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ABSTRACT

In this dissertation a new wideband circular HIS is proposed. The circular periodicity 

made it possible to illuminate the surface with a cylindrical TEMz wave and; a novel 

technique is utilized to make it wideband. Two models are developed to analyze the 

reflection characteristics of the proposed HIS.

The circularly symmetric high impedance surface is used as a ground plane for the

design of a low-profile loop and spiral radiating elements. It is shown that a HIS with

circular periodicity provides a wider operational bandwidth for curvilinear radiating

elements such, such as loops and spirals, compared to canonical rectangular HISs.

It is also observed that, with the aid of a circular HIS ground plane the gain of a

loop and a spiral increases compared to when a perfect magnetic conductor (PMC)

or rectangular HIS is used as a ground plane. The circular HIS was fabricated and

the loop and spiral elements were placed individually in close proximity to it.

Also, due to the growing demand for low-radar signature (RCS) antennas for

advanced airborne vehicles, curved and flexible HIS ground planes, which meet both

the aerodynamic and low RCS requirements, have recently become popular candidates

within the antenna and microwave technology. This encouraged us, to propose a

spherical HIS where a 2-D curvature is introduced to the previously designed flat

HIS.

The major problem associated with spherical HIS is the impact of the curvature

on its reflection properties. After characterization of the flat circular HIS, which is

addressed in the first part of this dissertation, a spherical curvature is introduced to

the flat circular HIS and its impact on the reflection properties was examined when

it was illuminated with the same cylindrical TEMz wave. The same technique, as for

the flat HIS ground plane, is utilized to make the spherical HIS wideband. A loop and

spiral element were placed in the vicinity of the curved HIS and their performances

i



were investigated. The HISs were also fabricated and measurements were conducted

to verify the simulations. An excellent agreement was observed.
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Chapter 1

INTRODUCTION

Antenna designers have made immense advances in the past several decades. High

Impedance Surfaces (HISs) or Artificial Magnetic Conductors (AMCs) are one of

the breakthroughs that has emerged in modern antenna design, after they were first

proposed in [1]. These surfaces are designed such that at a certain frequency the plane

wave illumination is reflected with the same phase as that of the incident wave. This

is in contrast to a perfect electric conductor (PEC) surface where a reflection phase

of 180◦ is introduced to the phase of the incident wave. Thus, it can be concluded

that HISs resemble the behaviour of perfect magnetic conductors (PMCs) within a

certain bandwidth where the reflection phase is nearly zero.

1.1 Previous Work

The reflection properties of HISs have been extensively examined in [2], [3], [4],

[5], [6]. Analytical models are also provided in [7], [8], [9], [10] to demonstrate the

reflection characteristics of these surfaces. According to image theory, a horizontal

radiating element cannot be placed in close proximity of a PEC ground plane, as the

image of the source will be 180◦ out of phase which ultimately results in poor radiation.

The horizontal element should be placed at a height of quarter of a wavelength above

the conducting ground plane to attain maximum broadside radiation to the reflecting

surface. The height can be reduced only if the image of the source is in the same

phase (direction) as the actual source. To accomplish this, the ground plane has to

be a perfect magnetic conductor. Although PMC materials do not exist in nature,

HISs have similar reflection properties as PMC material, within a certain frequency
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interval; i.e. a horizontal radiating element can be located in the vicinity of these

type of artificial ground planes and yet radiate efficiently. Thus HISs are proper

candidates to be used as antenna ground planes if a low-profile design is required.

Various types of radiators, such as dipoles and curvilinear antennas, were placed in

close proximity to these surfaces [11], [12], [13], [14]. HISs can also be utilized for

antenna miniaturization and bandwidth enhancement [15], [16], [17]. The ideas of

multiband and tunable HISs are discussed in [18], [19].

The other attractive property of these structures is surface wave suppression which

also occurs within a specific frequency interval referred to as Electromagnetic Band

Gap (EBG). In [20], a planar EBG structure is used to reduce surface-wave losses for

an aperture-coupled fed patch antenna on a thick high dielectric-constant substrate.

A novel planar photonic band gap (PBG) scheme is presented in [21] for size reduction.

HIS structures are also utilized in designing reflectarray antennas with application

in medical imaging [22], [23] and defect detection in dielectric materials [24]. A unit

cell consisting of a ring loaded square patch with a varactor diode connected across

the gap with nearly 180 degrees phase tenability was proposed in [25]. The unit cell

was used to build a reflectarray antenna with +/- 60 degrees beam steering [26], [27].

Conformal and curved HISs have also recently received attention because of the

growing demand for flexible structures. In [28], the reflection phase of a cylindrically

curved HIS is characterized and an analytical model is developed.

Although most of the existing research focuses on rectangular surfaces, there are

only a few investigations have been undertaken on curvilinear structures, the majority

of which are focused on the EBG properties rather than HIS characteristics [29]. In

[30], a planar circularly symmetric EBG structure is proposed to suppress the surface

waves evenly in all directions. The radiation bandwidth of a printed slot surrounded

by a circular EBG is then optimized in [31] and the proposed surface in [30] was
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ultimately used to build a sector EBG antenna for high-directivity applications [32].

A dual-band circularly symmetric EBG substrate is also designed to improve the

radiation properties of a dual-band circular patch antenna in [33]. In [34], the gain of

a dielectric resonator antenna is improved by the utilization of a circular mushroom-

like structure.

1.2 Scope of the Work

As mentioned above, the reflection characteristics and potential applications of

a circularly symmetric HIS have not been addressed in depth in the existing litera-

ture. In this dissertation, we illustrate that curvilinear antenna elements have better

performance above circular HISs rather than rectangular HISs. This superiority is

mainly attributed to electric fields radiated by a circular loop antenna which interact

more effectively with a circularly symmetric ground plane HIS.

The electromagnetic field expressions corresponding to a loop having an arbitrary

current distribution is provided in [35]. These expressions show that the electric

fields of a loop antenna with uniform current distribution (C/λ << 1 where C is

the circumference of the loop) includes only the φ-component on the loop’s plane.

As the ratio of the circumference to the wavelength increases, the current becomes

more non-uniform whose distribution causes the loop antenna to also generate a

radial component. However, it would still be a valid approximation to neglect the

small radial component and assume that the electric fields are mainly of azimuthal

components on the plane of the loop. This approximation becomes more accurate as

the radial distance increases. Making this assumption, it is shown in this dissertation

that the figures-of-merit of a loop element can be enhanced by taking advantage of a

HIS with circular symmetry (φ-direction periodicity).

Despite the performance enhancements of the loop antenna using a circular HIS
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[36], these elements are generally narrowband radiators. In this dissertation, a spiral

element is used, along with a circular HIS, to characterize the performance of wide-

band curvilinear radiating elements when placed above a circularly periodic ground

plane [37], [38], [39]. Although a circular AMC reflector is used in [40] to improve

the axial ratio of an archimedean spiral antenna (79% 2-dB axial ratio bandwidth),

the major objective of this study is to broaden the fractional and operational band-

widths and also increase the broadside gain of spiral elements utilizing HIS ground

planes with circular periodicity. The 3-dB axial ratio bandwidth is maintained at

11%, which is similar to the one in [41].

The main contributions of this dissertation are:

• Demonstrates that circularly symmetric HIS are superior ground planes for

curvilinear antenna elements.

• Develops a fully analytical model which predicts the reflection characteristics

of circular HISs when illuminated with cylindrical TEMz waves.

• Illustrates that the operational bandwidth of curvilinear antenna elements placed

above circular HISs are wider than those above rectangular HISs.

• Characterizes the phase profile of the circular HIS with which the electromag-

netic waves of a loop antenna are reflected and having a constructive interfer-

ence. This phenomenon increases the gain of a loop and spiral by 2.5 dB and 3

dB, respectively, compared with an ideal PMC ground plane.

• Illustrates that curvilinear elements have more symmetric elevation gain pat-

terns.

• Illustrates that the same technique can be used to design a circular HIS with

spherical curvature [42].
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1.3 Outline of Dissertation

This dissertation is organized as follows. Chapter 2 covers the basic theory of HISs,

their design procedure and also the challenges and strategies of designing a circular

HIS. A method to make the circular HIS wideband is also presented in Chapter 2.

Chapter 3 mainly concentrates on developing analytical models to characterize the

reflection phase of circular HISs under normal incidence of cylindrical TEMz wave. In

Chapter 4, the performance of curvilinear radiating elements located above a circular

HIS is examined in detail and compared for their performance when they are located

above a rectangular HIS. A spherical curvature is introduced to the flat circular HIS

of Section 2.2 and its impact on the reflection characteristics is examined. It is

illustrated that the same basic principle of flat circular HIS can be used to make the

spherical HIS wideband. Loop and spiral elements are placed, individually, above

the spherical HIS and their performance is studied through simulations. Chapter 7

illustrates the fabrication and measurement procedure of the circular HIS, spiral and

loop radiating elements and their feeding network. Measurements are presented and

compared with simulations. Chapter 8 summarizes the conclusions and suggests some

topics for future work.
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Chapter 2

FLAT HIGH IMPEDANCE SURFACES

HISs are two-dimensional metamaterials which are commonly used as antenna ground

planes for low-profile designs. As mentioned in Section 1.1, the majority of the current

literature is focused on rectangular HISs. In Section 2.1, the theory and reflection

characteristics of rectilinear HISs are reviewed. The strategies used to design a circular

HIS are presented in Section 2.2.

2.1 Rectilinear HISs

HISs are generally realized by the periodic arrangement of metallic patches mounted

on top of a grounded dielectric. Fig. 2.1 illustrates the 3-D CAD geometry of a rect-

angular HIS. Due to the Floquet Theorem, the reflection phase of a periodic structure

can be obtained by simulating a single unit cell with the appropriate boundary con-

ditions. Thus to obtain the phase of the reflection coefficient from the HIS of Fig. 2.1

under normal incidence of a plane wave, it is sufficient to find the reflection phase of

the unit cell displayed in Fig. 2.2. It is obvious that

a = w + g (2.1)

Fig. 2.3 illustrates typical reflection phase of a HIS under plane wave normal

incidence. The frequency at which the reflection phase is 0◦ is defined as the resonant

frequency.
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Figure 2.1: Geometry of a rectangular HIS with a substrate of height h and relative

permittivity ϵr.

Figure 2.2: Geometry of two adjacent unit cells of the periodic structure of Fig. 2.1,

with period of a, patch width of w and gap of g.
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Figure 2.3: Reflection phase of the HIS of Fig. 2.1 with design parameters: a = 1.2

cm, w = 0.8 cm, g = 0.4 cm
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2.2 Circular HISs

The circular HIS design considered in this dissertation is based on a Rogers

RT/Duroid-5880 disc of thickness 0.635 cm whose bottom surface is covered with

a copper sheet. The top surface of the dielectric is covered by circular rings that have

periodic gaps in the angular direction. The angular design parameters are wa and

ga, where wa is the patch angle and ga is the gap angle. The radial patch length and

the radial gap length are represented by wr and gr, respectively. Thus, the unit cell

design parameters are:

aa = wa + ga (2.2)

ar = wr + gr

The surface with an angular periodicity is illustrated in Fig. 2.4. The angle of the

unit cell (aa) of this surface is 20◦, the gap angle (ga) is 6◦, the radial length of the

unit cell (ar) is 2.22 cm, and finally, the radial gap length (gr) is 0.9 cm. To illuminate

the surface with a cylindrical TEMz wave whose electric field is in the φ direction, it is

required to simulate a coaxial cable with PMC boundary conditions on the surface of

the inner and outer conductors, as was done in [29]. Fig. 2.5 illustrates the reflection

phase diagram of the surface shown in Fig. 2.4 under normal incidence of cylindrical

TEMz wave illumination. As it can be observed from Fig. 2.5, the surface of Fig. 2.4

possesses many narrowband modes. Dividing the HIS of Fig. 2.4 into 4 single rings

(Fig. 2.6) and simulating them individually illustrates that each ring is resonating

at a different frequency, although all of the rings have the same design parameters;

this is illustrated in Fig. 2.7. The interesting point is that the resonant frequency of

each single ring is present in the reflection phase of the entire surface when all of the

rings are placed together, as if the phase of the reflected wave from the entire surface

is the superposition of the phases of the reflected waves from the single individual
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rings. For instance, the 4th ring of Fig. 2.6 is resonating at 3.74 GHz. This resonance

is also observed in the reflection phase of the entire surface of Fig. 2.4 when the 4th

ring is placed next to the other rings. The same is true for all of the rings. There

are still some other modes in the reflection phase of Fig. 2.4 which are attributed

to the cross polarized component. This undesired component is introduced at the

curved boundary of the metal patches and the dielectric. Since the cross polarized

component is in the radial direction, its corresponding modes should be controlled by

the size of the radial gaps.

ga wawr

gr

Figure 2.4: Top view of the HIS with an angular periodicity where wa = 14◦, ga = 6◦,

wr = 2.22 cm and gr = 0.9 cm.

By changing the angular gaps, to achieve a wideband surface, all of the rings

were designed to resonate at the same frequency. The cross polarized modes are also

shifted to higher frequencies by changing the radial gaps. Using these two guidelines,

a circularly symmetric surface was designed with a zero reflection phase at 4.5 GHz.

To achieve such a geometry, the gap angle of the first ring was decreased from 6◦ to 1◦

but the gap angles of all other rings were increased. The radial length of the patches

were then adjusted to shift the cross polarized modes to out of band. The unit cells of
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Figure 2.5: Reflection phase of the surface of Fig. 2.4 under illumination by a cylin-

drical TEMz wave.
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Figure 2.6: Separate ring configuration of Fig. 2.4.
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Figure 2.7: Reflection phase of each single ring of Fig. 2.6.

all of the rings have an angle of 20◦ and a radial width of 2.22 cm. Design parameters

are summarized in Table 2.1. Fig. 2.8 displays the reflection phase of each single ring

and also the reflection phase of the entire surface when all the rings are present. It

is implied from Table 2.1 and Fig. 2.8 that a wideband surface has different design

parameters on each ring. Although the unit cell’s angle and radial width of each ring

is maintained constant through the design procedure, the geometry of the patches

(wa and wr) of each ring is different from the other ones.
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Table 2.1: Design parameters of circular HIS with the zero reflection phase at 4.5

GHz.

Parameter ga (deg) gr (cm)

1st ring 1 1.35

2nd ring 6.6 1.1

3rd ring 8.4 1.1

4th ring 9.5 1.2
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Figure 2.8: Reflection phase of the single rings and the combined surface with resonant

frequency of 4.5 GHz.
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Chapter 3

ANALYTICAL MODELING OF FLAT CHIS

In this Chapter, two models, the quasi-static and wideband, are developed to analyze

the reflection characteristics of the circularly symmetric HIS. Based on the Floquet

theorem, the reflection phase of a periodic structure is the same as the reflection phase

of a single unit cell if appropriate boundary conditions are applied. Thus unit cells

are used to find the surface impedance of each ring. The surface impedance of single

rings are then combined to find the surface impedance of the entire structure. The

numerical results of both models, along with the full-wave simulation data, are shown

and compared with each other in the last part of this Chapter.

3.1 Quasi-Static Model

The idea of the quasi-static model is based on finding the equivalent surface

impedance of a unit cell in terms of lumped capacitances and inductances that are

in parallel with each other[1]. The capacitance is mainly due to the fringing effect of

the patch edges and the inductance is attributed to the grounded substrate. From

the theory of conformal mapping, the electric flux density of a pair of semi-infinite

conducting plates separated by a gap of width g and a voltage difference of V0 is [43]:

Ψ = Im

[

ϵV0

π
cos−1

(

x+ iy

g/2

)]

(3.1)

For two finite plates with widths of w as illustrated in Fig. 3.1 when w >> g, the

flux ending on the plates can be approximated by:

Ψ =
2ϵV0

π
cosh−1

(

w + g

g

)

(3.2)
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Figure 3.1: Geometry of two finite plates separated by a small gap of width g.

Since the gap width between the plates is constant in the z-direction, the electric

flux density is not changing with respect to z and the capacitance per unit length is

only a function of the ratio w/g. Thus the total fringing capacitance between two

finite plates is equal to the capacitance per unit length times the length of the patch

in the z-direction. For a square patch mounted on top of a dielectric with permittivity

of ϵr the edge capacitance is given by [1]:

C = capacitance per unit length× patch length

=
wϵ0(1 + ϵr)

π
cosh−1

(

w + g

g

) (3.3)

which is valid if the flux function is not varying with respect to the direction parallel

to the edges of the plate. However, in the geometry of Fig. 3.2, the electric flux

density is a function of the radial direction as well. Although (3.2) can still be used

to model the angular behavior of the flux at a constant ρ in the φ-direction, the radial

dependence of the flux function must be modeled. This can be approximated with

the behavior of the electric flux density between two semi-infinite conducting planes

intersecting at an angle of α, but separated by an infinitesimal gap at the origin so

that the plane at φ = 0 may be placed at zero potential, and the plane at φ = α at
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potential V0, as illustrated in Fig. 3.3.

Figure 3.2: Geometry of the patches of the circular HIS with patch angle of w and

gap angle of g.

Figure 3.3: Geometry of the semi-infinite conducting planes intersecting at an angle

of α .

The flux function of the geometry of Fig. 3.3 is given by (3.4) where ρ1 is the

flux function’s reference. From (3.4), it can be concluded that the electric flux can

be modeled as a logarithmic function along the radial direction.

Ψ(ρ) =
V0

α
ln

(

ρ

ρ1

)

(3.4)

It is concluded from (3.4) that the electric flux variation of Fig. 3.3 with respect to

radius should be modeled as
1

g
ln(ρ). Thus the flux function ending on the plates of

Fig. 3.2 is

Ψ(ρ) =
2ϵV0

πg
cosh−1

(

w + g

g

)

ln

(

ρ

ρ1

)

(3.5)
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To find the total charge between the patches of Fig. 3.2, the flux ending on one

patch needs to be found. This can be obtained by integrating it from ρ1 to ρ2, which

are the inner and outer radii of the patches, respectively. This value is equal to

the product of the capacitance and the voltage across the metallic patches; hence it

should be divided by V0. Therefore, the total capacitance of the patches of Fig. 3.2,

when they are mounted on top of a dielectric with the relative permittivity of ϵr, is

given by:

C =
ϵ0(1 + ϵr)

π
cosh−1

(

w + g

g

)[

ρ2ln

(

ρ2
ρ1

)

− ρ2 + ρ1

]

(3.6)

The equivalent inductance of the grounded dielectric with the permeability of µ

under cylindrical TEMz wave illumination is equal to [1]:

L = µh (3.7)

To obtain the surface impedance of each ring, the capacitor and inductor values

from (3.6) and (3.7) should be used in (3.8), which is the input impedance of the

parallel LC circuit.

Zeq =
jωL

1− ω2LC
(3.8)

3.2 Wideband Model

The basic idea of the wideband model is to consider the impact of the higher

order modes that can propagate within the waveguide being used for the unit cell

simulation, which in our case is a cross section of a cylindrical waveguide (an annular

sector with inner and outer radii of ρ1 and ρ2, respectively). Fulfilling this purpose,

the impedance of different modes of the incident wave on the unit cell and their
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corresponding reflected and transmitted waves are found separately, and appropriate

coefficients are used to obtain the weighted sum of the impedance of all of the modes.

Hence, the impact of all of the modes is taken into account with a certain weight in

the final expression of the surface impedance. This makes the model more accurate,

especially beyond the quasi-static frequency ranges. Fig. 3.4 shows the unit cell

geometry and the appropriate boundary conditions on the waveguide walls. The

equivalent transmission-line model is also illustrated in Fig. 3.4.

To obtain the impedance of the different modes, we should solve the wave equation

within the unit cell waveguide of Fig. 3.4. The vector potential within a cross section

of a cylindrical waveguide shown in Fig. 3.4(a), for the TEz mode, is

Fz = [A1Jm(βρρ) +B1Ym(βρρ)]cos(mφ)e−jβzz (3.9)

where the eigenvalues can be obtained from

Jm(βρρ1)Ym(βρρ2)− Jm(βρρ2)Ym(βρρ1) = 0 (3.10)

m =
nπ

a

n = 1, 2, 3, ...

The transverse components of the electric field are

Eφ =
βρρ

ϵ
[A1J

′

m(βρρ) +B1Y
′

m(βρρ)]cos(mφ)e−jβzz (3.11)

Eρ =
nπ

ϵaρ
[A1Jm(βρρ) +B1Ym(βρρ)]sin(mφ)e−jβzz (3.12)

For the TMz modes the vector potential is

Az = [A1Jm(βρρ) +B1Ym(βρρ)]sin(mφ)e−jβzz (3.13)
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(a)

(b)

(c)

Figure 3.4: (a) Top view of the unit cell geometry. (b) Side view of the unit cell

geometry. (c) Transmission-Line model of the unit cell.
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where the eigenvalues can be obtained from

J
′

m(βρρ1)Y
′

m(βρρ2)− J
′

m(βρρ2)Y
′

m(βρρ1) = 0 (3.14)

m =
nπ

a

n = 0, 1, 2, ...

The transverse components of the electric field are

Eφ =
−nπβz

ωµϵρa
[A1Jm(βρρ) +B1Ym(βρρ)]cos(mφ)e−jβzz (3.15)

Eρ =
βρβz

ωµϵ
[A1J

′

m(βρρ) +B1Y
′

m(βρρ)]sin(mφ)e−jβzz (3.16)

For both TEz and TMz modes, βz is represented by

βz =
√

ω2µϵ− β2
ρ (3.17)

Since the electric field expressions of (3.11) and (3.15) are periodic functions of φ,

they can be expanded in a Floquet series of spatial harmonics. Thus the transverse

electric field in Fig. 3.4(b) at z = 0 can be expanded as [44]

E(ρ,φ) = 1 + Γ+
+∞
∑

n=−∞

En(ρ)e
−jnφ (3.18)

where the amplitude of the incident wave is unity and Γ is the reflection coefficient of

the first harmonic. Assuming that the substrate shown in Fig. 3.4(b) is not backed

by the metallic ground plane and it is extended towards infinity in the z-direction,

the transverse magnetic fields in free space (ϵ0) and the substrate (ϵr) are

H(0)(ρ,φ) = Y (0)
1 (1− Γ)−

+∞
∑

n=−∞

Y (0)
n En(ρ)e

−jnφ (3.19)

H(r)(ρ,φ) = Y (r)
1 (1− Γ)−

+∞
∑

n=−∞

Y (r)
n En(ρ)e

−jnφ (3.20)
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where Y (0)
n and Y (r)

n are the wave admittance in free space and substrate, respectively.

The total equivalent admittance of each ring, which is represented by Yeq in Fig.

3.4(c), is then obtained in terms of Y (0)
n and Y (r)

n . Next, two cases are considered. In

the first case the gap angle is much smaller than the patch angle (g << w), while in

the second case the gap angle is comparable to the patch angle (g ≈ w).

3.2.1 Case for which g << w

To find Yeq, the Floquet series coefficients of the electric field over the gap should

be found. From Fourier series analysis, the coefficients of the zeroth and higher order

harmonics of (3.18) are given by

1 + Γ =
1

a

∫ g

0

Eg(ρ,φ)dφ =
1

a
Ẽg(ρ, 0) (3.21)

En(ρ) =
1

a

∫ g

0

Eg(ρ,φ)e
jnφdφ =

1

a
Ẽg(ρ, n) (3.22)

where Eg represents the electric field over the gap and Ẽg represent the nth spatial

harmonic. Using (3.21) and (3.22), En can be related to the electric field spatial

harmonics as

En = (1 +R)
Ẽg(n)

Ẽg(0)
(3.23)

and from the continuity of the magnetic field through the gap, the reflection coefficient

can be written as [44]

Γ =
Y (0)
0 − Y (r)

0 − Yeq

Y (0)
0 − Y (r)

0 + Yeq

(3.24)

where

Yeq =
∞
∑

n=−∞

∣

∣

∣

∣

Ẽg(n)

Ẽg(0)

∣

∣

∣

∣

2
[

Y (0)
n + Y (r)

n

]

(3.25)

Equation (3.25) represents the total equivalent admittance of Fig. 3.4 assuming that

the substrate is infinite and not backed by a PEC surface. To obtain the surface
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admittance of the circular HIS, the impact of the metallic ground plane has to be

taken into account. This is reflected in the transmission line model of Fig. 3.4(c) as

Ysc. Hence, Y
(r)
n in (3.25) should be replaced by −jY (r)

n cot(β(r)
n h) due to transmission

line theory, and the surface admittance of the unit cell shown in Fig. 3.4 becomes

Yeq =
∞
∑

n=−∞

∣

∣

∣

∣

Ẽg(ρ, n)

Ẽg(ρ, 0)

∣

∣

∣

∣

2
[

Y (0)
n − jY (r)

n cot(β(r)
n h)

]

(3.26)

All of the terms in (3.26) are easy to compute except for the ratio of the zeroth to the

higher spatial harmonic of the electric field over the gap which can only be computed

if the electric field profile of the gap is known. Therefore, it is necessary to find an

expression for the electric field distribution over the gap.

The electric field profile over an electrically small slit with a constant width is

of Maxwellian distribution [45]. Although the gap width between the patches of a

single ring increases in the radial direction, Maxwell’s distribution used in [44] can be

modified such that the electric field profile expression includes the radial variation.

Fig. 3.5 shows the electric field intensity along two arcs with different radii under

TEz incidence. As can be seen, the electric field profile on both arcs is of Maxwellian

distribution with respect to φ; however, its intensity is inversely proportional to the

radius of the arc. Thus, we propose (3.27) to be used as the field profile over the gap

Eg(ρ,φ) = Ah(ρ)f(φ) (3.27)

where A is a frequency-dependent coefficient, h(ρ) is given by

h(ρ) ∝
1

ρ
(3.28)

and f(φ) for TE/TM polarizations are, respectively, given by

fTE(φ) ∝

[

1−

(

2φ

g

)2] 1

2

(3.29)
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Figure 3.5: Transverse electric field distribution along two arcs over the gap at 4 GHz.

Table 3.1: Electric field expressions for different polarizations and their spatial har-

monics

Polarization Eg(ρ,φ) Ẽg(ρ, n)

TE A
1

ρ

[

1− (
2φ

g
)2
]

1

2 A
1

ρ
J0

(

ng

2

)

TM A
1

ρ

[

1− (
2φ

g
)2
]

−
1

2 A
1

ρ

J1

(

ng

2

)

ng

2
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fTM(φ) ∝

[

1−

(

2φ

g

)2]− 1

2

(3.30)

Table 3.1 summarizes the gap’s electric field distribution and its spatial harmonics

with respect to the polarization. Using Ẽg, provided in Table 3.1, in (3.26) to find

the ratio of the nth harmonics to the zeroth harmonic, Yeq reduces to

Yeq =
∞
∑

n=−∞

∣

∣

∣

∣

f̃(n)

f̃(0)

∣

∣

∣

∣

2
[

Y (0)
n − jY (r)

n cot(β(r)
n h)

]

(3.31)

As can be seen in (3.31), the ratio of nth harmonics to the zeroth harmonic is inde-

pendent of the radial variation, although it was taken into account in (3.27).

3.2.2 Case for which g ≈ w

For the case of the wider gaps whose geometry is illustrated in Fig. 3.6, the current

distribution on the patch is considered instead of the electric field over the gap [44].

The current density on the patches is equal to the discontinuity of the tangential

magnetic field

Js(ρ,φ) = H(0)(ρ,φ)−H(r)(ρ,φ) (3.32)

Using the magnetic field expressions of (3.19) and following the same procedure as

Figure 3.6: Geometry of the unit cell where the gap angle is comparable to the patch

angle.

was done for the electric field in the case of the narrow gaps, it can be shown that
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the equivalent impedance of the surface with wider gaps is

Zeq =
∞
∑

n=−∞

∣

∣

∣

∣

f̃(n)

f̃(0)

∣

∣

∣

∣

2 1

Y (0)
n − jY (r)

n cot(β(r)
n h)

(3.33)

3.3 Numerical Results and Comparison of the Methods

Fig. 3.7 illustrates the reflection phase of the 1st and the 4th ring obtained from

both of the proposed analytical models and HFSS. For the quasi-static model, we

used (3.3), (3.7) and (3.8) to find the surface impedance of each ring. In the wideband

model, (3.31) is used to obtain the surface impedance of the 1st ring where the gaps

are very small and (3.33) is used to obtain that of the 4th ring as the gaps are wider.

Although an infinite number of terms are required to compute the impedance from

the equations of the wideband model, we only used the modes whose cutoff frequencies

were within the frequency range of interest. As it can be seen in Fig. 3.7, the reflection

phase from both of the models are in good agreement with the results from the full-

wave simulation for the first ring. For the 4th ring, the results from the wideband

model are pretty close to the full-wave simulation; however, the quasi-static model

results are very different from the other two. Inaccurate results of the quasi-static

model for the fourth ring can be attributed to the assumption of very narrow gap that

was made in the derivation of the edge capacitance. However, the quasi-static model

can help the designers to make some initial starting values of the design parameters

(gap and patch angle) as it is more straightforward.
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Figure 3.7: Reflection phase diagram of the 1st and 4th ring obtained by the proposed

models and HFSS.
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Chapter 4

ANTENNA APPLICATIONS OF FLAT CIRCULAR HIS (CHIS)

As it was mentioned in Section 1.1, circular HISs may serve as superior ground

planes, than rectangular HISs, for curvilinear radiating elements, such as a loop. In

this Chapter two curvilinear elements (loop and spiral) are placed above the circular

HIS of Chapter 2 and their radiation characteristics are examined and compared with

those above the rectangular HIS.

4.1 Loop Element

4.1.1 Operational Bandwidths

Fig. 4.1 illustrates the geometry of a loop element placed in the vicinity of the

circular HIS. To obtain the operational bandwidth of the circular HIS, the radius of

the loop was varied. The frequency interval over which the return loss is below -10 dB

is the operational bandwidth of the circular HIS [11]. Assuming a center frequency of

3 GHz, the loop antenna is located at 0.01λ above the ground plane. Fig. 4.2 exhibits

the return losses of loops with different radii, and the data indicate that the -10 dB

operational bandwidth of the surface for loop antenna is about 37% at 3 GHz.

To compare the operational bandwidth of the circular HIS to that of the rectan-

gular HIS, a loop was placed at the same height above the rectangular HIS which

has an equal surface area and also an identical reflection characteristic as the circular

HIS. Fig. 4.3(a) illustrates the geometry of a rectangular HIS with a unit cell size of

2 cm and square patches with side length of 1.36 cm. The thickness and electrical

properties of the substrate are also the same as those of the substrate of the circular

HIS. As it can be seen in Fig. 4.3(b), the reflection characteristic of both HISs are

26



Figure 4.1: 3D CAD geometry of a loop antenna at a height of 0.01λ above a circular

HIS.
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Figure 4.2: Return losses of the loop antennas with different radii located above the

circular HIS.

27



(a)

1 2 3 4 5 6 7−200

−150

−100

−50

0

50

100

150

200

Frequancy (GHz)

R
efl
ec
ti
on

P
h
as
e
(d
eg
.)

Rectangular surface

Circular surface

(b)

Figure 4.3: (a) 3D CAD geometry of a loop antenna at a height of 0.01λ above

the rectangular HIS. (b) Reflection phase of the rectangular HIS under normal TEM

illumination.

almost identical. Following the same procedure to obtain the operational bandwidth,

simulations indicated that the -10 dB bandwidth of the rectangular HIS is about

26% (versus 37% for the circular HIS). Fig. 4.4 illustrates the return losses of loops

antennas with different radii placed above the rectangular HIS.
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Figure 4.4: Return losses of the loop antennas with different radii located above the

rectangular HIS.

4.1.2 Gain Pattern

For further comparisons, the gain pattern of a loop of radius 1 cm above the

circular and rectangular HIS is obtained at 3 GHz. As it can be seen in Fig. 4.5

the gain pattern of the loop antenna is more symmetric on different elevation planes

when it is placed above the circular HIS.

The gain of a loop with a radius of 1 cm at 3 GHz in free space is slightly greater

than 2 dB [46] and due to image theory, it increases by 3 dB when it is located above

an ideal PMC surface. In the case of the rectangular HIS, the gain increases from 2

dB to 5.5 dB. However, if the loop is placed above a circular HIS, the gain increases

by 6 dB which makes the total gain 8.5 dB. To justify the extra 3 dB increase in the

gain, it would be helpful to look at the phase with which the electric field of the loop

is reflected from different parts of the HIS ground plane. It should be noted that,
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Figure 4.5: Gain of the loop antenna on different φ planes when it is located above:

(a) circular HIS (b) rectangular HIS.

although the unit cell geometry of each ring is adjusted such that all of the rings

have identical reflection phases under normal illumination of cylindrical TEMz wave,
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the rings do not necessarily have the same reflection characteristics under oblique

illumination. On the other hand, the problem of a localized source (loop element) is

different from the problem of normal plane wave illumination. When a loop antenna

is located in the vicinity of the circular HIS, the angle of incidence increases as the

point of reflection increases in the radial direction. As illustrated in Fig. 4.6(a),

the incidence angle of the waves radiated by the loop can be considered as normal

only within the inner portion (the area directly beneath the loop) of the surface;

hence, the reflection phase of this portion of the surface can be approximated as the

reflection phase of the circular HIS of Fig. 2.4, when it is illuminated by cylindrical

TEMz waves. Such an approximation cannot be made for the outer portion of the

surface (which is not beneath the loop) as the waves radiated by the localized source

impinge on the surface at oblique angles. This is also illustrated in Fig. 4.6(a). Thus,

the reflection phase of the outer portion of the surface under the illumination of the

localized source has to be observed separately. Fulfilling this purpose, it is sufficient

to observe the phase of the tangential component of the electric field along a radial

line as the surface is symmetric in the φ-direction. Fig. 4.6(c) displays the reflection

phase of the electric fields radiated by the loop along the dotted line of Fig. 4.6(b).

The changes in the reflection phase of the electric fields of the localized source in the

radial ρ-direction is attributed to the:

• Incident angle of the radiated wave by the localized source that changes with

respect to ρ.

• Impedance of the surface that changes with respect to ρ, due mainly to the

texture of the surface which varies in the radial direction.

The reflection phase variation along the dotted radial line of Fig. 4.6(a) is such

that causes a constructive phase interference in the broadside direction, which ul-
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Figure 4.6: (a) Oblique incidence angle of the electromagnetic wave radiated by a loop

antenna (b) Side view of the circular HIS with a loop antenna above it (c) Reflection

phase of the electric field radiated by the loop antenna at 3 GHz along the dashed

line shown in Fig. 4.6(b).

timately results in a higher gain compared with an ideal PMC where the surface

impedance is neither a function of the incident angle nor a function of the point of

reflection.

One way to validate that the high gain of the loop antenna above the circular HIS
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is due to the different reflection phases, introduced to the electromagnetic waves of

the localized source on different spots, is to synthesize the surface impedance of the

circular HIS such that the synthesized surface has the same radial reflection phase

profile as the circular HIS, when it is illuminated by a loop. To accomplish this, the

surface is divided into three rings and the surface impedance of each ring is determined

based on the reflection phase of Fig. 4.6(c). As mentioned earlier, it can be assumed

that the electromagnetic waves of the loop impinge on the inner ring (green zone) of

the surface at right angle; thus, (4.1) can be used to find its corresponding surface

impedance.

Γ1 =
η1 − η0
η1 + η0

= 1ejφ1 (4.1)

In (4.1), Γ1 is the complex reflection coefficient with the magnitude of unity and phase

of φ1, η0 is the wave impedance of the free space and η1 is the surface impedance of

the inner ring of the surface of Fig. 4.7. In order to obtain η1 from (4.1), it is only

required to find the appropriate φ1 of Γ1, since its magnitude is equal to unity. As

discussed before, Γ1 can be approximated to be the same as the reflection coefficient

of the surface under normal illumination of cylindrical TEMz wave; hence, φ1 at 3

GHz can be obtained from Fig. 2.8 which would be equal to 90◦.

Next, the surface impedance of the middle and outer rings (blue and red zones) of

Fig. 4.7 should be found; however, (4.1) cannot be used anymore since it is valid for

normal incidence only. As the ratio of the circumference of the loop to the wavelength

at 3 GHz is very small, it can be assumed that the electric field of the waves radiated

by the loop antenna is only of φ-component. Therefore the configuration of the oblique

incident wave on the surface on a constant elevation φ plane can be considered to

be the same as the TE configuration of [14] and [47]. For the TE incident wave the
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reflection coefficient is given by

Γi =
ηi − η0cosθi
ηi + η0cosθi

= 1ejφi (4.2)

where θi is the incident angle.

To obtain the surface impedance of the middle or the outer ring from (4.2), it is

only required to find the phase (φi) of the reflection coefficient as the magnitude of

Γi is unity; φi for each of the rings of Fig. 4.7 is approximated as the average of the

reflection phase given in Fig. 4.6(c) along the radial direction. The average reflection

phases of the middle ring (2.4 cm < ρ < 5.2 cm) and the outer ring (5.2 cm < ρ < 8

cm) are 180◦ and 5◦ respectively. The averaged reflection phases of the ring sections

are then substituted in (4.2) and the surface impedances are found accordingly.

The equivalent surface impedances assigned to inner, middle and outer rings are

-j377, 0 and j1750 Ω/m2, respectively. Fig. 4.8 illustrates the gain pattern of the

same loop placed above the synthesized surface, which is very close to that of the loop

antenna above the circular HIS. The pattern obtained from the synthesized surface

can be even more accurate by subdividing the surface to more rings of smaller radial

width.

So far, it has been shown that the broadside gain of the loop antenna at 3 GHz is

higher when it is located above the circular HIS. To investigate if the same construc-

tive phase interference happens over the entire operational bandwidth, the broadside

gain of the loop antenna was simulated vs. frequency. Fig. 4.9 displays the gain of

the loop antenna; it is evident that, within the frequency range of interest, the gain

is higher when the loop is located above the circular HIS rather than the rectangular

one.
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Figure 4.7: Top view of the synthesized surface divided into three impedance sections

and a loop antenna above it.
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Figure 4.8: Gain pattern of a loop antenna above the circular HIS of Fig. 4.1 and

the synthesized surface of Fig. 4.7 at 3 GHz.
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Figure 4.9: Broadside gain of the loop antenna above the circular HIS.

4.2 Spiral Element

4.2.1 Operational and Fractional Bandwidths

To obtain the operational bandwidth of the circular HIS of Section 2.2 when used

as a ground plane, the spiral element of Fig. 4.10 is placed at a very small height above

the surface, as illustrated in Fig. 4.11. The diameter D of the spiral is then varied

and the frequency interval over which the return loss is below -10 dB is considered to

be the operational bandwidth of the circular HIS [11]. The number of turns of each

arm is maintained at two; however, the rate of a expansion changes in each case. If

a varies from 0.25 cm to 0.5 cm, the diameter of the spiral increases from 1.5 cm to

2.2 cm; the spiral element is then located at a height 0.005λ above the circular HIS,

where λ is the wavelength at 3.5 GHz. The input impedance of the lumped port is

maintained at 50 ohms throughout the simulations. Fig. 4.12 exhibits the return

loss of spiral elements of different spiral diameters, and it indicates that the -10 dB

36



operational BW is 44% at 3.5 GHz.

Figure 4.10: Geometry of a spiral element.

Figure 4.11: Geometry of a spiral antenna above a circular HIS of radius 8.1 cm

(surface area = 210 cm2).

To compare the operational bandwidth of the circular HIS with that of a rectan-

gular HIS, when used as ground planes for a spiral element, a conventional rectilinear

HIS with square patches (w = 0.8 cm, a = 1 cm) which has an equal surface area

and an identical reflection phase under normal incidence plane wave illumination was

designed. It should be noted that the reflection phases of the circular and rectangular

HISs are obtained under different types of wave illuminations. The spiral was then

located at the same height (0.005λ at 3.5 GHz) above it, as shown in Fig. 4.13, and

its -10 dB operational BW of 28% at 3.5 GHz is displayed in Fig. 4.14. Thus the

operational BW of the circular HIS of Fig. 4.11 for spiral elements is about 16%

greater than that of the rectangular HIS of Fig. 4.13. Simulations also indicate that

a spiral element has a wider operational BW above a circular HIS compared to the
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corresponding rectangular HIS with an identical surface area, regardless of the height

of the elements or the size of the HIS. For example, the operational BW of the spiral

above the circular HIS of Fig. 4.11 with only three rings and rectangular HIS of Fig.

4.13 (with an identical surface area as the circular HIS with three rings) are 39% and

25%, respectively.

Another figure-of-merit that illustrates the superior performance of the Fig. 4.11

design over that of Fig. 4.13 is the fractional bandwidth. Fig. 4.15 indicates that the

-10 dB fractional bandwidth of the spiral element above a circular HIS is wider than

that above the rectangular HIS. For example, at 3.5 GHz, the fractional bandwidth

of the same spiral antenna (D/λ = 0.14) is 24% and 13.7% above the circular and

rectangular HIS, respectively. The return losses of the spiral and loop element are

illustrated and compared in Fig. 4.16 when each is located at the same height above

a circular HIS. At 3.5 GHz, the fractional bandwidth of the spiral (D/λ = 0.12) is

18%, which is 7% wider than that of the loop (C/λ = 0.3).

4.2.2 Gain Pattern

To examine the superiority of the azimuthal φ periodicity of the HIS ground plane,

the gain of the spiral was examined. The simulated gain patterns are displayed in

Fig. 4.17.

Based on image theory, the gain of any radiator above a PMC ground plane should

be 3 dB greater than that of the radiator in free space. The broadside gain of the

spiral of this design in free space is about 2.5 dB; hence, its gain should be about

5.5 dB when located above an ideal PMC surface (Perfect H boundary condition).

As it is indicated in Fig. 4.17, in the case of the rectangular HIS the gain is 5.5

dB (the same as for the ideal PMC ground plane). However, when the circular HIS

is used as a ground plane, the broadside gain is 8 dB which is 2.5 dB higher than

38



2 2.5 3 3.5 4 4.5 5−40

−35

−30

−25

−20

−15

−10

−5

0

Frequency (GHz)

R
et
u
rn

L
os
s
(d
B
)

D/λ = 0.22
D/λ = 0.2
D/λ = 0.18
D/λ = 0.16
D/λ = 0.14
D/λ = 0.12
D/λ = 0.1
D/λ = 0.08

1510 MHz

Figure 4.12: Return losses of spiral elements with different sizes located at height

0.005λ above a circular HIS.

Figure 4.13: Geometry of a spiral antenna above a rectangular HIS of side 14 cm

(surface area = 210 cm2).

39



when a rectangular HIS or an ideal PMC ground plane is used. This increase is

attributed to the phase by which the fields created by the spiral element are reflected.

It should be noted that the reflection phase of Fig. 2.8 was generated for normal

incidence of a cylindrical TEMz wave. Although all of the four rings are adjusted

to have the same reflection characteristic under normal illumination, they do not

have the same reflection characteristic when a localized source is placed at the center

and small height above the ground plane; thus each ring is illuminated at a different

incidence angle. Since the texture of the surface and the incidence angle varies in the

radial direction, the fields reflected from different parts of the surface possess variable

phase such that it leads to a constructive interference which ultimately culminates

in a stronger field intensity in the broadside direction. A method to characterize

the reflection phase of a circular HIS under the illumination of a localized source is

outlined in [36]. Thus, similar to loop antennas, spiral elements also benefit from the

constructive radial phase profile of the circular high impedance surface which leads to

an additional 2.5 dB gain increase. The broadside gains of the spiral element, when it

is located above a circular HIS, rectangular HIS and an ideal PMC ground plane, are

displayed and compared in Fig. 4.18. The superiority in gain of the spiral element

above the circular HIS, over the entire frequency range, is evident.
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Figure 4.14: Return losses of spiral antennas with different sizes located above the

rectangular HIS.
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Figure 4.15: Comparison between fractional bandwidths of spiral elements when each

is located above circular and rectangular HIS.

41



2 2.5 3 3.5 4 4.5 5−40

−35

−30

−25

−20

−15

−10

−5

0

Frequency (GHz)

R
et
u
rn

L
os
s
(d
B
)

Spiral (D/λ = 0.14)
Spiral (D/λ = 0.12)
Loop (C/λ = 0.35)
Loop (C/λ = 0.3)
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Chapter 5

SPHERICAL HIGH IMPEDANCE SURFACES

Another area of interest which has also attracted intense interest in recent years

is flexible electronic devices. The extensive demand for such radio systems, inspired

many antenna engineers to design conformal radiating components including antenna

ground planes [48]. The overlap between the low-profile and conformal requirements

gives birth to the third research area of conformal HIS ground planes [28]. In this

Chapter a spherical curvature is introduced to the flat circular HIS of Chapter 2 and

its impact is examined.

5.1 Curvature Impact

Fig. 2.4 displays the top view along with the design parameters of a flat HIS with

circular periodicity whose design procedure is provided in [36]. The design strategy

of such surfaces is based on the illumination of the individual rings with cylindrical

TEMz wave and adjusting the patch sizes such that all rings have the same zero-cross

reflection phase (Fig. 2.8). The rings are then combined to form the entire circular

HIS of Fig. 5.1 which eventually will have the same reflection phase as the separate

rings [36, Fig. 5]. The same idea is also used to design a circular HIS with spherical

curvature of Fig. 5.2. This structure is based on a grounded spherical shell of Rogers

RT/ duroid 5880 with thickness of 0.623 cm. The inner radius of the spherical cap is

30 cm and the length of its outer arc is maintained equal to the radius of the flat HIS

of Fig. 2.4. The same values of [36, Table. I] are used for the patch dimensions of

the spherical HIS. Figure. 5.3 illustrates the reflection phase of the individual rings.

It is evident from Fig. 5.3 that although all rings are designed such that they
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Figure 5.1: Top view of the flat circular HIS.

Figure 5.2: Geometry of the circular HIS with spherical curvature.
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Figure 5.3: Reflection phases of the individual rings of spherical HIS of Fig. 5.4 under

cylindrical TEMz illumination.

Figure 5.4: A side plane view of the rings of surface of Fig. 5.2.

introduce an identical reflection phase to the incident wave, the phase of the reflected

wave front from each ring on a flat observation plane is different. This is attributed

to the additional distance the wave travels to reach the surface of the outer rings

compared to inner ones. Fig. 5.4 clearly illustrates the additional distance “d” that

the wave travels until it impinges the surface of the 4th ring compared to the 1st

one. Thus the patches of the spherical HIS should be redesigned such that they

compensate for the phase difference introduced by the additional travel distance due

to the curvature. The modified patch and gap dimensions for each ring are provided in

Table 5.1, and the corresponding reflection phases of the individual rings are displayed

46



Table 5.1: Design parameters of the spherical circular HIS with the zero reflection

phase at 4.5 GHz.

Parameter ga (deg) gr (cm)

1st ring 2 1.35

2nd ring 4 1.1

3rd ring 10 1.1

4th ring 14 1.2

in Fig. 5.5.

5.2 Curvature Limit

The design procedure of a curved circular HIS was outlined in the previous section.

However, it is of interest to investigate the maximum curvature that can be applied

to the flat surface and use the mentioned technique to adjust the phase response of

the individual rings such that the entire surface maintains the same reflection phase.

Observing the phase of the reflected wave from different rings on a flat plane, tangent

to the top of the sphere, the phase of the reflected wave from the inner one (φr
i ) has

to be equal to the sum of the reflection phase of the outer one (φr
4) and the phase

2βdij, where dij is the additional distance between rings i and j.

φr
i = φr

j + 2βdij (5.1)

The minimum radius of curvature Rmin corresponds to the maximum value of

distance d between the inner and outermost rings. Solving (5.1) for dij

dij =
φr
i − φr

j

2β
(5.2)

47



1 2 3 4 5 6 7−200

−150

−100

−50

0

50

100

150

200

Frequency (GHz)

R
efl

ec
ti
on

P
h
as
e
(D

eg
.)

 

 

1st ring
2nd ring
3rd ring
4th ring

Figure 5.5: Reflection phases of the modified individual rings of spherical HIS of Fig.

5.4 under cylindrical TEMz illumination.

indicates that the difference between the reflection phases of the inner and outermost

rings limits the value of the distance dij. In Fig. 5.4, given that φr
1 is zero at resonance

and that the minimum value of φr
4 within the same mode is −π, the maximum value

of d is

dmax =
π

2β
(5.3)

Based on the geometry of Fig. 5.6, we can write that

d = 2Rsin2
( r

2R

)

(5.4)

where R and r are, respectively, the radii of curvature of the spherical HIS of Fig.

5.2 and the surface of the flat HIS of Fig. 2.4. Substituting dmax of (5.3) in (5.4),

leads to
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Rminsin
2
( r

2Rmin

)

=
λ

8
(5.5)

If the radius of curvature is larger than the radius of the flat HIS (R >> r), (5.5) can

be approximated by

Rmin =
2r2

λ
(5.6)

Figure 5.6: The side plane view of a spherical HIS of radius of curvature R and arc

length r.
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Chapter 6

ANTENNA APPLICATIONS OF SPHERICAL CHIS

As it was mentioned in Chapter 5, the spherical HIS is used as an antenna ground

plane. Two curvilinear elements (loop and spiral) are located above the designed

surface of Chapter 5 and the operational bandwidth of the surface for each element

and also their realized gain patterns are obtained. Fig. 6.1 illustrates the geometry

and design parameters of the curvilinear radiating elements.

Figure 6.1: Geometry of loop and two-arm spiral elements.

6.1 Operational Bandwidth

To determine the operational bandwidth of the spherical HIS for each of the

elements, they are placed in the vicinity of the ground plane, as shown in Fig. 6.2,

and the sizes of the loop and spiral (a and D in Fig. 6.1) are varied. Fig. 6.3

displays the -10 dB operational bandwidth of the loop and spiral elements located at

a height 0.005 λ (wavelength at 3.5 GHz) above the spherical HIS of Fig. 5.2. The

operational bandwidths for the loop and spiral elements at 3.5 GHz are 21% and 28%,

respectively; while those of the flat circular HIS reported in [36], [37] for the same

elements are 31% and 44%, respectively. In other words the operational bandwidths

of the spherical design was reduced by 10% and 16% compared to the flat design of

[36] for the loop and spiral, respectively.
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Figure 6.2: 3D CAD geometry of the curvilinear elements above the spherical HIS

ground plane.

6.2 Gain Pattern

The realized gain [46] patterns of the curvilinear elements were also evaluated. Fig.

6.4 illustrates the realized gain of the loop and spiral radiators above the spherical HIS

of Fig. 6.2, PMC ground plane with an identical curvature, flat circular HIS of [36] and

flat PMC ground plane. The broadside gain of a loop (C/λ = 0.6) and a spiral (D/λ

= 0.15) antenna in free-space is 2.5 dB and 3 dB, respectively. Due to image theory,

a 3 dB gain enhancement is expected when the loop and spiral are placed above a flat

PMC ground plane which is also indicated in Fig. 6.4; i.e., the gain of the elements has

increased to 5.5 dB and 6 dB. Although the same performance is expected when these

elements are placed above the circular HIS, an additional 3 dB increase is observed

for both the loop and spiral, with total gains of 8.5 dB and 9 dB, respectively. As a

detailed explanation is provided in [36], [49], the substantial (+3 dB) enhancement

of the gain is attributed to the radial reflection phase profile along the surface of

the circular HIS. Modeling and synthesizing the surface impedance based on such a

reflection phase profile substantiates that the wavefronts of the curvilinear elements

(loop and spiral) are reflected such that they have a constructive interference in the

broadside direction, which eventually results in a 3-dB higher gain compared to a

flat PMC ground plane where the wavefronts are reflected with a uniform reflection
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Figure 6.3: Operational bandwidth of the curvilinear element at a height of 0.005 λ

above the spherical HIS: (a) Loop (b) Spiral.

52



  −30

  −20

  −10

  0

  10

60

120

30

150

0

180

30

150

60

120

90 90

Spherical HIS
Spherical PMC
Flat HIS
Flat PMC

(a)

  −30

  −20

  −10

  0

  10

60

120

30

150

0

180

30

150

60

120

90 90

Spherical HIS
Spherical PMC
Flat HIS
Flat PMC

(b)

Figure 6.4: Realized gain patterns of the curvilinear elements at a height of 0.005 λ

above the spherical HIS at 3 GHz: (a) Loop (b) Spiral.

phase along the surface. Introducing curvature to the antenna ground plane prompts

the electromagnetic energy to scatter in non-broadside directions which results in an

expected gain degradation. Thus the gain of both elements located above the spherical
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HIS ground plane is about 1.5 dB lower compared to gain of the same elements above

the flat circular HIS. However, the curvilinear elements above the spherical HIS still

have a 3 dB higher gain than those located above a spherical PMC ground plane with

an identical radius of curvature.
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Chapter 7

MEASUREMENTS

7.1 Flat Circular HIS (CHIS)

7.1.1 Loop Element

To validate the simulations, the proposed circular HIS was fabricated, as shown

in Fig. 7.1, and measurements were performed. To feed the radiating element from

beneath the HIS, it was required to pass the inner conductor of the coaxial cable

through the substrate and connect it to one of the loop terminals. The other terminal

was connected to the outer conductor of the coaxial cable which itself was connected

to the ground plane of the HIS. The dimensions of the loop were such that clearance

holes had to be constructed on the patches of the first ring to prevent the antenna

from being shorted out to them while passing the feed wires through the substrate.

However, simulations indicated that the performance of the surface with two clearance

holes on the first ring deviates from what it was expected to be. Thus, the holes where

constructed close to the metallic patches and two parallel wires were used to connect

the conductors of the coaxial cable to the terminals of the loop. Fig. 7.2 illustrates

the loop antenna along with the parallel wires which connect its input terminals

to the source. A plastic film of thickness 1.15 mm, with a relative permittivity of

approximately unity, is also used to provide the desired height above the surface.

The return loss of two different loops with radii of 3 cm and 2.7 cm were measured.

The input impedance and the pattern of the realized gain for the later case were also

measured. The simulations and measurements are displayed and compared in Figs.

7.3 and 7.4. An excellent agreement between them is indicated.
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Figure 7.1: Fabricated circular HIS with the loop antenna at a height of 0.01λ.

Figure 7.2: Geometry of the loop antenna along with the parallel wires which were

used to avoid the creation of clearance holes on the metal patches.

7.1.2 Spiral Element

To verify the simulation data, measurements were performed. A two-arm spiral

element with two turns and an expansion rate of 0.45 cm was etched on copper tape

and adhered to a thin dielectric film of 0.05 mm thickness. Fig. 7.5 displays the

fabricated circular HIS with the spiral element above it.

Since the coaxial feed-line is unbalanced and a spiral is a balanced element, a

balun is needed to make the radiating system balanced [46]. However, the bandwidth
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Figure 7.3: Simulations and measurements of the loop element above the flat CHIS:

(a) Return loss (b) Input impedance
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Figure 7.4: Simulations and measurements of the loop element above the flat CHIS:

Gain pattern at 3 GHz.

of the balun can be a limiting factor; so a wideband balun is required. It is also more

convenient to feed the element from underneath the ground plane, so that the impact

of the coaxial cable on the radiation pattern is minimal. Therefore, it was decided

to taper the outer conductor of the coaxial cable, as proposed in [50], to design a

wideband balun. The balun was passed through a clearance hole made at the center

of circular HIS. The tapered and inner conductors were then connected to each arm

of the spiral. The CAD geometry of the wideband balun is shown in Fig. 7.6.

Fig. 7.7 displays the return loss and realized gain patterns of the spiral antenna

at the resonant frequency of 2.7 GHz. The maximum realized gain is 8 dB. Although

there are some slight differences in the back angular region, due to the inaccuracy in

the fabrication process of the balun, an excellent agreement between simulations and

measurements is indicated over the entire angular space. As mentioned earlier, the

3-dB axial ratio bandwidths is maintained at 11%.
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(a)

(b)

Figure 7.5: Fabricated prototype: (a) Spiral element (b) Circular HIS.

Figure 7.6: Tapered coaxial cable used as a wideband balun to feed the spiral.

7.2 Spherical CHIS

To validate the simulations, a spherical HIS was fabricated and measurements were

conducted. It should be noted that Rogers RT/duroid 5880 was used throughout the

simulations in the previous sections; however ABS plastic (ϵr = 2.75, tanδ = 0.004)

is used for fabrication as Rogers 5880 was not available with the desired thickness.

The dielectric characteristics of the substrate of the HIS is modified accordingly in

simulations to make the comparison more realistic. Figure. The fabricated spherical
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HIS is illustrated in Fig. 7.10 and the loop element located above it. The following

steps describe the fabrication process of the spherical HIS prototype.

1. The spherical shell was carved out of an ABS dielectric block using a Computer

Numerical Control (CNC) machine.

2. The back of the spherical shell was covered with copper paint as displayed in

Fig. 7.8.

3. A mask of the patches on Vinyl plastic was prepared and placed on the top

surface of the spherical shell and it was painted with copper as displayed in Fig.

7.9.

4. Adhering the copper tape on a thin film, print the negative mask of the loop

element on it and use etchant to remove the extra portion of the copper.

Figure. 7.11 illustrates the simulated and measured return loss and realized gain

patterns of the loop element above the spherical HIS. It should be noted that to make

the comparison fair, the electrical properties of the ABS plastic and copper paint were

implemented in the simulation models. An excellent agreement is observed between

simulations and measurements.
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Figure 7.7: Simulations and measurements of the spiral element above the flat CHIS:

(a) Return loss (b) Realized gain pattern at 2.7 GHz.
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Figure 7.8: Covering the back of the spherical shell with copper paint.

(a)

(b)

Figure 7.9: Vinyl mask and copper paint used on the surface of the spherical shell.
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(a)

(b)

Figure 7.10: Fabricated prototype: (a) Spherical HIS ground plane (b) Loop element

above spherical HIS.
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Figure 7.11: Simulations and measurements of the loop element above spherical HIS:

(a) Return loss (b) Realized gain pattern.
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Chapter 8

CONCLUSIONS AND FUTURE WORK

8.1 Conclusions

In this dissertation, a procedure to design a wideband circularly symmetric high

impedance surface was proposed. The basic design principle of such surfaces is to

illuminate individual rings with a cylindrical TEMz wave and adjust the patch sizes

such that all the rings have the same reflection characteristic. The rings are then

combined to form the HIS ground plane and the surface is illuminated with the same

cylindrical TEMz wave. Simulations indicate that the entire surface has a very similar

reflection property as the individual rings.

Two models were developed to analyze the reflection characteristics of the surface

under normal incidence of a cylindrical TEMz wave. The quasi-static model was sim-

pler but accurate only within the low frequency ranges for certain gap sizes between

the metallic patches. For the wideband model, the impact of the higher order modes

was taken into account, which made the results more accurate at higher frequency

ranges and for wider gaps between the metallic patches.

The proposed HIS was then used as a ground plane for curvilinear radiating el-

ements and the figures-of-merit were compared with those of the rectangular HIS

ground plane. It was shown that the φ-direction periodicity of the circular HIS in-

teracts more efficiently with the electromagnetic waves radiated by a loop element

compared with a rectangular HIS. The superiorities of the circular HIS over rectan-

gular HIS, when used as a ground plane for loop antennas, can be summarized as

follows:
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1. The operational bandwidth of the circular surface is about 10% wider than that

of the rectangular surface.

2. The gain patterns of the loop antenna above a circular HIS on different elevation

φ planes are more symmetric than the gain pattern when the antenna is located

above a rectangular HIS.

3. Because of the radial reflection phase profile introduced by the circular HIS

when illuminated by a loop radiating element, the gain of the loop is higher

when it is located above the circular HIS compared to the rectangular HIS.

Furthermore the circular HIS surface was used as a ground plane for a spiral

element. As expected, a wider operational bandwidth was observed compared to

rectangular HIS. The gain of a spiral element is also enhanced when it is located

above a circular HIS.

These attractive features of a circular HIS with curvilinear radiating elements

are intuitively attributed to the matching of the curvature of the radiating element

wavefront to the circular periodicity of the HIS patches, which leads to a more efficient

coupling between the dominant φ-polarized electric field radiated by the curvilinear

elements and circular φ-periodicity of the HIS.

In the last sections of this dissertation, a novel circular HIS with spherical cur-

vature was designed. The proposed HIS was used as antenna ground plane for loop

and spiral elements, and its performance was compared with a flat circular HIS. As

expected, due to the ground plane curvature, the simulations indicate that the op-

erational bandwidth decreases by 10% and 16% for the loop and spiral, respectively.

Additionally due to the curvature, the gain of the antenna elements degrades by

1.5 dB as the waves are scattered toward non-broadside directions. However, the

broadside gain of the curvilinear element above the spherical HIS is still 3 dB higher
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compared to when it is placed above a spherical PMC ground plane with the same

curvature.

The proposed HISs (flat and spherical) were ultimately fabricated and measure-

ments were performed to validate the simulations. It was shown that the measure-

ments were in excellent agreement with the simulations.

8.2 Future Work

In this dissertation we attempted to design a circular HIS which has a superior

performance as a ground plane for curvilinear elements; however, there is still more

room for advancements.

• One of the interesting features of the designed circular HIS is the substantial

3-dB gain increase when it is used as ground plane for curvilinear elements. It

would be a rewarding challenge to modify the patch design of the circular HIS

to optimize the radial phase profile along the surface and further improve the

gain of the curvilinear elements and also investigate the maximum gain value

that can be achieved through this design strategy.

• Another area of interest is to design a dual band circular HIS. As it is mentioned

in Chapter 2, for a wideband design of the circular HIS, the rings are adjusted

individually such that all of them have an in-phase reflection phase at the same

frequency and they are then combined to form the entire circular HIS ground

plane. However, for a dual band HIS, the inner rings which are closer to the

radiating element should be designed such that they resonate at the higher

frequency and the outer ones which are further should resonate at the lower

frequency as illustrated in Fig. 8.1. The two parts of Fig. 8.1 are then combined

to form the entire dualband surface as displayed in Fig. 8.2.
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(a)

(b)

Figure 8.1: Different sections of the dual band circular HIS: (a) Higher frequency (b)

Lower frequency.

• In most of the applications where spiral antennas are used, a circular polariza-

tion is desired. The circular HIS proposed in this dissertation was optimized

with respect to the reflection phase and operational bandwidth. The 3-dB axial

ratio bandwidth of the spiral element above the circular HIS of this dissertation

was 11%; it would be interesting to investigate a design strategy to optimize

the circular HIS with respect to the axial ratio.

• In most of the previous investigation, patch elements are placed above the HISs

and their performance is studied. As the circular HIS of this dissertation is
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Figure 8.2: Top view of the entire dualband surface.

designed for curvilinear elements, it would be of interest to place a circular patch

above the circular and rectangular HISs (as illustrated in Fig. 8.3) to compare

their radiation characteristics and validate that circular HIS are superior ground

planes for such radiating elements.

Figure 8.3: Top view of the flat circular HIS.

• A spiral element and a wideband balun can be fabricated and placed above the

spherical HIS to perform measurements and verify simulations.
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