figure: 5.9: The effect of movie frame alignment and averaging on 
beam induced motion. 

  
The loss of high resolution features and contrast can be reversed by 

averaging several frames after translationally aligning them with respect to 
each other. Image from Brilot et.al, Journal of Structural Biology (2012).  
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motions at every single pixel across the whole frame. Additionally, it also performs gain 

correction, removes clusters of bad pixels and eventually leads to significant improvement 

in SNR and resolution upon 3D reconstruction.  

  

5.4.3. Particle selection 

After correcting all micrographs in the data set, good micrographs need to be 

selected based on particle distribution. Then, the labor intensive process of picking the 

particles from selected micrographs may begin. The particles need to be centered perfectly 

and all orientations need to be represented while picking the particles. Thus, user bias 

against less frequently occurring orientations that may have lower contrast must be 

avoided, since they are necessary for successful structure determination. Since the data 

was collected at extremely low dose, the contrast for most orientations was poor and in 

order to maximize the number of particles, picking was performed manually using the 

graphical user interface of RELION 2.0. 

The box size was adjusted to fit the particles (300 A). Once the co-ordinates were 

identified, the particles were assembled into a stack for further clustering based on their 

orientations. Using the RELION 2.0 package, 2D classification was performed where the 

particles were aligned and grouped into homogenous datasets. This is done to eliminate 

invalid particles / empty boxes and generate high-quality class averages that would 

significantly improve the SNR for 3D structure determination (Cheng et al., 2015). The 2D 

clustering is done by K-means algorithm which is a multi-reference alignment where each 

particle is compared to several seed templates and are assigned to the one they most 

resemble. This is done iteratively where based on the initial grouping, a new set of 

templates is generated and all particles are re-assigned (Frank, 2009) (Frank 2006). Using 

this ‘maximum likelihood approach’ initial ambiguous assignments are not carried 
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forward for processing. This increases SNR with each iteration of alignment and clustering 

leading to several class averages (of differing orientations that are well represented). 

 

All picked particles were clustered into 12 classes upon 2D classification. Upon 

examination, 4 of these classes were composed of bad particles or empty fields and were 

ignored for calculation of initial structures.  

The template of PSI structure solved by X-ray crystallography was not used as a 

template for initial model building and 3D structure was determined Ab initio using 

computational methods. In the case of RELION 2.0, this is described in a Bayesian 

likelihood framework, where optimization is performed by iteratively altering the 

 

Figure 5.10: Representative 2D classes. 
 

After 25 iterations of  alignment and clustering, a class of particles is 
generated that represents particles in the same orientation. Seen in the classes 

above are a) a transmembrane side-view of PSI, b) particles at an inclined 
angle and c) top view of the intact PSI trimer.  
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variables of a function till the most suitable ‘best’ values are identified (Punjani et al., 

2017). Additional information about the data is provided to define a unique structural 

solution i.e. ‘regularization’. The signal and the noise components of the data are described 

using Gaussian distributions and for reconstruction, these prior parameters are estimated 

by the data in every iteration as a function of spatial frequency. This generates the least 

noisy reconstruction because RELION considers the data while calculating the best 

possible filter, without user intervention (Scheres, 2012).   

 

5.4.4. Ab initio structure determination and refinement 

De novo structure determination and 3D classification was performed using 

Stochastic gradient descent (SGD) optimization scheme that works by quickly by selecting 

a random subset of images and computes a sum for several hundreds of such subsets. This 

way, SGD is insensitive to local optima in the data set and the solutions found are more 

effective than other methods. With 37,000 particles, SGD optimization resulted in a low 

resolution 3D map from random initialization (Punjani et.al., 2016). Further refinement 

leads to visualization of higher resolution features for the final map. Here, the orientation 

parameters of images (projections) are modified to better achieve a match with the 

reprojections computed by the initial structure. The progress of this is monitored by a 

particular indicator i.e. Fourier Shell Correlation (FSC) curve that indicates the value for 

SNR as a function of spatial frequency (Penczek 2010) that is an indicator of the resolution 

of the map. In order to obtain a FSC curve according to the gold-standard criterion 

(Henderson, 2013), the data is split into two random subsets and correlation coefficients 

(for resolution shells extracted from Fourier transforms) are calculated for both volumes 

independently. This is known to prevent over-fitting (noise accumulation over several 

iterations) and solutions obtained are reliable (Scheres, 2012). The resolution is cut-off at 
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the FSC threshold value of 0.143 that was selected based on relating results of EM and X-

ray crystallography (Rosenthal and Henderson, 2003). This co-related to a resolution of 

4.8 A for the final map. 

 

5.5. Preliminary data 

Figure 5.11 – 5.14 show various representations of the structure of PSI particle 

solved by Cryo EM at the resolution of 4.8 A. Stromal and luminal views are seen. The 

images are generated using UCSF chimera viewer (Pettersen 2004). Isosurface is the 3D 

representation of a volume which is determined by the permissible noise in the 

background. At low isosurface, values (0.002) more noise is permitted to be visualized and 

that depicts the immediate environment of the particle. Figure 5.13 illustrate low 

isosurface views of membrane top i.e. stromal and side view of PSI. Both these images 

clearly show the association of detergent molecules with the transmembrane region of PSI 

that gives a disc-like appearance to the structure.  

At high isosurface values of ~ 0.005, the sharp features of the PSI structure can be 

seen. These clearly depict the shape, orientation and comparative size of components. 

Unfortunately, the lack of high resolution details prevent from seeing kinks in helices to 

confirm amino acid residues, but as seen in Figure 5.14, the helices line up with the 

available density with high correlation confirming the validity of the structure.  
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Figure 5.11a: Stromal view of PSI structure. The humps comprised of 
subunits Psa C, Psa D and Psa E are seen on each monomer.  

 

 

Figure 5.11b: The luminal view of PSI looks very distinct from stromal 
view.  
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Figure 5.12: Transmembrane view of PSI 
The stromal hump extending beyond the transmembrane helices 

can be clearly seen in the side-view of PSI. 
 

 

 

Figure 5.13: Low iso-surface view of PSI structure (stromal 
and side views) 

Decreasing the isosurface limit permits noise and reveals disc-like 
shape of the averaged PSI particle and the lipid-DDM environment 
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The electron density of the map generated by Cryo-EM correlated perfectly with 

the sequence of PSI. As seen in Figure 5.14, the zoomed of transmembrane helices of 

central sub-unit A match very well with of the density of the map.   

 

Although the map needs further refinement and validation in the form of FSC maps 

and refinement parameters, the results obtained from preliminary analysis appear to be 

acceptable. Further processing would improve the structure factors by re-evaluating all 

model parameters. The structure quality also needs to be quantified to compare the 

current model with the crystallographic structure solved to 2.3 A. For improving the 

overall resolution of the structure, more data needs to be collected with better particle 

distribution in all orientations and probable differences in 3D conformations of PSI need 

to be explored. Improved number of particles would yield better SNR which would 

translate to visualization of high resolution features.  

 

Figure 5.14: Helices of PSI. 
 

Zoom-in of the core transmembrane helices of PSI shows great co-relation of 
the sequence with the available EM density. 
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5.6. Conclusion and Future prospect 

The structure of PSI isolated from T. elongatus was solved using Cryo-EM to 4.8 A 

using aberration corrected state-of-the-art Titan Krios microscope. The purified particles 

were vitrified using FEI vitrobot on holey carbon grids. These frozen grids were loaded on 

the microscope and data collection was automated using SerialEM. The micrographs were 

corrected for distortions created by CTF and beam-induced motion. Sequentially, particles 

were picked manually using RELION 2.0 software package and the picked particles were 

used for 2D clustering and generating class averages based on orientation. These were 

further classified and re-aligned for maximizing SNR and an initial model was generated. 

This was further perfected by refinement and the resolution was cut-off at 4.8 A according 

to the FSC gold-standard.  

Initial analysis depicts minor differences between the monomers identified by 

Cryo-EM. But the structure needs further refinement and validation before any 

interpretations can be made. Unfortunately, because of the lack of high resolution features 

in the structure all co-factors cannot be precisely assigned and their orientation cannot be 

visualized. But the success in retrieving phases and building an ab initio model from 

minimal known parameters is promising.  

An overlay of the PSI monomers would highlight any possible differences between 

them and that may indicate if any monomer has a higher tendency for excitation energy 

transfer. Additionally an overall overlay of Crystallographic and Electron microscopic 

maps would help in understanding the differences induced in large membrane complexes 

by complimentary techniques.  

Finally, a combination of using the crystallographic data along with EM phases 

would yield an interesting map. Currently the phases in the structure described in Chapter 

4 are derived by MR of the structure solved in 2001 (PDB ID: 1JB0). Whether the use of 
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phases generated by using a complimentary technique affects the cofactor assignment 

would be an extremely informative analysis. 
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CHAPTER 6 

SUMMARY OF OTHER PUBLICATIONS 

This chapter covers the various projects associated with my work that resulted in 

peer-reviewed journal articles. They are categorized by the area of application to 

highlight the scope of research. Every publication has an abstract followed by a brief 

description of the work and my contribution to it. 

6.1. Method development at X-ray sources  

6.1.1. Serial millisecond crystallography (Martin-Garcia et al., 2017) 

(IUCrJ 4.4 (2017): 439-454) 

Jose M. Martin-Garcia, Chelsie E. Conrad, Garrett Nelson, Natasha Stander, Nadia A. 
Zatsepin, James Zook, Lan Zhu, James Geiger, Eugene Chun, David Kissick, Mark C. 

Hilgart, Craig Ogata, Andrii Ishchenko, Nirupa Nagaratnam, Shatabdi Roy-
Chowdhury, Jesse Coe, Ganesh Subramanian, Alexander Schaffer, Daniel James, 

Gihan Ketwala, Nagarajan Venugopalan, Shenglan Xu, Stephen Corcoran, Dale 
Ferguson, Uwe Weierstall, John C. H. Spence, Vadim Cherezov, Petra Fromme, Robert 

F. Fischetti and Wei Liu. 
 

Abstract: Crystal structure determination of biological macromolecules using the novel 
technique of serial femtosecond crystallography (SFX) is being severely limited by the 
scarcity of X-ray free electron laser (XFEL) sources. However, recent and future upgrades 
render synchrotron radiation sources at micro-focused beamlines suitable for room 
temperature serial crystallography data collection as well. Due to the longer exposure 
times needed at synchrotrons, serial data collection is termed serial millisecond 
crystallography (SMX). As a result, the number of SMX experiments is rapidly growing, 
with a dozen experiments reported so far. Here, we present the first high-viscosity 
injector-based SMX experiments carried out at a U.S. synchrotron source, the Advanced 
Photon Source (APS). Micro-crystals (5-20 µm) of a wide variety of proteins including 
lysozyme, thaumatin, phycocyanin, the human A2A adenosine receptor (A2AAR), the 
soluble fragment of the membrane lipoprotein Flpp3, 3-deoxy-D-manno-2-octulosunate-
8-phosphate synthase (KDO8PS), and proteinase K were screened. Crystals suspended in 
lipidic cubic phase (LCP) or a high molecular weight poly (ethylene oxide) (PEO) 
(MW=8,000,000) were delivered to the beam using a high viscosity injector. In-house 
data reduction (hit-finding) software developed at APS as well as SFX data-reduction and 
analysis software suites, Cheetah and CrystFEL, enabled efficient on-site SMX data 
monitoring, reduction and processing. The best diffracting crystals were from A2AAR, 
phycocyanin, Flpp3, KDO8PS, proteinase K, thaumatin and lysozyme, with hit rates of 3.0 
%, 5.0 %, 11.6 %, 1.5 %, 4.2 %, 6.0 % and 34.2 %, respectively. Complete data sets of 
A2AAR, phycocyanin, Flpp3, proteinase K, and lysozyme were collected and their 
structures were determined at 3.2 Å, 3.1 Å, 3.0 Å, 2.65 Å, and 2.05 Å resolution, 
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respectively. Our data demonstrate the feasibility of serial millisecond crystallography 
from 5–20 m crystals using a high viscosity injector at APS.  The resolution of the crystal 
structures obtained in this study was dictated by the current flux density and crystal size, 
but upcoming developments in beamline optics and the planned APS-U upgrade will 
increase intensity by two orders of magnitude. These developments will enable structure 
determination from smaller and/or weakly diffracting micro-crystals.    

 

Nanocrystals 

and serial 

crystallography has 

distinct advantages 

associated with them 

and this paper 

exhibits a proof of 

principle of 

performing serial 

experiments at 

synchrotrons. Viscous 

gel injector was used 

at Advance Photon 

Source (APS) with 

lipidic cubic phase 

(LCP) and 6 % high 

molecular weight to 

capture diffraction 

patterns with 

millisecond exposures 

 

 
Figure 6.1: Experimental setup at the GM/CA 23-ID-D 

beamline. 
 

Schematic diagram of the setup. (b) LCP injector (Weierstall 
et al., 2014) mounted on translation stages (not shown). The 
catcher is also shown. (c) View of the LCP stream extruding 
out of a 50 mm glass capillary nozzle. The intersection point 
of the two white dashed lines indicates the position of the X-

ray beam. 
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with microfocus X-rays. Structures of several soluble protein samples and an integral 

membrane protein (A2AAR) were solved better than 3 A resolution.  

My contribution to this publication was isolation, purification and crystallization 

of phycocyanin (PC). In addition, I also contributed in data collection at the synchrotron, 

along with sample injection and maintaining an extensive log for data analysis. 

 

6.1.2. Femtosecond X-ray diffraction from an aerosolized beam of protein 

nanocrystals (Awel et al., 2018) 

(J. Appl. Cryst. (2018). 51, 133–139) 

Salah Awel, Richard A. Kirian, Max O. Wiedorn, Kenneth R. Beyerlein, Nils Roth, Daniel 
A. Horke, Dominik Oberthu¨r, Juraj Knoska, Valerio Mariani, Andrew Morgan, Luigi 
Adriano, Alexandra Tolstikova, P. Lourdu Xavier, Oleksandr Yefanov, Andrew Aquila, 
Anton Barty, Shatabdi Roy-Chowdhury, Mark S. Hunter, Daniel James, Joseph S. 
Robinson, Uwe Weierstall, Andrei V. Rode, Sasˇa Bajt, Jochen Ku¨pper and Henry N. 

Chapman 
 

Abstract:  High-resolution Bragg diffraction from aerosolized single granulovirus 
nanocrystals using an X-ray free-electron laser is demonstrated. The outer dimensions of 
the in-vacuum aerosol injector components are identical to conventional liquid-microjet 
nozzles used in serial diffraction experiments, which allows the injector to be utilized with 
standard mountings. As compared with liquid-jet injection, the X-ray scattering 
background is reduced by several orders of magnitude by the use of helium carrier gas 
rather than liquid. Such reduction is required for diffraction measurements of small 
macromolecular nanocrystals and single particles. High particle speeds are achieved, 
making the approach suitable for use at upcoming high-repetition-rate facilities. 

 

Convergent nozzle aerosol injector (CNAI) uses He gas for focusing and generates 

a jet that produces extremely low background scattering in the diffraction patterns. This 

is significant for weakly diffracting sensitive crystal samples and continuous diffraction 

based experiments. Diffraction of granulovirus (GV) was obtained till the edge of the 

detector (~ 1.9 A). 
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My contribution for this experiment was optimizing GV crystalline samples in 

water based medium for reducing pressure required for injection and ease of aerosol 

generation.  

 

6.1.3. Macromolecular diffractive imaging using imperfect crystals (Ayyer et 

al., 2016) 

(Nature 530 (7589), 202-206, 2016) 

Kartik Ayyer, Oleksandr M. Yefanov, Dominik Oberthür, Shatabdi Roy-Chowdhury, 
Lorenzo Galli, Valerio Mariani, Shibom Basu, Jesse Coe, Chelsie E. Conrad, Raimund 

Fromme, Alexander Schaffer, Katerina Dörner, Daniel James, Christopher Kupitz, 
Markus Metz, Garrett Nelson, Paulraj Lourdu Xavier, Kenneth R. Beyerlein, Marius 
Schmidt, Iosifina Sarrou, John C. H. Spence, Uwe Weierstall, Thomas A. White, Jay-
How Yang, Yun Zhao, Mengning Liang, Andrew Aquila, Mark S. Hunter, Joseph S. 

Robinson, Jason E. Koglin, Sébastien Boutet, Petra Fromme, Anton Barty & Henry N. 
Chapman 

 

 

 
Figure 6.2: CNAI assembly and its operation during the CXI 

experiment. 
 

(a) Sketch of the basic aerosol generation and transportation setup. (b) The 
aerosol nozzle mounted on the nozzle rod. (c) Time integrated image of a laser-
illuminated stream of GV particles exiting the CNAI, recorded using the inline 
microscope at the CXI instrument. This image was formed by averaging over 
3.7 min, with a running median background subtracted from each frame. The 
CNAI tip is seen in the left portion of the image, and the approximate X-ray 

focal point is indicated by the star. 
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Abstract: The three-dimensional structures of macromolecules and their complexes are 
mainly elucidated by X-ray protein crystallography. A major limitation of this method is 
access to high-quality crystals, which is necessary to ensure X-ray diffraction extends to 
sufficiently large scattering angles and hence yields information of sufficiently high 
resolution with which to solve the crystal structure. The observation that crystals with 
reduced unit-cell volumes and tighter macromolecular packing often produce higher-
resolution Bragg peaks suggests that crystallographic resolution for some macromolecules 
may be limited not by their heterogeneity, but by a deviation of strict positional ordering 
of the crystalline lattice. Such displacements of molecules from the ideal lattice give rise 
to a continuous diffraction pattern that is equal to the incoherent sum of diffraction from 
rigid individual molecular complexes aligned along several discrete crystallographic 
orientations and that, consequently, contains more information than Bragg peaks alone. 
Although such continuous diffraction patterns have long been observed—and are of 
interest as a source of information about the dynamics of proteins4—they have not been 
used for structure determination. Here we show for crystals of the integral membrane 
protein complex photosystem II that lattice disorder increases the information content 
and the resolution of the diffraction pattern well beyond the 4.5-ångström limit of 
measurable Bragg peaks, which allows us to phase the pattern directly. Using the 
molecular envelope conventionally determined at 4.5 ångströms as a constraint, we obtain 
a static image of the photosystem II dimer at a resolution of 3.5 ångströms. This result 
shows that continuous diffraction can be used to overcome what have long been supposed 
to be the resolution limits of macromolecular crystallography, using a method that exploits 
commonly encountered imperfect crystals and enables modelfree phasing. 
 

Continuous diffraction is seen as diffused streaks beyond the Bragg limit. This 

remarkable paper uses PSII as a model system to prove that the diffused diffraction 

obtained from microcrystals can be used to improve the resolution of structures solved 

by using Bragg peaks alone. This paper has been discussed greatly in chapter 3. 

I took a lead role in sample preparation for this experiment by optimizing protein 

purification and crystallization. Since sample had to be handled in dark, I also performed 

sample loading and perfected conditions for highest hit-rate for maximum data 

collection.  
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Figure 6.3: Molecular coherent diffraction. 
 
 

a, An XFEL snapshot ‘still’ diffraction pattern of a PSII microcrystal shows a 
weak speckle structure beyond the extent of Bragg peaks, which is enhanced 

in this figure by limiting the displayed pixel values. b, Structure factors 
obtained from Bragg-peak counts from 25,585 still patterns, displayed as a 
precession-style pattern of the [001] zone axis. c, A rendering of the entire 
3D diffraction volume assembled from the 2,848 strongest patterns. d, A 

central section of the diffraction volume in c normal to the [100] axis. 
Speckles are clearly observed beyond the 4.5-Å extent of Bragg diffraction 

(indicated by the white circles in b and d) to the edge of the detector. 
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6.1.4. Microfluidic sorting of protein nanocrystals by size for X-ray free-

electron laser diffraction (Abdallah et al., 2015b) 

(Struct. Dyn. 2, 041719 (2015)) 

Bahige G. Abdallah, Nadia A. Zatsepin, Shatabdi Roy-Chowdhury, Jesse Coe, Chelsie 
E. Conrad, Katerina D€orner, Raymond G. Sierra, Hilary P. Stevenson, Fernanda 

Camacho-Alanis, Thomas D. Grant, Garrett Nelson, Daniel James, Guillermo Calero, 
Rebekka M. Wachter, John C. H. Spence, Uwe Weierstall, Petra Fromme, and Alexandra 

Ros 
 

Abstract: The advent and application of the X-ray free-electron laser (XFEL) has 
uncovered the structures of proteins that could not previously be solved using traditional 
crystallography. While this new technology is powerful, optimization of the process is still 
needed to improve data quality and analysis efficiency. One area is sample heterogeneity, 
where variations in crystal size (among other factors) lead to the requirement of large data 
sets (and thus 10–100 mg of protein) for determining accurate structure factors. To 
decrease sample dispersity, we developed a high-throughput microfluidic sorter operating 
on the principle of dielectrophoresis, whereby polydisperse particles can be transported 
into various fluid streams for size fractionation. Using this microsorter, we isolated several 
milliliters of photosystem I nanocrystal fractions ranging from 200 to 600 nm in size as 
characterized by dynamic light scattering, nanoparticle tracking, and electron microscopy. 
Sorted nanocrystals were delivered in a liquid jet via the gas dynamic virtual nozzle into 
the path of the XFEL at the Linac Coherent Light Source. We obtained diffraction to 4A° 
resolution, indicating that the small crystals were not damaged by the sorting process. We 
also observed the shape transforms of photosystem I nanocrystals, demonstrating that our 
device can optimize data collection for the shape transform-based phasing method. Using 
simulations, we show that narrow crystal size distributions can significantly improve 
merged data quality in serial crystallography. From this proof-of-concept work, we expect 
that the automated size-sorting of protein crystals will become an important step for 
sample production by reducing the amount of protein needed for a high quality final 
structure and the development of novel phasing methods that exploit inter-Bragg 
reflection intensities or use variations in beam intensity for radiation damage-induced 
phasing. This method will also permit an analysis of the dependence of crystal quality on 
crystal size. 
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This article reports the 

further development and 

optimization of a microfluidic 

device for sorting nanocrystals for 

segregation by size using 

dielectrophoretic focusing with 

special focus on fast sorting 

speeds and high volume, to match 

the high sample consumption and 

flow rates required for SFX 

sample delivery. The fraction that 

was separated with the device 

showed a marked improvement in 

size homogeneity as seen in the 

histogram in figure 6.5, showing a 

size distribution between of 

between 150 and 550 nm reported 

with DLS and 125 to 300 nm 

measured with NTA compared to 

the unsorted size distribution of 

150 nm to 10 µm measured with 

DLS. Data sets were collected on 

both sorted and non-sorted 

fractions of PSI crystals and these 

 

 
Figure 6.4: DLS heat map of sorted vs 

unsorted crystals 
 

(a) the PSI crystal suspension prior to 
fractionation, indicating a wide size distribution 

(200nm to 20 mm), and (b) a PSI crystal fraction 
collected from the [S] channels indicating a 

narrowed submicron size distribution (200 nm to 
600 nm). Signal increases from blue (lowest) to red 

(highest). (c) and (d) show DLS histograms 
corresponding to (a) and (b), respectively. (e) and 

(f) show DLS histograms of the PSI suspension 
prior to sorting (200 nm to 10 lm) and an [S] 

channel fraction (150 nm to 550 nm), respectively, 
measured using a cuvette-based instrument for 

comparison with (a)–(d), confirming the 
differences in the size distribution. 
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were evaluated to ~4 Å, indicating no significant loss of resolution due to processing 

through the device. 

My involvement was in isolation, purification and crystallization of PSI. I also 

performed optimization of on-site crystal concentration and sample delivery for SFX data 

collection. 

 

6.1.5. Serial femtosecond crystallography of soluble proteins in lipidic cubic 

phase (Fromme et al., 2015) 

(IUCrJ (2015). 2, 545–551) 

Raimund Fromme, Andrii Ishchenko, Markus Metz, Shatabdi Roy Chowdhury, 
Shibom Basu, Se´bastien Boutet, Petra Fromme, Thomas A. White, Anton Barty, John C. 

H. Spence, Uwe Weierstall, Wei Liu and Vadim Cherezov 
 

Abstract: Serial femtosecond crystallography (SFX) at X-ray free-electron lasers (XFELs) 
enables high-resolution protein structure determination using micrometre-sized crystals 
at room temperature with minimal effects from radiation damage. SFX requires a steady 
supply of microcrystals intersecting the XFEL beam at random orientations. An LCP–SFX 
method has recently been introduced in which microcrystals of membrane proteins are 
grown and delivered for SFX data collection inside a gel-like membrane-mimetic matrix, 
known as lipidic cubic phase (LCP), using a special LCP microextrusion injector. Here, it 
is demonstrated that LCP can also be used as a suitable carrier medium for microcrystals 
of soluble proteins, enabling a dramatic reduction in the amount of crystallized protein 
required for data collection compared with crystals delivered by liquid injectors. High-
quality LCP–SFX data sets were collected for two soluble proteins, lysozyme and 
phycocyanin, using less than 0.1 mg of each protein. 

 

Viscous gel injectors were developed for delivering sensitive GPCR microcrystals 

grown in LCP but since they ran at very low flow-rates (4-10 nL/min) the amount of 

sample required was extremely low. This publication discusses that making LCP in 

precipitant solution does not induce damage on soluble globular protein crystals. My 

contribution was in isolating, purifying and crystallizing PC while optimizing precipitate 

conditions in LCP. I also wrote the methods section of the manuscript that describes my 

contributions. 
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6.1.6. A novel inert crystal delivery medium for serial femtosecond 

crystallography (Conrad et al., 2015) 

(IUCrJ (2015). 2, 421–430) 

Chelsie E. Conrad, Shibom Basu, Daniel James, Dingjie Wang, Alexander Schaffer, 
Shatabdi Roy-Chowdhury, Nadia A. Zatsepin, Andrew Aquila, Jesse Coe, Cornelius 

Gati, Mark S. Hunter, Jason E. Koglin, Christopher Kupitz, Garrett Nelson, Ganesh 
Subramanian, Thomas A. White, Yun Zhao, James Zook, Se´bastien Boutet, Vadim 

Cherezov, John C. H. Spence, Raimund Fromme, Uwe Weierstall and Petra Fromme 
 

Abstract: Serial femtosecond crystallography (SFX) has opened a new era in 
crystallography by permitting nearly damage-free, room-temperature structure 
determination of challenging proteins such as membrane proteins. In SFX, femtosecond 

 

Figure 6.5: Representative crystal images and diffraction 
patterns. 

 
(a, b) Pictures of crystals embedded in LCP for lysozyme (a) and PC 

(b). (c, d) Full diffraction patterns for lysozyme (c) and PC (d). 
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X-ray free-electron laser pulses produce diffraction snapshots from nanocrystals and 
microcrystals delivered in a liquid jet, which leads to high protein consumption. A slow-
moving stream of agarose has been developed as a new crystal delivery medium for SFX. 
It has low background scattering, is compatible with both soluble and membrane proteins, 
and can deliver the protein crystals at a wide range of temperatures down to 4C. Using this 
crystalladen agarose stream, the structure of a multi-subunit complex, phycocyanin, was 
solved to 2.5 A ° resolution using 300 mg of microcrystals embedded into the agarose 
medium post-crystallization. The agarose delivery method reduces protein consumption 
by at least 100-fold and has the potential to be used for a diverse population of proteins, 
including membrane protein complexes. 
 

 

Figure 6.6: Diagram showing how the crystals are embedded into 
the agarose medium. 

 
(a) A dense pellet of crystals is drawn up into a syringe, (b) the agarose 
solution (contained in a 15 ml centrifuge tube) is submerged in boiling 
water until the agarose dissolves, the liquid agarose is drawn up into a 

warmed syringe and the agarose is allowed to  el and equilibrate to room 
temperature, (c) the protein crystals and agarose syringe are connected by 

a syringe coupler and (d) using the syringe coupler, the crystals are 
embedded throughout the agarose by moving the plungers back and forth. 
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The objective of this paper was to minimize sample consumption for SFX by 

mixing crystals in viscous medium. Low gelling agarose was tested and proven to work at 

XFEL and gave a lower background scattering than LCP. My contribution was in 

isolating, purifying and crystallizing PC while optimizing precipitate conditions for 

keeping  crystals stable in agarose.  

 

6.2. Method development for crystal optimization 

6.2.1. Protein Crystallization in an Actuated Microfluidic Nanowell Device 

(Abdallah et al., 2016) 

(Cryst Growth Des. 2016 ; 16(4): 2074–2082) 

Bahige G. Abdallah, Shatabdi Roy-Chowdhury, Raimund Fromme, Petra Fromme 
and Alexandra Ros 

 

Abstract: Protein crystallization is a major bottleneck of structure determination by X-ray 
crystallography, hampering the process by years in some cases. Numerous matrix 
screening trials using significant amounts of protein are often applied, while a systematic 
approach with phase diagram determination is prohibited for many proteins that can only 
be expressed in small amounts. Here, we demonstrate a microfluidic nanowell device 
implementing protein crystallization and phase diagram screening using nanoscale 
volumes of protein solution per trial. The device is made with cost-effective materials and 
is completely automated for efficient and economical experimentation. In the developed 
device, 170 trials can be realized with unique concentrations of protein and precipitant 
established by gradient generation and isolated by elastomeric valving for crystallization 
incubation. Moreover, this device can be further downscaled to smaller nanowell volumes 
and larger scale integration. The device was calibrated using a fluorescent dye and 
compared to a numerical model where concentrations of each trial can be quantified to 
establish crystallization phase diagrams. Using this device, we successfully crystallized 
lysozyme and Cphycocyanin, as visualized by compatible crystal imaging techniques such 
as bright-field microscopy, UV fluorescence, and second-order nonlinear imaging of chiral 
crystals. Concentrations yielding observed crystal formation were quantified and used to 
determine regions of the crystallization phase space for both proteins. Low sample 
consumption and compatibility with a variety of proteins and imaging techniques make 
this device a powerful tool for systematic crystallization studies. 
 

 For screening conditions for crystallization, a large number of parameters need to 

be altered. Microfluidic platforms not only provide an opportunity to tightly control 
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variable conditions in a versatile and economic way, but they also reduce sample 

consumption significantly. This article describes an automated microfluidic device that 

implemented batch-type crystallization condition screen using only 25 nL sample per 

well. The method is based on a gradient generator system that created many protein and 

precipitant screening conditions by splitting and recombining input solutions through an 

array of channels. The wells were separated by a ‘doormat’ valve and the material 

permitted protein crystallization along with the ability to visualize the droplets by 

brightfield microscopy, UV-fluorescence and SONICC. 

 The developed device exhibits >200 wells and generates 170 unique 

crystallization conditions (due to the outermost wells serving as a control containing 

only one of the components). The set-up successfully produced crystals of lysozyme 

using NaCl as the precipitant and microcrystals of PC were seen with PEG-3350.  

 

Figure 6.7: Overview schematic of the nano-well gradient 
generator 

 
a) with incorporated “doormat” valve system (red dashes) showing 207 

wells. (b) Zoom-in of the highlighted region in (a) detailing the “split and 
recombine” gradient generation design with incorporated valve system. 

Each well is isolated in the fluid layer and becomes connected by the 
overlapping valve region during the filling step. 
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My contribution in this experiment was isolation, purification, and establishing 

crystallization conditions for PC. I provided protein and precipitant at concentrations 

that were optimized for batch crystallization. 

 

6.2.2. High Throughput Protein Nanocrystal Fractionation in a Microfluidic 

Sorter (Abdallah et al., 2015a) 

(Anal. Chem. 2015, 87, 4159−4167) 

Bahige G. Abdallah, Shatabdi Roy-Chowdhury, Jesse Coe, Petra Fromme, and 
Alexandra Ros 

 

Abstract: Protein crystallography is transitioning into a new generation with the 
introduction of the X-ray free electron laser, which can be used to solve the structures of 
complex proteins via serial femtosecond crystallography. Sample characteristics play a 
critical role in successful implementation of this new technology, whereby a small, narrow 
protein crystal size distribution is desired to provide high quality diffraction data. To 
provide such a sample, we developed a microfluidic device that facilitates 
dielectrophoretic sorting of heterogeneous particle mixtures into various size fractions. 
The first generation device demonstrated great potential and success toward this 
endeavor; thus, in this work, we present a comprehensive optimization study to improve 
throughput and control over sorting outcomes. First, device geometry was designed 
considering a variety of criteria, and applied potentials were modeled to determine the 

 

Figure 6.8: Microfluidic sorter improves particle size distribution 
 

a) DLS heat map illustrating the broad size distribution (200 nm-20 µm) 
of bulk PSI suspension. b) Fluorescence microscopy image of crystals being 
sorted where large crystals are focused and small micrometer sized crystals 

are deflected and c) depicts DLS map of submicrometer fraction that 
depicts the effect of sorting. 
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scheme achieving the largest sorting efficiency for isolating nanoparticles from 
microparticles. Further, to investigate sorting efficiency within the nanoparticle regime, 
critical geometrical dimensions and input parameters were optimized to achieve high 
sorting efficiencies. Experiments revealed fractionation of nanobeads from microbeads in 
the optimized device with high sorting efficiencies, and protein crystals were sorted into 
submicrometer size fractions as desired for future serial femtosecond crystallography 
experiments. 
 

This article reports on the development, characterization and testing of a novel 

microfluidic device designed to sort nanocrystals. The importance of size homogeneity 

and interesting properties of discrete crystals have been explained in previous chapters. 

The device described here aims to allow optimization of the homogeneity of the 

nanocrystal size post-crystallogenesis through a fractionation technique. The method 

used for crystal size segregation is based upon dielectrophoretic separation, utilizing 

inhomogeneities in an induced electric field within microfluidic channels that creates a 

flow profile that is sensitive to the size of the particle. 

The modelled separation of nanocrystals was validated, showing sorting 

efficiencies of 91.6% and 93.8% for particle sizes of 500 nm and 2.5 µm respectively, as 

characterized by DLS and NTA. My contribution to this research was production of PSI 

nanocrystal sample as well as size characterization using DLS and NTA. I also 

contributed to the experiments conducted together with other authors and helped in 

editing the manuscript. 

 

6.2.3. Microcrystallization techniques for serial femtosecond 

crystallography using photosystem II from Thermosynechococcus elongatus 

as a model system (C. Kupitz et al., 2014) 

(Phil. Trans. R. Soc. B 369: 20130316) 

Christopher Kupitz, Ingo Grotjohann, Chelsie E. Conrad, Shatabdi Roy-Chowdhury, 
Raimund Fromme and Petra Fromme 
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Abstract: Serial femtosecond crystallography (SFX) is a new emerging method, where X-
ray diffraction data are collected from a fully hydrated stream of nano- or microcrystals of 
biomolecules in their mother liquor using high-energy, X-ray free-electron lasers. The 
success of SFX experiments strongly depends on the ability to grow large amounts of well-
ordered nano/microcrystals of homogeneous size distribution. While methods to grow 
large single crystals have been extensively explored in the past, method developments to 
grow nano/ microcrystals in sufficient amounts for SFX experiments are still in their 
infancy. Here, we describe and compare three methods (batch, free interface diffusion 
(FID) and FID centrifugation) for growth of nano/microcrystals for time-resolved SFX 
experiments using the large membrane protein complex photosystem II as a model 
system. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.9: : Schematic of the set-up for crystallization 

experiments 
 

with FID (a,b ) and FID centrifugation (c ). (a ) Experimental set-up in 
which the protein solution is carefully layered on top of the precipitant 

solution, where only few crystals form at the interface. (b ) In the inverse 
set-up the precipitant solution is added dropwise to the protein solution, 
inducing increased transient nucleation at the drop–protein interface. (c 

) The experiment shown in (b ) is continued by centrifugation. The 
nuclei formed in the protein solution are accelerated by centrifugation 

towards the interface zone, where they grow into nano- or microcrystals. 
When they reach a specific size they sediment into the precipitant zone, 

where they stop growing. Thereby nano- or microcrystals with a very 
narrow size distribution can be achieved. 
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 This article summarizes various methods available for growth of microcrystals for 

SFX. Batch method has been described in chapter 3, but free-interface diffusion (FID) 

has also worked well for 1-5 µm sized crystals. Using PSII as a model protein, many 

crystallization conditions were explored and some of them produced microcrystals.  

 My contribution here was isolation, purification and crystallization of PSII. I 

mainly contributed in established conditions for FID by centrifugation and wrote that 

section of the manuscript. 

 

6.3. Time-resolved studies at X-ray free electron sources 

6.3.1. Structural enzymology using X-ray free electron lasers (Kupitz et al., 

2017) 

(Struct. Dyn. 4, 044003 (2017)) 

Christopher Kupitz, Jose L. Olmos, Jr., Mark Holl, Lee Tremblay, Kanupriya Pande, 
Suraj Pandey, Dominik Oberth€ur, Mark Hunter, Mengning Liang, Andrew Aquila, 

Jason Tenboer, George Calvey, Andrea Katz, Yujie Chen, Max O. Wiedorn, Juraj Knoska, 
Alke Meents, Valerio Majriani, Tyler Norwood, Ishwor Poudyal, Thomas Grant, Mitchell 

D. Miller, Weijun Xu, Aleksandra Tolstikova, Andrew Morgan, Markus Metz, Jose M. 
Martin-Garcia, James D. Zook, Shatabdi Roy-Chowdhury, Jesse Coe, Nirupa 

Nagaratnam, Domingo Meza, Raimund Fromme, Shibom Basu, Matthias Frank, Thomas 
White, Anton Barty, Sasa Bajt, Oleksandr Yefanov, Henry N. Chapman, Nadia Zatsepin, 

Garrett Nelson, Uwe Weierstall, John Spence, Peter Schwander, Lois Pollack, Petra 
Fromme, Abbas Ourmazd, George N. Phillips, Jr., and Marius Schmidt 

 

Abstract: Mix-and-inject serial crystallography (MISC) is a technique designed to image 
enzyme catalyzed reactions in which small protein crystals are mixed with a substrate just 
prior to being probed by an X-ray pulse. This approach offers several advantages over flow 
cell studies. It provides (i) room temperature structures at near atomic resolution, (ii) time 
resolution ranging from microseconds to seconds, and (iii) convenient reaction initiation. 
It outruns radiation damage by using femtosecond X-ray pulses allowing damage and 
chemistry to be separated. Here, we demonstrate that MISC is feasible at an X-ray free 
electron laser by studying the reaction of M. tuberculosis ß-lactamase microcrystals with 
ceftriaxone antibiotic solution. Electron density maps of the apo-ß lactamase and of the 
ceftriaxone bound form were obtained at 2.8A ° & 2.4A ° resolution, respectively. These 
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results pave the way to study cyclic and non-cyclic reactions and represent a new field of 
time-resolved structural dynamics for numerous substrate-triggered biological reactions. 
 
 This publication describes results from mix-and-inject TR-SFX on β-lactamase 

(BlaC) from 

Mycobacterium 

tuberculosis in both its apo 

form and in complex with 

the antibiotic ceftriaxone. 

This marks one of the first 

published diffusive mixing 

TR-SFX experiments.  

The tuberculosis 

causing bacteria M. 

tuberculosis is resistant to 

treatment with antibiotics 

due to the evolution of its 

BlaC protein which uses a 

serine residue to open the 

β-lactam ring via nucleophilic attack, rendering the antibiotic inactive. In order to 

combat this medicinally, clarity on the mechanism of this inactivation is needed and so 

visualization of the structures along the reaction timeline was desired. A T-junction was 

used to mix crystals with a 2-3 µm thickness with a solution of Ceftriaxone using a 15 

µL/min flow rate of crystal slurry and a 60 µL/min with a time delay of ~2 sec, leading to 

steady state data collection (turnover rate had been measured to be 49 +/- 17/min). 

Structures of the apo (2.8 Å) and substrate bound (2.4 Å) enzyme were achieved from 

collection of 12,853 and 22,646 indexed diffraction patterns respectively. Difference 

 

Figure 6.10: Data collection schematic showing 
the T-junction set-up. 

 
This was used for a mixing time of about 2 s. The T-
junction was placed outside of the nozzle rod in our 
experiment but could also be engineered to fit inside 

closer to the interaction region or shorter mixing 
times. 
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electron density maps exhibit strong evidence of successful diffusion into the binding 

pocket by Ceftriaxone. This provides a path forward for uncovering unknown 

intermediates at higher temporal resolution in the push for mechanistic understanding.  

My contributions to this work included sample characterization and handling, 

establishing conditions for injection of crystal suspension and I took the lead in sample 

loading and delivery.  

 

6.3.2. The room temperature crystal structure of a bacterial phytochrome 

determined by serial femtosecond crystallography (Edlund et al., 2016) 

(Scientific Reports 6:35279 (2016)) 

Petra Edlund, Heikki Takala, Elin Claesson, Léocadie Henry, Robert Dods, Heli 
Lehtivuori, Matthijs Panman, Kanupriya Pande, Thomas White, Takanori Nakane, Oskar 
Berntsson, Emil Gustavsson, Petra Båth, Vaibhav Modi, Shatabdi Roy-Chowdhury, 

James Zook, Peter Berntsen, Suraj Pandey, Ishwor Poudyal, Jason Tenboer, Christopher 
Kupitz, Anton Barty, Petra Fromme, Jake D. Koralek, Tomoyuki Tanaka, John Spence, 
Mengning Liang, Mark S. Hunter, Sebastien Boutet, Eriko Nango, Keith Moffat, Gerrit 

Groenhof, Janne Ihalainen, Emina A. Stojković, Marius Schmidt & Sebastian Westenhoff 
 

Abstract: Phytochromes are a family of photoreceptors that control light responses of 
plants, fungi and bacteria. A sequence of structural changes, which is not yet fully 
understood, leads to activation of an output domain. Time-resolved serial femtosecond 
crystallography (SFX) can potentially shine light on these conformational changes. Here 
we report the room temperature crystal structure of the chromophorebinding domains of 
the Deinococcus radiodurans phytochrome at 2.1 Å resolution. The structure was obtained 
by serial femtosecond X-ray crystallography from microcrystals at an X-ray free electron 
laser. We find overall good agreement compared to a crystal structure at 1.35 Å resolution 
derived from conventional crystallography at cryogenic temperatures, which we also 
report here. The thioether linkage between chromophore and protein is subject to 
positional ambiguity at the synchrotron, but is fully resolved with SFX. The study paves 
the way for time-resolved structural investigations of the phytochrome photocycle with 
time-resolved SFX. 
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 Phytochromes indirectly control light-dependent metabolic pathways in various 

organisms. This article compares structures of in a new crystal form of the wild-type 

phytochrome PAS-GAF domains from D. radiodurans solved using cryogenic conditions 

(1.35 A) and at XFELs SACLA (2.5 A) and LCLS (2.2 A). Apart from a few differences, the 

chromophore shows identical conformation in all structures, as confirmed using 

composite omit maps.  

 

 
Figure 6.11: Comparison of Cryo and SFX structures to earlier 

published PAS-GAF structures. 
 
a) Comparison of the biliverdin conformation and cystein24 thioether linkage 

of Cryo and SFX structures with previously reported structures. (b) 
Comparison of the SFX structure and 4Q0H9 PAS-GAF-structures reveals 
differences in the D- and A-ring orientation, the thioether linkage and the 

positions of Tyr263, Met267, Tyr173 and the residues 17–25 and 184–186. The 
grey water (marked by red arrow) is only observable in the Cryo structure 
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 I took a lead role in sample loading and sample delivery in limited light 

conditions at LCLS. I also helped the lead authors in finding ideal conditions for crystal 

crushing and optimized crystal density and size for delivery by GDVN. 

6.3.3. Femtosecond structural dynamics drives the trans/cis isomerization 

in photoactive yellow protein (Pande et al., 2016) 

(Science VOL 352 ISSUE 6286 2016) 

Kanupriya Pande, Christopher D. M. Hutchison, Gerrit Groenhof, Andy Aquila, Josef S. 
Robinson, Jason Tenboer, Shibom Basu, Sébastien Boutet, Daniel P. DePonte, Mengning 

Liang, Thomas A. White, Nadia A. Zatsepin, Oleksandr Yefanov, Dmitry Morozov, 
Dominik Oberthuer, Cornelius Gati, Ganesh Subramanian, Daniel James, Yun Zhao, 

Jake Koralek, Jennifer Brayshaw, Christopher Kupitz, Chelsie Conrad, Shatabdi Roy-
Chowdhury, Jesse D. Coe, Markus Metz, Paulraj Lourdu Xavier, Thomas D. Grant, 
Jason E. Koglin, Gihan Ketawala, Raimund Fromme, Vukica Šrajer, Robert Henning, 

John C. H. Spence, Abbas Ourmazd, Peter Schwander, Uwe Weierstall, Matthias Frank, 
Petra Fromme, Anton Barty, Henry N. Chapman, Keith Moffat, Jasper J. van Thor, 

Marius Schmidt 
 

Abstract: A variety of organisms have evolved mechanisms to detect and respond to light, 
in which the response is mediated by protein structural changes after photon absorption. 
The initial step is often the photoisomerization of a conjugated chromophore. 
Isomerization occurs on ultrafast time scales and is substantially influenced by the 
chromophore environment. Here we identify structural changes associated with the 
earliest steps in the trans-to-cis isomerization of the chromophore in photoactive yellow 
protein. Femtosecond hard x-ray pulses emitted by the Linac Coherent Light Source were 
used to conduct time-resolved serial femtosecond crystallography on photoactive yellow 
protein microcrystals over a time range from 100 femtoseconds to 3 picoseconds to 
determine the structural dynamics of the photoisomerization reaction. 
 
 

This article presents further research on PYP using TR-SFX, pushing temporal 

limits to visualize the trans/cis isomerization occurring on the femtosecond timescale. 

Further study based on results obtained and reported in Tenboer, Basu et al. (2014), 

section 6.3.5., TR-SFX was performed on PYP with time points including dark and 200 

ns controls, 3 ps, and sub-ps time points spanning from 100-1000 fs. The sub-ps data 

sets represent the shortest and most highly resolved time points ever obtained using 

crystallography.  
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All sub ps pulses were measured using estimated 300 fs and 600 fs time delays 

and data were binned post collection by their time stamps. A 200 ns time delay was used 

as a positive control to compare with previously measured 1 µs data (Pande, Hutchinson 

et al. 2015) in order to quantify initiation yield from the pump laser. This successfully 

showed a consistent ratio of pR1 and pR2 states expected at this point along the reaction 

timeline, with a calculated reaction initiation of 12.6%. This value is lower than the 

previous 40% reported in Tenboer, Basu et al. (2014) due to the need for a fs pump vs. a 

ns pump. Whereas ns pulses allow for secondary initiations to occur to molecules that 

have backreacted to the ground state post initial excitation, fs pulses are faster than the 

 

Figure 6.12: Chromophore tail torsional angle dynamics. 
 

Pink: twisted trans on excited state PES; light green: cis on ground state 
PES. Torsional angle ftail (solid spheres) is from structural refinement at 

various delays. Gray region: not time-resolved. Dashed line: fit with eq. S2, 
with a transition time of about 590 fs. Insets: structures of PYPfast (pink), 
PYPslow, and PYP3ps (light green), and dark-state structure PYPref in yellow. 

Difference electron density is shown in red (–3s) and blue (3s). 
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time scale for an initially excited molecule to revert to the ground state, precluding the chance for 

a second excitation event.  

Through a theoretical and spectroscopically supported conical intersection of excited 

state and ground state potential energy surfaces, the 550 fs observed timing of the isomerization 

of the chromophore is in good agreement with previous studies on the photoactivated dynamics of 

PYP. My contributions to this project included crystallization and characterization prior to and 

during beamtime as well as taking a lead role in sample loading and delivery during the 

experiment. 

 

6.3.4. Crystal structure of rhodopsin bound to arrestin by femtosecond X-

ray laser (Kang et al., 2015) 

(Nature 523 (561-567) 2015) 

Yanyong Kang, X. Edward Zhou, Xiang Gao, Yuanzheng He, Wei Liu, Andrii Ishchenko, 
Anton Barty, Thomas A. White, Oleksandr Yefanov, Gye Won Han, Qingping Xu, Parker 

W. de Waal, Jiyuan Ke, M. H. Eileen Tan, Chenghai Zhang, Arne Moeller, Graham M. 
West, Bruce D. Pascal, Ned Van Eps, Lydia N. Caro, Sergey A. Vishnivetskiy, Regina J. 
Lee, Kelly M. Suino-Powell, Xin Gu, Kuntal Pal, Jinming Ma, Xiaoyong Zhi, Se´bastien 

Boutet, Garth J. Williams, Marc Messerschmidt, Cornelius Gati, Nadia A. Zatsepin, 
Dingjie Wang, Daniel James, Shibom Basu, Shatabdi Roy-Chowdhury, Chelsie E. 
Conrad, Jesse Coe, Haiguang Liu, Stella Lisova, Christopher Kupitz, Ingo Grotjohann, 
Raimund Fromme, Yi Jiang, Minjia Tan, Huaiyu Yang, Jun Li, MeitianWang, Zhong 
Zheng, Dianfan Li, Nicole Howe, Yingming Zhao, Jo¨rg Standfuss, Kay Diederichs, 

Yuhui Dong, Clinton S. Potter, Bridget Carragher, Martin Caffrey, Hualiang Jiang, Henry 
N. Chapman, John C. H. Spence, Petra Fromme, Uwe Weierstall, Oliver P. Ernst, 

Vsevolod Katritch, Vsevolod V. Gurevich, Patrick R. Griffin, Wayne L. Hubbell, Raymond 
C. Stevens, Vadim Cherezov, Karsten Melcher & H. Eric Xu 

 

Abstract: G-protein-coupled receptors (GPCRs) signal primarily through G-proteins or 
arrestins. Arrestin binding to GPCRs blocks G-protein interaction and redirects signaling 
to numerous G-protein-independent pathways. Here we report the crystal structure of a 
constitutively active form of human rhodopsin bound to a pre-activated form of the mouse 
visual arrestin, determined by serial femtosecond X-ray laser crystallography. Together 
with extensive biochemical and mutagenesis data, the structure reveals an overall 
architecture of the rhodopsin–arrestin assembly in which rhodopsin uses distinct 
structural elements, including transmembrane helix 7 and helix 8, to recruit arrestin. 
Correspondingly, arrestin adopts the pre-activated conformation, with a 206 rotation 
between the amino and carboxy domains, which opens up a cleft in arrestin to 
accommodate a short helix formed by the second intracellular loop of rhodopsin. This 
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structure provides a basis for understanding GPCR-mediated arrestin-biased signaling 
and demonstrates the power of X-ray lasers for advancing the frontiers of structural 
biology. 
 

This article reports a breakthrough in structural biology of GPCRs with the 

rhodopsin-arrestin complex representing the first structure of any GPCR bound to 

arrestin. This work provided the first detailed structural insights into the molecular basis 

behind signaling in the largest family of cell surface receptors. It has a huge impact and 

is also of significant pharmacological interest as currently one third of all clinical drugs 

are targeted to GPCRs. In addition, the publication also includes a variety of biophysical 

techniques that were combined to provide proof that the structure represents the 

functionally active complex in a conformation similar to the native complex in the living 

cell.  

The combination of the structure and the biophysical and functional studies 

provided a deep insight into intracellular signaling in arrestin pathways. With these 

results, evidence for the mechanisms behind both arrestin recruitment and activation 

was revealed. As rhodopsin serves as a model for many GPCRs, these findings represent 

a significant advance within the field with significant implications for the future of many 

pharmaceuticals.  

My contributions towards this project consisted of characterization of 

nanocrystals, including on site analysis at LCLS, testing and preparing sample delivery 

injectors and loading sample for sample delivery. 
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Figure 6.13: The structure of the rhodopsin–arrestin complex 
 
 

 a, The structure of the rhodopsin–arrestin complex in four orientations. 
The relative dimensions of rhodopsin and arrestin are shown in the 
intracellular view. TM1–TM7 indicates rhodopsin transmembrane 

helices 1–7; H8 is intracellular helix 8. b, An overall view of the 
rhodopsin–arrestin complex shown with transparent solid surface. T4 

lysozyme (T4L) is omitted from this view. c, Crystal packing diagram of 
the rhodopsin–arrestin complex with T4L as yellow ribbon model. 
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6.3.5. Time-resolved serial crystallography captures high-resolution 

intermediates of photoactive yellow protein (Tenboer et al., 2014) 

(Science VOL 346 ISSUE 6214 2014) 

Jason Tenboer, Shibom Basu, Nadia Zatsepin, Kanupriya Pande, Despina Milathianaki, 
Matthias Frank, Mark Hunter, Sébastien Boutet, Garth J. Williams, Jason E. Koglin, 

Dominik Oberthuer, Michael Heymann, Christopher Kupitz, Chelsie Conrad, Jesse Coe, 
Shatabdi Roy-Chowdhury, Uwe Weierstall, Daniel James, Dingjie Wang, Thomas 

Grant, Anton Barty, Oleksandr Yefanov, Jennifer Scales, Cornelius Gati, Carolin Seuring, 
Vukica Srajer, Robert Henning, Peter Schwander, Raimund Fromme, Abbas Ourmazd, 

Keith Moffat, Jasper J. Van Thor, John C. H. Spence, Petra Fromme, Henry N. 
Chapman, Marius Schmidt 

 

Abstract: Serial femtosecond crystallography using ultrashort pulses from x-ray free 
electron lasers (XFELs) enables studies of the light-triggered dynamics of 
biomolecules.We usedmicrocrystals of photoactive yellow protein (a bacterial blue light 
photoreceptor) as a model system and obtained high-resolution, time-resolved difference 
electron density maps of excellent quality with strong features; these allowed the 
determination of structures of reaction intermediates to a resolution of 1.6 angstroms. Our 
results open the way to the study of reversible and nonreversible biological reactions on 
time scales as short as femtoseconds under conditions that maximize the extent of reaction 
initiation throughout the crystal. 
 

In these experiments, pump-probe TR-SFX was performed on the photoactive yellow 

protein (PYP), marking the first high resolution TR-SFX structures reported at 1.6 Å at time 

points of 10 ns and 1 µs in addition to the dark state. This allowed for a proof of principle to be 

made for pump-probe TR-SFX as the IT, ICT, pR1 and pR2 states of the PYP photocycle represented 

within these time points have been previously elucidated using the Laue method at 32 ns and 1 µs 

photoactivation time delays respectively.  

Figure 6.14 shows a comparison of the structures obtained from the dark, ns and µs time 

points from both XFEL and Laue data. In addition to validation of previous results, new 

structural changes were found after refinement of the 1 µs TR-SFX time point as the higher % 

populations obtained from microcrystal set-up allowed much stronger features in the difference 

electron density maps, lending to more readily interpretable data.  

My contributions toward this project were development of initial crystallization 

conditions, sample characterization, handling and taking a lead role in sample loading for 

delivery by GDVN. 
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6.3.6. Serial time-resolved crystallography of photosystem II using a 

femtosecond X-ray laser (Kupitz et al., 2014) 

(Nature 513 (261-265) 2014)  

Christopher Kupitz, Shibom Basu, Ingo Grotjohann, Raimund Fromme, Nadia A. 
Zatsepin, Kimberly N. Rendek, Mark S. Hunter, Robert L. Shoeman, Thomas A. White, 

Dingjie Wang, Daniel James, Jay-How Yang, Danielle E. Cobb, Brenda Reeder, Raymond 
G. Sierra, Haiguang Liu, Anton Barty, Andrew L. Aquila, Daniel Deponte, Richard A. 
Kirian, Sadia Bari, Jesse J. Bergkamp, Kenneth R. Beyerlein, Michael J. Bogan, Carl 

 

 
Figure 6.14: Comparison of electron density and DED maps in the 

chromophore 
 
The dark state is shown in yellow in all maps. (A and D) Electron density maps for 

the PYP dark state obtained with TR-SFX and Laue, respectively (contour level 1.1s, 
1.6 Å resolution).The PCA chromophore and nearby residues are marked in (A). 
Arrow: Double bond in the chromophore about which isomerization occurs. (B) 

TR-SFX DED map at 10 ns. (C) TR-SFX DED map at 1 ms. Pink and red structures: 
structures of pR1 and pR2 intermediates, respectively. (E) Laue 32-ns DED map 

correlates best to the TR-SFX 10-ns map. (F) Laue 1-ms DED map.  
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Caleman, Tzu-Chiao Chao, Chelsie E. Conrad, Katherine M. Davis, Holger Fleckenstein, 
Lorenzo Galli, Stefan P. Hau-Riege, Stephan Kassemeyer, Hartawan Laksmono, 

Mengning Liang, Lukas Lomb, Stefano Marchesini, Andrew V. Martin, Marc 
Messerschmidt, Despina Milathianaki, Karol Nass, Alexandra Ros, Shatabdi Roy-

Chowdhury, Kevin Schmidt, Marvin Seibert, Jan Steinbrener, Francesco Stellato, Lifen 
Yan, Chunhong Yoon, Thomas A. Moore, Ana L. Moore, Yulia Pushkar, Garth 

J.Williams, Se´bastien Boutet, R. Bruce Doak, Uwe Weierstall, Matthias Frank, Henry N. 
Chapman, John C. H. Spence & Petra Fromme 

 

Abstract: Photosynthesis, a process catalysed by plants, algae and cyanobacteria converts 
sunlight to energy thus sustaining all higher life on Earth. Two large membrane protein 
complexes, photosystem I and II (PSI and PSII), act in series to catalyse the light-driven 
reactions in photosynthesis.PSII catalyses the light-driven water splitting process, which 
maintains the Earth’s oxygenic atmosphere1. In this process, the oxygen-evolving complex 
(OEC) of PSII cycles through five states, S0 to S4, in which four electrons are sequentially 
extracted from the OEC in four light-driven charge-separation events. Here we describe 
time resolved experiments on PSII nano/microcrystals from Thermosynechococcus 
elongatus performed with the recently developed technique of serial femtosecond 
crystallography. Structures have been determined fromPSII in the dark S1 state and after 
double laser excitation (putative S3 state) at 5 and 5.5A˚ resolution, respectively. The 
results provide evidence that PSII undergoes significant conformational changes at the 
electron acceptor side and at the Mn4CaO5 core of the OEC. These include an elongation 
of the metal cluster, accompanied by changes in the protein environment,which could 
allow for binding of the second substrate water molecule between themo-redistant 
protruding Mn(referred to as the ‘dangler’Mn) and the Mn3CaOx cubane in the S2 to S3 
transition, as predicted by spectroscopic and computational studies. This work shows the 
great potential for time-resolved serial femtosecond crystallography for investigation of 
catalytic processes in biomolecules. 
 

This article discusses changes in OEC upon 2-flash light excitation. This work has 

been described in Chapter 2 & 3. My contribution was in isolating, purifying and 

crystallizing PSII for characterization via EPR. I also edited the main text & 

supplementary document for submission.   
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6.4. Review article 

6.4.1. Serial femtosecond crystallography: A revolution in structural biology 

(Martin-Garcia et al., 2016) 

(Archives of Biochemistry and Biophysics 602 (2016) 32e47) 

Jose M. Martin-Garcia, Chelsie E. Conrad, Jesse Coe, Shatabdi Roy-Chowdhury and 
Petra Fromme 

 

Abstract: Macromolecular crystallography at synchrotron sources has proven to be the 
most influential method within structural biology, producing thousands of structures 
since its inception. While its utility has been instrumental in progressing our knowledge 
of structures of molecules, it suffers from limitations such as the need for large, well-
diffracting crystals, and radiation damage that can hamper native structural 
determination. The recent advent of X-ray free electron lasers (XFELs) and their 
implementation in the emerging field of serial femtosecond crystallography (SFX) has 
given rise to a remarkable expansion upon existing crystallographic constraints, allowing 
structural biologists access to previously restricted scientific territory. SFX relies on 
exceptionally brilliant, micro-focused X-ray pulses, which are femtoseconds in duration, 
to probe nano/micrometer sized crystals in a serial fashion. This results in data sets 
comprised of individual snapshots, each capturing Bragg diffraction of single crystals in 
random orientations prior to their subsequent destruction. Thus structural elucidation 
while avoiding radiation damage, even at room temperature, can now be achieved. This 
emerging field has cultivated new methods for nanocrystallogenesis, sample delivery, and 
data processing. Opportunities and challenges within SFX are reviewed herein. 
 
 

This article discusses various aspects involved in SFX at XFELs and highlights 

the success stories. I contributed in writing sections of the nano-crystallization and TR-

SFX sections. Additionally, I did overall editing and incorporated referee comments in 

the manuscript before re-submission.  
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APPENDIX A 

BUFFER RECIPE FOR GROWING CYANOBACTERIAL CELL CULTURES  
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Modified BG-11 recipe: 

10X solutions were prepared with (per liter)  

1.5 g of NaNO3,  

0.075 g of MgSO4.7H2O,  

0.036 g of CaCl2.2H2O,  

0.04 g of K2HPO4,  

0.02 g of Na2CO3,  

6 mg of C6H8O7.H2O,  

6 mg of C6H11FeNO7, 

1 mg of Na2EDTA.2H2O.  

 

Micronutrients play an essential role in metabolism (Rueter et.al., 1987) and are 

essential for long-term sustained cell growth.  

10x trace metal solution contained (per liter)  

2.86 g of H3BO3,  

1.81g of MnCl2.4H2O,  

0.222 g of ZnSO4.7H2O,  

0.39 g of Na2MoO4.2H2O,  

0.079 g of CuSO4.5H2O  

0.0492 g of Co(NO3)2.6H2O. 

 

FeCl3 solution: 0.2905 g FeCl3 filled to 1 L with millipure water.  
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NTA-medium recipe: 

For 10X solutions, in 1L of water, dissolve 

1 g of Nitriloacetic acid (NTA)  

0.6 g of CaCl2.6(H2O)    

1 g of MgSO4.H2O    

1.03 g of KNO3     

6.89 g of NaNO3     

1.1 g of Na2HPO4    

Add 5 mL of Micronutrient solution  

Add 10 mL FeCl3 

 

Dissolve all components and make up the buffer to pH=8.2 (some NTA would crash or 

conjugate with Fe but that’s ok!) 

 

T. elongatus cells were grown in media prepared freshly. pH was adjusted to 8.2 

and then the volume was adjusted with purified distilled water.  
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APPENDIX B 

 

PERMISSION RECEIVED FROM ELSEVIER FOR USING PREVIOUSLY PUBLISHED 

MATERIAL  
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B: Permission from Elsevier for Chapter 2 

 

 

 


