
Pain-Inspired Intrinsic Reward For Deep Reinforcement Learning

by

Trevor Woods Richardson

A Thesis Presented in Partial Fulfillment
of the Requirement for the Degree

Master of Science

Approved June 2018 by the
Graduate Supervisory Committee:

Heni Ben Amor, Chair
Yezhou Yang

Siddharth Srivastava

ARIZONA STATE UNIVERSITY

August 2018

ABSTRACT

Reinforcement learning (RL) is a powerful methodology for teaching autonomous

agents complex behaviors and skills. A critical component in most RL algorithms

is the reward function – a mathematical function that provides numerical estimates

for desirable and undesirable states. Typically, the reward function must be hand-

designed by a human expert and, as a result, the scope of a robot’s autonomy and

ability to safely explore and learn in new and unforeseen environments is constrained

by the specifics of the designed reward function. In this thesis, I design and im-

plement a stateful collision anticipation model with powerful predictive capability

based upon my research of sequential data modeling and modern recurrent neural

networks. I also develop deep reinforcement learning methods whose rewards are

generated by self-supervised training and intrinsic signals. The main objective is to

work towards the development of resilient robots that can learn to anticipate and

avoid damaging interactions by combining visual and proprioceptive cues from in-

ternal sensors. The introduced solutions are inspired by pain pathways in humans

and animals, because such pathways are known to guide decision-making processes

and promote self-preservation. A new ”robot dodge ball’ benchmark is introduced in

order to test the validity of the developed algorithms in dynamic environments.

i

ACKNOWLEDGEMENTS

I would like to thank everyone who has helped and supported me during my year

and a half doing research at ASU. I would like to thank my committee, my lab and

Dr. Ben Amor for being substantial resources in my first experience doing academic

research in the field of artificial intelligence, robotics and machine learning. I would

like to thank Dr. Ben Amor for the countless nights he spent molding me into a

better researcher. I would like to give special thanks to give special thanks to Dr.

Linda Chattin and Dr. Debra and Dr. Frank Calliss for being ASU professors that

took special interest in me. From my lab, I would like to thank Kevin Luck, Nambi

Srivastav, Joe Campbell, Geoffrey Clark Clark, Mark Strickland, and Indranil Sur;

these individuals were significant sources of help throughout the research process. I

would like to give special thanks to Kevin Luck for taking a special interest in me as a

researcher. I would like to give special thanks Trevor Barron for continually working

with me on varying problems and inspiring me to chase the research problems I feel

passionate about. I would like to give special thanks to Simon Stepputtis for being

an invaluable resource on all things robotics and a person who was always willing to

help me with any task I struggled with solving. I would like to give special thanks

Rudra Saha for all of the coffee talks we had regarding research, and for all of the

research and ideas he exposed me too. I would like to give special thanks to Nathan

Kelley as he added so much value to the final research product I am presenting today.

Nathan Kelley added invaluable insights and assistance towards the completion of

this thesis. I would like to give special thanks to Richard Dunkle and Walter Johnson

for motivating me to pursue a career in computer science.

While this list of friends deserve special thanks it is in no way an exhaustive list

of all the friends I need to thank for their continued support through this experi-

ence. These people are people that have gone above and beyond for me. I would

ii

like to give special thanks to Gaizka Urreiztieta, Jason Walker, Kelle Dhein, Kyle

Testerman, Jake Smith, Natalie Andros, Uncle Alex, Thad Botham, Katrina Eory,

Chelsea Cummings, Jared Tevis, Robert Drier, Vicente Terran, Leilani Gilpin, Willie

Wilson, Will Cranmer, Alex Young, David Ponessa, Fatima Naveed, Ryan Schachte,

Jessi Lammers, and Jon Reasoner. These individuals have helped and supported me

in countless ways and I’m blessed to have them in my life.

I would like to give special thanks to Tom and Andrea for being two of the most

important connections I had during this experience. I would like to thank my Nana,

Tata, Grandma and Grandpa for all they’ve given me and taught me. More than

anything I would like to give special thanks to my Mom and Dad; no one gave me

more than them.

iii

TABLE OF CONTENTS

Page

LIST OF FIGURES . vi

CHAPTER

1 Pain . 1

1.1 Introduction . 1

1.2 The Evolutionary Role of Pain . 2

1.3 Learning, Empathy, Memory and Fear . 4

1.4 Defining Robotic-Pain and Distinguishing Biological Pain From

Robotic-Pain . 5

1.5 Pain Maps to Robotics and the Benefit of Robotic Pain Systems . . . 6

1.6 Conclusions . 11

2 Temporal Feature Learning . 12

2.1 Introduction . 12

2.2 General Theory . 13

2.3 Tasks and Results . 17

2.4 Disentangle Cell State Size for Recurrent Neural Networks 24

2.4.1 SVDRNN Model and Theory . 24

2.4.2 Results . 25

2.5 Conclusions . 25

3 Perturbation Detection . 27

3.1 Introduction . 27

3.2 Task . 28

3.3 Deep Dynamics . 29

3.3.1 Theory and Model . 29

3.3.2 Training . 30

iv

CHAPTER Page

3.3.3 Evaluation . 30

3.4 Detecting Perturbations . 31

3.4.1 Theory . 31

3.4.2 Evaluation . 33

3.5 Conclusions . 37

4 Collision Anticipation . 39

4.1 Introduction . 39

4.2 Theory . 40

4.3 Training . 41

4.4 Evaluation . 42

4.5 Conclusions . 47

5 Intrinsic Reward Policy Gradient Methods . 49

5.1 Introduction . 49

5.2 Model and Theory . 50

5.3 Training and Evaluation . 51

5.4 Results and Insights . 55

5.5 Conclusions . 57

REFERENCES . 59

APPENDIX

A Data Collected . 62

v

LIST OF FIGURES

Figure Page

1.1 Critical functions that are interconnected to pain. 7

1.2 Rotating Bar Benchmark. 8

1.3 Dodge Ball Scenario . 10

2.1 Depiction of an RNN unrolled in time . 13

2.2 Validation Loss . 19

2.3 Training Loss . 19

2.4 Validation Loss . 20

2.5 Training Loss . 20

2.6 Validation Loss . 21

2.7 Training Loss . 21

2.8 Validation Acc . 21

2.9 Training Acc . 21

2.10 Validation Loss . 22

2.11 Training Loss . 22

2.12 Validation Acc . 22

2.13 Training Acc . 22

2.14 Validation Loss . 23

2.15 Training Loss . 23

2.16 Validation Acc . 24

2.17 Training Acc . 24

3.1 Dodge Ball Task . 29

3.2 Training and Validation Loss . 31

3.3 Model 17’s Max Predicted Errors Over 150 Simulations 34

3.4 Predicted Error Vs Ground Truth . 35

vi

Figure Page

3.5 Predicted Error Vs Ground Truth . 35

3.6 Predicted Error Vs Ground Truth . 36

3.7 Predicted Error Vs Ground Truth . 36

3.8 Predicted Error Vs Ground Truth . 37

4.1 Per-Frame Training Loss and Validation Accuracy . 43

4.2 Hidden Activations for Layer 0 . 44

4.3 Cell State for Layer 0 . 45

4.4 Hidden Activations for Layer 2 . 46

4.5 Cell State for Layer 2 . 47

5.1 Baseline Hit Count Across 10 Seeds Of 50 Simulations 52

5.2 8 Ball Scenario Training Rewards . 54

5.3 Hit Count By Architecture . 55

A.1 Model 0 Max Predicted Error Per Trajectory . 63

A.2 Model 1 Max Predicted Error Per Trajectory . 63

A.3 Model 2 Max Predicted Error Per Trajectory . 64

A.4 Model 3 Max Predicted Error Per Trajectory . 64

A.5 Model 4 Max Predicted Error Per Trajectory . 65

A.6 Model 5 Max Predicted Error Per Trajectory . 65

A.7 Model 6 Max Predicted Error Per Trajectory . 66

A.8 Model 7 Max Predicted Error Per Trajectory . 66

A.9 Model 8 Max Predicted Error Per Trajectory . 67

A.10 Model 9 Max Predicted Error Per Trajectory . 67

A.11 Model 10 Max Predicted Error Per Trajectory . 68

A.12 Model 11 Max Predicted Error Per Trajectory . 68

vii

Figure Page

A.13 Model 0 Max Predicted Error Per Trajectory . 69

A.14 Model 13 Max Predicted Error Per Trajectory . 69

A.15 Model 14 Max Predicted Error Per Trajectory . 70

A.16 Model 15 Max Predicted Error Per Trajectory . 70

A.17 Model 16 Max Predicted Error Per Trajectory . 71

A.18 Model 0 Deep Dynamics Training and Validation Loss 71

A.19 Model 1 Deep Dynamics Training and Validation Loss 72

A.20 Model 2 Deep Dynamics Training and Validation Loss 72

A.21 Model 3 Deep Dynamics Training and Validation Loss 73

A.22 Model 4 Deep Dynamics Training and Validation Loss 73

A.23 Model 5 Deep Dynamics Training and Validation Loss 74

A.24 Model 6 Deep Dynamics Training and Validation Loss 74

A.25 Model 7 Deep Dynamics Training and Validation Loss 75

A.26 Model 8 Deep Dynamics Training and Validation Loss 75

A.27 Model 9 Deep Dynamics Training and Validation Loss 76

A.28 Model 10 Deep Dynamics Training and Validation Loss 76

A.29 Model 11 Deep Dynamics Training and Validation Loss 77

A.30 Model 12 Deep Dynamics Training and Validation Loss 77

A.31 Model 13 Deep Dynamics Training and Validation Loss 78

A.32 Model 14 Deep Dynamics Training and Validation Loss 78

A.33 Model 15 Deep Dynamics Training and Validation Loss 79

A.34 Model 16 Deep Dynamics Training and Validation Loss 79

A.35 Predicted Error Vs Ground Truth . 80

A.36 Predicted Error Vs Ground Truth . 80

viii

Figure Page

A.37 Predicted Error Vs Ground Truth . 81

A.38 Predicted Error Vs Ground Truth . 81

A.39 Predicted Error Vs Ground Truth . 82

A.40 Hidden Activations for Layer 1 . 83

A.41 Cell State for Layer 1 . 84

ix

Chapter 1

PAIN

1.1 Introduction

Pain plays a central role in our lives and is of paramount importance to many brain

and body mechanisms such as cognition, social interaction, motor control, memory,

learning, autonomy and, most importantly, self-preservation. It acts as a critical sig-

nal that guides our decision-making processes and shapes the choices we make. A

long-standing theory, articulated by Descartes [3], describes pain as bodily perturba-

tions that are detected by nerve fibers and communicated to the brain. This theory

limits the role of pain to the sensation of bodily harm, failing to acknowledge the

many other functions involved in complex biological pain systems. Contemporary

scientific evidence indicates that pain is generated through a complex interplay of a

variety of signals and predictions involving multiple areas of the brain [24, 15, 30].

Despite its central role in many functions of the human brain, to date, pain has

attracted relatively little interest in the robotics community. Pain and its relationship

to robotics, however, has not been completely overlooked [16, 33]. Researchers have

attempted to formalize pain for robotics, which will be referred to in this paper as

robotic-pain. One recent result has been the development of an ”artificial Robot Ner-

vous System” that can react to multi-modal stimuli much like a biological organism’s

pain-reflex [20]. This robotic-pain system is similar to Descartes’ view of pain and

does not encompass various other roles and interactions of complex biological pain

systems. In contrast to the reflex-only approach, Sur and Ben Amor have shown that

perturbations can be learned and anticipated [33]. Harmful interactions are often

1

included in reinforcement learning (RL) algorithms as negative rewards [34]. RL,

however, requires a human expert to specify how this negative reward is calculated,

typically resulting in extremely task-specific algorithms.

This chapter explores the evolutionary basis for biological pain and the potential

to relate various beneficial aspects of biological pain to robotic systems. The goal is to

develop resilient machines and systems that can learn to anticipate and avoid harmful

sensations, with a concomitant increase in longevity and autonomy. This chapter will

first discuss the evolutionary origin of biological pain, as well as the complex web of

underlying mechanisms and functions of biological pain systems. Next, biological pain

will be distinguished from robotic-pain systems. After that, the opportunities and

challenges that arise from studying computational frameworks that mimic nociceptive

pathways will be addressed. Finally, two benchmark tasks will be described that can

be leveraged to accelerate research in this area. The primary objectives of this chapter

are to highlight a critical knowledge gap in our understanding of intelligent, physical

systems and to identify a new, promising avenue for further research by the robotics

community.

1.2 The Evolutionary Role of Pain

Pain is a sensation that many species experience. It is not unique to humans and

has been observed in vertebrates as well as invertebrates such as cephalopods. Pain

is a dominant neurobiological process that is essential to the survival of our species;

its influence is felt in almost all functional areas of the human brain [2]. The central

nervous system (CNS) generates pain signals that influence our behavior and guide

our learning within the contexts of self-preservation and reproduction.

The CNS has proven to be evolutionarily advantageous, having arisen as a re-

sult of natural selection. Accordingly, biological pain pathways are heritable traits

2

that promote the fitness of individuals within a given population. Individuals with

congenital insensitivity to pain frequently die at a relatively young age due to tissue

damage, infections, or both [26]. Dawkins [11] offers a persuasive thought experi-

ment to illustrate the importance of pain’s role in evolution. He asks his audience to

consider the potential fitness of gazelles with genes that cause analgesic states when

fleeing predators. He concludes that this gene pool of gazelles would not be favored

by natural selection unless tranquilizing a gazelle that is attempting to evade preda-

tion improves that gazelle’s probability of reproducing [11]. He asserts that one must

infer that gazelles experience extreme agony before death, because this system pro-

motes self-preservation and the likelihood of reproduction. His thought experiment

reinforces the principle that pain is a product of natural selection.

In addition to its evolutionary advantage, pain functions as a guiding signal by

which a biological organism learns to navigate its environment safely, interact with

living beings and inanimate objects, and promote its own well-being. It is therefore

central to the behaviors learned and exhibited by a species within a lifetime. Accord-

ing to Craig [9], pain is not only a sensation, but also a motivation that is rooted in an

emotional drive that results in homeostatic behavior. Not only does pain impose evo-

lutionarily significant influences on behavior, it also serves as an educational feedback

signal. The use and maintenance of a CNS of sufficient complexity to experience pain

requires the expenditure of considerable energy. Such a CNS would be wasteful un-

less it served an evolutionarily advantageous purpose. Current research indicates that

most insects do not experience pain [31]. A prevalent scientific theory suggests that

this is evidence that pain is more advantageous to organisms with longer life spans

because learning complex relationships is more advantageous to organisms that need

to live longer to reproduce. Pain is beneficial to complex learning within the scope

of self-preservation. Even more important may be the relationship between pain and

3

emotional learning. Apkarian found that the representation of acute pain is related

to the areas of the brain primarily responsible for emotional learning, memory and

reward/addictive behavior [1]. Scientific evidence indicates that as we navigate our

lives, pain consistently influences our behavior; it plays a central role in our ability

to safely learn complex relationships while engaging with our environment [24].

1.3 Learning, Empathy, Memory and Fear

The neurobiological processes that produce pain significantly influence other hu-

man and animal functions. In particular, our ability to learn, empathize, remember

and fear are all mechanisms that are affected by pain pathways in the central nervous

system [4, 5, 6, 15, 18, 21, 30]. With regard to learning, this impact is realized in

two distinct ways. First, fear-based conditioning leads to associative and avoidance

learning [5, 29, 35, 36, 38]. Second, pain impacts learning through the bidirectional

relationship between the formation of an individual’s motivations and the pain that

is experienced when those motivational goals are pursued [5, 29, 35, 36, 38]. Contem-

porary research has shown that personal experiences of pain are altered based on an

individual’s motivations and conditioned fear-based associations, as well as social fac-

tors that are unique to that individual [1, 36, 38]. Because the impact of experiencing

pain is bidirectional, it functions as a fear-based conditioner. Fear-based conditioning

that results from pain directs an organism’s motivations and, as a result, affects how

that organism learns [29, 35, 36] and how quickly it learns [15].

Another function that bears a close relationship to pain is empathy. There is

a considerable overlap of brain activation between individuals experiencing pain and

those experiencing empathy [6, 21, 30]. Research has shown that the brain’s signature

for empathy overlaps specifically with the brain’s signature for pain in areas that are

associated with pain’s affective as opposed to sensory qualities [30]. Some results

4

suggest that empathy is not exclusively a human emotive state, but instead is one

that also exists in other living organisms such as rats [6].

The attentional resource needs of pain systems are considerable and parts of the

brain outside the pain matrix can be altered by CNS pain networks. For example,

an individual’s memories can be altered by a painful experience [4, 10, 18, 27, 28].

In many cases, experiencing intense pain results in an enhanced ability to accurately

recall a memory or to recall the emotions experienced during the painful event [4, 18,

28]. In contrast, due to pain’s attentional requirements, painful experiences can also

limit an individual’s capability to remember information about his or her environment,

especially when the information is not directly related to the cause of the painful

experience [4]. In one study, subjects were found to remember their emotions with

high accuracy after experiencing intense, acute pain. The same subjects, however,

were much less accurate in recalling an unrelated stimulus present during the painful

event [4].

1.4 Defining Robotic-Pain and Distinguishing Biological Pain From Robotic-Pain

In this paper, the use of the word robotic-pain does not equate to biological pain.

Biological pain and robotic-pain are distinctly different. Robotic-pain does not cause

the robot to experience anguish, suffering, or unpleasantness. Robotic-pain does

not have the same morphological structures as biological pain. The goal of robotic-

pain systems is to emulate the benefits resulting from biological pain systems–avoid

harmful interactions with environment. Throughout this paper, the term robotic-pain

refers to any robotic and/or algorithmic system that attempts emulate these benefits.

5

1.5 Pain Maps to Robotics and the Benefit of Robotic Pain Systems

The development of robotic systems with the capacity to perceive robotic-pain

would further the dream of creating a fully autonomous robot that can explore dan-

gerous environments in as safe a manner as reasonably possible. With advances in

hardware and software, many of the beneficial aspects of biological pain described

in sections 1.2 and 1.3 have the potential to be realized in robotic systems. Such

developments would provide immense benefits to functioning robots.

Fig. 1.1 displays specific interrelated and essential properties of pain-based sys-

tems. Hardware and software research has the potential to map these properties to the

robotic domain. The construction of systems that improve a robot’s self-awareness

and promote self-preservation have far reaching applications. Such systems would

benefit robotics in general by enhancing various learning capabilities, reducing the

financial cost of replacing robotic parts and ensuring the longevity of robotic systems

as a whole. A robotic system that learns to associate certain scenes with negative

internal states has the potential to understand the behaviors of other robots and or-

ganisms in the same environment. Empathy involves the comprehension of another

organism’s internal states. If a robot can predict a potentially precarious situation fac-

ing another robot, not only can that robot learn from the other robot’s situation, but

it also has the potential to assist the endangered robot. A robot that algorithmically

encodes negative internal harm and events that may cause harm has the potential to

protect not only itself and other robots, but also human beings and other organisms.

It is computationally intractable to preprogram all possible noxious states. In many

experiments, robots only learn how to interact with their environment over a small

period of time within fixed boundaries. In the future, robots will need to learn how to

accomplish significantly more complex tasks that require them to reason about and

6

PAIN
E
m
pa
th

y

Memory
Attention

An
ti
ci
p
a
ti
o
n

Con
dit
ion

in
g

Learning

A
w
a
re
n
e
ss

Figure 1.1: Critical functions that are interconnected to pain.

interact with their environment over much longer periods of time and in multiple and

varying locations. One could imagine giving a robot the tasks of shopping at a grocery

store that it has never been to before and then cooking a meal for you and your fam-

ily. These tasks present many perilous possibilities for the robot as it interacts with

new situations. Learning how to accomplish these tasks and overcome the obstacles

it will face (such as navigating new doorways in high traffic areas, transporting the

required ingredients and overcoming food preparation dangers) can best be addressed

through a system that promotes learning that involves concerns about internal safety

and sustainability. Such a system would need to be able to reevaluate its own goals

and motivations based on new data coming from nociceptive robotic-pain systems.

Any learned information about noxious experiences with the environment would need

to be stored, reused and, most importantly, generalized to new contexts.

It is crucial that intelligent, autonomous robots with finite capacity for storing

7

Figure 1.2: Rotating Bar Benchmark.

memories retain the most relevant and important experiences. A fully integrated

robotic-pain system can assist in grading the relative importance of specific memories.

For a fully autonomous robot to be realized, these types of Bayesian conditioning

associations must be learned in real time. A robotic-pain system would provide

important feedback that would enable probabilistic conditioning. Feedback signals

about harmful interactions would provide valuable insight regarding whether a given

action or state would be beneficial or harmful to the robot. In general, robotic

pain systems will promote robotic autonomy, system lifespan and robotic altruism

– a robot’s ability to assist other robots, humans and other living organisms. The

creation of robotic-pain systems requires experimental platforms that enable scientists

to collaborate in this promising new area of research. The remaining portions of this

chapter describe two scenarios – the Rotating Bar task and the Dodge Ball task. These

scenarios allow the exploration of fundamental questions regarding computational

theories of robotic-pain.

Rotating Bar: In the Rotating Bar task displayed in Fig. 2, a fixed-position

8

robot must learn how to extend its arms and end effectors, while at the same time

avoiding damage from a rotating bar. In this scenario, the robot uses an RGB vision

camera to observe its environment. The robot can query about its own internal

states such as the position and orientation of its end effectors and arms. Parameters

that can be varied include the angular velocity of the bar, angular acceleration of

the bar, size of the bar, length of the robotic arms, and complexity of the task

assigned. The robot’s position, however, is fixed. A proper robotic-pain solution

requires the robot to rapidly learn to avoid negative harmful states and to balance

these nociceptive stimuli against its desire to complete its assigned task. The robot

must learn to balance its goals and motivations with its own well-being. Note that any

solution should not include any hard-coded reward function, e.g., if(arm torque >

thresh) pain = 1. This scenario tests the bi-directionality of competing interests

and avoidance learning and provides the ability to analyze various nociceptive software

models. The robot must learn to understand where negative feedback is occurring

and how to respond to possible harm such as a damaged arm or end effector.

Dodge Ball: In the Dodge Ball scenario, see Fig. 3, N balls with Gaussian

distributed initial positions are sent into projectile motion with randomly distributed

initial velocities in the x, y, z planes toward a robot that can move along one dimension

only. The robot is confined to a limited space. It accesses information about its

environment using an RGB camera. It also can obtain information about its own

internal state such as its velocity, orientation, and position. If the robot chooses

not to move, or moves randomly, it will eventually be hit by some of the projectiles.

Movement guided by intelligent anticipation is necessary to minimize the number of

collisions –often referred to in this paper as perturbations– with incoming projectiles.

The robot needs to learn from experience what visual information is predictive of

impending harm. This platform provides multiple parameters of interest, such as the

9

Figure 1.3: Dodge Ball Scenario

rate and speed at which balls are fired, the distance from the robot to the balls, and

the damage incurred to the robot from each collision. The collisions provided by this

simulation offer a way to test and build software that learns to predict negative future

internal states. The robot must prioritize some noxious states over others. In these

situations, the robot will need to endure potentially damaging stimuli in order to

develop an effective long term self-preservation strategy. The robot needs to reason

about future states in order to maximize its longevity by incurring minimal damage

over time.

In order to approach the development of a fully integrated robotic-pain system

that promotes robotic well-being and autonomy, scenarios such as the two described

above are required for comparison and testing purposes.

10

1.6 Conclusions

Biological pain is an adaptive trait produced by natural selection that promotes

homeostatic behavior by influencing the way organisms learn, empathize, remember,

and fear. Feedback that results from pain is essential to the biological fitness of

many organisms. Robotic-pain systems that emulate the benefits of biological pain

systems have the potential to minimize negative interactions between a robot and its

environment.

11

Chapter 2

TEMPORAL FEATURE LEARNING

2.1 Introduction

Biological pain provides a system that allows animals to learn causal relationships

between current environmental states and future potentially harmful environmental

states. Animals actively avoid most painful experiences. Inspired by the benefits that

result from the ability of animals to predict and avoid painful experiences, the goal is

to develop technologies that provide this same benefit to robots. The development of

these technologies likely require a data driven approach to learning temporal relation-

ships in a given environment. In this work, the machine learning technique chosen

to learn temporal correlations is sequential modeling by the use of Recurrent Neural

Networks (RNNs). RNNs learn arbitrarily distant correlations in sequential data.

They are used to regress, predict, classify and generate sequential data in almost all

machine learning domains. This section discusses many of the widely used, as well

as cutting-edge, RNN architectures. This section also analyzes the performance of

these architectures on five baseline datasets commonly used to test the capability of

RNN models in research. Each model was built from scratch in order to hold certain

aspects in the comparison constant. This section ends with a novel model created as

part of this research that tested the benefits of disentangling the cell state size from

the hidden state size and using linear projection to extract the important features

from the cell state or long term memory vector/matrix.

12

2.2 General Theory

The original recurrent neural network has the form depicted in equation 2.1.

hlt = φ(Wlhl−1t + Vlhlt−1 + bl) (2.1)

The input weight matrix Wl is described by Wl ∈ RNx×Nh where Nx is the size of

the vector input to layer l and Nh represents the number of neurons in matrices Wl

and Vl. The recurrent weight matrix, bias term and activation functions for layer l

described, respectively, by: Vl ∈ RNh×Nh , bl ∈ RNh , and φ. The hidden output of

layer l at time-step t is hlt ∈ RNh . One can view equation 2.1 as the unrolled directed

graph below where the dataset D = {((xn0 , yn0),, (xnT−1, y
n
T−1))}N−1

n=0 .

Figure 2.1: Depiction of an RNN unrolled in time

For the tasks presented in section 2.3, the sequences were never truncated in time.

With a fully unrolled RNN, the machine learning has the capability to correlate any

two inputs in this sequence. Unfortunately, however, a fully unrolled RNN presents a

uniquely difficult problem – commonly termed the vanishing and exploding gradients

problem – due to the size of the neural network structure. The vanishing and explod-

ing gradient problem is the most well studied problem for recurrent neural networks

and it continues to pose the most significant barriers to the performance RNNs.

13

Equation 2.2 below represents the relationship between the loss function L and

parameters θ of an unrolled network.

∂L
∂θ

=
T−1∑
t=0

∂Lt
∂θ

(2.2)

Equation 2.3 expands the partial derivative using the chain rule and produces the term

∂ht
∂hk

which models the temporal gradient from t to k. The vanishing and exploding

gradient problem occurs as k << t.

∂Lt
∂θ

=
t∑

k=0

(
∂Lt
∂ht
· ∂ht
∂hk
·
∂h+k
∂θ

) (2.3)

In equation 2.4, ∂ht
∂hk

can become unreasonably large or small. The two terms that have

the most significant effect on the degradation or explosion of ∂ht
∂hk

, are the derivative

of the activation function and the repeated matrix multiplication of Wrec.

∂ht
∂hk

=
t∏

i=k

∂hi
∂hi−1

=
t∏

i=k

Wrecdiag (φ′(hi−1)) (2.4)

The models presented in equations 2.5 through 2.11 were developed as means to

address the vanishing and exploding gradients problem. Equation 2.5 depicts the most

commonly used RNN variant called the Long Short-Term Memory (LSTM). Originally

proposed by Hochreiter and Schmidhuber, the LSTM model is very popular because of

the fact that it can remember and forget information [17, 13]. It uses complex gating

equations in order to make it more easily trainable than the classic RNN model. Two

key insights in this model are the creation of a second memory vector called the long

term memory clt ∈ Nh, and the creation of the forget gate f lt ∈ Nh, which scales the

14

previous cell state by a number between 0 and 1, essentially choosing what to forget.

ilt = σ(Wl
ih
l−1
t + Vl

ih
l
t−1 + bli)

f lt = σ(Wl
fh

l−1
t + Vl

fh
l
t−1 + blf)

olt = σ(Wl
oh

l−1
t + Vl

oh
l
t−1 + blo)

clt = f lt � clt−1 + σ(Wl
ch
l−1
t + Vl

ch
l
t−1 + blc)

hlt = clt � tanh(olt)

(2.5)

The Peephole LSTM, as shown in equation 2.6, was developed by Gers et al. [14].

This architecture uses the same gating equations as the LSTM architecture; however,

ht−1 is replaced with ct−1 for the recurrent matrix multiplications for calculating the

current cell state as well as the input, forget and output gates.

ilt = σ(Wl
ih
l−1
t + Vl

ic
l
t−1 + bli)

f lt = σ(Wl
fh

l−1
t + Vl

fc
l
t−1 + blf)

olt = σ(Wl
oh

l−1
t + Vl

oc
l
t−1 + blo)

clt = f lt � clt−1 + σ(Wl
ch
l−1
t + Vl

cc
l
t−1 + blc)

hlt = clt � tanh(olt)

(2.6)

The Gated Recurrent Unit (GRU), as shown in equation 2.7, was developed by Cho

et al. [7]. The GRU model is arguably the second most widely used RNN variant.

It uses gating equations very similar to that of the LSTM; however, it combines the

input and forget gates in the LSTM into a single update gate zlt.

zlt = σ(Wl
zh

l−1
t + Vl

zh
l
t−1 + blz)

rlt = σ(Wl
rh

l−1
t + Vl

rh
l
t−1 + blr)

hlt = (1− zlt)� hlt−1 + zlt � tanh
(
Wl

hh
l−1
t + Vl

h(r
l
t � hlt−1) + blh

)
(2.7)

15

Equations 2.8 and 2.9 are recent models proposed by Collins et al. at Google Brain [8].

These models were developed by studying capacity and trainability of RNN models.

Equation 2.9 was shown to work better for deeper architectures and equation 2.8 was

shown to work better for shallower architectures.

clt = tanh(Wl
ch
l−1
t + Vl

ch
l
t−1 + blc)

glt = σ(Wl
gh

l−1
t + Vl

gh
l
t−1 + blg)

hlt = glth
l
t−1 + (1− glt)clt

(2.8)

ylin = ReLu(Wl
yh

l−1
t + Vl

yh
l
t−1 + bly)

hlin = tanh(Wl
hh

l−1
t + Vl

hh
l
t−1 + blh)

gly = σ(Wl
gyh

l−1
t + Vl

gyh
l
t−1 + blgy)

glh = σ(Wl
ghh

l−1
t + Vl

ghh
l
t−1 + blgh)

ylt = glyh
l−1
t + (1− gly)ylin

hlt = glhh
l
t−1 + (1− glh)hlin

(2.9)

The IRNN model, proposed by Le et al. and shown in equation 2.10, addresses

the vanishing and exploding gradient problem from a weight initialization and ac-

tivation function standpoint [22]. It was previously noted in equation 2.4, the two

primary contributing factors to the vanishing and exploding gradients problem are

the repeated product of both the recurrent weight matrix and the derivative of the

activation function. The IRNN model uses rectified linear unit (ReLu) activation in

order to force the derivative of the activation function to equal one (only, however,

for values above zero). The IRNN model initializes the recurrent weight matrix to be

16

the identity matrix.

hlt = ReLu(Wlhl−1t + Vlhlt−1 + bl) (2.10)

The IndRNN model, proposed by Li et al. and shown in equation 2.11, addresses

the vanishing and exploding gradient in a very similar way to the IRNN model [25].

It uses ReLu for the activation function to prevent neuron saturation and gradient

decay. This model also forces the recurrent weight matrix to be a recurrent weight

vector. The IndRNN model replaces the matrix multiplication between the previous

hidden output and the recurrent weight vector with the Hadamard product. This

analogous to using an infinitely strong prior on certain locations of the recurrent

weight matrix or as a scaling function of past features.

hlt = ReLu(Wlhl−1t + V l � hlt−1 + bl) (2.11)

2.3 Tasks and Results

The original RNN and the seven variants discussed above are compared and tested

on five benchmark datasets that are commonly used in research. Below, a description

of all five tasks is presented and the training and validation results for each. All of the

models below were built specifically for this research (in house) using the PyTorch li-

brary. Ten random seeds of each model were run for ten epochs. The validation error

and training error were recorded at each epoch. For the XOR, SeqMNIST and PSe-

qMNIST, the training and validation accuracies were also recorded. Every model’s

recurrent weight matrix was initialized according to the model. If no initialization

was specified for an input weight matrix, then that weight matrix was initialized to

Xavier Normal. If no initialization was specified for a recurrent weight matrix then

that matrix was initialized using orthogonal initialization. A learning rate of .0001

17

and the Adam optimizer were used for training [19]. A three layer neural network was

used for all models. The first two layers are identical copies of the chosen RNN vari-

ant, each with 50 neurons as its hidden state size. Each model had an output layer

whose shape, output activation, and loss function was uniform across every model

variant for a specific task, but unique for the task at hand. Visualized in figures 2.2-

2.17, are the validation and training comparison results for each task for all variants.

Each colored line represents the mean loss or accuracy at the specified epoch for the

specific RNN variant. The colored region represents two standard deviations from

the mean for each variant at each epoch. The five tasks described below each test an

RNN’s ability to cope with the vanishing and exploding gradient problem. The loss

is computed with the output from the final time-step; there are no auxiliary losses

calculated.

Task 0 – the Add Task

The add task is a human generated dataset where two relevant inputs are randomly

spaced in a temporal sequence of length T. T was chosen to be 50 for this task. The

output at the end of the sequence is the sum of the two randomly chosen locations

for each full sequence. The input at every time-step xt is defined to be a vector of

size two with a randomly generated real value between 0 and 1 in position zero and

a boolean value in position one. The boolean is set to zero for all inputs except the

two randomly chosen inputs to sum. Figures 2.2 and 2.3 below shows the training

and validation error on the add task for ten seeds of all of the variants above. The

mean and two standard deviations from the mean computed from all ten seeds for

each variant at each epoch is depicted.

18

Figure 2.2: Validation Loss Figure 2.3: Training Loss

Task 1 – the Multiply Task

The multiply task is a human generated dataset where two relevant inputs are ran-

domly spaced in a temporal sequence of length T. The output at the end of the

sequence is the product of the two randomly chosen signal locations for each full

sequence. The input at every time-step xt is defined to be a vector with a ran-

domly generated real value in index zero and a boolean value in position one. The

boolean is set to zero for all inputs except the two randomly chosen signal inputs.

Figures 2.4 and 2.5 below shows the training and validation error on the multiply

task for ten seeds of all of the variants above. The mean and two standard deviations

from the mean computed from all ten seeds for each variant at each epoch is depicted.

19

Figure 2.4: Validation Loss Figure 2.5: Training Loss

Task 2 – the XOR Task

The XOR task is a human generated dataset where two relevant inputs are randomly

spaced in a temporal sequence of length T. The output at the end of the sequence is

the XOR of the two randomly chosen signal locations for each full sequence. The in-

put at every time-step xt is defined to be a vector with a randomly generated boolean

at position zero and a boolean value in position one. The boolean at position one is

the signal that determines if the algorithm should XOR that vector’s position zero

boolean. The boolean at position one is set to zero for all inputs except the two ran-

domly chosen signal inputs. Figures 2.6-2.9 below shows the training and validation

error and accuracy on the XOR task for ten seeds of all of the variants above. The

mean and two standard deviations from the mean computed from all ten seeds for

each variant at each epoch is depicted.

20

Figure 2.6: Validation Loss Figure 2.7: Training Loss

Figure 2.8: Validation Acc Figure 2.9: Training Acc

Task 3 – the Sequential MNIST Task

The Sequential MNIST task (SeqMNIST) is a variant of the classical MNIST task

proposed by Lecun et al. [23]. Sequential MNIST is a dataset where you read one

pixel at a time from the top left corner of the one channel MNIST image to the

bottom right corner pixel. The input is a real valued scalar and the output is the

softmax prediction of the number hand written in the image. Each sequence in this

21

data is 784 time-steps long where temporal correlations must be found to correctly

classify the digit in the original image at the last time-step. Figures 2.10-2.13 be-

low shows the training and validation error and accuracy on the Sequential MNIST

task for ten seeds of all of the variants above. The mean and two standard deviations

from the mean computed from all ten seeds for each variant at each epoch is depicted.

Figure 2.10: Validation Loss Figure 2.11: Training Loss

Figure 2.12: Validation Acc Figure 2.13: Training Acc

22

Task 4 – the Permuted Sequential MNIST Task

Task number four is Permuted Sequential MNIST (PSeqMNIST). PSeqMNIST, along

with sequential MNIST, is one of the standard real-world datasets for validating RNN

capability. The setup of this dataset is similar to that of Sequential MNIST. Before

reading the sequence of pixels, however, a permutation matrix reassigns each pixel to

a new location. The permutation matrix, while randomly generated before training,

is constant for the entirety of the training and testing process. This dataset, while

more difficult to learn, still contains all of the relevant information about the original

image. Figures 2.14-2.17 below shows the training and validation error and accuracy

on the Permuted Sequential MNIST task for ten seeds of all of the variants above.

The mean and two standard deviations from the mean computed from all ten seeds

for each variant at each epoch is depicted.

Figure 2.14: Validation Loss Figure 2.15: Training Loss

23

Figure 2.16: Validation Acc Figure 2.17: Training Acc

2.4 Disentangle Cell State Size for Recurrent Neural Networks

Recurrent neural network architectures generally have either a fixed memory state

or multiple memory states. This section discusses a hypothesis that was tested and

found to be false. The hypothesis was that if the long-term memory could be disen-

tangled from the hidden vector’s output size, then the recurrent memory vector would

be able to store more information for more a more accurate inference capability.

2.4.1 SVDRNN Model and Theory

The model developed during my research to study the hypothesis above will be

referred to as the SVDRNN model. This model uses the basic format of the LSTM.

The SVDRNN, however, projects the input into a Rm×m matrix where m is the hidden

states size of the recurrent network. The network uses singular value decomposition

on the cell state at every time-step and extracts singular values from the current

long-term memory – Ct – at every time-step in order to produce output ht. The acti-

vation applied to the singular values of Σ is changed from the hyperbolic tangent to a

24

sigmoid function in order to constrain ht to be non-negative. Ut−1 and VT
t−1 are both

guaranteed to be orthonormal because they are the analytical outputs from the previ-

ous time-step’s singular value decomposition. With both of these conditions satisfied,

it is ensured that Ut−1diag(hl−1
t)VT

t−1 represents the singular value decomposition of

a unique matrix M.

Ilt = σ
(
Wl

idiag(hl−1t) + Ut−1diag(hlt−1)V
T
t−1 + bli

)
Fl
t = σ

(
Wl

fdiag(hl−1t) + Ut−1diag(hlt−1)V
T
t−1 + blf

)
olt = σ(Wl

oh
l−1
t + Vl

oh
l
t−1 + blo)

Cl
t = Fl

t �Cl
t−1 + Ilt � σ

(
Wl

cdiag(hl−1t) + Ut−1diag(hlt−1)V
T
t−1 + blc

)
Ut,Σ,V

T
t = SV D(Cl

t)

hlt = olt � σ(Σ)

(2.12)

2.4.2 Results

This SVDRNN failed to improve upon previous approaches at sequential modeling.

The model merely learned to predict the average of the dataset. This model performs

no more accurately than a feed forward network trained on only the last input of the

dataset.

2.5 Conclusions

Recurrent neural networks provide an incredibly strong framework for analyzing

sequential data and learning temporal correlations between distant events. RNNs are

currently one of the most promising frameworks for modeling sequential data. The

primary problem to address in order to improve the performance of RNNs is the van-

25

ishing and exploding gradient problem. Numerous architectures have been developed

to address this problem. Comparing these modern RNN architectures allowed for us

to see that some solutions vastly outperform others. Specifically, the most ubiqui-

tous variant, the LSTM did perform best on any of the tasks tested. Allowing for a

larger cell state and using singular value decomposition to extract temporal features

from the cell state does not improve upon the current state of the art for recurrent

neural networks. Future research in this area should consider unsupervised ways to

promote stable information flow in unrolled networks. Additional work should be

undertaken to clarify mathematically the reasons for performance differences among

RNN variants.

26

Chapter 3

PERTURBATION DETECTION

3.1 Introduction

The development of a robotic-pain system necessarily requires a means for the

robot to detect harmful interactions with its environment. This aspect of robotic-

pain is inspired by the nociceptive systems in biological organisms. The goal of the

algorithm presented in this chapter is to determine if and when a negative harm-

ful interaction occurred between a robot and its environment. As is the case with

biological pain, the algorithm used does not need any external information outside

of the robot’s ability to internally query its own state. The feedback given from

this algorithm is temporal and can be used as a conditioning signal that relates en-

vironmental information with harmful states. This chapter applies a perturbation

detection algorithm to detect when a projectile has come into contact with a robot.

The approach presented in this chapter uses a self-supervised Bayesian prediction

method for determining harmful collisions. No external force sensors are needed to

detect collisions. The approach used was previously presented by Sur and Ben Amor

[33]. This section will describe the robot used for experimentation, the experimental

task used to validate the strengths and weaknesses of the perturbation detection sys-

tem, the theoretical aspects of the perturbation detection algorithm, the evaluation of

the machine learning models trained, the thresholding selection considerations, and

conclusions about the efficacy of this approach.

27

3.2 Task

For this research a novel scenario referred to in this paper as the dodge ball

scenario was created. In this scenario, Nb different balls with colors Cb are sent into

projectile motion at the beginning of the scenario. Each ball is initialized with a

random normal position unique to each ball Pb ∈ R3 and random uniform velocity

Vb ∈ R3. The robot is bimodal and can only move in two directions. There is a

significant amount of noise in the robot movement, however, and slipping and falling

off the robot’s initial lateral axis is normal and frequent behavior. On average, it

takes less than two seconds for the balls to reach the robot. The robot state vector

and action vector are modeled by st ∈ RS and at ∈ RA. Below is a depiction of the

scene in action. S includes the xyz position, orientation, velocity and angular velocity

of the robot. A is discrete and contains five possible actions, full speed right (action

0) half speed right (action 1) don’t move (action 2) half speed left (action 3) and full

speed left (action 4). V-REP was chosen as the robotic simulation platform and the

Linetracer robot was selected due to its speed and ability to change its position and

velocity quickly.

28

Figure 3.1: Dodge Ball Task

3.3 Deep Dynamics

The deep dynamics neural network model presented in this section is part of the

final perturbation detection algorithm presented in this chapter.

3.3.1 Theory and Model

A feed forward neural network is used to regress future states of the robot. Specif-

ically, the deep dynamics model used in this research is defined by the function

ŝt+1 = f(st, at; θ). Model parameters θ are learned using batch gradient descent

via the Adam optimizer [19]. The input to the neural network is the current state

and action of the robot at time t and the output of the network is the predicted

next state of the robot. Dropout is used at every layer of the neural network except

for the output layer [32]. The neural network has five layers and hyperbolic tangent

activations were used in the selected model.

29

3.3.2 Training

The data for training this neural network was collected by allowing the robot to

sample random actions in a safe environment. 200,000 state-action pairs were col-

lected for training validation and testing. Of 200,000 state-action pairs, 80% were

randomly selected for training, 10% were randomly selected for validation and the

remaining 10% for testing. Three neuron architectures were used for θ. The number

of neurons for the three variants tested, in order, from layer zero to layer four are as

follows: θ0 = [60, 40, 30, 20, 20]; θ1 = [120, 80, 60, 40, 40]; θ2 = [30, 20, 15, 10, 10].

Two activation variants were analyzed, LeakyReLu, and the hyperbolic tangent func-

tion. Three dropout rates were tested for model selection, 0.6, 0.45 and 0.3. All

combinations of the aforementioned variables were tested, yielding a total of 18 ex-

periments. Mean squared error was used as the cost function for training. Each

experiment used Xavier Normal Initialization and was trained for 250 epochs.

3.3.3 Evaluation

The model with the lowest validation loss over all 250 epochs for each of the model

variants was selected for further analysis, as discussed in section 3.4.2. Model 17 was

found to be the model that best met the requirements for perturbation detection.

Figure 3.2 depicts the training and validation error over all 250 epochs for model 17.

30

Figure 3.2: Training and Validation Loss

3.4 Detecting Perturbations

The deep dynamics model learns the functional mapping from the robot’s current

state and action to the robot’s next state. This does not solve, however, the original

problem which is to develop a system that detects significant and probably harmful

perturbations caused by the environment. The following discusses the theory behind

implementing such a system and validates use of such system on the dodge ball

scenario.

3.4.1 Theory

In order to determine if a sufficiently significant perturbation has occurred to

warrant being deemed harmful, the deep dynamics model is used to create a set of

beliefs about the next state which is compared to the ground truth. In order to create

a set of beliefs over ŝt+1, a method commonly termed stochastic forward passes was

31

used [12]. This method uses dropout at inference time in order to sample subnetwork

predictions over ŝt+1. A total of 64 stochastic forward passes were used at inference

time. If the difference between the predicted belief set over ŝt+1 and the ground truth

is sufficiently large –with the threshold being defined by the user– that time-step is

labeled as a harmful perturbation. Using the set of predictions collected by using

stochastic forward passes, we can approximate the expected value for ŝt+1 and the

variance of ŝt+1. Equations 3.1 and 3.2 below define how to calculate the mean and

variance of our belief set of ŝt+1.

E[ŝt+1] ≈
1

Ns

Ns∑
i=1

ŝit+1 (3.1)

V ar[ŝt+1] ≈ E[(ŝt+1)
2]− E[ŝt+1]

2 (3.2)

Finally an exponentially smoothed norm, as depicted in equations 3.3 and 3.4, is

used to produce the final predicted error output. This predicted error output repre-

sents the difference between the predicted belief set and the ground truth. The norm

calculated from equation 3.4 provides insight into the severity of the perturbation

that occurred.

δ = E(ŝt+1)− st+1 (3.3)

τi = eδi−2V ar(ŝt+1)i

∆ = ||τi||
(3.4)

32

3.4.2 Evaluation

Most of the 18 models trained had significant deviations in their perturbation

output –in other words, the predicted error– when undergoing a collision. There were

some differences between models and ultimately model 17 was found to be the best

performing model based on the following standards. In the dodge ball scenario, let a

false positive be defined by classifying a simulation where no collision occurred as a

hit simulation. Let a false negative be defined by a simulation where a hit occurred

and it was labeled a miss. This research based its model selection on the following

criteria. First, a threshold was selected above the largest reported predicted error

for each model on its evaluation set, essentially eliminating false positives. Then all

models were compared by the reported false negatives. Ultimately, model 17 was

chosen with 0 false positives reported and 10 false negatives reported over 150 sim-

ulations. This model had the fewest false negatives given the threshold determined.

The histogram shown below is model 17’s reported largest predicted error output for

all full trajectories for 150 simulations. The false positive threshold selected for this

model was 250. Any output above this threshold, would be classified as damaging

and harmful to the robot. Figure 3.3’s x axis logarithmically scaled by 2x due to the

predicted error’s large outputs.

33

Figure 3.3: Model 17’s Max Predicted Errors Over 150 Simulations

Figures 3.4 - 3.8 represent the output of the predicted error (in blue) vs the scaled

ground truth (in red). In order to properly visualize the time-steps where the ball was

in contact with the robot along side the predicted error output, the ground truth was

scaled. In figure 3.7, a collision occurred but the output of the deep dynamics model

did not go above the threshold of 250. This was a false negative and it is possible

that this collision was not harmful. It is also possible, if not probable, that this model

misclassified this trajectory and the collision was harmful. What is significant about

model 17, however, is that model 17 properly classified the vast majority of collisions

and the predicted error output showed significant spread between hits and misses –

in other words, hits were usually orders of magnitude larger in their predicted error

than misses.

34

Figure 3.4: Predicted Error Vs Ground Truth

Figure 3.5: Predicted Error Vs Ground Truth

35

Figure 3.6: Predicted Error Vs Ground Truth

Figure 3.7: Predicted Error Vs Ground Truth

36

Figure 3.8: Predicted Error Vs Ground Truth

3.5 Conclusions

In this chapter, a perturbations detection algorithm was described, implemented

and evaluated using the dodge ball scenario. The dodge ball scenario was created

as part of this research for this purpose. Variants of the deep dynamics model were

tested and the model selection technique was described. It has been shown that this

algorithm can effectively detect collisions as external perturbations despite the ran-

domness present in the robot’s movement. The clear division between the average hit

predicted error and miss predicted error trajectories provided an accurate threshold.

Some drawbacks to this approach include the fact that a threshold was defined using

the ground truth. Future research should focus on eliminating this limitation and

instead use unsupervised methods to distinguish which values are sufficiently large to

be considered harmful collisions. Future research should also consider including using

37

sensors on the robot to detect different types of harmful environments such as heat,

chemical makeup, forces and or electrical signals. Finally, future research should also

look at how to design datasets in order for the perturbation detection algorithm to

generalize to new and different environments. One can imagine this system has the

potential to report many false negatives if the deep dynamics model is trained on flat

ground and the robot finds its way to a very different environment such as sand.

38

Chapter 4

COLLISION ANTICIPATION

4.1 Introduction

Pain allows biological organisms to make important associations and engage in

conditioned responses to varying stimuli in their environment. Fear-based condi-

tioning and avoidance learning enhance an organism’s ability to navigate through

dangerous environments. Inspired by homeostatic behavior mechanisms in the brain,

a deep predictive model that associates visual queues with future internal harm was

proposed by Sur and Ben Amor [33]. Using a sliding window of images as input,

their model uses convolutional recurrent neural networks to reason about a sequence

of images and predict the probability of future collisions. In the research described in

this paper, an alternative model – termed the stateful collision anticipation model –

is proposed. This model reasons about and predicts the probability of future events

given only a current image and recurrent memory vectors of previous images. The

stateful collision anticipation model described herein is a supervised model. It uses the

outputs from the self-supervised perturbation detection method described in Chapter

3 as label data for the video input data. This model offers three primary improve-

ments as compared to the previous system. First, the stateful collision anticipation

model is orders of magnitude faster with an inference rate of 65Hz compared to the

previous, which operates at an inference rate of 5Hz. Second, the run-time memory

requirement for the stateful collision anticipation model is twenty percent of the same

requirement for the prior model. Third, the stateful collision anticipation model is ca-

pable of learning relationships between inputs arbitrarily spaced in time whereas the

39

previous model could only reason about temporal relationships within five consecutive

images. The construction of a stateful collision anticipation model was necessary in

order to solve the dodge ball task with one projectile and make significant improve-

ments towards solving the general dodge ball task or n projectiles. Speed, accuracy,

minimal memory requirements and spatiotemporal feature extraction were all neces-

sary to achieve these results. Discussed below are the theoretical aspects, training

procedures and evaluative results for the stateful collision anticipation model applied

to the dodge ball task.

4.2 Theory

The objective of the collision anticipation model is to approximate the probability

of a future collision, as seen in equation 4.1, given a sequence of images and access to

the internal state of the robot.

f(xt; θ) ≈ P (collision|xt, xt−1, xt−2,x1, x0) (4.1)

The labels for the stateful collision anticipation model emanate from the self-supervised

method described in chapter 3. A multilayer ConvLSTM neural network was chosen

to as the primary component of the function approximation depicted in equation 4.1

for this task due to its ability to learn a mapping between spatiotemporal data and

their labels [37]. The ConvLSTM, depicted by equation 4.2, builds on the LSTM ar-

chitecture that is referenced in Chapter 2. Inputs Xt and Ht−1, however, are now sets

of activation maps in the domain RH×W×C where H, W and C represent, respectively,

the height of the input activation map, the width of the input activation map, and

the number of input channels. The ConvLSTM architecture also includes element

40

wise multiplications with weight matrix U and its cell state or long term memory.

Ilt = σ(Wl
i ∗Hl−1

t + Vl
i ∗Hl

t−1 + Ul
i �Cl

t−1 + bli)

Fl
t = σ(Wl

f ∗Hl−1
t + Vl

f ∗Hl
t−1 + Ul

f �Cl
t−1 + blf)

Ol
t = σ(Wl

o ∗Hl−1
t + Vl

o ∗Hl
t−1 + Ul

o �Cl
t−1 + blo)

Cl
t = Fl

t �Cl
t−1 + σ(Wl

c ∗Hl−1
t + Vl

c ∗Hl
t−1 + Ul

c �Cl
t−1 + blc)

Hl
t = Ol

t � tanh(Cl
t)

(4.2)

4.3 Training

In contrast to the sliding window approach, use of a stateful ConvLSTM is pro-

posed to predict future collisions. This proved to be necessary to give the robot

sufficient time to dodge incoming projectiles. On average, the projectiles reach the

robot within two seconds from the start of the simulation. Therefore, if the robot

is going to be able to avoid collisions with the projectiles, it needs to reason about

its safety quickly and often. In order to accomplish this, a custom-built ConvLSTM

was coded in both Tensorflow and PyTorch. Ultimately, due to the ease of recording

gradients through time in PyTorch, PyTorch was selected as the library to use for the

final model. No gradients were clipped, and as a result, the loss at any time-step t

updated the weights with respect to all hidden outputs across time. The dataset used

consisted of 2800 videos, 2274 for training, 263 for validating and 263 for testing. The

video data collected was of the form Di ∈ RT×L×W×C where T represents the number

of input images in the simulation. The number of channels was three due to the fact

that the robot had an RGB video sensor on its body. The model consisted of five

layers, the first three being ConvLSTM layers. The fourth layer flattened the output

of the convolved activation maps from layer three and used a dropout rate of 0.3.

The final layer used softmax activation and cross-entropy as the loss function. The

41

only input to this model was video input and the labels were generated by the self-

supervised perturbation detection model described in Chapter 3. The robot’s state

still needed to be queried as inputs to the perturbation detection algorithm in order to

generate the labels for the stateful collision anticipation model. The final model was

trained on 81.2% of the data, validated on 9.4% of the data, and tested on 9.4% of the

data. The final per-frame test accuracy of the model trained was 91.183%. The per

frame accuracy of the stateful model meant that the robot was able to determine the

probability of collision with extremely high accuracy by frame 10 in a video sequence

of well over 100 frames. Recalling that the ball takes on average about 2 seconds to

collide with the robot and the algorithm inferences at 65 Hertz, the model was able

to make an accurate prediction within 0.1 seconds, giving the robot ample time to

dodge the ball and solve the problem for the one projectile scenario.

4.4 Evaluation

The collision anticipation convolutional recurrent neural network was able to pre-

dict future collisions in a testing set of size of 600 at each time-step in the video with

an average accuracy of 91.183%. Figure 4.1 below reports the training and validation

error for the collision anticipation model.

42

Figure 4.1: Per-Frame Training Loss and Validation Accuracy

In order to better understand what the stateful collision anticipation model was

able to learn, the hidden activation maps and cell state activation maps are visualized

in figures 4.2 through 4.5. For figures 4.2 through 4.5 below, the top left image is

what the robot vision sensor observes at time-step 33. Figure 4.2 represents the

hidden activation maps outputted from layer zero at time-step 33 for a randomly

selected collision trajectory. White represents high activations (i.e. high spatial

attention) given to specified spatial regions of the activation map. Black represents

low activation (i.e. low spatial attention) to that region of the activation map. While

it is difficult to rigorously define these spatial attention results, it can clearly be seen

that different filters learn to focus on the ball, the floor, and the background in the

first ConvLSTM layer.

43

Figure 4.2: Hidden Activations for Layer 0

In order to visualize what the long term memory has learned, the cell states for

layer zero at time-step 33 are visualized in figure 4.3. These images indicate that that

certain filters learn different aspects about the input feature map.

44

Figure 4.3: Cell State for Layer 0

Activation maps 1 and 7 are especially interesting because they show learned

attention current projectile location as well as historical projectile location. The high

accuracy of the model allowed for the development of simple deterministic algorithm

used for collision avoidance in the one projectile dodge ball task. The simple algorithm

developed queried the output of the stateful collision anticipation model at every time-

step after the tenth time-step. If the probability of a future collision was significant

then the robot would randomly move to the left or the right. If it did not predict the

future collision, the robot would remain in place.

One unexpected and interesting result was that the robot was able to generalize

its predictions even when the robot was in motion. The robot was trained to predict

45

future collisions while stationary, but the stateful collision anticipation algorithm

maintained accurate predictions during robotic evasive action.

The ability to interpret the activation maps becomes more difficult when higher

layers of the neural network are analyzed. This is likely due to the fact that the

higher layers encode higher level features of the data in order to optimize its inference

capability. These learned encodings are not intended to be inherently descriptive to

humans. Figures 4.4 and 4.5 depict the hidden activation outputs and cell states for

the final ConvLSTM layer in the stateful collision anticipation model. These layers

encode the necessary information to predict future hit with a 91.183% per-frame

testing accuracy.

Figure 4.4: Hidden Activations for Layer 2

46

Figure 4.5: Cell State for Layer 2

4.5 Conclusions

The stateful collision anticipation model gains its ability to be useful because

the perturbation detection algorithm produces informative labeling for the generated

video data. No human hand-crafted labeling technique is needed for the video data.

The model previously proposed utilized a sliding window of five time-steps. This

model suffered from a slow inference rate of 5 Hertz, large memory requirements and

limited capability for learning long-term temporal correlations. This previous model

failed to solve the single projectile dodge ball task. Motivated by this model, however,

a new model was developed to attempt to address the earlier model’s limitations. The

new stateful collision anticipation architecture was trained on full video sequences and

47

therefore could learn temporal correlations during training across the entire timescale.

This model also had significant savings in on-board memory as well as inference

speed. Admittedly, the stateful collision anticipation model requires many instances

of harmful collisions in order to learn the functional mapping between inputs and the

probability of collision. Future research should therefore focus on how to minimize

the number of collisions required to learn this functional mapping while maintaining

the speed, low memory costs, and high accuracy of the stateful collision anticipation

model.

48

Chapter 5

INTRINSIC REWARD POLICY GRADIENT METHODS

5.1 Introduction

Reinforcement learning (RL) is a powerful methodology for teaching autonomous

agents complex behaviors and skills. A critical component in most RL algorithms is

the reward function – a mathematical function that provides numerical estimates for

desirable and undesirable states. This chapter explores and discusses a new way to

train policy gradient algorithms using the output from the self-supervised perturba-

tion detection algorithm discussed in Chapter 3 as the reward for each action in a

given state. The motivation for this approach is based upon developing new learning

algorithms for robots that minimize damaging interactions during machine learning

in new environments. This section proposes a new deep reinforcement learning al-

gorithm to attempt to solve the dodge ball task with n projectiles rather than just

one. Specifically, the research below was tested on eight projectiles. Hereafter, I will

refer to this as the eight projectile dodge ball task or the eight projectile dodge ball

scenario. The Monte-Carlo (i.e. stochastic) policy gradient algorithm method was

used in the research described in this chapter; however, the proposed intrinsic reward

strategy is not specific to the Monte-Carlo policy gradient algorithm. The intrinsic

reward strategy presented in this chapter is general to any policy gradient method

and may be usable in other reinforcement learning frameworks.

A solution to the eight projectile dodge ball task was not obtained. This research,

however, did yield valuable insights. For example, the intrinsic reward policy gradi-

ent method was able to converge on a consistent strategy. Also, the task itself may

49

need further refinement to provide the appropriate platform to test the method pro-

posed. Finally, due to the complexity of the problem space, a simulation environment

that allows for running experiments headless, synchronous, and in parallel efficiently

appears to be required.

5.2 Model and Theory

The model proposed in this section is called the intrinsic reward deep reinforce-

ment learning method. This method combines the self-supervised perturbation de-

tection model, the semi-supervised collision anticipation model, and policy gradient

methods. Specifically, the model used in this research was tested with the stochastic

gradient policy method. Policy gradient methods are a family of reinforcement learn-

ing methods that minimize an objective function J(θ) where θ are the parameters of

policy πθ as depicted in equation 5.1.

J(θ) =

∫
A

πθ(at|st, at−1)R(st, at) (5.1)

In the eight projectile dodge ball task, policy πθ is represented as a deep neural

network that approximates P (at+1|st, at; θ). The neural network updates its weights

θ in order to maximize equation 5.1. We will use gradient based update methods to

maximize J(θ). Equation 5.2 below shows the gradient for J(θ).

∇θJ(θ) = Eπθ [∇θlog (πθ(s, a))Qπθ(st, at)] (5.2)

The value in the equation 5.3 below is described by the sum of the discounted rewards

for every action in a trajectory. The value function’s relationship to the reward in the

eight projectile dodge ball scenario is that the reward is the negative scaled output

of our thresholded perturbation detection model.

V πθ(s) = Eπθ [
T∑
i=1

γi−1ri] (5.3)

50

Assuming V πθ
t (s) is an unbiased sample of Qπθ

t (st, at) the parameter update equation

used in this research for theta is of the form depicted in equation 5.4.

θt ← θt−1 + α∇θlog (πθ(st−1, at−1))V
πθ
t−1(st−1) (5.4)

The proposed intrinsic reward method uses the output of the perturbation detection

algorithm as the instantaneous reward signal. Therefore, the value of a policy gradient

method is no longer hand-engineered for the eight projectile dodge ball task. A deep

neural network was used to define the policy πθ.

5.3 Training and Evaluation

In order to evaluate the performance of the given models, a baseline experiments

were undertaken. The baseline methods shown in figure 5.1 were deterministic action

policies. In the eight projectile dodge ball scenario, the robot has the option of

selecting an action from a set of the following five actions: full speed left, half speed

left, stop, half speed right and full speed right. The baseline experiments tested six

different deterministic policies, five of which were the continual selection of a single

action from the available list above and the sixth policy used a random action selection

from the options above. Ten seeds of fifty simulations were run for all of the baseline

deterministic algorithms and the box-plot below shows average number of collisions

that occurred for each of the policies.

51

Figure 5.1: Baseline Hit Count Across 10 Seeds Of 50 Simulations

The models that were trained and evaluated compared multiple architectural pol-

icy networks and used varying reward signals. The first experiments compared poten-

tial architectures as the policy network and used the scaled thresholded perturbation

detection output as the reward for time-step t. If the perturbation detection algo-

rithm predicted a value above threshold d (d was set using the equations 3.1 through

3.4 in Chapter 3), then the negative scaled predicted error was used as the reward

for that time-step. If the predicted error was below the threshold d, then the reward

for time-step t was zero. For a trajectory where all rewards are zero, a positive one

was used as the reward for every time-step t.

Four variants were compared for this algorithm. All of these variants used two

final feed forward layers with a softmax activation in the output layer in order to

52

produce an action distribution at time-step t. Variant 0 was a feed forward policy

network that flattened the two most recent input images into vectors and appended

the state and action of the robot to the flattened images as input xt. Variant 1

used three layers of convolutional neural networks on two input images appended

across the channel dimension and three feed forward layers for the state and action of

the robot. The output of the convolutional layers was flattened and both branches’

outputs were appended in order to produce the input to the second to last layer of

the neural network. Variant 2 used ConvLSTM layers discussed in Chapter 4 as the

means to extract spatiotemporal features from the video input and LSTM layers to

extract temporal features from the state and action input from the robot. These two

branches’ outputs were reshaped and appended in order to be input for the final two

layers of the neural network. Variant 3, based on intuition gained from Chapter 2,

used IRNNs as the major source of temporal feature extraction. Variant 3 used 3

convolutional layers to extract spatial features from the current image viewed by the

robot’s sensor and reshaped that output as input to an IRNN layer. The state and

action data for Variant 3 was input to the IRNN cell and then appended to the output

of the reshaped convolutional branch of the neural network to be fed into the last

two layers. Notably, and as shown Figure 5.2 below, the Variant 3 or the ConvIRNN

architecture outperformed the other architectures achieving the highest reward.

53

Figure 5.2: 8 Ball Scenario Training Rewards

The best performing policy networks for the ConvIRNN variant were validated

according to the same criteria as the baseline methods. The number of collisions

across fifty simulations were recorded for ten different random seeds. The results are

depicted in 5.3.

54

Figure 5.3: Hit Count By Architecture

5.4 Results and Insights

The best performing ConvIRNN models do not yield a solution to the eight projec-

tile dodge ball task. One of the deterministic baseline algorithms was approximately

as effective as the best-trained ConvIRNN models. Importantly, the best-trained

ConvIRNN models converged to a general strategy for collision avoidance and out-

performed five out of the six deterministic baseline strategies. Unfortunately, unlike

the one projectile dodge ball task solved in Chapter 4, the solution to the eight ball

dodge ball task remains elusive. More research is needed to determine whether, and

if so to what extent, the approach proposed in this research can be applied to robotic

collision avoidance problems. Nothing in the research undertaken to date suggests

55

that such additional efforts would be futile. Insights gained from this research on the

eight projectile dodge ball task include the following:

1. Convergence

The intrinsic reward policy gradient method using the scaled perturbation detection

output showed convergence to consistent behaviors or policies. The best-trained solu-

tions did outperform five of the six deterministic baseline policies and did not perform

more poorly than the optimal deterministic baseline policy. Therefore, the intrinsic

reward policy gradient method proposed did not abjectly fail. Divergence from opti-

mal policies was not observed. Even though the tested intrinsic reward policy gradient

method did not solve the eight projectile dodge ball task, it showed potential in its

ability to find converging behaviors that attempted to solve the problem.

2. Dodge Ball Task Refinement

An important aspect of being able to validate the efficacy of the intrinsic reward

policy gradient approach is having a testing environment that is difficult enough to

require complex learning, while at the same time being reasonably solvable. From an

RL perspective, whether the eight projectile dodge ball task, as currently configured,

is reasonably solvable merits further study. A significant amount of time was applied

to designing the eight projectile dodge ball task. The task was developed with the

intention of being difficult to solve. Because the eight projectile dodge ball task

was constructed specifically during and for this research, no other researchers have

attempted to solve it. Therefore, it is difficult to determine the effectiveness of the

best-trained models resulting from the proposed method. This research proposes that

these solutions offer the first baselines for this difficult task.

3. Simulation Platform Requirements

The simulation platform selected to implement the eight projectile dodge ball task

presented many problems. In order to properly explore reinforcement learning solu-

56

tions, a simulation environment needs to be able to run experiments in a time-efficient

manner. V-REP does not run synchronous, headless and in parallel on a single com-

puter. Reinforcement learning requires adequate hyper-parameter searches in order

to produce stable solutions. Because of these two facts, V-REP limits a researchers

capability to test, in any reasonable time frame, the validity of reinforcement learning

approaches with image input on a problem as relatively difficult as the eight projectile

dodge ball task. Another problem faced in this research was that V-REP does not

use the physics engine’s collision detection algorithm to determine the ground truth;

the software does its own collision detection. This would not have posed a problem if

V-REP did not use a 50ms step for its own rendering and updates, while the physics

engine uses a different – 5ms – step for its physics updates. In order to solve this

discrepancy, which was required to access the ground truth for the dodge ball task,

one must set V-REP’s update step to be 5ms. Unfortunately, this means that the

limiting factor for the time it takes to train each RL algorithm is no longer the com-

putation required from the RL algorithm but rather the rendering step required by

V-REP. For the eight projectile dodge ball task, one cannot increase the simulation

rendering rate of V-REP without losing the ground truth.

5.5 Conclusions

The intrinsic reward deep reinforcement learning method proposed in this section

was motivated by the potential of designing reward functions that promote robot

safety and longevity in new environments. The eight projectile dodge ball scenario

was designed in order to test the proposed intrinsic reward policy gradient method.

Unfortunately, the proposed method did not solve the task. Despite the lack of a

solution, however, more research needs to be done to determine the effectiveness

and potential benefits of the proposed approach. Insights were gained from this

57

research. One is that the intrinsic reward policy gradient method converges to local

minimum. Also, the eight projectile dodge ball task requires further investigation

and possible refinement to ensure that it is reasonably solvable. Finally, another

simulation environment should be considered in order to better allow researchers

to evaluate, within a reasonable time frame, the intrinsic reward policy gradient

methods. Future research can also apply the intrinsic reward policy gradient method

using other policy gradient algorithms such as TRPO and DDPG. Research can also

be undertaken using the intrinsic reward policy gradient method on other tasks with

common baselines. Future research should be undertaken using other algorithms in

order to set more baselines for the eight projectile dodge ball task created in this

research. Different simulation environments – ones that can be run synchronous,

headless and in parallel – should be considered.

58

REFERENCES

[1] A. V. Apkarian. Pain perception in relation to emotional learning. Current
opinion in neurobiology, 18(4):464–468, 2008.

[2] A. I. Basbaum and H. L. Fields. The origin of descending pathways in the
dorsolateral funiculus of the spinal cord of the cat and rat: further studies on
the anatomy of pain modulation. Journal of Comparative Neurology, 187(3):
513–531, 1979.

[3] M. A. Bedau and C. E. Cleland. The nature of life: classical and contemporary
perspectives from philosophy and science. Cambridge University Press, 2010.

[4] A. Beese and S. Morley. Memory for acute pain experience is specifically inac-
curate but generally reliable. Pain, 53(2):183–189, 1993.

[5] D. M. Broom. Evolution of pain. Vlaams Diergeneeskundig Tijdschrift, 70(1):
17–21, 2001.

[6] J. Chen, Z. Li, Y. Lv, C. Li, Y. Wang, R. Wang, K. Geng, and T. He. Empathy
for pain: A novel bio-psychosocial-behavioral laboratory animal model. Sheng li
xue bao:[Acta physiologica Sinica], 67(6):561–570, 2015.

[7] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio. Learning phrase representations using rnn encoder-
decoder for statistical machine translation. arXiv preprint arXiv:1406.1078,
2014.

[8] J. Collins, J. Sohl-Dickstein, and D. Sussillo. Capacity and trainability in recur-
rent neural networks. arXiv preprint arXiv:1611.09913, 2016.

[9] A. Craig. A new view of pain as a homeostatic emotion. Trends in neurosciences,
26(6):303–307, 2003.

[10] A. D. Craig. How do you feel? interoception: the sense of the physiological
condition of the body. Nature reviews neuroscience, 3(8):655, 2002.

[11] R. Dawkins. River out of Eden: A Darwinian view of life. Basic books, 2008.

[12] Y. Gal and Z. Ghahramani. Dropout as a bayesian approximation: Representing
model uncertainty in deep learning. In international conference on machine
learning, pages 1050–1059, 2016.

[13] F. A. Gers, J. Schmidhuber, and F. Cummins. Learning to forget: Continual
prediction with lstm. 1999.

[14] F. A. Gers, N. N. Schraudolph, and J. Schmidhuber. Learning precise timing
with lstm recurrent networks. Journal of machine learning research, 3(Aug):
115–143, 2002.

59

[15] C. Gramsch, J. Kattoor, A. Icenhour, M. Forsting, M. Schedlowski, E. R.
Gizewski, and S. Elsenbruch. Learning pain-related fear: neural mechanisms
mediating rapid differential conditioning, extinction and reinstatement processes
in human visceral pain. Neurobiology of learning and memory, 116:36–45, 2014.

[16] S. Haddadin. Towards safe robots: approaching Asimovs 1st law, volume 90.
Springer, 2013.

[17] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computa-
tion, 9(8):1735–1780, 1997.

[18] M. Hunter, C. Philips, and S. Rachman. Memory for pain. Pain, 6(1):35–46,
1979.

[19] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[20] J. Kuehn and S. Haddadin. An artificial robot nervous system to teach robots
how to feel pain and reflexively react to potentially damaging contacts. IEEE
Robotics and Automation Letters, 2(1):72–79, 2017.

[21] C. Lamm, J. Decety, and T. Singer. Meta-analytic evidence for common and
distinct neural networks associated with directly experienced pain and empathy
for pain. Neuroimage, 54(3):2492–2502, 2011.

[22] Q. V. Le, N. Jaitly, and G. E. Hinton. A simple way to initialize recurrent
networks of rectified linear units. arXiv preprint arXiv:1504.00941, 2015.

[23] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied
to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[24] V. Legrain, G. D. Iannetti, L. Plaghki, and A. Mouraux. The pain matrix
reloaded: a salience detection system for the body. Progress in neurobiology, 93
(1):111–124, 2011.

[25] S. Li, W. Li, C. Cook, C. Zhu, and Y. Gao. Independently recurrent neu-
ral network (indrnn): Building a longer and deeper rnn. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 5457–
5466, 2018.

[26] E. M. Nagasako, A. L. Oaklander, and R. H. Dworkin. Congenital insensitivity
to pain: an update. Pain, 101(3):213–219, 2003.

[27] S. Pearce, S. Isherwood, D. Hrouda, P. Richardson, A. Erskine, and J. Skinner.
Memory and pain: tests of mood congruity and state dependent learning in
experimentally induced and clinical pain. Pain, 43(2):187–193, 1990.

[28] P. A. Roche and K. Gijsbers. A comparison of memory for induced ischaemic
pain and chronic rheumatoid pain. Pain, 25(3):337–343, 1986.

60

[29] N. Schwartz, C. Miller, and H. L. Fields. Cortico-accumbens regulation of
approach-avoidance behavior is modified by experience and chronic pain. Cell
reports, 19(8):1522–1531, 2017.

[30] T. Singer, B. Seymour, J. O’doherty, H. Kaube, R. J. Dolan, and C. D. Frith.
Empathy for pain involves the affective but not sensory components of pain.
Science, 303(5661):1157–1162, 2004.

[31] C. G. Skibinsky. Changes in store for the livestock industry-canada’s recurring
proposed animal cruelty amendments. Sask. L. Rev., 68:173, 2005.

[32] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov.
Dropout: A simple way to prevent neural networks from overfitting. The Journal
of Machine Learning Research, 15(1):1929–1958, 2014.

[33] I. Sur and H. B. Amor. Robots that anticipate pain: Anticipating physical
perturbations from visual cues through deep predictive models. In Intelligent
Robots and Systems (IROS), 2017 IEEE/RSJ International Conference on, pages
5541–5548. IEEE, 2017.

[34] R. S. Sutton and A. G. Barto. Introduction to reinforcement learning, volume
135. MIT press Cambridge, 1998.

[35] D. Talmi, P. Dayan, S. J. Kiebel, C. D. Frith, and R. J. Dolan. How humans in-
tegrate the prospects of pain and reward during choice. Journal of Neuroscience,
29(46):14617–14626, 2009.

[36] K. Wiech and I. Tracey. Pain, decisions, and actions: a motivational perspective.
Frontiers in neuroscience, 7:46, 2013.

[37] S. Xingjian, Z. Chen, H. Wang, D.-Y. Yeung, W.-K. Wong, and W.-c. Woo.
Convolutional lstm network: A machine learning approach for precipitation now-
casting. In Advances in neural information processing systems, pages 802–810,
2015.

[38] J. Zaman, V. J. Madden, J. Iven, K. Wiech, N. Weltens, H. G. Ly, J. W. Vlaeyen,
L. Van Oudenhove, and I. Van Diest. Biased intensity judgements of visceral
sensations after learning to fear visceral stimuli: a drift diffusion approach. The
Journal of Pain, 18(10):1197–1208, 2017.

61

APPENDIX A

DATA COLLECTED

62

Figure A.1: Model 0 Max Predicted Error Per Trajectory

Figure A.2: Model 1 Max Predicted Error Per Trajectory

63

Figure A.3: Model 2 Max Predicted Error Per Trajectory

Figure A.4: Model 3 Max Predicted Error Per Trajectory

64

Figure A.5: Model 4 Max Predicted Error Per Trajectory

Figure A.6: Model 5 Max Predicted Error Per Trajectory

65

Figure A.7: Model 6 Max Predicted Error Per Trajectory

Figure A.8: Model 7 Max Predicted Error Per Trajectory

66

Figure A.9: Model 8 Max Predicted Error Per Trajectory

Figure A.10: Model 9 Max Predicted Error Per Trajectory

67

Figure A.11: Model 10 Max Predicted Error Per Trajectory

Figure A.12: Model 11 Max Predicted Error Per Trajectory

68

Figure A.13: Model 0 Max Predicted Error Per Trajectory

Figure A.14: Model 13 Max Predicted Error Per Trajectory

69

Figure A.15: Model 14 Max Predicted Error Per Trajectory

Figure A.16: Model 15 Max Predicted Error Per Trajectory

70

Figure A.17: Model 16 Max Predicted Error Per Trajectory

Figure A.18: Model 0 Deep Dynamics Training and Validation Loss

71

Figure A.19: Model 1 Deep Dynamics Training and Validation Loss

Figure A.20: Model 2 Deep Dynamics Training and Validation Loss

72

Figure A.21: Model 3 Deep Dynamics Training and Validation Loss

Figure A.22: Model 4 Deep Dynamics Training and Validation Loss

73

Figure A.23: Model 5 Deep Dynamics Training and Validation Loss

Figure A.24: Model 6 Deep Dynamics Training and Validation Loss

74

Figure A.25: Model 7 Deep Dynamics Training and Validation Loss

Figure A.26: Model 8 Deep Dynamics Training and Validation Loss

75

Figure A.27: Model 9 Deep Dynamics Training and Validation Loss

Figure A.28: Model 10 Deep Dynamics Training and Validation Loss

76

Figure A.29: Model 11 Deep Dynamics Training and Validation Loss

Figure A.30: Model 12 Deep Dynamics Training and Validation Loss

77

Figure A.31: Model 13 Deep Dynamics Training and Validation Loss

Figure A.32: Model 14 Deep Dynamics Training and Validation Loss

78

Figure A.33: Model 15 Deep Dynamics Training and Validation Loss

Figure A.34: Model 16 Deep Dynamics Training and Validation Loss

79

Figure A.35: Predicted Error Vs Ground Truth

Figure A.36: Predicted Error Vs Ground Truth

80

Figure A.37: Predicted Error Vs Ground Truth

Figure A.38: Predicted Error Vs Ground Truth

81

Figure A.39: Predicted Error Vs Ground Truth

82

Figure A.40: Hidden Activations for Layer 1

83

Figure A.41: Cell State for Layer 1

84

