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ABSTRACT

The structure of glass has been the subject of many studies, however some details

remained to be resolved. With the advancement of microscopic imaging techniques

and the successful synthesis of two-dimensional materials, images of two-dimensional

glasses (bilayers of silica) are now available, confirming that this glass structure closely

follows the continuous random network model. These images provide complete in-

plane structural information such as ring correlations, and intermediate range order

and with computer refinement contain indirect information such as angular distribu-

tions, and tilting.

This dissertation reports the first work that integrates the actual atomic coordi-

nates obtained from such images with structural refinement to enhance the extracted

information from the experimental data. The correlations in the ring structure of

silica bilayers are studied and it is shown that short-range and intermediate-range

order exist in such networks. Special boundary conditions for finite experimental

samples are designed so atoms in the bulk sense they are part of an infinite network.

It is shown that bilayers consist of two identical layers separated by a symmetry

plane and the tilted tetrahedra, two examples of added value through the structural

refinement. Finally, the low-temperature properties of glasses in two dimensions are

studied. This dissertation presents a new approach to find possible two-level systems

in silica bilayers employing the tools of rigidity theory in isostatic systems.
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Chapter 1

INTRODUCTION

Since the dawn of civilization, humans have developed tools to dominate and

explore nature and their mastery at tool-making coupled with their creativity has

paved the way to their advancement. It is, thus, not surprising that a large segment of

our intellectual activity has been focused on the understanding of materials behavior.

In the last 100 years, we have witnessed a rapid growth in our understanding

of materials and a paradigm shift from heuristic approaches to designer materials

customized even at the atomic level. Glasses are among the materials with most

applications. However, historically their structure has been the subject of various de-

bates. The comparison between non-crystalline and crystalline materials can justify

possible disagreements. Crystals are known as an ordered material with a (usually)

small unit repeating in space. In crystals, the knowledge of unit cell, basis and its

symmetry is sufficient to fully describe a crystal. The periodicity lends itself well to

a rigorous mathematical formulation and reductionist style of physics to describe the

properties of crystals. Such language is missing in non-crystalline materials and in

addition, they have some properties that are not present in crystals. Two great exam-

ples are the thermal properties of glasses in low temperatures [11] and the excess of

low-frequency vibrational modes [12]. This means that models have a greater signifi-

cance in understanding glassy properties. In fact, an amorphous structure represents

a degenerate state since uncountably many structures can generate observations that

match our experimental data.

Modeling of glass dates back to more than 80 years ago and several models ex-

plain the experimental observations but many exciting advancements are yet to come.
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The last two decades in materials physics is characterized by the great interest in

two-dimensional (2D) materials. After the successful synthesis of graphene [13], re-

searchers are determined to expand the library of 2D materials. Dimensionality can

strongly impact the materials properties and indeed it has proven to be extremely

important for glasses as recently microscopic imaging of archetypal glassy network-

formers i.e. vitreous silica (a-SiO2) [8, 4], and germania (a-GeO2) [14] have shown.

This is a remarkable breakthrough which allows us to look into the glass structure,

independent of any model.

Here, the aim is to combine the experimental data with the mathematical and

computational techniques to gain a better understanding of the glass structure. This

dissertation is structured as follows. This chapter briefly reviews structural proper-

ties of glass and related topics. This is followed by a review of experimental and

computational studies with a focus on recent breakthroughs in imaging of 2D glass.

Chapter 2 will describe the correlations in the ring structure of the random networks.

Chapter 3 will present a set of novel boundary conditions that are designed to max-

imize the available information from the experimental network glasses. The results

of refining a 2D glass are given in Chapter 4. Finally, Chapter 5 discusses the low-

temperature properties of glasses and our attempt to find geometrical signatures of

tunneling states.

1.1 Theories of Glass Structure

The lack of periodicity in glasses comes at the cost of losing an exact formalism to

describe their structures, and inevitably different models are presented to relate the

glassy structures to the observed data. Historically, there have been two competing

models for the structure of glass: crystallite theory, and continuous random network

theory. In short, crystallite theory asserts that glass consists of many small crystalline

2



regions. Random network theory, however, states that glass is locally similar to

crystals. On the short-range scales the interactions between atoms are the same, but

due to variations in angles in which atoms bond, a disordered network is formed, with

no micro-crystallites.

The history of crystallite theory goes back to 1835 where Frankenheim speculated

that glass is made of very small crystalline regions (named crystallites) that vary in

size [15]. This was about 81 years before the very first powder diffraction experiments

performed by Debye and Scherrer in 1916 [16]. However, textbooks usually consider

that Lebedev proposed this theory in 1921 [17].

Continuous random network (CRN) theory is also based on the similarity of crys-

tals and glasses but only up to very short-range structure. CRN states that the nature

of atomic bonding is the same for crystals and glasses which means in the case of oxide

glasses such SiO2, the tetrahedral SiO4 can form a very large network but as opposed

to crystals, these building blocks are joined at (somewhat) random angles which in

turn leads to lack of long-range order and periodicity in glasses. This model is often

attributed to Zachariasen [18] but in fact Rosenhain [19] was the first to suggest that

due the directionality of (covalent) bonds, the glass is a network of randomly con-

nected tetrahedral units. The network is not truly random since ordering exists both

on short- and medium-range. But as Warren writes [2], the network is called random

since “it does not repeat itself at regular intervals, and the material is accordingly

noncrystalline.” Essentially random is used as a synonym to noncrystalline1.

Fig. 1.1 shows a two-dimensional diagram of A2O3 vitreous network as imagined

by Zachariasen. The network consists of regular equilateral triangles (AO3 blocks)

that are connected with some local distortions eventually forming the ring structure

1The history of glass science, like glass, is very colorful and Ref. [20] by A.C. Wright is strongly

recommended for more historical insights.
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Figure 1.1: The original but colored Zachariasen’s diagram of the planar glass A2O3

based on the continuous random network hypothesis as appeared in [1]. Red points
are O atoms and blue points represent A atoms. This sketch is particularly interest-
ing because of the meticulous drawing of regular AO3 blocks which are equilateral
triangles.

of the glass [21]. Therefore, we expect that short-range order in glass is very similar

to crystalline silica. But the medium-range clearly exhibits signatures of glassy states

as the way the tetrahedra are connecting is different. In addition, the ring structure

also impacts the ordering at the intermediate range. Topological and geometrical

correlations between rings from short- to long-range are studied in Chapter 2.

Order in amorphous solids is characterized by the correlation functions. If we

know the position of all atoms, a conditional probability can be formed to quantify the

probability of finding another atom in position r from a given atom. We can at least

partially characterize the short-range order in well-studied materials such as silica.

If the random network model is correct, we expect that distances between nearest

atoms in glass are similar to that in quartz [22, 2]. Each silicon is surrounded by four

oxygens at about 1.6Å, and four silicons at about 3.10Å. Therefore the probability of
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finding any atom from a Si with the distance less than ∼ 1.6Å is zero.

Correlation functions can be defined based on the number density of atoms. Let’s

assume that N atoms are confined in the volume V so that the average number density

is ρ0 = N/V . For a typical atom chosen at origin, the number density at position r

is ρ(r). For an isotropic medium such as glass: ρ(r) = ρ(r). Since the whole space

contains N atoms:

N =

∫
V

dV ρ(r) =

∫
V

dV ρ0g(r). (1.1)

g(r) measures the local deviation of the number density ρ from the average local den-

sity ρ0 and is called the radial distribution function or more generally pair correlation

function. Based on this equation, the average number of atoms dN(r) located within

the volume element dV around r is:

dN(r) = ρ0g(r)dV. (1.2)

This equation immediately provides an algorithm to compute g(r). Take an atom

as the origin and count the number of atoms located in volume dV at distance r.

Repeat this process until all atoms are taken as the origin. Then take the average as

the expected number of atoms at that distance. Note that if there is no correlation,

the expected number of atoms is ρ0dV or g(r) = 1. In glasses, we expect that for

sufficiently large distances, g(r) → 1, similar to liquids since no long-range order is

expected.

The radial distribution function of a two-dimensional glass with composition sim-

ilar to Zachariasen diagram (Fig. 1.1, see also Fig. 1.6) is shown in Fig. 1.2. In this

figure, Si atoms are selected as the origin and their distance to all other atoms (includ-

ing Si and O) is calculated and averaged. Each peak corresponds to a high probability

of finding an atom at that distance. The first peak in the radial distribution function

corresponds to the spacing between Si and nearest O at around 1.6Å. The following
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Figure 1.2: The radial distribution of two-dimensional Si2O3 (similar to Zachari-
asen’s diagram). The three dashed lines are approximately drawn at 1.6, 3.0, and
4.0Å, respectively. The averaging is done assuming that only Si atoms are at the
center but g(r) is calculated for both Si and O atoms, with equal weighting.

peak occurs at ∼ 3.0Å which is the distance between two Si atoms in the middle of

two joined triangles. Note that triangles do not necessarily link at 180◦ to accom-

modate the ring closure and in addition the structure is a projection from 3D to 2D,

therefore this distance is slightly less than 2×1.6Å. The third peak is located at 4.0Å

and corresponds to the distance of a typical Si to the second-nearest O atoms on the

non-joint corners of the linked triangles. These peaks are the signature of short-range

ordering but at larger distances, peaks will gradually diminish and the atoms are free

of correlations. At sufficiently large distances g(r) tends to 1. In comparison, since

the atoms in a crystal are located at deterministic positions, g(r) would be a series

of sharp peaks (delta functions), if atoms were stationary.
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The radial distribution function is experimentally available as the Fourier trans-

form of diffraction data. To gain any spatial information about the detailed structure,

if the typical distance between atoms is a, then the scattering wave should have a

wavelength λ comparable to this spacing which corresponds to a wavenumber of order

k ≈ 2π/a which is in agreement with Bragg’s law. As the atoms are separated by a

few Å, x-ray or neutron scattering are the common techniques to probe the structure

of glass. In experiments, the scattered intensity from atoms is the measurable quan-

tity and depends on the local electron concentration. In general, two beams diffracted

from two regions r apart, have a difference in the phase factor as exp (i(k− k′).r)

where k and k′ are respectively the wavevectors of the incident and the diffracted

beams. This means that the total scattered intensity depends on (static) structure

factor S which in fact is the inverse Fourier transform of the radial distribution func-

tion:

S(k− k′) = 1 + ρ0

∫
dV [g(r)− 1] e−i(k−k

′).r. (1.3)

For an elastic scattering |k| = |k′|. If we define q = k − k′, we can simplify the

expression for an isotropic system. Since the integral over the volume element depends

on the dimension, the structure factor takes different forms for 2D:

S(q) = 1 + 2πρ0

∫
[g(r)− 1] J0(qr)rdr (1.4)

where J0(qr) is the zeroth order Bessel function of the first kind, and for 3D:

S(q) = 1 + 4πρ0

∫
[g(r)− 1]

(
sin qr

qr

)
r2dr. (1.5)

Once the intensity measurements are done, the radial distribution is available through

the inverse Fourier transform of the structure factor.

In 1934, Warren developed a method for analyzing the X−ray diffraction patterns

of amorphous solids [2] based on the pioneering work of Debye and Scherrer [16] on
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Figure 1.3: X-ray diffraction pattern of vitreous silica; Reproduced from [2].

powder diffraction. Prior to this work, numerous studies of x-ray diffraction from

glass were reported but no serious attempt had been made to interpret the results

([2] and references therein). However, it was already established that the diffraction

pattern of glass was reminiscent of liquids (Fig. 1.3). Warren compared the diffraction

results to the predictions of crystallite and random network models. He confirmed

the fact that in vitreous silica, each oxygen is shared between two tetrahedral units

while each unit surrounds a silicon which was considered as evidence supporting the

continuous random network model.

The diffraction experiments and the radial distribution function are important

methods to study glassy structures but, in practice, cannot uncover all detailed struc-

tural information of amorphous systems. Firstly, ideas such as presented here do not

include the atomic thermal vibrations in the analysis. In addition, experiments have

a limited real-space resolution. Secondly, diffraction experiments can offer a single

one-dimensional radial distribution function but there is no possible way to uniquely

identify the actual structure of the glass generating the correlations. From this per-

spective, modeling of amorphous systems is an extremely important tool to gain far

more detailed structural information.
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Figure 1.4: (Left) Part of Bell and Dean’s 1972 model of vitreous silica, courtesy
of the Science Museum, London. Reproduced from [1]. (Right) Computer-generated
model of a-SiO2 with periodic boundary conditions. Reproduced from [3].

Until 1960s, researchers were mostly focused on the interpretation of the experi-

mental diffraction data based on two competing theories. Feasibility of such structures

became only an issue during this decade. The research in this era were followed under

two themes of (a) realization of glass in three dimensions and (b) consistency of such

realizations with the diffraction data [20]. In December of 1966, Nature published two

back-to-back papers, by Evans and King [23], and by Bell and Dean [24]. The papers

were first reports of modeling of virtuous silica structure based on continuous ran-

dom network model. Evans-King model with 1953 atoms was considerably larger then

Bell-Dean model with 614 atoms (Fig. 1.4). While the Evans-King model is largely

forgotten today, the Bell-Dean model is still highly cited2 since they published the

atomic coordinates of their model in 1972 [25].

Measurements in any reasonably large table-top model is tedious and soon re-

searchers used molecular dynamics simulations to study the structure of glass in

1970s. Initial simulations were mostly two-body potentials including electrostatic

and ionic interactions [26] but since the angular distributions (O-Si-O) did not match

2There is a lesson in this story!
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Figure 1.5: (Left) A TEM image of glassy region in the bilayer of silica supported
on graphene reproduced from [4]. The scale bar is 2 nm. (Right) A side-view of silica
bilayer model in which oxygen atoms (red) form a tetrahedral network while silicons
(blue) are located at the center of tetrahedra.

the experimental data, later angle bending terms were added [27] (Fig. 1.4).

Computational tools have significantly improved our understanding of vitreous

materials but the most exciting and promising path to grow our knowledge of such

materials is imaging techniques that reveal the exact structure of an amorphous ma-

terial independent of any model. The electron microscopy techniques can resolve the

structure of crystals in 3D, but the structural determination of amorphous materials

in 3D is still elusive despite the recent advancements [28]. One way to circumvent

this limitation is to reduce the dimensionality from 3 to 2 which has led to the dis-

covery and imaging of thin films of silica in both crystalline and noncrystalline forms.

The thin films are in the form of the monolayer and bilayer of silica which are grown

on graphene [4], on Ru(0001) [29, 8, 30] and Pd(100) [31] substrates and imaged

using scanning probe microscopy (SPM) techniques. This advancement is not lim-

ited to silica as imaging of a monolayer of germania on a metal substrate is recently

reported [14].

Although the bilayer structure extends in the z−direction, since it is the thinnest
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stable form of silica, it is referred to as 2D glass. The 2D glass consists of two layers

of silica where each layer is a network of SiO4 tetrahedron. The layers are connected

through bridging oxygens and all atoms have perfect coordination (see Fig. 1.5) except

those on the boundary. In addition, the ring structure of two layers are identical.

Therefore topological and in-plane geometrical properties of silica bilayer are in fact

present in 2D representation of the network; a two-dimensional network of corner-

sharing triangles which oxygens are at the corners and silicons are at the center of

triangles.

These microscopic images reveal the actual atomic arrangement of glass and open

a new benchmark which models can be evaluated against. This offers a unique op-

portunity to not only revisit previous studies in the light of new findings but also

to look into the realm that was previously impossible, already leading to new in-

sights [32, 33, 34, 35]. In the following sections, a more detailed account of the

structure of silica bilayers is given.

1.2 2D Amorphous Networks: Three Representations

Two-dimensional (2D) amorphous networks are used to model various materials

from foams, and amorphous graphene (a-G) to silica bilayers (a-SiO2). Such 2D

networks have three representations which shed light on their different properties.

The first one is a cellular representation. In this representation, the material is

viewed as a packing of polygons in plane. The cellular patterns have long been

the subject of studies in foams and grains [36], biological tissues [37], metallurgical

aggregates, geographical structures, crack networks [38], ecological territories, Voronoi

tessellations [39, 40] and even the universe at large scale [41] and fractals [42]. The

broad range of materials and physical interactions is a remarkable property of cellular

networks. In the bilayers of silica, this picture can be achieved by omitting the oxygen
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(A) (B)

(C) (D)

Figure 1.6: Three representations of a two-dimensional amorphous network. In
reference to silica, the red and blue points are oxygen and silicon atoms, respec-
tively. (A) An overlay of three representations and how they can be transformed
to one another, (B) The cellular representation by emphasizing Si atoms, (C) The
corner-sharing representation by connecting nearest-neighbors O atoms, and (D) Tri-
angulation representation formed by the replacing polygons with their centroid. This
representation is not the same as Delaunay triangulation.

atoms but emphasizing silicons (Fig. 1.6-B). In solid state physics literature, polygons

or cells are often called rings. A ring is defined as a closed loop which obeys the

shortest-path criterion [43]. Rings allow us to study order and correlations beyond

short-range order which is focused on ordering on the scale of a bond length.

The rich history of studying ring structure in cellular patterns has uncovered a set

of laws governing such structures which shows they are far from being random. Inde-

pendent of the structural details and solely based on the topological considerations,

Euler’s theorem would apply to the cellular patterns :

N −NB +NR = χ. (1.6)
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Figure 1.7: Polycrystalline magnesium oxide (MgO) reproduced from [5].

If N is the number of sites or vertices, NB denotes the number of bonds or edges, NR

is the number of rings or cells, and χ is the topologically invariant Euler–Poincaré

characteristic which its value depends on the embedding space but is a number of

order 1([44], chapter 6).

Cellular patterns are almost universally made of trivalent sites meaning that each

site is connected to three other sites. Since each site has three incident bonds and

each bond is shared between two sites: 3N = 2NB. In addition, each bond is shared

between two rings, so counting each ring would doubly count each bond. If we have

Nn rings with n−sides, then
∑

rNnn = 2NB. We can finally find the mean ring size

in trivalent cellular patterns using Eq. 1.6:

〈n〉 =

∑
nNnn

NR

= 6(1 +
3χ

NB

)−1. (1.7)

For graphs with topology of a torus as is the case for periodic boundary conditions,

χ = 0 and the mean ring size is exactly 6. For a planar graph, χ = 1 and the mean

ring size is slightly less than 6 but in the limit of a large system (N →∞), the mean

ring size approaches 6.
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Table 1.1: The fitting parameter in Aboav-Weaire law in various materials.

Material α

Foam 0.2

Voronoi polygons 0.1

Silica bilayers (experiments) 0.33

Silica bilayers (computer models) 0.23

Although the global average ring size in cellular networks is fixed at 6 by topology,

some local variations from this value are expected. Aboav observed that locally, larger

rings tend to be surrounded by smaller rings and vice versa. Aboav’s work on grain

size distribution date back to 1965 [45] , but he is most famous for his 1970’s paper

on the arrangement of grains in polycrystals (Fig. 1.7) [5]. He found out that the

average size of rings m1(n) around rings with n sides follows the following form:

m1(n) = 5 +
8

n
. (1.8)

The subscript 1 in m1(n) emphasizes that this is written for the nearest neighbors.

Later, Weaire showed that this law cannot be general [46]. After several modifications,

the above equation was written in the form of what is now called Aboav-Weaire

law [21]:

nm1(n) = 36 + µ+ 6(1− α)(n− 6) (1.9)

where µ is the second moment of the ring distribution and α is a fitting parameter.

The exact meaning of α is still debated [21]. The values of α for some materials are

given in Table 1.1. The computer generated models of silica bilayers have a value

of α close to the foams but smaller than that for experiments (microscopic images).

This requires further investigation of ring correlations and modification of the bond-

switching algorithm (see Figure 1.9).
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Figure 1.8: Cross section of cells in cucumber, reproduced from [6].

In fact, Lewis many years before Aboav had studied cellular networks in 1928 [6].

Lewis not only studied the cells of Cucumis (aka Cucumber!) but also compared the

results to cooled wax and Giant’s Causeway (Fig. 1.8). He confirmed that the mean

ring size is indeed close to 6 and the ring distribution is dominated by the number of

pentagons, hexagons and heptagons. But in particular, he found out that the area of

a ring with n sides increases linearly with n (Lewis’s law).

Both the Aboav-Weaire and the Lewis laws are observed and confirmed numerous

times in cellular networks in a broad range of length scales governed by various

interaction [39]. In fact, it has been shown that bilayers of silica also obey the Aboav-

Weaire law. However, the Lewis law does not hold in 2D glasses. The reason is the

remarkable symmetry of polygons in 2D glasses where they are very close to being

regular, therefore the area law should be modified for such networks [47]. Chapter 2

employs this representation of 2D glasses and discusses the short- and medium-range

order and generalizes Aboav-Weaire law to further neighbors.

Second representation of a 2D glass is a network of corner-sharing triangles. In
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the case of a silica bilayer, such a network is formed by connecting nearest-neighbor

oxygens while silicons are omitted (see Fig. 1.6-C). Mathematically, this is the “line

graph” of a cellular network3, where each edge is decorated by a new vertex. New

vertices will be connected if their parent edges had a vertex in common. In this

representation, each vertex (oxygen atom) is connected to four (six) vertex (atoms)

in two (three) dimensions which makes the network locally isostatic, i.e. the degrees of

freedom are balanced by the constraints. One application of such a representation is

the structural refinement of the experimental samples of silica bilayer [9]. Microscopic

images of silica naturally exhibit some uncertainty in atomic positions. In addition,

experimental samples are finite and surface effects need to be removed to achieve

high quality refinement. We can develop special boundary conditions to elevate both

concerns which is the subject of Chapter 3. The goal is to add back enough constraints

to the network to balance missing constrains on the surface. This is achieved by

either freezing the motion of (some) surface atoms or limiting the motion along a

direction [48].

In comparison to cellular networks, this representation is largely unexplored. How-

ever, its crystalline form is the Kagome lattice which is extensively studied in topics as

diverse as antiferromagnetism [49], colloidal self-assembly [50] and optical lattices [51].

The most relevant studies are those concerned with elastic properties. For example,

it is shown that geometrical distortion in the Kagome lattice controls its phonon

structure and elastic properties [52]. To the best of our knowledge, the only example

with topological disorder (apart from the studies in this thesis) is of the amorphous

topological insulators [53].

The third case is a triangulation representation where dual network of a cellular

network is constructed by placing a vertex at the centroid of each ring and connecting

3Also called “covering graph” or “the edge-to-vertex dual”.
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vertices that their rings share an edge (Fig. 1.6-D) to create a network of edge-sharing

triangles. This is equivalent of triangulation of the plane and it can be shown that

such a triangulation is approximately a Delaunay triangulation, provided that the

polygons are not too distorted. The abundance of edges in this representation makes

it a suitable choice for designer materials [54, 55, 56] since it allows full control over

the structural properties by tuning its geometry and topology.

1.3 2D Amorphous Networks: Computational Considerations

As available experimental systems are small, computational tools can be used

to create much larger systems to eliminate the finite size effects. Since the three

discussed representations have widely different geometrical and topological properties,

the algorithms to generate them are distinct but there is a transformation to convert

one type to another.

Since cellular patterns are the most studied type of 2D amorphous networks,

it is no surprise that they have the most well-established generating method. The

method is essentially a 2D version of Wooten-Winer-Weaire (WWW) algorithm [57].

Starting from a perfect honeycomb lattice, a single bond-switching move will convert

a cluster of four hexagons to a pair of pentagons and a pair of heptagons (Fig. 1.9).

This transformation is also known as T1 move [39] or Stone-Wales defect [58]. By

randomly and iteratively applying this transformation, a network of polygons varying

in size is created. Each move is accepted through a Metropolis probability. Since this

transformation alters the geometry of the network, the system is periodically relaxed

using some potential such as the Keating potential [59] which would penalize the

deviation from the ideal bond length and bond angle. It is worth noting that this is a

zero-temperature algorithm but has been generalized to finite-temperature regime to

account for thermal fluctuations of atoms [60]. To be complete, it is worth mentioning
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Figure 1.9: Transformation of honeycomb lattice (a) by a rotation of a structural
unit to create a Stone-Wales defect (c). Reproduced from [7]

that corner-sharing representation [61] and edge-sharing representation [55] can be

generated directly through other algorithms.

2D amorphous networks can be generated through Molecular Dynamics (MD)

techniques, as well. A planar honeycomb lattice (e.g. pristine graphene) is melted

and then the liquid is rapidly cooled down by different cooling rates. The energy

minimization cycles are done through Tersoff-II potential [62]. Recently, A new two-

body force field is presented based on Yukawa potentials [63].

All algorithms have good agreements with the available experimental data, but

WWW algorithm has some advantages over MD methods. The WWW algorithm is

successfully used to create networks with up to 105 atoms while the system size in

MD simulations is of order of 103 atoms. The other advantage of WWW algorithm

is that it maintains the perfect coordination throughout the simulations but in MD

simulations, a small fraction of atoms are two- and four-coordinated (0.6% and 0.3%

respectively) [64, 21].
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1.4 From Monolayer to Bilayer

As it was discussed, a large part of structural information of a 2D glass is visible

in its planar representation which is directly available through microscopic images.

However, there is still some critical information hidden in the out-of-plane direction

in order to have a complete picture of silica bilayers. In simulations, we can use the

in-plane information to make the full three-dimensional structure of the bilayer. This

is achieved in several steps. First, we raise Si atoms from the plane to complete the

tetrahedra by adding an O for each Si, such that each Si atom is at the center of a

tetrahedron. Then we form the mirror image of this monolayer. Finally two layers

are connected via bridging oxygens to form the full bilayer as depicted in Fig. 1.5

(Right). Therefore, stoichiometry requirements are satisfied and all atoms gain their

full coordination except those on the boundary.

An important piece of structural information of silica is encoded in the angle

distribution. In particular, Si-O-Si angles are important since in-plane angles are

projected on 2D and out-of-plane (bridging) angles are hidden in the microscopic

images. When we joined the original monolayer and its mirror image, we implicitly

assumed that these monolayers are connected at 180◦, but in fact there is some

evidence to the contrary. From studies of Si-O-Si angle in Cristobalite [65], it is

shown that although 180◦ has a low-energy, it does not sit at the minimum energy

and lower angles are preferred. The situation is more severe for Ge since the energy

penalty is very steep for angles significantly deviated from ∼ 130◦. This might mean

that synthesis of bilayers of germania is more difficult. However this assumption of

a straight angle can be investigated in computational studies. Indeed, it turned out

the Si-O-Si bridging angle is on average ∼ 175◦ and can be reproduced by variety of

models including harmonic potential, polarizable-ion model molecular dynamics, and
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density functional theory [9]. More surprisingly, the symmetry plane of the bilayer is

maintained despite the tilt in the out-of-plane angles. This results on the structural

refinement of silica bilayer are the subject of Chapter 4.
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Chapter 2

RING CORRELATIONS IN RANDOM NETWORKS

This chapter is a reprint of the following journal article:

Sadjadi, Mahdi, and M. F. Thorpe. “Ring correlations in random

networks.” Physical Review E 94, no. 6 (2016): 062304.

My contributions to this work are the development of computer codes and math-

ematical formalism of the shell structure, generalization of the Aboav-Weaire law,

creating the figures and writing the manuscript.

2.1 Abstract

We examine the correlations between rings in random network glasses in two di-

mensions as a function of their separation. Initially, we use the topological separation

(measured by the number of intervening rings), but this leads to pseudo-long-range

correlations due to a lack of topological charge neutrality in the shells surrounding a

central ring. This effect is associated with the non-circular nature of the shells. It

is, therefore, necessary to use the geometrical distance between ring centers. Hence

we find a generalization of the Aboav-Weaire law out to larger distances, with the

correlations between rings decaying away when two rings are more than about 3 rings

apart.

2.2 Introduction

The structure of network glasses is often described by continuous random network

(CRN) model. In this model, building units form a random network where short-
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Figure 2.1: A piece of a two dimensional cellular network generated by bond-
switching algorithm from a honeycomb lattice. Rings are colored based on their size.
On the bottom left corner, a group of six-fold rings can be seen which also happens
in experimental samples and is a feature of amorphous materials, due to statistical
correlations. A central six fold ring has been left uncolored and shells of rings will be
found around this. Any ring can be used as a central location.

range order is preserved similar to that in crystals but translational long-range order

is absent due mainly to distorted bond angles [19, 18, 1]. Such structures have been

generally studied by models [66] and diffraction experiments [2] which have provided

invaluable information on short-range and medium-range order, mostly in the form

of pair distribution functions (PDFs) [67, 68, 69, 70].

One challenge in using diffraction data is that this only provides average proper-

ties such that the structure cannot be reconstructed uniquely. Meanwhile, Scanning

Probe Microscopy (SPM) and Electron Microscopy (EM) techniques have radically

shortened the resolution limit and recently true atomic resolution images of silica

bilayers and other two-dimensional (2D) amorphous surfaces have become available

[8, 4]. However, high resolution imaging of bulk amorphous materials remains elusive

[71]. These new results on 2D glasses have opened up numerous opportunities to

study the structure of glasses using actual atomic coordinates. Recent work on 2D
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glasses includes modeling of silica bilayers [72, 73], ring distribution [47], medium-

range order [74], suitable boundary conditions to recover missing constraints in the

surface [48] and the refinement of experimental samples [9]. Rigidity theory has also

uncovered a connection between 2D glasses and jammed disk packings [75, 76].

The remarkable images of vitreous bilayer silica (SiO2) unveil a ring structure

which is the characteristic of covalent glasses. But similar underlying structure also

can be found in various amorphous materials such as amorphous graphene [77, 64, 78].

In fact, these atomic materials are members of a larger class of materials (many with

larger length scales) collectively known as cellular networks. Examples are foams

and grains [36], biological tissues [37], metallurgical aggregates, geographical struc-

tures, crack networks [38], ecological territories, Voronoi tessellations [39, 40] and

even the universe at large scale [41] and fractals [42]. Given the wide range of length

scales, formation mechanisms and physical properties, cellular networks have been

the subject of many studies [79, 80]. Despite the topological resemblance between 2D

amorphous systems and other cellular networks, one should note that these materials

are microscopic systems with a very different nature of bonds and forces and hence

they can shed light on new properties of cellular networks, in particular those related

to geometry.

These glassy networks are almost entirely 3−coordinated networks, i.e., each ver-

tex is connected to three other vertices through edges which form the boundary of

polygonal rings (Fig. 2.1). In the case of amorphous graphene - vertices represent

carbon atoms. In silica bilayer, rings are formed by connecting silicon atoms while

intervening oxygen atoms are omitted.

These glassy networks, to some extent, are random and their study requires a

statistical approach but experimental samples of amorphous materials are relatively

small [81]. Additionally, the small size of many samples does not permit the study
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(a) (b)
Figure 2.2: (a): Partitioning of the random network in Fig. 2.1 into topological
shells. The shells grow roughly in circular shapes. This piece also has a triplet
inclusion in the forth (blue) shell where a 5-ring is isolated from the fifth (purple)
shell. (b) Although shells are roughly circular, no circle can sweep all rings within a
single shell; hence ring distributions with topological and geometrical definitions are
different.

of ring correlations at larger distances with good statistics. In this work, we employ

large computer models to study correlations among the rings. In the literature, the

focus has been on the correlation among adjacent rings where well-known Aboav-

Weaire’s law captures the tendency of smaller and larger rings to be adjacent. This

paper studies various correlation functions out to large topological and geometrical

distances and generalizes the Aboav-Weaire’s law.

2.3 Shell Analysis and Correlations

We define an n−ring as a ring with n adjacent rings. The ring distribution of a

network with a total of N rings is characterized by p(n), the fraction of n−rings, its

mean 〈n〉 =
∑

n np(n), and the second moment about the center µ = 〈n2〉 − 〈n〉2.

According to Euler’s theorem, the mean ring size for a network with periodic bound-
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ary conditions (PBCs) is exactly 〈n〉 = 6 1. The ensemble average of a quantity x

is defined as 〈x〉 =
∑

n p(n)x. To overcome the finite size effect in the experimen-

tal samples, we use computer-generated models under PBCs with ∼100000 vertices

(∼50000 rings) generated from an initially honeycomb lattice using bond-switching

algorithm. Here, a bond between two nearest neighbor sites is selected and replaced

by a dual bond at right angle and local topology is reconstructed to maintain the

three-fold coordination everywhere [57, 58]. Although, experimental samples contain

rings with size 4 to 9, but fraction of rings with sizes other than 5 to 7 are statistically

quite rare [47]. We studied two networks one with only 5 to 7 rings and one with

5 to 8 but no essential difference was observed. Therefore we report results of the

network with 5 to 8−fold rings with the following ring distribution: p(5) = 0.262,

p(6) = 0.494, p(7) = 0.227, p(8) = 0.0172 and µ = 0.558. Nevertheless, the measures

of this paper are general and can be applied to all glassy and cellular networks.

The correlation among rings is usually defined over a topological distance t. The

topological distance between two rings is defined as the minimum number of bonds

should be traversed to connect two rings. This distance is the equivalent of distance

of two nodes in the dual graph (when each ring is represented by a node) of Fig. 2.1.

The distance of a ring from itself is zero (t = 0). All rings which have one common

side with a given central ring are located at t = 1 (first shell). Adjacent rings to the

first shell, excluding the central ring, are at t = 2 (second shell). This process can be

continued to find shells at any topological distance similar to Fig. 2.2. A ring at shell

t is adjacent to at least one ring at shell t−1 and usually adjacent to at least one ring

1The mean ring size in the finite experimental samples is slightly less than 6 since the surface sites

are under-coordinated. Although for sufficiently large systems, boundary effects are negligible. Note

that the outer perimeter is also a ring and should be counted in Euler’s theorem but our definition

of ring only considers shortest paths.
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in shell t + 1, otherwise this ring is trapped and forms a triplet inclusion (Fig. 2.2).

This definition naturally divides/partitions the network into concentric shells around

any given ring. Therefore, all properties of the network are studied as a function of

the topological distance and the size of the central ring [82, 83], as first pointed out

by Aste et al [84, 85].

A shell at distance t from an n−ring is characterized by three numbers: number

of n′-rings Nt(n, n
′); total number of rings (shell size) Kt(n), and total number of

sides (edges) Mt(n). These quantities are related as follows:

Kt(n) =
∑
n′

Nt(n, n
′), (2.1)

Mt(n) =
∑
n′

n′Nt(n, n
′). (2.2)

Since these equations are linear, they are also valid for the averaged values over all

n−rings. More importantly, note that Nt(n, n
′) is not symmetric in respect to n and

n′. This reflects the fact that local order of the rings is strongly dependent on the

size of the central ring. Specially, Nt(n, n
′) should not be confused by the number of

n− n′ pairs at topological distance t:

Np(n)Nt(n, n
′) = Np(n′)Nt(n

′, n), (2.3)

which by definition is symmetric. This symmetry can relate the ensemble average of

the number of sides (Eq. 2.2) to the ensemble average of shell size (Eq. 2.1) at any

topological distance:

〈Mt〉 =
∑
n

p(n)Mt(n) =
∑
n

∑
n′

p(n)n′Nt(n, n
′)

=
∑
n′

n′p(n′)Kt(n
′) = 〈nKt〉 . (2.4)

This relation is the generalized Weaire sum rule which was originally proposed for

the first shell where it takes the form 〈M1〉 = 〈n2〉 = 〈n〉2 + µ [46, 86]. Note that the
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Figure 2.3: Dependence of the number of rings Kt(n) on topological distance t and
size of the central ring n. Kt(n) grows linearly for t ≥ 4. Solid lines are fitted lines
to the last three points. Points are offset for clarity with 6n.

first shell is the only shell for which K is exactly determined [K1(n) = n] but Eq.

2.4 surprisingly encapsulates all the statistical variation in the local ring distribution

in a simple form.

The space-filling nature of rings in the network requires that Kt(n) scales linearly

with t in the absence of correlation. This means that the growth rate of the shell

size is a constant number independent of the size of the central ring. Although,

geometrical constraints on the polygonal tiling of the plane does not allow a complete

independence from the central ring simply because shell closure around a larger ring

requires more rings. As a result, the intercept of Kt(n) remains a function of n.

Therefore we expect that:

Kt(n) = At+B(n), (2.5)

for t ≥ ξ, where ξ is the ring correlation length. In a hexagonal lattice, the growth

rate A is 6 but as Fig. 2.2 shows, in a random network, shells grow roughly in

circular form and simple geometrical arguments predict that the growth rate should

be 2π. However, because rings meet each other at random orientations and the shell
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surface is rough, the actual growth rate is usually greater than 2π and A can be

a measure of this roughness [87]. Figure 2.3 shows the number of the rings in the

shells around different central rings. The linear behavior of the shell size is observed

in various systems and is present in 2D glass, as expected. However, in 2D glasses

A = 7.31 ± 0.1 which is much smaller compared to the reported values for Voronoi

tessellation (11.0± 0.2) and soap (9.45± 0.1) [84], probably due to the bond bending

interactions which result in the high symmetry (close to the maximum area for given

edge lengths) of the rings in the 2D glass [47].

Another useful quantity is the topological charge of an n-ring defined as 6 − n

(also called “disclination”). Since the mean ring size in the network is 6, equivalently

total charge of the network is zero. However a piece of the network can contain any

amount of charge depending on the local ring distribution. Hence, topological charge

is a useful quantity that monitors the local deviation from the bulk properties. In

particular, the topological charge of a shell qt(n) can be defined as the sum of the

charge of its rings:

qt(n) =
∑
n′

(〈n〉 − n′)Nt(n, n
′) = 〈n〉Kt(n)−Mt(n). (2.6)

From short- and medium-range order, it is expected that rings around a given

ring are distributed such that the charge of the central ring is screened by the charge

of the neighboring shells and for t > ξ, the ring distribution is similar to the bulk

(charge per shell is zero). But as Eq. 2.5 shows, the shell size is a function of n for

any distance and therefore rings are counted with different weights in calculating the

charge per shell. In fact, Eqs. 2.4, 2.5 and 2.6 readily yield an asymptotic value for

the shell charge for t > ξ:

〈qt〉 = 〈(〈n〉 − n)Kt〉 ≈ p(5)B(5)− p(7)B(7), (2.7)

which is exact for a network with n = 5, 6, 7 and approximately correct as long
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Figure 2.4: Shell charge qt(n) vs. topological distance t. The shell charge settles
to a constant non-zero number for t ≥ 4. The dashed line shows the asymptotic
offset −0.4.

as fraction of the other rings is negligible. Therefore 〈nKt〉 does not factorize and

statistically, there is a tendency to have larger rings in a shell [ 〈qt〉 < 0 since B(7) >

B(5)] .

The results of calculating the charge per shell is shown in Fig. 2.4. For t = 1, the

total shell charge has an opposite sign to the charge of the central ring to screen the

charge but for t > 1 screening does not happen and the charge per shell reaches a non-

zero constant value, conjectured in Eq. 2.7. It is interesting to note that although the

charge of 5- and 7-rings have the same magnitude, the strength of screening for these

two is considerably different in the first shell. This shows that geometry has a strong

effect on the ring distribution. Note that hexagons have short-range correlations

(ξ = 1) but other rings are correlated up to ξ = 3 (medium-range correlation) with

different strengths.

Topological charge gives a rather complete picture of correlations in the shell

structure, but the most studied measure of correlations in the literature is the mean

ring size in the first shell around a central ring, through the well-known Aboav-Weaire
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Figure 2.5: The topological charge qr(n) per shell is plotted against the geometrical
distance r. The shell charge approaches zero for distances about three rings away.
This figure should be compared to Fig. 2.4. The two dashed lines represent the
geometrical distance corresponding to the minimum and maximum values for the
first shell with t = 1. Curves are offset for clarity where horizontal solid lines show
the expected asymptotic values of zero.

law that a ring with large size tends to have smaller rings in its neighborhood and

vice versa [88, 89]. Mathematically, the mean ring size m1(n) around a ring with n

neighbors can be written (to a very good approximation) as [5, 46]:

nm1(n) = 〈n〉2 + µ+ 〈n〉 (1− α)(n− 〈n〉), (2.8)

where α is a fitting parameter which depends on the specific network. Usually a

network is characterized by (µ, α). The meaning of α is not clear but it has been

argued that it is a metrical quantity [90] or the average excess curvature [89] but

these definitions only work in special cases. In our network, α ≈ 0.23 which is

somewhat smaller than values extracted from experiments [47] showing computer

generated models still need further refinement.

We would like to extend Aboav-Weaire law to longer distances to study correla-

tion of a ring with the shells around it. The above form can be used to propose a
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generalized Aboav-Weaire law as:

nmt(n) = 〈n〉2 + µt + 〈n〉 (1− αt)(n− 〈n〉), (2.9)

where for t = 1 we recover Eq. 2.8 with µ1 = µ. A similar argument presented to

derive Eq. 2.7 can be used to find an asymptotic value for mt(n). At sufficiently long

distances, the ring distribution in the shells is independent of the size of the central

ring and 〈Mt〉 ≈ 〈mtKt〉 = 〈mt〉 〈Kt〉, therefore for t > ξ:

〈mt〉 =
〈Mt〉
〈Kt〉

=
〈nKt〉
〈Kt〉

= 6− 〈q∞〉
〈Kt〉

. (2.10)

While we expect α∞ = 0 but we showed, 〈q∞〉 < 0, so the asymptotic value of

m∞(n) is larger than the bulk value 6. For this reason, mt(n) approaches 6 as t−1

(since Kt(n) ∼ t) which is sometimes interpreted as a long-range correlation [91, 92].

However this should be regarded as an artifact because the shells are defined in such a

way (topologically) which results(unfortunately) in the topological charge never going

to zero, even at very large distances, and in fact approaching a constant as shown

here. This is due to the non-circular nature of the shells, and can be avoided if the

shells are chosen in such a way as to make them more nearly circular. Unfortunately

this is not possible with a purely topological definition, and so we are forced to adopt

a geometrical definition for the ring-shell correlations.

Figure 2.2 shows the difference between topological and geometrical distance. De-

spite the fact that shells found by topological distance are roughly circular, it is not

possible to find a single circle which contains all the rings in the shell, therefore ring

distributions etc. are different in the two cases.

The geometrical distance r between two rings is defined as the Euclidean distance

between their centroids. Therefore, instead of using the discrete integer distance t,
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Figure 2.6: Plot of two coefficients in the generalized Aboav-Weaire law, αr and
µr with their topological counterparts, αt and µt. Geometrical definitions show that
correlation quickly decays to zero while pseudo-correlations in the topological case
last over a long-range for µt. The geometrical distances are chosen so the geometrical
and topological distances agree for the first shell.

the quantities q and m are written as a function of a continuous distance r:

qr(n) = 6Kr(n)−Mr(n), (2.11)

nmr(n) = 〈n〉2 + µr + 〈n〉 (1− αr)(n− 〈n〉). (2.12)

Since r is continuous, a binning procedure is used to compare with the previous

results using topological distance. Small bins are used with a windowing procedure

where the width of the window mimics unity in topological distance. Results for the

charge are shown in Fig. 2.5. It is evident that correlations last about 3 shells and

are quite short-ranged with the charge going to 0 over the same range, as expected.

Therefore this definition of a shell using geometrical distance is more useful. Because

of the different size of the rings, e.g., distance between a 5 − 6 pair is greater than

a 7 − 8 pair so a range of geometrical distances corresponds to a single topological

distance. To compare the two distances, we rescale the geometrical distance by the

average distance between adjacent rings, which is defined to be unity. Fig. 2.5 shows
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this for the first neighbors with two dashed lines. Within this window, all four curves

show a common trend: a maximum followed by a minimum. The former corresponds

to 5−rings (positively charge) and the latter to 7− and 8−rings (negatively charged).

The point in the middle corresponds to neutral 6−rings. The horizontal axis is

normalized such that these three points line up for all curves. According to Aboav-

Weaire law, smaller rings surround a larger ring; the pronounced minimum of qr(5)

due to 7− and 8−rings and the pronounced maximum of qr(7) and qr(8) due to

5−rings admit this law. In the case of qr(6), minimum and maximum have the same

amplitude due to uniform distribution of the rings around hexagons hence their weak

correlations with other rings.

It is also constructive to look at the Aboav-Weaire law using geometrical distance.

In this case, we expect that both αr and µr decay rapidly to zero in accordance with

the absence of correlations for large r. This is confirmed in Fig. 2.6 which clearly for

distances larger than 3, the mean ring size is essentially exactly 6. This confirms our

assertion that ring correlations in glassy networks are either short-range or medium-

range and using geometrical distance in the calculations of topological charge and

mean ring size resolves the issue of excess topological charge in the shells found by

topological distance which is shown by the long-tail of µ2 in Fig. 2.6.

Fig. 2.7 shows linearity of the generalized Aboav-Weaire law for the third neigh-

bors. The plot shows that nm(n) is indeed a linear function of n but because of

pseudo-correlations, the average ring size using topological distance is slightly larger

than expected for geometrical distance, where the mean ring size is 6 for three-fold

coordinated networks.

Although the topological charge and Aboav-Weaire law are useful tools to quantify

correlations, they only measure correlations between a ring and shells. The ring-ring

correlation function is perhaps a better measure of correlations especially since, as
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Figure 2.7: Plot of weighted mean ring size nm(n) versus ring size n for the third
neighbors using both geometrical and topological distance. This plot shows that the
mean ring size for all shells follows the generalized Aboav-Weaire law (Eq. 2.9). Note
that the topological definition leads to a slightly larger mean ring size.

it was shown, definition of shells using the topological distance do introduce some

artifacts such as excess charge.

To find out the correlation between two single rings, we need to derive an expres-

sion for the probability pt(n, n
′) of finding a pair of n, n′ rings with distance t. For

a given n−ring, the number of n′−rings at distance t is Nt(n, n
′) while on average a

typical shell has 〈Kt〉 rings. Therefore the probability of having a pair of rings is [93]:

pt(n, n
′) =

p(n)Nt(n, n
′)

〈Kt〉
. (2.13)

This equation is important as it relates ring distributions of the shell structure to

of the network (For t = 1, this equation reduces to the correlation function defined

in Ref. [94]). If the rings were independent, this probability is simply product of the

individual probabilities but we showed the ring distribution of a shell is different from

the bulk and rings are topologically dependent even for large t. This motivates us to

define the probability of having an n−ring at shell t (independent of the central ring)
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as:

pt(n) =
∑
n′

pt(n
′, n) = p(n)

Kt(n)

〈Kt〉
, (2.14)

which can be derived using Eqs. 2.1 and 2.3. The probability of having n−ring is

proportional to the average shell size around n−fold rings and the ensemble averaged

shell size. We define correlation function between two n and n′ sided rings as:

Ct(n, n
′) = pt(n, n

′)− pt(n)pt(n
′) (2.15)

Figure 2.8 shows the results for the above correlation function. This clearly shows

the medium-range order of the rings except for hexagons where correlations are weak

and short-range. In contrast with the results in Ref. [93], hexagon-hexagon is short-

range and only non-zero for adjacent cells (t = 1) which is a signature of microcrystal

regions in the network (see Fig. 2.1). If we had used p(n)p(n′) instead of pt(n)pt(n
′),

ring-ring correlation shows a long-range behavior due to topological effect [95, 96] but

Eq. 2.14 correctly captures the nature of correlations in the random network.

2.4 Discussion and Conclusion

We have shown that correlations between rings in glassy networks can be treated

best if geometrical rather than topological distances between rings are used. Using

topological distances, which would be preferable, unfortunately leads to spurious long

range correlations as the topological charge for each shell around a central ring does

not approach zero at large distances, due to the non-circular nature of the shells.

These issues are absent if the geometrical distances between the centers of rings

are used. We find in this case that correlations only extend out to about third

neighbor rings, and can be described by a generalized Aboav-Weaire law. These

studies have been done on a very large computer-generated network with periodic

boundary conditions [57, 58]. Experimental samples of bilayer of vitreous silica are
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Figure 2.8: Ring-ring correlation Ct(n, n
′) versus topological distance t. The

correlations are short or medium range depending on the size of the interacting rings.
Although hexagons are weakly correlated with their neighbor rings, other rings show
a high degree of correlations up to three rings away. Very similar results are obtained
using geometrical distances. Note that correlations are symmetric so that 5−6 is the
same as 6− 5 etc. where panel (a) is for five-fold rings, panel (b) six-fold rings, panel
(c) seven-fold rings, and panel (d) eight-fold rings.

currently too small to allow for the study of longer range correlations, but the main

conclusion of the paper that geometrical rather than topological distances should

be used is expected to hold. Future studies comparing experimental and computer-

generated networks (both three-coordinated with similar ring distributions) should

help explain why different values of α are obtained in these two cases [47].
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Chapter 3

ANCHORED BOUNDARY CONDITIONS FOR

LOCALLY ISOSTATIC NETWORKS

This chapter is a reprint of the following journal article:

Theran, Louis, Anthony Nixon, Elissa Ross, Mahdi Sadjadi, Brigitte

Servatius, and Michael F. Thorpe. “Anchored boundary conditions for

locally isostatic networks.” Physical Review E 92, no. 5 (2015): 053306.

My contributions to this work are the preparation of the network of corner-

sharing triangles, designing and construction of figures and captions, developing codes

for implementation of sliding and anchored boundary conditions, and writing the

manuscript.

3.1 Abstract

Finite pieces of locally isostatic networks have a large number of floppy modes

because of missing constraints at the surface. Here we show that by imposing suitable

boundary conditions at the surface, the network can be rendered effectively isostatic.

We refer to these as anchored boundary conditions. An important example is formed

by a two-dimensional network of corner sharing triangles, which is the focus of this

paper. Another way of rendering such networks isostatic, is by adding an external

wire along which all unpinned vertices can slide (sliding boundary conditions). This

approach also allows for the incorporation of boundaries associated with internal

holes and complex sample geometries, which are illustrated with examples. The

recent synthesis of bilayers of vitreous silica has provided impetus for this work.
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Experimental results from the imaging of finite pieces at the atomic level needs such

boundary conditions, if the observed structure is to be computer-refined so that the

interior atoms have the perception of being in an infinite isostatic environment.

3.2 Introduction

Boundary conditions are paramount in many areas of computer modeling in sci-

ence. At the atomic level, finite samples require appropriate boundary conditions in

order that atoms in the interior behave as if they were part of a larger or infinite

sample, or as closely to this as is possible. One example of this is the calculation of

the electronic properties of covalent materials where the surface is terminated with

H atoms so that all the chemical valency is satisfied. In this way the HOMO (highest

occupied molecular orbital) and the LUMO (lowest unoccupied molecular orbital)

states inside the sample can be obtained that are not very different from those ex-

pected in the bulk sample. In materials science the electronic band structure of a

sample of crystalline Si could be obtained by determining the electronic properties of

a finite cluster terminated with H bonds at the surface. In practice this is rarely done,

as it is more convenient to use periodic boundary conditions and hence use Bloch’s

theorem, but this technique has been used recently in graphene nanoribbons [97].

For most samples, the nature of the boundary, fixed, free or periodic only alters

the properties of the sample by the ratio of the number of atoms on the surface

to those in the bulk. This ratio is N−1/d where N is the number of atoms (later

referred to as vertices) and d is the dimension. Of course this ratio goes to zero in the

thermodynamic limit as the size of the system N → ∞ and leads to the important

result that properties become independent of boundary conditions for large enough

systems.

Similar statements can be made about the mechanical and vibrational properties of
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systems except for isostatic networks that lie on the border of mechanical instability.

In this case the boundary conditions are important no matter how large N , and

special care must be taken with devising boundary conditions so that the interior

atoms behave as if they were part of an infinite sample, in as much as this is possible

[98, 99, 76].

In Figure 3.1, we show a part of a Scanning Probe Microscope (SPM) image [8] of

a bilayer of vitreous silica which has the chemical formula SiO2. The sample consists

of an upper layer of tetrahedra with all the apexes pointing downwards where they

join a mirror image in the lower layer. In the figure we show the triangular faces of

the upper tetrahedra, which form rigid triangles with a (red) Si atom at the center

and the (black) O atoms at the vertices of the triangles which are freely jointed to a

good approximation. We refer to these networks as locally isostatic as the number of

degrees of freedom of the equilateral triangle in two dimensions is exactly balanced

by the shared pinning constraints (2 at each of the 3 vertices, so that 3−2×3/2 = 0).

While the 3D bilayers are locally isostatic, so too are the 2D projections of corner-

sharing triangles which are the focus of this paper. We will use the Berlin A sample

as the example throughout [72, 47] so that we can focus on this single geometry for

pedagogical purposes.

Because experimental samples are always finite in extent and usually have irregular

boundaries, including internal regions that are either absent, or not imaged it is

necessary to develop appropriate boundary conditions. Note that the option of cutting

a rectangular piece out of the experimental image is not available because of the

amorphous nature of the network, which means that it is not possible for the left side

to connect to the right side as with a regular crystalline network. Even if this were

possible, it would be unwise to discard experimental data and hence lose information.

In this paper we show how boundary conditions can be applied to locally isostatic
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Figure 3.1: Showing a piece of bilayer of vitreous silica imaged in SPM (Scanning
Probe Microscope) [8] to show the Si atoms as red discs and the O atoms as black
discs. The local covalent bonding leads to the yellow almost-equilateral triangles that
are freely jointed, which we will refer to as pinned. The triangles at the surface have
either one or two vertices unpinned.

systems which are not periodic.

In this paper, we show rigorously that there are various ways to add back the

exact number of missing constraints at the surface, in a way that they are sufficiently

uniformly distributed around the boundary that the network is guaranteed to be

isostatic everywhere. There is some limited freedom in the precise way these boundary

conditions are implemented, and the boundary can be general enough to include

internal holes. The proof techniques used here involve showing that all subgraphs

have insufficient edge density for redundancy to occur [100]. In the appendix, we give

an algorithmic description of our boundary conditions and discuss in detail how to

ensure the resulting boundary is sufficiently generic.

Using the pebble game [101, 102], we verified on a number of samples that anchored
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boundary conditions in which alternating free vertices are pinned results in a global

isostatic state. The pebble game is an integer algorithm, based on Laman’s theorem

[100], which for a particular network performs a rigid region decomposition, which

involves finding the rigid regions, the hinges between them, and the number of floppy

(zero-frequency) modes. We have used it to confirm that the locally isostatic samples

such as that in this paper are isostatic overall with anchored boundary conditions.

The results of this paper imply that, under a relatively mild connectivity hypothesis,

this procedure is provably correct, and thus, relatively robust. Additionally, the

necessity of running the pebble game for each individual case is avoided.

Figure 3.2 shows sliding boundary condition [103]. These make use of a different,

simpler kind of geometric constraint at each unpinned surface site. The global effect

on the network’s degrees of freedom is like that of the anchored boundary conditions,

and this setup is computationally reasonable. At the same time, the proofs for this

case are simpler, and generalize more easily to handle situations such as holes in the

sample.

In Figure 3.3, we show the anchored boundary conditions. We have trimmed off

the surface triangles in Figure 3.1 that are only pinned at one vertex. This makes for a

a more compact structure whose properties are more likely to mimic those of a larger

sample, and makes our mathematical statements easier to formulate. In addition we

have had to remove the 3 purple triangles at the lower right hand side in order to

get an even number of unpinned surface sites. When the network is embedded in the

plane, this is possible, except for very degenerate samples (see Figure 3.3).

3.3 Combinatorial Anchoring

Intuitively, the internal degrees of freedom of systems like the ones in Figures 3.1

and 3.3 correspond to the corners of trianges that are not shared. This is, in essence,
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Figure 3.2: Illustrating sliding boundary conditions, used for a piece of the sample
shown in Figure 3.1. The boundary sites are shown as blue discs and the 3 purple
triangles at the lower right Figure 3.3 have been removed. The red Si atoms at
the centers of the triangles in Figure 3.1 have also been removed for clarity. The
boundary is formed as a smooth analytic curve by using a Fourier series with 16 sine
and 16 cosines terms to match the number of surface vertices, where the center for
the radius r(θ) is placed at the centroid of the 32 boundary vertices [9]. Note that
sliding boundary conditions do not require an even number of boundary sites.

the content of Lemma 1 proved below. Proving Lemma 1 requires ruling out the

appearance of additional degrees of freedom that could arise from sub-structures that

contain more constraints than degrees of freedom.

The essential idea behind combinatorial rigidity 1 is that generically all geometric

constraints are visible from the topology of the structure, as typified by Laman’s

[100] striking result showing the sufficiency of Maxwell counting [105] in dimension 2.

Genericity means, roughly, that there is no special geometry present; in particular,

generic instances of any topology are dense in the set of all instances.

1See, e.g., the monograph by Graver, et al. [104] for an introduction.
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Figure 3.3: Illustrating the anchored boundary conditions used for the sample shown
in Figure 3.1. The alternating anchored sites on the boundary are shown as blue discs
and the 3 purple triangles at the lower right are removed to give an even number of
unpinned surface sites. The red Si atoms at the centers of the triangles in Figure 3.1
have been suppressed for clarity.

In what follows, we will be assuming genericity, and then use results similar to

Laman’s, in that they are based on an appropriate variation of Maxwell counting.

Our proofs have a graph-theoretic flavor, which relate certain hypotheses about con-

nectivity 2 to hereditary Maxwell-type counts.

3.3.1 Triangle ring networks

We will model the flexibility in the upper layer of vitrious silica bilayers as systems

of 2D triangles, pinned togehter at the corners. The joints at the corners are allowed to

rotate freely. A triangle ring network is rigid if the only available motions preserving

triangle shapes and the network’s connectivity are rigid body motions; it is isostatic

2To make this paper somewhat self-contained, we will briefly explain the concepts we use. Our
terminology is standard, and can be found in, e.g., the textbook by Bondy and Murty [106].
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Figure 3.4: Showing a typical subgraph from Figure 3.3 used in the proof that there
are no rigid subgraphs larger than a single triangle. (See Lemma 9.)

if it is rigid, but ceases to be so once any joint is removed. These are an examples of

body-pin networks 3 from rigidity theory.

The combinatorial model is a graph G that has one vertex for each triangle and an

edge between two triangles if they share a corner (Figure 3.6). Since we are assuming

genericity, we will identify a geometric realization with the graph G from now on.

In what follows, we are interested in a particular class of graphs G, which we call

triangle ring networks. The definition of a triangle ring is as follows: (a) G has only

vertices of degree 2 and 3; G is 2-connected 4 ; (b) there is a simple cycle C in G that

contains all the degree 2 vertices, and there are at least 3 degree 2 vertices; (c) any

edge cut set 5 in G that disconnects a subgraph containing only degree 3 vertices has

size at least 3.

To set up some terminology, we call the degree 2 vertices boundary vertices and

the degrees 3 vertices interior vertices. A subgraph spanning only interior vertices is

3Since only two triangles are pinned together at any point, we are dealing with the 2-dimensional
specialization of body-hinge frameworks first studied by Tay [107] and Whiteley [108] in general
dimensions. In 2D, there is a richer combinatorial theory of “body-multipin” structures, introduced
by Whiteley [109]. See Jackson and Jordán [110] and the references therein for an overview of the
area.

4This means that to disconnect G, we need to remove at least 2 vertices.

5This is an inclusion-wise minimal set of edges that, when removed from G, results in a graph 2
connected components.
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Figure 3.5: Illustrating two, at first sight, more complex anchored boundary condi-
tions that by our results can be used for the sample shown in Figure 3.2, with the 3
purple triangles at the lower right are removed to give an even number of unpinned
surface sites. The anchored sites are shown as blue discs, with an even number of
surface sites in both graphs. The graph at the right has an even number of surface
sites in both the outer and inner boundary. The red Si atoms at the centers of the
triangles have been suppressed for clarity. The green line goes through the boundary
triangles.

an interior subgraph.

The reader will want to keep in mind the specific case in which G is planar with a

given topological embedding and C is the outer face, as is the case in our figures. This

means that subgraphs strictly interior to the outer face have only interior vertices,

which explains our terminology. However, as we will discuss in detail later, the setup

is very general. If the sample has holes, C can leave the outer boundary and return

to it: provided that it is simple, all the results here still apply.

A theorem of Tay–Whiteley [108, 107] gives the degree of freedom counts for

networks of 2-dimensional bodies pinned together. Generically, there are no stressed

subgraphs in such a network, with graph G, of v bodies and e pins if and only if

2e′ ≤ 3v′ − 3 for all subgraphs G′ ⊂ G. (3.1)

46



Figure 3.6: The triangle ring network, complementary to that in Figure 3.3, where
the Si atoms, shown as red discs, at the center of each triangle are emphasized in
this three-coordinated network. Dashed edges are shown connecting to the anchored
sites.

where v′ and e′ are the number of vertices and edges of the subgraph. If (3.1) holds

for all subgraphs, the rigid subgraphs are all isostatic, and they are the subgraphs

where (3.1) holds with equality.

Lemma 1. Any triangle ring network G satisfies (3.1).

Proof. Suppose the contrary. Then there is a vertex-induced subgraph T on v′ vertices

that violates (3.1). If T contains a vertex v of degree 1 then T−v also violates (3.1) so

we may assume that T has minimum degree 2. In this case, T has at most 2 vertices of

degree 2, since it has maximum degree 3. In particular, T may be disconnected from

G by removing at most 2 edges. If T is an interior subgraph, we get a contradiction

right away. Alternatively, at least one of the degree 2 vertices in T is degree 2 in G,

and so on C. If exactly one is, then G is not 2-connected. If both are, then T = G
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and there are only 2 boundary vertices. Either case is a contradiction.

Corollary 2. The rigid subgraphs of a triangle ring network G are the subgraphs

containing exactly 3 vertices of degree 2 and every other vertex has degree 3. Moreover,

any proper rigid subgraph contains at most one boundary vertex of G.

Proof. The first statement is straightforward. The second follows from observing that

if a rigid subgraph T has two vertices on the boundary of G, then G cannot be 2-

connected, since all the edges detaching T from G are incident on a single vertex.

When G is planar, these rigid subgraphs are regions cut out by cycles of length 3

in the Poincaré dual. More generally in the planar case, subgraphs corresponding to

regions that are smaller triangle ring networks with t degree 2 vertices have t degrees

of freedom.

3.3.2 Anchoring with sliders

Now we can consider our first anchoring model, which uses slider pinning [103].

A slider constrains the motion of a point to remain on a fixed line, rigidly attached

to the plane. When we talk about attaching sliders to a vertex of the graph, we

choose a point on the corresponding triangle, and constrain its motion by the slider.

In the results used below, this point should be chosen generically; for example the

theory does not apply if the slider is attached at a pinned corner shared by two of

the triangles. Since we are only attaching sliders to triangles corresponding to degree

2 vertices in G, we may always attach sliders at an unpinned triangle corner.

The notion of rigidity for networks of bodies with sliders is that of being pinned :

the system is completely immobilized. 6 A network with sliders is pinned-isostatic

if it is pinned, but ceases to be so if any pin or slider is removed.

6Rigid body motions are not “trivial”, because slider constraints are not preserved by them.
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The equivalent of the White-Whiteley counts in the presence of sliders is a theo-

rem of Katoh and Tanigawa [111], which says that a generic slider-pinned body-pin

network G is independent if and only if the body-pin graph satisfies (3.1) and

2e′ + s′ ≤ 3v′ for all subgraphs G′ ⊂ G, (3.2)

where s′ is the number of sliders on vertices of G′. Here is our first anchoring proce-

dure.

Theorem 3. Adding one slider to each degree 2 boundary vertex of a triangle ring

network G gives a pinned-isostatic network.

Proof. Let T be an arbitrary subgraph with v′ vertices and v′′ vertices of degree at

most 2. That (3.1) holds is Lemma 1. The fact that the only vertices of T which get

a slider are vertices with degree 2 in G implies that (3.2) is also satisfied, and, by

construction 2e+ s = 3v.

We may think of this anchoring as rigidly attaching a rigid wire to the plane then

constraining the boundary vertices to move on it. Provided that the wire’s path is

smooth and sufficiently non-degenerate, this is equivalent, for analyzing infinitesimal

motions, to putting the sliders in the direction of the tangent vector at each boundary

vertex. See also Figure 3.2.

3.3.3 Anchoring with immobilized triangle corners

Next, we consider anchoring G by immobilizing (pinning) some points completely.

Combinatorially, we model pinning a triangle’s corner by adding two sliders through

it. Since we are still using sliders, the definitions of pinned and pinned-isostatic are

the same as in the previous section.

The analogue for (3.2) when we add sliders in groups of 2 is:

2e′ + 2s′ ≤ 3v′ for all subgraphs G′ ⊂ G, (3.3)
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Figure 3.7: Illustrating even more complex boundaries, developed from the sample
shown in Figure 3.3 by removing triangles to form two internal holes. The boundary
sites are shown as blue discs and the 3 purple triangles at the lower left Figure 3.3
have been removed. The red Si atoms at the centers of the triangles in Figure 3.1 have
also been removed for clarity. The green line forms a continuous boundary which goes
through all the surface sites which must be an even number. The anchored (blue)
sites then alternate with the unpinned sites on the green boundary curve which has
to cross the bulk sample in two places to reach the two internal holes. Here there
are 32 boundary sites, 5 boundary sites in the upper hole and 7 in the lower hole,
giving a total even number of 44 boundary sites. Where these crossings take place is
arbitrary, but it is important that the anchored and unpinned surface sites alternate
along whatever (green) boundary line is drawn.

where s′ is the number of immobilized corners.

Theorem 4. Let G be a triangle ring network with an even number t of degree 2

vertices on C. Then, following C in cyclic order, pinning every other boundary vertex

that is encountered results in a pinned-isostatic network.

Proof. Let T be an arbitrary subgraph of G. If at most one of the vertices of T are

pinned, there is nothing to do. For the moment, suppose that no vertex of degree 1

in T is pinned. Let t be the number of pinned vertices in T .
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We will show that for each of the t pinned vertices, there is a distinct unpinned

vertex of degree 1 or 2 in t. This implies that 2e′ ≤ 3v′ − 2t in T , at which point we

know (3.3) holds for T .

To prove the claim, let v be a pinned vertex of T . Traverse the boundary cycle C

from v. Let w be the next pinned vertex of T that is encountered. If the chain from

v to w along C is in T , the alternating pattern provides an unpinned degree 2 vertex

that is degree 2 in G. Otherwise, this path leaves T , which can only happen at a

vertex with degree 1 or 2 in T . Continuing the process until we return to v, produces

at least t distinct unpinned degree 2 vertices, since each step considers a disjoint set

of vertices of C.

Now assume that T does have a pinned vertex v of degree 1. The theorem will

follow if (3.3) holds strictly for T − v. Let w and x be the pinned vertices in T

immediately preceding and following v. The argument above shows that there are at

least 2 unpinned degree 1 or 2 vertices in T on the path in C between w and x on C.

Since these are in T − v, we are done.

When there are an odd number of boundary vertices in G, Theorem 4 does not

apply. This next lemma gives a simple reduction in many cases of interest.

Theorem 5. Let G be a planar triangle ring network, with C the outer face. Suppose

that there are an odd number t of boundary vertices. If G is not a single cycle, then it

is possible to obtain a network with an even number of boundary vertices by removing

the intersection of a facial cycle of G with C, unless G = C.

Proof sketch. The connectivity requirements for a triangle ring network, combined

with planarity of G imply that the intersection of C and any facial cycle D of G is a

single chain. Every boundary vertex is in the interior of such a chain, so some facial

cycle D contributes an odd number of boundary vertices. Removing the edges in
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D ∩ C changes the parity of the number of boundary vertices.

3.3.4 Anchoring with additional bars

So far, we have worked with networks of triangles pinned together. Now we

augment the model to also include bars between pairs of the triangles. We will always

take the endpoints of the bars to be free corners of triangles that are boundary vertices

in the underlying network G. Combinatorially we model this by a graph H on the

same vertex set as G, with an edge for each bar between a pair of bodies. In this

case, the Tay–Whiteley count becomes:

2e′ + b′ ≤ 3v′ − 3 for all subgraphs G′ ⊂ G. (3.4)

where e′ is the number of edges in G′ and b′ is the number of edges in H spanned by

the vertices of G′. The anchoring procedures with sliders or immobilized vertices have

analogues in terms of adding bars to create an isostatic network. These boundary

conditions are illustrated on the right hand side of Figure 3.8. Also shown in Figure 3.8

in the left panel is a triangular scheme involving alternating unpinned surface sites,

that is equivalent to anchoring. In both cases shown here the sample is free to rotate

with respect to the page.

Theorem 6. If G has boundary vertices v1, . . . , vt, we obtain an isostatic framework

by taking the edges of H to be v1v2, v2v3, . . . , vt−3vt−2.

Proof. Consider the t−3 new bars. By construction and Lemma 1 we have 2e+t−3 =

3v − t + t − 3 = 3v − 3. Corollary 2 and the connectivity hypotheses imply that no

rigid subgraph of G has more than 1 of its 3 degree 2 vertices on the boundary of G.

This shows that no rigid subgraph of G has a bar added to it.
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Figure 3.8: Illustrating two additional boundary conditions used for the sample
shown in Figure 3.3, with the 3 purple triangles at the lower right removed to give
an even number of unpinned surface sites. On the left, alternating surface sites are
connected to one another through triangulation of first and second neighbors, with
the last three connections not needed (these would lead to redundancy). Hence there
are three additional macroscopic motions when compared to Figure 3.3 which can be
considered as being pinned to the page rather than to the internal frame shown by
blue straight lines. On the right we illustrate anchoring with additional bars which
connect all unpinned surface sites, except again three are absent, to avoid redundancy,
and to give the three additional macroscopic motions when compared to Figure 3.3

Theorem 7. If G has t boundary vertices and t is even, then taking H to be any

isostatic bar-joint network with vertex set consisting of t/2 boundary vertices chosen

in an alternating pattern around C results in an isostatic network.

A triangulated t/2-gon is a simple choice for H.

Proof sketch. By Lemma 1, we are adding enough bars to remove all the internal

degrees of freedom. The desired statement then follows from Theorem 4 by observing

that pinning down the boundary vertices is equivalent, geometrically, to pinning down

H and then identifying the boundary vertices of G to the vertices of H.

A result of White and Whiteley[112] on “tie downs”, then gives:
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Corollary 8. In the situation of Theorems 6 and 7, adding any 3 sliders results in

a pinned-isostatic network.

3.3.5 Stressed Regions

So far, we have shown how to render a floppy triangle ring network isostatic or

pinned-isostatic. It is interesting to know when adding a single extra bar or slider

results in a network that is stressed over all its members. This is a somewhat subtle

question when adding bars or immobilizing vertices, but it has a simple answer for

the sliding boundary conditions.

We say that a triangle ring network is irreducible if: (a) every minimal 2 edge

cut set either detaches a single vertex from G or both remaining components contain

more than one boundary vertex of G; (b) every minimal 3 edge cut set disconnects

one vertex from G.

Lemma 9. A triangle ring network G has no proper rigid subgraphs if and only if G

is irreducible.

Proof. Recall, from Corollary 2, that a proper rigid subgraph T of G has exactly 3

vertices of degree 2 and the rest degree 3. Thus, T can be disconnected from G by a

cut set of size 2 or 3.

In the former case, Corollary 2 implies that exactly one of the degree 2 vertices in

T is a boundary vertex of G. This means that T witnesses the failure of (a), and G

is not irreducible. Conversely, (a) implies that, for a 2 edge cut set not disconnecting

one vertex, either side is either a chain of boundary vertices or has at least 4 vertices

of degree 2.

Finally, observe that cut sets of size 3 are minimal if and only if they disconnect

an interior subgraph on one side. Corollary 2 then implies that there is a proper rigid
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component that is an interior subgraph of G if and only if (b) fails.

Theorem 10. Let G be a triangle ring network anchored using the procedure of

Theorem 3. Adding any bar or slider to G results in a network with all its members

stressed if and only if G is irreducible.

Proof. First consider adding a slider. Because G is pinned-isostatic, the slider creates

a unique stressed subgraph T . A result of Streinu-Theran[103] implies that T must

have been fully pinned in G. Since any proper subgraph has an unpinned vertex of

degree 1 or 2, (3.2) holds strictly. Thus, the stressed graph is all of G. 7

If we add a bar, there is also a unique stressed subgraph. This will be all of G,

again by the result of Streinu-Theran[103], unless both endpoints of the bar are in a

common rigid subgraph. That was ruled out by assuming that G is irreducible.

3.4 Conclusions

In this paper we have demonstrated boundary conditions for locally isostatic net-

works that incorporate the right number of constraints at the surface so that the

whole network is isostatic. These boundary conditions should be useful in numerical

simulations which involve finite pieces of locally isostatic networks. The boundary

can be quite complex and involve both an external boundary with internal holes.

Our derivation of the new boundary conditions is based on a structural character-

ization of graphs which capture the combinatorics of silica bilayers. This shows that

the degrees of freedom are associated with unpinned triangle corners on the boundary.

We then present two methods to completely immobilize a triangle ring network: by

attaching the boundary to a wire rigidly attached to the plane; and by completely

immobilizing alternate vertices on the boundary. To render a triangle ring network

7It is worth noting that, so far, irreducibility of G was not required. It is needed only for adding
bars.
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isostatic, we also have two methods: adding bars between adjacent boundary vertices

in cyclic order; and attaching alternating boundary vertices to an auxiliary graph

that functions as a rigid frame.

Although our definition of a triangle ring network is most easily visualized when G

is planar and C is the outer face, the combinatorial setup is quite a bit more general.

The natural setting for networks with holes is to assume planarity, and then that all

the degree 2 vertices are on disjoint facial cycles in G. The key thing to note is that

the cycle C in our definition does not need to be facial for Theorem 4. For example,

in Figure 3.7, C goes around the boundary of an interior face that contains degree 2

vertices. In general, the existence of an appropriate cycle C is a non-trivial question,

as indicated by Figure 3.7 (See also Figure 3.5 for other examples of complex anchored

boundary conditions).

What is perhaps more striking is that Theorem 3 still applies whether or not such

a C exists, provided faces in G defining the holes in the sample are disjoint from the

boundary and each other.

In applying anchored boundary conditions, it is important that the complete

boundary has an even number of unpinned sites, which can include internal holes,

which must then be connected using the green lines shown in the various figures. This

gives a practical way of setting up calculations with anchored boundary conditions in

samples with complex geometries and missing areas.
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by LT. We thank Mark Wilson and Bryan Chen for many useful discussions and

comments. This work was initiated at the AIM workshop on configuration spaces,
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Chapter 4

REFINING GLASS STRUCTURE IN TWO DIMENSIONS

This chapter is a reprint of the following journal article:

Sadjadi, Mahdi, Bishal Bhattarai, D. A. Drabold, M. F. Thorpe, and

Mark Wilson. “Refining glass structure in two dimensions.” Physical Re-

view B 96, no. 20 (2017): 201405.

My contributions to this work are the determining atomic positions, developing and

implementing an algorithm to correct the unimaged regions of silica bilayers, calcu-

lations of the bond angle distributions in the resulting structures from the harmonic

potential, molecular dynamics and density functional theory, and the construction of

the figures.

4.1 Abstract

Recently determined atomistic scale structures of near-two dimensional bilayers

of vitreous silica (using scanning probe and electron microscopy) allow us to refine

the experimentally determined coordinates to incorporate the known local chemistry

more precisely. Further refinement is achieved by using classical potentials of varying

complexity; one using harmonic potentials and the second employing an electrostatic

description incorporating polarization effects. These are benchmarked against den-

sity functional calculations. Our main findings are that (a) there is a symmetry plane

between the two disordered layers; a nice example of an emergent phenomenon, (b)

the layers are slightly tilted so that the Si-O-Si angle between the two layers is not

180◦ as originally thought but rather 175±2◦ and (c) while interior areas that are not
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completely imaged can be reliably reconstructed, surface areas are more problemat-

ical. It is shown that small crystallites that appear are just as expected statistically

in a continuous random network. This provides a good example of the value that

can be added to disordered structures imaged at the atomic level by implementing

computer refinement.

4.2 Introduction

The atomic structure of covalent network glasses has been a subject of both ex-

perimental and theoretical interest since the introduction of the Continuous Random

Network (CRN) model by Zachariasen [18]. Almost all of these studies have focused

on the Pair Distribution Function (PDF) which is the Fourier transform of a diffrac-

tion intensity pattern [1]. Experimental diffraction studies offer useful information, in

particular regarding pair-wise ordering [113]. However, simulation models can greatly

aid the interpretation of these data as the atom positions are known unequivocally.

As a result, information such as the ring statistics, which is in many ways a natural

language for discussing network structure [114, 115, 21], is directly accessible. While

this work has been very informative and clearly established the correctness of the

CRN model for materials like vitreous silica, it is not accurate enough to distinguish

between different models with varying ring statistics etc. This situation has changed

recently with the direct imaging of bilayers of silica [116, 4] that has provided detailed

information regarding atomic positions.
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(a)

(b) (c)

Figure 4.1: (a) A small piece of silica bilayer in which oxygen atoms (red) form a
tetrahedral network while silicons (blue) are located at the center of tetrahedra. (b)
The top view of the silica bilayer where O and Si atoms are projected into the plane,
with O forming a network of corner-sharing triangles. (c) An alternative view where
Si atoms form a network of edge-sharing polygons (rings), while oxygens are removed
for clarity. This view is stressed in Fig. 4.2.
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Figure 4.2: The Cornell h network viewed perpendicular to the plane containing
the bilayer with the O atoms removed for clarity, and only the top layer of Si atoms
shown as vertices. The atoms associated with the blue and magenta bonds were
not directly imaged but have been added in the computer refinement. The blue and
magenta bonds highlight bonds reconstructed within the main body of the sample
and at the surface, respectively. Dashed lines highlight small sections in which an
under-coordinated Si atom was required for filling. The intensity of the red highlights
the difference between the configuration relaxed with the spring and PIM potentials.
The green circles show small crystallites.
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Silica, SiO2, represents an archetypal network-forming material. At ambient pres-

sure the crystalline and amorphous structures can be considered as constructed from

corner-sharing SiO4 tetrahedral coordination polyhedra (CP) which link to form a

network. The complex linking of the CP may result in significant ordering on length-

scales beyond the short-range ordering imposed by the system electrostatics (effec-

tively controlled by the relative atom electronegativities) [117, 118, 119, 120, 121, 122].

Recently developed synthetic pathways have allowed thin films of SiO2 to be de-

posited on either metallic [123, 29, 116] or graphitic [4] substrates whilst advances in

imaging techniques allow for true atomic resolution of the surface structure. Albeit,

because the bilayer is a glassy material, it is not commensurate with any substrate,

and so we do not include the substrate here.

Some of the thinnest films deposited are bilayers of corner-sharing SiO4 CP in

which all of the Si and O atoms obtain their full (four- and two- respectively) coordi-

nation numbers. Amorphous and crystalline films have been grown with both states

characterized by the presence of a mirror plane (which houses a layer of O atoms

which act as bridges between the two monolayers [124]). Critically, the pseudo-two-

dimensional nature of these systems allows the ring structures to be directly observed

and hence offers a potentially unique insight into the origin of any ordering on long

length-scales. Silica can be considered as a network of silicon atoms in which the

nearest-neighbor Si-Si pairs are dressed with O atoms. As a result, the crystalline

system can be considered as constructed exclusively from a net of six-membered (Si-

Si-Si...) rings, whilst the amorphous systems are constructed from a distribution of

4- to 10-membered rings (Fig. 4.1). However, this new experimental information,

whilst ground-breaking, is naturally imperfect as the location of each atom has asso-

ciated with it a natural uncertainty which translates into an uncertainty in atom-atom

separations.
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In this Letter, we show how value can be added by combining the experimental

image with computer refinement that builds in the known local chemistry. Whilst

no refinement of the experimental data is required in order to obtain, for example,

accurate ring statistics, refinement is required in order to address the geometrical

issues associated with the network. For example, value can be added on the effect of

the presence of significant unimaged regions as well as on the subtle variations in the

structure perpendicular to the resolved plane containing the bilayer.

Here, we focus on a single large sample of a bilayer of vitreous silica imaged by the

Cornell group [4] which we will refer to as sample h, shown in Fig. 4.2, to distinguish

it from previous smaller experimental and computer-generated samples [47]. The

sample is ∼ 270× 270Å
2

in area containing 19,330 O and 9,492 Si atoms, and is the

largest such sample imaged at the atomic level of which we are aware.

Importantly, we are using the whole experimental sample, including voids, rather

than selecting a more rectangular shaped section without voids, which would have

thrown out most of the experimental data. This is also significant as the full con-

figuration shows a number of interesting features. For example, there are several

regions which may be considered nanocrystalline showing relatively large numbers of

neighbouring six-membered rings (highlighted by green circles with a diameter of 9

Å). Such regions are to be expected statistically in a CRN and from previous stud-

ies [21] we find that about 50% of all rings are sixfold and of these about 2% are

surrounded by 6 sixfold rings leading to a little microcrystallite of 7 sixfold rings.

The total number of rings in the Cornell h sample is 1811, where we exclude surface

rings that do not have their full compliment of neigboring rings. Thus we expect

1811 × 0.5 × 0.02 ≈ 18 of such regions which is fortuitously exactly the number of

regions shown by green circles. So this certainly cannot be taken as any evidence for

microcrystallites as has been postulated at various times since the original ideas of
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Lebedev and coworkers [17].

More obviously the configuration shows three relatively large regions which were

unable to be imaged (of approximate dimensions 160×40Å
2
, 50×20Å

2
and 10×10Å

2

respectively) which resist reasonable attempts at computational filling (see below).

A potential implication is that the underlying surface (on which the bilayer has been

grown) in some way distorts the bilayer thus preventing effective imaging or perhaps

the network was never formed in these regions because of surface roughness.

To construct the bilayer from the experimental image, O atoms (which are not

imaged) are placed midway between Si atoms (which are imaged) thus forming a

network of corner-sharing O3 triangles (each of which has an Si atom at the centre).

The Si and O atoms planes are then separated, forming trigonal pyramids with Si

atoms at the apices. A mirror image of these pyramids is joined to the original

via O-atom bridges to form the completed bilayer, resulting in an initial set of 180o

Si-O-Si bond angles centered around the O atoms in the mirror plane (Fig. 4.1).

An important question involves the experimental length metric to ensure the correct

calibration of the image. We calculated the mean average length of the imaged nearest

neighbour Si-Si distances as 3.097Å, which is close to the expected value of 3.100Å for

glassy silica structures [22], confirming the overall accuracy of the experiment, and

alleviating the need for any length rescaling. To reconstruct the unimaged regions, we

use mean bond length and internal angles of rings to find the correct local topology.

The subsequent relaxation of the bilayer will fix the geometry ensuring the proper

bond length and angles.

4.3 Computational Details

This relaxation is carried out using model potentials of increasing complexity. In

the simplest case, the nearest-neighbour O-O bonds are mimicked by harmonic springs
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with lengths set as the mean average (2.645Å). This ensures that the system does not

have any internal degrees of freedom and is minimally rigid or isostatic [75, 76]. A

hardcore potential is added to prevent overlap of O atoms from different tetrahedra

as well as an MSD (Mean-Square Deviation) term which penalizes deviation from the

experimental coordinates. This MSD term involves the sum of squares of the refined

minus the experimental atomic positions and is important as this maintains the overall

area and alleviates the need for additional boundary conditions to maintain the sample

area. Although proper boundary conditions for finite pieces of amorphous systems

can be designed [48], this simple potential can account for structural information

extracted in this Letter. Maintaining the configurational area is critical in avoiding,

for example, unphysical overlaps in nearest-neighbour tetrahedra in the absence of

formal (electrostatic) repulsions. The balance of the surface extension and the inter-

tetrahedral repulsions define an effective flexibility window of acceptable structural

solutions, of the type commonly associated with zeolites [125]. As a result, samples

with irregular boundary conditions are not a problem.

A second classical model used is a polarizable-ion model (PIM) [126], specifically

the TS potential [127] which utilises pair potentials to model the Coulomb, short-

range (overlap) and dispersive interactions. The potential employs a combination of

reduced ion charges and anion dipole polarisation (as described in reference [126]).

The results from the harmonic potential model are used as the input with the PIM

further refining the results.

The most sophisticated method applied uses Density Functional Theory (DFT).

However, the method is too computationally-demanding to apply to the experi-

mental Cornell h configuration. Therefore, a relatively small 1200 atom periodic

computer-generated model (with 200 Si atoms in each monolayer) of a vitreous silica

bilayer [64] was used. Density functional calculations were undertaken with the code
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Figure 4.3: The Si-O-Si bond angle distributions determined from the original
experimental configuration and from the bilayers obtained using models of increasing
complexity as well as for the bulk glass. The peak at θSiOSi ∼ 145◦ arises from the “in-
plane” tetrahedral links whilst the peak at ∼ 180◦ arises from the central bridging
oxygen atoms between the two planes. The unrefined experimental result for the
Cornell h sample is shown in black where it was assumed that the central bridging
angle was exactly 180◦. The DFT calculation is on a computer-generated periodic
sample and acts as the best guide for what to expect. The other two results are for
the refined Cornell h sample using both the harmonic model and the polarizable-ion
model as described in the text. Both show significant tilting as expected from the
results of DFT, while maintaining the central symmetry plane.

SIESTA [128], with single-zeta basis and the local density approximation. Relaxation

with a variable cell area resulted in very little change. Stability of the relaxed model

was also verified [129].

4.4 Results

The result of the PIM refinement of Cornell h is shown in Fig. 4.2. The blue (bulk)

and magenta (surface) bonds have been computer-reconstructed, as described earlier.

The interior reconstruction was deemed to be successful, as the differences between

the spring and PIM models were minor. These differences are shown by the red

shading where the darkest red corresponds to an atomic displacement of ∼ 0.5Å from
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the original (unrefined) coordinates. This strongly suggests that the network existed

in these interior areas but was not imaged reliably, rather than the networks growing

around a pillar or avoiding surface roughness on the substrate and never existing. At

the surface, the difference between the spring and PIM models was much greater as

the reconstruction was not contained within a small closed exterior perimeter.

In addition to in-plane information, refinement can provide valuable information in

perpendicular direction. As a benchmark of our model potentials, we have studied the

Si-O-Si angle, θSiOSi, as this contains important information on how the tetrahedra are

linked. Figure 4.3 shows the distributions of θSiOSi for three models. The experimental

structure (in which linear Si-O-Si bridges between the two monolayers are imposed)

shows a bond angle of θSiOSi ∼ 140.3o (with a FWHM of ∆θ ∼ 5.2◦) in the bilayer

plane. All of the models generate bimodal distributions in which the peak at θSiOSi ∼

145o may be assigned to the Si-O-Si triplets in the bilayer plane whilst the peaks at

θSiOSi > 175o correspond to the triplets centred around the bridging O atoms in the

mirror plane (i.e. perpendicular to the bilayer plane). There is not much latitude in

the in-plane values of this angle as they must be consistent with the measured area

and the known Si-O bond lengths, which leads to a single peak in the θSiOSi ∼ 145◦.

Fig. 4.3 shows that the harmonic model reproduces the important high-angle peak at

θ ∼ 178.5◦. The lower-angle peak is at θ ∼ 140.9◦ (∆θ ∼ 3.8◦) and some way below

the DFT result.

The figure also shows the analogous distribution obtained from the model of a

bulk glass at ambient pressure using PIM, which is similar to distributions observed

in bulk silicates [130, 131]. The bulk distribution is significantly broader than those

generated for the bilayer with θ ∼ 145◦ and ∆θ ∼ 36◦. The requirement for the

relatively obtuse bond angles which characterise the links between the two layers

constrains the in-plane bond angles to a relatively narrow range. For the intra-layer
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Figure 4.4: A section of the Cornell h network shown along the plane containing
the bilayer with O atoms shown in red, and with Si atoms at the center of the yellow
tetrahedra. Note the symmetry plane of the central O atoms and also the tilting of
the tetrahedra away from the vertical about the central plane.

angles all of the models show peaks at θ ∼ 140 − 142◦ with the harmonic potential

showing a far sharper peak retaining the symmetry plane.

However the bridging O angle is tilted and reduced to about 175.1◦. A Si-O-Si

angle of 180o sits on a local energy maximum [65] and, as a result, tilting is inevitable.

A tilt in the inter-layer bond angle is observed in all the models. At the simplest level

(harmonic potential) a relatively small deviation from linear (θ ∼ 178.5◦) is shown.

As greater detail is added to the models these angles become more acute with both the

PIM and DFT results showing peaks at θ ∼ 175o. Figure 4.4 shows the configuration

perpendicular to the plane containing the bilayer relaxed using the PIM and clearly

showing the tilted corner-sharing tetrahedra, with a peak at θ ∼ 174.9◦.

At first sight this suggests an incompatibility with the experimental results where

only a single layer is seen, with the second layer of Si tetrahedra being exactly behind

and underneath the first. However this can be maintained if there is a symmetry

plane involving the central O atoms, such that the upper and lower tetrahedra tilt and

pucker in the same way and there is not a second image when the bilayer is imaged

from above, as shown in Figure 4.4. This conclusion is supported by an entropy

argument in which the bilayer with a mirror plane is able to explore configurational

space more effectively than one without [124, 132]. There are more degrees of freedom

with the symmetry plane present, thus increasing the entropy and lowering the free

energy, and hence leading to this unexpected emergent phenomena. Thus symmetry
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is induced in a system which at first sight seems a canonical example of a system

without symmetry. This argument is confirmed both by detailed atomic computer

modeling and by experiment, where no shadow is seen beside each atom imaged, so

that the second layer must be exactly behind the first layer.

A feature to notice from Fig. 4.2 is that the polygons with silicon atoms at the

corners appear regular, having areas close to that of regular polygons as has been

previously noted [47]. This feature has been absent in computer generated models

of vitreous silica bilayer as the Si-O-Si angle of around 145◦ in the plane is hard to

achieve in models while maintaining the maximal convexity of Si polygons. Nature

has found a way and we need to understand better how this is achieved. Note there

is no difficulty in achieving regular polygons in samples of amorphous As [64] where

there are no bridging atoms to contend with.

4.5 Conclusion

In this Letter we have described how computer-refinement can add value to ex-

perimental images of disordered structures at the atomic level. Although this is the

first time this has been attempted with an amorphous structure, with advances in

imaging, many more such systems are expected to be imaged in the near future. This

somewhat parallels the procedures employed to rationalise protein structure where

the local chemistry, via bond lengths etc is included to produce the best possible

structure [133]. We have shown that simple potentials are adequate here, and as well

as producing refined coordinates for the bilayer (available upon request), we have

shown that the two layers are tilted while maintaining a flat central symmetry plane

of O atoms between the upper and lower parts of the bilayer. It is remarkable that

such symmetry can exist in disordered system and this can be viewed as a nice clean

example of an emergent phenomena.
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Future work will help determine how ubiquitous bilayer structures of this type

may be. It is possible, for example, that forming such structures for systems such as

GeO2 may be more problematic as a significantly larger tilt (θ � 180◦) would have

to be accommodated [65].
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Chapter 5

THE QUEST FOR TUNNELING MODES

5.1 Introduction

Glasses are an important class of materials not only because of their wide range

of applications, but because some of their properties deviate from that of crystals.

In 1971, Zeller and Pohl published their measurements of the thermal conductivity

and the specific heat of crystalline and noncrystalline silica (SiO2) and germania

(GeO2) [11]. They showed that the specific heat of vitreous state is very different

from the crystal at temperatures T < 1 K (Fig. 5.1). While the heat capacity of

crystals followed the expected Debye T 3−law, the glassy states demonstrated an

additional dependence which was linear in temperature. Therefore they proposed a

modified equation for the heat capacity CV :

CV = aT + bT 3, (5.1)

with a and b being coefficients attributed to the anomalous behavior and the expected

Debye model, respectively. The experimental values are: a = 12 × 10−4 J kg−1 K−2

and b = 18× 10−4 J kg−1 K−4 [135].

As a background, it is worth mentioning that the difference between glasses and

crystals is not limited to the thermal properties. For examples, Golding and Graebner

in 1976 discovered the existence of the so-called “phonon echo” in silica glass [136,

137]. They injected two acoustic pulses into fused silica glass with the identical

frequency but a time delay. In addition to the reflected pulses from the boundary,

they observed a third pulse with the same exact frequency. A few years later, they also
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reported the existence of the acoustic saturation [138]; in saturation the first pulse is

much stronger than the delayed acoustic pulse, therefore the first signal saturates the

interaction with the energy levels.

This chapter is focused on the tunneling properties of glasses. First we review

the thermal properties of solids and then we study the two-level systems which are

proposed to explain the anomalous low-temperature behavior of glasses. Such tun-

neling states, and their geometrical manifestation have puzzled researchers for nearly

five decades. 2D glasses are a good new place to look for such states as we have

access to the actual coordinates of a glass and the visualization of tunneling modes is

easier. We propose a new method in 2D to find such tunneling states and study the

properties of the found states. While this method leads to new states, it is unlikely

that they account for the low-temperature anomalous properties of glass and more

work is required.

5.2 Thermal Properties of Solids

In solid state physics, the specific heat is often studied in three temperature

regimes. At high temperatures, a classical solid can be thought of as a collection

of the classical harmonic oscillators, each of which has two degrees of freedom (ki-

netic and potential energy terms) in each spatial dimension. Therefore, a particle

in d dimensions has 2d degrees of freedom. According to the equipartition theorem,

each degree of freedom has an equal share of kBT/2 (kB is the Boltzmann’s constant)

of the total energy. With N atoms, there are 2dN degrees of freedom and hence the

total energy is:

U = dNkBT. (5.2)
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Figure 5.1: The specific heat of silica in crystalline and vitreous states, Reproduced
from [10]. The vertical axis represents the specific heat divided by the temperature
cubed (CV T

−3) and the horizontal axis is the temperature (T ) in Kelvin. While at
lower temperatures, CV T

−3 of the crystalline α−quartz tends to a constant value in
agreement with the Debye’s law, the non-crystalline silica increases like T 2, compat-
ible with the modified Eq. 5.1.

For a mole of the substance (N = NA = Avogadro’s number) the specific heat at

constant volume is:

CV =

(
∂U

∂T

)
V

= dNAkB = dR (5.3)

where R ≈ 8.31 J/K/mol is the gas constant. The above value for d = 3 is called

the Dulong and Petit value and correctly describes the specific heat of many solids

at high temperatures, often down to the room temperature [135].

However, as quantum effects become increasingly important at lower tempera-

tures, the picture of classical harmonic oscillators breaks down. At low-temperatures,

the available thermal energy kBT is significantly smaller than the spacing between

energy levels and the energy levels can no longer be thought of as a continuum. Ac-

cording to the law of Boltzmann distribution, in thermal equilibrium the relative

population of two states separated by energy ~ω is proportional to e−~ω/kBT (Boltz-
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mann’s factor), where ~ is the Planck’s constant, and ω denotes the angular frequency

of harmonic oscillators. Using the distribution law and the quantization of the energy

levels, Einstein developed a model which described how the heat capacity decreases at

lower temperatures [139, 140]. At high temperature (~ω � kBT ), quantum harmonic

oscillators behave as their classical counterparts and the Einstein model, hence, ex-

plains the high and medium temperature regimes. However, this model predicts that

the specific heat approaches zero as e−~ω/kBT for T → 0, which is inconsistent with

the experimental data as they show at very low temperature, the variation in specific

heat is as T 3 not as exponential.

At the very low-temperature (~ω � kBT ), thermal properties of solids are dom-

inated by the low frequency lattice vibrations. The low frequency vibrations corre-

spond to the wavelengths λ which are much longer than the typical spacing between

atoms. Effectively, in this regime, the solid looks like an elastic continuum medium.

Because the available thermal energy is of order of kBT , it seems reasonable to assume

only modes with energy ~ω < kBT can be significantly excited. Debye approached

this problem by quantizing the lattice vibrations, i.e. phonons and assumed that the

solid is isotropic [141]. In agreement with experiments, the Debye model predicts

that the specific heat CV at very low-temperature is proportional to T d where d is

the spatial dimension (i.e. the number of degrees of freedom for a single atom) [135].

To see this, let eik.r be a vibrational wave with the wavevector k and the wavenum-

ber k = |k| confined within a d−dimensional cubic crystal with periodic boundary

conditions (PBCs). The boundary conditions require that kiL (i = 1, . . . , d) be an

integer multiple of 2π. In k−space, these points may be represented by a simple cubic

lattice with the lattice constant 2π/L. There is one mode in every (2π/L)d unit of

the volume. The total number of modes with a wavevector less than k is proportional
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to the volume of a sphere in the reciprocal space and equal to:(
L

2π

)d
πd/2

Γ(1 + d/2)
kd (5.4)

where Γ is the the gamma function and V = Ld is the volume. The density of states

D(ω) is:

D(ω) =

(
V
d(
√

4π)−d

Γ(1 + d/2)

)
kd−1 dk

dω
(5.5)

The pre-factor is not important for the scaling of the density of states D(k) as it

is independent of k. Using the above, the number of modes between k and k + dk is

proportional to kd−1 or ωd−1. The last statement follows from the dispersion relation

ω = vk where v is the wave velocity. Therefore, the number of modes (the density of

state) having angular frequency between ω and ω + dω, scales as:

D(ω) ∝ kd−1 dk

dω
∝ kd−1 ∝ ωd−1. (5.6)

The internal energy, U of the solid is the sum of the energy of all vibrational modes

weighted by the Bose-Einstein factor since phonons are bosons:

U ∝
∫

dωωd−1

(
~ω

e~ω/kBT − 1

)
∝ T d+1

∫ xm

0

dx
xd

ex − 1
(5.7)

where x = ~ω/kBT . Technically, xm is chosen such that the total number of modes is

3N but in T → 0 regime xm →∞ and therefore the integral in the above converges

to a constant. Finally, we can show that the heat capacity CV scales as:

CV =

(
∂U

∂T

)
V

∝ T d, (5.8)

which for d = 3 gives the expected Debye’s T 3−law. This is the origin of cubic

term in Eq. 5.1 which was predicted as the universal behavior of solids as T →

0. The additional linear term observed in glasses is indeed surprising as the long-

wavelength phonons are sound waves propagating through an elastic medium. We
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Figure 5.2: A symmetric double-well potential with the separation d between its
minima and the barrier height Vb. The harmonic approximations at the minima are
shown in dashed red.

know that sound waves can travel through the glasses, therefore there should be little

difference between thermal properties of crystalline and glassy states of matter in this

temperature regime. Nevertheless, anomalous behavior of the specific heat is observed

in numerous studies and glasses have access to additional degrees of freedom compared

to crystals. While silica glasses studied here are at the isostatic point and central

forces are enough to stabilize the structure, tunneling does occur in low-coordination

glasses but additional angular forces are required to stabilize the structure which

makes them more complex for a pilot study, therefore we focus on a silica bilayer.

To explain this anomalous behavior, Anderson-Halperin-Varma [142] and Phillips [143]

independently proposed a tunneling mechanism in early 1970’s [10]. In this model,

the atoms in glass unlike atoms in crystal have access to multiple configurations.

These configurations sit at local minima of energy landscape while are separated by

a barrier (Fig. 5.2). The quantum tunneling of atoms between two local minima pro-

vides a linear specific heat, as will be shown shortly. This tunneling is geometrically

a conformational change in the position of (a group of) atoms. Since the temperature
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is low, this conformational changes should involve a finite number of atoms and it is

expected that the atomic rearrangements are localized. The height of energy barrier

V0 is bounded by two extremes. On one hand, the barrier should be small enough

that tunneling can occur since the tunneling probability decreases exponentially by

V0. On the other hand, the barrier should be large enough that two localized states

are separated.

A detailed account of the two-level systems, and the derivation of their specific

heat is given in Appendix B. Appendix C describes the quantum effects of tunneling

states by solving the Schrodinger equation for a double-well potential.

Although the two-level systems can successfully explain the linear dependence

of the specific heat at low temperature, they neither provide a detailed geometrical

mechanism for tunneling nor a process to find such states. The exact mechanism

(geometrical realizations) of tunneling is still an open problem after nearly 50 years.

In the following section, we present a new formulation of the problem based on the

rigidity of the isostatic networks (defined below) and discuss possible approaches to

find alternative conformations for an isostatic glass.

5.3 2D Amorphous Networks: Rigidity Theory

We can reframe the problem of tunneling states in the language of graph theory.

For examples, silica can be viewed as a network of tetrahedra that are connected at

their apex. In 2D, a monolayer of silica can be viewed as a network of corner-sharing

triangles. In both cases, the network is a graph which contains the information about

which atoms are bonded. Each atom is considered a vertex while each chemical

bond is an edge1. In addition, the glassy networks contain information about the

bond lengths which are set by quantum mechanics of atoms involved in bonding. In

1The terms “site” and “node” are used interchangeably here as are “edge” and “bond”.
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rigidity theory, the combinations of an underlying graph and the length of edges is

called a framework. Indeed, silica is a framework where the distance between say

oxygen atoms is fixed at ∼ 2.626Å. One of the central questions in rigidity theory is

the problem of finding realizations of a framework or graph drawing problem: Given

a graph (how atoms are connected) and the length of edges (distance between the

labelled atoms), how many ways are there to draw the graph? If there is only one way

to draw the graph, it is called globally rigid. A graph with more than one realization

can only be locally rigid. Note that in counting the number of realizations, trivial

motions are ignored because we can translate, rotate, invert or reflect a realization

and assign new coordinates to vertices but the drawings are not considered distinct.

We can immediately see how this problem relates to the tunneling states in glasses.

If the glass is a framework that can tunnel between multiple conformations, each

conformation is in fact a realization of its underlying graph. Therefore glass is not

globally rigid and the problem of glassy tunneling states reduces to the problem of

finding realizations of a framework.

For the remaining part of this chapter, the focus is on two-dimensional glasses

for two reasons. Firstly, silica bilayers are effectively two-dimensional materials since

the configuration of the top layer is the mirror image of the bottom layer [9]. The

planar nature of a silica bilayer allows us to visualize the geometrical signatures of any

possible tunneling states. Secondly, we have a complete characterization of rigidity

in two dimensions through Laman’s theorem [100], which is yet to be generalized

to higher dimensions. In general, to determine whether a framework is rigid is a

NP-hard problem [144]. The assumption of a generic framework makes the problem

much easier. A framework is generic when coordinates of vertices are algebraically

independent which loosely means there is no special relationship between coordinates

and no symmetry is present in the framework.
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The study of the framework rigidity dates back to Maxwell [105]. The idea is

based on the balance of the number of constraints Nc and the number of degrees of

freedom. Usually constraints are due to the central force bonds when the degrees of

freedom are due to the coordinates of vertices. For a framework in d dimensions with

N vertices, we need dN numbers to fully describe the position of all vertices. Each

edge that is placed between two vertices constrains one of those numbers. Therefore,

a naive count would compute the number of remaining degrees of freedom (or floppy

modes) F as:

F = dN −NB +R (5.9)

where NB is the number of edges and R is the number of redundant edges that are

not necessary for rigidity. Constraints can be of other types such as fixing/pinning a

vertex in place, or allowing motions only along a vector or on a plane (see Chapter 3

and [103, 48, 145]).

This count can be done rigorously by forming the dynamical matrix (or Hessian

matrix of potential energy). The dynamical matrix is symmetric, and positive semi-

definite in mechanical equilibrium and its eigenvalues are positive or zero [146]. The

number of zero modes is equal to the floppy modes of the system, i.e. deformations

that have no energy cost. The number of non-zero eigenvalues is the rank of the

dynamical matrix. The null space of the dynamical matrix is an F−dimensional

space which is spanned by the corresponding eigenvectors. The null space contains

trivial motions (e.g. translations and/or rotations) as well as non-trivial zero modes.

However, finding rank of a large matrix is computationally expensive. Fortunately,

the pebble game is an integer combinatorial algorithm [147] based on Laman’s the-

orem which can determine the rigidity of networks containing up to about 106 ver-

tices [101, 102]. The algorithm can decompose the graph into rigid, overconstrained,

and underconstrained subgraphs.
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A graph is called isostatic when it is minimally rigid, i.e. it has just enough

constraints to support the degrees of freedom with no redundant edges. The isostatic

frameworks are on the marginal point of stability and instability and their properties

are of much interest [55, 76, 99]. Interestingly, models of glasses are exactly at the

isostatic point. In two (three) dimensional silica, every oxygen has 2×2 = 4 (3×2 = 6)

incident edges which exactly balance 2 (3) degrees of freedom of an atom since the

edges are shared between two atoms.

The thread that connects isostaticity of glasses to their tunneling states is a re-

markable theorem that states a generic isostatic framework has an even number of

realizations [147, 148]. To be more precise:

Theorem 11. A finite generic isostatic framework is not globally rigid, but has an

even number of equivalent generic frameworks. Each generic framework of the un-

derlying graph is locally rigid. (Equivalent generic networks have the same network

topology and bar lengths, and are infinitesimally rigid.)

This theorem is powerful as it suggests that glasses such as silica have to have

more than one realization with the same topology (same set of edges). Now, note

that the theorem guarantees the existence of such solutions, but the question of their

accessibility depends on the energy considerations. In the next section, we justify

this theorem using a toy model and will show how various realizations of an isostatic

framework can be found.

5.4 An Isostatic Framework: Trihex Example

Although glasses are the main subject of finding tunneling states, a simple example

can show the details and shed light on how realizations of a graph are formed. In

this section, we study an isostatic framework named Trihex (Fig. 5.3). The aim is to
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Figure 5.3: Trihex, formed by three corner-sharing triangles arranged around a non-
regualr hexagon; an examples of an isostatic framework. Three blue points are pinned
to the plane while black points are free to move.

find all realizations of Trihex. It has N = 6 vertices free to move with 2× 6 degrees

of freedom and NB = 12 edges as constraints, which makes the number of floppy

modes equal to zero, therefore the framework is isostatic. Note that the blue vertices

are pinned (immobilized). Also, the pinned vertices are placed generically (not on an

equilateral triangle) but all edges are assumed to have the same length. This situation

is similar to the glasses because the bond lengths can be assumed fixed. Let (xi, xj)

be the coordinates of vertex i. If vertices i and j are connected through an edge with

the length sij, we can write:

(xi − xj)2 + (yi − yj)2 = (sij)
2. (5.10)

Such an equation can be written for all edges. This gives a set of 12 non-linear

equations for Trihex with exactly 12 unknowns (recall the system is isostatic). Each

framework realization corresponds to a real solution of this set, assuming three pinned

vertices as fixed constraints 2 .

Although Theorem 11 states that the number of realizations is evenly degenerate,

it does not provide an exact number. This is due to the fact that given the constraints

2The equations can be solved numerically using “NSolve” function in Mathematica. However,
this method is limited to graphs with ∼ 20 edges based on our numerical experiments.
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in a problem, the number of realizations of edge length equations can change by

varying edge lengths. In the Trihex example, three vertices are pinned and triangles

are equilateral. Therefore it is almost trivial to see that if edge lengths are chosen so

short, the triangles cannot span the distance between two pinned vertices. Therefore

at that limit, there is no solution/realization3. If we take the structure in Fig. 5.3 as

an initial structure, we are interested in counting the total number of realizations for

a given edge length. This realization are found by solving Eq. 5.10 for uniform edge

lengths ranging from 0.95 to 2. The pinned boundary conditions is convenient since

no trivial translation or rotation is present [48]. Figure 5.4 shows the results. The

red line shows the total number of distinct complex solutions for the Trihex which

is fixed and equal to 112 computed using Magma [149]. This number is independent

of the chosen edge length and is the upper bound on the number of realizations. By

changing the edge length, some but not all of complex solutions become real.

The first real solutions appear to be a single point at edge length ≈ 0.969. This

is an interesting point as it seems the theorem is violated but in fact there are two

solutions at this limit although infinitesimally close. This is the signature of a fully

stretched network which has the maximum possible volume or the lowest density.

From this point of view, the problem is also related to the flexibility window in glasses

where naturally-occurring glasses are found near their low-density limit [150, 132]. As

we increase the edge length, the two infinitesimally close solutions diverge and quickly

two new solutions join the previous solutions. The number of realizations in Figure

5.4 generally increases up to a maximum number. In fact, two sharp increases happen

at ≈ 1.4 and ≈ 2.8 which both are related to the fact that the pins are roughly ≈ 1.4

units apart. When the edge length of the triangles is roughly an integer multiple

of this length scale, the triangles can tightly fit together. Figure 5.5 shows some

3Zero is still even!
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Figure 5.4: Number of realizations of Trihex by varying edge length. The red line
shows the number of complex solutions which is fixed at 112.

realizations (out of total 76 possible realizations) for the edge length 2.8.

After reaching a maximum of 104 realizations, the number of solutions rapidly

drops. Our numerical experiments show that a subset of solutions survive even at

very large edge lengths (high density) and the number of realizations reaches a plateau

of 44 solutions. Fig. 5.4 shows the number of solutions for edge lengths up to 6.

However, Fig. 5.6 lists these 44 states when the edge length is set to 100, in the units

where the distance between pinned vertices is ≈ 1.4. Many solutions in this regime

are related by an approximate mirror symmetry, as we expect the three blue pins

to be co-incident and the equilateral triangles are roughly arranged around a central

point.
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Although it is interesting to look at the individual solutions but we need to dis-

tinguish various realizations. In addition, it should be monitored how solutions at

an edge evolve from the previous solutions. We choose the mean distance of vertices

from the centroid of the pinned vertices as the metric. If we plot this metric versus

the edge length for each realization, the result is Figure 5.7, showing how some solu-

tions persist for a long range but others disappear. Red and green lines respectively

show the linear and quadratic fit to the persistent paths which shows an intermediate

growth rate. Previously, we discussed that there is a sharp increase in the number

of realizations at s around 1.4 and 2.8. Fig. 5.7 shows that along those values there

is a tremendous amount of activity and a large set of solutions are only present in a

small region of edge lengths.

The complexity of paths in Fig. 5.7 makes it certainly constructive to look at

specific regions in more details. Our observations show that new solutions always

come in as a pair. Based on the results, we have observed three mechanisms for

appearance/disappearance of solutions: simple close circuits, open circuits and retro-

grades, but we have found no evidence of bifurcation [151, 152](Fig. 5.8, left panel).

A retrograde is a path that bends backward which is a disappearance mechanism;

an example is given in the right panel of Fig. 5.8. Open circuits are the persistent

paths that continue to exist even at very large edge lengths. An example of simple

close circuits is given in Fig. 5.9. The initial solutions at the low-density limit are

emphasized in Fig. 5.9 (left panel). Note that first two solutions emerge and then

they diverge. At a secondary point, a new branch of solutions appears.
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Figure 5.5: Some of the realizations with the edge length equal to 2.8. Note that
the structures are generally folded and thicker edges correspond to the overlap of
multiple edges.
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Figure 5.6: The 44 solutions in the large edge length limit. In the units where the
distance between the pinned sites is ≈ 1.4, the edge length is set to 100 and three
pinned point look like a single point. Similar solutions are related by an approximate
mirror symmetry but not rotation. Note that the structures are generally folded and
thicker edges correspond to the overlap of multiple edges.
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Figure 5.7: (Top) L by varying edge length; (Bottom) The mean distance scales
quadratically (green) not linearly (red). The two curves are fitted to the topmost
points with edge length between 3 and 4 but are extrapolated to the outside of this
window.
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Figure 5.8: The left panel is a bifurcation which we have never observed. The right
panel is a “retrograde” which is an alternative way of losing solutions.
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Figure 5.9: (Left) L by varying edge length for the lowest values of edge length;
(Right) L by varying edge length for a loop showing how solutions appear and disap-
pear.
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5.5 Single Edge-cuts

The discussion in the previous section showed that different realizations of an

isostatic network can be found by solving edge length equations. Fig. 5.10 depicts

four realizations of Trihex at s ≈ 0.973653. Their corresponding points are marked

by red stars in the left plot. We can think of two paths on this plot as two branches

of realizations. The realizations 1 and 4 belong to the initial branch while 2 and 3 lie

on the second branch starting at s ≈ 0.972. The pair of solutions that belong to the

same branch indeed have very similar configurations. In fact, the largest difference

between the pairs is the reflection of the top connecting edge along horizontal axis. For

the pairs that do not belong to the same branch, the motion involves the significant

rotation of the bottom triangle. If we would assume that the edges are harmonic

springs and not fixed-lengths bars, the energy path connecting the pairs on different

branches has a much higher energy cost/barrier compared to that of the pairs on the

same branch. Note that the whole energy landscape of Trihex at this edge length

has only 4 minima. The nice feature of the landscape of Trihex is that the global

minimum energy is exactly zero.

This energy perspective makes an important bridge between Trihex examples and

glasses. If this picture from studying Trihex remains intact in glasses, we expect

to see that solutions play different roles depending on which branch they belong.

The Fig. 5.10 is specifically important since the experimental density of glasses is

close to the low density edge. So we expect the discussion in this section would

somewhat generalize to the 2D glasses. But as discussed, solving edge length equations

is computationally expensive for a large system. On the other hand, two-level systems

in glasses are rare. To have the slightest hope of finding a tunneling state, we need

to study systems that are considerably larger than Trihex. This makes it inevitable
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Figure 5.10: The four solutions with the edge length equal to 0.973653 marked with
red asterisks. The solutions are numbered from the smallest mean distance from the
centroid (y−axis) to the largest. The solutions on the same branch show a small
displacement but a more significant motion is involved among the solutions from the
different branches.

to design an alternative approach to find realizations of a framework starting from

already available information.

This approach can be designed using the nature of an isostatic framework which is

on the verge of instability. The number of zero eigenvalues of the dynamical matrix of

an isostatic framework is exactly equal to the number of trivial motions (or dimension

of the null space). Any other motion has a finite cost in energy. But if a single

constraint of an isostatic framework is removed, now the null space gains one extra

dimension moving along which has zero energy cost. In fact, it can be proven that the

traversal along this non-trivial eigenvector is continuous and leads to an even number

of realizations since the path is also closed. We state the above observations as a

theorem.

Theorem 12. If a single edge is removed from a finite generic isostatic framework,

the resulting mechanism has a configuration space that is a closed, continuous curve,
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on which there are an even number of configurations where the removed edge returns

to its original length.

This theorem can be directly written as a step-by-step single-cut algorithm [153]:

1. Start from an isostatic network, i.e. a rigid network with no redundant edge.

The number of trivial motions depend on the imposed boundary conditions. In

a system with periodic boundary conditions, only rigid translations are allowed.

For anchored boundary condition, no trivial motion exists.

2. Remove an edge from the isostatic network, and form its dynamical matrix.

Find the eigenvectors corresponding to zero eigenvalues (the null space). Re-

move trivial motion eigenvectors to find the one internal degree of freedom.

3. Eigenvector-following : Once the non-trivial direction is identified, move all sites

along that direction with a small step size. The smaller the step size, the smaller

is the error in traversing the circuit, i.e. the path that the system takes in high

dimensional space. Note that this motion does not change the edge length of

any other edge. Also use the dot product of the previous and current directions

to make sure we only move forward in the configuration space.

4. Compute the dynamical matrix at the new point and repeat the above process to

traverse in the configuration space. Meanwhile monitor the distance between the

two vertices that had their connecting edge removed. If we continuously move

through this one-dimensional path, we eventually come back to the starting

point. Once we are back to the initial point, the sum of distances from the center

of mass is plotted against the length of the cut edge, for each point along the

path. This gives us a circuit projected in 2D plane in which drawing a vertical

line will identify the original point and its conjugate(s) in the configuration
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Figure 5.11: (Left) A circuit projected in 2D plane; The vertical axis represents the
average distance of all vertices from the center of mass. The horizontal axis shows the
distance between two ends of the removed edge. The blue and the red asterisks denote
the original and alternative realizations, respectively. A vertical line, drawn at the
location of the original bond length, has two intersections with the circuit. (Right)
The distance of two ends of the removed edge vs. iteration step by moving along
the path. The dashed horizontal line represents the original length. The asterisks
correspond to the ones on the left.

space.

Fig. 5.11 shows the result of this algorithm applied to our Trihex example for an

edge length about 0.97 which is fairly close to the edge of no solutions. The starting

point is shown by a blue asterisk while the conjugate conformation is shown by a red

asterisk. The step size is chosen small to traverse a smooth closed path. A vertical

line drawn at s ≈ 0.97 intersects the circuit at two points which correspond to the

realizations of the network. The right figure shows the length of the removed edge

while moving along the path and how it returns to its original value twice. The first

time (red asterisk), we visit a new realization of the network and the second time

(blue asterisk) we return to the starting point.

While the circuit of realizations close to the left edge show a fairly simple closed

shape, this is not the case for the systems far from this limit. As the edge length
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increases, more solutions appear and new branches form. Even some branches can

host more than two realizations. Therefore it is expected to have much more complex

circuits in which a single edge-cut can lead to more than two solutions. An example

of such circuit is shown in Fig. 5.12 for s ≈ 1.43. Starting from the realization

denoted by a red asterisk, a single edge-cut leads to a very complex circuit which

passes multiple solutions however not all realizations. In this example 10 out of 22

solutions are found using a single-cut. The circuit displays two cusp−like regions on

the left side which happens when two edges are approximately co−linear.

The complex circuit showed that not all realizations are accessible through the

single cut algorithm. An interesting case study is to start from one of the conforma-

tions in Fig. 5.10 and study the possibility of obtaining other three realizations as

the system closer to no−solution edge. This is important as the microscopic images

of silica bilayers are found near this edge.

Let’s start from realization 1 and remove all edges in turn and find (at least a)

second realization. Fig. 5.13 shows the results. We observe that independent of the

removed edge, the circuit only passes through conformations 1 and 4 which belong to

the same branch. This is despite the fact that the system obviously traversed different

paths with respect to the cut edge. It seems that these realizations do not have any

access to the neighboring branch. In fact, we can make the same statement when we

start from the solution 2 or 3. We would never visit solutions 1 or 4 by removing a

single bond which are located on a different branch (Fig. 5.14). This means that the

above algorithm is not a perfect alternative to the edge length equations as it only

finds some solutions in the space of all available conformations.
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Figure 5.12: The vertical axis represents the total distance of all vertices from
the center of mass while the horizontal axis shows the distance between two ends of
the removed edge. The total number of solutions at this edge length are 22 but the
circuit passes through 10 of solutions which are shown by blue asterisks. The starting
realization is marked by a red asterisk. Other solutions are shown by green asterisks.
Note that multiple solutions can be overlapped on this scale as the value on y−axis
is not sensitive to approximate symmetries in the system.
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Figure 5.13: Circuits formed by starting from conformation 1 in Fig. 5.10. Each
figure corresponds to the removal of a different edge.
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Figure 5.14: Circuits formed by starting from conformation 2 in Fig. 5.10. Each
figure corresponds to the removal of a different edge.

94



To make the connection between various conformations of an isostatic framework

and tunneling states, we need to find the energy path between two realizations. When

during circuit traversal an edge is cut, the energy cost is zero but this is just a

convenient method to find the second solution. To find the energy barrier we add

back the removed edge assuming that all edges are harmonic springs with the force

constant k = 1. To find the exact form of the energy landscape, we should find

the transition path with the minimal energy path between the two energy minima

which can be achieved by methods such as Nudge Elastic Band [154]. However, we

could find a first estimate of this path using the linear interpolation. Let s1 and s2

be 2N−dimensional vectors containing the coordinates of two given realizations with

zero energy. We define the following linear interpolation between the states:

s(Λ) = s1 + (Λ +
1

2
)(s2 − s1). (5.11)

Therefore, the energy can be found as a function of Λ, where Λ = −1
2
, 1

2
corre-

spond to s1 and s2, respectively. With this formulation the midpoint between two

conformations is located at Λ = 0. Using the four solutions in Fig. 5.10, the energy

pathways between all possible conformations are given in Fig. 5.15. We find that the

energy barrier for the states on the same branch is much lower (∼ 102 times) than

the ones on different branches. This reaffirms what we observed before: solutions on

a branch are separated from solutions on the other branch by a high energy barrier.

It seems that to make this transition possible through the concept of removing con-

straints, more complex schemes than single-cut are required. However, our efforts

to employ more complex procedures provided no additional solutions compared to

the ones found by the single-cut algorithm. For example, the single edge cut can be

modified to cutting two edges while a new third edge is added. Or we can remove two

edges and explore a two-dimensional surface as opposed to a one-dimensional closed
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Figure 5.15: Energy barrier between any two conformations in Fig. 5.10 calculated
based on the linear interpolation versus the interpolation parameter Λ. The starting
realization sits on Λ = −0.5 and the final realization is located at Λ = 0.5. The barrier
height for the solutions on the same branch is significantly less than the barrier height
for the solutions on different branch.

path in the case of cutting an edge. Albeit, there is no guarantee that this surface is

continuous or close. None of such methods yielded additional solutions.

5.6 Alternative Realizations of 2D Glass

Trihex, as a toy model, displayed the main features of the realizations and the

existence of branches of solutions but we would like to apply these ideas to 2D glasses

and link the existence of the tunneling modes to the multiple realizations of a glass

structure. 2D glasses are a network of corner-sharing triangles where every vertex

is four-fold coordinated. Since each vertex has two degrees of freedom, this network

is locally isostatic [48]. But boundary conditions determine the global rigidity of
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the framework. For pinned boundary conditions [48] which is useful for networks

extracted from the experimental data, the system is at the isostatic point. For the

case of periodic boundary conditions, the system contains two redundant bonds which

must be removed.

However, 2D glasses are systems much larger than the Trihex and computational

limitations must be considered. Solving the set of edge length equations is practically

impossible for systems as large as 2D glasses. Therefore, we would not have access

to the complete picture of branches and how the solutions evolve on a branch. The

single-cut algorithm is guaranteed to provide new realization(s) but is not an exhaus-

tive method and some of the existing solutions will be unreachable by the single-cut

algorithm.

To find the alternative relations of a 2D glass structure using single-cut algorithm,

the null space (the eigenvectors with zero eigenvalue) of the dynamical matrix D

should be found by diagonalizing this 2N×2N matrix which for large N is expensive.

Numerical experiments show that we are limited to systems with N ≈ 5000. As the

system size becomes larger, there is an additional source of error due to the moving

of all particles along the non-trivial zero-mode. Therefore, it is necessary to displace

the particles in smaller steps to ensure that the traversed path is smooth. By moving

in this high dimensional space, the error is built up which causes the path to be not

closed due to the numerical error. If this error is to be removed, we should either

choose an extremely small step size or have frequent energy minimization, both of

which are expensive.

We apply a slightly modified version of the single-cut algorithm to 2D glasses

to avoid the mentioned bottlenecks. Since the existence of the second solution is

guaranteed, and only the alternative realization is required to calculate the thermal

properties, fairly large steps can be taken along the path with no need to complete the
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Figure 5.16: The circuit found by applying the modified single-cut algorithm to
a 2D glass, in which the path traversal is stopped upon finding a solution. Fairly
large steps are taken along the eigenvector with zero eigenvalue as is evident from
roughness of the circuit. The black circle is drawn to emphasize the fact that the real
solution (indicated by the blue asterisk) with no error in the edge lengths does not
exactly lie on the drawn circuit and further energy minimization is required to find
the correct coordinates. The red asterisk denotes the original network. The vertical
axis represents the total distance of all vertices from the center of mass while the
horizontal axis shows the distance between two ends of the removed edge.

circuit exactly. In this adopted algorithm, once the circuit intersects the vertical line

denoting the original length of the cut edge, we have found a second realization and

the path traversal can be stopped. However, the position of vertices and subsequently

the edge lengths have some error which can be refined by the energy minimization to

ensure that edge lengths are equal to their original values (Fig. 5.16).

If the circuit is complex enough, it contains more than two realizations. Based on

the modified scheme, if the circuit traversal is stopped after finding the first solution,
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we might miss a whole set of solutions. The concern can be elevated by noting that

glasses are usually found at the extreme of density (edge of the flexibility window).

At this limit, we expect to have only two solutions from the discussions in Trihex

example. But we also tested this idea by applying the original single-cut algorithm

on two 2D networks (N = 48, 300) by removing all edges iteratively. It was observed

that all circuits give two and only two distinct solutions independent of the removed

bond.

The networks of 2D glasses are prepared using WWW algorithm (see Chapter 1)

with the periodic boundary conditions while ensuring that the ring distribution and

the area of polygons are in agreement with the experimental data. This leads to

structures where the edge lengths are no longer exactly equal. Therefore 2D glasses

satisfy a stronger definition of being generic. We assume that the structure is in

mechanical equilibrium, all edges are harmonic springs at their rest lengths and the

dynamical matrix is positive semi-definite.

At this point, two realizations of a 2D glass are available; one is the original

network (prepared either experimentally or computationally) and one is the result

of the modified single-cut algorithm. They have the same exact topology and bond

lengths, but the vertices are displaced between the two states.

From energy considerations of tunneling in glasses, it is expected that motion of

atoms in a tunneling mode are relatively localized since the displacement of a large

group of atoms extended over a long distance requires a massive energy which is not

available at temperatures about 1 K. The Participation Ratio (PR) is a common

measure of how localized a state is. If atom i is displaced by the vector ui between

two conformations, PR is defined as:

PR =

(∑N
i=1 |ui|

2
)2

∑N
i=1 |ui|

4
. (5.12)
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For a perfectly delocalized mode |ui| ∼ 1/
√
N and PR ∼ N . For a completely

localized mode |ui| ∼ δij, then PR ∼ 1. Hence, a small value of PR is the signature

of a localized mode. Since it is expected that tunneling modes are localized modes,

we expect that by increasing the system size N , the fraction of atoms participating

in the mode, namely PR/N , decreases.

The other important aspect is the significance of the atomic displacements in the

limit of large systems. If any mode is to be considered a tunneling state, the atoms

should be displaced significantly more than their zero-point motion. Assuming a

harmonic oscillator, the zero-point amplitude x0 is of order of:

x0 ∼
√

~
mω

=

√
10−34

10−26 × 1014
= 10−11m = 0.1 Å, (5.13)

using the order of the mass of an oxygen atom. For an O−O bond length of 2.6Å,

x0 ≈ 10−2 in the unit of the bond length. If the typical motion of the atoms measured

by their mean displacement
∑
|ui|/N is less than x0, such motions are not physically

important for the tunneling states however are mathematically correct.

We prepare four networks of corner-sharing triangles under periodic boundary

conditions with varying size N = 48, 300, 1254, 5016 and randomly remove two edges

to satisfy the isostaticity condition. By applying the modified single-edge cut algo-

rithm, the conjugate solutions are found. The different size of the systems allows to

study the behavior of the participation ratio and the mean displacement of vertices

as a function of N .

Table 5.1 summarizes the results for the mean displacement of atoms and the

participation ratio for various systems. By increasing the number of particles, the

total displacement
∑
|ui| increases slightly but the average displacement of a typical

particle
∑
|ui|/N decreases. In fact, regardless of the system size, this average dis-

placement is smaller than of the zero-point motion x0 and hence this motions cannot
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Table 5.1: Motion magnitude in the unit of the edge length found in simulations for
different system size, N .

N
∑
|ui|

∑
|ui|/N

√∑
|ui|2/N PR PR/N

48 0.09 1.89× 10−3 2.12× 10−3 21 0.44

300 1.47 4.89× 10−3 5.80× 10−3 123 0.41

1254 2.03 1.62× 10−3 1.84× 10−3 595 0.47

5016 2.94 0.59× 10−3 0.67× 10−3 2283 0.46

be representative of a tunneling state. In addition, all systems exhibit modes that

contain ∼ 45% of all vertices in the system. Such an extended mode cannot be a

tunneling state since in the limit of Avogadro number of atoms, a massive number of

atoms should be involved in such states which is not energetically favorable. Unfortu-

nately, it seems that the single-cut algorithm is not able to find realizations that are

sufficiently distant from the initial realizations (evidenced by vanishingly small |ui|

values) and sufficiently localized (evidenced by the constant PR/N value). Although

the found modes exist they cannot account for the tunneling states in glass since at

very large N the conformations are effectively degenerate.

In order to gain some insights into the thermal properties of the found states, a

double-well potential can be formed by the pair of realizations for each system size.

For every N , the energy pathway is found by the linear interpolation (Eq. 5.11). Then

the numerical value of the energy barrier Vb is extracted from the interpolated curve.

The well separation d is calculated as the root-mean-square deviation (RMSD) of

atomic positions. The probability of the tunneling scales as e−λ (Appendix B) where

λ is the tunneling parameter defined by the following equation (derived from ratio of
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Figure 5.17: (Left) The double well potential found by linear interpolation between
the found states for N = 300; The energy vs. separation between two realizations.
The black circles are found by linear interpolation, the red line is a fourth-order
polynomial fit to the data. The blue curves show the harmonic approximations;
(Right) The heat capacity of two harmonic wells (black) and the heat capacity from
double well potential, for different numbers of energy levels included (blue).

kinetic and potential energies):

λ = d

√
2mVb
~2

, (5.14)

where m is the mass of an oxygen atom. For a detailed discussion of the significance

of the tunneling parameter, see Appendix B.

Fig. 5.17 (the left panel) shows an example of a double-well potential derived from

the system with N = 300 atoms. The black points are found using Eq. 5.11 while the

red line is a 4th-order polynomial fit of Eq. B.1 to these points. The two blue lines

are the harmonic approximations around two equilibrium realizations. For N = 300,

we have Vb = 2.79 × 10−24 J and d = 0.3Å which corresponds to a small value of

λ = 0.1. The energy levels of this double-well potential can be found by solving the

Schrodinger equation numerically (see Appenix C). After finding the energy levels,

the specific heat of this double-well potential can be found, shown in the right panel

of Fig. 5.17. The black curve represents the specific heat of two harmonic oscillators.
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Table 5.2: Characteristics values of double-well potentials in SI, found in simulations
for four different system size, N .

N Vb(J) Tb(K) d(Å) λ Tmax(K)

48 9.45× 10−27 6.84× 10−4 0.04 0.0012 16

300 2.79× 10−24 2× 10−1 0.30 0.10 12

1254 1.44× 10−25 1.04× 10−2 0.17 0.02 5

5016 3.84× 10−27 2.78× 10−4 0.12 0.0025 23

Note that the black curve saturates at Cv = 2kB as expected from the equipartition

theorem. The blue lines are the specific heat of the double-well potential when only

up to a certain energy level are included in the calculations. In particular, the dashed

blue line is the specific heat due to the first two energy levels while the maximum

specific heat happens at the temperature Tmax which is about 16 K for the above

example with N = 300. As is evident, even by including 50 of first energy levels the

specific heat is less than half that of harmonic oscillators.

Table 5.2 summarizes the characteristics of the double-well potential for four sys-

tems in SI units. The barrier height (Vb) of all systems is a very small value which

means that the double-well is essentially flat in the middle. The well separation d is

also very small and at most about 5% of O−O bond length and λ shows a somewhat

monotonic decrease with the system size4. Tmax which characterizes the temperature

at which the specific heat of a two-level system is maximum, happens to be at about

∼ 10 K, much higher than the range of temperatures concerning the tunneling states.

To draw a comparison between Trihex and 2D glasses, it seems that the single-cut

algorithm can only find solutions that belong to the same branch while realizations

4To find the exact dependence of the values on N more samples should be used.
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on other branches are energetically inaccessible since they contain motions of larger

units such as a rigid triangle (or tetrahedron). Although, we think such branches

exist in glasses, it is not computationally feasible to find the branches for such large

systems similar to Trihex.

It is worth noting that the above discussion can be directly applied to bulk glasses.

We repeated the modified single edge cut algorithm for various silica structures in

three dimensions. The only modification required in 3D is that three edges need to

be removed to reach the isostatic point. Our results for bulk (3D) glasses were very

similar to the two-dimensional case.

5.7 Discussion

It is experimentally shown that glasses exhibit a larger specific heat compared

to crystals at very low temperature where implies a larger density of states of low

frequency modes. Theoretically, it is postulated that this is due to the tunneling states

in glass at very low-temperature. Based on this model, atoms in glass have access to

multiple local energy minima and quantum tunneling between two configurations is

responsible for the observed linear specific heat.

Glasses such as SiO2 are at the isostatic point, meaning that degrees of freedom

are exactly balanced by the central force constraints. Guided by Theorem 11 which

states an isostatic framework has to have an even number of realizations, we applied a

single-cut algorithm to find multiple realizations of the framework. The algorithm is

based on removing a single constraint in the system which leads to a single degree of

freedom. By following this floppy mode, some alternative realizations of the systems

are found. These conformations have the same connectivity and the same set of edge

lengths as the starting structure but the vertices are displaced with respect to the

original structure.
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Figure 5.18: A bowtie motif which was proposed to explain the tunneling states
in glasses.

By applying this algorithm to the networks of corner-sharing triangles as mod-

els of 2D glasses, we found conjugate realizations for several frameworks varying in

size. Our algorithm provides only one other realization and this number does not

scale with the system size. We estimated the localization and the atomic displace-

ments between the found states and showed that by increasing the system size, the

found modes are extended while the atomic displacements become vanishingly small.

Also, the thermal properties of such modes were studied as double-well potentials

and it was shown the barrier height is very smaller than expected for the tunnel-

ing states. Hence, the modes resulted from the single-edge-cut cannot explain the

low-temperature anomalous behavior of the specific heat of glasses.

Since this algorithm did not provide modes that describe the expected tunneling

states, alternative methods were designed. One approach was to make more complex

schemes similar to single cut. For examples, instead of taking out one constraint, two

edges were removed. Because now the system has two non-trivial modes, a surface can

be explored. This method did not provide any additional solution to the single-cut

and, moreover, Theorem 11 does not generalize to surfaces.

A second approach was to activate tunneling modes through local distortions. For

examples, consider two triangles with a shared corner which we refer to as a bowtie.
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Now draw two imaginary lines from the centroids of triangles to the shared corner.

The angle between these imaginary lines is smaller than 180◦ which is dictated by the

ring closure in glasses. Now one could imagine that this angle can be flipped through

the straight line connecting two centroids (see Fig. 5.18). Historically, such motifs

are imagined as a possible mechanism for two-level systems in glasses [155, 156]. Our

experiments show that such a perturbation cannot account for the tunneling states

as they either lead to an extended state or the system simply returns to its original

state after energy minimization.

All the methods mentioned here led to extended states. The reason behind such

extendedness can be attributed to the marginality of the network of corner-sharing

triangles. Once the system is globally isostatic (i.e. two edges are removed from

the fully connected framework) (Fig. 5.19, Top), removing a single edge brings the

framework to isostatic-minus-one state where in our network all vertices are hinges

(Fig. 5.19, Bottom). A hinge is a vertex that belongs to more than one rigid cluster.

The smallest rigid clusters in our 2D glassy networks are triangles and these trian-

gles can freely hinge about their common vertex. It seems natural that driving the

framework along the non-trivial zero-energy mode would cause all vertices to move.

It is also conjectured that to have a localized tunneling state at isostatic-minus-one,

localized hinges are indeed necessary. This would ensure that the motion of vertices

is confined within the region with hinges. Fig. 5.19 shows the results of applying

the pebble game algorithm [101] on the network of corner sharing triangles. The

top panel demonstrates the system at isostatic point when two edges are removed.

Removing another edge makes every vertex a hinge (shown by green) in the bottom

figure [157]. Since corner-sharing triangles are always very close to the marginal point,

it seems extremely difficult to design any localized state using purely central forces.

However, some initial experiments have shown that localized motions can be designed
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in frameworks that are far above isostatic point [157]. Hence, it might be possible to

use additional forces (constraints) such as angular forces to achieve localized states.
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Figure 5.19: (Top) A network of corner-sharing triangles with periodic boundary
conditions at isostatic point where two edges are removed. (Bottom) Once an edge
is removed from the top network, all vertices are hinges (shown by green points).
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Although, our efforts did not lead to a definite characterization of tunneling states

in glasses, it uncovered some previously unknown aspects of such structures. We

showed that glassy networks have multiple realizations due to their rigidity properties

and proposed a method to find those realizations. However, the type of realizations

accessible through the single-cut algorithm are not physically significant as they have

motions smaller than the zero-point motion of atoms. We also used Trihex to fully

characterize the nature of realizations and showed that solutions can be found on

multiple branches. The conformations on a branch are accessible though the single

cut algorithm but this method could not yield any solution from other branches.

Unfortunately, it is not practical to find branches in 2D glasses by the methods used

in Trihex example since a set of highly coupled non-linear equations should be solved.
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Chapter 6

CONCLUSION

The structure of glasses have been subject of many studies and there is a good

agreement between the models and the experimental data. In recent years, a bilayer

of silica glass is imaged and has added to the available information from glasses. The

images of silica glass reveal an amorphous structure in which the atomic arrange-

ment resembles the continuous random network model which was developed nearly

80 years ago. They show that atoms in silica glass have an arrangement similar to

the crystalline structure at very short-range distances, but somewhat random bond-

ing between structural units (SiO4 tetrahedrons) creates a network that lacks the

long-range order.

In Chapter 2, we have used computational models of silica bilayers to investigate

order at short-, intermediate- and long-range. The computational models are prepared

such that they have a ring distribution similar to the imaged glasses. But their larger

size allowed us to measure correlations in much longer distances with better statistics.

We presented two distance definitions, namely topological distance and geometrical

distance to quantify the range of correlations. The topological distance is a discrete

measure counting the number of intervening rings between two given rings. The

geometrical distance is the continuous Euclidean distance of two rings where they are

replaced by their centroids. Aboav-Weaire law characterizes the tendency of large

and small rings to be adjacent. We generalized this law for both distance definitions

and showed that the medium-range ordering exists between rings that are about three

rings apart. Beyond this distance, the ring correlation quickly fades away. However,

the topological distance results in a pseudo-long-range effect because the rings located
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at a distance form a non-circular shell. We were successful at relating the strength of

correlations to the ring size. It was shown that pentagons and heptagons are strongly

correlated with their neighbors while hexagons have weaker correlations with their

adjacent rings.

While the computational models have been successful at reproducing the geo-

metrical and topological properties of 2D glasses, there are still some discrepancies

between models and experiments. The imaged glassy structures show remarkable

symmetric rings which have almost maximum area (closed to being regular polygons)

while the employed computational models here should be improved in this respect.

In addition, there is some discrepancy between ring arrangements measured by the

larger value of Aboav-Weaire parameter for the experimental samples. This possibly

requires additional energy terms in the Hamiltonian which are topological in nature

and can favor experimentally observed ring arrangements. To this end, new corre-

lation measures should be defined to characterize much more complex correlations

between triplet, quadruplet, etc of rings. This is a fruitful future direction to make

models closer to nature, to uncover possibly unknown orderings in glass, and finally

to remove doubts about the meaning of Aboav-Weaire parameter.

Although the ring structures of bilayers of silica are directly evident from im-

ages, their geometrical properties depend on the accurate atomic coordinates. As

experimental data have an uncertainty in the position of atoms and their size is fi-

nite, structural refinement is necessary to locate the exact position of atoms which in

turn leads to restoring the correct bond lengths and bond angles. To accomplish the

refinement, a number of issues need to be resolved.

Firstly, silica is a locally isostatic network with marginal mechanical stability

and the imposed boundary conditions can greatly influence its mechanical response.

We designed two types of boundary conditions for such finite networks to render
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the structure effectively isostatic so atoms in the bulk behave as if they belong to

an infinite structure. These boundary conditions are discussed in Chapter 3. The

first design is a slider boundary condition in which the surface atoms can only move

tangent to a one-dimensional slider connecting all the surface atoms. With sliding

boundary conditions, a network of corner-sharing triangles is isostatic but for a silica

bilayer, additional constraints are necessary. Nevertheless, this boundary condition

has the plausible feature that all boundary atoms are involved. The anchored (pinned)

boundary condition is the second design in which half of the surface atoms are im-

mobilized. This scheme renders the network isostatic in 2D and 3D and two pinning

arrangements are possible for each network.

Secondly, the experimental samples contain unimaged regions varying in size. In

order to include the maximum information in our refinement procedure, we prepro-

cessed the experimental networks by reconstructing regions of the network which

were not imaged or contained missing atoms (Chapter 4), if possible. As rings in the

bilayer are very close to being regular, we used angles between bonds to guess the

location of missing atoms. Once the network was reconstructed as much as possible,

we employed various interactions between atoms to refine structure so bonds have the

proper length.

After imposing the proper boundary conditions and reconstructing the network as

much as possible, the experimental samples can be refined as explained in Chapter 4.

Numerous force fields are proposed for the bulk silica. In the present work, we em-

ployed three types of potentials to include the known chemistry such as proper bond

lengths in the refinement procedure. In the simplest case, the O-O bonds were treated

as harmonic springs which is justified by the fact that tetrahedrons in silica are rigid.

We also used PIM potential which in addition to harmonic terms includes polariz-

ability of the atoms in a molecular dynamics setting. The most complex simulations
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were carried out using DFT to benchmark the simpler interactions.

Si-O-Si bond angle in the bulk silica is a well-studied structural property and con-

tains information on the linking of the rigid tetrahedrons to form the glassy network.

In the bilayers of silica, Si-O-Si bond angle has a greater importance as it reveals

both in-plane and out-of-plane structural information. In the bulk silica, Si-O-Si an-

gles exhibit a very broad unimodal distribution with a peak at ∼ 145◦. In contrast,

all three potentials in the bilayer of silica result in a bimodal distribution of Si-O-Si

angles.

The lower peak corresponds to the in-plane Si-O-Si angles and occurs at θ ∼

140−142◦ for various potentials which is consistent with the values in the bulk silica.

However, a second peak occurs at ∼ 175◦ which is due to the out-of-plane angles

(bridging O atoms) and absent in the bulk silica. In initial experimental studies, it

was assumed that this bridging angle is fixed at 180◦ but we have conclusively shown

that this angle is less than 180◦ and the mid-layer is tilted. This result is remarkable as

we also showed that the symmetry plane of the bilayer is maintained despite this tilt

and regardless of simulation and boundary details; an amazing emergent phenomenon

in a system which is the epitome of disorder.

This study provided some preliminary results about the bilayers of silica and many

more questions are yet to be answered. As more experimental samples, possibly with

larger size, will be synthesized the information about the their ring structure can be

included in the simulation to create models in better agreement with the experiments.

The existence of the so-called flexibility window in 2D, and its similarity to and

differences from 3D zeolites is also of interest. For examples, it is shown that the range

of the flexibility window is determined by the density and synthesized zeolites lie at

the low-density edge of the window. Our preliminary results confirm the existence of

such window in the silica bilayers and indeed experimental samples lie close to the
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low-density edge of the window. However, more work needs to be done to completely

characterize the nature of solutions in the window, and the mechanisms that limit

the extent of the window. Another open problem is whether the Si-O-Si tilt exists in

the crystalline bilayer which has several polymorphs.

Additionally, our work on the structural refinement of glasses can be seen as a first

step. Similar techniques have been used in the refinement of protein structures where

the inclusion of known local chemistry produces the best possible structures. So far

in glasses only 2D images of silica glasses are available. However, it is expected that

in the near future the confocal microscopy techniques can provide images of glasses

in 3D and surely more amorphous structures will be imaged in 2D. The structural

refinement techniques presented here can be adopted to improve the quality of the

available experimental data in such use cases.

Although the focus of the present dissertation was to maximize the available struc-

tural information of silica bilayers, we also explored the low-temperature physics of

glasses in Chapter 5. Glasses at low-temperature regime show a range of properties

which have been a subject of active research since 1970’s. For example, it is well-

known that the specific heat of glass at temperatures below 1 K shows a linear term

in temperature in addition to Debye’s cubic term. Although the two-level states can

explain this dependency, the real mechanism behind such tunneling states is still an

open problem. Here, we explored the possibility of finding such tunneling states in

the imaged bilayers of silica. Any hint as to where a tunneling state occurs and its

geometrical signatures are of fundamental interest.

The problem of tunneling states can be rigorously formulated in the context of

the rigidity theory. The silica glass is a graph and two-level systems are in fact

different drawings or realizations of the same underlying connectivity. The thread to

connect these two concepts is a theorem which asserts any generic isostatic network
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has an even number of realizations. The bilayers of silica are isostatic frameworks

therefore there are at least two ways to create configurations which satisfy the same

given topology (connectivity of atoms and bond lengths). Note that genericity is

an important assumption since existence of symmetry can introduce new degrees of

freedom and as a result, the network is no longer isostatic. This theorem implies that

for any silica bilayer configuration observed in experiments, we can connect the same

atoms but place them at new positions while preserving all topological constraints and

bond lengths. We used this theorem and proposed a method to find at least one other

realization for a given conformation. The method, termed the single-cut algorithm, is

based on the removing a constraint from a network at the isostatic state. As a result,

a single degree of freedom appears. The theorem guarantees that by following this

non-trivial floppy mode, the framework covers a one-dimensional continuous path and

finally returns to its starting point. Along this path, at least one other realization is

visited.

First, we applied this algorithm to a toy-model, Trihex, to form a complete picture

of number of realizations, and study the impact of density on realizations. This was

in particular useful since we had independently found all realizations of Trihex. We

showed that solutions appear in pairs but by approaching the low-density limit, two

solutions are increasingly degenerate. We also introduced the concept of branches for

realizations and also categorized solutions based on the branch they belong to. It was

observed that single-cut algorithm can only yield solutions that belong to the same

branch.

Then, we applied this algorithm to the two-dimensional representation of silica bi-

layers which are a network of corner-sharing triangles. We showed that this algorithm

would only give one other alternative realization of the network. This was similar to

the Trihex example when the density is close the extreme point. As we know, sil-
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icates do indeed exist close to this low-density edge. The original and alternative

realizations were used to create a double-well energy landscape which was later used

to study the resulting specific heat. We observed that by increasing the system size,

the displacement between two realizations decreases. This means that for a finite but

large system size, the displacement will be smaller than zero-point motion of atoms.

The modes are also extended where about 45% of all atoms participate in the mode.

It was shown that such modes have contributions near temperatures of ∼ 10 K while

tunneling states are expected to be effective for temperatures below 1 K.

What we observed in the process of finding tunneling models is an excellent indi-

cation of “more is different” [158] concept. Large systems in nature behave in ways

that are not necessary a sum of their components due to symmetry breaking. This is

evident in going from a small system like Trihex to more complex structures such as

2D model glasses. Although, our results to find tunneling states are null, the method

can be seen as an initial step to shed light on various features of transitions in glasses.

One future direction is to remove the required constraint not through the removing

a bond but other ways such as a change in volume. A network of corner-sharing

triangles with periodic boundary conditions is rigid but has d redundant bonds. This

means that before cutting the single constraint, d bonds should be removed to make

the network isostatic. This appears to be somewhat unfavorable, as it alters the

nature of the original network and this removal does not correspond to a physical

process. We can use the lattice vectors in the periodic cell as dynamical variables to

let the volume change. In d dimensions, there are d lattice vectors, equivalent of d2

dynamical variables. If we allow d+1 of them to change (fixing d2−d−1) the network

is effectively isostatic-minus-one and there is one non-trivial zero mode in the system.

This degree of freedom can be seen as the volume/density change which possibly can

unify the problem of graph realizations and the flexibility window problems. But it
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might be necessary to find more complex schemes so that the alternative realizations

can be found from other branches. Since the energy barrier between such states is

higher, more drastic changes to the network connectivity are expected.

The microscopic images of silica bilayers and advances in the modeling have ex-

panded our knowledge of amorphous structures in recent years and future advance-

ments will continue to explain their physics and properties.
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IMPLEMENTATION OF SLIDING AND ANCHORED BOUNDARY
CONDITIONS
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This appendix extends the discussion in Chapter 3 and offers computational al-
gorithms to implement sliding and anchored boundary conditions for locally isostatic
networks.

Implementation details

Algorithms 1–4 in this appendix give a procedural description of the four boundary
conditions discussed in this paper, and make clear the subtle differences between them.
All of the algorithms in this appendix take as input a finite part of a locally isostatic
network and output a globally isostatic one that is appropriate for further study.
Which of the boundary conditions is most appropriate will depend on the intended
application.

Before describing the algorithms, we give more detail on how to encode a triangle
ring network and the associated set of first-order geometric constraints.

Encodings

Computationally, it is convenient to work not only with the body graph G, as in
the main body of the paper, but also with its line graph G∗ that has as its vertices
the triangle corners and edges the triangle sides. We denote by n and m the number
of vertices and edges in G and n∗ and m∗ the same quantities for G∗. Vertices in G
are denoted by v, w, . . . and vertices in G∗ by v∗, w∗, . . .. We assume that there is
a constant-time mapping τ : V (G) → V (G∗)3 that maps each vertex v of G to the
associated triangle {v∗v , w∗v, x∗v} in G∗. For each boundary vertex v of G, τ(v) will
have a unique degree 2 vertex, which we denote by T (v).

Experimentally, G∗ will always be immediately visible. It is also computable in

time O(n) from G. If G is planar with given facial structure 1 , then G∗ also has an

natural planar embedding, and vice-versa. Further, if G∗ contains no pair of facial

triangles with a common edge, then G is determined by G∗. This is the case in all of

our examples.

We also assume that we have access to the coordinates of the vertices of G∗. We

denote these by p(v∗) = (xv∗ , yv∗) for each vertex v∗ of G∗ and call p a placement.

1For example, given as a doubly-connected edge list. See, e.g., Section 2.2 of the textbook by de
Berg, et al.[159]
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First-order geometric constraints

The allowed first-order motions ṗ of a triangle ring network G satisfy the system

〈p(v∗)− p(w∗), ṗ(v∗)− ṗ(w∗)〉 = 0 for all edges v∗w∗ ∈ E(G∗). (A.1)

We assume that p maximizes the rank of (A.1), which happens for almost all choices

of p. By the theorems in this paper, this rank is equal to m∗ when G is a triangle

ring network.

Now identify a set S∗ ⊂ V (G∗) of vertices to which we will add one slider con-

straint. Assign a vector s(v∗) = (av∗ , bv∗) to each v∗ ∈ S∗. The slider constraints on

the first-order motions are:

〈s(v∗), ṗ(v∗)〉 = 0 for all v∗ ∈ S∗. (A.2)

To guarantee that the combined system (A.1)–(A.2) achieves its maximum rank (2n∗

for our sliding boundary condition), it is sufficient to pick each s(v∗) uniformly at

random from the unit circle. 2

Implementing slider-pinning

Algorithm 1 shows how to implement the sliding boundary condition of Theorem

3.

2See the appendix of Király et al.[160] for a detailed justification of this and similar statements
relating genericity and random sampling.
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Algorithm 1 Sliding boundary conditions.

Input: Triangle ring network G, line graph G∗.

Output: Slider constraints implemementing the sliding boundary condition.

1: Initialize S∗ to the empty set.

2: For each boundary vertex v of G, add T (v) to S∗.

3: For each v∗ in S∗, generate a random vector s(v∗) on the unit circle, and use it

to create a slider constraint of the form (A.2).

Implementing immobilized vertices

To implement Theorem 4, we could put two independent sliders at vertices of

G∗. However, it is simpler to regard (A.1) as a matrix and then discard the columns

corresponding to immobilized vertices.

Algorithm 2 Pinned boundary conditions.

Input: Triangle ring network G with an even number of boundary vertices, line graph

G∗, boundary cycle C.

Output: Linear constraints pinning (A.1).

1: Let M be the matrix of the system (A.1).

2: Pick a vertex v0 on C. Set v = v0. Set b = 1.

3: If b = 1, discard the columns in M corresponding to T (v), and set b = 0. Other-

wise set b = 1. Replace v with its successor on C.

4: If v = v0, output M . Otherwise, go to step 3.

Observe that the loop implemented in steps 2–4 shows how to obtain the free

corners of the boundary vertices of G.
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Implementing anchoring with additional bars

Anchoring with additional bars amounts to adding edges to G∗. Thus, we describe

them graph theoretically only. If the geometric constraints are desired, simply use

the new graph to write down (A.1).

Algorithm 3 Anchoring with bars I.

Input: Triangle ring network G, line graph G∗, boundary cycle C.

Output: An isostatic graph containing G∗.

1: Enumerate the boundary vertices v1, . . . , vt of G, ordered along C.

2: Set H = G∗.

3: Add edges T (v1)T (v2), . . . , T (v3)T (v2) to H.

4: Output H.

The left panel of Figure 3.8 takes the graph H from Theorem 7 to be a “zig-zag

triangulation” of a polygon, which is easily seen to be isostatic. This next algorithm

gives the implementation of Theorem 7 using this choice.

Algorithm 4 Anchoring with bars II.

Input: Triangle ring network G with an even number of boundary vertices, line graph

G∗, boundary cycle C.

Output: An isostatic graph containing G∗.

1: Enumerate alternating boundary vertices v1, v3, . . . , vt− 1 of G, ordered along C.

2: Set H = G∗.

3: Add edges T (v1)T (v3), T (v3)T (v5), T (v1)T (v5) to H.

4: For i = 7, 9, . . . , t− 1, add the edges T (vi−2)T (vi), T (vi−4)T (vi) to H.

5: Output H.
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APPENDIX B

THERMAL PROPERTIES OF TWO-LEVEL SYSTEMS
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A symmetric double-well potential can represent a tunneling state (see Fig.5.2).

The abscissa corresponds to a configuration coordinate of a group of atoms while the

ordinate is the energy. A double-well potential with a barrier height of Vb centered

around a/2 and with the well separation d can be written as:

V (x) =
16Vb
d4

((
x− a

2

)2

− d2

4

)2

. (B.1)

The potential is invariant under parity so the eigenstates will be symmetric and

anti-symmetric solutions and the state of the system is a linear combinations of sym-

metric and antisymmetric eigenstates [161]. The solutions of the Schrodinger equa-

tion with the double-well potential can be obtained numerically as will be discussed

shortly. However, WKB approximation implies that the splitting between two low-

est energy levels has an exponential dependence on the barrier height and the well

separation (see Ref. [162], Chapter 5):

energy splitting = kBT0 = ∆0 = ~Ωe−λ, λ = d

√
2mVb
~2

. (B.2)

λ is called the tunneling parameter and Ω is the angular frequency of oscillations

(phonons) in one well assuming a harmonic approximation:

Ω =

√
1

m

d2V (x)

dx2
=

√
32Vb
md2

, (B.3)

where m is the mass of the particle. The energy scale of such phonon is Ephonon =

1
2
mΩ2d2. If the tunneling state is to contribute into the thermal properties, T0 should

be of order of environment temperature T . It is constructive to find the order of the

quantities involved in the tunneling paramter. At T0 = 1 K, the splitting energy is

∆0 ≈ 10−4 eV. For an oxygen atom with the mass mO ≈ 10−26 kg and the force

constant KOO = 600N/m, Ω =
√
KOO/mO ≈ 1014 Hz, hence ~Ω ≈ 10−2 eV. This

leads to λ ≈ 5. For d ≈ 1 Å, the barrier should be of order Vb ≈ 10−4 eV.
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Figure B.1: The specific heat of a two-level system. The maximum specific heat
occurs at T = Tmax ≈ T0/2.4 (the balck dashed line). The red and blue dashed lines
show low- and high-temperature limits of the specific heat.

Transition of atoms between two energy levels separated by an energy equal to ∆0

would contribute to the specific heat. Indeed, it can be shown that the dependence

of the specific heat is linear in temperature. To this end, let E1 and E2 = E1 + ∆0

be the energies associated with the two-level system while ∆0 is the tunnel splitting

in Eq. B.2. The partition function Z reads:

Z =
∑
i

e−βEi = e−βE1 + e−βE2 = e−βE1
(
1 + e−β∆0

)
, (B.4)

while the average total energy 〈E〉 of the system is:

〈E〉 = −∂ lnZ

∂β
=

1

Z

∑
i

Eie
−βEi = E1 +

∆0e
−β∆0

1 + e−β∆0
. (B.5)

The variation of the energy with respect to temperature is the specific heat Cv of the
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two-level system (β = (kBT )−1):

Cv(∆0, T ) =
∂ 〈E〉
∂T

= kB
〈E2〉 − 〈E〉2

(kBT )2

= kB (β∆0)2 e−β∆0

(1 + e−β∆0)2

= kB

(
T0

T

)2
e−T0/T

(1 + e−T0/T )2
. (B.6)

It is worth to look at the behavior of the specific heat at two extremes:

Cv(∆0, T ) =


1
4
kB
(
T0
T

)2
T0 � T

kB
(
T0
T

)2
e−T0/T T0 � T

(B.7)

Figure B.1 shows the specific heat and its low and high temperature limits and the

Schottky anomaly where the maximum specific heat occurs at Tmax ≈ T0/2.4.

Glassy structures contain an ensemble of such two-level systems which naturally

span a wide range of values of the tunnel splitting. In order to find the specific heat of

this ensemble, we need to specify the density of splitting energy ρ(∆0) which weights

the specific heat of individual two-level systems. The exact form of this distribution

possibly depends on the specific microscopic motions involved in the tunneling. We

can relate the distributions of splitting energy and tunneling parameter through the

definition of the tunneling parameter (Eq. B.2):

ρ(∆0)d∆0 = ρ(λ)
dλ

d∆0

d∆0 ∝ ρ(λ)
d∆0

∆0

(B.8)

However, splitting energy has an exponential dependence on the tunneling parameter

which means a small variation in λ corresponds a large range of ∆0. But as the range

of acceptable ∆0 is small (as temperature is very low), therefore we can assume that

the distribution of λ and ∆0 are constant. Finally, we can compute the specific heat

140



of an ensemble of two-level states:∫ ∞
0

Cv(∆0, T )ρ(∆0)d∆0 = kB

∫
(β∆0)2 e−β∆0

(1 + e−β∆0)2
ρ(∆0)d∆0

= kBρ0β
−1

∫
(β∆0)2 e−β∆0

(1 + e−β∆0)2
d (β∆0)

= k2
Bρ(0)T

∫ ∞
0

χ2e−χ

(1 + e−χ)2
dχ

=

(
π2

6
k2
Bρ(0)

)
T

= aT. (B.9)

In the above we have defined χ = β∆0 and a is the anomalous coefficient in Eq. 5.1.

The upper bound in the integral is set to ∞ as the integrand tends to zero for large

values of χ. This proves that an ensemble of two-level systems has a specific heat linear

in temperature. Therefore, two-level systems can explain the anomalous behavior of

glasses at low temperatures. By comparing the above equation to the linear term

in Eq. 5.1, we can estimate the distribution of states. For the experimental data of

silica, one finds that ρ(0) = 0.05 states per eV per SiO2 group. This means that for

∆0 < 0.1 eV, there is 1 two-level system for every ∼ 200 tetrahedral SiO4 groups [142].

This means tunneling modes are rare events and explains why finding them has been

an open problem for nearly 50 years.

The above discussion showed how the picture of tunneling states can describe the

anomalous behavior of glasses at low temperature. However, if we find any two-level

system in the glass, the full quantum description requires solving the Schrodinger

equation which appears in Appendix C.
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APPENDIX C

QUANTUM MECHANICS OF DOUBLE-WELL POTENTIAL
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To fully understand the quantum behavior of a two-level system, we should solve

the Schrodinger equation for the double-well potential. If ψ(x) and E represent the

wavefunction and energy, respectively, the Schrodinger equation is:

Hψ(x) = − ~2

2m

d2ψ

dx2
+ V (x)ψ(x) = Eψ(x) (C.1)

with V (x) being the potential energy from Eq. B.1 and H is the hamiltonian. To solve

the equation in a more traceable and general fashion, first we rewrite the Schrodinger

equation for the double-well potential in dimensionless units. Let 2λδ2 = d2, x−a/2 =

δz, and 4εVb = λ(E − Vb) (note that λ is the previously defined tunneling parameter

but δ is newly defined). In the dimensionless form, the potential energy and the

Schrodinger equation are:

V (z) = Vb

(
2

λ
z2 − 1

)2

Hψ(z) =

[
−1

2

d2

dz2
− z2 +

1

λ
z4

]
ψ(z) = εψ(z). (C.2)

Note λ, ε, and z are dimensionless but δ has the dimension of length. The above

equation corresponds to a Schrodinger equation where ~ = m = 1 with an energy

eigenvalue of ε while the effective potential is −z2 + z4/λ. Note that the spacing

between the original energy levels ∆E and dimensionless energy ∆ε is:

∆E = (4Vb/λ)∆ε. (C.3)

If λ� 1, the potential is effectively quartic and we can qualitatively find the behavior

of energy levels using Born-Sommerfeld condition. Let z4 = ελy4 and z0 denotes the
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Figure C.1: Energy levels for dimensionless double-well potential for various values
of the tunneling parameter, λ.

classical turning point for energy ε, we find:

(n− 1

2
)π =

∫ z0

−z0

√
2(ε− z4

λ
)dz

=

∫ 1

−1

√
2(ε− εy4) (ελ)1/4 dy

= ε3/4λ1/4
√

2

∫ 1

−1

√
1− y4dy

⇒ εn ≈ 1.37

(
1

λ

)1/3(
n− 1

2

)4/3

, n = 1, 2, 3, . . . . (C.4)

The energy levels of quartic potential grow as n4/3, faster than the energy levels of a

harmonic oscillator which grow as n. Obviously, the spacing between levels is also not

constant. In fact, the Schrodinger equation of the full potential has no exact solution,

and the n4/3 scaling can be used as check for the following numerical procedure.

To find eigenstates and eigenenergies, we use the embedding method developed

in Ref. [163] by expanding the eigenstate ψ(z) in the basis of eigenstates of a square-

well potential. From elementary quantum mechanics, the eigenstates of a square-well

potential φn are sinusoidal functions confined between 0 < z < a with energy E ′n for
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Table C.1: Eigenenergies of the dimensionless double-well potential

λ ε1 ε2 ε3 ε4 ε2 − ε1

0.001 6.6511 23.8648 46.8691 73.2336 17.2137

0.01 3.0383 10.9556 21.5873 33.7826 7.9173

0.1 1.3022 4.8189 9.6557 15.2257 3.5167

1 0.3380 1.6127 3.6619 6.0508 1.2747

10 −1.5654 −1.5504 −0.1458 0.2121 0.0150

level n:

φn =

√
2

a
sin(

nπz

a
),

E ′n =
n2π2

2a2
, n = 1, 2, 3, . . . (C.5)

If we write ψ as a sum of φn’s and then plug the sum back into the dimensionless

Schrodinger equation, the eigenstates converge to that of Equation C.2 provided that

a� d. In fact, the exact matrix representation of the Hamiltonian has the following

form:

Hmn = n2δmnE
′
1 +

∫ a

0

dzφm(z)

(
−(z − a/2)2 +

(z − a/2)4

λ

)
φn(z). (C.6)

The eigenvalues of Hamiltonian matrix H are the energy eigenvalues ε. This method is

very convenient since the integral can be evaluated using familiar numerical packages.

Table C.1 lists the values for four smallest eigenvalues and the splitting between the

first two energy levels. Figure C.1 shows the twenty smallest energies for various

values of λ. Note that for λ = 0.1 the scaling is consistent with n4/3 variation,

derived in previous paragraph. For λ ≈ 10 which is close to our expectation from the

experimental data, the two low-lying states are inside the wells, very close in energy

and far from other excited states and effectively a two-level system.

145



APPENDIX D

COMPUTATIONAL DETAILS
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Research in physics increasingly benefits from computational tools and techniques.

Over the course of my doctoral work, I have invested significant amount of time and

effort developing software that are routinely used in my research and can potentially

be used by other researchers. This appendix presents a summary of software used in

this Dissertation.

I chose to write most of my research software in Python because of its flexibility

and great collection of open source packages such as Numpy and Scipy which are

nowadays fundamental for scientific computing with Python. However, some of more

resource-intensive work were done in C++.

D.1 Structural Refinement

Chapter 4 discussed the refinement of silica bilayer structure in two dimensions.

The atomic coordinates were found manually by selecting atoms on the microscopic

images. With the advancement of microscopy techniques, it is expected to see more

images from amorphous materials in the near future. It would be interesting to

develop methods to automatically extract the coordinates of atoms, perhaps using

object detection techniques in neural networks (especially convolutional neural net-

works) [164].

We can consider the structure of silica bilayer as a network of corner-sharing

triangles. Hence each oxygen atom is connected to four nearest neighbors oxygens.

KD-tree is an algorithm for quick nearest-neighbor lookup and an implementation

exists in scipy as scipy.spatial.KDTree. I used this implementation to find four

nearest neighbors for oxygen atoms. Note that, if an atom i is among four closest

neighbors of another atom j, the inverse is not necessarily true. Therefore some atoms

will be over-coordinated. The shortest bonds are maintained and others removed such

that all oxygens have coordination 4.
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Using coordinates and bonds, a glass structure is represented by these two lists.

The coordinates are a list of N lines, for example:

6.17284 2.80260

6.55525 3.05472

6.41071 3.25547

...

Then each atom is labelled from 0 to N − 1. This is convenient as both C++ and

Python have zero-based indexing for arrays. The connectivity list or edge list of the

graph shows two ends of a bond:

0 3

0 13

1 2

...

After the determination of coordinates and bonds, the above two lists are im-

ported in software, and a molecular dynamics program is used to find forces on atoms

and to minimize the energy. The potential energy includes the known local chemistry

such the chemical bond length. The total potential energy is a combinations of three

contributions [9]: bonds as harmonic springs, mean-square deviation (MSD) from

experimentally determined positions, and hard-core potential to avoid the overlap

between oxygen atoms. Although employing MSD made the use of boundary condi-

tions unnecessary, the studies were carried out on the effect of boundary conditions

on realizations of a network of corner-sharing triangles (discussed in Chapter 3). In

particular, the flexibility window of these networks are of great interest. To imple-

ment the anchored boundary conditions, the force on pinned atoms were set to zero.
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For sliding boundary conditions, the force on surface atoms were projected onto a

given vector which either was fed in as an input or was randomly generated.

D.2 Rigidpy

The network glasses such as silica are rigid structures. Rigidity theory has had a

significant impact on our understanding of mechanical properties of materials. Rigid-

ity theory studies the response of a material to mechanical deformations. My colleague

Varda F. Hagh and I developed a Python library which provides a convenient API

(application program interface) to study the rigidity of a network/graph. The library

is named Rigidpy and extensively uses efficient vector operations present in Numpy

and Scipy. The mathematical details and background are given in [165]. It is freely

available at https://github.com/vfaghirh/rigidpy. The library has three main

components:

1. Framework rigidity: The collection of a graph and an embedding (assigning

coordinates to vertices) of that graph is called a framework. This submod-

ule creates the framework from coordinates and edge list of the structure. The

framework object can be used to compute rigidity matrix, stress matrix, Hessian

matrix, dynamical matrix, and finding eigenvalues and eigenvectors of dynami-

cal matrix. Various boundary conditions are implemented, as well.

2. Geometrical optimization: This submodule optimizes the the graph geom-

etry and finds the closest local energy minimum for the given edge lengths.

3. Circuit Follower: To find realizations of a graph with zero energy, CircuitFollower()

can be used. The submodule is built based on Framework object, and id of a

bond to be removed is passed as an input. CircuitFollower() follows the non-

trivial eigenvector of the dynamical matrix with zero eigenvalue. The traversal
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is done in small steps (step size is adjustable) to ensure that the error remains

within the acceptable range. The stopping criterion is where the root-mean-

square-deviation of the current coordinates from the original coordinates is

less than the set value, which is given as an input. This function returns a

dictionary object containing coordinates of vertices, the distance between two

ends of removed edge, etc and can be used to plot the projected circuit. This

submodule was used in Chapter 5.

To see a detailed “How to” guide on rigdipy, please see: https://github.com/

mahdisadjadi/rigidpy_manual/blob/master/rigidpy_intro.ipynb.
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