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ABSTRACT

In the past few decades, there has been a remarkable shift in the boundary be-

tween public and private information. The application of information technology

and electronic communications allow service providers (businesses) to collect a large

amount of data. However, this “data collection” process can put the privacy of users

at risk and also lead to user reluctance in accepting services or sharing data. This

dissertation first investigates privacy sensitive consumer-retailers/service providers

interactions under different scenarios, and then focuses on a unified framework for

various information-theoretic privacy and privacy mechanisms that can be learned

directly from data.

Existing approaches such as differential privacy or information-theoretic privacy

try to quantify privacy risk but do not capture the subjective experience and hetero-

geneous expression of privacy-sensitivity. The first part of this dissertation introduces

models to study consumer-retailer interaction problems and to better understand how

retailers/service providers can balance their revenue objectives while being sensitive

to user privacy concerns. This dissertation considers the following three scenarios:

(i) the consumer-retailer interaction via personalized advertisements; (ii) incentive

mechanisms that electrical utility providers need to offer for privacy sensitive con-

sumers with alternative energy sources; (iii) the market viability of offering privacy

guaranteed free online services. We use game-theoretic models to capture the behav-

iors of both consumers and retailers, and provide insights for retailers to maximize

their profits when interacting with privacy sensitive consumers.

Preserving the utility of published datasets while simultaneously providing prov-

able privacy guarantees is a well-known challenge. In the second part, a novel context-

aware privacy framework called generative adversarial privacy (GAP) is introduced.

Inspired by recent advancements in generative adversarial networks, GAP allows the

i



data holder to learn the privatization mechanism directly from the data. Under

GAP, finding the optimal privacy mechanism is formulated as a constrained minimax

game between a privatizer and an adversary. For appropriately chosen adversarial

loss functions, GAP provides privacy guarantees against strong information-theoretic

adversaries. Both synthetic and real-world datasets are used to show that GAP can

greatly reduce the adversary’s capability of inferring private information at a small

cost of distorting the data.
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Chapter 1

INTRODUCTION

1.1 How to Incentivize and Interact with Privacy Sensitive Consumer?

Programs such as retailer “loyalty cards” allow companies to automatically track

a customer’s financial transactions, purchasing behavior, and preferences. They can

then use this information to offer customized incentives, such as discounts on related

goods. Consumers may benefit from retailer’s knowledge by using more of these

targeted discounts or coupons while shopping. However, in some cases the coupon

offer implies that the retailer has learned something sensitive or private about the

consumer. Nevertheless, consumers also want companies to be transparent about

what information they collect and how it will be used. In some cases the coupon

offer implies that the retailer has learned something sensitive or private about the

consumer. Due to predictions from machine learning algorithms, retailers seem to

know more about the consumer than they expect or feel they have disclosed. For

example, a retailer could infer a consumer’s pregnancy [1]. Such violations may make

consumers skittish about purchasing from that retailer.

Consumers are more willing to share broad demographic data and information

about their usage of media content. Those types of data are generally considered to

be less personal and can be anonymous. However, data or information that implies

their private interest is considered to be highly unwilling to share by consumers, such

as web browsing history, information about their social lives and financial information.

The increase of consumers’ privacy concerns forces retailers to be more careful about

designing incentive schemes for the consumers since perceived privacy violations may

“creep out” consumers.

However, modeling the privacy-sensitivity of a consumer is not always straight-

forward: widely-studied models for quantifying privacy risk using differential privacy

1



or information theory do not capture the subjective experience and heterogeneous

expression of consumer privacy. This section introduces a framework to model the

consumer-retailer interaction problem and better understand how retailers can de-

velop coupon-offering policies that balances their revenue objectives while being sen-

sitive to consumer privacy concerns. The main challenge for the retailer is that the

consumer’s responses to coupons are not known a priori ; Furthermore, consumers do

not “add noise” to their purchasing behavior as a mechanism to stay private. Rather,

the offer of a coupon may provoke a reaction from the consumer, ranging from “un-

affected” to “ambiguous” or “partially concerned” to “creeped out.” This reaction

is mediated by the consumer’s sensitivity level to privacy violations, and it is these

levels that we seek to model via a Markov decision process. These privacy-sensitivity

states of the consumers are often revealed to the retailer through their purchasing

patterns. In the simplest case, they may accept or reject a targeted coupon.

1.1.1 Motivation

According to a report by The New York Times [2], an infuriated father went into

a Target store in Minneapolis, demanding to talk to a manager. He claimed his

daughter got coupons on baby product in the mail. “Shes still in high school, and

you are sending her coupons for baby clothes and cribs? Are you trying to encourage

her to get pregnant?”, he said. The manager has no clue what the man was talking

about. The coupon book was sent to the man’s daughter’s address and contained

promotions on nursery furniture, maternity clothing and pictures of smiling infants.

The manager apologized and then called a few days later to apologize again. To his

surprise, the father was somewhat abashed over the phone. “I had a talk with my

daughter,” he said. “It turns out there has been some activities in my house I haven’t

been completely aware of. She’s due in August. I owe you an apology.” It turns out

that Target has discovered the girl’s pregnancy way before her father did.
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The technology used behind the story is that Target creates consumer accounts

that store a history of everything they have bought and any demographic information

Target has collected from them or bought from other sources. Using that, by look-

ing at historical purchasing data, analysts from Target identify about 25 products

that, when analyzed together, allowed them to assign each shopper a “pregnancy

prediction” score. Sending out coupons based on this score system does not vio-

late the privacy law. However, this marketing strategy clearly makes consumers feel

uncomfortable since they sense their private information have been leaked.

With the increasing privacy concerns from consumers, the retailers should be more

careful when offering promotions or advertisements to consumers. Unwinding all of

these complicated interactions between data mining and privacy loss is difficult, so we

focus instead on the phenomenon of how retailers react to privacy-sensitive consumers

in a simple two-party interaction.

1.1.2 Contributions

We propose a partially-observed Markov decision process (POMDP) model for

this problem in which the consumer’s state encodes their privacy sensitivity, and the

retailer can offer different levels of privacy-violating coupons. The simplest instance

of our model is one with two states for the consumer, denoted as “Normal” and

“Alerted,” and two types of coupons: untargeted low privacy (LP) or targeted high

privacy (HP). At each time, the retailer may offer a coupon and the consumer tran-

sitions from one state to another according to a Markov chain that is independent

of the offered coupon. The retailer suffers a cost that depends both on the type of

coupon offered and the state of the consumer. The costs reflect the advantage of

offering targeted HP coupons relative to untargeted LP ones while simultaneously

capturing the risk of doing so when the consumer is already “Alerted”.
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Under the assumption that the retailer (via surveys or prior knowledge) knows the

statistics of the consumer Markov process, i.e., the likelihoods of becoming “Alerted”

and staying “Alerted”, and a belief about the initial consumer state, we study the

problem of determining the optimal coupon-offering policy that the retailer should

adopt to minimize the long-term discounted costs of offering coupons. We extend the

simple model above to multiple states and coupon-dependent transitions. We model

the latter via two Markov processes for the consumer, one for each type (HP or LP) of

coupon such that a persnickety consumer who is easily “Alerted” will be more likely

to do so when offered an HP (relative to LP) coupon. Furthermore, for noisy costs,

we propose a heuristic method to compute the decision policy. Moreover, if the initial

belief state is unknown to the retailer, we use a Bayesian model to estimate the belief

state. Our main results can be summarized as follows:

1. There exists an optimal, stationary, threshold-based policy for offering coupons

such that a HP coupon is offered only if the belief of being in the “Alerted”

state at each interaction time is below a certain threshold; this threshold is a

function of all the model parameters. This structural result holds for multiple

states and coupon-dependent transitions.

2. The threshold for offering a targeted HP coupon increases in the following cases:

(a) once “Alerted”, the consumer remains so for a while – the retailer is more

willing to take risks since the the consumer takes a while to transition to

“Normal”;

(b) the consumer is very unlikely to get “Alerted”;

(c) the cost of offering an untargeted LP coupon is high and close to the cost

of offering a targeted HP coupon to an “Alerted” consumer; and
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(d) when the retailer does not discount the future heavily (future rewards

nearly as important as present), the retailer stands to benefit by offering

HP coupons for a larger set of beliefs about the consumer’s state. Con-

versely, when the retailer discounts the future heavily, it values the present

rewards more than future rewards. Thus, the retailer tends to play con-

servatively so that it will not “creep out” the consumer in the present.

3. For the coupon-dependent Markov model for the consumer, the threshold is

smaller than for the non-coupon dependent case which encapsulates the fact that

highly sensitive consumers will force the retailers to behave more conservatively.

4. By adopting a heuristic threshold policy computed by the mean value of costs,

the retailer can minimize the discounted cost effectively even if costs are noisy.

Moreover, the Bayesian approach helps the retailer to estimate the consumer

state when the initial belief state is unknown.

Our results use many fundamental tools and techniques from the theory of MDPs

through appropriate and meaningful problem modeling. We briefly review the related

literature in consumer privacy studies as well as MDPs.

1.1.3 Consumer Privacy Models

Several economic studies have examined consumer’s attitudes towards privacy

via surveys and data analysis including studies on the benefits and costs of using

private data. Taylor [3] discovers that the market for consumer information provides

companies with incentives to charge high experimental prices for studying consumer

behavior and privacy aware customers strategically reduce their demand in order to

protect their privacy. The authors of [4] explore how individual privacy will changes

over time. Their results show that the amount of privacy for each individual will

decline over time and it will be increasingly difficult to maintain privacy. Reference [5]
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shows, somewhat surprisingly, that individuals are not strictly rational in privacy-

related decision making. However, to date, no formal model has been proposed that

captures consumer’s privacy sensitivity.

In understanding the use of private information, several approaches have been

taken to handle the tradeoff between the privacy of individuals (consumers) and the

efficiency or utility of the data user (the retailer). The benefits and costs of using

private data have been studied by Aquisti and Grossklags [6]. Their work suggests

that solving the privacy problem means to find a balance between information sharing

and information hiding that is in the interest of data subjects as well as of the society

as a whole. Sankar et al. propose an information theoretic approach to capture

privacy and utility tradeoff [7]. They use rate-distortion approach to develop a utility-

privacy tradeoff region for i.i.d. data sources with known distribution in the database.

Formal methods such as differential privacy [8, 9] are finding use in modeling the value

of private data for market design [10] and for the problem of partitioning goods with

private valuation function amongst the agents [11]. In these models the goal is to elicit

private information from individuals. As more of the purchase transaction and data

become electronic, consumers are becoming increasingly aware that their electronic

purchases and other activities are being monitored. To the best of our knowledge,

a formal model for consumer-retailer interactions and the related privacy issues has

not been studied before; in particular, our work focuses on explicitly considering the

consequence to the retailer of the consumers’ awareness of privacy violations.

1.1.4 Markov Decision Processes

In this project we study the problem from the retailer’s perspective: given a

privacy-sensitive consumer who may become alerted to privacy violations, how should

the retailer offer incentives (which we call coupons) to maximize its revenue? The

problem has been modeled as a Markov decision process (MDP) in which the con-
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sumer’s state changes over time according to a Markov chain and the retailer can

offer a coupon at each time step which involves either high or low privacy risk to the

consumer. The retailer bears a cost that is dependent on the type of coupon offered

and the state of the consumer. In this model, offering a high privacy risk coupon can

provide information about the consumer state, but risks lower revenue if the consumer

is alerted.

Markov decision processes (MDPs) are common discrete time mathematical mod-

els for decision making when observable outputs are partially depend on internal

states and exterior inputs. It have been widely used for decades across many fields

(see [12, 13]). We briefly list a few closely-related works. Lipsa and Martins [14]

and Nayyar et al. [15] have used MDPs to model remote sensing and communication

problems. In the Lipsa-Martins model, an observer has causal access to a first-order

linear time-invariant system and must communicate with an estimator over a cost-

constrained communication link. The goal is to minimize a joint cost given by the

estimation error and the communication cost. Nayyar et al. study a similar model

for a discrete state estimation model where the communication cost is dictated by an

energy-harvesting process that constrains the sensor/observer. Both of these works

study finite-horizon problems where the cost is a combination of two costs. The anal-

ogy to our problem is that offering a targeted coupon allows the retailer to estimate

the state of the consumer. However, in our model the retailer goal is not to estimate

the consumer state but to minimize cost. The model we use is most similar to Ross’s

model of product quality control with deterioration [16], which was more recently

used by Laourine and Tong to study the Gilbert-Elliot channel in wireless communi-

cations [17], in which the channel has two states and the transmitter has two actions

(transmit or not). They study an infinite-horizon problem with costs associated to

different types of data transmission rates. They establish the stationary optimal pol-
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icy in a model which has two states and three actions with a fixed transition matrix

and perfect knowledge of belief states. We cannot apply their results directly due

to our different cost structure, but use ideas from their proofs. Furthermore, we go

beyond these works to study privacy-utility tradeoffs in consumer-retailer interac-

tions with more than two states and action-dependent transition probabilities. We

apply more general MDP analysis tools to address our formal behavioral model for

privacy-sensitive consumers.

Classical target-search problems [18, 19] also use MDPs to develop optimal policies

for tracking action. In reference [18], the authors study the problem of tracking a

moving target. They formulate this problem as partially observable MDP (POMDP)

by assuming the target is in one of many states (locations) and the movement of the

target follows a Markov chain. The decision process is terminated when the target

has been found. The action set is the possible state of the target, only one state

can be searched at each time and there is a cost associated to searching each state.

Also, the decision maker has an overlook probability which is the probability that

it may not find the target even if the right state is searched. They prove that the

optimal policy has threshold structure when the overlook probabilities and the search

costs are all the same among different states. They also show that in the general

overlook probability case with general cost, the optimality equation (value function)

is satisfied by a piecewise linear function and the threshold property holds for a large

proportion of the possible transition matrices, search costs and overlook probabilities.

However, in our work, we look at a different problem in which we want to capture

interaction between retailer and consumer with privacy concerns via offering coupons.

Our major objective is to minimize cost of the retailer over an infinite horizon rather

than track the state. Moreover, our cost not only depends on the state, but also on

the action taken by the decision maker, i.e. we may have two costs in alerted state
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depending on the action of the retailer. Similar to their work, we study the two state

model and extend to multi-state problem. Moreover, we consider the case where the

transition matrix is dependent on the action of the decision maker. Mansourifard et

al. [19] consider a state tracking problem with Markov transition and develope bounds

and a heuristic policy for state estimation. Our formulation is different: we consider

cost minimization problems for retailers when consumers have privacy concerns and

develop a closed form solution for the stationary optimal policy in different Markov

transition models.

In the context of privacy, MDPs have been used by Venkitasubramaniam [20]

to study privacy and utility trade-off in control systems with time-varying state by

quantifying privacy via the information-theoretic equivocation function. However, in

his paper, the state is really the state of a control system rather than the state of

privacy sensitivity of a consumer. While this approach has some similarity to ours in

terms of using MDP model, his method uses an average reward which is different from

our problem because the cost of consumer privacy violation has a short-term effect. In

our work we do not quantify privacy loss directly; instead we model privacy-sensitivity

states and resulting user behavior via MDPs to determine interaction policies that can

benefit both consumers and retailers. To the best of our knowledge, a formal model

for consumer-retailer interactions and the related privacy issues has not been studied

before; in particular, our work focuses on explicitly considering the consequence to

the retailer of the consumers’ awareness of privacy violations.

1.2 Incentive Mechanisms for Privacy-sensitive Electricity Consumers with

Alternative Energy Sources

Alternative energy sources, especially rooftop photovoltaic (PV) systems, are get-

ting more prevalent at the distribution level of the electric power grid. As a result,

there is a need to monitor energy consumption patterns at the distribution level
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for more efficient dispatch and stable/reliable system operations. However, such ad-

vanced metering infrastructure can create potential threats to consumer privacy since

they have much higher sampling rate and data processing capability than traditional

meters.

The ability to collect electricity consumption data from consumers benefits the

electricity provider in many ways, including improving load forecasting and system

dispatch efficiency. This can be achieved via the use of smart meters that provide fine

grained energy usage information to the electricity provider. However, the collected

information may be used by malicious users or third party data processing entities

to analyze consumers’ electricity consumption behaviors and make inferences about

personal habits of consumers. Thus, privacy-sensitive consumers can use their al-

ternative energy sources (e.g., battery and PV) to mask their consumption, or even

refuse to use smart meters so that they can have some privacy. While alternative

energy sources can provide some measure of privacy, it is not a reliable resource of

energy due to uncertainties in weather conditions. Thus, consumers may also have to

turn to the grid for energy when alternative energy sources cannot meet their demand.

From the electricity provider’s perspective, the uncertainties in alternative energy

sources may also cause provision issues. Thus, it is in the electricity provider’s in-

terest to incentivize consumers to consume a desired amount of energy to maintain

power system’s stability [21]. Also, it is in the consumers’ interest to exploit these

incentives while simultaneously ensuring a certain level of privacy. To this end, we

monetize consumer privacy using a valuation function that captures the fact that

privacy leakage of a consumer is directly a function of the power that it consumes

from the grid. We address the problem of how electricity providers can incentivize

privacy-sensitive consumers with access to alternative energy sources to consume a

basic amount of electricity from the grid. In short, the goal of our price-based incen-
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tive approach is to allow both parties, namely consumers and the electricity provider,

to negotiate consumption and data sharing such that all parties can potentially profit

from interactions.

1.2.1 Background and Related Work

The increasing number of smart meters deployed in business and residential build-

ings has raised concerns about privacy. The adversary can make inferences about con-

sumers’ energy consumption behavior via data collected from smart meters [22, 23,

24]. Multiple methods and metrics have been proposed to quantify and protect smart

meter privacy including using battery to hide consumption [25, 26, 27, 28], distorting

the metering data [29], using anonymization of smart meter [30] and reducing sam-

pling rate of smart meters via contracts [31]. In [32], Denic et.al. show that privacy

preserving algorithms which use battery to mask load behavior can affect consumers’

demand for electricity from the grid and electricity prices. Thus, it is possible that

privacy protection mechanisms can affect the reliable operation of the grid. Finally,

from a demand response view point, using price as control signals have been studied

extensively, e.g., [33, 34, 35] and references therein.

Our model considers consumers who can achieve privacy by masking their con-

sumption profiles using alternative energy sources. In contrast to prior work, our

pricing mechanism focuses on balancing needs of the electricity provider against con-

sumer privacy. Furthermore, in place of an abstract privacy metric, we monetize

privacy leakage via an arbitrary valuation function dependent on the amount of elec-

tricity the consumer consumes from the grid.

1.2.2 Contributions

The main contribution of this project is to propose a novel approach to study the

trade-off between privacy and energy cost minimization for consumers via incentives

offered by an electricity provider to consume power directly from the grid. To this
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end, we formulate a multi-player non-cooperative game to model interactions between

consumers and the electricity provider. In this game, the strategy of the electricity

provider is the incentive price it offers to encourage consumers to compromise certain

level of privacy by consuming a desired amount of power from the grid. On the other

hand, the strategy of a consumer is to select the proportion of electricity it consumes

from the grid to exploit its reward from the grid while ensuring that the corresponding

valuation of privacy leakage is acceptable.

In this problem, one can consider a pure strategy where consumers and the elec-

tricity provider decide on a specific consumption and price value from a range of

options. However, it is also possible that consumers may not make deterministic

decisions but may choose out of various strategies with different likelihoods. As a

result, the response of the electricity provider will also be a corresponding random

choice. To make the analysis tractable, we look at discrete sets of options for both

consumers and the electricity provider. In practice, since pricing is often a tiered

model with discrete levels, this model also captures this practical setting. In this

project, we study a more general problem by allowing for uncertainties in the behav-

ior of consumers, and in response, the provider by considering mixed strategies. We

focus on a two-player game with two levels of consumption strategies and a two-tiered

pricing structure. For this model, we prove the existence and uniqueness of the non-

degenerate mixed, i.e., non-pure strategy Nash equilibrium. The proposed incentive

mechanism increases both the net profit of the electricity provider and the reward for

the consumer for specific choices of reward and profit functions.

1.3 The Impact of Privacy on Free Online Service Markets

There has been a steady increase in online interactions between consumers and

retailers, where the term retailer refers to entities who offer products for free (e.g.,

social media, search engines, free applications, to name a few). The advances in tech-
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nology have enabled retailers (henceforth referred to as service providers) to collect,

store, process, sell, and share customer-specific information for targeted advertising

(ads) and tiered pricing tactics. In fact, many oft used online services are free and

consumers implicitly accede to tracking for customized services. Targeted ads are a

part of the emerging revenue/profit model for such service providers (SPs) offering

free services. Consumers are delighted by free services until they begin encountering

privacy violations on a daily/frequent basis. While such infractions taken individually

could be ignored or discounted, the totality of data available about consumers with a

variety of retailers and the resulting privacy consequences raise serious concerns [36].

Service providers are beginning to acknowledge that consumers are sensitive to

privacy violations. For example, Google [37] and Apple [38] recently adopted differ-

entially private mechanisms for collecting user data for statistical analyses. However,

the details of these mechanisms are opaque and offer even less clarity on whether

the consumer actually has a choice. In this context, it is worth understanding if pri-

vacy differentiated services can provide such choices for consumers. In a competitive

marketplace, the aggregated weight of targeting may drive some consumers to seek

more privacy-protective alternatives. The cost to the consumer of this action may

be a lower quality of service (QoS) (e.g., poorer search engine capabilities). How-

ever, it could eventually lead to a more open model for consumer sharing of private

information, i.e., one from implicit assent to informed consent [36, 39].

To understand the influence of consumers’ heterogeneous privacy preference on

SPs’ behavior in a competitive market, we take a game-theoretic approach to model

the interactions between SPs and consumers. In particular, we address the following

questions:

• Can privacy-differentiated services lead to a sustainable marketplace? With

consumers’ heterogeneity in privacy preference, SPs can offer services with dif-
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ferent QoS and privacy risks. This question deals with whether there exists a

market equilibrium that sustains the competing SPs for various consumer/SP

parameters.

• What are the equilibrium QoS-privacy risk strategies for the SPs? This question

is related to calculating the equilibrium behavior of the SPs. For different

market models, we examine the optimal strategies for SPs under competition.

• How do various consumer/SP parameters, such as consumers’ privacy prefer-

ence/valuation and SPs’ profit/cost affect the equilibrium outcome? Given

different model parameters, we investigate the effect of each one of these pa-

rameters on the equilibrium outcome of the competition between SPs.

We also generalize the model to multiple SPs (e.g., Google, DuckDuckGo, and Bing)

and illustrate the instability of multi-competitor markets.

1.3.1 Related Work

Targeted advertising is a common method for service providers to exploit knowl-

edge of consumers; this in turn can lead to privacy violations. Our work is informed by

the literature on targeting strategies for retailers [40, 41, 42, 43, 44, 45, 46, 47, 48, 49],

but rather than optimizing retailer strategies, we are interested in identifying how pri-

vacy differentiated services can address privacy concerns.

The problem of market segmentation is a classic and well-studied problem in mi-

croeconomics [50] with focus on how pricing and product differentiation can lead to a

stable and competitive marketplace. However, the free online service market presents

a new challenge wherein monetary quantification of both ‘free’ services and the data

collected about consumers is not simple and straightforward. Equally challenging is

the quantification of consumer privacy since it requires capturing the heterogeneous

expressions of privacy sensitivity that can range from ‘don’t care’ at one extreme
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to ‘hyper vigilant’ at the other. However, some aspects of market models can be

brought to bear to our problem; in particular, the oligopolistic market model with

a small number of competitors, barriers to entry that are not as high as those for

monopolies, and with differentiated products fits appropriately for the markets we

are considering wherein two or (a few) more service providers offer products of the

same type but differentiated by QoS and privacy risk.

A nuanced model that captures differentiation between two firms and consumer

preferences is the Hotelling model [51]. It has been widely used for market analy-

sis across many fields [52, 53]. This model captures differentiation between market

players by mapping firms to positions on a unit length line such that the location

is indicative of the firm’s ‘differentiation level’, the total line length is reflective of

the entire market, a consumer’s privacy preference is a point on the line, and the

optimal locations of the firm results from the simultaneous game between the play-

ers indicate the resulting segmentation. The model captures utility for consumer as

both the advantage (price) from the firm as well as the ‘transportation cost’ from the

consumer’s location to that firm. Consumers choose the seller which gives them the

highest utility (in terms of the price as well as the ‘transportation’ costs).

Privacy and market segmentation. An extensive body of literature on eco-

nomic models for privacy was recently reviewed by Acquisti et al. [54]. These models

illustrate the large semantic range covered by the word “privacy”. Wang et.al. [9]

study the value of privacy in a market that allows trading private data as commod-

ity. By modeling the interaction between a single data collector and consumers as

a game, they show that in a Nash equilibrium, the data collector offers a payment

which equals to the monetary value of data privacy in the market for private data.

Meanwhile, a consumer’s best response is to report the data with the same value

to the data collector. Different from their work, our paper focuses on the interac-
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tions between competing free online SPs and consumers. Jentzsch et.al. [55] propose

a model to study competitions between two service providers by taking consumer’s

privacy preference (binary choices: low privacy/high privacy) into account using a

vertical Hotelling model. Thus, consumers select the service provider based on their

privacy concerns and the amount of payment to the service provider. They provide

analysis of equilibrium strategies for SPs. Lee et al. [56] study the influence of privacy

protection on the segmentation of a duopoly. In their model, firms may offer stan-

dard and personalized products with personalized prices to three different types of

privacy-sensitive consumers (the ‘unconcerned’ who always share information, ‘prag-

matic’ who only share if a firm adopts privacy protection, and the ‘fundamentalists’

who never share). They show that a privacy-friendly firm can enlarge market share

by attracting more ‘pragmatists’ to share personal information. From this expansion

it can earn more profits rather than compete with its rival for the other consumers.

In contrast to both above-mentioned models, our model differs in focusing on ‘free’

services, and thus, introduces new models for quantifying QoS- and privacy-based dif-

ferentiators; furthermore, our model generalizes the discrete set of privacy sensitive

consumers in [56] to a continuous set of privacy risks, thus allowing analysis over an

entire range of privacy expression and a more nuanced view of how SPs should offer

services to all types of consumers.

1.3.2 Contributions

We propose a novel model for the privacy differentiated market segmentation

problem in which service providers offer free services differentiated by QoS and privacy

risk. Our model captures a variety of free online services such as search engines, social

networking sites, and software apps that are free, and therefore, use consumer data

in a variety of ways for revenue generation. Each SP’s gain from using consumer

data is captured by a revenue function and its cost of doing so is captured by a

16



cost function. The goal of each SP is to choose a QoS and privacy risk tuple that

maximizes its profit (difference of revenue and cost). We assume that consumers can

map their heterogeneous privacy sensitivity to a quantitative scale. The SPs use this

quantitative scale to differentiate themselves. Each consumer chooses the SP that

maximizes a desired function of its privacy risk valuation and the QoS-privacy risk

tuple offered by the SP.

Our model is built upon the classical ‘spatial’ Hotelling model [51] wherein the

location is now proxy for privacy risk (that both SPs offer and consumers prefer). The

QoS offered by the SP models the product price in the Hotelling model. In contrast

to the classical Hotelling model in which there is a non-negative transportation cost

irrespective of the locations of consumer and retailer, here consumers will always

benefit from SPs that offer lower privacy risk than what they prefer. Thus, there is

an asymmetry in the transportation cost. We model the interactions between SPs

and consumers as a three-stage sequential game and compute the equilibrium QoS-

privacy risk tuple as well as consumers’ choices using backward induction. We use the

equilibrium strategies to compute the resulting market share and profit for specific

models of cost and revenue (to SPs), distribution of consumer heterogeneous privacy

choices, as well as consumer privacy valuation.

We show that there does not exist any equilibrium in which both SPs offer the

same privacy risk for the two-SP market with linear valuation function (cost, revenue,

consumer utility). Furthermore, when the privacy preference of consumers follows a

uniform distribution, we can obtain closed form solutions for the two-SP market with

linear valuation functions. For this settings, our results highlight the following: (i)

when consumers place a high value on privacy, it leads to a lower use of private data

by SPs, i.e., their advertised privacy risk reduces; (ii) SPs offering high privacy risk

services are sustainable only if they offer sufficiently high QoS; (iii) SPs that are ca-
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pable of differentiating on services that do not directly use consumer data gain larger

market share; and (iv) higher consumer privacy valuation “softens” the competition

between SPs. We also study the case in which consumer’s privacy preference follows

a truncated Gaussian distribution. Since it is very difficult to obtain a closed form

solution, we analyze the market numerically. Based on our numerical result, we ob-

serve similar behavior in the equilibrium strategies and market share compared to the

uniform case. In extending the work to more than two SPs, we illustrate the insta-

bility of such markets and highlight the challenges of studying market segmentation

for more than two participants (a problem acknowledged in economics [57]).

1.4 Generative Adversarial Privacy

The explosion of information collection across a variety of electronic platforms

is enabling the use of inferential machine learning (ML) and artificial intelligence to

guide consumers through a myriad of choices and decisions in their daily lives. In this

era of artificial intelligence, data is quickly becoming the most valuable resource [58].

Indeed, large scale datasets provide tremendous utility in helping researchers design

state-of-the-art machine learning algorithms that can learn from and make predictions

on real-life data. Scholars and researchers are increasingly demanding access to larger

datasets that allow them to learn more sophisticated models. Unfortunately, more

often than not, in addition to containing public information that can be shared or

published, large scale datasets also contain private information about participating

individuals (see Figure 1.1). Thus, data collection and curation organizations are

reluctant to release such datasets before carefully sanitizing them, especially in light

of recent public policies on data sharing [59, 36].

To protect the privacy of individuals, datasets are typically anonymized before

their release. This is done by stripping off personally identifiable information (e.g.,

first and last name, social security number, IDs, etc.) [60, 61, 62]. Anonymiza-
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Figure 1.1: An example privacy preserving mechanism for smart meter data

tion, however, does not provide immunity against correlation and linkage attacks [63,

64]. Indeed, several successful attempts to re-identify individuals from anonymized

datasets have been reported in the past ten years. For instance, [63] is able to success-

fully de-anonymize watch histories in the Netflix Prize, a public recommender system

competition. In a more recent attack, [65] showed that participants of an anonymized

DNA study were identified by linking their DNA data with the publicly available

Personal Genome Project dataset. Even more recently, [66] successfully designed re-

identification attacks on anonymized fMRI imaging datasets. Other annoymization

techniques, such as generalization [67, 68, 69] and suppression [70, 71, 72], also can-

not prevent an adversary from performing the sensitive linkages or recover private

information from published datasets [73].

Addressing the shortcomings of anonymization techniques requires data random-

ization. In recent years, two randomization-based approaches with provable statistical

privacy guarantees have emerged: (a) context-free approaches that assume worst-case

dataset statistics and adversaries; (b) context-aware approaches that explicitly model

the dataset statistics and adversary’s capabilities.

Context-free privacy. One of the most popular context-free notions of privacy

is differential privacy (DP) [74, 75, 76]. DP, quantified by a leakage parameter ε ∗ , re-

∗Smaller ε ∈ [0,∞) implies smaller leakage and stronger privacy guarantees.
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stricts distinguishability between any two “neighboring” datasets from the published

data. DP provides strong, context-free theoretical guarantees against worst-case ad-

versaries. However, training machine learning models on randomized data with DP

guarantees often leads to a significantly reduced utility and comes with a tremendous

hit in sample complexity [77, 78, 79, 80, 81, 82] in the desired leakage regimes. For ex-

ample, learning population level histograms under local DP suffers from a stupendous

increase in sample complexity by a factor proportional to the size of the dictionary

[83, 84, 81].

Context-aware privacy. Context-aware privacy notions have been so far stud-

ied by information theorists under the rubric of information theoretic (IT) privacy

[85, 86, 87, 88, 89, 90, 91]. IT privacy has predominantly been quantified by mutual

information (MI) which models how well an adversary, with access to the released

data, can refine its belief about the private features of the data. Recently, Issa et

al. [92] introduced maximal leakage (MaxL) to quantify leakage to a strong adver-

sary capable of guessing any function of the dataset. They also showed that their

adversarial model can be generalized to encompass local DP (wherein the mechanism

ensures limited distinction for any pair of entries—a stronger DP notion without a

neighborhood constraint [93, 94]) [95]. When one restricts the adversary to guessing

specific private features (and not all functions of these features), the resulting adver-

sary is a maximum a posteriori (MAP) adversary that has been studied by Asoodeh

et al. in [96, 97].

Compared to context-free privacy notions, context-aware privacy notions achieve

a better privacy-utility tradeoff by incorporating the statistics of the dataset and

placing reasonable restrictions on the capabilities of the adversary. However, using

information-theoretic quantities (such as MI) as privacy metrics requires learning

the parameters of the privatization mechanism in a data-driven fashion that involves
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minimizing an empirical information-theoretic loss function. This task is remarkably

challenging in practice [98].

Generative adversarial privacy. Given the challenges of existing privacy ap-

proaches, we take a fundamentally new approach towards enabling private data pub-

lishing with guarantees on both privacy and utility. Instead of adopting worst-case,

context-free notions of data privacy (such as differential privacy), we introduce a novel

context-aware model of privacy that allows the designer to cleverly add noise where it

matters. An inherent challenge in taking a context-aware privacy approach is that it

requires having access to priors, such as joint distributions of public and private vari-

ables. Such information is hardly ever present in practice. To overcome this issue, we

take a data-driven approach to context-aware privacy. We leverage recent advance-

ments in generative adversarial networks (GANs) to introduce a unified framework

for context-aware privacy called generative adversarial privacy (GAP). Under GAP,

the parameters of a generative model, representing the privatization mechanism, are

learned from the data itself.

1.4.1 Contributions

We investigate a setting where a data holder would like to publish a dataset

D in a privacy preserving fashion. Each row in D contains both private variables

(represented by Y ) and public variables (represented by X). The goal of the data

holder is to generate X̂ in a way such that: (a) X̂ is as good of a representation

of X as possible, and (b) an adversary cannot use X̂ to reliably infer Y . To this

end, we present GAP, a unified framework for context-aware privacy that includes

existing information-theoretic privacy notions. Our formulation is inspired by GANs

[99, 100, 101] and error probability games [102, 103, 104, 105, 106]. It includes two

learning blocks: a privatizer, whose task is to output a sanitized version of the public

variables (subject to some distortion constraints); and an adversary, whose task is
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Figure 1.2: Generative adversarial privacy

to learn the private variables from the sanitized data. The privatizer and adversary

achieve their goals by competing in a constrained minimax, zero-sum game. On the

one hand, the privatizer (a conditional generative model) is designed to minimize the

adversary’s performance in inferring Y reliably. On the other hand, the adversary (a

classifier) seeks to find the best inference strategy that maximizes its performance.

This generative adversarial framework is represented in Figure 1.2.

We list our main contributions below.

1. We introduce GAP as a minimax game-theoretic formulation (see Figure 1.2) to

design privacy mechanisms matched to an adversarial model.

2. We show that our framework captures a rich class of statistical adversaries. This

allows us to compare data-driven approaches directly against strong inferential ad-

versaries (e.g., a maximum a posteriori (MAP) probability maximizing adversary

with access to dataset statistics).

3. We make precise connections between data-driven privacy methods and the min-

imax game-theoretic GAP formulation; this implies that when: (i) the neural

networks used in the data-driven approach have sufficient capacity, (ii) the learn-

ing rate is sufficiently small, and (iii) the training data is sufficiently large, the

learned privacy scheme converges to the game-theoretically optimal one.

4. To showcase the power of our data-driven framework, we investigate several sim-

ple, albeit canonical, datasets: binary data model in which X and Y are both
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random variables, and Gaussian Mixture Model (GMM) where Y is binary and X

is a conditionally multi-dimensional Gaussian vector. We derive and compare the

performance of game-theoretically optimal privatization mechanisms with those

that are directly learned in a data-driven fashion to show that the gap between

theory and practice is negligible.

5. Finally, we demonstrate the performance of GAP on meaningful, widely used

datasets. We first use the GENKI dataset [107], for which we identify the public

(images of faces) and private (gender) features. Next we test our GAP framework

on the MNIST dataset [108] for which we consider the images of hand-written

digits and a binary variable which identifies whether there is a circular structure

in the digit (e.g., digits 0, 6, 8, 9 contain circular structure) as public and private

features, respectively. Our results show that GAP can significantly reduce an ad-

versary’s capability of inferring private features with limited amount of distortion

on the public features. Furthermore, we show that GAP allows data receivers to

learn other non-private features from the privatized data.

1.4.2 Related Work

In practice, a context-free notion of privacy (such as DP) is desirable because it

places no restrictions on the dataset statistics or adversary’s strength. This explains

why DP has been remarkably successful in the past ten years, and has been deployed

in array of systems, including Google’s Chrome browser [37] and Apple’s iOS [109].

Nevertheless, because of its strong context-free nature, DP has suffered from a se-

quence of impossibility results. These results have made the deployment of DP with a

reasonable leakage parameter practically impossible. Indeed, it was recently reported

that Apple’s DP implementation suffers from several limitations—most notable of

which is Apple’s use of unacceptably large leakage parameters [110].

23



Context-aware privacy notions can exploit the structure and statistics of the

dataset to design mechanisms matched to both the data and adversarial models.

In this context, information-theoretic metrics for privacy are naturally well suited.

In fact, the adversarial model determines the appropriate information metric: an

estimating adversary that minimizes mean square error is captured by χ2-squared

measures [111], a belief refining adversary is captured by MI [87], an adversary that

can make a hard MAP decision for a specific set of private features is captured by

the Arimoto MI of order ∞ [96, 97], and an adversary that can guess any function of

the private features is captured by the maximal (over all distributions of the dataset

for a fixed support) Sibson information of order ∞ [92, 95].

Information-theoretic metrics, and in particular MI privacy, allow the use of Fano’s

inequality and its variants [112] to bound the rate of learning the private variables for a

variety of learning metrics, such as error probability and minimum mean-squared error

(MMSE). Despite the strength of MI in providing statistical utility as well as capturing

a fairly strong adversary that involves refining beliefs, in the absence of priors on the

dataset, using MI as an empirical loss function leads to computationally intractable

procedures when learning the optimal parameters of the privatization mechanism from

data. Indeed, training algorithms with empirical information-theoretic loss functions

is a challenging problem that has been explored in specific learning contexts, such

as determining randomized encoders for the information bottleneck problem [98] and

designing deep auto-encoders using a rate-distortion paradigm [113, 114]. Even in

these specific contexts, variational approaches were taken to minimize/maximize a

surrogate function instead of minimizing/maximizing an empirical mutual informa-

tion loss function directly [115]. In an effort to bridge theory and practice, we present

a general data-driven framework to design privacy mechanisms that can capture a

range of information-theoretic privacy metrics as loss functions. We will show how
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our framework leads to very practical (generative adversarial) data-driven formula-

tions that match their corresponding theoretical formulations.

In the context of publishing datasets with privacy and utility guarantees, a number

of similar approaches have been recently considered. We briefly review them and

clarify how our work is different. In [116], the authors consider linear privatizer

and adversary models by adding noise in directions that are orthogonal to the public

features in the hope that the “spaces” of the public and private features are orthogonal

(or nearly orthogonal). This allows the privatizer to achieve full privacy without

sacrificing utility. However, this work is restrictive in the sense that it requires the

public and private features to be nearly orthogonal. Furthermore, this work provides

no rigorous quantification of privacy and only investigates a limited class of linear

adversaries and privatizers.

DP-based obfuscators for data publishing have been considered in [117, 118]. The

author in [117] considers a deterministic, compressive mapping of the input data with

differentially private noise added either before or after the mapping. The mapping rule

is determined by a data-driven methodology to design minimax filters that allow non-

malicious entities to learn some public features from the filtered data, while preventing

malicious entities from learning other private features. The approach in [118] relies on

using deep auto-encoders to determine the relevant feature space to add differentially

private noise to, eliminating the need to add noise to the original data. After noise

adding, the original signal is reconstructed. These novel approaches leverage minimax

filters and deep auto-encoders to incorporate a notion of context-aware privacy and

achieve better privacy-utility tradeoffs while using DP to enforce privacy. However,

DP will still incur an insurmountable utility cost since it assumes worst-case dataset

statistics. Our approach captures a broader class of randomization-based mechanisms
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via a generative model which allows the privatizer to tailor the noise to the statistics

of the dataset.

Our work is also closely related to adversarial neural cryptography [119], learning

censored representations [120], and privacy preserving image sharing [121], in which

adversarial learning is used to learn how to protect communications by encryption

or hide/remove sensitive information. Similar to these problems, our model includes

a minimax formulation and uses adversarial neural networks to learn privatization

schemes. However, in [120, 121], the authors use non-generative auto-encoders to

remove sensitive information, which do not have an obvious generative interpretation.

Instead, we use a GANs-like approach to learn privatization schemes that prevent

an adversary from inferring the private data. Moreover, these papers consider a

Lagrangian formulation for the utility-privacy tradeoff that the obfuscator computes.

We go beyond these works by studying a game-theoretic setting with constrained

optimization, which provides a specific privacy guarantee for a fixed distortion. We

also compare the performance of the privatization schemes learned in an adversarial

fashion with the game-theoretically optimal ones for some canonical data models.

We use conditional generative models to represent privatization schemes. Gener-

ative models have recently received a lot of attention in the machine learning com-

munity [122, 123, 100, 101, 99]. Ultimately, deep generative models hold the promise

of discovering and efficiently internalizing the statistics of the target signal to be

generated. State-of-the-art generative models are trained in an adversarial fashion

[101, 99]: the generated signal is fed into a discriminator which attempts to distin-

guish whether the data is real (i.e., sampled from the true underlying distribution) or

synthetic (i.e., generated from a low dimensional noise sequence). Training generative

models in an adversarial fashion has proven to be successful in computer vision and

enabled several exciting applications [124, 125, 126]. Analogous to how the generator
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is trained in GANs, we train the privatizer in an adversarial fashion by making it

compete with an attacker.

1.5 Outline of Dissertation

In the first part, this dissertation investigates the decision making problem in

three scenarios: (i) designing incentive schemes for privacy sensitive users, in which

a retailer seeks to offer incentives (coupons) to maximize its profit while minimally

“creep out” consumers; (ii) game theoretic incentive schemes for encouraging privacy

sensitive households to share energy consumption data with the grid; (iii) market

segmentation for privacy differentiated free services. In the second part, this dis-

sertation studies a unified framework for various information-theoretic privacy and

privacy mechanisms that can be learned directly from data. A brief introduction with

literature review is presented in Chapter 1. The rest of this dissertation is organized

as follows.

In Chapter 2, we study how to design incentive schemes for consumers who are

privacy sensitive. A detailed description of dynamic modeling of interactions be-

tween the retailer and privacy aware consumers is provided. A two-state, two-action

POMDP model is used to capture the cost minimization problem of offering coupons

to consumers with privacy concerns. Furthermore, extensions of this formulation in-

cluding multi-level state and action dependent transition model are described. Models

for studying coupon offering policies under noisy costs and unknown consumer state

are also described in this chapter. The optimal coupon offering policy is derived to

minimize the discounted cost associated to consumers’ response to privacy sensitive

coupon. Model analysis is then conducted and some interesting properties of the op-

timal coupon offering policy mode is identified. After that, extensions to multi-level

consumer state and coupon dependent transition are studied. Based on the two-state,

two-action model, a heuristic method is proposed to make decisions when the received
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cost is noisy. Also, a Bayesian data analysis framework is proposed to estimate the

consumer behavior when the initial state of the consumer is unknown to the retailer.

In Chapter 3, we propose a novel approach to study the tradeoff between privacy

and energy cost minimization under the assumption that the utility company offers

incentives to households to encourage data sharing through energy consumption. A

non-cooperative game is formulated to model interactions between households and

the utility company. Under certain assumptions on the utility functions and strategy

sets, we prove that the mixed strategy Nash equilibrium exists and provide a closed

form solution of the mixed strategy Nash equilibrium. For a specific choice of utility

functions, we illustrate the influence of the proposed mechanism on the net profit,

supply-demand imbalance of the electricity provider, and consumer benefits.

In Chapter 4, we seek to understand the effect of offering privacy- and QoS- dif-

ferentiated online services on consumers with heterogeneous expressions of privacy

sensitivity. We have quantified the influence of privacy differentiated services as the

fraction of consumers that prefer each type of QoS and privacy risk tuple. We have

presented an analysis built upon the classical Hotelling model to compute these frac-

tions for both the two- and multi- SP problems. Similar to the classical segmentation

models, our problem also involves parameters that capture cost, revenue, and con-

sumer valuation functions. We study the market segmentation for relatively simple

yet meaningful functions such as linear cost models and uniform (as well as truncated

Gaussian) distribution. Furthermore, we extend our analysis to multi-SP case and

discovered instability of market segmentation in a market for more than two SPs.

In Chapter 5, we formally present our GAP model. We also show how, as a

special case, it can recover several information-theoretic notions of privacy. We then

study several simple (but canonical) dataset models (e.g., binary data model and

Gaussian mixture data model). In particular, we present theoretically optimal privacy
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mechanisms, and demonstrate how privacy mechanisms can be learned from data

using a generative adversarial network. For both models, we show that the privacy

mechanisms learned from data match the theoretically optimal ones. Finally, we

showcase the performance of GAP on the GENKI and MNIST dataset.
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Chapter 2

HOW TO INCENTIVIZE AND INTERACT WITH PRIVACY SENSITIVE

CONSUMER?

2.1 Problem Formulation for Consumer Retailer Interactions

We model interactions between a retailer and a consumer via a discrete-time

system (Figure 2.1). At each time t, the consumer has a discrete-valued state and the

retailer may offer one of two coupons: high privacy risk (HP) or low privacy risk (LP).

We assume a sophisticated consumer who can distinguish whether a coupon is HP or

LP and responds to the personalized coupon by imposing a cost on the retailer that

depends on the coupon offered and its own state. For example, a consumer who is

“alerted” (privacy-aware) may respond to an HP coupon by imposing a high cost to

the retailer, such as reducing purchases at the retailer. The retailer’s goal is to decide

which type of coupon to offer at each time t to minimize its cost.

2.1.1 Consumer with Two States and Coupon Independent Transition.

Consumer Model

Modelling Assumption 1. (Consumer’s state) We model the consumer’s re-

sponse to coupons by assuming them to be in one of several states. Each state corre-

sponds to a type of consumer behavior in terms of purchasing (privacy sensitivity).

For this paper, we first focus on the two-state case; the consumer may be Normal

or Alerted. Later we will extend this model to multiple consumer states, consumer

with coupon dependent response, and unknown initial consumer state cases. The

consumer state at time t is denoted by Gt ∈ {Normal,Alerted}. If a consumer is in

Normal state, the consumer is less sensitive to coupons from the retailer in terms of

privacy. However, in the Alerted state, the consumer is likely to be more sensitive to

coupons offered by the retailer, since it is more cautious about revealing information
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to the retailer. The evolution of the consumer state is modeled as a infinite-horizon

discrete time Markov chain (Figure 2.1). The consumer starts out in a random initial

state unknown to the retailer and the transition of the consumer state is independent

of the action of the retailer. A belief state is a probability distribution over possible

states in which the consumer could be. The belief of the consumer being in Alerted

state at time t is denoted by pt. We define λN,A = Pr[Gt = Alerted|Gt−1 = Normal] to

be the transition probability from Normal state to Alerted state and λA,A = Pr[Gt =

Alerted|Gt−1 = Alerted] to be the probability of staying in Alerted state when the

previous state is also Alerted. The transition matrix Λ of the Markov chain can be

written as

Λ =

1− λN,A λN,A

1− λA,A λA,A

 . (2.1)

We assume the transition probabilities are known to the retailer; this may come from

statistical analysis such as a survey of consumer attitudes. The one step transition

function, defined by

T (pt) = (1− pt)λN,A + ptλA,A, (2.2)

which represents the belief that the consumer is in Alerted state at time t + 1 given

pt, the Alerted state belief at time t.

Modelling Assumption 2. (State transitions) Consumers have an inertia in

that they tend to stay in the same state. Moreover, once consumers feel their privacy

is violated, it will take some time for them to come back to Normal state.

The above assumption implies λA,A ≥ 1 − λA,A, 1 − λN,A ≥ λN,A, and λN,A ≥

1− λA,A. Thus, by combining the above three inequalities, we have λA,A ≥ λN,A.
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Figure 2.1: Costs to the retailer for offering LP/HP coupons in each privacy sensitive
state of the consumer between which the state transitions under a Markov model

Retailer Model

At each time t, the retailer can take an action by offering a coupon to the consumer.

We define the action at time t to be ut ∈ {HP, LP}, where HP denotes offering a high

privacy risk coupon (e.g. a targeted coupon) and LP denotes offering a low privacy risk

coupon (e.g. a generic coupon). The retailer’s utility is modeled by a cost (negative

revenue) which depends on the consumer’s state and the type of coupon being offered.

If the retailer offers an LP coupon, it suffers a cost CL independent of the consumer’s

state: offering LP coupons does not reveal anything about the state. However, if the

retailer offers an HP coupon, then the cost is CHN or CHA depending on whether the

consumer’s state is Normal or Alerted. Offering an HP (high privacy risk, targeted)

coupon to a Normal consumer should incur a low cost (high reward), but offering an

HP coupon to an Alerted consumer should incur a high cost (low reward) since an

Alerted consumer is privacy-sensitive. Thus, we assume CHN ≤ CL ≤ CHA.

Under these conditions, the retailer’s objective is to choose ut at each time t to

minimize the total cost incurred over the entire time horizon. The HP coupon reveals

information about the state through the cost, but is risky if the consumer is alerted,

creating a tension between cost minimization and acquiring state information.
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Minimum Cost Function

We define C(pt, ut) to be the expected cost acquired from an individual consumer at

time t where pt is the probability that the consumer is in Alerted state and ut is the

retailer’s action:

C(pt, ut) =

 CL if ut = LP

(1− pt)CHN + ptCHA if ut = HP
. (2.3)

Since the retailer knows the consumer state from the incurred cost only when an HP

coupon is offered, the state of the consumer may not be directly observable to the

retailer. Therefore, the problem is actually a Partially Observable Markov Decision

Process (POMDP) [127].

We model the cost of violating a consumer’s privacy as a short term effect. Thus,

we adopt a discounted cost model with discount factor β ∈ (0, 1). We define P =

{[0, 1]} and U = {LP,HP} to be the belief space and the action space, respectively.

At each time t, the retailer has to choose which action ut to take in order to minimize

the expected discounted cost over infinite horizon. A policy π for the retailer is a rule

that selects a coupon to offer at each time, i.e. π : P → U . Thus, given that the

belief of the consumer being in Alerted state at time t is pt and the policy is π, the

infinite-horizon discounted cost starting from t is

V π,t
β (pt) = Eπ

[
∞∑
i=t

βiC(pi, ui)|pt
]
, (2.4)

where Eπ indicates the expectation over the policy π. The objective of the retailer

is equivalent to minimizing the discounted cost over all possible policies. Thus, we

define the minimum cost function starting from time t over all policies to be

V t
β (pt) = min

π
V π,t
β (pt) for all pt ∈ [0, 1]. (2.5)
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We define V t
β,ut

(pt) to be the infinite-horizon discounted cost starting from t with

initial action ut and pt+1 to be the belief of the consumer being in Alerted state at

time t+ 1. The minimum cost function V t
β (pt) satisfies the Bellman equation [127]:

V t
β (pt) = min

ut∈{HP,LP}
{V t

β,ut(pt)}, (2.6)

V t
β,ut(pt) = βtC(pt, ut) + V t+1

β (pt+1|pt, ut). (2.7)

An optimal policy is stationary if it is a deterministic function of states, i.e., the

optimal action at a particular state is the optimal action in this state at all times. In

the context of our model, the optimal stationary policy is a deterministic and time

invariant function mapping P into U . Since the problem is an infinite-horizon, finite

state and finite action POMDP with discounted cost, finding an optimal strategy to

this problem is equivalent to solving an associated MDP problem in belief space [128],

which is an infinite-horizon discounted MDP with finite action space and uncountably

infinite state space. By Theorem 6.3 and its generalization in [129], there exists an

optimal stationary policy π∗ in the belief space such that starting from time t,

V t
β (pt) = V π∗,t

β (pt). (2.8)

Thus, only the optimal stationary policy is considered because it is tractable and

achieves the same minimum cost as any optimal non-stationary policy.

By (2.6) and (2.7), the minimum cost function evolves as follows. If an HP coupon

is offered at time t, the retailer can perfectly infer the consumer state based on the

incurred cost. Therefore,

V t
β,HP(pt) = βtC(pt,HP) + (1− pt)V t+1

β (λN,A) + ptV
t+1
β (λA,A). (2.9)

If an LP coupon is offered at time t, the retailer cannot infer the consumer state from

the cost since both Normal and Alerted consumer impose the same cost CL. Hence,
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the discounted cost function can be written as

V t
β,LP(pt) = βtC(pt, LP) + V t+1

β (pt+1)

= βtCL + V t+1
β (T (pt)). (2.10)

Correspondingly, the minimum cost function is given by

V t
β (pt) = min{V t

β,LP(pt), V
t
β,HP(pt)}. (2.11)

In the sequel, we also consider the following value functions in addition to those

defined above. For notational clarity, we define them all here.

• V t∼k
β (p): the minimum cost when the decision horizon starts from t and only

spans k stages with initial belief p at time t.

• V t∼k
β,ut

(p): the minimum cost when the decision horizon starts from t and only

spans k stages with initial belief p and initial action ut.

• Vβ(p): the minimum cost function starting from t = 0.

We now describe some simple extensions of this basic model.

2.1.2 Consumer with Multi-Level Alerted States

In this section, the case that the consumer has multiple Alerted states is studied.

Without loss of generality, we define Gt ∈ {Normal,Alerted1, . . .AlertedK} to be the

consumer state at time t. If the consumer is in Alertedk state, it is even more cautious

about coupons than in Alertedk−1 state. Beliefs of the consumer being in Normal,

Alerted1, . . . ,AlertedK state at time t are defined by p̄t = (pN,t, pA1,t, . . . , pAK ,t)
T .

At each time t, the retailer can offer either an HP or an LP coupon. Costs of the

retailer when an HP coupon is offered while the state of the consumer is Normal,

Alerted1, . . . ,AlertedK are defined by C̄ = (CHN , CHA1 , . . . , CHAK )T . If an LP coupon
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is offered, no matter in which state, the retailer gets a cost of CL. We assume that

CHAK ≥ · · · ≥ CHA1 ≥ CL ≥ CHN . The minimum cost function evolves as follows:

V t
β (p̄t) = min{V t

β,LP(p̄t), V
t
β,HP(p̄t)}, (2.12)

where V t
β,LP(p̄t) = βtCL + V t+1

β (p̄t+1) and V t
β,HP(p̄t) = βtp̄Tt C̄ + V t+1

β (p̄t+1) repre-

sents the cost of offering an LP and an HP coupon, respectively. This model can be

generalized to consumer with finitely many states.

2.1.3 Consumer with Coupon Dependent Transition

In the previous formulations, we assume that the consumer’s state transition is

independent of the retailer’s action. A natural extension is the case where the action

of the retailer can affect the dynamics of the consumer state evolution (Figure 2.2).

Generally, a consumer’s reactions to HP and LP coupons are different. For example, a

consumer is likely to feel less comfortable when being offered a coupon on medication

(HP) than food (LP). Thus, in Section 2.2.2, we assume that the Markov transition

probabilities are dependent on the coupon offered with transition matrix given by

ΛLP(ΛHP), where ΛLP and ΛHP are defined as:

ΛLP =

1− λN,A λN,A

1− λA,A λA,A

 ,ΛHP =

1− λ′N,A λ′N,A

1− λ′A,A λ′A,A

 . (2.13)

Thus, the minimum cost function is given by (2.11), where V t
β,LP(pt) = βtC(pt, LP) +

V t+1
β (T (pt)) and V t

β,HP(pt) = βtC(pt,HP) + (1− pt)V t+1
β (λ′N,A) + ptV

t+1
β (λ′A,A) denotes

the cost function of using an LP coupon and an HP coupon, respectively. T (pt) is the

one step transition given by T (pt) = λN,A(1− pt) + λA,Apt.

2.1.4 Policies under Noisy Cost Feedback and Uncertain Initial Belief

Consider a setting in which the feedback regarding the cost may be noisy, e.g.,

the cost incurred by the consumer’s response to the coupon is not deterministic. For

each individual consumer, the state transition is independent of the action of the
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Figure 2.2: Coupon type (HP or LP) dependent Markov state transition model for
the consumer.

retailer. For given state Gt and action ut, define the distribution of observing a cost

Ct = c to be f(c|Gt, ut). In this case, the threshold policy computed using costs

might not be optimal. Moreover, if the initial belief is unknown to the retailer, it

has to estimate the consumer state before making decision. Thus, we propose some

alternative approaches to decide which coupon to offer when those costs are random.

A heuristic approach to deal with the randomized cost is to use the threshold τ

computed by the mean value of costs. Furthermore, the estimation of consumer

belief state pt or the actual state Gt is updated by the maximum a posteriori rule

[130]. After the estimation process, the retailer decides which coupon to offer based

on the threshold policy given in Section 2.2.1.

2.1.5 Summary of Main Results

For the problems described in Subsection 2.1.1, 2.1.2, and 2.1.3, given all system

parameters, we show the following:

• there exists an optimal stationary solution which has a single threshold property;

• the threshold only depends on the system parameters, i.e., transition probabil-

ities and instantaneous cost associated with each type of coupon.

37



This means by adopting the optimal policy, the retailer will offer an HP coupon if pt

is less than some threshold and offer an LP if pt is above the threshold.

For the model described in Subsection 2.1.3, we assume that cost feedbacks are

noisy and consumer belief state is unknown to the retailer. For this model:

• we design a heuristic threshold policy when the received costs are noisy.

• a Bayesian estimation approach is proposed to estimate the actual state or the

belief state of the consumer when the initial state is unknown to the retailer.

2.2 Optimal Policy for Retailers

For each consumer-retailer interaction model provided in section 3.1, we compute

the optimal coupon offering policy for the retailer. We first consider the case in which

the retailer knows the consumer statistics. Later, we study consumers with noisy cost

feedback.

2.2.1 Optimal Policies with Known Consumer Statistics

In this subsection, we consider the basic formulation as well as the first three

extensions. First, we assume that there are only one retailer and one consumer in the

system and the state transition of the consumer is independent of the coupon offered.

The evolution of the minimum cost function is given in (2.9), (2.10), and (2.11).

Properties of Minimum Cost Function

Lemma 1. Notice that V t∼k
β (p) is the minimum cost when the decision horizon starts

from t and only spans k stages with initial belief p at time t, given a time invariant

action set ui ∈ U = {LP,HP}, for any i = 0, 1, . . . , V t∼k
β (p) = βV t−1∼k

β (p).
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Proof. By (2.5) and ui ∈ {LP,HP} for any i = 0, 1, . . ..

V t∼k
β (p) = min

π
Eπ

[
t+k−1∑
i=t

βiC(pi, ui)|pt = p

]

= βmin
π

Eπ

[
t+k−2∑
i=t−1

βiC(pi, ui)|pt−1 = p

]

= βV t−1∼k
β (p).

(2.14)

By using induction on t, we can easily prove V t∼k
β (p) = βV t−1∼k

β (p) = · · · = βtV 0∼k
β (p).

Lemma 2. The minimum cost function V t
β (p) is a concave and non-decreasing func-

tion of p.

Proof. We prove these properties by induction. Remember that V t∼k
β,ut

(p) is the mini-

mum cost when the decision horizon starts from t and only spans k stages with initial

belief p and initial action ut. For k = 1,

V t∼k
β (p) = min{CL, (1− p)CHN + pCHA}, (2.15)

which is a concave function of p. For k = n − 1, assume that V t∼k
β (p) is a con-

cave function. Then, for k = n, since V t∼n−1
β (p) is concave and V t∼k

β,LP(p) = βtCL +

V t+1∼n−1
β (T (p)), by the definition of concavity and Lemma 1, we can conclude that

V t∼k
β,LP(p) is concave. Furthermore, V t∼k

β,HP(p) is an affine function of p, so V t∼k
β (p) =

min{V t∼k
β,LP(p), V t∼k

β,HP(p)} is a concave function of p. Taking k →∞, V t∼k
β (p)→ V t

β (p),

which implies V t
β (p) is a concave function.

Next, we prove the non-decreasing property of the minimum cost function. For

k = 1, as shown in equation (2.15), it is a non-decreasing function of p. Assume that

V t∼k
β (p) is a non-decreasing function for k = n− 1. For k = n, Let p1 ≥ p2,

V t∼k
β,LP(p1)− V t∼k

β,LP(p2) (2.16)
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= β(V t∼n−1
β (T (p1))− V t∼n−1

β (T (p2)))

= β(V t∼n−1
β ((λA,A − λN,A)p1 + λN,A)

− V t∼n−1
β ((λA,A − λN,A)p2 + λN,A)))

≥ 0.

By using the same technique, we can prove that given p2 − p1 ≤ 0, CHN − CHA ≤

0 and V t∼k−1
β (λN,A)− V t∼k−1

β (λA,A) ≤ 0,

V t∼k
β,HP(p1)− V t∼k

β,HP(p2) ≥ 0. (2.17)

Since V t∼k
β (pt) = min{V t∼k

β,LP(p), V t∼k
β,HP(p)}, it is the minimum of two non-decreasing

functions. Therefore, V t∼k
β (p) is non-decreasing. By taking k →∞, V t∼k

β (p)→ V t
β (p).

Thus, V t
β (p) is a non-decreasing function.

Lemma 3. Let ΦHP to be the set of values of pt for which offering an HP coupon is

the optimal action at time t. Then, ΦHP is a convex set.

Proof. Since ΦHP = {p ∈ [0, 1], V t
β (p) = V t

β,HP(p)}, assume that pt = apt,1 + (1− a)pt,2

in which pt,1, pt,2 ∈ ΦHP and a ∈ [0, 1], V t
β (pt) can be written as:

V t
β (pt) = V t

β (apt,1 + (1− a)pt,2) (2.18)

≥ aV t
β (pt,1) + (1− a)V t

β (pt,2)

= aV t
β,HP(pt,1) + (1− a)V t

β,HP(pt,2)

= a[(1− pt,1)[βtCHN + βV t
β (λN,A)] + pt,1[βtCHA + βV t

β (λA,A)]]

+ (1− a)[(1− pt,2)[βtCHN + βV t
β (λN,A)] + pt,2[βtCHA + βV t

β (λA,A)]]

= V t
β,HP(apt,1 + (1− a)pt,2).

Thus, we have shown that:

V t
β (pt) ≥ V t

β,HP(apt,1 + (1− a)pt,1) = V t
β,HP(pt). (2.19)
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By the definition of V t
β (pt) in (2.11), V t

β (pt) ≤ V t
β,HP(pt). Therefore, V t

β,HP(pt) = V t
β (pt),

which implies ΦHP is convex.

Optimal Stationary Policy Structure

Theorem 1. There exists a threshold τ ∈ [0, 1] such that

π∗(pt) =


LP if τ ≤ pt ≤ 1

HP if 0 ≤ pt ≤ τ

. (2.20)

is optimal. More precisely, let δ , CHA − CHN + β(Vβ(λA,A)− Vβ(λN,A)),

τ =


CL−(1−β)(CHN+βVβ(λN,A))

(1−β)δ
T (τ) ≥ τ

CL+βλN,A(CHA+βVβ(λA,A))

(1−(λA,A−λN,A)β)δ
− (1−β(1−λN,A))(CHN+βVβ(λN,A))

(1−(λA,A−λN,A)β)δ
T (τ) < τ

, (2.21)

where for λN,A ≥ τ ,

Vβ(λN,A) = Vβ(λA,A) = CL/(1− β) (2.22)

and for λN,A < τ ,

Vβ(λN,A) = (1− λN,A)[CHN + V 1
β (λN,A)] + λN,A[CHA + V 1

β (λA,A)], (2.23)

Vβ(λA,A) = min
n≥0
{G(n)}, (2.24)

where

G(n) =
CL

1−βn
1−β + βn[T̄ n(λA,A)(CHN + C(λN,A)) + T n(λA,A)CHA]

1− βn+1[T̄ n(λA,A)
λN,Aβ

1−(1−λN,A)β
+ T n(λA,A)]

(2.25)

T n(λA,A) =
(λA,A − λN,A)n+1(1− λA,A) + λN,A

1− (λA,A − λN,A)
(2.26)

T̄ n(λA,A) = 1− T n(λA,A) (2.27)

C(λN,A) = β
(1− λN,A)CHN + λN,ACHA

1− (1− λN,A)β
. (2.28)
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The proof of Theorem 1 is provided in the Appendix A. An immediate consequence

of this result is an upper bound on pt for offering an HP coupon. We define κ to be

the ratio between the gain from offering an HP coupon to a Normal consumer and the

loss from offering an HP coupon to a consumer whom the retailer thinks is Normal

but is actually Alerted. Thus,

κ =
CL − CHN
CHA − CHN

. (2.29)

For fixed costs, the threshold can be bounded by the following two Corollaries.

Corollary 1. If pt ≤ κ, then it is optimal for the retailer to offer an HP coupon.

Corollary 2. Fix coupon offering costs and λA,A, let λ1 = CL−CHN
CHA−CHN

and λ2 be the

solution of λ2

1−(λA,A−λ2)
= β(CL−CHA)λ2+CL−CHN

(1−β)CHA−CHN+βCL
. When λN,A ≥ λ2, the threshold τ in

the optimal stationary policy can be written as a closed form expression with respect

to (w.r.t) λN,A: if λN,A > λ1,

τ = κ; (2.30)

if λ2 < λN,A < λ1,

τ =
β(CL − CHA)λN,A + CL − CHN

(1− β)CHA − CHN + βCL
. (2.31)

Moreover, if λN,A < λ2, τ can be upperbounded by

τ̄ =
λ2

1− (λA,A − λ2)
. (2.32)

A detailed proof of Corollary 1 and 2 are presented in the Appendix B and Ap-

pendix C, respectively.

To illustrate the performance of the proposed threshold policy, we compare the

discounted cost resulted from the threshold policy with the greedy policy which min-

imizes the instantaneous cost at each decision epoch as well as a lazy policy which
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Figure 2.3: Discounted cost resulted by using different decision policies
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Figure 2.4: Threshold τ vs. λN,A (Parameters: β = 0.9, CL = 3, CHN = 1, CHA =
12, κ = 0.18).

a retailer only offers LP coupons. We plot the discounted cost averaged over 1000

independent MDPs w.r.t. time t for different decision policies in Figure 2.3. The il-

lustration demonstrates that the proposed threshold policy performs better than the

greedy policy and the lazy policy.

Figure 2.4 shows the optimal threshold policy w.r.t λN,A for three fixed choices

of λA,A. It can be seen that the threshold is increasing when λN,A is small, this is
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because for a small λN,A, the consumers is less likely to transition from Normal to

Alerted. Therefore, the retailer tends to offer an HP coupon to the consumer. When

λN,A gets larger, the consumer is more likely to transition from Normal to Alerted.

Thus, the retailer tends to play conservatively by decreasing the threshold for offering

an LP coupon. When λN,A is greater than κ, the retailer will just use κ to be the

threshold for offering an HP coupon. One can also observe that with increasing λA,A,

the threshold τ decreases. On the other hand, for fixed CHN and CHA, Figure 2.5

shows that the threshold τ increases as the cost of offering an LP coupon increases,

making it more desirable to take a risk and offer an HP coupon.

The relationship between the discount factor β and the threshold τ as functions of

transition probabilities is shown in Figure 2.6 and 2.7. It can be seen in Figure 2.6 that

the threshold increases as β increases. This is because when β is small, the retailer

values the present rewards more than future rewards. Therefore, the retailer tends

to play conservatively so that it will not “creep out” the consumer in the present.

Figure 2.7 shows that the threshold is high when λA,A is large or λN,A is small. A
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high λA,A value indicates that a consumer is more likely to remain in Alerted state.

The retailer is willing to play aggressively since once the consumer is in alerted state,

it can take a very long time to transition back to Normal state. A low λN,A value

implies that the consumer is not very privacy sensitive. Thus, the retailer tends to

offer HP coupons to reduce cost. One can also observe in Figure 2.7 that the threshold
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τ equals to κ after λN,A exceeds the ratio κ. This is consistent with results shown in

Figure 2.4 and 2.5.

The effect of an LP coupon cost on the threshold for different discount factors is

plotted in Figure 2.8. It can be seen that a higher CL will increase the threshold

because the retailer is more likely to offer an HP coupon when the cost of offering an

LP coupon is high.

Consumer with Multi-Level Alerted States

In this section, we study the case that the consumer has multiple Alerted states.

Without loss of generality, we define the transition matrix to be

Λ =



λN,N λN,A1 . . . λN,AK

λA1,N λA1,A1 . . . λA1,AK

...
...

. . .
...

λAK ,N λAK ,A1 . . . λAK ,AK


(2.33)
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and ēi to be the ith row of Λ. The expected cost at time t, given belief p̄t and action

ut, has the following expression:

C(p̄t, ut) =

 CL if ut = LP

p̄Tt C̄ if ut = HP
. (2.34)

Assuming that the retailer has perfect information about the belief states, the

cost function evolves as follows. By using an LP coupon at time t,

V t
β,LP(p̄t) = βtCL + V t+1

β (p̄t+1) = βtCL + V t+1
β (T (p̄t)), (2.35)

where T (p̄t) = p̄Tt Λ is the Markov transition operator generalizing (2.2). By using

an HP coupon at time t,

V t
β,HP(p̄t) = βtp̄Tt C̄ + V t+1

β (p̄t+1) = βtp̄Tt C̄ + p̄Tt



V t+1
β (ē1)

V t+1
β (ē2)

...

V t+1
β (ēK+1)


. (2.36)

Therefore, by (2.11), we have V t
β (p̄t) = min{V t

β,LP(p̄t), V
t
β,HP(p̄t)}.

In this problem, since the instantaneous costs are nondecreasing with the state

when the action is fixed and the evolution of belief state is the same for both LP

and HP, the existence of an optimal stationary policy with threshold property is

guaranteed by Proposition 2 in [131]. The optimal stationary policy for a three-

state consumer model is illustrated in Figure 2.9. For fixed costs, the plot shows the

partition of the belief space based on the optimal actions and reveals that offering an

HP coupon is optimal when pN,t, the belief of the consumer being in Normal state, is

high.

2.2.2 Consumers with Coupon Dependent Transitions

Generally, consumers’ reaction to HP and LP coupons are different. To be more

specific, a consumer is likely to feel less comfortable when being offered a coupon
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Figure 2.9: Example of the optimal policy region for three-state consumer. (Pa-
rameters: λN,N = 0.7, λN,A1 = 0.2, λN,A2 = 0.1;λA1,N = 0.2, λA1,A1 = 0.5, λA1,A2 =
0.3;λA2,N = 0.1, λA2,A1 = 0.2, λA2,A2 = 0.7; β = 0.9, CL = 7, CHN = 1, CHA1 =
10, CHA2 = 20).

on medication (HP) than food (LP). Thus, we assume that the Markov transition

probabilities are dependent on the coupon offered. Let pt denote the belief of a

consumer being in the Alerted state at time t.

As shown in Figure 2.2, by offering an LP coupon, the state transition follows the

Markov chain

ΛLP =

1− λN,A λN,A

1− λA,A λA,A

 . (2.37)

Otherwise, the state transition follows

ΛHP =

1− λ′N,A λ′N,A

1− λ′A,A λ′A,A

 . (2.38)

According to the model in Section 3.1, λA,A > λN,A, λ
′
A,A > λ′N,A. Moreover, we

assume that offering an HP coupon will increase the probability of transition to or

staying at Alerted state. Therefore, λ′A,A > λA,A and λ′N,A > λN,A. The minimum
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Figure 2.10: Optimal policy threshold for consumer with/without coupon dependent
transition probabilities. (Parameters: λN,A = 0.2, λA,A = 0.8, λ′N,A = 0.5, λ′A,A =
0.9, β = 0.9).

cost function evolves as follows: for an HP coupon offered at time t, we have

V t
β,HP(pt) = βtC(pt,HP) + (1− pt)V t+1

β (λ′N,A) + ptV
t+1
β (λ′A,A).

Otherwise,

V t
β,LP(pt) = βtCL + V t+1

β (pt+1) = βtCL + V t+1
β (T (pt)),

where T (pt) = λN,A(1− pt) + λA,Apt is the one step transition defined in Section 3.1.

In this case, the transition probability is just a deterministic function of the retailer

action. Thus, finding an optimal strategy to this problem is equivalent to solving an

associated MDP problem in belief space. Furthermore, Theorem 6.3 and its general-

ization in Ross (1992) still hold since the transition probability is a function of the

action. Therefore, there exists an optimal stationary policy π∗ in the belief space

which minimizes the infinite horizon discounted cost.

Theorem 2. Given action dependent transition matrices ΛLP and ΛHP, the optimal

stationary policy has threshold structure.
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The proof of Theorem 2 is provided in the Appendix D.

Figure 2.10 shows the effect of costs on the threshold τ . We observe that for a

fixed CL and CHA pair, the threshold for LP coupons for consumers in this model

is lower than our original model without coupon-dependent transition probabilities.

The retailer can only offer an LP coupon with certain combination of costs; we call

this the LP-only region. One can also see that the LP-only region for the coupon-

independent transition case is smaller than that for the coupon-dependent transition

case since for the latter, the likelihood of being in an Alerted state is higher for the

same costs.

2.2.3 Policies under Noisy Cost Feedback and Uncertain Initial Belief

In the previous sections, if the retailer offers an HP coupon at time t, then it

could learn the state of the consumer at time t based on whether the received cost

was CHN or CHA. However, in reality, the cost observed by the retailer may not be

deterministic. Thus, in this section, we study the case in which the received costs are

modeled as a random variable. If the cost feedback is random, then the retailer may

not be able to infer the consumer’s state exactly. We describe policy heuristics for

this setting that perform Bayesian estimation of the quantity pt used in the threshold

policy earlier. This approach is also useful when the initial value p0 is not known to

the retailer.

We model the noisy cost feedback by assuming the received cost Ct is random.

The distribution of Ct is given by a conditional probability density f(c|Gt, ut) on a

bounded subset of R, where Gt is the state of the consumer and ut is the action taken

by the retailer at time t. To match the previous model, we further take f(c|Gt =

Alerted, ut = LP) = f(c|Gt = Normal, ut = LP) to indicate that the received cost

conveys no information about the state under an LP coupon. Let f(c|ut = LP) =

f(c|Gt = Alerted, ut = LP). For a given value pt = p, define the likelihood of observing
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a cost Ct = c under the two coupons:

`(c|LP, p) = f(c|Alerted, LP) (2.39)

`(c|HP, p) = f(c|Normal,HP)(1− p) + f(c|Alerted,HP)p (2.40)

These likelihoods will be useful in defining the two estimators.

In both approaches in this section the retailer computes an estimate p̂t of the

probability pt that Gt = Alerted. It then uses (2.20) to decide which coupon to offer

at time t by comparing p̂t to a version of the threshold in (2.21). Define CL, CHN ,

and CHA to be the feasible cost sets {c : f(c|LP) > 0}, {c : f(c|Alerted,HP) > 0},

and {c : f(c|Normal,HP) > 0}, respectively. Since τ involves costs CL, CHN and

CHA, there are several ways to compute an approximate threshold under the cost

uncertainty.

Firstly, we can set CL, CHN and CHA to be the expected costs:

CL =

∫
R
cf(c|LP)dc (2.41)

CHN =

∫
R
cf(c|Normal,HP)dc (2.42)

CHA =

∫
R
cf(c|Alerted,HP)dc. (2.43)

Plugging these into (2.21) gives the mean threshold τavg. Since τ is monotonically

increasing in CL and CHA and monotonically decreasing in CHN , we can compute an

upper bound on τ by setting CL = max{c : c ∈ CL}, CHA = max{c : c ∈ CHA},

and CHN = max{c : c ∈ CHN}. These values give the upper bound threshold

τmax. Similarly, by setting CL and CHA to the lower bounds on the support and

CHN to the upper bound, we obtain a lower bound threshold τmin. Finally, we com-

puted a robust version of threshold τR as τR = {τ : max
CL,CHN ,CHA

{min
π(pt)

V t
β (pt)}}, where

(CL, CHN , CHA) ∈ CL × CHN × CHA. This threshold policy is the largest (cost case)
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threshold over all possible combination of costs. Thus, it gives the max−min value

of the total discounted cost.

Estimation of the Consumer State

In the previous model, if ut = HP the retailer could infer Gt based on Ct, so pt+1

is given by the state transitions of the Markov chain. With noisy costs this exact

inference is no longer possible. A simple heuristic for the retailer is to try to infer Gt

based on the random cost Ct, compute an estimate of pt, and then use the previous

strategy.

At time t = 1, given an initial p0 we estimate p̂1 = T (p0). The retailer then applies

the threshold policy (2.20) with input p̂1 to offer a coupon. For times t = 2, 3, . . . the

retailer treats the estimate p̂t−1 as an estimate of the probability that Gt−1 = Alerted.

If ut−1 = LP, then the retailer sets p̂t = T (p̂t−1). If ut−1 = HP then the retailer uses

a maximum a posteriori probability (MAP) detection rule to estimate the state Gt−1

based on the received cost Ct−1. That is, it sets Ĝt−1 = Normal if

f(Ct−1|Normal,HP)(1− p̂t−1)

f(Ct−1|Alerted,HP)p̂t−1

> 1 (2.44)

and Ĝt−1 = Alerted otherwise, where Ct−1 is the received cost at time t − 1. It then

uses the following estimate pt at time t:

p̂t =


λN,A if Ĝt = Normal

λA,A if Ĝt = Alerted

. (2.45)

Essentially, the retailer uses MAP estimation to infer Gt−1 after receiving the cost

Ct−1 from the action ut−1 = HP. If the densities f(c|Normal,HP) and f(c|Alerted,HP)

have disjoint supports, then the inference of Gt−1 is error free, so Ĝt−1 = Gt−1 and

the estimate p̂t is correct. Figure 2.11 shows the discounted cost as a function of
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Figure 2.11: Temporal discounted costs for different heuristics on computing thresh-
olds. (Parameters: λN,A = 0.2, λA,A = 0.8, p0 = 0.2,β = 0.95, f(c|LP) = Unif[6, 10],
f(c|Normal,HP) = Unif[0.2, 5.8], and f(c|Alerted,HP) = Unif[12, 20]). The discounted
cost is averaged over 1000 independent runs.

time for some different variants of the threshold in (2.21). In this example the cost

distributions are uniformly distributed in disjoint intervals. The plot shows that the

mean threshold yields a total discounted cost that is slightly less than the upper and

lower bound thresholds.

Bayesian Estimation of State Probabilities

In the previous approach, the retailer estimates the underlying state and then uses

this to form an estimate of the probability pt that Gt = Alerted. A different approach

is to form a Bayes estimate of pt: the retailer computes a probability distribution on

[0, 1] representing its uncertainty about pt. To choose an action ut it can use a point

estimate of pt to plug into (2.20) with one of the thresholds described before.

In this formulation, the estimator of pt is a probability distribution. Let qt−1(p) be

the estimator of pt−1. The retailer treats this as a prior distribution. Upon receiving
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the cost Ct−1 it computes a posterior estimate on pt−1 using Bayes rule. If ut−1 = HP,

it sets

qt−1(p|Ct−1) =
`(Ct−1|HP, p)qt−1(p)∫ 1

0
`(Ct−1|HP, p′)qt−1(p′)dp′

. (2.46)

If ut−1 = LP then from (2.39) we can see that `(Ct−1|LP, p) does not depend on

p, so the posterior qt−1(p|Ct−1) = qt−1(p) in this case. Given the posterior estimate

qt−1(p|Ct−1), the retailer then evolves the state distribution through the Markov chain

governing the state to form the prior distribution qt(p) for estimating pt at time t.

That is, if Pt−1 is a random variable with distribution qt−1(p|Ct−1), then qt(p) is the

distribution of T (Pt−1). Let Qt−1(p|Ct−1) =
∫ p

0
qt−1(p′|Ct−1)dp′ be the cumulative

distribution function of Pt−1. Then

P (T (Pt−1) ≤ p) = P
(
Pt−1 ≤

p− λN,A
λA,A − λN,A

)
= Qt−1

(
p− λN,A

λA,A − λN,A
∣∣Ct−1

)
, (2.47)

qt(p) =
1

λA,A − λN,A
qt−1

(
p− λN,A

λA,A − λN,A
∣∣Ct−1

)
. (2.48)

The retailer then uses qt(p) to form a point estimate p̂t of pt suitable for applying

the threshold policy in (2.20) and (2.21). We consider two such point estimates which

we call the mean and max estimators, respectively:

p̂t,mean =

∫ 1

0

pqt(p)dp, (2.49)

p̂t,MAP = argmaxp∈[0,1]qt(p). (2.50)

Figure 2.12 shows the discounted cost versus time for uniformly distributed costs

with overlapping support. The decision is made by following the optimal stationary

policy computed by the mean threshold in Section 2.2.3. We illustrate the result

for four algorithms: the solid curve and the dash-dot curve are the MAP and mean

strategies described above, respectively; the dashed curve is a policy in which costs
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Figure 2.12: Temporal discounted costs for different estimation mechanisms. (Pa-
rameters: λN,A = 0.2,λA,A = 0.8, p0 = 0.2, p̂0 = 0.1, β = 0.9, f(c|LP) = Unif[3, 9],
f(c|Normal,HP) = Unif[0.25, 7.75], f(c|Alerted,HP) = Unif[6, 18]). The discounted
cost is averaged over 1000 independent runs.

are random but the algorithm is given side information about Gt after choosing ut =

HP (perfect state information); finally, the curve with cross is the MAP estimate

of actual state Gt described in Section 2.2.3. In this example, as one can expect,

decision making with perfect state information has the minimum discounted cost.

MAP estimation of Gt results in an 0.82% increase in total discounted cost compared

to the case in which the retailer receives perfect information about consumer state.

However, the MAP and mean policy to estimate belief state pt only have 2.9% and

4.29% increase, respectively. Thus, the MAP for estimating belief performs slightly

better than the Mean policy. Effectively, the lack of initial belief knowledge does

not affect the discounted cost very much on average. This is because offering an HP

coupon allows the retailer to learn the actual state from the cost feedback, thus, reset

the belief state.
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Chapter 3

INCENTIVE MECHANISMS FOR PRIVACY SENSITIVE ELECTRICITY

CONSUMERS WITH ALTERNATIVE ENERGY SOURCES

3.1 System Model

Consider a distribution system with M privacy-sensitive consumers as shown in

Figure 3.1. Each consumer has an installed smart meter, an alternative energy source

(PV), and an energy storage device (battery). A consumer can determine how much

electricity it needs to consume from the grid at any time intelligently using the battery

and PV as alternative energy sources to simultaneously obtain certain level of privacy

and reduce the cost of electricity.

3.1.1 Consumer Model

We consider a discrete-time model with a set of consumers H = {1, 2, ...,M} in

one electricity provider’s network. For consumer i ∈ H, let Di,t be the inelastic net

electricity demand from appliances that belong to consumer i at time t. With PV

and battery installed, consumer i meets this demand using both alternative energy

sources and the grid while maximizing use of its alternative energy sources. We denote

SM SM SM

(1-α1,t)D1,t (1-α2,t)D2,t (1-αM,t)DM,t 

αM,tDM,tα2,tD2,tα1,tD1,t

PV+Battery PV+Battery PV+Battery

Consumer 1 Consumer 2 Consumer M

...

(α1,tD1,t, βt ) 

(α2,tD2,t, βt )

(αM,tDM,t, βt )

Electricity Provider Ep

Actual demand: D1,t Actual demand: D2,t Actual demand: DM,t

Figure 3.1: Consumer-electricity provider interaction diagram
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αi,t ∈ Ai,t , {α1
i,t, ..., α

K
i,t} to be the fraction of the net electricity demand Di,t that

is consumed directly from the grid. We assume that without any incentive from the

electricity provider, consumer i uses an intelligent privacy preserving algorithm to

compute the amount of energy consumption from the grid to balance its net energy

demands consistently with its privacy requirements. Such an algorithm will require

consumer i to consume α0
i,tDi,t to ensure maximal use of its alternative energy sources

and consume from the grid only when needed. Specifically, consuming either more

or less than this fraction from the grid can cause loss in privacy. However, this

privacy preserving consumption may not meet the supply and demand requirements

of the electricity provider. At the beginning of time t, consumer i reports its privacy

preserving consumption α0
i,tDi,t to the electricity provider. To ensure a desired total

consumption Xt, after receiving all consumption information from consumers, the

electricity provider decides βt ∈ Bt , {β1
t , ..., β

J
t } to be the incentive price for each

KW of deviation from each consumer’s privacy preserving consumption. Meanwhile,

each consumer i adjusts its actual consumption to αi,tDi,t.

When the electricity provider uses incentives to compensate consumers for chang-

ing electricity consumption behaviors, each privacy-sensitive consumer will match its

privacy leakage to a monetized valuation of privacy loss. For fixed value of Di,t,

we assume that there exists a convex and bounded function f(αi,t − α0
i,t, Di,t) with

minimum value located at α0
i,t. This function maps consumer i’s deviation from its

privacy preserving consumption that it consumes directly from the grid to a mon-

etized loss of its privacy leakage. This assumption is motivated by the observation

that for consumers with access to alternative energy sources and a privacy preserving

algorithm, α0
i,tDi,t gives the minimum amount of privacy leakage and the valuation

of privacy is increasingly higher as electricity consumption deviates increasingly from

the optimal consumption profile computed by the privacy preserving algorithm. De-
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fine δi,t , (αi,t − α0
i,t) to be the change in fractional consumption when consumer i is

willing to consume αi,tDi,t from the electricity provider. For consuming αi,tDi,t from

the electricity provider, consumer i suffers a loss fi,t(δi,t, Di,t) due to the privacy leak-

age resulting from deviating from α0
i,t. This compensation that consumer i receives

for compromising its privacy is given by

Ui,t(αi,t, βt, Di,t) =


βt(αi,t − α0

i,t)Di,t if Xt ≥
∑
i∈H

α0
i,tDi,t

−βt(αi,t − α0
i,t)Di,t otherwise

. (3.1)

The incentive mechanism in (3.1) indicates that when the aggregated privacy

preserving consumption over all consumers is lower (higher) than the amount required

by the electricity provider, it is in the consumer’s interest to exploit the incentives

and increase (decrease) its consumption to meet the needs of the electricity provider.

Our model also assumes that the electricity provider can penalize the consumer for

not adhering to the consumption requirement of the electricity provider via negative

incentives for each KW of deviation from α0
i,tDi,t.

We denote Ri,t(αi,t, βt) = Ui,t(αi,t, βt, Di,t) − fi,t(αi,t − α0
i,t, Di,t) to be the reward

of consumer i for fixed demand Di,t. Recall that for mixed strategies, each consumer

and the electricity provider can choose from some convex combinations over their

pure strategies. Let pt = (p1,t, ...,pM,t) be the vector of mixed strategies for all

consumers. We also define pi,t ∈ P i,t to be the vector of probability distribution over

pure strategies αi,t and P t , P1,t×· · ·PM,t to be the feasible set of pt. Furthermore,

we denote qt(βt) to be the mixed strategy for the electricity provider whose feasible

set of mixed strategies is defined to be Qt.

For a given mixed strategy, the expected reward of each consumer i is given by

RE
i,t(pi,t, qt) =

∑
αi,t∈Ai,t,βt∈Bt

(pi,t(αi,t)qt(βt))Ri,t(αi,t, βt). (3.2)

58



To maximize its expected reward at time t, consumer i solves the following optimiza-

tion problem

max
pi,t∈Pi,t

RE
i,t(pi,t, qt). (3.3)

This optimization captures both the economic benefit to the consumer and the mon-

etized consequence of privacy leakage due to consuming energy from the grid.

3.1.2 Electricity Provider Model

Each smart meter installed by the electricity provider samples electricity consump-

tion at a fixed rate and transmits the actual consumption data from each consumer

(αi,tDi,t) back to the electricity provider instantly. We assume that the electricity

provider requires Xt amount of energy to be consumed by consumers so that it can

ensure reliable power grid operations. If the consumption differs from Xt, it suffers a

loss L(Xt −
∑
i∈H

αi,tDi,t), which is assumed to be a continuous and convex function of

Xt −
∑
i∈H

αi,tDi,t.

We denote Dt = (D1,t, D2,t, ..., DM,t) and αt = (α1,t, α2,t, ..., αM,t) to be the vector

of net electricity demand and the fraction of net demand consumed directly from the

grid, respectively. The total payment by the electricity provider to consumers when

offering βt at time t is given by

PMTt(βt,αtD
T
t ) =

∑
i∈H

Ui,t(αi,t, βt, Di,t). (3.4)

We define the profit of the electricity provider when offering incentive price βt and sup-

plying
∑
i∈H

αi,tDi,t amount of electricity to consumers as a bounded functionG(βt,αtD
T
t ).

This profit function accounts for the cost of offering incentives as well as the gain from

better load forecasting and efficient system operation. As a result, the net profit of

the electricity provider after offering incentive βt is given by:

Vt(βt,αt) =G(βt,αtD
T
t )− L(Xt −αtDT

t ). (3.5)
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The expected net profit of the electricity provider is

V E
t (pt, qt) =

∑
αt∈At,βt∈Bt

(
M∏
i=1

pi,t(αi,t))qt(βt)Vt(βt,αt). (3.6)

The objective of the electricity provider is to choose qt such that it maximizes its

expected net profit from offering incentives. Thus, the electricity provider solves the

following optimization problem

max
qt∈Qt

V E
t (pt, qt). (3.7)

3.2 Consumer-Electricity Provider Game

For a given set of electricity demand Dt, the amount of electricity that each

consumer consumes from the grid and the incentive price strongly impact both the

profit for electricity provider and rewards for consumers. Moreover, the strategy of

each consumer also affects other consumers’ strategies indirectly by influencing the

strategy of the electricity provider. To capture the trade-off between privacy costs and

incentive costs, we use non-cooperative game theory to study the provider’s incentive

pricing policy and consumers’ energy consumption fractions over time. The structure

of the consumer-electricity provider game is given as follows:

• Set of players: {(H, Ep)} is the set of players in which consumers belong to set

H and the electricity provider is denoted by Ep.

• Set of strategies: {(At,Bt)} is the tuple of strategy sets for consumers and the

electricity provider, where the strategy of consumer i (consumption fraction

αi,t) lies in Ai,t and the strategy of the electricity provider Ep (incentive price

βt) belongs to Bt.

• Payoff functions: {({Ri,t}i∈H, Vt)} is the tuple of payoff functions in which we

denote Ri,t to be the reward for consumer i and Vt to be the net profit for the

electricity provider Ep.
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3.2.1 Mixed Strategy Nash Equilibrium

The resulting strategic game can be written as {(H, Ep), (At,Bt), ({Ri,t}i∈H, Vt)}.

It has one well-studied solution called the mixed strategy Nash equilibrium. A mixed

strategy Nash equilibrium is a probabilistic strategy tuple (i.e., set of probability

distributions on pure strategies of each player) in which none of the players can be

more profitable by unilaterally deviating to any pure strategy from this equilibrium

strategy. It presents a stable outcome of interactions between consumers and the

electricity provider. The mixed strategy Nash equilibrium is defined as follows:

Definition 1. Consider the strategic game given by {(H, Ep), (At,Bt), ({Ri,t}i∈H, Vt)},

a mixed strategy tuple ({p∗i,t}i∈H, q∗t ) is a mixed strategy Nash equilibrium if and

only if RE
i,t(p

∗
i,t,p

∗
−i,t, q

∗
t ) ≥ RE

i,t(pi,t(αi,t) = 1,p∗−i,t, q
∗
t ) , ∀αi,t ∈ Ai,t, i ∈ H and

V E
t (p∗t , q

∗
t ) ≥V E

t (p∗t , qt(βt) = 1) , ∀βt ∈ Bt, where the vector p−i,t denotes the mixed

strategies of all other consumers.

Proposition 1. There exists at least one mixed strategy Nash equilibrium for the

above consumer-electricity provider game.

The proof of Proposition 1 is provided in [132]. Generally, finding the Nash

equilibrium is not easy. One method to do so is using best response [133]. The best

response is a function which captures the behavior of each player by making other

players’ strategies fixed. By Definition 1, in a mixed strategy Nash equilibrium, each

player plays the best response w.r.t other players’ strategies.

3.3 A Two-Player Example

In this section, we study the case in which there is only one consumer and one

electricity provider in the game. We denote α0
tDt to be the electricity consumption

decided by the privacy preserving algorithm. The consumer can deviate either above

or below α0
tDt and we consider two levels for each such deviation. Correspondingly,
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we assume that the incentive price provided by the electricity provider has a two tier

pricing structure. Thus, we define At , {α0
t − δHt , α

0
t − δLt , α

0
t + δLt , α

0
t + δHt } and

Bt = {βLt , βHt } to be the strategy set of the consumer and the electricity provider,

respectively. Furthermore, we assume that 0 < δLt < δHt , 0 < βLt < βHt .

Definition 2. A mixed strategy Nash equilibrium is nondegenerate if each player

plays more than one of its pure strategies with non-zero probability.

Theorem 3. For the two-player consumer-electricity provider game defined by

{(H, Ep), (At,Bt), ({Rt}, Vt)}, there exists a unique nondegenerate mixed strategy Nash

equilibrium if 

sign(G(βHt , (α
0
t + δHt )Dt)−G(βLt , (α

0
t + δHt )Dt))

= sign(G(βLt , (α
0
t + δLt )Dt)−G(βHt , α

0
t + δLt Dt));

sign(G(βHt , (α
0
t − δHt )Dt)−G(βLt , (α

0
t − δHt )Dt))

= sign(G(βLt , (α
0
t − δLt )Dt)−G(βHt , (α

0
t − δLt )Dt))

(3.8)

and  βLt (δHt − δLt ) <
f(δHt ,Dt)−f(δLt ,Dt)

Dt
< βHt (δHt − δLt )

βLt (δHt − δLt ) <
f(−δHt ,Dt)−f(−δLt ,Dt)

Dt
< βHt (δHt − δLt )

, (3.9)

where sign(·) denotes the algebraic sign function.

The intuition behind (3.8) is that for different deviation levels of the consumer

(δHt , δLt ), the difference in the profit for offering βHt and βHt should have different

signs, otherwise, the electricity provider has an incentive to deviate to one of the

pure strategies unilaterally. Similarly, the intuition behind (3.9) is that the difference

in the monetized privacy leakage loss when playing δHt and δLt should be within the

limits of the difference in reward a consumer can get from the electricity provider.

Otherwise, the consumer has an incentive to deviate to one of the pure strategies

unilaterally.
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Proof. Due to the variation of power supply and demand, the power supply Xt can

be either higher or lower than α0
tDt.

Case 1: If Xt ≥ α0
tDt, the electricity supply is more than the amount that the

consumer is willing to consume by using the privacy preserving algorithm. Thus,

the electricity provider can use incentives to encourage the consumer to increase its

consumption in order to balance power supply with demand. By (3.1) and (3.3),

α0
t − δHt and α0

t − δLt are strictly dominated strategies since playing these strategies

will result in a penalty from the electricity provider. Thus, we assume that the

consumer plays α0
t + δLt and α0

t + δHt with probability q∗t and 1 − q∗t in the mixed

strategy Nash equilibrium, respectively. If the electricity provider best-responds with

a mixed strategy, it must be indifferent between playing βLt and βHt . Otherwise, the

electricity provider has no reason to play a mixed strategy. Thus,

q∗t [G(βLt , (α
0
t + δLt )Dt)− L(Xt − (α0

t + δLt )Dt)] (3.10)

+ (1− q∗t )[G(βLt , (α
0
t + δHt )Dt)− L(Xt − (α0

t + δHt )Dt)]

= q∗t [G(βHt , (α
0
t + δLt )Dt)− L(Xt − (α0

t + δLt )Dt)]

+ (1− q∗t )[G(βHt , (α
0
t + δHt )Dt)− L(Xt − (α0

t + δHt )Dt)].

In (3.11), we have the solution for (3.10).

q∗t =
G(βHt , (α

0
t + δHt )Dt)−G(βLt , (α

0
t + δHt )Dt)

G(βHt , (α
0
t + δHt )Dt) +G(βLt , (α

0
t + δLt )Dt)−G(βLt , (α

0
t + δHt )Dt)−G(βHt , (α

0
t + δLt )Dt)

(3.11)

Similarly, if the electricity provider plays βLt and βHt with probability p∗t and 1− p∗t
in the mixed strategy Nash equilibrium, the consumer’s mixed strategy best response

must be indifferent to α0
t + δLt and α0

t + δHt . Therefore, we have

p∗t [β
L
t δ

L
t Dt − f(δLt , Dt)] + (1− p∗t )[βHt δLt Dt − f(δLt , Dt)]

= p∗t [β
L
t δ

H
t Dt − f(δHt , Dt)] + (1− p∗t )[βHt δHt Dt − f(δHt , Dt)],
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which implies

p∗t =
βHt (δHt − δLt )Dt − (f(δHt , Dt)− f(δLt , Dt))

(βHt − βLt )(δHt − δLt )Dt

. (3.12)

Case 2: If Xt < α0
tDt, the electricity provider can use incentives to decrease

electricity consumption. Thus, {α0
t + δHt , α

0
t + δLt } are strictly dominated strategies

since playing these strategies will result in a penalty from the electricity provider. We

assume that the consumer plays α0
t − δLt and α0

t − δHt with probability q∗t and 1− q∗t
in the mixed strategy Nash equilibrium, respectively. Furthermore, we assume that

the electricity provider plays βLt with probability p∗t . By following the same argument

for the case in which Xt ≥ α0
tDt, in the mixed Nash equilibrium, we have q∗t similar

to (3.11) with δHt , δ
L
t replaced by −δHt ,−δLt and

p∗t =
βHt (δHt − δLt )Dt − (f(−δHt , Dt)− f(−δLt , Dt))

(βHt − βLt )(δHt − δLt )Dt

. (3.13)

Thus, by (3.11), (3.12), and (3.13), we have Theorem 3. Moreover, since (3.11)-(3.13)

are all computable for fixed pure strategy sets and reward/profit functions, there exists

a unique nondegenerate mixed strategy Nash equilibrium if (3.8) and (3.9) hold.

For given electricity supply-demand profile and reward-loss functions, Theorem 3

provides a relationship between the incentive price (βt) and the fraction of total

electricity demand from the grid (αt), such that the players achieve a unique nonde-

generate mixed strategy Nash equilibrium.

3.4 Illustration of Results

In this section, we illustrate our model and results. For simplicity, we consider

the following net profit function:

Vt(βt, αt) = g(βt, αtDt)− PMTt(βt, αtDt)− rL(Xt − αtDt)
2, (3.14)

where
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g(βt, αtDt) =



1/3|αt − α0
t |Dt if βt = βHt , δt = δHt

1/6|αt − α0
t |Dt if βt = βLt , δt = δHt

0.2|αt − α0
t |Dt if βt = βLt , δt = δLt

0.3|αt − α0
t |Dt if βt = βHt , δt = δLt

. (3.15)

The first term of (3.14) denotes the benefit for offering incentives. The intuition

behind this function is that offering βHt (βLt ) indicates that the electricity provider

desires the consumer to deviate a large (small) amount from α0
t and is willing to pay

a high (low) incentive price. Thus, the gain for strategy δHt (δLt ) should be larger

than δLt (δHt ). The second term is the incentive payment to the consumer and the

third term is the loss function caused by supply-demand imbalance. We use rL as

the supply-demand imbalance loss factor assigned by the electricity provider. The

privacy valuation function of the consumer is given by

ft(αt − α0
t , Dt) = ft(δt, Dt) = rP (δtDt)

2, (3.16)

in which privacy loss is captured by how much does the strategy deviate from α0
tDt.

The constant rP indicates the rate of privacy leakage loss w.r.t the deviation from

the optimal privacy preserving consumption α0
tDt.

We assume the PV system can provide approximately 70% of total electricity

consumption of a consumer. At time t, we choose the strategy of the consumer

when there is no incentive offered by the electricity provider as α0
t = 0.3. We choose

the following deviation fractions and incentive prices: δLt = 0.1, δHt = 0.3, βLt =

0.05$/KW, βHt = 0.2$/KW .

In Figure 3.2, we plot the relationship between the mixed strategy Nash equilib-

rium (p∗t , q
∗
t ) and the privacy leakage loss factor rP . We assume Dt = 10KW and

Xt = 4.2KW . In the mixed strategy Nash equilibrium, the strategy of the consumer
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does not change with rP . However, for the electricity provider, the probability of

playing βLt decreases with rP . This is due to the fact that the electricity provider has

to offer a high incentive price for consumers who have a high valuation of their pri-

vacy. Figure 3.3 illustrates the loss due to supply-demand imbalance with/without

incentives for different imbalance loss factors (rL). The figure shows that offering

incentives can help reduce supply-demand imbalance loss.
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Figure 3.4: Cumulative imbalance loss, net profit of the electricity provider as well
as reward of the consumer

To study the performance of the proposed incentive mechanism, we model the

demand of the consumer (Dt) and the privacy preserving consumption fraction (α0
t ) as

random variables which follow truncated standard normal distributions. We assume

Dt ∈ [9, 11] and α0
t ∈ [0, 0.6] with mean value equal to 10KW and 0.3. Furthermore,

we assume the requirement of electricity provider Xt ∈ [0, 6] also follows a truncated

standard normal distribution with mean value 3KW . We divide the time horizon into

24 hours and use the following parameters: rL = 0.015$/KW 2, rP = 0.03$/KW 2.

The cumulative net profit, loss of the electricity provider as well as the reward of

the consumer at time t are defined to be the summation of net profit, loss of the elec-

tricity provider and reward of the consumer from time 1 to t, respectively. Figure 3.4

shows that the proposed mechanism can successfully incentivize data sharing from

privacy-sensitive consumers to both increase net profit of the electricity provider and

reduce loss incurred by supply-demand imbalance.
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Chapter 4

THE IMPACT OF PRIVACY ON FREE ONLINE SERVICE MARKETS

4.1 Problem Model and Game Formulation

In this section, we introduce a game-theoretic model for two SPs that offer the

same type of free online services (e.g., search engine, social network) and infinitely

many consumers. Each SP offers the free services with a quantified privacy risk

guarantee ε and quality of service (QoS) v. Just as Google at present advertises

RAPPOR [37] with a certain level of differential privacy risk, in the future, it is

possible that SPs will adopt one or more metrics to quantify their privacy risks.

This paper makes such an assumption of privacy risk quantifiability. Furthermore,

we assume SPs advertise their quantified privacy risk and QoS to consumers. Thus,

both ε and v are observable to consumers. The observable privacy risk value could

be the ε value in differential privacy adopted by Google RAPPOR and the QoS could

be the accuracy of search results. An SP differentiates its service by a tuple (v, ε)

that it advertises to all consumers. A consumer’s preference of privacy differentiated

service is modeled by a utility function which depends on its privacy risk valuation

and the QoS-privacy risk tuple offered by the SP. In reality, it is natural to assume

that consumers prefer high QoS and low privacy risk. Thus, in our model, a consumer

will have a higher utility if he or she receives higher QoS or lower privacy risk. Finally,

consumer privacy heterogeneity is modeled as a distribution.

4.1.1 Two-SP Market Model

SP Model

We consider two rational (i.e., profit maximization entities) SPs, denoted by SP1

and SP2. Both SPs provide the same kind of free service; but they differ in the

QoS offered. Thus, SP1 and SP2 offer QoS v1 and v2, respectively, where in general
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v1 6= v2. Furthermore, SP1 and SP2 guarantee that the privacy risk for using their

services is at most ε1 and ε2, respectively, where ε1, ε2 ∈ [0, ε̄]. Without loss of

generality, we assume ε2 ≥ ε1. Under this assumption, SP2 must offer a higher QoS

(v2 ≥ v1). Otherwise, its strategy will be dominated by its opponent since SP1 will

offer both higher QoS and lower privacy risk. For example, SP1 and SP2 could be

Duckduckgo and Google, respectively, in the search engine market, with the QoS

given by the accuracy of search results. On the other hand, the privacy risk can

correspond to different guarantees they provide on consumer data use; e.g., whether

they will use consumer data only for statistical purposes or target consumers with

tailored ads. We model this privacy risk guarantee as a variable taking values over

a continuous range. In practice, such guarantees may be coarse granular choices; for

example, between completely opting out of the targeting or allowing data use only

for statistical purposes or complete data use only by SP or all possible data usage

and sale. We assume that the SPs generate revenue in two ways: (i) by exploiting the

private data of consumers to offer targeted ads and other services to consumers; and

(ii) by providing interested advertisers an online platform to reach consumers. This

latter revenue is independent of private data and simply derived from the revenue

capability of the platform.

Let RP (εi) denote the revenue of SPi, i ∈ {1, 2}, resulting from using the pri-

vate data of consumers and let RNP,i denote the revenue generated without using

consumers’ private information (e.g., from interested advertisers). The total revenue,

R(εi), of SPi from offering privacy guaranteed service is thus

R(εi) = RP (εi) +RNP,i, i ∈ {1, 2}. (4.1)

Notice that in reality, through spillovers and externalities associated with using con-

sumers’ private data, the revenue generating capabilities for firms can increase even
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from sources that don’t directly use consumer personal information. However, it is

very hard to capture these externalities precisely since they are highly data and ser-

vice model dependent. We start with a simple model in which we assume that SPs

will not use consumers’ private data for services that do not require private data.

Our proposed model provides an intuition on the equilibrium strategies of SPs and

market. Furthermore, it is useful to note that even this relatively simple revenue

decoupled setting is highly parameterized. Our analysis allows us to understand the

dependencies on the various parameters in the problem.

Offering free services to consumers often comes with a cost to the SPs, such as

the cost of service, online platform creation, and continued operations. Furthermore,

we note that free online services profit from using consumer data and therefore incur

data processing related costs. Let C(vi; εi) denote the cost of offering free services

with privacy risk level εi. We model C(vi; εi) as sum of two non-negative costs: (i)

CQoS(vi) of providing services with QoS vi; and (ii) CP (εi) as the processing (data

analytics) cost of exploiting private data to the privacy risk level of εi such that

C(vi; εi) = CQoS(vi) + CP (εi), i ∈ {1, 2}. (4.2)

We assume RP (εi) − CP (εi) > 0. Otherwise, SPi will not have incentives to exploit

consumers’ private information since the cost of processing consumers’ private infor-

mation is higher than the revenue it gains from using consumers’ private information.

Thus, via (4.1) and (4.2), our model captures the fact that the benefit of using private

data by each SP involves both cost and revenue.

Consumer Model

We formulate both consumer utility and the resulting consumer-SP game based on

the classical Hotelling model. The Hotelling model maps retailers to two locations
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(x1, x2) on a [0, 1] line such that the strategy of each retailer is to determine the best

location-price tuple that maximizes its profit. The location (see Figure 4.1a) is a proxy

for a specific product differentiator. A consumer with its own product differentiator

preference (traditionally assumed to be uniformly distributed over [0, 1]) is mapped

to a location x ∈ [0, 1] on the line as shown in Figure 4.1a. Such a spatial model

allows computing the market segment by identifying both the optimal locations of

the retailers and an indifferent threshold between the two optimal retailer locations

at which both retailers are equally desirable. For such a uniform consumer preference

model, the segmentation for each retailer is simply its distance to the indifference

point (see Figure 4.1a). Consumers choose the retailer with the least product price

and “transportation cost” (modeled as a linear function of location) for a desired

consumer valuation of the product. Note that transportation costs are metaphorical

for any non-price-based differentiation of the two retailers.

For our problem, we obtain a Hotelling model by: (i) introducing a normalized

privacy risk and mapping it to spatial location; and (ii) by viewing the QoS as the

net valuation of service by the consumer. Note that since we study a free services

market, we use QoS as a measure of consumer satisfaction. We note that in the

classical Hotelling model, the consumer pays a non-negative transportation cost for

any retailer whose location is different from its own. However, our problem departs

from this model in that higher and lower privacy risks offered by SPs relative to a

consumer preferred privacy risk choice are not viewed similarly.

We assume there exists infinitely many rational consumers that are interested in

the services provided by the SPs. In keeping the standard game-theoretic definition,

rational refers to consumers interested in maximizing some measure of utility via

interactions with the SPs. We use a random variable E ∈ [0, ε̄] to denote the het-

erogeneous privacy preferences of consumers; such a model assumes that the privacy
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preferences of consumers are independent and identically distributed, a reasonable

assumption when the consumer set is very large. Let E = ε denote the privacy risk

preference of a consumer. If SPi offers a privacy risk guarantee εi higher than ε, then

using its service will result in a privacy cost to the consumer due to perceived privacy

risk violation. On the other hand, the consumer gains from choosing an SPi that of-

fers an εi < ε as a result of the extra privacy protection offered. Let x = FE(ε) ∈ [0, 1]

be a differentiable cumulative distribution function of ε. Thus, x = FE(ε) can be con-

sidered as a normalized privacy risk tolerance (i.e., restricted to [0, 1]) which indicates

the proportion of the consumers with a privacy risk tolerance of at most ε. Since the

privacy risk ε can be over an arbitrary range [0, ε̄], the normalized spatial privacy risk

is given by the cumulative distribution function (CDF) FE(ε). Thus, for a consumer

whose normalized privacy risk tolerance is located at x ∈ [0, 1], its actual privacy risk

tolerance is ε = F−1
E (x). We can similarly map the privacy risks offered by the SPs

to normalized locations x1 = FE(ε1) and x2 = FE(ε2) on the [0, 1] line as shown in

Figure 4.1b.

Analogous to the Hotelling model, we let ui(x) denote the utility (in units of QoS)

from SPi as perceived by a consumer with a normalized privacy preference (location)

x. Our model for ui(x) contains two parts: (i) a positive QoS vi offered by SPi;

and (ii) the gain or loss in the perceived QoS as a result of a mismatch between

consumer privacy preference and SPi’s privacy risk offering. We introduce a gain

factor t that allows mapping the privacy mismatch t(x − xi)εi to a QoS quantity.

This mismatch utility indicates that when the SP offers a service with privacy risk

lower than the consumer’s tolerance, the consumer receives a positive utility due to

extra privacy protection. However, if the service offered has a higher privacy risk

than the consumer’s tolerance, the consumer will receive negative utility for privacy

risk violation. In other words, given the same level of QoS, the better the privacy
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Figure 4.1: User choice model for using different SPs

risk guarantee an SP offers, the more the consumer prefers the SP. We now write the

utility or profit function for consumers and SPs.

Consumer utility and SP profits

For the consumer located at x, the overall perceived utility for choosing services

provided by SP1 and SP2 are

ui(x) = vi + t(x− xi)εi, i ∈ {1, 2}. (4.3)

For each SPi, i ∈ {1, 2}, let (v−i, ε−i) be its competitor’s strategy. For the revenue

and cost models in (4.1) and (4.2), the profit of SPi is simply the difference

πi(vi; εi; v−i; ε−i) = [R(εi)− C(vi; εi)]ni(vi; εi; v−i; ε−i), (4.4)

where ni(vi; εi; v−i; ε−i) denotes the fraction of consumers who choose SPi.

Modelling Assumption 3. We assume that the services provided by both SPs have

non-negative QoS.

Since consumers are rational, they expect to have positive utility through the

interactions with the SPs. It is reasonable to assume that SPs have no incentive to

offer services with a negative QoS. In other words, we assume v1 ≥ 0 and v2 ≥ 0.
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Modelling Assumption 4. We assume the model parameters are chosen such that

they ensure the market is completely covered by SP1 and SP2.

The above assumption implies that each consumer must choose one of the SPs.

Such an assumption is implicitly built into the classical Hotelling model to ensure

competition between SPs and our model continues to do so too. Later we provide a

sufficient condition for sustaining the equilibrium market segmentation under these

assumptions.

4.1.2 Two-SP Non-cooperative Game Formulation

We note that the SPs compete against each other through their distinct QoS and

privacy risk offerings, which in turn affects consumer choices and helps determine the

stable market segmentation. Thus, the interactions between SPs can be formulated

as a non-cooperative game in which the strategy of each SP is a (QoS, privacy risk)

tuple and that of the consumer is choosing an SP. Furthermore, we assume that the

SPs are rational and have perfect and complete information. They play to maximize

their own profits and know the exact profit function for any given strategy.

The Game: the interactions between retailers and consumers in the Hotelling

model can be viewed as a sequential game [51]. For our model, such a sequential

game involves three stages (Figure 4.2). In the first stage, the differentiator, i.e., the

normalized privacy risk εi, is advertised by SPi. This is followed by each SP deter-

mining its QoS for the advertised risk. Finally, the consumers choose the preferred

SP based on the (vi, εi) tuple that maximizes its utility. Our sequential game assumes

that the selection of privacy risk happens before the selection of the QoS. This is due

to the fact that SPs first advertise their privacy risks to differentiate themselves from

their competitors (e.g., Google advertises RAPPOR while Duckduckgo advertises not

using private data of the consumers) and then adjust their QoS strategies based on

the advertised privacy risks and the privacy preferences of the consumers.
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Figure 4.2: The three-stage sequential game

The game can be formally described as follows: (i) a set of players {1, 2, C}, where

1 and 2 denote SP1 and SP2, respectively, and the set C contains infinitely many

consumers; (ii) a collection of strategy tuples (vi, εi) ∈ Vi×Ei for SPi and a collection

of binary choices (strategies) for the consumer b ∈ B = {1, 2}; and (iii) a profit

function πi for each SPi and a utility function ui for each consumer for choosing SPi.

4.2 The Subgame Perfect Nash Equilibrium for the Two-SP Game

In a sequential game, each stage is referred to as a subgame [133]. One often

associates a strategy profile with a sequential game. A strategy profile is a vector

whose ith entry is the strategy for all players at the ith stage of the sequential game. A

non-cooperative sequential game has one well-studied solution: the Subgame Perfect

Nash Equilibrium (SPNE). A strategy profile is an SPNE if its entries are the Nash

equilibria of the subgame resulting at each stage of the sequential game. The SPNE

of a sequential game captures an equilibrium solution such that no player can make

more profit by unilaterally deviating from this strategy in every subgame.

Since the above non-cooperative game is a game with finite number of stages and

perfect information, it can be solved using backward induction. Backward induction is

the process of reasoning backwards in time (or sequence), starting from the last stage

of the sequential game, to determine a sequence of optimal strategies. It proceeds

by first determining the optimal strategies in the last stage. Using this information,

one can then decide the optimal strategies for the second-to-last stage of the game.
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This process continues backwards until the optimal strategies for every stage has been

determined. We apply backward induction to the three-stage game as follows.

Stage 3, Users’ decisions: Each consumer located at x ∈ [0, 1] can choose the

services provided by either SPs based on its valuation function in (4.3). The resulting

optimal strategy for the consumer is to choose the SP whose index is given by

arg max
i∈{1,2}

vi + t(x− xi)εi. (4.5)

Since the consumer’s utility is a linear function of the normalized privacy risk x and

the market is completely covered by the SPs, there exists a threshold xτ such that

the consumer located at xτ is indifferent to using services provided by SP1 or SP2.

Thus, at the indifference threshold xτ , we have

u2(xτ ) = u1(xτ ) =⇒ v2 + t(xτ − x2)ε2 = v1 + t(xτ − x1)ε1. (4.6)

Simplifying further leads to the indifference threshold for choosing between the SPs

xτ =
v1 − v2 + t(FE(ε2)ε2 − FE(ε1)ε1)

t(ε2 − ε1)
, (4.7)

where x1 and x2 have been replaced by their corresponding normalized privacy risk

values. Thus, given the SPs’ strategies (vi, εi), i ∈ {1, 2}, the optimal strategy of a

consumer located at x is to use the service of SP1 if x ≤ xτ and SP2 otherwise. If

v1 = v2 and ε1 = ε2, consumers are indifferent between SP1 and SP2. In this case,

we assume the consumers use the following tie-breaking rule:

Modelling Assumption 5. If v1 = v2 and ε1 = ε2, consumers choose either SPs

with probability 1
2
.

Stage 2, SPs determine QoS: In the second stage, for a given privacy risk

guarantee εi, SPi chooses its QoS vi to maximize its profit πi. Since a consumer’s

normalized privacy risk tolerance denotes the fraction of the population whose privacy
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risk tolerance is at most ε, xτ determines the proportion of consumers who choose

SP1, i.e., n1. As a result, the profit functions of SP1 and SP2 can be written as

π1(v1; ε1; v2; ε2) =[R(ε1)− C(v1; ε1)]xτ , (4.8)

π2(v1; ε1; v2; ε2) =[R(ε2)− C(v2; ε2)](1− xτ ). (4.9)

To find the SPNE in this stage, we use the best response method [134]. The best

response is a function which captures the behavior of each player while fixing the

strategies of the other players. For any v−i ∈ V−i, we define BRi(v−i) as the best

strategy of SPi such that

BRi(v−i) = argmax
vi

πi(vi; εi; v−i; ε−i), i ∈ {1, 2}. (4.10)

In the SPNE, each player plays the best response w.r.t other players’ strategies. Thus,

a Nash equilibrium in this stage is a profile v∗ = (v∗i , v
∗
−i) for which

v∗i ∈ BRi(v−i),∀i ∈ {1, 2}. (4.11)

To find the Nash equilibria, we first calculate the best response function of each SP,

then find a strategy profile v∗ for which v∗i ∈ BRi(v−i),∀i ∈ {1, 2}. For a given set

of privacy risk guarantees {ε1, ε2}, the optimal QoS v∗i of SPi, i ∈ {1, 2} in the SPNE

is then determined by the solution to the following set of simultaneous equations

v∗1 = argmax
v1

π1(v1; ε1; v2; ε2), (4.12)

v∗2 = argmax
v2

π2(v1; ε1; v2; ε2). (4.13)

Stage 1, SPs determine privacy risk guarantee: In the first stage, we

compute equilibrium strategies ε1 and ε2 that the two SPs should advertise for optimal

market share. Note that v∗1, v
∗
2, and xτ have been computed in stages 2 and 3 for a

fixed ε1 and ε2, and therefore, are functions of ε1 and ε2. The objective functions π1

and π2 are thus also functions of ε1 and ε2; this in turn implies they can be maximized

to find the equilibrium strategy ε∗1 and ε∗2 using the best response method.
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4.3 Two-SP Market with Linear Cost and Revenue Functions

Thus far, we have considered a general model for consumer privacy preference. To

obtain better intuition and meaningful analytical solutions, we consider a linear cost

and revenue model for each SP. The cost function of SPi is modeled as

C(vi; εi) = cvi + cλεi, i ∈ {1, 2}, (4.14)

where c and λ are constant scale factors in units of cost/QoS and QoS/privacy risk,

respectively. We model the revenue of each SP from offering a privacy guaranteed

service by a linear function

R(εi) = rεi + pi, i ∈ {1, 2}, (4.15)

where r is the revenue per unit privacy risk for using consumers’ private data. The

parameters p1 and p2 model the fixed revenues of the SPs that are independent of

consumers’ private data.

Theorem 4. There does not exist any SPNE in which both SPs offer the same privacy

risk.

Proof sketch: The detailed proof of Theorem 4 is in Appendix E; we briefly outline

the proof. First, we assume there exists an SPNE where both SPs offer the same

privacy risk ε̃. Then, using backward induction, we show that one of the SPs is

better off by unilaterally deviating from the equilibrium strategy ε̃; implying that

there does not exist an SPNE in which both SPs offer the same privacy risk.

Remark: Note that the result of Theorem 4 does not exhibit the minimal dif-

ferentiation behavior (i.e., both firms place themselves close to each other) observed

in [51]. This is due to the fact that higher and lower privacy risks offered by SPs

relative to a consumer preferred privacy risk choice are not viewed similarly; that is,

the symmetric transportation cost no longer holds in our model, and thus resulting

an asymmetric gain due to privacy mismatch in (4.3).
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4.3.1 Uniform Consumer Privacy Risk Tolerance

We assume consumers have uniformly distributed privacy risk tolerance between

0 and ε̄. The resulting normalized privacy risk of each SP is given by

xi = FE(εi) =
εi
ε̄
, i ∈ {1, 2}.

We define

α =
r

c
− λ, C̃ = ctε̄. (4.16)

Note that α is the ratio of net profit from using consumer data for a unit of privacy

risk to the cost for providing a unit of QoS. Furthermore, C̃ is the cost of providing

non-zero utility to the consumer with a maximal mismatch of privacy risk (relative

to SP).

By using the backward induction method, the computed SPNE of the two-SP

non-cooperative game is presented in the following theorem.

Theorem 5. There exists an SPNE given by

ε∗2 =
12ε̄cα + 15ctε̄− 16(p2 − p1)

24tc
, (4.17)

v∗2 =
(2α + t)cα6ε̄+ (α− t)9ctε̄+ (t− 2α)8p2 + (α + t)16p1

24ct
, (4.18)

ε∗1 = ε∗2 −
3ε̄

4
, (4.19)

v∗1 = v∗2 −
3ε̄

4
α +

p2 − p1

3c
, (4.20)

if the model parameters {c, r, λ, t, ε̄, p1, p2} satisfy

−1 ≤ 16(p2 − p1)

9ctε̄
≤ 1, (4.21)

4α− 3t

3
≤ 16(p2 − p1)

9cε̄
≤ 4α− t

3
, (4.22)

(12(r − cλ)ε̄)2 − (15ctε̄)2 + 288ctε̄(p2 + p1) ≥ [16(p2 − p1)]2. (4.23)
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At this SPNE, the market indifference threshold which determines the market seg-

mentation is given by

x∗τ =
1

2
− 8(p2 − p1)

9ctε̄
=

1

2
− 8(p2 − p1)

9C̃
, (4.24)

and the total profits of both SPs are

π∗1 =
4c

27tε̄
(
9tε̄

8
− 2(p2 − p1)

c
)2 =

1

3
(
3

4

√
C̃ − 4(p2 − p1)

3
√
C̃

)2 (4.25)

π∗2 =
4c

27tε̄
(
9tε̄

8
+

2(p2 − p1)

c
)2 =

1

3
(
3

4

√
C̃ +

4(p2 − p1)

3
√
C̃

)2, (4.26)

where α and C̃ are defined in (4.16).

Proof sketch: The proof of Theorem 5 is provided in Appendix F. We briefly sketch

the proof details here. Our approach involves using a three-stage backward induction

to compute equilibrium strategies starting from the third stage; at each stage, the

equilibrium strategies are computed using those computed from future stages. In the

third stage, for a fixed pair of strategies of each SP, the consumer makes the choice,

this in turn helps determining the indifference threshold xτ . This xτ is now used

in the second stage to compute the equilibrium QoS (v∗1, v
∗
2) for a fixed set of risk

(ε1, ε2). Finally, the first stage involves computing the equilibrium privacy risk for

these choice of v∗1, v
∗
2 and xτ by solving the corresponding best response functions,

thereby obtaining the solutions in (4.17)–(4.20). The conditions in (4.21)–(4.23)

result from requiring the equilibrium strategies as well as the equilibrium market

segmentation to satisfy the following: (i) feasible threshold: 0 ≤ x∗τ ≤ 1; (ii) feasible

risk: 0 ≤ ε∗1, ε
∗
2 ≤ ε̄; (iii) non-zero consumer utility: v∗1 − tx∗1ε∗1 ≥ 0 or v∗2 − tx∗2ε∗2 ≥

0. Substituting equilibrium strategies (4.17)–(4.20) and (4.16) into (4.7) yields the

market share of SP1 in (4.24). The profits for both SPs (see (4.25) and (4.26)) result

from using equilibrium strategies (4.17)–(4.20) to compute (4.8) and (4.9).
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Remark: Note that the equilibrium solution in (4.17)–(4.20) is highly parametrized.

For a given set of parameters that satisfy conditions in (4.21)–(4.23), the sequential

game yields an SPNE. By (4.24), the SP with higher privacy-independent revenue

owns a larger market share, leading to a higher total profit in the SPNE (see (4.25)

and (4.26)). Note that p1 and p2 are the only differentiator of SPs in the set of model

parameters. For a fixed p2 − p1, both π∗1 and π∗2 are decreasing functions of C̃ when

C̃ ∈ [0, 16|p2−p1|
9

] and increasing afterwards. On the other hand, by (4.21), we have

16|p2−p1|
9

≤ ctε̄, which implies C̃ ≥ 16|p2−p1|
9

. Thus, both π∗1 and π∗2 are increasing

functions of C̃ in the SPNE. In the following, based on Theorem 5, we highlight the

effect of each one of these model parameters on the SPNE while keeping all other

parameters fixed.

1. Heterogeneity of consumer privacy preferences (ε̄): for the SPNE presented in

Theorem 5, observe that v∗i and ε∗i , i ∈ {1, 2} are linear functions of ε̄. Further-

more, ε∗2 = ε∗1 + 3
4
ε̄; this implies that at the SPNE, the SP that offers the higher

privacy risk (i.e., ε∗2) offers exactly 3
4
ε̄ higher than that of its competitor. For all

other parameters fixed, as ε̄ increases, SP2’s privacy risk increases linearly. On

the other hand, SP1’s privacy risk increases linearly with ε̄ only if the model

parameters are such that 4(r − cλ) > ct; otherwise, it decreases linearly (see

(F.15) in Appendix F). To further understand the dependency, we consider the

following two cases:

• If p2 − p1 > 0, as ε̄ increases, SP2 can increase its revenue by increasing

its privacy risk offerings. As a result, more consumers who have low pri-

vacy risk preferences will choose SP1. Therefore, the market share of SP2

decreases. However, the profits of both SPs increases as ε̄ increases. The

intuition behind this is that when ε̄ increases, both SPs can exploit con-
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sumers’ private information from a larger range of privacy risk preferences.

As a result, their revenue from exploiting consumers’ private information

also increases at the SPNE, which in turn leads to an increase in both SPs’

profits.

• If p2 − p1 < 0, as ε̄ increases, SP2 increases its advertised privacy risk to

exploit more private information from consumer. Despite this, the market

share of SP2 increases with ε̄. This is because as ε̄ increases, SP2 pro-

vides a higher utility than SP1 to some consumers who prefer SP1 before.

Furthermore, each SP’s profit increases as ε̄ increases.

2. Operation cost (c): when c increases, by (4.24), the SP with lower privacy-

independent revenue benefits since its market share increases. Observe from

(4.17) and (4.18) that if p2−p1 > 0, both SPs increase their privacy risk strate-

gies in the SPNE as c increases. They do so because SPs can use consumers’

private information to increase its privacy dependent revenue, thereby offsetting

their cost. Otherwise, they decrease their privacy risks. As a result of these

strategies, when c increases, both SPs’ profits also increase.

3. Privacy independent revenue (p1, p2): as the difference in the privacy-independent

revenues (p2 − p1) increases, both SPs offer lower privacy risks to attract con-

sumers. From (4.24)–(4.26) and condition (4.21), we see that as p2−p1 increases,

the market share and profit of SP1 decreases while SP2’s market share and profit

increases. This is because a larger difference in the revenue independent of con-

sumer’s private data gives SP2 more market power in the competition. As a

result, SP2’s profit increases while SP1’s profit decreases.

4. Consumer privacy valuation or skittishness (t): when t increases, by (4.17)–

(4.20), we have ε∗1 = 12ε̄cα−16(p2−p1)
24tc

− 1
8
ε̄ ≥ 0. Therefore, both SPs decrease their
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privacy risks as t increases. Furthermore, by (4.24), the SP with lower privacy-

independent revenue benefits since its market share increases. For this linear

model considered, as t increases, both SPs decrease their privacy risks. This

results in a decrease in the cost and revenue of both SPs but cost supersedes

revenue, thereby leading to a profit for both SPs. In other words, a higher

privacy valuation from consumers “softens” the competition between SPs.

4.3.2 Truncated Gaussian Consumer Privacy Risk Tolerance

In this section, we model a consumer’s privacy tolerance as a random variable

E that follows a Gaussian distribution N ( ε̄
2
, σ2) with a mean of ε̄

2
and a standard

deviation of σ. Since E ∈ [0, ε̄], we restrict the Gaussian distribution to lie within

the interval [0, ε̄]. Thus, E follows a truncated Gaussian distribution with CDF

FE(ε) =


Φ(

ε− ε̄2
σ

)−Φ(− ε̄
2σ

)

Φ( ε̄
2σ

)−Φ(− ε̄
2σ

)
ε ∈ [0, ε̄]

0 ε ∈ [−∞, 0]

1 ε ∈ [ε̄,+∞]

, (4.27)

where Φ(y) denotes the CDF of the standard Gaussian distribution.

In contrast to the uniform distribution case, the CDF in (4.27) is not amenable

to a closed form solution. Thus, we characterize the equilibrium numerically. To find

the SPNE, we first compute the SPNE QoS in the second stage as functions of privacy

risk guarantees by solving (4.12). Then, we use an iterated best response method to

find the optimal privacy risk guarantee of an SP by fixing its competitor’s strategy

in each iteration. When the process converges, we have found an SPNE in which no

SP is better off by unilaterally deviating from the equilibrium.

4.3.3 Illustration of Results

In this section, we illustrate our model and results. First, we assume consumers

have uniformly distributed privacy risk tolerance. We plot each SP’s SPNE strategy,
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market share, and total profit w.r.t consumers’ maximum privacy risk tolerance ε̄

for different values of consumer privacy risk valuation t. Later, we study the model

in which consumers’ privacy risk tolerance follows a Gaussian distribution N ( ε̄
2
, 1)

truncated between 0 and ε̄. The model parameters are given as follows:

Parameter c λ r p1 p2

Value 0.5 0.75 0.7 0.4 0.8

Table 4.1: Numerical example model parameters

Consumers with Uniformly Distributed Privacy Risk Tolerance

In this section, we vary ε̄ from 3 to 5 to study properties of SPNE. Our choice of

values in Table 4.1 is one set of parameters for which we can determine a meaning-

ful range of t values. However, there exists many such combinations of parameter

values. Note that by (4.21)–(4.23) in Theorem 5, t must belong to [0.58, 0.85] when

other parameters are given in Table 4.1 for sustaining the SPNE. In Figure 4.3, the

equilibrium strategies of different SPs are plotted. As ε̄ increases, both SPs increase

their privacy risk offerings. Furthermore, it can be seen that as t, the valuation of

privacy by consumer, decreases, each SP increases its privacy risk to generate more

profit from using private data. Correspondingly, the SPs will have to provide higher

QoS to attract consumers. On the other hand, if t increases, both SPs reduce their

privacy risks to avoid violating consumers’ privacy.

It is worth noting that for the special case of t = 0.7, we observe that SP1 caters

to smaller set of privacy sensitive consumers. The reason for this is as follows: indeed,

one generally expects SP1 to offer a larger privacy risk as ε̄ increases. However, for

a large enough privacy valuation (in this case t = 0.7), what we observe is that
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since consumers highly value privacy, the cost of offering a high QoS proportionally

increases for SP1. The resulting profit is insufficient to justify the cost.
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Figure 4.3: SPNE strategies of SPs under uniform consumer privacy risk

The market shares of different SPs in the SPNE are presented in Figure 4.4. We

observe that the equilibrium market share of SP2 decreases as t increases. The intu-

ition behind this is that if t increases, the consumer’s valuation of privacy mismatch

also increases. Thus, it is more difficult for SP2 to attract consumers with privacy

tolerance lower than ε2. As a result, its market share decreases. Notice that in Fig-

ure 4.4, as ε̄ decreases, the equilibrium market share of SP2 increases. This is because

consumers experience a lower negative utility from the mismatch between their pre-

ferred and the offered privacy risk when the net range is smaller (recall that the utility

from mismatch is given by t(x − xi)εi, εi ∈ [0, ε̄]). As a result, more consumers will

choose the SP with a higher privacy risk to enjoy a higher QoS.

In Figure 4.5, we plot the total profit at the SPNE for each SP as a function of the

maximum consumer privacy risk tolerance ε̄ for different values of t. As shown in the
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Figure 4.4: Market shares of SPs at SPNE under uniform consumer privacy risk

figure, the total profit of both SPs at SPNE increase as ε̄ increases. This is due to the

fact that a larger ε̄ indicates a larger range of consumer preferences, and then, more

possibilities for the SPs to exploit private information. Thus, both SPs can benefit

from using private data of consumers that have a higher privacy risk tolerance. As t

increases, both SPs decrease their privacy risks. As a result, the cost and revenue of

both SPs decrease. However, in this case, cost supersedes revenue. Therefore, both

SPs make more profit. In other words, a higher privacy valuation from consumers

“softens” the competition.

Truncated Gaussian Consumer Privacy Risk Tolerance

We now consider the case in which consumers’ privacy risk tolerance follows a trun-

cated Gaussian distribution with a mean of ε̄
2

and a standard deviation of 1. The

equilibrium strategies of different SPs are shown in Figure 4.6. As with the uniform

distribution scenario, here too we observe that the privacy risk and the QoS offered by

each SP are linear functions of ε̄. We also notice that in this SPNE, SP2 will always

provide service with maximum privacy risk (Figure 4.6a) for the set of parameters in
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Figure 4.5: Profit of SPs at SPNE under uniform consumer privacy risk

Table 4.1. This is because in contrast to the uniform distribution, for the truncated

Gaussian distribution, there are a relatively smaller number of consumers concen-

trated in the tail end of [0, ε̄]. Thus, for SP1 to make a profit, it has to offer a higher

privacy risk so that it can capture a large number of consumers in the middle of the

[0, ε̄] range. This in turn forces SP2 to increase to its privacy risk to differentiate its

QoS offering and thus have a higher profit. Since the privacy risk preference is bound

by [0, ε̄], SP2 can only offer the highest privacy risk in this example.

Figure 4.7 shows market shares of different SPs at SPNE vs. consumers’ maxi-

mum privacy risk tolerance for different values of t under truncated Gaussian privacy

tolerance distribution. As t decreases, the market share of SP2 at SPNE increases,

and vice versa. Also, when ε̄ decreases, the equilibrium market share of SP2 increases.

Furthermore, it can be seen that for the same ε̄, the market share of SP2 (SP1) is

smaller (larger) when consumers’ privacy tolerance follows the truncated Gaussian

distribution compared to uniform distribution. Our numerical analysis shows that at

SPNE, SP2 is forced to provide service with maximum privacy risk. We argue that
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Figure 4.6: SPNE strategies of SPs under truncated Gaussian consumer privacy risk

this is due to the shape of the distribution that limits the number of consumers at the

two extremes thus compelling the two SPs to compete for the large bulk of consumers

distributed around ε̄/2. Given the ability of SP2 to make more profit on untargeted

services relative to SP1, the SPNE solution leads to SP1 increasing its market share

to be profitable and SP2 achieving profitability with a smaller market share.

The relationship between total profit of different SPs at SPNE vs. consumers’

maximum privacy risk tolerance for different values of t is shown in Figure 4.8. Similar

to Figure 4.5, both SPs’ total profit increase as ε̄ increases. However, in contrast to

Figure 4.5, as t decreases, the total profit of SP2 increases. This is because SP2 always

offers ε̄ in the SPNE. Notice that SP2’s equilibrium QoS is also a linear function of

ε̄ (see Figure 4.6b). On the other hand, SP2’s market share increases as t decreases

(see Figure 4.7). By (4.4), (4.14), and (4.15); the total profit of SP2 increases as t

decreases.
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Figure 4.7: Market shares of SPs at SPNE under truncated Gaussian consumer
privacy risk
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Figure 4.8: Profit of SPs at SPNE under truncated Gaussian consumer privacy risk

4.4 Market with Multiple Service Providers

In the previous sections, we studied the market with two SPs. In this section, we

examine a generalized model with multiple SPs (Figure 4.9). We allow for a finitely

arbitrary number of SPs, each of which offers the same type of free service but with

different QoS and privacy risk guarantee to consumers. In particular, we assume there
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are m SPs in the market. Our models for cost, revenue and utility for each SP as well

as the consumers are the same as for the two-SP model described in Section 4.1.1.

Furthermore, we assume a consumer’s privacy risk tolerance is uniformly distributed

between [0, ε]. Analogous to the two SP model, the interactions between the m SPs

and consumers can also be viewed as a non-cooperative sequential game. The m-SP

game proceeds in three stages.

In the first stage, each of them SPs chooses its own privacy risk guarantee resulting

in a vector ε = (ε1, ε2, ..., εm) (on the interval [0, ε̄]). Without loss of generality, we

assume ε1 ≤ ε2 ≤ ... ≤ εm. At the second stage, given the privacy risk ε determined

in the first stage, the SPs simultaneously determine their QoS values to obtain a

vector v = {v1, v2, ..., vm}. At the last stage, each consumer chooses the SP that

yields the maximal perceived utility for the consumer.
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Figure 4.9: Market model for multiple SPs offering services with privacy guarantee

To find the SPNE, we apply backward induction to the three stage game described

above as follows. In the last stage of the game, for fixed QoS and privacy risk

guarantee strategies of the SPs, consumers’ choices of SPs are determined by their

privacy risk tolerances. In the two-SP case, the consumer located at xτ divides the

set of consumers into two convex subsets where the consumers in the left subset will

choose SP1 and vice versa. However, for the multiple SP case, the market share of

SPi (i ∈ {1, ...,m}) is not necessarily a convex set between the indifference threshold

in which consumers are indifferent to choosing SPi−1 or SPi and the threshold in
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which consumers are indifferent to choosing SPi or SPi+1. This is due to the fact

that in general the problem requires each SPi to compete with all other SPs, even

if their privacy risk offerings are very different (e.g., SPs with a large difference in

locations in Figure 4.9). We note that this will not happen in the equilibrium since

an SP with zero market share would be better off by either improving its QoS to

attract some consumers or just exit the market. Therefore, in the equilibrium, each

SP only competes directly with its two closest neighbors. For given QoS profile

v = {v1, ..., vm} and privacy risk profile ε = (ε1, ..., εm), the market segmentation is

n1 =
v1 − v2 + t(FE(ε2)ε2 − FE(ε1)ε1)

t(ε2 − ε1)
,

ni =
vi − vi+1 + t(FE(εi+1)εi+1 − FE(εi)εi)

t(εi+1 − εi)
− vi−1 − vi + t(FE(εi)εi − FE(εi−1)εi−1)

t(εi − εi−1)
,

i ∈ {2, ...,m− 1},

nm = 1− vm−1 − vm + t(FE(εm)εN − FE(εm−1)εm−1)

t(εm − εm−1)
.

Furthermore, we define the objective function of SPi to be

πi(ε;v) = [R(εi)− C(vi; εi)]ni(ε;v), i ∈ {1, ...,m}.

For a given privacy risk guarantee profile ε, the optimal QoS of SPi (i ∈ {1, ...,m})

is determined by

argmax
vi

πi(ε;v), i ∈ {1, ...,m} (4.28)

while fixing all other players’ strategies.

We note that the cost function C(vi; εi) and the market segmentation computed in

the first stage are both linear functions of vi. Thus, for a fixed privacy risk guarantee

profile ε, the objective function of SPi in this stage is a concave function w.r.t its own

strategy vi. Furthermore, the feasible set of each SP’s strategy is a convex set. Thus,

the non-cooperative game among the SPs in this stage is a m-player concave game.
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By [135], there exists a Nash equilibrium. We define δi , 1
t(εi+1−εi) , y1 , r(ε1) + p1 −

cλε1−ctx2ε2 +ctx1ε1, yN , r(εN)+pN−cλεN−ct(1−xN)εN +ct(1−xN−1)εN−1 and

yi , r(εi)+pi−cλεi+ctxiεi−ctxi+1εi+1

t(εi+1−εi) + r(εi)+pi−cλεi−ctxi−1εi−1+ctxiεi
t(εi−εi−1)

∀i ∈ {2, ...,m}. Ap-

plying the first order condition to SPs’ profit functions (solving simultaneous linear

equations obtained from ∂πi(ε;v)
∂vi

= 0, i ∈ {1, 2, ...,m}) yields the equilibrium strategies

v∗1 =
v2

2
+
y1

2c
, (4.29)

v∗i =
cvi+1δi + cvi−1δi−1 + yi

2c[δi + δi−1]
, i ∈ {2, ..,m}, (4.30)

v∗m =
vm−1

2
+
ym
2c
. (4.31)

In the last stage, the SPs determine their privacy risk guarantees ε by considering

equilibrium strategies in previous stages (ni and v∗i ∀i ∈ {1, ...,m}) as functions of

ε. Therefore, the optimal privacy risk strategy of SPi is determine by

argmax
εi

πi(ε;v), i ∈ {1, ...,m} (4.32)

while fixing all other players’ strategies. For reasons of intractability (solving highly

parameterized high order polynomial equations), a full characterization of privacy

risk equilibria could not be achieved. Thus, we characterize the SPNE numerically

by using the iterated best response method. We consider a three-SP market and

adopt the model parameters presented in Table 4.1. Furthermore, we assume t = 0.7

and ε̄ = 5. The initial privacy risk of SPi is given by iε̄
i+1

for i ∈ {1, 2, 3}. Although

there exists an SPNE in the second stage of the sequential game for fixed privacy

guarantees, the existence of an equilibrium in the first stage can not be guaranteed.

The best response strategies of the SPs for different values of SP2’s privacy inde-

pendent revenue are plotted in Figure 4.10. It can be seen that the two SPs with lower

privacy risks proceed to jump over each other in each round of best response iteration,

attempting to lower its privacy risk to attract more consumers from its competitor.
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Figure 4.10: Best response of each SP’s privacy risk for different values of SP2’s
revenue independent of using private data

The SP with the highest private data independent revenue adopts a high privacy risk

strategy to focus on consumers with high privacy risk tolerance and exploiting their

private data extensively. We observe that when p2 is large, SP3’s privacy risk strategy

is also higher on average. On the other hand, SP1’s best response strategy is lower.

The intuition behind is that a larger p2 allows SP2 to set a higher privacy risk to

make more profit from using consumer data. This forces SP3 to increase its privacy

risk to differentiate itself from SP2. On the other hand, a higher privacy risk of SP2

will encourage SP1 to lower its privacy risk to attract more consumers.
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Chapter 5

GENERATIVE ADVERSARIAL PRIVACY

5.1 Generative Adversarial Privacy Model

We consider a dataset D which contains both public and private variables for n

individuals (see Figure 1.1). We represent the public variables by a random variable

X ∈ X , and the private variables (which are typically correlated with the public

variables) by a random variable Y ∈ Y . Each dataset entry contains a pair of public

and private variables denoted by (X, Y ). Instances of X and Y are denoted by x

and y, respectively. We assume that each entry pair (X, Y ) is distributed according

to P (X, Y ), and is independent from other entry pairs in the dataset. Since the

dataset entries are independent of each other, we restrict our attention to memoryless

mechanisms: privacy mechanisms that are applied on each data entry separately.

Formally, we define the privacy mechanism as a randomized mapping given by

g(X, Y ) : X × Y → X .

We consider two different types of privatization schemes: (a) private data depen-

dent (PDD) schemes, and (b) private data independent (PDI) schemes. A privatiza-

tion mechanism is PDD if its output is dependent on both Y and X. It is PDI if its

output only depends on X. PDD mechanisms are naturally superior to PDI mecha-

nisms. We show, in sections 5.2 and 5.3, that there is a sizeable gap in performance

between these two approaches.

In our proposed GAP framework, the privatizer is pitted against an adversary. We

model the interactions between the privatizer and the adversary as a non-cooperative

game. For a fixed g, the goal of the adversary is to reliably infer Y from g(X, Y )

using a strategy h. For a fixed adversarial strategy h, the goal of the privatizer is to

design g in a way that minimizes the adversary’s capability of inferring the private
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variable from the perturbed data. The optimal privacy mechanism is obtained as an

equilibrium point at which both the privatizer and the adversary can not improve

their strategies by unilaterally deviating from the equilibrium point.

5.1.1 Formulation

Given the output X̂ = g(X, Y ) of a privacy mechanism g(X, Y ), we define Ŷ =

h(g(X, Y )) to be the adversary’s inference of the private variable Y from X̂. To

quantify the effect of adversarial inference, for a given public-private pair (x, y), we

model the loss of the adversary as

`(h(g(X = x, Y = y)), Y = y) : Y × Y → R.

Therefore, the expected loss of the adversary w.r.t. X and Y is defined to be

L(h, g) , E[`(h(g(X, Y )), Y )], (5.1)

where the expectation is taken over P (X, Y ) and the randomness in g and h.

Intuitively, the privatizer would like to minimize the adversary’s ability to learn

Y reliably from the published data. This can be trivially done by releasing an X̂

independent of X. However, such an approach provides no utility for data analysts

who want to learn non-private variables from X̂. To overcome this issue, we capture

the loss incurred by privatizing the original data via a distortion function d(x̂, x) :

X × X → R, which measures how far the original data X = x is from the privatized

data X̂ = x̂. Thus, the average distortion under g(X, Y ) is E[d(g(X, Y ), X)], where

the expectation is taken over P (X, Y ) and the randomness in g.

On the one hand, the data holder would like to find a privacy mechanism g that

is both privacy preserving (in the sense that it is difficult for the adversary to learn

Y from X̂) and utility preserving (in the sense that it does not distort the original

data too much). On the other hand, for a fixed choice of privacy mechanism g, the
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adversary would like to find a (potentially randomized) function h that minimizes its

expected loss, which is equivalent to maximizing the negative of the expected loss.

To achieve these two opposing goals, we model the problem as a constrained minimax

game between the privatizer and the adversary:

min
g(·)

max
h(·)

− L(h, g) (5.2)

s.t. E[d(g(X, Y ), X)] ≤ D,

where the constant D ≥ 0 determines the allowable distortion for the privatizer and

the expectation is taken over P (X, Y ) and the randomness in g and h.

5.1.2 GAP under Various Loss Functions

The above formulation places no restrictions on the adversary. Indeed, different

loss functions and decision rules lead to different adversarial models. In what follows,

we will discuss a variety of loss functions under hard and soft decision rules, and show

how our GAP framework can recover several popular information theoretic privacy

notions.

Hard Decision Rules. When the adversary adopts a hard decision rule,

h(g(X, Y )) is an estimate of Y . Under this setting, we can choose `(h(g(X, Y )), Y )

in a variety of ways. For instance, if Y is continuous, the adversary can attempt to

minimize the difference between the estimated and true private variable values. This

can be achieved by considering a squared loss function

`(h(g(X, Y )), Y ) = (h(g(X, Y ))− Y )2, (5.3)

which is known as the `2 loss. In this case, one can verify that the adversary’s optimal

decision rule is h∗ = E[Y |g(X, Y )], which is the conditional mean of Y given g(X, Y ).

Furthermore, under the adversary’s optimal decision rule, the minimax problem in
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(5.2) simplifies to

min
g(·)
−mmse(Y |g(X, Y )) = −max

g(·)
mmse(Y |g(X, Y )),

subject to the distortion constraint. Here mmse(Y |g(X, Y )) is the resulting minimum

mean square error (MMSE) under h∗ = E[Y |g(X, Y )]. Thus, under the `2 loss, GAP

provides privacy guarantees against an MMSE adversary. On the other hand, when

Y is discrete (e.g., age, gender, political affiliation, etc), the adversary can attempt

to maximize its classification accuracy. This is achieved by considering a 0-1 loss

function [136]

`(h(g(X, Y )), Y ) =

 0 if h(g(X, Y )) = Y

1 otherwise
. (5.4)

In this case, one can verify that the adversary’s optimal decision rule is the maximum

a posteriori probability (MAP) decision rule: h∗ = argmaxy∈Y P (y|g(X, Y )), with ties

broken uniformly at random. Moreover, under the MAP decision rule, the minimax

problem in (5.2) reduces to

min
g(·)
−(1−max

y∈Y
P (y, g(X, Y ))) = min

g(·)
max
y∈Y

P (y, g(X, Y ))− 1, (5.5)

subject to the distortion constraint. Thus, under a 0-1 loss function, the GAP for-

mulation provides privacy guarantees against a MAP adversary.

Soft Decision Rules. Instead of a hard decision rule, we can also consider

a broader class of soft decision rules where h(g(X, Y )) is a distribution over Y ; i.e.,

h(g(X, Y )) = Ph(y|g(X, Y )) for y ∈ Y . In this context, we can analyze the perfor-

mance under a log-loss

`(h(g(X, Y )), y) = log
1

Ph(y|g(X, Y ))
. (5.6)
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In this case, the objective of the adversary simplifies to

max
h(·)
−E[log

1

Ph(y|g(X, Y ))
] = −H(Y |g(X, Y )),

and that the maximization is attained at P ∗h (y|g(X, Y )) = P (y|g(X, Y )). Therefore,

the optimal adversarial decision rule is determined by the true conditional distribution

P (y|g(X, Y )), which we assume is known to the data holder in the game-theoretic

setting. Thus, under the log-loss function, the minimax optimization problem in (5.2)

reduces to

min
g(·)
−H(Y |g(X, Y )) = min

g(·)
I(g(X, Y );Y )−H(Y ),

subject to the distortion constraint. Thus, under the log-loss in (5.6), GAP is equiv-

alent to using MI as the privacy metric [86].

The 0-1 loss captures a strong guessing adversary; in contrast, log-loss or information-

loss models a belief refining adversary. Next, we consider a more general α-loss func-

tion [137] that allows continuous interpolation between these extremes via

`(h(g(X, Y )), y) =
α

α− 1

(
1− Ph(y|g(X, Y ))1− 1

α

)
, (5.7)

for any α > 1. As shown in [137], for very large α (α → ∞), this loss approaches

that of the 0-1 (MAP) adversary. As α decreases, the convexity of the loss function

encourages the estimator Ŷ to be probabilistic, as it increasingly rewards correct

inferences of lesser and lesser likely outcomes (in contrast to a hard decision rule

by a MAP adversary of the most likely outcome) conditioned on the revealed data.

As α → 1, (5.7) yields the logarithmic loss, and the optimal belief PŶ is simply the

posterior belief. Denoting Ha
α(Y |g(Y,X)) as the Arimoto conditional entropy of order

α, one can verify that [137]

max
h(·)
−E
[

α

α− 1

(
1− Ph(y|g(X, Y ))1− 1

α

)]
= −Ha

α(Y |g(X, Y )),
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which is achieved by a ‘α-tilted’ conditional distribution [137]

P ∗h (y|g(X, Y )) =
P (y|g(X, Y ))α∑

y∈Y
P (y|g(X, Y ))α

.

Under this choice of a decision rule, the objective of the minimax optimization in

(5.2) reduces to

min
g(·)
−Ha

α(Y |g(X, Y )) = min
g(·)

Ia
α(g(X, Y );Y )−Hα(Y ), (5.8)

where Ia
α is the Arimoto mutual information and Hα is the Rényi entropy. Note that

as α → 1, we recover the classical MI privacy setting and when α → ∞, we recover

the 0-1 loss.

5.1.3 Data-driven GAP

So far, we have focused on a setting where the data holder has access to P (X, Y ).

When P (X, Y ) is known, the data holder can simply solve the constrained minimax

optimization problem in (5.2) (theoretical version of GAP) to obtain a privatiza-

tion mechanism that would perform best against a chosen type of adversary. In

the absence of P (X, Y ), we propose a data-driven version of GAP that allows the

data holder to learn privatization mechanisms directly from a dataset of the form

D = {(x(i), y(i))}ni=1. Under the data-driven version of GAP, we represent the privacy

mechanism via a conditional generative model g(X, Y ; Θp) parameterized by Θp. This

generative model takes (X, Y ) as inputs and outputs X̂. In the training phase, the

data holder learns the optimal parameters Θp by competing against a computational

adversary : a classifier modeled by a neural network h(g(X, Y ; Θp); Θa) parameterized

by Θa. After convergence, we evaluate the performance of the learned g(X, Y ; Θ∗p) by

computing the maximal probability of inferring Y under the MAP adversary studied

in the theoretical version of GAP.

We note that in theory, the functions h and g can (in general) be arbitrary; i.e.,

they can capture all possible learning algorithms. However, in practice, we need to
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restrict them to a rich hypothesis class. Figure 5.1 shows an example of the GAP

model in which the privatizer and adversary are modeled as multi-layer “randomized”

neural networks. For a fixed h and g, we quantify the adversary’s empirical loss using

a continuous and differentiable function

LEMP(Θp,Θa) =
1

n

n∑
i=1

`(h(g(x(i), y(i); Θp); Θa), y(i)), (5.9)

where (x(i), y(i)) is the ith row of D and `(h(g(x(i), y(i); Θp); Θa), y(i)) is the adver-

sary loss in the data-driven context. The optimal parameters for the privatizer and

adversary are the solution to

min
Θp

max
Θa

− LEMP(Θp,Θa) (5.10)

s.t. ED[d(g(X, Y ; Θp), X)] ≤ D,

where the expectation is taken over the dataset D and the randomness in g.

In keeping with the now common practice in machine learning, in the data-driven

approach for GAP, one can use the empirical log-loss function [138, 139] given by

(5.9) with

`(h(g(x(i), y(i); Θp); Θa), y(i)) = −y(i) log h(g(x(i), y(i); Θp); Θa) (5.11)

− (1− y(i)) log(1− h(g(x(i), y(i); Θp); Θa)),

which leads to a minimum cross-entropy adversary. As a result, the empirical loss of

the adversary is quantified by the cross-entropy

LXE(Θp,Θa) = − 1

n

n∑
i=1

[y(i) log h(g(x(i), y(i); Θp); Θa) (5.12)

+ (1− y(i)) log(1− h(g(x(i), y(i); Θp); Θa))].

An alternative loss that can be readily used in this setting is the α-loss introduced

in Section 5.1.2. In the data-driven context, the α-loss can be written as
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(X, Y )

Noise sequence
Ŷ

Privatizer Adversary

X̂

Figure 5.1: A multi-layer neural network model for the privatizer and adversary

`(h(g(x(i), y(i); Θp); Θa), y(i)) =
α

α− 1

(
y(i)(1− h(g(x(i), y(i); Θp); Θa)

1− 1
α )

+(1− y(i))(1− (1− h(g(x(i), y(i); Θp); Θa))
1− 1

α )
)
, (5.13)

for any constant α > 1. As discussed in Section 5.1.2, the α-loss captures a variety of

adversarial models and recovers both the log-loss (when α → 1) and 0-1 loss (when

α→∞). Futhermore, (5.13) suggests that α-leakage can be used as a surrogate (and

smoother) loss function for the 0-1 loss (when α is relatively large).

The minimax optimization problem in (5.10) is a two-player non-cooperative game

between the privatizer and the adversary. The strategies of the privatizer and ad-

versary are given by Θp and Θa, respectively. Each player chooses the strategy that

optimizes its objective function w.r.t. what its opponent does. In particular, the

privatizer must expect that if it chooses Θp, the adversary will choose a Θa that min-

imizes the negative of its own loss function based on the choice of the privatizer. The

optimal privacy mechanism is given by the equilibrium of the privatizer-adversary

game.

In practice, we can learn the equilibrium of the game using an iterative algorithm

presented in Algorithm 1. We first maximize the negative of the adversary’s loss

function in the inner loop to compute the parameters of h for a fixed g. Then,

we minimize the privatizer’s loss function, which is modeled as the negative of the

adversary’s loss function, to compute the parameters of g for a fixed h. To avoid
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over-fitting and ensure convergence, we alternate between training the adversary for

k epochs and training the privatizer for one epoch. This results in the adversary

moving towards its optimal solution for small perturbations of the privatizer [101].

To incorporate the distortion constraint into the learning algorithm, we use the

penalty method [140] and augmented Lagrangian method [141] to replace the con-

strained optimization problem by a series of unconstrained problems whose solutions

asymptotically converge to the solution of the constrained problem. Under the penalty

method, the unconstrained optimization problem is formed by adding a penalty to the

objective function. The added penalty consists of a penalty parameter ρt multiplied

by a measure of violation of the constraint. The measure of violation is non-zero when

the constraint is violated and is zero if the constraint is not violated. Therefore, in

Algorithm 1, the constrained optimization problem of the privatizer can be approxi-

mated by a series of unconstrained optimization problems with the loss function

`(Θt
p,Θ

t+1
a ) =− 1

M

M∑
i=1

`(h(g(x(i), y(i); Θt
p); Θt+1

a ), y(i)) (5.14)

+ ρt max{0, 1

M

M∑
i=1

d(g(x(i), y(i); Θt
p), x(i))−D},

where ρt is a penalty coefficient which increases with the number of iterations t. For

convex optimization problems, the solution to the series of unconstrained problems

will eventually converge to the solution of the original constrained problem [140].

The augmented Lagrangian method is another approach to enforce equality con-

straints by penalizing the objective function whenever the constraints are not satisfied.

Different from the penalty method, the augmented Lagrangian method combines the

use of a Lagrange multiplier and a quadratic penalty term. Note that this method is

designed for equality constraints. Therefore, we introduce a slack variable δ to convert

the inequality distortion constraint into an equality constraint. Using the augmented

Lagrangian method, the constrained optimization problem of the privatizer can be
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Algorithm 1 Alternating minimax privacy preserving algorithm

Input: dataset D, distortion parameter D, iteration number T

Output: Optimal privatizer parameter Θ∗p

procedure Alernate Minimax(D, D, T )

Initialize Θ1
p and Θ1

a

for t = 1, ..., T do

Random minibatch of M datapoints {x(1), ..., x(M)} drawn from full dataset

Generate {x̂(1), ..., x̂(M)} via x̂(i) = g(x(i), y(i); Θt
p)

Update the adversary parameter Θt+1
a by stochastic gradient ascend for k

epochs

Θt+1
a = Θt

a + αt∇Θta

1

M

M∑
i=1

−`(h(x̂(i); Θt
a), y(i)), αt > 0

Compute the descent direction ∇Θtpl(Θ
t
p,Θ

t+1
a ), where

`(Θt
p,Θ

t+1
a ) = − 1

M

M∑
i=1

`(h(g(x(i), y(i); Θt
p); Θt+1

a ), y(i))

subject to 1
M

∑M
i=1[d(g(x(i), y(i); Θt

p), x(i))] ≤ D

Perform line search along ∇Θtpl(Θ
t
p,Θ

t+1
a ) and update

Θt+1
p = Θt

p − αt∇Θtp`(Θ
t
p,Θ

t+1
a )

Exit if solution converged

return Θt+1
p

103



replaced by a series of unconstrained problems with the loss function given by

`(Θt
p,Θ

t+1
a , δ) =− 1

M

M∑
i=1

`(h(g(x(i), y(i); Θt
p); Θt+1

a ), y(i)) (5.15)

+
ρt
2

(
1

M

M∑
i=1

d(g(x(i), y(i); Θt
p), x(i)) + δ −D)2

− λt(
1

M

M∑
i=1

d(g(x(i), y(i); Θt
p), x(i)) + δ −D),

where ρt is a penalty coefficient which increases with the number of iterations t and

λt is updated according to the rule λt+1 = λt − ρt( 1
M

M∑
i=1

d(g(x(i), y(i); Θt
p), x(i)) + δ −

D). For convex optimization problems, the solution to the series of unconstrained

problems formulated by the augmented Lagrangian method also converges to the

solution of the original constrained problem [141].

5.1.4 Outline of Work

Our GAP framework is very general and can be used to capture many notions

of privacy via various decision rules and loss funcitons. In the rest of this chapter,

we investigate GAP under 0-1 loss for two simple yet canonical dataset models: (a)

the binary data model (Section 5.2), and (b) the binary Gaussian mixture model

(Section 5.3). Under the binary data model, both X and Y are binary. Under the

binary Gaussian mixture model, Y is binary whereas X is conditionally Gaussian.

We use these results to validate that the data-driven version of GAP can discover

“theoretically optimal” privatization schemes.

In the data-driven approach of GAP, since P (X, Y ) is typically unknown in prac-

tice and our objective is to learn privatization schemes directly from data, we have to

consider the empirical (data-driven) version of (5.5). Such an approach immediately

hits a roadblock because taking derivatives of a 0-1 loss function w.r.t. the parameters

of h and g is ill-defined. To circumvent this issue, similar to the common practice

in the ML literature, we use the empirical log-loss (5.12) as the loss function for the
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adversary. We derive game-theoretically optimal mechanisms for the 0-1 loss func-

tion, and use them as a benchmark against which we compare the performance of the

data-driven GAP mechanisms. Finally, we demonstrate the performance of GAP on

two meaningful, widely used dataset: GENKI and MNIST.

5.2 Binary Data Model

In this section, we study a setting where both the public and private variables

are binary-valued random variables. Let pi,j denote the joint probability of (X, Y ) =

(i, j), where i, j ∈ {0, 1}. To prevent an adversary from correctly inferring the private

variable Y from the public variable X, the privatizer applies a randomized mechanism

on X to generate the privatized data X̂. Since both the original and privatized public

variables are binary, the distortion between x and x̂ can be quantified by the Hamming

distortion; i.e. d(x̂, x) = 1 if x̂ 6= x and d(x̂, x) = 0 if x̂ = x. Thus, the expected

distortion is given by E[d(X̂,X)] = P (X̂ 6= X).

5.2.1 Theoretical Approach for Binary Data Model

The adversary’s objective is to correctly guess Y from X̂. We consider a MAP ad-

versary who has access to the joint distribution of (X, Y ) and the privacy mechanism.

The privatizer’s goal is to privatize X in a way that minimizes the adversary’s prob-

ability of correctly inferring Y from X̂ subject to the distortion constraint. We first

focus on private-data dependent (PDD) privacy mechanisms that depend on both Y

and X. We later consider private-data independent (PDI) privacy mechanisms that

only depend on X.

PDD Privacy Mechanism

Let g(X, Y ) denote a PDD mechanism. Since X, Y , and X̂ are binary random

variables, the mechanism g(X, Y ) can be represented by the conditional distribution

P (X̂|X, Y ) that maps the public and private variable pair (X, Y ) to an output X̂
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given by

P (X̂ = 0|X = 0, Y = 0) = s0,0, P (X̂ = 0|X = 0, Y = 1) = s0,1,

P (X̂ = 1|X = 1, Y = 0) = s1,0, P (X̂ = 1|X = 1, Y = 1) = s1,1.

Thus, the marginal distribution of X̂ is given by

P (X̂ = 0) =
∑
X,Y

P (X̂ = 0|X, Y )P (X, Y ) = s0,0p0,0+s0,1p0,1+(1−s1,0)p1,0+(1−s1,1)p1,1,

P (X̂ = 1) =
∑
X,Y

P (X̂ = 1|X, Y )P (X, Y ) = (1−s0,0)p0,0+(1−s0,1)p0,1+s1,0p1,0+s1,1p1,1.

If X̂ = 0, the adversary’s inference accuracy for guessing Ŷ = 1 is

P (Y = 1, X̂ = 0) =
∑
X

P (X, Y = 1)P (X̂ = 0|X, Y = 1) = p1,1(1− s1,1) + p0,1s0,1,

(5.16)

and the inference accuracy for guessing Ŷ = 0 is

P (Y = 0, X̂ = 0) =
∑
X

P (X, Y = 0)P (X̂ = 0|X, Y = 0) = p1,0(1− s1,0) + p0,0s0,0.

(5.17)

Let s = {s0,0, s0,1, s1,0, s1,1}. For X̂ = 0, the MAP adversary’s inference accuracy is

P
(B)
d (s, X̂ = 0) = max{P (Y = 1, X̂ = 0), P (Y = 0, X̂ = 0)}. (5.18)

Similarly, if X̂ = 1, the MAP adversary’s inference accuracy is given by

P
(B)
d (s, X̂ = 1) = max{P (Y = 1, X̂ = 1), P (Y = 0, X̂ = 1)}, (5.19)

where

P (Y = 1, X̂ = 1) =
∑
X

P (X, Y = 1)P (X̂ = 1|X, Y = 1) = p1,1s1,1 + p0,1(1− s0,1),
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P (Y = 0, X̂ = 1) =
∑
X

P (X, Y = 0)P (X̂ = 1|X, Y = 0) = p1,0s1,0 + p0,0(1− s0,0).

As a result, for a fixed privacy mechanism s, the MAP adversary’s inference accuracy

can be written as

P
(B)
d = max

h(·)
P (h(g(X, Y )) = Y ) = P

(B)
d (s, X̂ = 0) + P

(B)
d (s, X̂ = 1). (5.20)

Thus, the optimal PDD privacy mechanism is determined by solving

min
s

P
(B)
d (s, X̂ = 0) + P

(B)
d (s, X̂ = 1) (5.21)

s.t. P (X̂ = 0, X = 1) + P (X̂ = 1, X = 0) ≤ D

s ∈ [0, 1]4.

Notice that the above constrained optimization problem is a four dimensional

optimization problem parameterized by p = {p0,0, p0,1, p1,0, p1,1} and D. Interestingly,

we can formulate (5.21) as a linear program (LP) given by

min
s1,1,s0,1,s1,0,s0,0,t0,t1

t0 + t1 (5.22)

s.t. 0 ≤ s1,1, s0,1, s1,0, s0,0 ≤ 1

p1,1(1− s1,1) + p0,1s0,1 ≤ t0

p1,0(1− s1,0) + p0,0s0,0 ≤ t0

p1,1s1,1 + p0,1(1− s0,1) ≤ t1

p1,0s1,0 + p0,0(1− s0,0) ≤ t1

p1,1(1− s1,1) + p0,1(1− s0,1) + p1,0(1− s1,0) + p0,0(1− s0,0) ≤ D,

where t0 and t1 are two slack variables representing the maxima in (5.18) and (5.19),

respectively. The optimal mechanism can be obtained by numerically solving (5.22)

using any off-the-shelf LP solver.
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PDI Privacy Mechanism

In the previous section, we considered PDD privacy mechanisms. Although we were

able to formulate the problem as a linear program with four variables, determining

a closed form solution for such a highly parameterized problem is not analytically

tractable. Thus, we now consider the simple (yet meaningful) class of PDI privacy

mechanisms. Under PDI privacy mechanisms, the Markov chain Y → X → X̂ holds.

As a result, P (Y, X̂ = x̂) can be written as

P (Y, X̂ = x̂) =
∑
X

P (Y, X̂ = x̂|X)P (X) =
∑
X

P (Y |X)P (X̂ = x̂|X)P (X)

=
∑
X

P (Y,X)P (X̂ = x̂|X), (5.23)

where the second equality is due to the conditional independence property of the

Markov chain Y → X → X̂.

For the PDI mechanisms, the privacy mechanism g(X, Y ) can be represented by

the conditional distribution P (X̂|X). To make the problem more tractable, we focus

on a slightly simpler setting in which Y = X ⊕ N , where N ∈ {0, 1} is a random

variable independent of X and follows a Bernoulli distribution with parameter q. In

this setting, the joint distribution of (X, Y ) can be computed as

P (X = 1, Y = 1) = P (Y = 1|X = 1)P (X = 1) = p(1− q), (5.24)

P (X = 0, Y = 1) = P (Y = 1|X = 0)P (X = 0) = (1− p)q, (5.25)

P (X = 1, Y = 0) = P (Y = 0|X = 1)P (X = 1) = pq, (5.26)

P (X = 0, Y = 0) = P (Y = 0|X = 0)P (X = 0) = (1− p)(1− q). (5.27)

Let s = {s0, s1} in which s0 = P (X̂ = 0|X = 0) and s1 = P (X̂ = 1|X = 1). The

joint distribution of (Y, X̂) is given by

P (Y = 1, X̂ = 0) = p(1− q)(1− s1) + (1− p)qs0,
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P (Y = 0, X̂ = 0) = pq(1− s1) + (1− p)(1− q)s0,

P (Y = 1, X̂ = 1) = p(1− q)s1 + (1− p)q(1− s0),

P (Y = 0, X̂ = 1) = pqs1 + (1− p)(1− q)(1− s0).

Using the above joint probabilities, for a fixed s, we can write the MAP adversary’s

inference accuracy as

P
(B)
d = max

h(·)
P (h(g(X, Y )) = Y ) = max{P (Y = 1, X̂ = 0), P (Y = 0, X̂ = 0)} (5.28)

+ max{P (Y = 1, X̂ = 1), P (Y = 0, X̂ = 1)}.

Therefore, the optimal PDI privacy mechanism is given by the solution to

min
s

P
(B)
d (5.29)

s.t. P (X̂ = 0, X = 1) + P (X̂ = 1, X = 0) ≤ D

s ∈ [0, 1]2,

where the distortion in (5.29) is given by (1− s0)(1− p) + (1− s1)p. By (5.28), P
(B)
d

can be considered as a sum of two functions, where each function is a maximum of

two linear functions. Thus, it is convex in s0 and s1 for different values of p, q and D.

Theorem 6. For fixed p, q and D, there exists infinitely many PDI privacy mecha-

nisms that achieve the optimal privacy-utility tradeoff. If q = 1
2
, any privacy mecha-

nism that satisfies {s0, s1|ps1 + (1− p)s0 ≥ 1−D, s0, s1 ∈ [0, 1]} is optimal. If q 6= 1
2
,

the optimal PDI privacy mechanism is given as follows:

• If 1−D > max{p, 1−p}, the optimal privacy mechanism is given by {s0, s1|ps1+

(1−p)s0 = 1−D, s0, s1 ∈ [0, 1]}. The adversary’s accuracy of correctly guessing

the private variable is (1− 2q)(1−D) + q if q < 1
2

(2q − 1)(1−D) + 1− q if q > 1
2

. (5.30)
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• Otherwise, the optimal privacy mechanism is given by {s0, s1|max{min{p, 1 −

p}, 1−D} ≤ ps1 + (1−p)s0 ≤ max{p, 1−p}, s0, s1 ∈ [0, 1]} and the adversary’s

accuracy of correctly guessing the private variable is p(1− q) + (1− p)q if p ≥ 1
2
, q < 1

2
or p ≤ 1

2
, q > 1

2

pq + (1− p)(1− q) if p ≥ 1
2
, q > 1

2
or p ≤ 1

2
, q < 1

2

. (5.31)

Proof sketch: The proof of Theorem 6 is provided in Appendix G. We briefly sketch

the proof details here. For the special case q = 1
2
, the solution is trivial since the

private variable Y is independent of the public variable X. Thus, the optimal solution

is given by any s0, s1 that satisfies the distortion constraint {s0, s1|ps1 + (1− p)s0 ≥

1−D, s0, s1 ∈ [0, 1]}. For q 6= 1
2
, we separate the optimization problem in (5.29) into

four subproblems based on the decision of the adversary and compute the optimal

privacy mechanism of the privatizer in each subproblem. Summarizing the optimal

solutions to the subproblems for different values of p, q and D yields Theorem 6.

Remark: Note that if 1 − D > max{p, 1 − p}, i.e., D < min{p, 1 − p}, the

privacy guarantee achieved by the optimal PDI mechanism (the MAP adversary’s

accuracy of correctly guessing the private variable) decreases linearly with D. For

D ≥ min{p, 1−p}, the optimal PDI mechanism achieves a constant privacy guarantee

regardless of D. However, in this case, the privatizer can just use the optimal privacy

mechanism with D = min{p, 1 − p} to optimize privacy guarantee without further

sacrificing utility.

5.2.2 Data-driven Approach for Binary Data Model

In practice, the joint distribution of (X, Y ) is often unknown to the data holder.

Instead, the data holder has access to a dataset D, which is used to learn a good

privatization mechanism in a generative adversarial fashion. In the training phase,

the data holder learns the parameters of the conditional generative model (repre-

senting the privatization scheme) by competing against a computational adversary
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represented by a neural network. The details of both neural networks are provided

later in this section. When convergence is reached, we evaluate the performance of

the learned privatization scheme by computing the accuracy of inferring Y under a

strong MAP adversary that: (a) has access to the joint distribution of (X, Y ), (b)

has knowledge of the learned privacy mechanism, and (c) can compute the MAP rule.

The MAP adversary corresponds to the 0-1 loss function that is effectively looking

at the inference error rate of the adversary. Ultimately, the data holder’s hope is to

learn a privatization scheme that matches the one obtained under the game-theoretic

framework, where both the adversary and privatizer are assumed to have access to

P (X, Y ). To evaluate our data-driven approach, we compare the mechanisms learned

in an adversarial fashion on D with the game-theoretically optimal ones.

Since the private variable Y is binary, we use the empirical log-loss function for

the adversary (see (5.12)). For a fixed Θp, the adversary learns the optimal Θ∗a

by maximizing −LXE(h(g(X, Y ; Θp); Θa), Y ) given in (5.12). For a fixed Θa, the

privatizer learns the optimal Θ∗p by minimizing −LXE(h(g(X, Y ; Θp); Θa), Y ) subject

to the distortion constraint (see (5.10)). Since both X and Y are binary variables, we

can use the privatizer parameter Θp to represent the privacy mechanism s directly. For

the adversary, we define Θa = (Θa,0,Θa,1), where Θa,0 = P (Y = 0|X̂ = 0) and Θa,1 =

P (Y = 1|X̂ = 1). Thus, given a privatized public variable input g(x(i), y(i); Θp) ∈

{0, 1}, the output belief of the adversary guessing y(i) = 1 can be written as (1 −

Θa,0)(1− g(x(i), y(i); Θp)) + Θa,1g(x(i), y(i); Θp).

For PDD privacy mechanisms, we have Θp = s = {s0,0, s0,1, s1,0, s1,1}. Given the

fact that both x(i) and y(i) are binary, we use two simple neural networks to model

the privatizer and the adversary. As shown in Figure 5.2, the privatizer is modeled as

a two-layer neural network parameterized by s, while the adversary is modeled as a

two-layer neural network classifier. From the perspective of the privatizer, the belief
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Figure 5.2: Neural network structure of the privatizer and adversary for binary data
model

of an adversary guessing y(i) = 1 conditioned on the input (x(i), y(i)) is given by

h(g(x(i), y(i); s); Θa) = Θa,1P (x̂(i) = 1) + (1−Θa,0)P (x̂(i) = 0), (5.32)

where

P (x̂(i) = 1) =x(i)y(i)s1,1 + (1− x(i))y(i)(1− s0,1)

+ x(i)(1− y(i))s1,0 + (1− x(i))(1− y(i))(1− s0,0),

P (x̂(i) = 0) =x(i)y(i)(1− s1,1) + (1− x(i))y(i)s0,1

+ x(i)(1− y(i))(1− s1,0) + (1− x(i))(1− y(i))s0,0.

Furthermore, the expected distortion is given by

ED[d(g(X, Y ; s), X)] =
1

n

n∑
i=1

[x(i)y(i)(1− s1,1) + x(i)(1− y(i))(1− s1,0) (5.33)

+ (1− x(i))y(i)(1− s0,1) + (1− x(i))(1− y(i))(1− s0,0)].

Similar to the PDD case, we can also compute the belief of guessing y(i) = 1 con-

ditional on the input (x(i), y(i)) for the PDI schemes. Observe that in the PDI case,

Θp = s = {s0, s1}. Therefore, we have

h(g(x(i), y(i); s); Θa) =Θa,1[x(i)s1 + (1− x(i))(1− s0)] (5.34)
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+ (1−Θa,0)[(1− x(i))s0 + x(i)(1− s1)].

Under PDI schemes, the expected distortion is given by

ED[d(g(X, Y ; s), X)] =
1

n

n∑
i=1

[x(i)(1− s1) + (1− x(i))(1− s0)]. (5.35)

Thus, we can use Algorithm 1 proposed in Section 5.1.3 to learn the optimal PDD

and PDI privacy mechanisms from the dataset.

5.2.3 Illustration of Results

We now evaluate our proposed GAP framework using synthetic datasets. We

focus on the setting in which Y = X ⊕ N , where N ∈ {0, 1} is a random variable

independent of X and follows a Bernoulli distribution with parameter q. We generate

two synthetic datasets with (p, q) equal to (0.75, 0.25) and (0.5, 0.25), respectively.

Each synthetic dataset used in this experiment contains 10, 000 training samples and

2, 000 test samples. We use Tensorflow [142] to train both the privatizer and the

adversary using Adam optimizer with a learning rate of 0.01 and a minibatch size of

200. The distortion constraint is enforced by the penalty method provided in (5.14).

Figure 5.3a illustrates the performance of both optimal PDD and PDI privacy

mechanisms against a strong theoretical MAP adversary when (p, q) = (0.5, 0.25). It

can be seen that the inference accuracy of the MAP adversary reduces as the distortion

increases for both optimal PDD and PDI privacy mechanisms. As one would expect,

the PDD privacy mechanism achieves a lower inference accuracy for the adversary,

i.e., better privacy, than the PDI mechanism. Furthermore, when the distortion is

higher than some threshold, the inference accuracy of the MAP adversary saturates

regardless of the distortion. This is due to the fact that the correlation between the

private variable and the privatized public variable cannot be further reduced once the

distortion is larger than the saturation threshold. Therefore, increasing distortion

will not further reduce the accuracy of the MAP adversary. We also observe that
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Figure 5.3: Privacy-distortion tradeoff for binary data model

the privacy mechanism obtained via the data-driven approach performs very well

when pitted against the MAP adversary (maximum accuracy difference around 3%

compared to the theoretical approach). In other words, for the binary data model,

the data-driven version of GAP can yield privacy mechanisms that perform as well

as the mechanisms computed under the theoretical version of GAP, which assumes

that the privatizer has access to the underlying distribution of the dataset.
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Figure 5.3b shows the performance of both optimal PDD and PDI privacy mech-

anisms against the MAP adversary for (p, q) = (0.75, 0.25). Similar to the equal prior

case, we observe that both PDD and PDI privacy mechanisms reduce the accuracy

of the MAP adversary as the distortion increases and saturate when the distortion

goes above a certain threshold. It can be seen that the saturation thresholds for both

PDD and PDI privacy mechanisms in Figure 5.3b are lower than the “equal prior”

case plotted in Figure 5.3a. The reason is that when (p, q) = (0.75, 0.25), the corre-

lation between Y and X is weaker than the “equal prior” case. Therefore, it requires

less distortion to achieve the same privacy. We also observe that the performance

of the GAP mechanism obtained via the data-driven approach is comparable to the

mechanism computed via the theoretical approach.

The performance of the GAP mechanism obtained using the log-loss function (i.e.,

MI privacy) is plotted in Figure 5.3c and 5.3d. Similar to the MAP adversary case,

as the distortion increases, the mutual information between the private variable and

the privatized public variable achieved by the optimal PDD and PDI mechanisms

decreases as long as the distortion is below some threshold. When the distortion

goes above the threshold, the optimal privacy mechanism is able to make the private

variable and the privatized public variable independent regardless of the distortion.

Furthermore, the values of the saturation thresholds are very close to what we observe

in Figure 5.3a and 5.3b.

5.3 Binary Gaussian Mixture Model

Thus far, we have studied a simple binary dataset model. In many real datasets,

the sample space of variables often takes more than just two possible values. It is well

known that the Gaussian distribution is a flexible approximate for many distributions

[143]. Therefore, in this section, we study a setting where Y ∈ {0, 1} and X is a

Gaussian random variable whose mean and variance are dependent on Y . Without
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loss of generality, let E[X|Y = 1] = −E[X|Y = 0] = µ and P (Y = 1) = p̃. Thus,

X|Y = 0 ∼ N (−µ,Σ0) and X|Y = 1 ∼ N (µ,Σ1).

5.3.1 GAP for Single-dimensional Gaussian Mixture Model

In this section, we consider the setting where the public variable is a single-

dimensional Gaussian random variable conditional on the private variable, i.e., X|Y =

0 ∼ N (−µ, σ0) and X|Y = 1 ∼ N (µ, σ1). Similar to the binary data model, we

study two privatization schemes: (a) private-data independent (PDI) schemes (where

X̂ = g(X)), and (b) private-data dependent (PDD) schemes (where X̂ = g(X, Y )).

In order to have a tractable model for the privatizer, we assume g(X, Y ) is realized by

adding an affine function of an independently generated random noise to the public

variable X. The affine function enables controlling both the mean and variance of

the privatized data. In particular, we consider g(X, Y ) = X+ (1−Y )β0−Y β1 + (1−

Y )γ0N + Y γ1N , in which N is a one dimensional random variable and β0, β1, γ0, γ1

are constant parameters. The goal of the privatizer is to sanitze the public data X

subject to the distortion constraint EX̂,X ||X̂ −X||22 ≤ D.

To make the problem more tractable, let us consider a slightly simpler setting in

which σ0 = σ1 = σ. We will relax this assumption later when we take a data-driven

approach. We further assume that N is a standard Gaussian random variable. One

might, rightfully, question our choice of focusing on adding (potentially Y -dependent)

Gaussian noise. Though other distributions can be considered, our approach is moti-

vated by the following two reasons:

• (a) Even though it is known that adding Gaussian noise is not the worst case

noise adding mechanism for non-Gaussian X [103], identifying the optimal noise

distribution is mathematically intractable. Thus, for tractability and ease of

analysis, we choose Gaussian noise.
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• (b) Adding Gaussian noise to each data entry preserves the conditional Gaus-

sianity of the released dataset.

In what follows, we will analyze a variety of PDI and PDD mechanisms.

PDI Gaussian Noise Adding Privacy Mechanism

We consider a PDI noise adding privatization scheme which adds an affine function

of the standard Gaussian noise to the public variable. Since the privacy mechanism

is PDI, we have g(X, Y ) = X + β + γN , where β and γ are constant parameters

and N ∼ N (0, 1). Using the classical Gaussian hypothesis testing analysis [144], it

is straightforward to verify that the optimal inference accuracy (i.e., probability of

detection) of the MAP adversary is given by

P
(G)
d = p̃Q

(
−α

2
+

1

α
ln

(
1− p̃
p̃

))
+ (1− p̃)Q

(
−α

2
− 1

α
ln

(
1− p̃
p̃

))
, (5.36)

where α = 2µ√
γ2+σ2

andQ(x) = 1√
2π

∫∞
x

exp(−u2

2
)du. Moreover, since EX̂,X [d(X̂,X)] =

β2 + γ2, the distortion constraint is equivalent to β2 + γ2 ≤ D.

Theorem 7. For a PDI Gaussian noise adding privatization scheme given by g(X, Y ) =

X + β + γN , with β ∈ R and γ ≥ 0, the optimal parameters are given by

β∗ = 0, γ∗ =
√
D. (5.37)

Let α∗ = 2µ√
D+σ2 . For this optimal scheme, the accuracy of the MAP adversary is

P
(G)*
d = p̃Q

(
−α

∗

2
+

1

α∗
ln

(
1− p̃
p̃

))
+ (1− p̃)Q

(
−α

∗

2
− 1

α∗
ln

(
1− p̃
p̃

))
. (5.38)

The proof of Theorem 7 is provided in Appendix H. We observe that the PDI

Gaussian noise adding privatization scheme which minimizes the inference accuracy

of the MAP adversary with distortion upper-bounded by D is to add a zero-mean

Gaussian noise with variance D.
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PDD Gaussian Noise Adding Privacy Mechanism

For PDD privatization schemes, we first consider a simple case in which γ0 = γ1 = 0.

Without loss of generality, we assume that both β0 and β1 are non-negative. The

privatized data is given by X̂ = X + (1 − Y )β0 − Y β1. This is a PDD mechanism

since X̂ depends on both X and Y . Intuitively, this mechanism privatizes the data by

shifting the two Gaussian distributions (under Y = 0 and Y = 1) closer to each other.

Under this mechanism, it is easy to show that the adversary’s MAP probability of

inferring the private variable Y from X̂ is given by P
(G)
d in (5.36) with α = 2µ−(β1+β0)

σ
.

Observe that since d(X̂,X) = ((1 − Y )β0 − Y β1)2, we have EX̂,X [d(X̂,X)] = (1 −

p̃)β2
0 + p̃β2

1 . Thus, the distortion constraint implies (1− p̃)β2
0 + p̃β2

1 ≤ D.

Theorem 8. For a PDD privatization scheme given by g(X, Y ) = X+(1−Y )β0−Y β1,

β0, β1 ≥ 0, the optimal parameters are given by

β∗0 =

√
p̃D

1− p̃ , β∗1 =

√
(1− p̃)D

p̃
. (5.39)

For this optimal PDD privatization scheme, the accuracy of the MAP adversary is

given by (5.36) with α =
2µ−(

√
(1−p̃)D

p̃
+
√

p̃D
1−p̃ )

σ
.

The proof of Theorem 8 is provided in Appendix I. When P (Y = 1) = P (Y =

0) = 1
2
, we have β0 = β1 =

√
D, which implies that the optimal privacy mechanism

for this particular case is to shift the two Gaussian distributions closer to each other

equally by
√
D regardless of the variance σ2. When P (Y = 1) = p̃ > 1

2
, the Gaussian

distribution with a lower prior probability, in this case, X|Y = 0, gets shifted p̃
1−p̃

times more than X|Y = 1.

Next, we consider a slightly more complicated case in which γ0 = γ1 = γ ≥ 0.

Thus, the privacy mechanism is given by g(X, Y ) = X + (1 − Y )β0 − Y β1 + γN ,

where N ∼ N (0, 1). Intuitively, this mechanism privatizes the data by shifting the
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two Gaussian distributions (under Y = 0 and Y = 1) closer to each other and

adding another Gaussian noise N ∈ N (0, 1) scaled by a constant γ. In this case, the

MAP probability of inferring the private variable Y from X̂ is given by (5.36) with

α = 2µ−(β1+β0)√
γ2+σ2

. Furthermore, the distortion constraint is equivalent to (1 − p̃)β2
0 +

p̃β2
1 + γ2 ≤ D.

Theorem 9. For a PDD privatization scheme g(X, Y ) = X + (1−Y )β0−Y β1 + γN

with β0, β1, γ ≥ 0, the optimal parameters β∗0 , β
∗
1 , γ

∗ are given by the solution to

min
β0,β1,γ

2µ− β0 − β1√
γ2 + σ2

(5.40)

s.t. (1− p̃)β2
0 + p̃β2

1 + γ2 ≤ D

β0, β1, γ ≥ 0.

Using this optimal scheme, the accuracy of the MAP adversary is given by (5.36) with

α =
2µ−β∗0−β∗1√

(γ∗)2+σ2
.

Proof. Similar to the proofs of Theorem 7 and 8, we can compute the derivative

of P
(G)
d w.r.t. α. It is easy to verify that P

(G)
d is monotonically increasing with α.

Therefore, the optimal mechanism is given by the solution to (5.40). Substituting the

optimal parameters into (5.36) yields the MAP probability of inferring the private

variable Y from X̂.

Remark: Note that the objective function in (5.40) only depends on β0 + β1 and

γ. We define β = β0 + β1. Thus, the above objective function can be written as

min
β,γ

2µ− β√
γ2 + σ2

. (5.41)

It is straightforward to verify that the determinant of the Hessian of (5.41) is always

non-positive. Therefore, the above optimization problem is non-convex in β and γ.
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Finally, we consider the PDD Gaussian noise adding privatization scheme given

by g(X, Y ) = X + (1 − Y )β0 − Y β1 + (1 − Y )γ0N + Y γ1N , where N ∼ N (0, 1).

This PDD mechanism is the most general one in the Gaussian noise adding setting

and includes the two previous mechanisms. The objective of the privatizer is to

minimize the adversary’s probability of correctly inferring Y from g(X, Y ) subject to

the distortion constraint given by p̃((β1)2 + (γ1)2) + (1− p̃)((β0)2 + (γ0)2) ≤ D. As we

have discussed in the remark after Theorem 9, the problem becomes non-convex even

for the simpler case in which γ0 = γ1 = γ. In order to obtain the optimal parameters

for this case, we first show that the optimal privacy mechanism lies on the boundary

of the distortion constraint.

Proposition 1. For the privacy mechanism given by g(X, Y ) = X + (1 − Y )β0 −

Y β1 + (1 − Y )γ0N + Y γ1N , the optimal parameters β∗0 , β
∗
1 , γ

∗
0 , γ

∗
1 satisfy p̃((β∗1)2 +

(γ∗1)2) + (1− p̃)((β∗0)2 + (γ∗0)2) = D.

Proof. We prove the above statement by contradiction. Assume that the optimal

parameters satisfy p̃((β∗1)2 +(γ∗1)2)+(1− p̃)((β∗0)2 +(γ∗0)2) < D. Let β̃1 = β∗1 +c, where

c > 0 is chosen so that p̃((β̃1)2+(γ∗1)2)+(1−p̃)((β∗0)2+(γ∗0)2) = D. Since the inference

accuracy is monotonically decreasing with β1, the resultant inference accuracy can

only be lower for replacing β∗1 with β̃1. This contradicts with the assumption that

p̃((β∗1)2 + (γ∗1)2) + (1− p̃)((β∗0)2 + (γ∗0)2) < D. Using the same type of analysis, we can

show that any parameter that deviates from p̃((β∗1)2+(γ∗1)2)+(1−p̃)((β∗0)2+(γ∗0)2) = D

is suboptimal.

Let e2
0 = (β∗0)2 +(γ∗0)2 and e2

1 = (β∗1)2 +(γ∗1)2. Since the optimal parameters of the

privatizer lie on the boundary of the distortion constraint, we have p̃e2
1+(1−p̃)e2

0 = D.

This implies (e0, e1) lies on the boundary of an ellipse parametrized by p̃ and D. Thus,

we have e1 =
√

D
p̃

1−ε2
1+ε2

and e0 = 2
√

D
1−p̃

ε
1+ε2

, where ε ∈ [0, 1]. Therefore, the optimal
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parameters satisfy

(β∗0)2 + (γ∗0)2 =

[
2

√
D

1− p̃
ε

1 + ε2

]2

, (β∗1)2 + (γ∗1)2 =

[√
D

p̃

1− ε2
1 + ε2

]2

. (5.42)

This implies (β∗i , γ
∗
i ), i ∈ {0, 1} lie on the boundary of two circles parametrized by

D, p̃ and ε. Thus, we can write β∗0 , β
∗
1 , γ

∗
0 , γ

∗
1 as

β∗0 = 2

√
D

1− p̃
ε

1 + ε2
1− w2

0

1 + w2
0

, β∗1 =

√
D

p̃

1− ε2
1 + ε2

1− w2
1

1 + w2
1

, (5.43)

γ∗0 = 4

√
D

1− p̃
ε

1 + ε2
w0

1 + w2
0

, γ∗1 = 2

√
D

p̃

1− ε2
1 + ε2

w1

1 + w2
1

,

where ε, w0, w1 ∈ [0, 1]. The optimal parameters β∗0 , β
∗
1 , γ

∗
0 , γ

∗
1 can be computed by a

grid search in the cube parametrized by ε, w0, w1 ∈ [0, 1] that minimizes the accuracy

of the MAP adversary. In the following section, we will use this general PDD Gaussian

noise adding privatization scheme in our data-driven simulations and compare the

performance of the privacy mechanisms obtained by both theoretical and data-driven

approaches.

Data-driven Approach

To illustrate our data-driven GAP approach, we assume the privatizer only has access

to the dataset D but does not know the joint distribution of (X, Y ). Finding the

optimal privacy mechanism becomes a learning problem. In the training phase, we

use the empirical log-loss function LXE(h(g(X, Y ; Θp); Θa), Y ) provided in (5.12) for

the adversary. Thus, for a fixed privatizer parameter Θp, the adversary learns the

optimal parameter Θ∗a that maximizes −LXE(h(g(X, Y ; Θp); Θa), Y ). On the other

hand, the optimal parameter for the privacy mechanism is obtained by solving (5.10).

After convergence, we use the learned data-driven GAP mechanism to compute the

accuracy of inferring the private variable under a strong MAP adversary. We evaluate
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Figure 5.4: Neural network structure of GAP for single-dimensional Gaussian mix-
ture data

our data-driven approach by comparing the mechanisms learned in an adversarial

fashion on D with the game-theoretically optimal ones in which both the adversary

and privatizer are assumed to have access to P (X, Y ).

We consider the PDD Gaussian noise adding privacy mechanism given by g(X, Y ) =

X + (1 − Y )β0 − Y β1 + (1 − Y )γ0N + Y γ1N . Similar to the binary setting, we use

two neural networks to model the privatizer and the adversary. As shown in Fig-

ure 5.4, the privatizer is modeled by a two-layer neural network with parameters

β0, β1, γ0, γ1 ∈ R. The adversary, whose goal is to infer Y from privatized data X̂, is

modeled by a three-layer neural network classifier with leaky ReLU activations. The

random noise is drawn from a standard Gaussian distribution N ∼ N (0, 1).

In order to enforce the distortion constraint, we use the augmented Lagrangian

method to penalize the learning objective when the constraint is not satisfied. In the

binary Gaussian mixture model setting, the augmented Lagrangian method uses two

parameters, namely λt and ρt to approximate the constrained optimization problem

by a series of unconstrained problems. Intuitively, a large value of ρt enforces the

distortion constraint to be binding, whereas λt is an estimate of the Lagrangian

multiplier. To obtain the optimal solution of the constrained optimization problem,

we solve a series of unconstrained problems given by (5.15).
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Dataset P (Y = 1) X|Y = 0 X|Y = 1

1 0.5 N (−3, 1) N (3, 1)

2 0.5 N (−3, 4) N (3, 1)

3 0.75 N (−3, 1) N (3, 1)

4 0.75 N (−3, 4) N (3, 1)

Table 5.1: Synthetic datasets for binary Gaussian mixture model
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Figure 5.5: Performance of PDD mechanisms against MAP adversary∗

Illustration of Results

We use synthetic datasets to evaluate our proposed GAP framework. We consider four

synthetic datasets shown in Table 5.1. Each synthetic dataset used in this experiment

contains 20, 000 training samples and 2, 000 test samples. We use Tensorflow to train

both the privatizer and the adversary using Adam optimizer with a learning rate of

0.01 and a minibatch size of 200.

Figure 5.5a and 5.5b illustrate the performance of the optimal PDD Gaussian

noise adding mechanisms against the strong theoretical MAP adversary when P (Y =

1) = 0.5 and P (Y = 1) = 0.75, respectively. It can be seen that the optimal mecha-
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nisms obtained by both theoretical and data-driven approaches reduce the inference

accuracy of the MAP adversary as the distortion increases. Similar to the binary data

model, we observe that the accuracy of the adversary saturates when the distortion

crosses some threshold. Moreover, it is worth pointing out that for the binary Gaus-

sian mixture setting, we also observe that the privacy mechanism obtained through

the data-driven approach performs very well when pitted against the MAP adversary

(maximum accuracy difference around 6% compared with theoretical approach). In

other words, for the binary Gaussian mixture model, the data-driven approach for

GAP can generate privacy mechanisms that are comparable, in terms of performance,

to the theoretical approach, which assumes the privatizer has access to the underlying

distribution of the data.

5.3.2 GAP for Multi-dimensional Gaussian Mixture Models

In this section, we focus on a setting where Y ∈ {0, 1} and X is an m-dimensional

Gaussian mixture random vector whose mean is dependent on Y . Let P (Y = 1) = p̃,

X|Y = 0 ∼ N (−µ,Σ), and X|Y = 1 ∼ N (µ,Σ), where µ = (µ1, ..., µm). Without

loss of generality, we assume that X|Y = 0 and X|Y = 1 have the same covariance

Σ.

We consider a MAP adversary who has access to P (X, Y ) and the privacy mech-

anism. The privatizer’s goal is to privatize X in a way that minimizes the adver-

sary’s probability of correctly inferring Y from X̂. In order to have a tractable

model for the privatizer, we mainly focus on linear (precisely affine) GAP mecha-

nisms X̂ = g(X) = X + Z + β, where Z is an independently generated noise vector.

This linear GAP mechanism enables controlling both the mean and covariance of

the privatized data. To quantify utility of the privatized data, we use the `2 dis-

∗This simulation is completed with Peter Kairouz and Xiao Chen from Stanford University
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tance between X and X̂ as a distortion measure to obtain a distortion constraint

EX,X̂‖X − X̂‖2 ≤ D.

Theoretical Approach

Consider the setup where both the privatizer and the adversary have access to P (X, Y ).

Further, let Z be a zero-mean multi-dimensional Gaussian random vector. Although

other distributions can be considered, we choose additive Gaussian noise for tractabil-

ity reasons.

Without loss of generality, we assume that β = (β1, ..., βm) is a constant parameter

vector and Z ∼ N (0,Σp). Following similar analysis in [144], we can show that the

adversary’s probability of detection is given by

P
(G)
d = p̃Q

(
−α

2
+

1

α
ln

(
1− p̃
p̃

))
+ (1− p̃)Q

(
−α

2
− 1

α
ln

(
1− p̃
p̃

))
, (5.44)

where α =
√

(2µ)T (Σ + Σp)−12µ. Furthermore, since EX,X̂ [d(X̂,X)] = EX,X̂‖X −

X̂‖2 = E‖Z + β‖2 = ‖β‖2 + tr(Σp), the distortion constraint implies that ‖β‖2 +

tr(Σp) ≤ D. To make the problem more tractable, we assume both X and Z are

independent multi-dimensional Gaussian random vectors with diagonal covariance

matrices. In this case, the optimal privacy mechanism is given by the solution of

min
β,Σp

(2µ)T (Σ + Σp)
−12µ (5.45)

s.t. ‖β‖2 + tr(Σp) ≤ D.

Theorem 10. Consider GAP mechanisms given by g(X) = X+Z+β, where X and

Z are multi-dimensional Gaussian random vectors with diagonal covariance matrices

Σ and Σp. Let {σ2
1, ..., σ

2
m} and {σ2

p1
, ..., σ2

pm} be the diagonal entries of Σ and Σp,

respectively. The parameters of the minimax optimal privacy mechanism are

βi
∗ = 0, σ∗pi

2 =

(
|µi|√
λ∗0
− σ2

i , 0

)+

,∀i = {1, 2, ...,m},
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where λ∗0 is chosen such that
m∑
i=1

(
|µi|√
λ∗0
− σ2

i

)+

= D. For this optimal mechanism, the

accuracy of the MAP adversary is given by (5.36) with α = 2

√√√√ m∑
i=1

µ2
i

σ2
i+

(
|µi|√
λ∗0
−σ2

i

)+ .

The proof of Theorem 10 is provided in Appendix J. We observe that the when σ2
i

is greater than some threshold |µi|√
λ∗0

, no noise is added to the data on this dimension

due to the high variance. When σ2
i is smaller than |µi|√

λ∗0
, the amount of noise added

to this dimension is proportional to |µi|; this is intuitive since a large |µi| indicates

the two conditionally Gaussian distributions are further away on this dimension, and

thus, distinguishable. Thus, more noise needs to be added in order to reduce the

MAP adversary’s inference accuracy.

Data-driven Approach

For the data-driven linear GAP mechanism, we assume the privatizer only has access

to the dataset D with n data samples but not the actual distribution of (X, Y ). Com-

puting the optimal privacy mechanism becomes a learning problem. In the training

phase, the data holder learns the parameter of the GAP mechanism by competing

against a computational adversary modeled by a multi-layer neural network. When

convergence is reached, we evaluate the performance of the learned mechanism by

comparing with the one obtained from the game-theoretic approach. To quantify the

performance of the learned GAP mechanism, we compute the accuracy of inferring

Y under a strong MAP adversary that has access to both the joint distribution of

(X, Y ) and the privacy mechanism.

Since the private variable Y is binary, we measure the training loss of the adversary

network by the empirical log-loss function (5.12) For a fixed privatizer parameter Θp,

the adversary learns the optimal Θ∗a by maximizing (5.12). For a fixed Θa, the
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Figure 5.6: Neural network structure of GAP for multi-dimensional Gaussian mix-
ture data

privatizer learns the optimal Θ∗p by minimizing −Ln(h(g(X; Θp); Θa), Y ) subject to

the distortion constraint EX,X̂‖X − X̂‖2 ≤ D.

As shown in Figure 5.6, the privatizer is modeled by a two-layer neural network

with parameters Θp = {β0, ..., βm, σp0, ..., σpm}, where βj and σpj represent the mean

and standard deviation for each dimension j ∈ {1, ...,m}, respectively. The random

noise Z is drawn from a m-dimensional independent zero-mean standard Gaussian

distribution with covariance Σ1. Thus, we have X̂j = Xj +βj +σpjZj. The adversary,

whose goal is to infer Y from privatized data X̂, is modeled by a three-layer neural

network classifier with leaky ReLU activations.

As shown in Figure 5.6, the privatizer is modeled by a two-layer neural network

with parameters Θp = {β0, ..., βm, σp0, ..., σpm}. The adversary, whose goal is to in-

fer Y from privatized data X̂, is modeled by a three-layer neural network classifier

with leaky ReLU activations. The random noise Z is drawn from a m-dimensional

independent zero-mean standard Gaussian distribution with covariance Σ1.

To incorporate the distortion constraint into the learning process, we add a penalty

term to the objective of the privatizer. Thus, the training loss function of the priva-
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tizer is given by

L(Θp,Θa) = Ln(Θp,Θa) + ρt max{0, 1

n

n∑
i=1

d(g(x(i); Θp), x(i))−D}, (5.46)

where ρt is a penalty coefficient which increases with the number of iterations t.

The added penalty consists of a penalty parameter ρt multiplied by a measure of

violation of the constraint. This measure of violation is non-zero when the constraint

is violated. Otherwise, it is zero.

Illustration of Results

We use synthetic datasets to evaluate the performance of the learned GAP mech-

anisms. Each dataset contains 20, 000 training samples and 2, 000 test samples.

Each data entry is sampled from an independent multi-dimensional Gaussian mixture

model. We consider two categories of synthetic datasets with P (Y = 1) equals to 0.75

and 0.5, respectively. Both the privatizer and the adversary in the GAP framework

are trained on Tensorflow [142] using Adam optimizer with a learning rate of 0.005

and a minibatch size of 1, 000. The distortion constraint is enforced by the penalty

method as detailed in (5.14).

Figure 5.7 illustrates the performance of the learned GAP mechanism against a

strong theoretical MAP adversary for p̃ = 0.75. It can be seen that the inference

accuracy of the MAP adversary reduces as the distortion increases and asymptot-

ically approaches (as expected) the prior on the private variable. This is because

noise adding mechanisms cannot further reduce the accuracy of the MAP adversary

than the prior on Y . We also observe that the privacy mechanism obtained via the

data-driven approach performs very well when pitted against the MAP adversary

(maximum accuracy difference around 0.3% compared to the theoretical approach).
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(a) 4-D Gaussian mixture

(b) 8-D Gaussian mixture

Figure 5.7: Performance of learned GAP mechanisms against MAP adversary (p̃ =
0.75)

The performance of the learned GAP mechanism against a strong theoretical

MAP adversary for p̃ = 0.5 is illustrated in Figure 5.8. Similar to the case in which

p̃ = 0.75, we also observe that the privacy mechanism obtained via the data-driven

approach performs very well when pitted against the MAP adversary (maximum

accuracy difference around 0.8% compared to the theoretical approach). In other

words, for the Gaussian mixture data model with binary private variable, the data-

driven version of GAP can learn privacy mechanisms that perform as well as the
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mechanisms computed under the theoretical version of GAP, which assumes that the

privatizer has access to the underlying distribution of the dataset.

(a) 4-D Gaussian mixture

(b) 8-D Gaussian mixture

Figure 5.8: Performance of learned GAP mechanisms against MAP adversary (p̃ =
0.5)

5.4 GAP for Real Datasets

We apply the proposed GAP framework to two different datasets to demonstrate

its capabilities. First of all, we apply the data-driven GAP to the GENKI dataset [107]

which contains 1, 940 greyscale face images. Then, we consider the MNIST dataset

[108] which contains 70, 000 images of hand-written digits. We choose cross entropy

to be the loss function for the adversary and use the penalty method introduced in
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Section 5.1.3 to enforce the distortion constraint. The privatizer is trained and tested

in an adversarial fashion using Tensorflow.

5.4.1 The GENKI Dataset

The GENKI dataset consists of 1, 940 face images with different facial expressions.

Each data sample is a 16×16 greyscale image. We choose N = 1, 740 training samples

(50% male and 50% female). Among each gender group, we have 50% smile and 50%

non-smile faces. The test dataset contains 200 samples (50% male and 50% female;

50% smile and 50% non-smile). We consider gender as private variable Y and the

image pixels as public variable X. Our goal is to learn a GAP mechanism that

restricts inferences on gender with limited distortion.

Privatizer Model

In this experiment, we consider two different privatizer architectures: the feedforward

neural network privatizer (FNNP) and the transposed convolutional neural network

privatizer (TCNNP). The FNNP architecture uses a multi-layer feedforward neural

network to combine the low-dimensional random noise and the original image together

(Figure 5.9). The TCNNP takes a low-dimensional random noise vector and gener-

ates a high-dimensional noise mask using multi-layer transposed convolutional neural

networks. The noise mask is added to the original image to generate the privatized

image (Figure 5.9).

The FNNP is modeled by a 4-layer feedforward neural network. We first reshape

each image to a long vector (256×1), and then concatenate it with a 100×1 Gaussian

random noise vector. Each entry in the noise vector is sampled independently from a

standard Gaussian distribution. We feed the entire vector to a 4-layer fully connected

(FC) neural network. Each layer has 256 neurons with leaky ReLU activation. Finally,

we reshape the output of the last layer to a 16× 16 greyscale image.
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Figure 5.9: Feedforward neural network privatizer

To model the TCNNP, we first generate a 100 × 1 dimension standard Gaussian

noise vector and use linear projection to map the noise vector to a 4×4×256 feature

tensor. The feature tensor is then fed to an initial transposed convolutional layer

(DeCONV) with 128 filters (filter size 3× 3, stride 2) and ReLU activation, followed

by another transposed convolutional layer with 1 filter (filter size 3× 3, stride 2) and

tanh activation. We add batch normalization [145] to each hidden layer to prevent

covariance shift and help gradients to flow. The output of the second transposed

convolutional layer is added to the original image to generate the privatized data.

Adversary Model

In our data-driven GAP, we model the adversary using state-of-the-art convolutional

neural networks (CNNs). This architecture outperforms most of other models for im-

age classification [146, 147, 148, 149]. In this experiment, the adversary is model by a

7-layer CNN (Figure 5.11). The privatized images are fed to two convolutional layers

(CONV) whose sizes are 3× 3× 32 and 3× 3× 64, respectively. Each convolutional

layer is followed by batch normalization and ReLU activation. The output of each
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Figure 5.10: Transposed convolutional neural network privatizer

Figure 5.11: Convolutional neural network adversary

convolutional layer is then fed to a 2× 2 maxpool layer (POOL) to generate features

for classification. The second maxpool layer is followed by two fully-connected layers,

which contain 1024 neurons with batch normalization and ReLU activation. Finally,

the output of the fully-connected layers are mapped to the output layer, which con-

tains two neurons capturing the belief of the subject being a male or a female.
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Illustration of Results

Figure 5.12 illustrates the gender classification accuracy of the adversary for different

values of distortion. It can be seen that the adversary’s accuracy of classifying the

private label (gender) decreases progressively as the distortion increases. Given the

same distortion value, FNNP achieves better privacy compared to TCNNP: when

the distortion is small (0.0039 per pixel), the adversary’s classification accuracy is

already reduced to 80% and 61% by using the TCNNP and the FNNP architecture,

respectively. When we increase the distortion value to 0.0195, the classification ac-

curacy further decreases to 60% and 50.5%, respectively. The intuition behind this

is that the FNNP uses both the noise vector and the original image to generate the

privatized image. However, the TCNNP generates the noise mask independent of

the original image pixels and add the noise mask to the original image in the final

step. To demonstrate the effectiveness of the learned GAP mechanisms, we plot the

gender classification accuracy for the dataset privatized by the learned GAP mecha-

nisms as well as adding independent uniform or Laplace noise. It can be seen that

for the same distortion, the learned GAP mechanisms achieve much lower gender

classification accuracy than using uniform or Laplace noise.

To study the influence of GAP on other non-private classification tasks, we train

another CNN (see Figure 5.11) to perform facial expression classification on datasets

privatized by different privacy mechanisms. Figure 5.13 illustrates the facial expres-

sion classification accuracy for different values of distortion. It can be seen that the

accuracy of the expression classification decreases slowly as the distortion increases.

However, even for a large distortion value (0.019 per pixel), the expression classifi-

cation accuracy only decreases by 13% at most. Furthermore, we observe that given
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Figure 5.12: Gender classification accuracy for different distortion values

Figure 5.13: Facial expression classification accuracy for different distortion values

the same distortion value, the FNNP and TCNNP achieve similar facial expression

classification accuracy.

In both Figure 5.12 and Figure 5.13, we observe that when the distortion value

is small, adding Laplace noise yields higher accuracy than uniform noise in both

gender and expression classification. However, when the distortion value becomes

large, the uniform noise yields higher accuracy in both gender and facial expression

classification. This is due to the fact that for the same distortion (variance of the

noise), the Laplace distribution is very spiky when the distortion value is small. As
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a result, the noise values added to pixels are concentrated around a small region

centered at 0. However, when the distortion value is large, the Laplace noise becomes

more spread out. As a result, larger noise values are more likely to be added to the

pixels and thus help reduce the classification accuracy.

The privatized images using FNNP and TCNNP architectures under different

distortion values are shown in Figure 5.14 and Figure 5.15. We observe that given the

same distortion value, the adversary makes more mistakes when the data is privatized

by the FNNP architecture. Furthermore, both privatizers change mostly eyes, nose,

mouth, beard, and hair. We also observe that the outputs of the FNNP look more

smooth.

(a) Feedforward nerual network privatizer (b) Transposed convolutional nerual network

privatizer

Figure 5.14: Privatized images with 0.0117 per pixel distortion

5.4.2 The MNIST Dataset

The MNIST dataset consists of 70, 000 images of hand-written digits. Each data

sample is a 28 × 28 greyscale image. The dataset is divided into 60, 000 training

samples and 10, 000 test samples. We model the private feature as a binary variable
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(a) Feedforward nerual network privatizer (b) Transposed convolutional nerual network pri-

vatizer

Figure 5.15: Privatized images with 0.0195 per pixel distortion

Y which identifies whether there is a circular structure in the digits (e.g., 0, 6, 8, 9

contain circular structure). The image pixels are considered as public variable X.

Privatizer and Adversary Models

Note that the images in MNIST have more pixels than GENKI (28× 28 vs. 16× 16).

However, due to the nature of hand-written digits, we assume that the images are

concentrated on a much lower dimension manifold [126]. In this experiment, we choose

the CNN shown in Figure 5.11 as the adversary. For the privatizer, we first use a

CNN to map each image to a low-dimensional feature vector. Then, we use a multi-

layer feedforward neural network to combine the low-dimensional random noise with

the feature vector. Finally, we generate high-dimensional images using a multi-layer

transposed convolutional neural network.

Figure 5.16 illustrates the architecture of the privatizer. The original images are

fed to two convolutional layers whose sizes are 3× 3× 32 and 3× 3× 64, respectively.

The output of each convolutional layer is then fed to a 2 × 2 maxpool layer. The
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Figure 5.16: MNIST privatizer structure

second maxpool layer is followed by three fully-connected layers, which contain 1024,

256 and 100 neurons, respectively. We use the output of the third fully-connected

layer as the low-dimensional feature vector for the image. Each convolutional and

fully-connected layer uses leaky ReLU activation. After obtaining the feature vector,

we concatenate it with a 100 × 1 independently generated Gaussian random noise

and feed the entire vector to a 2-layer fully-connected neural network. Each layer

has 100 hidden neurons. Then, we use linear projection to map the noised feature

vector to a 7 × 7 × 128 feature tensor. The feature tensor is then fed to an initial

transposed convolutional layer with 64 filters (filter size 3 × 3, stride 2) and leaky

ReLU activation, followed by another transposed convolutional layer with 1 filter

(filter size 3× 3, stride 2) and tanh activation. We add batch normalization to each

hidden layer to prevent covariance shift and help gradients to flow. The output of

the second transposed convolutional layer is the privatized data.

Illustration of Results

Figure 5.17 illustrates the private variable classification accuracy of the adversary for

different values of distortion. It can be seen that for the dataset privatized by the GAP

mechanism, the adversary’s accuracy of classifying the private label, i.e., whether

there is a circular structure in the digit, decreases progressively as the distortion

138



Figure 5.17: Circular structure classification accuracy for different distortion values

increases. We observe that the private variable classification drops to 60% even for a

very small per pixel distortion (0.051). Furthermore, adding uniform or Laplace noise

to either each pixel or the extracted feature vector does not prevent the adversary

from learning the private feature effectively.

To study the influence of the learned GAP mechanism on non-private classification

tasks, we train another CNN (see Figure 5.11) to classify the value of each digit using

the privatized dataset. Figure 5.18 shows the digit value classification accuracy for

different privacy mechanisms. We also observe that for a dataset privatized by the

GAP mechanism, the digit value classification accuracy decreases as the distortion

increases. Even if the private variable classification accuracy drops to 60% at 0.0663

per pixel distortion, the CNN trained on the privatized dataset can still achieve 58%

digit value classification accuracy.

The privatized images under different distortion values are shown in Figure 5.19.

We observe that the privatizer successfully extracts the features of each digit and adds

noise selectively to reduce the inference capability of the adversary. We notice that

if the digit contains a circular structure, the privatizer tends to break it. Otherwise,

the privatizer tries to complete a circular structure.
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Figure 5.18: Digit value classification accuracy for different distortion values

(a) Privatized images with 0.0255 per pixel distortion

(b) Privatized images with 0.0510 per pixel distortion

Figure 5.19: MNIST privatized images for different distortion values
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Chapter 6

CONCLUSIONS AND FUTURE WORK

This dissertation studies two fundamental problems: (i) decision making for inter-

actions between retailers/service providers and privacy sensitive users; (ii) a unified,

data-driven framework for various information-theoretic privacy. In the first problem,

we have studied privacy-utility tradeoff in different scenarios. The most significant

contribution is the idea that retailers/service providers can develop strategies to en-

courage users to interact with them (e.g., via using coupons distributed by retailers

or using services provided by service providers) while taking their privacy sensitivi-

ties into account. We have also investigated the influence of privacy on free online

service market. For the second problem, we have proposed a novel context-aware pri-

vacy framework called generative adversarial privacy (GAP). GAP captures a variety

of information-theoretic privacy notions via a minimax game and allows the data

holders to learn privacy mechanisms from data directly. We now provide some more

specific comments on conclusions and future directions in each of the problems we

have studied.

6.1 How to Incentivize and Interact with Privacy Sensitive Consumer?

We have proposed a POMDP model to capture the interactions between a retailer

and a privacy-sensitive consumer in the context of personalized shopping. The retailer

seeks to minimize the expected discounted cost of violating the consumer’s privacy.

We have shown that the optimal coupon-offering policy is a stationary policy that

takes the form of an explicit threshold that depends on the model parameters. In

summary, the retailer offers an HP coupon when the Normal to Alerted transition

probability is low or the probability of staying in Alerted state is high. Furthermore,

the threshold optimal policy also holds for consumers whose privacy sensitivity can

be captured via multiple alerted states as well as for the case in which consumers
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exhibit coupon-dependent transition. For the case in which the cost feedbacks from

the consumer are noisy, we have introduced a heuristic method using the mean value

of costs to compute the decision threshold. Furthermore, under noisy cost feedbacks

scenario, we have introduced a Bayesian data analysis approach for decision making

by estimating consumerbelief state when the initial belief state is unknown to the

retailer.

6.2 Incentive Mechanisms for Privacy-Sensitive Electricity Consumers

We have introduced a novel approach to study the tradeoff between privacy and

energy cost minimization for consumers under the assumption that the electricity

provider offers incentives to consumers for encouraging them to compromise a certain

level of privacy for stable and economic grid operation. A non-cooperative game-

theoretic model has been developed to capture interactions between consumers and

the electricity provider. With access to alternative energy sources, privacy-sensitive

consumers can choose the fraction of electricity they consume from the grid to mask

their consumption behavior. On the other hand, the strategy of the electricity

provider is to use incentives to encourage consumers to consume a desired amount

of electricity consistent with its supply. In particular, we have studied the mixed

strategy Nash equilibrium. In the two-player scenario, we have proved the existence

and uniqueness of the nondegenerate mixed strategy Nash equilibrium. For a specific

choice of profit and valuation functions, our illustrations have shown that the pro-

posed incentive mechanism both increases the net profit and reduces supply-demand

imbalance loss of the electricity provider. Furthermore, consumers also benefit from

this mechanism for electricity cost reduction.

6.3 Impact of Privacy on Free Online Service Markets

Our work seeks to understand the effect of offering privacy- and QoS- differenti-

ated online services on consumers with heterogeneous privacy sensitivities. We have
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quantified this effect as the fraction of consumers that prefer lower privacy risks with

the accompanying lower QoS to the alternative of higher risks and higher QoS. We

have presented an analysis built upon the classical Hotelling model to compute equi-

librium QoS-privacy risk strategies and market segmentation for the two-SP problem.

Analogous to the classical segmentation models, our problem also involves parameters

that capture cost, revenue, and consumer valuation functions that are dependent and

independent of privacy risks. While such a parametrized model can make the analysis

challenging, our results for relatively simple yet meaningful functions such as linear

cost models and uniform (as well as truncated Gaussian) distribution of consumer

preferences suggest that SPs that have higher profits from untargeted services have

an edge in the market. SPs competing on offering higher privacy risk services have to

offer better QoS or use other means of increasing untargeted revenue to gain market

share. Our work also shows the instability of such market with more than two SPs.

6.4 Generative Adversarial Privacy

We have presented a unified framework for context-aware privacy called generative

adversarial privacy (GAP). GAP allows the data holder to learn the privatization

mechanism directly from the dataset (to be published) without requiring access to the

dataset statistics. Under GAP, finding the optimal privacy mechanism is formulated

as a game between two players: a privatizer and an adversary. An iterative minimax

algorithm is proposed to obtain the optimal mechanism under the GAP framework.

To evaluate the performance of the proposed GAP model, we first focus on two

types of data models: (i) binary data model; and (ii) binary Gaussian mixture model.

For both cases, the optimal GAP mechanisms are learned using an empirical log-loss

function. For each type of dataset, both private-data dependent and private-data

independent mechanisms are studied. These results are cross-validated against the

privacy guarantees obtained by computing the game-theoretically optimal mechanism
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under a strong MAP adversary. In the MAP adversary setting, we have shown that for

the binary data model, the optimal GAP mechanism is obtained by solving a linear

program. For the binary Gaussian mixture model, the optimal additive Gaussian

noise privatization scheme is determined. Simulations with synthetic datasets for both

types (i) and (ii) show that the privacy mechanisms learned via the GAP framework

perform as well as the mechanisms obtained from theoretical computation. We have

also validated the performance of GAP on real datasets such as GENKI and MNIST.

6.5 Future Work

Although methods for designing incentive schemes for privacy-sensitive users and

context-aware privacy preserving mechanisms are studied in this report, the work ac-

complished so far has just provided a few possible solutions to addressing such inter-

esting problems. To better understand the tradeoff between acquiring information and

maximizing revenue and approaches for privacy preserving data sharing/publishing,

more work needs to be done. We propose to pursuit the following directions for the

problems considered in this dissertation.

For the retailer-consumer interaction problem, one straightforward extension of

our work is to model uncertainties in the statistical model for the consumer transition

probabilities. Further a field, one can also develop game-theoretic models to study

the interaction between a retailer and strategic consumers and develop methods to

test those models in practice.

For the electricity provider-consumer problem, one of the interesting directions is

to develop dynamic game models to capture interactions between consumers and the

electricity provider over a certain period of time. Another avenue is to use prospect

theory to study subjective behavior of the electricity provider and consumers.

The market segmentation model assumes at least two or more SPs were able to

overcome the barrier to entry and differentiate themselves. An immediate question
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we will address going forward is whether such barriers to entry are in fact surmount-

able when competitors use privacy as a differentiator. Also, extending the model

to capture externalities of using private data could lead to interesting insights into

real-world market interactions. Another challenge to address is to develop models to

capture privacy risks that are not directly observable to consumers. These analyses

are crucial for developing better privacy policies to effectively enable safe and secure

online commerce.

For the generative adversarial privacy problem, there are several fundamental

questions that we seek to address. An immediate one is to develop techniques to

rigorously benchmark data-driven results for large datasets against computable the-

oretical guarantees. The proposed data-driven version of GAP is a learning-based

approach trained on finitely many training samples. Thus, generalization bounds for

the data-driven GAP which provide guarantees on the performance of the learned

mechanism on unseen test samples are needed. Furthermore, it will be interesting

to investigate the influence of different privatizer and adversary structures on the

performance of GAP. Finally, it will be also interesting to compare our approach to

a context-free notion of privacy such as differential privacy.
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Proof. Let pF be the stationary distribution of the Markov transition. Then pF =

λA,ApF + (1 − pF )λN,A, which implies pF =
λN,A

1−λA,A+λN,A
. If V t

β,LP(pt) > V t
β,HP(pt)

Remember that the threshold is the solution to V t
β,LP(pt) = V t

β,HP(pt). Let τ be the

threshold value, we have:

βtCL + V t+1
β (T (τ))

= (1− τ)[βtCHN + V t+1
β (λN,A)] + τ [βtCHA + V t+1

β (λA,A)].

(A.1)

By the definition of V t
β (pt), we know that V t

β (pt) = βtVβ(pt). Thus V t
β (λN,A) =

βtVβ(λN,A) and V t
β (λA,A) = βtVβ(λA,A).

If T (τ) ≥ τ , which is equivalent to pF ≥ τ , then V t+1
β (T (τ)) = V t+1

β,LP(T (τ)).

Therefore, V t
β,LP(τ) = lim

n→∞
{βt 1−βn

1−β CL+βnV t+1
β (T n(τ))} where T n(τ) = T (T n−1(τ)) =

pF (1− (λA,A− λN,A)n) + (λA,A− λN,A)nτ . Taking n→∞, we have V t
β,LP(τ) = βt C

1−β .

Substitute this into (A.1) yields:

CL
1− β = (1− τ)CHN + τCHA + β(τVβ(λA,A) + (1− τ)Vβ(λN,A)). (A.2)

By rearranging terms in the above expression, we have

τ =

CL
1−β − CHN − βVβ(λN,A)

(CHA − CHN) + β(Vβ(λA,A)− Vβ(λN,A))
. (A.3)

If pF ≤ τ , then T (τ) ≤ τ . Therefore V t+1
β (T (τ)) = V t+1

β,HP(T (τ)), which implies

V t
β,LP(τ) = βtCL + V t+1

β (T (τ)) = βtCL + V t+1
β,HP(T (τ)) = V t

β,HP(τ). (A.4)

In this case,

CL + βVβ,HP(T (τ)) = Vβ,HP(τ). (A.5)

Substitute (2.1) and (2.9) into (A.5), we have

τ =
CL − (1− β(1− λN,A))(CHN + βVβ(λN,A))

(1− (λA,A − λN,A)β)(CHA − CHN + β(Vβ(λA,A)− V (λN,A)))

+
βλN,A(CHA + βVβ(λA,A))

(1− (λA,A − λN,A)β)(CHA − CHN + β(Vβ(λA,A)− V (λN,A)))
.

(A.6)
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Next, we present how to compute Vβ(λN,A) and Vβ(λA,A).

Case 1: If λN,A ≥ τ , then by Model Assumption 2, λA,A ≥ λN,A ≥ τ and pF ≥

λN,A ≥ τ . Thus, both λA,A and λN,A are in ΦLP, therefore,

Vβ(λN,A) = Vβ(λA,A) =
CL

1− β . (A.7)

Case 2: If λN,A ≤ τ , we have Vβ(λN,A) = Vβ,HP(λN,A). Therefore,

Vβ(λN,A) = (1− λN,A)[CHN + V 1
β (λN,A)] + λN,A[CHA + V 1

β (λA,A)]. (A.8)

Vβ(λA,A) = min
ut∈{HP,LP}

Vβ,ut(λA,A) (A.9)

= min{CL + V 1
β (T (λA,A)), VHP(λA,A)} (A.10)

= min{CL
1− βN
1− β , min

0≤n≤N−1
{CL

1− βn
1− β + V n

β,HP(T n(λA,A))}}. (A.11)

Since N →∞ and 0 ≤ β ≤ 1,

Vβ(λA,A) = min
n>0
{CL

1− βn
1− β + βnVβ,HP(T n(λA,A))}. (A.12)

we have:

Vβ(λA,A) = min
n≥0
{
CL

1−βn
1−β + βn[T̄ n(λA,A)(CHN + C(λN,A)) + T n(λA,A)CHA]

1− βn+1[T̄ n(λA,A)
λN,Aβ

1−(1−λN,A)β
+ T n(λA,A)]

}. (A.13)

where

T n(λA,A) = T (T n−1(λA,A)) =
(λA,A − λN,A)n+1(1− λA,A) + λN,A

1− (λA,A − λN,A)
, (A.14)

T̄ n(λA,A) = 1− T n(λA,A) (A.15)

C(λN,A) = β
(1− λN,A)CHN + λN,ACHA

1− (1− λN,A)β
. (A.16)
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Next, we prove the uniqueness of τ . Noticing that V t
β,LP(p) is a concave and non-

decreasing function of p and V t
β,HP(p) is an affine and non-decreasing function of p

(see Lemma 2). Thus, both V t
β,LP(p) and V t

β,HP(p) are continuous functions (every

concave/affine function is continuous). Furthermore, if p = 0, the optimal action will

be offering HP since the retailer is sure that the state of consumer is Normal and

CHN < CL. This implies

V t
β,LP(p = 0) > V t

β,HP(p = 0). (A.17)

Likewise, when p = 1, the optimal action will be offering LP since the retailer is sure

that the state of consumer is Alerted and CL < CHA. Thus, we have

V t
β,LP(p = 1) < V t

β,HP(p = 1). (A.18)

Thus, no action is uniformly better than the other in this model. Therefore, by (A.17),(A.18)

and continuity and concavity of V t
β,LP(p) and V t

β,HP(p), there is a unique solution to

V t
β,LP(p) = V t

β,HP(p) for p ∈ [0, 1].
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Proof. By setting VLP(pt) ≤ VHP(pt), we have

βtCL + βV t
β (T (pt)) ≤ (1− pt)[βtCHN + βV t

β (λN,A)] + pt[β
tCHA + βV t

β (λA,A)]. (B.1)

By Lemma 2, V t
β (pt) is a concave function. Thus,

V t
β (T (pt)) = V t

β (λN,A(1− pt) + λA,Apt)

≥ (1− pt)V t
β (λN,A) + ptV

t
β (λA,A).

(B.2)

By substituting (B.2) into (B.1), we can simplify inequality (B.1) to (1 − pt)CHN +

ptCHA ≥ CL, which implies pt ≥ CL−CHN
CHA−CHN

= κ when V t
LP(pt) ≤ V t

HP(pt). Thus, pt < κ

implies VLP(pt) > VHP(pt).
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Proof. Assume that λN,A ≥ τ , we have λA,A > pF =
λN,A

1−(λA,A−λN,A)
> λN,A ≥ τ . In

this case, By (A.3) and (A.7), we have

τ =
CL − CHN
CHA − CHN

= κ. (C.1)

Thus, τ = κ if λN,A > κ. Assume that λN,A < τ , then there are two cases for pF :

Case 1: pF > τ , then λA,A > pF > τ , which implies

Vβ(λA,A) = Vβ,LP(λA,A) =
CL

1− β . (C.2)

By (A.3), (A.8), and (C.2), we have

τ =
β(CL − CHA)λN,A + CL − CHN

(1− β)CHA − CHN + βCL
. (C.3)

Therefore, τ =
β(CL−CHA)λN,A+CL−CHN

(1−β)CHA−CHN+βCL
if pF =

λN,A
1−(λA,A−λN,A)

≥ τ =
β(CL−CHA)λN,A+CL−CHN

(1−β)CHA−CHN+βCL

and λN,A <
β(CL−CHA)λN,A+CL−CHN

(1−β)CHA−CHN+βCL
.

Case 2: pF < τ , τ can be computed by (A.6), (A.8), and (A.13). Moreover, for fixed

λA,A, (A.6) is a non-decreasing function w.r.t. λN,A. Thus, let τ+ =
λN,A

1−(λA,A−λN,A)
=

β(CL−CHA)λN,A+CL−CHN
(1−β)CHA−CHN+βCL

, τ ≤ τ+ in Case 2. Therefore, τ+ is an upperbound for the

optimal action in Case 2.

Since (A.6) is non-decreasing, (C.3) is decreasing and intersects with (C.1) at

λN,A = CL−CHN
CHA−CHN

, we have proved Corollary 2.
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Proof. Assume that τ is the threshold of offering either HP or LP coupons, then we

have V t
β,LP(τ) = V t

β,HP(τ). Noticing that the state of the consumer is revealed to the

retailer through cost when an HP coupon is offered, we have

V t
β,LP(τ)− V t

β,HP(τ)

= βt(CL − (1− τ)CHN − τCHA) + [V t+1
β (T (τ))− (1− τ)V t+1

β (λ′N,A)− τV t+1
β (λ′A,A)]

= 0.

(D.1)

The above equation is similar to (A.1) with V t+1
β (λN,A) and V t+1

β (λA,A) replaced by

V t+1
β (λ′N,A) and V t+1

β (λ′A,A), respectively. Thus, Lemmas 1-3 still hold. Therefore, the

proof follows the same argument for proving Theorem 1; we omit it for brevity.
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Proof. We prove by contradiction. Suppose that both SPs offer the same privacy

risk ε̃, we prove that there is no unilateral profitable deviation in the subgames using

backward induction. Without loss of generality, we assume p1 ≤ p2. We now prove

when both SPs choose the same ε̃, one of the SPs will be better off by unilaterally

deviate from offering ε̃. We start at the third stage wherein each consumer chooses

the SP which maximizes its utility (4.5). Since ε∗1 = ε∗2 = ε̃, every consumer will

choose the SP that offers the highest QoS. At the second stage, given the privacy

risk strategy ε∗1 = ε∗2 = ε̃ and the equilibrium strategy in the third stage, each SP

determines its QoS offering by solving (4.12). Finally, we show that SP2 will be better

off if it deviates from ε̃ unilaterally. By Assumption 5, each SP has equal share of

the market if v1 = v2 and ε1 = ε2. The profit of SPi can be written as

πi = [R(εi)− C(vi; εi)]ni(vi; εi; v−i; ε−i) (E.1)

=


rεi + pi − c(vi + λεi) if vi > v−i

rεi+pi−c(vi+λεi)
2

if vi = v−i

0 if vi < v−i

.

As argued in section 4.1.1, we assume that the net profit from using consumers’

private data is non-negative RP (εi) − CP (εi) > 0. Thus, (r − cλ)εi > 0 ∀εi ∈ [0, ε̄],

which indicates r − cλ > 0. Since every consumer will choose the SP that offers the

highest QoS, each SP’s best response strategy with respect to its competitor is to

increase vi until one of the SPs realizes it is not profitable to increase QoS anymore.

Therefore, by (E.1), both SPs will increase vi until R(εi) − C(vi, εi) = 0 for one of

the SPs. Since we assume p1 ≤ p2, we prove the theorem for the following two cases:

Case 1: p1 = p2 = p, i.e., both SPs have the same privacy-independent revenue.

In this case, given ε∗1 = ε∗2 = ε̃, each SP will increase its QoS to beat its competitor

until R(εi) − C(vi, εi) = rε̃ + p − c(vi + λε̃) = 0. As a result, both SPs’ equilibrium

168



strategies at this stage are given by

v∗1 = v∗2 =
(r − cλ)ε̃+ p

c
. (E.2)

At the first stage, the SPs determine their privacy risks based on the equilibrium

strategies in the second and the third stages. Given the equilibrium strategies in the

second stage (E.2), both SPs have zero profit. Since we assume ε1 ≤ ε2, SP1 can only

reduce its privacy risk from ε̃ and SP2 can only increase from it. We now prove that

it is a non-profitable deviation for SP1 to decrease its privacy risk to ε̃1 unilaterally.

Since SP1’s QoS strategy is given by v∗1 = (r−cλ)ε̃+p
c

, its profit is given by

R(ε̃1)− C(v∗1, ε̃1) = rε̃1 + p− c(v∗1 + λε̃1) = (r − cλ)(ε̃1 − ε̃) < 0.

Thus, SP1 does not have incentives to deviate from playing ε̃ unilaterally. On the

other hand, if SP2 increases its privacy risk from ε̃ to ε̃2 unilaterally, its profit is given

by

R(ε̃2)− C(v∗2, ε̃2) = rε̃2 + p− c(v∗2 + λε̃2) = (r − cλ)(ε̃2 − ε̃) > 0.

Therefore, SP2 is better off by changing its privacy risk from ε̃ to ε̃2 unilaterally.

Thus, there is no SPNE such that both SPs offer the same privacy risk when p1 = p2.

Case 2: p1 < p2, i.e., SP2 has a higher privacy-independent revenue than SP1.

In this case, since p1 < p2, both SPs will keep increasing its QoS until SP1 has zero

profit. Thus, by solving R(ε̃) − C(v1, ε̃) = 0, SP1 will play v∗1 = (r−cλ)ε̃+p1

c
at the

equilibrium. On the other hand, SP2 will offer an QoS slightly higher than v∗1 and

captures the entire market. At the first stage, given the equilibrium strategy of the

second stage described above, both SPs choose their privacy risk offerings. We now

prove that it is a non-profitable deviation for SP1 to decrease its privacy risk to ε̃1

unilaterally. Since SP1 offers v∗1 = (r−cλ)ε̃+p1

c
at the second stage, its profit is

R(ε̃1)− C(v∗1, ε̃1) = rε̃1 + p1 − c(v∗1 + λε̃1)
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= rε̃1 + p1 − c(
(r − cλ)ε̃+ p1

c
+ λε̃1)

= (r − cλ)(ε̃1 − ε̃)

< 0.

Thus, SP1 does not have incentives to deviate from playing ε̃ unilaterally. On the

other hand, if SP2 increases its privacy risk from ε̃ to ε̃2 unilaterally, its profit is given

by

R(ε̃2)− C(v∗2, ε̃2) = rε̃2 + p2 − c(v∗2 + λε̃2)

= rε̃2 + p2 − c(
(r − cλ)ε̃+ p1

c
+ λε̃2)

= (r − cλ)(ε̃2 − ε̃) + p2 − p1

= (r − cλ)(ε̃2 − ε̃) +R(ε̃)− C(v∗2, ε̃)

> R(ε̃)− C(v∗2, ε̃).

Thus, SP2 has incentives to deviate from offering the same privacy risk. Therefore,

playing ε∗1 = ε∗2 = ε̃ is not an SPNE when p1 < p2.
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Proof. Starting form the last stage in which consumers choose different SPs, we use

backward induction to find the SPNE of the sequential game. In the last stage, each

consumer located at x ∈ [0, 1] chooses an SP which maximize its utility function (4.3).

By (4.7) and the assumption that consumers’ privacy risk tolerances are uniformly

distributed, the indifference threshold xτ is given by

xτ =
v1 − v2 +

t(ε22−ε21)

ε̄

t(ε2 − ε1)
= n1(v1; ε1; v2; ε2). (F.1)

At the second stage, the optimal strategy of each SP is determined by the solution

of (4.12). For fixed privacy risk guarantees ε2 and ε1, the objective function of

SPi, i ∈ {1, 2} in this stage, i.e. πi(vi; εi; v−i; ε−i), is a concave function with respect

to its own strategy vi. Furthermore, the feasible set of SPi’s strategy is a convex set

(vi ∈ [0,+∞]). Thus, the non-cooperative subgame between SP2 and SP1 in this

stage can be considered as a two-player concave game. By Theorem 1 and 2 in [135],

we can establish

Lemma 4. For fixed privacy risk strategies, there exists a unique Nash equilibrium

in the game between SP2 and SP1 at the second stage.

To compute the equilibrium strategy of the second stage, we first substitute (4.14),

(4.15), and (F.1) into (4.9) and (4.8). Then, we apply the first order condition to

SPs’ profit functions and solve the simultaneous equations given by

∂πi(vi; εi; v−i; ε−i)

∂vi
= 0 ∀i ∈ {1, 2}. (F.2)

Solving the above simultaneous equations yields

v1 =
rε1 + p1

2c
+
v2 − λε1 − tx2ε2 + tx1ε1

2
, (F.3)

v2 =
rε2 + p2

2c
+
v1 − λε2 − t(1− x2)ε2 + t(1− x1)ε1

2
. (F.4)
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For given privacy guarantees ε1, and ε2, solving the simultaneous linear equations

above by substituting (F.3) into (F.4) yields the equilibrium strategies

v∗1(ε2, ε1) =
2(rε1 + p1) + rε2 + p2

3c
+
t(1 + x1)ε1 − λ(ε2 + 2ε1)− t(1 + x2)ε2

3
, (F.5)

v∗2(ε2, ε1) =
2(rε2 + p2) + rε1 + p1

3c
+
t(2− x1)ε1 − λ(2ε2 + ε1)− t(2− x2)ε2

3
. (F.6)

At the first stage, the SPs determine their optimal privacy risk by considering

the QoS of each SP and the market segmentation computed in previous stages as

functions of privacy risks offered by the SPs. By substituting (F.6) and (F.5) into

(4.9) and (4.8), the profit functions of the SPs can be written as

π2 =
c

9t(ε2 − ε1)
[
p2 − p1

c
+ (

r

c
− λ+ t

2ε̄− ε2 − ε1

ε̄
)(ε2 − ε1)]2, (F.7)

π1 =
c

9t(ε2 − ε1)
[−p2 − p1

c
+ (−r

c
+ λ+ t

ε̄+ ε2 + ε1

ε̄
)(ε2 − ε1)]2. (F.8)

Next, we apply the first order condition to SPs’ profit functions to compute the

equilibrium strategies. Taking the derivatives of π2 and π1 with respect to ε2 and ε1

and set both of their values to 0 yields

∂π2

∂ε2

=
c[( r

c
− λ+ t2ε̄−ε2−ε1

ε̄
)(ε2 − ε1) + p2−p1

c
][( r

c
− λ+ t2ε̄−3ε2+ε1

ε̄
)(ε2 − ε1)− p2−p1

c
]

9t(ε2 − ε1)2
= 0,

(F.9)

∂π1

∂ε1

=
c[(− r

c
+ λ+ t ε̄+ε2+ε1

ε̄
)(ε2 − ε1)− p2−p1

c
][( r

c
− λ− t ε̄−ε2+3ε1

ε̄
)(ε2 − ε1)− p2−p1

c
]

9t(ε2 − ε1)2
= 0.

(F.10)

Solving the two simultaneous equations above yields

(
r

c
− λ+ t

2ε̄− ε2 − ε1

ε̄
)(ε2 − ε1) +

p2 − p1

c
= 0 (F.11)

or

(
r

c
− λ+ t

2ε̄− 3ε2 + ε1

ε̄
)(ε2 − ε1)− p2 − p1

c
= 0 (F.12)
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and

(−r
c

+ λ+ t
ε̄+ ε2 + ε1

ε̄
)(ε2 − ε1)− p2 − p1

c
= 0 (F.13)

or

(
r

c
− λ− t ε̄− ε2 + 3ε1

ε̄
)(ε2 − ε1)− p2 − p1

c
= 0. (F.14)

We note that the strategies given by (F.11) and (F.13) result in 0 profits in (F.7) and

(F.8). This indicates the privacy risk determined by (F.11) and (F.13) are strictly

dominated by the strategies given by the solution of (F.12) and (F.14). Solving (F.12)

and (F.14) yields the equilibrium privacy risk (4.17) and

ε∗1 =
12ε̄cα− 3ctε̄− 16(p2 − p1)

24tc
. (F.15)

By subtracting (F.15) from (4.17), we have (4.19). Substitute the solution of ε∗2 and

ε∗1 to (F.6) and (F.5), we have (4.18) and

v∗1 =
(2α− t)cα6ε̄+ (α− 3t)3ctε̄+ (t− α)16p2 + (2α + t)8p1

24ct
. (F.16)

Subtracting (F.16) from (4.18) yields (4.20).

Next, we prove the sufficient condition for the existence of the above SPNE. First

of all, the model parameters must sustain a competitive market environment. Thus,

in the equilibrium, each SP must have non-zero market share. This indicates the

parameters must satisfy 0 ≤ x∗τ =
v∗1−v∗2+t(x∗2ε

∗
2−x∗1ε∗1)

t(ε∗2−ε∗1)
≤ 1. Substitute (4.17), (4.18),

(4.19), and (4.20) into the above inequality, we have (4.21). Furthermore, in the

SPNE, the QoS of each SP must be non-negative (QoS feasibility) and the privacy

risk guarantees must be bounded between 0 and ε̄ (privacy risk feasibility). By the

model assumption in Section 4.1.1, we have ε1 ≤ ε2. Thus, we only requires ε2 ≤ ε̄

and ε1 ≥ 0. Substitute (4.17) and (4.19) into the two inequalities above yields (4.22).
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Let x∗i =
ε∗i
ε̄
, i ∈ {A,B} denote the normalized privacy risk of each SP in the SPNE.

The equilibrium strategies must satisfy the complete market coverage condition given

by ui(x) = v∗i − t(x− x∗i )ε∗i ≥ 0 ∀x ∈ [0, 1] for at least one i ∈ {A,B}.

Substituting (4.22) into (4.20), we have v∗2− v∗1 = 3ε̄
4
α− p2−p1

3c
≥ 3tε̄

16
+ 2(p2−p1)

3c
> 0,

thus we only need v1 ≥ 0 for QoS feasibility. Furthermore, the Hotelling model

feasibility condition implies v∗1 − tx∗1ε
∗
1 ≥ v∗2 − tx∗2ε

∗
2. Since ui(x) is an increasing

function of x, complete market coverage condition can be simplified to u1(0) ≥ 0. As

a result, the QoS feasibility condition and the complete market coverage condition can

be simplified to v∗1 − tx∗1ε∗1 ≥ 0. Therefore, the sufficient condition for the existence

of SPNE is given by:

1. 0 ≤ v∗1−v∗2+t(x∗2ε2−x∗1ε1)

t(ε∗2−ε∗1)
≤ 1,

2. 0 ≤ ε∗1, ε
∗
2 ≤ ε̄,

3. v∗1 − tx∗1ε∗1 ≥ 0.

Solving the above three inequalities yield (4.21), (4.22), and (4.23). The equilibrium

market share and profits of the SPs are obtained by substituting (4.17), (4.18), (4.19),

and (4.20) into (4.7), (4.8), and (4.9).
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Proof. If q = 1
2
, X is independent of Y . The optimal solution is given by any (s0, s1)

that satisfies the distortion constraint ({s0, s1|ps1 + (1− p)s0 ≥ 1−D, s0, s1 ∈ [0, 1]})

since X and Y are already independent. If q 6= 1
2
, since each maximum in (5.29) can

only be one of the two values (i.e., the inference accuracy of guessing Ŷ = 0 or Ŷ = 1),

the objective function of the privatizer is determined by the relationship between

P (Y = 1, X̂ = i) and P (Y = 0, X̂ = i), i ∈ {0, 1}. Therefore, the optimization

problem in (5.29) can be decomposed into the following four subproblems:

Subproblem 1 : P (Y = 1, X̂ = 0) ≥ P (Y = 0, X̂ = 0) and P (Y = 1, X̂ = 1) ≤

P (Y = 0, X̂ = 1), which implies p(1 − 2q)(1 − s1) − (1 − p)(1 − 2q)s0 ≥ 0 and

(1− p)(1− 2q)(1− s0)− p(1− 2q)s1 ≥ 0. As a result, the objective of the privatizer

is given by P (Y = 1, X̂ = 0) + P (Y = 0, X̂ = 1). Thus, the optimization problem in

(5.29) can be written as

min
s0,s1

(2q − 1)[ps1 + (1− p)s0] + 1− q

s.t. 0 ≤ s0 ≤ 1

0 ≤ s1 ≤ 1

p(1− 2q)s1 + (1− p)(1− 2q)s0 ≤ p(1− 2q)

p(1− 2q)s1 + (1− p)(1− 2q)s0 ≤ (1− p)(1− 2q)

−ps1 − (1− p)s0 ≤ D − 1.

(G.1)

• If 1 − 2q > 0, i.e., q < 1
2
, we have ps1 + (1 − p)s0 ≤ p and ps1 + (1 − p)s0 ≤

1− p. The privatizer must maximize ps1 + (1− p)s0 to reduce the adversary’s

probability of correctly inferring the private variable. Thus, if 1−D ≤ min{p, 1−

p}, the optimal value is given by (2q−1) min{p, 1−p}+1−q; the corresponding

optimal solution is given by {s0, s1|ps1 + (1− p)s0 = min{p, 1− p}, 0 ≤ s0, s1 ≤

1}. Otherwise, the problem is infeasible.
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• If 1 − 2q < 0, i.e., q > 1
2
, we have ps1 + (1 − p)s0 ≥ p and ps1 + (1 − p)s0 ≥

1 − p. In this case, the privatizer has to minimize ps1 + (1 − p)s0. Thus, if

1−D ≥ max{p, 1− p}, the optimal value is given by (2q − 1)(1−D) + 1− q;

the corresponding optimal solution is {s0, s1|ps1 + (1 − p)s0 = 1 − D, 0 ≤

s0, s1 ≤ 1}. Otherwise, the optimal value is (2q − 1) max{p, 1 − p} + 1 − q

and the corresponding optimal solution is given by {s0, s1|ps1 + (1 − p)s0 =

max{p, 1− p}, 0 ≤ s0, s1 ≤ 1}.

Subproblem 2 : P (Y = 1, X̂ = 0) ≤ P (Y = 0, X̂ = 0) and P (Y = 1, X̂ = 1) ≥

P (Y = 0, X̂ = 1), which implies p(1 − 2q)(1 − s1) − (1 − p)(1 − 2q)s0 ≤ 0 and

(1 − p)(1 − 2q)(1 − s0) − p(1 − 2q)s1 ≤ 0. Thus, the objective of the privatizer is

given by P (Y = 0, X̂ = 0) + P (Y = 1, X̂ = 1). Therefore, the optimization problem

in (5.29) can be written as

min
s0,s1

(1− 2q)[ps1 + (1− p)s0] + q

s.t. 0 ≤ s0 ≤ 1

0 ≤ s1 ≤ 1

−p(1− 2q)s1 − (1− p)(1− 2q)s0 ≤ −p(1− 2q)

−p(1− 2q)s1 − (1− p)(1− 2q)s0 ≤ −(1− p)(1− 2q)

−ps1 − (1− p)s0 ≤ D − 1.

(G.2)

• If 1−2q > 0, i.e., q < 1
2
, we have ps1 +(1−p)s0 ≥ p and ps1 +(1−p)s0 ≥ 1−p.

The privatizer needs to minimize ps1+(1−p)s0 to reduce the adversary’s proba-

bility of correctly inferring the private variable. Thus, if 1−D ≥ max{p, 1−p},

the optimal value is given by (1 − 2q)(1 − D) + q; the corresponding optimal

solution is {s0, s1|ps1 + (1− p)s0 = 1−D, 0 ≤ s0, s1 ≤ 1}. Otherwise, the opti-

mal value is (1− 2q) max{p, 1− p}+ q and the corresponding optimal solution

is given by {s0, s1|ps1 + (1− p)s0 = max{p, 1− p}, 0 ≤ s0, s1 ≤ 1}.
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• If 1−2q < 0, i.e., q > 1
2
, we have ps1 +(1−p)s0 ≤ p and ps1 +(1−p)s0 ≤ 1−p.

In this case, the privatizer needs to maximize ps1 + (1− p)s0. Thus, if 1−D ≤

min{p, 1 − p}, the optimal value is given by (1 − 2q) min{p, 1 − p} + q; the

corresponding optimal solution is given by {s0, s1|ps1 + (1− p)s0 = min{p, 1−

p}, 0 ≤ s0, s1 ≤ 1}. Otherwise, the problem is infeasible.

Subproblem 3 : P (Y = 1, X̂ = 0) ≥ P (Y = 0, X̂ = 0) and P (Y = 1, X̂ =

1) ≥ P (Y = 0, X̂ = 1), we have p(1 − 2q)(1 − s1) − (1 − p)(1 − 2q)s0 ≥ 0 and

(1− p)(1− 2q)(1− s0)− p(1− 2q)s1 ≤ 0. Under this scenario, the objective function

in (5.29) is given by P (Y = 1, X̂ = 0) +P (Y = 1, X̂ = 1). Thus, the privatizer solves

min
s0,s1

p(1− q) + (1− p)q

s.t. 0 ≤ s0 ≤ 1

0 ≤ s1 ≤ 1

p(1− 2q)s1 + (1− p)(1− 2q)s0 ≤ p(1− 2q)

−p(1− 2q)s1 − (1− p)(1− 2q)s0 ≤ −(1− p)(1− 2q)

−ps1 − (1− p)s0 ≤ D − 1.

(G.3)

• If 1− 2q > 0, i.e., q < 1
2
, the problem becomes infeasible for p < 1

2
. For p ≥ 1

2
,

if 1 − D > max{p, 1 − p}, the problem is also infeasible; if min{p, 1 − p} ≤

1 − D ≤ max{p, 1 − p}, the optimal value is given by p(1 − q) + (1 − p)q

and the corresponding optimal solution is {s0, s1|1 − D ≤ ps1 + (1 − p)s0 ≤

max{p, 1−p}, 0 ≤ s0, s1 ≤ 1}; otherwise, the optimal value is p(1−q)+(1−p)q

and the corresponding optimal solution is given by {s0, s1|min{p, 1 − p} ≤

ps1 + (1− p)s0 ≤ max{p, 1− p}, 0 ≤ s0, s1 ≤ 1}.

• If 1 − 2q < 0, i.e., q > 1
2
, the problem is infeasible for p > 1

2
. For p ≤ 1

2
,

if 1 − D > max{p, 1 − p}, the problem is also infeasible; if min{p, 1 − p} ≤

1 − D ≤ max{p, 1 − p}, the optimal value is given by p(1 − q) + (1 − p)q
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and the corresponding optimal solution is {s0, s1|1 − D ≤ ps1 + (1 − p)s0 ≤

max{p, 1−p}, 0 ≤ s0, s1 ≤ 1}; otherwise, the optimal value is p(1−q)+(1−p)q

and the corresponding optimal solution is given by {s0, s1|min{p, 1 − p} ≤

ps1 + (1− p)s0 ≤ max{p, 1− p}, 0 ≤ s0, s1 ≤ 1}.

Subproblem 4 : P (Y = 1, X̂ = 0) ≤ P (Y = 0, X̂ = 0) and P (Y = 1, X̂ = 1) ≤

P (Y = 0, X̂ = 1), which implies p(1 − 2q)(1 − s1) − (1 − p)(1 − 2q)s0 ≤ 0 and

(1− p)(1− 2q)(1− s0)− p(1− 2q)s1 ≥ 0. Thus, the optimization problem in (5.29)

is given by

min
s0,s1

pq + (1− p)(1− q)

s.t. 0 ≤ s0 ≤ 1

0 ≤ s1 ≤ 1

−p(1− 2q)s1 − (1− p)(1− 2q)s0 ≤ −p(1− 2q)

p(1− 2q)s1 + (1− p)(1− 2q)s0 ≤ (1− p)(1− 2q)

−ps1 − (1− p)s0 ≤ D − 1.

(G.4)

• If 1− 2q > 0, i.e., q < 1
2
, the problem becomes infeasible for p > 1

2
. For p ≤ 1

2
,

if 1 − D > max{p, 1 − p}, the problem is also infeasible; if min{p, 1 − p} ≤

1 − D ≤ max{p, 1 − p}, the optimal value is given by pq + (1 − p)(1 − q)

and the corresponding optimal solution is {s0, s1|1 − D ≤ ps1 + (1 − p)s0 ≤

max{p, 1−p}, 0 ≤ s0, s1 ≤ 1}; otherwise, the optimal value is pq+(1−p)(1−q)

and the corresponding optimal solution is given by {s0, s1|min{p, 1 − p} ≤

ps1 + (1− p)s0 ≤ max{p, 1− p}, 0 ≤ s0, s1 ≤ 1}.

• If 1− 2q < 0, i.e., q > 1
2
, the problem becomes infeasible for p < 1

2
. For p ≥ 1

2
,

if 1 − D > max{p, 1 − p}, the problem is also infeasible; if min{p, 1 − p} ≤

1 − D ≤ max{p, 1 − p}, the optimal value is given by pq + (1 − p)(1 − q)

and the corresponding optimal solution is {s0, s1|1 − D ≤ ps1 + (1 − p)s0 ≤
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max{p, 1−p}, 0 ≤ s0, s1 ≤ 1}; otherwise, the optimal value is pq+(1−p)(1−q)

and the corresponding optimal solution is given by {s0, s1|min{p, 1 − p} ≤

ps1 + (1− p)s0 ≤ max{p, 1− p}, 0 ≤ s0, s1 ≤ 1}.

Summarizing the analysis above yields Theorem 6.
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Proof. Let us consider X̂ = X + β + γN , where β ∈ R and γ ≥ 0. Given the MAP

adversary’s optimal inference accuracy in (5.36), the objective of the privatizer is to

min
β,γ

P
(G)
d (H.1)

s.t. β2 + γ2 ≤ D

γ ≥ 0.

Define 1−p̃
p̃

= η. The gradient of P
(G)
d w.r.t. α is given by

∂P
(G)
d

∂α
=p̃

(
− 1√

2π
e−

(−α2 + 1
α ln η)

2

2

)(
−1

2
− 1

α2
ln η

)
(H.2)

+ (1− p̃)
(
− 1√

2π
e−

(−α2 − 1
α ln η)

2

2

)(
−1

2
+

1

α2
ln η

)

=
1

2
√

2π

(
p̃e−

(−α2 + 1
α ln η)

2

2 + (1− p̃)e−
(−α2 − 1

α ln η)
2

2

)
(H.3)

+
ln η

α2
√

2π

(
p̃e−

(−α2 + 1
α ln η)

2

2 − (1− p̃)e−
(−α2 − 1

α ln η)
2

2

)
.

Note that

p̃e−
(−α2 + 1

α ln η)
2

2

(1− p̃)e−
(−α2 − 1

α ln η)
2

2

=
p̃

1− p̃e
(−α2 − 1

α ln η)
2
−(−α2 + 1

α ln η)
2

2 =
p̃

1− p̃e
2 ln η

2 =
p̃

1− p̃e
ln η = 1.

(H.4)

Therefore, the second term in (H.3) is 0. Furthermore, the first term in (H.3) is always

positive. Thus, P
(G)
d is monotonically increasing in α. As a result, the optimization

problem in (H.1) is equivalent to

max
β,γ

√
γ2 + σ2 (H.5)

s.t. β2 + γ2 ≤ D

γ ≥ 0.

183



Therefore, the optimal solution is given by β∗ = 0 and γ∗ =
√
D. Substituting the

optimal solution back into (5.36) yields the MAP probability of correctly inferring

the private variable Y from X̂.
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Proof. Let us consider X̂ = X + (1 − Y )β0 − Y β1, where β0 and β1 are both non-

negative. Given the MAP adversary’s optimal inference accuracy P
(G)
d , the objective

of the privatizer is to

min
β0,β1

P
(G)
d (I.1)

s.t. (1− p̃)β2
0 + p̃β2

1 ≤ D

β0, β1 ≥ 0.

Recall that P
(G)
d is monotonically increasing in α = 2µ−(β1+β0)

σ
. As a result, the

optimization problem in (I.1) is equivalent to

max
β0,β1

β1 + β0 (I.2)

s.t. (1− p̃)β2
0 + p̃β2

1 ≤ D

β0, β1 ≥ 0.

Note that the above optimization problem is convex. Therefore, using the KKT

conditions, we obtain the optimal solution

β∗0 =

√
p̃D

1− p̃ , β∗1 =

√
(1− p̃)D

p̃
. (I.3)

Substituting the above optimal solution into P
(G)
d yields the MAP probability of

correctly inferring the private variable Y from X̂.
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Proof. The objective function in (5.45) can be written as

2

[
µ1 µ2 . . . µm

]


1
σ2

1+σ2
p1

0 . . . 0

0 1
σ2

2+σ2
p2

. . . 0

...
...

. . .
...

0 0 . . . 1
σ2
m+σ2

pm


2



µ1

µ2

...

µm


=

m∑
i=1

4µ2
i

σ2
i + σ2

pi

.

Thus, the optimization problem in (5.45) is equivalent to

min
β,σ2

p1
,...,σ2

pm

m∑
i=1

µ2
i

σ2
i + σ2

pi

(J.1)

s.t. ‖β‖2 + tr(Σp) ≤ D

σ2
pi
≥ 0 ∀i ∈ {1, 2, ...m}.

Since a non-zero β does not affect the objective function but result in positive distor-

tion, the optimal mechanism satisfies β = (0, ..., 0). Furthermore, the Lagrangian of

the above optimization problem is given by

L(σ2
p1
, ..., σ2

pm , λ) =
m∑
i=1

µ2
i

σ2
i + σ2

pi

+ λ0(
m∑
i=1

σ2
pi
−D)−

m∑
i=1

λiσ
2
pi
, (J.2)

where λ = {λ0, ..., λm} denotes the Lagrangian multipliers associated with the con-

straints. Taking the derivatives of L(σ2
p1
, ..., σ2

pm , λ) with respect to σ2
pi
, ∀i ∈ {1, ...,m},

we have

∂L(σ2
p1
, ..., σ2

pm , λ)

∂σ2
pi

= − µ2
i

(σ2
i + σ2

pi
)2

+ λ0 − λi. (J.3)

Notice that the objective function in (5.45) is decreasing in σ2
pi
,∀i ∈ {1, ...,m}. Thus,

the optimal solution σ∗pi
2 satisfies

m∑
i=1

σ∗pi
2 = D. By the KKT conditions, we have

∂L(σ2
p1
, ..., σ2

pm , λ)

∂σ2
pi

∣∣∣
σ2
pi

=σ∗pi
2,λ=λ∗

= − µ2
i

(σ2
i + σ∗pi

2)2
+ λ∗0 − λ∗i = 0. (J.4)
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Since λ∗i , i ∈ {0, 1, ...,m} is dual feasible, we have λ∗i ≥ 0, i ∈ {0, 1, ...,m}. Therefore

λ∗0 ≥
µ2
i

(σ2
i + σ∗pi

2)2
.

If λ∗0 >
µ2
i

σ4
i
, we have λ∗0 >

µ2
i

(σ2
i+σ∗pi

2)2 . This implies λ∗i > 0. Thus, by complementary

slackness, σ∗pi
2 = 0. On the other hand, if λ∗0 <

µ2
i

σ4
i
, we have σ∗pi

2 > 0. Furthermore,

by the complementary slackness condition, λ∗iσ
∗
pi

2 = 0,∀σ∗pi2. This implies λ∗i =

0,∀σ∗pi2 > 0. As a result, for all σ∗pi
2 > 0, we have

|µi|√
λ∗0

= σ2
i + σ∗pi

2. (J.5)

Therefore, σ∗pi
2 = max{ |µi|√

λ∗0
− σ2

i , 0} =

(
|µi|√
λ∗0
− σ2

i

)+

with
m∑
i=1

σ∗pi
2 = D. Substi-

tute this optimal solution into (5.36) with α =
√

(2µ)T (Σ + Σp)−12µ, we obtain the

accuracy of the MAP adversary.

189


	LIST OF TABLES
	LIST OF FIGURES
	1 INTRODUCTION
	1.1 How to Incentivize and Interact with Privacy Sensitive Consumer?
	1.1.1 Motivation
	1.1.2 Contributions
	1.1.3 Consumer Privacy Models
	1.1.4 Markov Decision Processes

	1.2 Incentive Mechanisms for Privacy-sensitive Electricity Consumers with Alternative Energy Sources
	1.2.1 Background and Related Work
	1.2.2 Contributions

	1.3 The Impact of Privacy on Free Online Service Markets
	1.3.1 Related Work
	1.3.2 Contributions

	1.4 Generative Adversarial Privacy
	1.4.1 Contributions
	1.4.2 Related Work

	1.5 Outline of Dissertation

	2 HOW TO INCENTIVIZE AND INTERACT WITH PRIVACY SENSITIVE CONSUMER?
	2.1 Problem Formulation for Consumer Retailer Interactions
	2.1.1 Consumer with Two States and Coupon Independent Transition.
	2.1.2 Consumer with Multi-Level Alerted States  
	2.1.3 Consumer with Coupon Dependent Transition 
	2.1.4 Policies under Noisy Cost Feedback and Uncertain Initial Belief
	2.1.5 Summary of Main Results

	2.2 Optimal Policy for Retailers
	2.2.1 Optimal Policies with Known Consumer Statistics
	2.2.2 Consumers with Coupon Dependent Transitions
	2.2.3 Policies under Noisy Cost Feedback and Uncertain Initial Belief


	3 INCENTIVE MECHANISMS FOR PRIVACY SENSITIVE ELECTRICITY CONSUMERS WITH ALTERNATIVE ENERGY SOURCES 
	3.1 System Model
	3.1.1 Consumer Model
	3.1.2 Electricity Provider Model

	3.2 Consumer-Electricity Provider Game
	3.2.1 Mixed Strategy Nash Equilibrium

	3.3 A Two-Player Example
	3.4 Illustration of Results

	4 THE IMPACT OF PRIVACY ON FREE ONLINE SERVICE MARKETS
	4.1 Problem Model and Game Formulation
	4.1.1 Two-SP Market Model
	4.1.2 Two-SP Non-cooperative Game Formulation

	4.2 The Subgame Perfect Nash Equilibrium for the Two-SP Game
	4.3 Two-SP Market with Linear Cost and Revenue Functions
	4.3.1 Uniform Consumer Privacy Risk Tolerance
	4.3.2 Truncated Gaussian Consumer Privacy Risk Tolerance
	4.3.3 Illustration of Results

	4.4 Market with Multiple Service Providers

	5 GENERATIVE ADVERSARIAL PRIVACY
	5.1 Generative Adversarial Privacy Model
	5.1.1 Formulation
	5.1.2 GAP under Various Loss Functions
	5.1.3 Data-driven GAP
	5.1.4 Outline of Work

	5.2 Binary Data Model
	5.2.1 Theoretical Approach for Binary Data Model
	5.2.2 Data-driven Approach for Binary Data Model
	5.2.3 Illustration of Results

	5.3 Binary Gaussian Mixture Model
	5.3.1 GAP for Single-dimensional Gaussian Mixture Model
	5.3.2 GAP for Multi-dimensional Gaussian Mixture Models

	5.4 GAP for Real Datasets
	5.4.1 The GENKI Dataset
	5.4.2 The MNIST Dataset


	6 CONCLUSIONS AND FUTURE WORK
	6.1 How to Incentivize and Interact with Privacy Sensitive Consumer?
	6.2 Incentive Mechanisms for Privacy-Sensitive Electricity Consumers
	6.3 Impact of Privacy on Free Online Service Markets
	6.4 Generative Adversarial Privacy
	6.5 Future Work
	REFERENCES
	A PROOF OF THEOREM 1
	B PROOF OF COROLLARY 1
	C PROOF OF COROLLARY 2
	D PROOF OF THEOREM 2
	E PROOF OF THEOREM 4
	F PROOF OF THEOREM 5
	G PROOF OF THEOREM 6
	H PROOF OF THEOREM 7
	I PROOF OF THEOREM 8
	J PROOF OF THEOREM 10






