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ABSTRACT

Large-scale cultivation of perennial bioenergy crops (e.g., miscanthus and switch-

grass) offers unique opportunities to mitigate climate change through avoided fossil

fuel use and associated greenhouse gas reduction. Although conversion of existing

agriculturally intensive lands (e.g., maize and soy) to perennial bioenergy cropping

systems has been shown to reduce near-surface temperatures, unintended consequences

on natural water resources via depletion of soil moisture may offset these benefits. In

the effort of the cross-fertilization across the disciplines of physics-based modeling and

spatio-temporal statistics, three topics are investigated in this dissertation aiming to

provide a novel quantification and robust justifications of the hydroclimate impacts

associated with bioenergy crop expansion. Topic 1 quantifies the hydroclimatic impacts

associated with perennial bioenergy crop expansion over the contiguous United States

using the Weather Research and Forecasting Model (WRF) dynamically coupled to a

land surface model (LSM). A suite of continuous (2000–09) medium-range resolution

(20-km grid spacing) ensemble-based simulations is conducted. Hovmöller and Taylor

diagrams are utilized to evaluate simulated temperature and precipitation. In addition,

Mann-Kendall modified trend tests and Sieve-bootstrap trend tests are performed

to evaluate the statistical significance of trends in soil moisture differences. Finally,

this research reveals potential hot spots of suitable deployment and regions to avoid.

Topic 2 presents spatio-temporal Bayesian models which quantify the robustness

of control simulation bias, as well as biofuel impacts, using three spatio-temporal

correlation structures. A hierarchical model with spatially varying intercepts and

slopes display satisfactory performance in capturing spatio-temporal associations.

Simulated temperature impacts due to perennial bioenergy crop expansion are robust

to physics parameterization schemes. Topic 3 further focuses on the accuracy and
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efficiency of spatial-temporal statistical modeling for large datasets. An ensemble

of spatio-temporal eigenvector filtering algorithms (hereafter: STEF) is proposed to

account for the spatio-temporal autocorrelation structure of the data while taking into

account spatial confounding. Monte Carlo experiments are conducted. This method

is then used to quantify the robustness of simulated hydroclimatic impacts associated

with bioenergy crops to alternative physics parameterizations. Results are evaluated

against those obtained from three alternative Bayesian spatio-temporal specifications.
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Chapter 1

INTRODUCTION

Spatio-temporal data are collected and analyzed in climatic, environmental, ecolog-

ical, epidemiological and socio-economic sciences, among other research areas. Such

data is usually considered to have an important statistical characteristic, namely that

observations close in space and time tend to be more similar than those that are

further apart (Tobler 1970; Cressie and Wikle 2015). Therefore, spatial and temporal

autocorrelation should be taken into account in statistical modeling (Cressie and

Wikle 2015). Ignoring spatial or temporal autocorrelation may lead to biased standard

errors and artificially inflated degrees of freedom (Anselin and Griffith 1988; Wakefield

2003). Spatio-temporal model specifications vary in different circumstances, largely

depending on the research questions.

With regard to time series data, detecting serially correlated monotonic trends

has become a critical research question in a variety of disciplines (Vogelsang 1998;

Fomby and Vogelsang 2002; Khaliq et al. 2009; Liebmann et al. 2010; Sonali and

Kumar 2013; Sayemuzzaman and Jha 2014). The conventional Mann-Kendall test

(Mann 1945; Kendall 1955; hereafter MK), which assumes serial independence, is one

of the widely used non-parametric tests for trend-detection. However, in many real

situations the data are autocorrelated: hence the conventional MK is expected to be

inaccurate (Lettenmaier 1976; Khaliq et al. 2009; Liebmann et al. 2010; Sonali and

Kumar 2013; Kisi and Ay 2014). Serial correlation could seriously inflate the real type

I error and the power of the test, misleading conclusions related to the significance

of trends, especially when sample sizes are small or moderate (Cox and Stuart 1955;
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Yue and Wang 2004). To mitigate this impact, the Mann-Kendall modified trend

test (Hamed and Rao 1998) and sieve bootstrap based tests (Noguchi et al. 2011) are

considered as alternatives for serially correlated data. A number of previous studies

(Kundzewicz and Robson 2004; Mudelsee 2013) have suggested the advantages of

bootstrap: robustness to outliers, and avoidance of distributional assumptions are

among the most important ones.

Unlike time series data which is correlated in consecutive time periods (i.e., one-

dimensional), spatial dependence exists in more than two dimensions and the modeling

of spatial dependence varies, depending on the type of spatial data. One type is

lattice (areal) data, represented here as {Z (s) : s ∈ D ⊂ Rd}. Z (s) denotes a spatial

process modeling the observations, s denotes locations, and D represents a spatial

domain, considered to be discrete and fixed. Spatial associations for lattice data are

typically modeled using pre-specified neighborhood structures (e.g. rook, queen, see

Figure 1.1, Lloyd 2010).

Figure 1.1: (a) Rook-type contiguity and (b) Queen-type contiguity.

In geostatistics, eigenvector spatial filtering (ESF; e.g., Griffith 2003) is a spatial

modeling approach which has largely been used to capture spatial dependence of

lattice data (Griffith 2010; Griffith and Paelinck 2011; Griffith 2003). ESF models

spatial dependences via constructing proxy variables; these proxies are a subset of
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the eigenvectors which are constructed based on the available spatial neighborhood

information (Getis and Griffith 2002). To select the most appropriate candidates from

a large number of eigenvectors, several strategies have been proposed and studied:

stepwise regression (Griffith 2003), semiparametric modeling (Tiefelsdorf and Griffith

2007), and the least absolute shrinkage and selection operator (Lasso; Seya et al.

2015). Hughes and Haran (2013) extended ESF with a random effects specification

(RE-ESF), which took into account spatial confounding, i.e., the proposed method

mitigated the variance inflation due to the collinearity between explanatory variables

and a latent spatial process (Hodges and Reich 2010; Paciorek 2010; Hughes and

Haran 2013; Hanks et al. 2015). Murakami and Griffith (2015) further improved

RE-ESF by introducing a computationally efficient REML estimation scheme and by

examining the spatial scale of a spatial dependency structure.

Bayesian hierarchical models (BHM) are predominant for modeling spatial and

spatio-temporal data in geostatistics and epidemiology (Cressie and Wikle 2015),

when lattice data are observed in multiple time periods (hence multiple “snapshots”

of a spatial process over time are available). In general, the framework of such

models conditionally combines the data, the process, and the unknown parameters, to

model complicated space-time processes. Specifically, the spatio-temporal covariance

structure is captured using random effects. Previous studies have proposed models

with different space-time structures for different purposes (i.e., Knorr-Held 2000; Li

et al. 2012; Lee and Lawson 2016). Typically such models are estimated using advanced

computational methodologies such as Markov Chain Monte Carlo (MCMC).

Despite the significant contributions of previous studies on spatio-temporal statis-

tics, a large number of research questions remain to be answered. For instance, to the

best of my knowledge, applications of eigenvector filtering are typically restricted to
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the analysis of spatial data; very few applications of the technique to space-time data

can be found (Patuelli et al. 2011; Chun 2014; Griffith and Chun 2015). In addition,

the effects of misspecification when a particular BHM is chosen, are unclear. A com-

parative evaluation of alternative model specifications (ESF-based versus BHM) with

regard to their accuracy and computational efficiency has not been presented till now.

Similarly, a rather limited number of previous studies focused on how conventional

trend tests compare to sieve-bootstrap-based Mann-Kendall tests.

This thesis focuses on research questions that were derived from a large spatio-

temporal dataset. This dataset includes a suite of 10-year ensemble-based simulations,

conducted using the Weather Research and Forecasting Model version 3.6.1 (WRF)

(Skamarock et al. 2008). WRF is a nonhydrostatic model that solves the nonlinear

fully compressible atmospheric equations of motion, coupled to the Noah land surface

model (Noah- LSM) (Chen and Dudhia 2001; Ek et al. 2003). This coupling provides

the capability to study the interaction of perennial bioenergy crop-induced land use

change and examine hydroclimatic response to vegetation forcing (Ek et al. 2003). The

simulations conducted for the purposes of this thesis, emphasized on the investigation

of the hydroclimatic impacts due to large-scale deployment of perennial bioenergy

crops across the continental United States.

1.1 Research Overview

In the effort of the cross-fertilization across the disciplines of physics-based modeling

and spatio-temporal statistics, this dissertation aims to provide a novel quantification

and robust justifications of the biogeophysical impacts associated with bioenergy crop

expansion. State-of-the-art physics-based modeling and advanced spatio-temporal
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statistical tools are used for this purpose. Specifically, the quantitative techniques

that will be presented in the next sections seek to answer the following questions:

1) What are the large-scale hydroclimatic impacts associated with perennial

bioenergy crop expansion over the United States?

2) Are there any statistically significant monotonic trends in regionally-averaged

soil moisture?

3) Is WRF-simulated temperature impact associated with perennial bioenergy

crops robust to alternative physics parameterizations?

From a methodological viewpoint, this dissertation examines 1) the robustness

of WRF simulations via implementing Bayesian hierarchical models with alternative

space-time structures, and 2) the effectiveness of spatio-temporal eigenvector filtering

relative to BHM for environmental problems that are based on the analysis of large

spatiotemporal datasets. The thesis is largely based on a trio of papers which are

summarized below:

On the Long-Term Hydroclimatic Sustainability of Perennial Bioenergy

Crop Expansion over the United States. The first paper, published in Journal of

Climate (2017), quantifies the hydroclimatic impacts associated with perennial bioen-

ergy crop expansion over the contiguous United States using the Weather Research

and Forecasting Model dynamically coupled to a land surface model (LSM). A suite of

continuous (2000–09) medium-range resolution (20-km grid spacing) ensemble-based

simulations is conducted. Hövmoller and Taylor diagrams are utilized to evaluate

simulated temperature and precipitation. In addition, Mann–Kendall modified trend

tests and Sieve-bootstrap trend tests are used to evaluate the statistical significance

of trends in soil moisture differences. Finally this research reveals potential hot spots

of suitable deployment and regions to avoid.
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Spatio-temporal modeling for regional climate model comparison: ap-

plication on perennial bioenergy crop impacts. The second paper, published in

JSM Proceedings (2016), evaluates alternative spatio-temporal Bayesian models for the

analysis of WRF simulations. WRF simulated temperatures associated with control

simulation bias, as well as biofuel impacts, are modeled using three spatio-temporal

correlation structures. First, individual WRF simulations (see model description in

Chapter 2) are modeled. Then a consensus structure, aimed at capturing spatio-

temporal associations for the ensemble of WRF simulations, is discovered. The suite

of WRF simulations are modeled simultaneously using the chosen consensus structure.

Finally, the effects of physics parameterization on reproducing near-surface climatic

conditions and the robustness of physics parameterization schemes are quantified.

Spatio-temporal modeling for regional climate model evaluation: Eigen-

vector filtering versus Bayesian CAR. The third paper proposes a spatio-

temporal eigenvector filtering algorithm (hereafter: STEF) that takes into account

spatio-temporal autocorrelation while avoiding spatial confounding. A fast estima-

tion procedure is proposed and implemented; Monte Carlo experiments using three

basic spatio-temporal structures are conducted to evaluate its performance. This

proposed method is used to quantify the robustness of simulated hydroclimatic impacts

associated with bioenergy crops to alternative physics parameterizations and observa-

tional datasets. Results are compared against those obtained from three alternative

hierarchical Bayesian spatio-temporal specifications.
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1.2 Additional published manuscripts

A realistic meteorological assessment of perennial biofuel crop deploy-

ment: A Great Plains perspective. This work, published in GCB Bioenergy,

quantifies the meteorological effects of perennial bioenergy crop expansion during a

normal hydrologic year (2007) and a drought year (2011) for the Southern Great Plains.

This research uses realistic scenarios based on 1) field scale measurements of albedo

and leaf area index (LAI) and vegetation fraction scaled according to observed albedo

values, and 2) two deployment scenarios contained to marginal and abandoned lands.

This study serves as a key step toward the assessment of hydroclimatic sustainability

associated with perennial bioenergy crop expansion under diverse hydrometeorological

conditions by highlighting the driving mechanisms and processes associated with this

energy pathway (Wagner et al. 2017).

Sustainable Land Management for Bioenergy Crops. This work provide

insights from a five-year National Science Foundation project focused on the devel-

opment of spatially explicit maps of sustainable, regional "hot spots" for the large

scale deployment of perennial bioenergy crops (e.g., miscanthus and switchgrass)

in the United States. With environmental and economic sustainability as principal

constraints, our approach integrates climate, land surface, ecosystem, and economic

models. We identify "hot spots" (high suitability areas) where there is evidence of

atmospheric cooling without a corresponding deterioration of water resources (e.g.,

significant soil moisture reduction) and simulate biomass yields on marginal lands

that become inputs to our economic optimization model (Aragon et al. 2017).

Assessing summertime urban air conditioning consumption and its im-

pact on anthropogenic heating in a semiarid environment. We simulate urban
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air conditioning (AC) electric consumption for several extreme heat events during

summertime over a semiarid metropolitan area with the Weather Research and Fore-

casting (WRF) model coupled to a multilayer building energy scheme. Observed total

load values obtained from an electric utility company are split into two parts, one

linked to meteorology (i.e., AC consumption) which is compared to WRF simulations,

and another to human behavior. Built upon these results, the effect of air conditioning

(AC) systems on air temperature and examines their electricity consumption for a

semiarid urban environment are investigated. These studies establish a new energy

consumption-modeling framework that can be applied to any urban environment

where the use of AC systems is prevalent (Salamanca et al. 2013; 2014).

1.3 Dissertation Organization

The dissertation is structured around three manuscripts discussed in Section 1.1.

Following the Introduction, Chapter 2 presents numerical simulations of perennial

bioenergy crops impacts, and statistical metrics and hypothesis tests for their quanti-

tative analysis. To further analyze the simulated data presented in Chapter 2, the

following chapters focus on spatio-temporal statistical models: BHM and ESF are

the main focus of Chapters 3 and 4. Directions for further research are discussed in

Chapter 5.
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Chapter 2

ON THE LONG-TERM HYDROCLIMATIC SUSTAINABILITY OF PERENNIAL

BIOENERGY CROP EXPANSION OVER THE UNITED STATES

2.1 Introduction

Bioenergy cropping systems are increasingly recognized as a plausible and sustain-

able substitute for fossil fuels due to potential environmental and economic benefits

(Council et al. 2010; Perlack et al. 2011). The derivation of biofuels (e.g., biobutanol,

ethanol) from such cropping systems could have a number of advantages, including

mitigation of climate change through greenhouse gas reduction, provision of increas-

ing energy demands, and stabilization of energy pricing (Clifton-Brown et al. 2007;

Campbell et al. 2008; Dondini et al. 2009; López-Bellido et al. 2014; Bagley et al. 2014;

Hudiburg et al. 2015). Second-generation bioenergy crops (e.g., perennial grasses

miscanthus and switchgrass) could serve as key alternatives to conventional feedstocks

(e.g., maize) for biofuel production if planted on marginal lands (Campbell et al.

2008; 2013; Fargione et al. 2008; Field et al. 2008; Cai et al. 2010; Bagley et al. 2014;

Hudiburg et al. 2016). Additionally, perennial bioenergy crops sequester carbon within

the soil, and their use results in higher yields with lower nutrient input (e.g., reduced

N2O) requirements relative to their annual counterparts, such as maize (Fargione

et al. 2008; Miguez et al. 2008; Anderson-Teixeira et al. 2009; 2012; Dohleman and

Long 2009; Smith et al. 2013; Zhuang et al. 2013; Gelfand et al. 2013; Bagley et al.

2014; Wagle and Kakani 2014; DeLucia 2015; Feng et al. 2015; Oikawa et al. 2015;

Eichelmann et al. 2016; VanLoocke et al. 2017). Therefore, cultivating perennial
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bioenergy crops could be a more sustainable approach to meet increasing energy

demand and mitigate anthropogenic climate change.

While biogeochemical effects (greenhouse gas uptake and emissions) of perennial

bioenergy crops have been well documented (Dondini et al. 2009; Gelfand et al. 2013;

Wagle and Kakani 2014), considerable uncertainties associated with biogeophysical

impacts remain (Bagley et al. 2014; Caiazzo et al. 2014; Zhu et al. 2017). Large-scale

deployment of perennial bioenergy crops, by virtue of their transition to an altered

land-use, modifies biogeophysical (e.g., direct impacts due to changes in the surface

energy budget) processes. These changes could affect atmospheric boundary layer

dynamics, mesoscale circulations and regional climate (Weaver and Avissar 2001;

Pielke 2005; Georgescu et al. 2009; 2011; 2013; Mahmood et al. 2010; Vanloocke

et al. 2010; Levis et al. 2012; Murphy et al. 2012). Therefore, biogeophysical impacts

associated with land-use conversion to perennial bioenergy cropping systems must be

considered prior to large-scale deployment.

Recent work has examined biogeophysical impacts due to landscape conversion

from annual to perennial bioenergy crops, noting changes mainly attributed to higher

albedo, leaf area index (LAI), and enhanced evapotranspiration (ET) (Betts 2000;

Hickman et al. 2010; Vanloocke et al. 2010; Georgescu et al. 2009; 2011; Le et al.

2011; Davin et al. 2014; Bagley et al. 2014; Eichelmann et al. 2016; Wagle et al. 2016;

Zhu et al. 2017). In addition, the importance of field-scale studies has demonstrated

the significance of appropriate biogeophysical representation in process-based models

that can be used to examine scenario-based environmental implications. For example,

Miller et al. (2016), via a multi-year observational campaign, conducted field-scale

measurements to determine that perennial bioenergy crops have consistently higher

values of albedo than annual crops during the growing season. This higher albedo can
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reduce the amount of solar energy received at the surface, affecting the partitioning of

sensible, latent, and ground heat fluxes (Georgescu et al. 2011; 2013; Anderson-Teixeira

et al. 2012; Anderson et al. 2013; Bagley et al. 2014; Miller et al. 2016). Studies

have noted regional cooling (Georgescu et al. 2011; Le et al. 2011; Khanal et al. 2013;

Goldstein et al. 2014; Feng et al. 2015) and the potential for increased precipitation

(Georgescu et al. 2011; Khanal et al. 2013) associated with large-scale deployment

of perennial bioenergy crops. These changes were attributable to enhanced ET due

to the deeper and denser rooting systems extracting soil moisture from deeper soil

depths (Vanloocke et al. 2010; Georgescu et al. 2011; Anderson et al. 2013; Hallgren

et al. 2013; Ferchaud et al. 2015).

Changes in ET and soil moisture are directly associated with and have immediate

implications for the regional hydrological cycle (Vanloocke et al. 2010; Georgescu

et al. 2011; Anderson et al. 2013). Increased ET, owing to soil moisture depletion at

deeper depths can lead to decreased surface runoff (McIsaac et al. 2010; Le et al. 2011;

Wilson et al. 2011) and streamflow (Khanal et al. 2013). Concerns of surface runoff

and streamflow reduction could contribute to water stress (Khanal et al. 2014) and

have serious implications on regional water resources (McIsaac et al. 2010; Vanloocke

et al. 2010; Khanal et al. 2013; Ferchaud et al. 2015).

Large-scale and long-term studies are therefore needed to better characterize

hydroclimatic implications of perennial bioenergy crop expansion. For example, the

previously noted cooling effect associated with perennial bioenergy crop deployment

may only occur at the local and regional scale (Georgescu et al. 2009; 2011; Vanloocke

et al. 2010; Hallgren et al. 2013). Over longer temporal scales, hydroclimatic impacts

may be diminished due to natural climate variability (e.g., decadal timescale or longer).

Khanal et al. (2014) showed that the mean increase of annual precipitation may be
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smaller than the inter-annual variability of changes in precipitation when cultivating

perennial bioenergy crops. Given such uncertainties, it is evident that hydroclimatic

consequences of large-scale deployment of perennial bioenergy crops require further

research.

Deployment of perennial bioenergy crops over abandoned and degraded lands

has been proposed as a sustainable strategy (Campbell et al. 2008; 2013; Gelfand

et al. 2013; Bagley et al. 2014; Feng et al. 2015). The main advantage of such

an approach is avoidance of competition between food and fuel production. Few

studies have assessed the implications of perennial bioenergy crops over marginal land

areas, and to our knowledge, there have been no large-scale investigations to quantify

hydroclimatic impacts owing to transition of abandoned and degraded farmlands to

perennial bioenergy cropping systems. Here, we examine the hydroclimatic effects

associated with perennial bioenergy crop deployment on abandoned and marginal land

areas over the conterminous U.S. (CONUS) over a ten-year contemporary climate

period utilizing a coupled land-atmosphere model. We seek to answer the following

questions:

1) What are the large-scale hydroclimatic impacts associated with perennial

bioenergy crop expansion?

2) Are these impacts homogeneous in space and time?

3) Can our numerical framework identify suitable hotspots of perennial bioenergy

crop deployment?

By simulating deployment only over marginal or abandoned farmlands, this study

portrays a more realistic depiction than previous studies for perennial-bioenergy-

induced hydroclimatic consequences. This research evaluates the feasibility and

long-term sustainability of large-scale deployment of perennial bioenergy crops across
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CONUS while simultaneously providing a framework of feedback assessment between

Land Use and Land Cover Change (LULCC) and water resources.

This chapter is arranged as follows. Section 2.2 presents a description of model

configuration and experimental design, observational gridded data sets employed for

model evaluation, derivation of perennial bioenergy crop expansion scenarios, and

statistical methods for model evaluation and quantification of impacts. The results

are presented and discussed in Section 2.3: in this section, model results are evaluated

against observational data, aimed at identifying an optimal model configuration for re-

producing near-surface climate conditions. Following model evaluation, hydroclimatic

impacts of perennial bioenergy crop deployment are assessed. Concluding remarks

and suggestions for future work are discussed in Section 2.4.

2.2 Methodology

We used the Weather Research and Forecasting model version 3.6.1 (hereafter

WRF) (Skamarock 2008). WRF is a non-hydrostatic model that solves the nonlinear

fully compressible atmospheric equations of motion, coupled to the Noah land surface

model (Noah-LSM) (Chen and Dudhia 2001; Ek et al. 2003). This coupling provides

the capability to study the interaction of perennial bioenergy crop-induced land use

change and examine hydroclimatic response to vegetation forcing (Ek et al. 2003).

2.2.1 Experimental design of control simulations

Final Operational Global Analysis data (FNL) was acquired from the National

Centers for Environmental Prediction for the year 2000 through the end of 2009
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(NCEP 1999). FNL data are reanalysis products combining information primarily

from observational weather data and Global Forecast System (GFS) model outputs,

archived at a spatial resolution of one-degree by one-degree with a frequency of six

hours (Research Data Archive at http://dx.doi.org/10.5065/D6M043C6). These FNL

data were used to initialize and force the lateral boundaries for all WRF simulations

(i.e., 2000-2009).

All simulations used a grid spacing of 20 km, consisting of 310 and 190 grid points in

the east-west and north-south directions, respectively, 30 levels in the vertical direction,

and a 60s time step. Numerical experiments were conducted continuously for a period

of 10 years (2000 through the end of 2009), with one-month spin up (starting from

Dec. 1st, 1999) to allow for land-surface conditions to reach equilibrium. Additionally,

the 1-km modified IGBP MODIS 20-category land use/land cover (LULC) dataset

was used to represent modern-day LULC within the Noah-LSM (Figure 2.1).

An ensemble of eight sets of control simulations (hereafter E1-E8) was conducted to

determine the optimal model configuration that best reproduces near-surface climatic

conditions. These ensemble members varied by choice of microphysics scheme (Hong

et al. 2004; Lim and Hong 2010), cumulus physics scheme (Grell 1993; Grell and

Dévényi 2002; Kain 2004), and utility (i.e., on or off) of spectral nudging (Miguez-

Macho et al. 2004)(see Table 2.1). Spectral nudging corrects the systematic distortion

of the large-scale flow due to the interaction with the lateral boundary conditions to

derive smaller-scale processes by controlling large-scale atmospheric flow conditions in

regional simulations (von Storch et al. 2000; Miguez-Macho et al. 2004). We nudged

wavenumbers 0-4 in the x-direction and 0-3 in the y-direction (i.e., wavelengths longer

than 1200 km) only above the boundary layer (model level equivalent to about 1500 m)
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for u- and v-winds, potential temperature, and geopotential height, with a relaxation

time about one hour (Table 2.1).

Table 2.1: Design of simulations. Eight Control simulations (E1-E8) that vary by
choice of microphysics and cumulus physics schemes were performed. In addition,
experiments with or without spectral nudging were conducted.

Ensemble member
of Control
simulations

Microphysics Cumulus
physics

Utilizing Spectral
nudging technique

E1 WSM3 Kain–Fritsch No
E2 WSM3 Kain–Fritsch Yes
E3 WSM3 Grell 3D No
E4 WSM3 Grell 3D Yes
E5 WDM6 Kain–Fritsch No
E6 WDM6 Kain–Fritsch Yes
E7 WDM6 Grell 3D No
E8 WDM6 Grell 3D Yes
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Figure 2.1: (a) Domain and MODIS landscape representation for numerical simulation
experiments. Region in CONUS (outlined in red) is used for model evaluation,
as well as analysis of hydroclimatic impacts associated with perennial biofuel crop
deployment. (b) Suitability of perennial biofuel crops over CONUS in four quartiles.
Pixels within and of suitability were reclassified as low, moderate, high and most
suitable, respectively, based on Cai et al. (2011).
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2.2.2 Observational Data

Two different datasets – to account for uncertainties arising from different inter-

polation algorithms – of gridded observational representations of temperature and

precipitation were used to evaluate simulated near-surface climate. For tempera-

ture, the University of Delaware’s air temperature dataset, version 3.01 (hereafter

t2_DW; Willmott and Matsuura 1995) and the Global Historical Climatology Net-

work (GHCN) and the Climate Anomaly Monitoring System (CAMS) (hereafter

t2_GC; Fan and Van den Dool 2008) were utilized with a spatial resolution of 0.5°by

0.5°. Analogously, two gridded observational datasets of precipitation were used:

University of Delaware Precipitation, version 3.01 (hereafter pr_DW, with the same

resolution as t2_DW; Legates and Willmott 1990), and Climate Prediction Cen-

ter (CPC)’s gridded Unified Gauge-Based Analysis of daily precipitation (hereafter

pr_UF) with 0.25°by 0.25°longitude spatial resolution (Higgins et al. 2000; Chen

and Knutson 2008). Datasets t2_DW, t2_GC, pr_DW, and pr_UF were provided

by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from their Web site at

http://www.esrl.noaa.gov/psd/. To conduct grid cell by grid cell comparisons with

simulation results, these datasets were resampled to the coarsest resolution (0.5°by 0.5°)

using bilinear interpolation. Regions outside CONUS were masked out to evaluate

model performance only within the study area (see Figure 2.1a).

2.2.3 Perennial bioenergy crop representation and deployment scenarios

We utilized a previously developed perennial bioenergy crop suitability dataset

identifying potential areas for bioenergy crop deployment (Cai et al. 2010). These
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data provide global suitability locations over marginal and abandoned lands using

soil productivity, land slope, soil temperature, a humidity index, and additional land

use information. The most realistic scenario was chosen for our study (123 million

hectares available for conversion to perennial bioenergy crops throughout the U.S.),

including areas of marginal mixed crop and vegetation land, grassland, savanna, and

scrubland with marginal productivity, while discounting current pastureland. The

original suitability data were resampled from 1km to 20km grid spacing (to match the

resolution of WRF simulations) using bilinear interpolation. Suitable locations were

reclassified into four suitability classes using quartile classification (i.e., low, moderate,

high, and most suitable) (Figure 2.1b). Two deployment scenarios were selected using

the identified suitability areas: upper 25th percentile (i.e., most suitable; hereafter

Perennial25) and all suitable locations as identified by (Cai et al. 2010; hereafter

Perennial100). Our use of both deployment scenarios was made in order to examine

the largest possible range in hydroclimatic impacts associated with this bioenergy

crop pathway.

Within suitable locations, perennial bioenergy crop expansion was represented via

modification of relevant biophysical parameters, including albedo, LAI, and vegetation

fraction (Georgescu et al. 2009). Albedo values were modified based on field site

observation values obtained from Miller et al. (2016). Seasonal profiles of albedo

were determined by averaging daily albedo values across two perennial plant types

(switchgrass and miscanthus) and across the observed years of 2010 and 2011.

Following the phenological evolution of observed albedo, LAI and vegetation

fraction values were scaled using previously reported maximum and minimum values

(e.g., Dohleman and Long 2009). Albedo, LAI, and vegetation fraction values were

then incorporated into Noah by taking into account latitudinal dependencies, with
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shortened growing seasons to the north and lengthened growing seasons in southern

regions. Specifically, albedo was depicted as:

albedo = max


[
− (0.235− 0.16)

(
jday− centerday

widthlai

)4

+ 0.235

]
,−0.16

 (2.1)

where jday is the Julian day of the calendar, centerday is 197 (the assumed midpoint

of the growing season and characterized as mid-July everywhere), 0.235 is the observed

peak summertime albedo value and 0.16 is the observed minimum albedo value,

widthlai represents the extent of the growing season in days, and is denoted as:

widthlai = maxiwidthlai + 0.25×maxwidthlai× latitude− 30°
30°− 50°

(2.2)

where maxlai = 6 (i.e., peak of the growing season), minlai = 0.1 (middle of winter

when the crop is dormant), and we assume the maximum growing season LAI peaks

at 30° N (i.e., maxwidthlai) and decreases linearly until 50° N, where it is equivalent

to 0.75×maxwidthlai.

Figure 2.2 shows the annual cycle of biophysical parameters for perennial bioenergy

crops and existing land cover, averaged over all suitability grid cells. In general, albedo,

LAI, and vegetation fraction for perennial bioenergy crops were higher than that of

existing land cover from May to October. Spatial differences were apparent when

examining seasonally averaged values of albedo, LAI, and vegetation fraction between

Control and Perennial simulations (see Figure2.3. For albedo, the maximum difference

occurs during June, July, and August (JJA). During JJA, LAI and vegetation fraction

are higher over the western Plains by an average of 6 m2 m−2 and 75%, respectively.

Differences in biophysical characteristics were more evident for Perennial100 compared

to Perennial25 simulations. It is important to mention that no bioenergy cropping

systems were irrigated in this work and that no modification of default rooting depth

was made.
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Figure 2.2: Annual cycle of biophysical representation for existing land cover and
perennial bioenergy crops. Daily varying values for (a) Albedo (b) leaf area index
(LAI) (m2 m-2) and (c) vegetation fraction (%) are displayed.
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Figure 2.3: Seasonally averaged albedo difference (Perennial100-Control) for (a) DJF,
(b) MAM, (c) JJA, and (d) SON. (e)-(h) Same as (a)-(d) but for Perennial25 minus
Control. (i)-(p) Same as (a)-(h) but for LAI (m2 m-2). (q)-(x) Same as (a)-(h) but
for vegetation fraction (%). Red rectangles outline five sub-regions for time series
calculations.

Two sets of experiments were conducted over CONUS based on model skill and

deployment scenarios. These experiments used the best and least skilled ensemble

members (see Section 2b), based on the aforementioned model evaluation and pair of

deployment scenarios (i.e., Perennial25 and Perennial100). All simulation experiments

were conducted from 2000 through the end of 2009, with one month of spin-up in Dec.

1999, to allow the land surface state to equilibrate (see Table 2.2).

21



Table 2.2: List of bioenergy crop sensitivity simulations.

WRF Simulation Scenario Spin Up Analysis Time

Control Control_E1

Dec 1-31, 1999 Jan 1, 2000-
Dec 31, 2009

Control_E8

Perennial bioenergy
crop deployment

Perennial100_E1
Perennial25_E1
Perennial100_E8
Perennial25_E8

2.2.4 Exploratory Statistics for WRF-Model Evaluation

Hovmöller and Taylor diagrams were utilized to evaluate simulated temperature

and precipitation. Hovmöller diagrams (Hovmöller 1949) visually summarize model

performance over space and time in two dimensions. More specifically, information is

averaged across latitude bands and displayed on the X-axis (i.e., longitudinal dimension

is removed) whereas time is represented on the Y-axis. These diagrams were used to

quantify monthly averaged relative differences (i.e., dimensionless values) between the

eight control simulations (E1 through E8) and the aforementioned gridded observation

datasets (differences were normalized by the corresponding observations).

The steps for creating a Hovmöller diagram are as follows. The simulated bias of

2m temperature Control_E1 relative to observation DW from 2000 to 2009 is used as

an example:

1) The boundaries of the area to analyze was specified. In this case, it was the

continental U.S.

2) Time intervals were specified for data calculation: since we were interested in

capturing monthly cycles, the simulated bias was aggregated (i.e. monthly averaging)

from three-hour frequency to monthly frequency.
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3) Starting from January 2000, we averaged the magnitudes of simulated bias in

all the grid boxes (pixels) across each latitude strip.

4) Repeat Step 3 for every month from 2000 to 2009. Each monthly simulated

bias corresponds to one row in the Hovmöller diagram.

Additionally, Taylor diagrams were used to summarize simulation skill based on

seasonally averaged differences between each ensemble member (i.e., test field (t)) and

observed 2m temperature or precipitation (i.e., reference field (r)). More generally

speaking, this diagram can statistically quantify the degree of similarity between

two fields. Taylor diagrams illustrate the variances of the test and reference fields

(ρ2t and ρ2r, respectively), the centered RMS difference between the fields (E′), and

correlation coefficients between the test and reference fields (ρ), simultaneously in

one diagram (Taylor 2001). Mathematically, the three statistics are related by the

following formula:

E ′2 = σ2
r + σ2

t − 2σrσtρ

where: ρ =

1

N

∑N
n=1

(
tn − t

)
(rn − r)

σtσr

E ′ =

√√√√ 1

N

N∑
n=1

[(
tn − t

)
(rn − r)

]2
σ2
t =

1

N

N∑
n=1

[(
tn − t

)]2
and σ2

r =
1

N

N∑
n=1

[
(rn − r)

]2

(2.3)

Based on Hovmöller and Taylor diagram metrics, two of the eight control ensemble

members were selected as the most and least skillful, respectively, and served as baseline

simulations using the existing land cover (hereafter Control), against which simulations

representing perennial bioenergy crop expansion were compared. Incorporation of
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bioenergy crops (see Section 2.2.3) was made for both sets of model parameterization

options (i.e., corresponding to the most and least skillful ensemble members) to examine

whether the sensitivity to landscape change, and if so to what extent, depends on

simulation skill.

2.2.5 Trend Tests for Serially Correlated Data

To assess the sustainability of perennial bioenergy crop expansion, the Mann-

Kendall modified trend test (for seasonal time series in the presence of serial correlation,

Hamed and Rao (1998) was used. Sieve bootstrap based tests (Noguchi et al. 2011)

was also used to evaluate statistical significance of trends in soil moisture differences,

when serial autocorrelation is included. These tests provide evidence on the possibility

of existence of a monotonic upward or downward (not necessarily linear) trend of soil

moisture depletion over time. Conventional Mann-Kendall tests form the basis of

the two aforementioned trend tests; the null hypothesis states that that there is no

significant trend (i.e., independent data), whereas the alternative hypothesis supports

the existence of a (not necessarily linear) trend.

The Mann-Kendall Statistic S contains the information of net increments or

decrements of a time series:

S =
n−1∑
i=1

n∑
j=i+1

sgn
(
xj − xi

)
(2.4)

where n represents the number of measurements; xi and xj denote the ith and the jth
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observation, respectively, and sgn() is the sign function defined as:

sgn(xj − xi) =


1, if xj − xi > 0.

0, if xj − xi = 0.

−1, otherwise.

(2.5)

S is approximately normally distributed when n > 10; the mean of S is zero and its

variance can be calculated by:

var(S) =
1

18

n(n− 1)(2n+ 5)−
m∑
i=1

ti(ti − 1)(2ti + 5)

 (2.6)

A set of data that has the same value is a tied group. In Eq.(2.6), m is the number of

tied groups, each with tied observations. The test statistic Z can be calculated by:

Z =



S − 1√
var(S)

, if S > 0,

0, if S = 0,

S + 1√
var(S)

, otherwise.

(2.7)

Z follows the standard normal distribution (Hamed and Rao 1998) asymptotically.

A positive value of Z indicates an upward trend, and a negative value indicates a

downward trend.

To take into account the autocorrelation structure of the time series data, Hamed

and Rao (1998) investigated a modified Mann-Kendall test using adjusted variance

based on effective sample size:

var(S)? = var(S)
n

ns
,

where
n

ns
= 1 +

2

n(n− 1)(n− 2)

p∑
i=1

(n− i)(n− i− 1)(n− i− 2)ps(i) (2.8)
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In Eq.(2.8), n denotes the number of observations in the time series, while ns

represents the effective sample size which essentially accounts for serial correlation in

the data. It can be seen that n/ns will be greater than 1, less than 1, and equal to 1

when data are positively, negatively, and not autocorrelated (no adjustment is made),

respectively. ps(i) is the lag-i autocorrelation between ranks of the observations, where

p is the maximum time lag under consideration.

Alternatively, Sieve-bootstrap for the Mann-Kendall tests (Noguchi et al. 2011)

estimate the trend after the time series data has been prewhitened. More specifically,

the autoregressive structure AR(p) of a time series (y1, . . . , yT ) is estimated under the

null hypothesis of no trend in the first stage:

yt =

p∑
k=1

α̂kyt−k + ε̂t (2.9)

In (2.9), α̂k, k = 1, . . . , p represent sample estimates of population autoregressive

parameters. By removing autocorrelation component from the original data, the

obtained residuals (e1, . . . , eT ) were bootstrapted for constructing resampled residuals

as a generating noises. By adding together the generating noises and simulated new

time series based on AR(p), B sieve bootstrap samples, denoted by y∗it, i = 1, . . . , B

were constructed. Using this method, the new sieved bootstrapped time series contain

similar serial dependence structure to the original data. Then the Mann-Kendall

modified trend test statistic can be calculated for each sieve-bootstrapped time series.

In this study, spatially averaged time series of soil moisture differences were

aggregated from daily to monthly frequency to conduct the trend tests. To compensate

for the number of inferences, a Bonferroni adjustment was applied using a higher

significance threshold for individual comparisons. Specifically, test-specific p-values

smaller than 0.001 characterized statistical significance in order to achieve a family-wise

Type I error rate (false positives) approximately equal to 0.05.
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2.3 Results

2.3.1 Model Evaluation

In general, model skill was superior for temperature compared to precipitation

across all simulated years and ensemble members. Hovmöller diagrams (Figs. 2.4, 2.5)

show minimal variability in simulated near-surface temperature (i.e., at 2 meters above

ground), but high variability for precipitation across ensemble members. Monthly

averaged temperature biases were small compared to both observational datasets

(Fig. 2.4). However, temperatures biases varied according to latitude and time of

year. During summer, simulated temperatures exhibited a positive bias primarily over

southern areas, whereas during winter, simulated temperatures exhibited a negative

bias over northern locations. Ensemble members E4 and E8 performed best in sim-

ulating temperature especially during summer, whereas ensemble members E1 and

E5 exhibited the largest warm bias (Figure 2.4). Overall, ensemble member E8 (see

Table 2.2; with Microphysics WDM6) produced the best correspondence to winter-

time temperatures while demonstrating minimal summertime warm biases, whereas

ensemble member E1 (with microphysics WSM3) displayed the largest underestimate

of near-surface temperatures.

Unlike temperature, monthly averaged simulated precipitation biases were highly

variable. Fig. 2.5 shows normalized precipitation differences generally up to 5 times

greater than observed precipitation, which was more prevalent when compared with the

second observed dataset. Additionally, precipitation biases were greater over latitudinal

belts below 30°N or above 45°N. The disparity between simulated precipitation and

observation datasets is largely explained by the different algorithms utilized to create
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the gridded observational datasets themselves. Despite this disparity, ensemble

members E4 and E8, which used the Grell-3D cumulus scheme and spectral nudging,

performed better than the other ensemble members (Fig. 2.5). Ensemble members

E1 and E5, which used the Kain-Fritsch cumulus scheme without spectral nudging,

performed worse.

In addition to evaluating Hovmöller diagrams, Taylor diagrams (which permit

simultaneous assessment of multiple statistical metrics) also show high model skill

in simulating temperature, but only moderate model skill for precipitation (Fig. 6).

For near-surface temperature, considerable clustering among all ensemble members

is evident, indicative of reduced near-surface temperature sensitivity to choice of

model physics (Fig. 2.6a-d). All ensemble members show similar standard deviation,

correlation coefficients near 0.96, and centered RMSE ranging from 0.25 to 0.4 °C.
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Figure 2.4: Hovmöller diagrams of monthly averaged relative differences of near-surface
temperature (K) (relative differences were derived by subtracting observations from
control simulations, and then dividing by the corresponding observations) between
(a)-(h) the eight control simulations (E1-E8) and the observational dataset t2_DW.
(i)-(p) Same as (a)-(h) but for the observational dataset t2_GC.
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Figure 2.5: Hovmöller diagrams of monthly averaged relative differences of precipitation
(mm d-1) (relative differences were derived by subtracting observations from control
simulations, and then dividing by the corresponding observations) between (a)-(h)
the eight control simulations (E1-E8) and the observational dataset pr_DW. (i)-(p)
Same as (a)-(h) but for the observational dataset pr_UF.
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Figure 2.6: Taylor diagrams of seasonally averaged near surface temperature between
observations and control simulations over 10 years (2000-2009) in (a) DJF, (b) MAM,
(c) JJA, and (d) SON. (e)-(h) Same as (a)-(d) but for precipitation. Dots represent
simulation skill relative to observed dataset of University of Delaware Air Temperature
and Precipitation (i.e., DW), whereas triangles correspond to observed temperature
and precipitation datasets of GHCN_CAMS Gridded 2m Temperature and CPC U.S.
Unified Precipitation (i.e., GC and UF), respectively. Hollow symbols represent the
relationship between gridded observational datasets. Correlation coefficients between
modeled and observed variables are shown in angular axes. Normalized standard
deviation and centered root mean square error (RMSE) are proportional to the distance
from the origin and the (1,0) point, respectively.
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For simulated precipitation, considerable spread among the ensemble members is

evident, indicating enhanced sensitivity to the choice of physics parameterizations

employed here (Fig.2.6e-h). The standard deviation of the simulated precipitation

values was 0.9 to 1.5 times greater than that of the observations. Centered RMSE

values ranged between 0.5 to 1 mm d-1. Correlation coefficients for all ensemble mem-

bers were lowest during summer and fall (generally between 0.65 to 0.8), coinciding

with the period of time when large-scale synoptic forcing is absent and precipitation

is convectively driven. Nevertheless, ensemble members E4 and E8 consistently per-

formed better than other members, especially during the convective season, exhibiting

correlation coefficients in excess of 0.8, lowest standard deviation ratio of 1 relative

to that of observations, as well as lowest centered RMSE of 0.7. Ensemble members

E1 and E5 had the least model skill in simulating precipitation; this was especially

evident during the summer (e.g., these ensemble members had a lowest correlation

coefficient of 0.65).

Based on the aforementioned results, ensemble member E8, which used the Grell-3D

cumulus scheme, WDM6 microphysics parameterization and spectral nudging turned

on, performed the best, whereas, ensemble member E1, which used the Kain-Fritsch

cumulus scheme, WSM3 microphysics parameterization and spectral nudging turned

off, performed the worst. In the following analysis, ensemble members E8 and E1

were identified as the best and least skilled members, respectively. Both ensemble

members (i.e., E8 and E1) were modified to incorporate bioenergy crops (see Section

2c) to assess whether the sensitivity to landscape change depends on simulation skill,

and if so to what extent.
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2.3.2 Hydroclimatic impacts

2.3.2.1 Temperature

We present results as differences in 10-year seasonally-averaged hydroclimatic

variables between the perennial bioenergy crop simulations and the contemporary

landscape utilized in control simulations. Overall, seasonal averages of near-surface

temperature differences illustrate cooling associated with deployment of perennial

bioenergy crops (Fig.2.7). Maximum simulated cooling occurs during the peak of

perennial bioenergy crop greenness (JJA) for all deployment scenarios. During this

period, near-surface temperature decreases dramatically over the southern Great

Plains with maximum cooling on the order of 5 °C for the full deployment scenario (i.e.

Perennial100_E1 and Perennial100_E8, corresponding to Fig.2.7c and 2.7g). The

Pacific Coast, western mountains (designated as regions 1 and 2, respectively) exhibit

moderate temperature decreases of approximately 2-4 °C. This cooling is gradually

attenuated from the Central Plains to the Northeast U.S. (i.e., within regions 4

and 5, respectively). Under the reduced deployment scenario (i.e., Perennial25_E1

and Perennial25_E8), near surface cooling associated with perennial bioenergy crop

deployment is more localized and primarily restricted to regions 4 and 5. Within these

regions, the maximum cooling is restricted to approximately 3 °C during summer

months (Fig. 2.7i-p). Only minimal differences in simulated cooling were evident

when comparing ensemble member E1 and E8 results (i.e., compare Fig.2.7c and 2.7g),

indicating that the simulated near-surface temperature sensitivity to bioenergy crop

deployment was independent of model performance.
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Figure 2.7: Seasonally averaged near-surface temperature difference ( °C )
(Perennial100_E1-Control_E1) over one decade (2000-2009) for (a) DJF, (b) MAM,
(c) JJA, and (d) SON. (e)-(h) Same as (a)-(d) but for difference of Perennial100_E8
minus Control_E8. (i)-(l) Same as (a)-(d) but for difference of Perennial25_E1 minus
Control_E1. (m)-(p) Same as (a)-(d) but for difference of Perennial25_E8 minus
Control_E8. Red rectangles outline five sub-regions for time series calculations.
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To better examine hydroclimatic impacts over time, time-series plots of temperature

differences are calculated for each of the five sub-regions depicted in Fig. 2.8. These

sub-regions include the Pacific Coast (sub-region 1), western mountains (sub-region

2), western Great Plains (sub-region 3), central/eastern U.S. (sub-region 4), and Gulf

Coast (sub-region 5). Across all sub-regions, cooling occurs from May to October,

coinciding with the higher albedo of perennial bioenergy crops (Fig.??a). Under

the full deployment scenario, maximum cooling ranges between 3-5 °C over region

3 (i.e., western Great Plains), whereas, regions 4 (central/eastern U.S.) and 5 (Gulf

Coast) illustrate a maximum cooling ranging between 1-2 °C under the reduced

deployment scenario. In terms of ensemble member performance, E8 and E1 overlap

considerably. However, E8 displays less variability in annual cycle differences as

indicated by the narrower standard deviation band when compared to E1 (Fig. 2.8).

Despite this small difference, uncertainty due to model physics parameterization

is secondary to the simulated signal of cooling impact. Moreover, we consider the

simulated thermal impacts robust as temperature differences and the associated annual

variability consistently exhibits cooling, with only small exceptions evident for reduced

deployment experiments for some regions (e.g., region 1).
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Figure 2.8: Annual cycle of surface temperature differences ( °C), averaged only over
grid cells undergoing land surface modification under Perennial100 scenario (a) region
1, (b) region 2, (c) region 3, (d) region 4, and (e) region 5. (f)-(j) Same as (a)-(e)
but under Perennial25 scenario. Green and red lines indicate averaged annual cycle
of simulated impact over the decadal period using ensemble member E1 and E8,
respectively. Bands of one standard deviation above and below the mean annual cycle
are shaded with the corresponding color.
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2.3.2.2 Surface energy balance

Similar to simulated temperature patterns, sensible heat flux associated with

perennial bioenergy crops also decreases under both deployment scenarios (see Fig.2.9).

This decrease is maximized during the summer months especially under the full

deployment scenario. Under this scenario, peak reduction in sensible heat flux,

ranging between 40-70 W m-2 was evident over western and central portions of the

U.S. (regions 1, 2, and 3). Under the reduced deployment scenario, the reduction in

sensible heat was moderated to only 20 W m-2. This reduction was most noticeable

in the central/eastern U.S. and Gulf Coast areas (regions 4 and 5), unlike the full

deployment scenario, which exhibited greatest decrease in sensible heat along or west

of the 100th meridian.

The temporally varying nature of sensible heat flux differences for the individual

sub-regions also indicates lower sensible heat fluxes associated with perennial bioenergy

crops during the growing season (Fig.2.10). For regions 1-3, the greatest decrease

occurs from May to mid-June. In regions 4-5, sensible heat flux is more gradually

reduced and remains nearly constant for the majority of the growing season. The

reduction in sensible heat flux for regions 4 and 5 coincide with reduced temperature

differences for these two regions. Under the full deployment scenario, sensible heat

decreases by a maximum of 45 W m-2 in region 3. Under the reduced deployment

scenario, the decrease in sensible heat is minimized to 15-25 W m-2.
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Figure 2.9: Seasonally averaged sensible flux difference (W m-2) (Perennial100_E1 -
Control_E1 ) over one decade (2000-2009) for (a) DJF, (b) MAM, (c) JJA, and (d)
SON. (e)-(h) Same as (a)-(d) but for difference of Perennial100_E8 minus Control_E8.
(i)-(l) Same as (a)-(d) but for difference of Perennial25_E1 minus Control_E1. (m)-
(p) Same as (a)-(d) but for difference of Perennial25_E8 minus Control_E8. Red
rectangles outline five sub-regions for time series calculations.
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Figure 2.10: Annual cycle of sensible heat flux difference (W m-2) averaged only
over grid cells undergoing land surface modification under Perennial100 scenario (a)
region 1, (b) region 2, (c) region 3, (d) region 4, and (e) region 5. (f)-(j) Same as
(a)-(e) but under Perennial25 scenario. Green and red lines indicate averaged annual
cycle of simulated impact over the decadal period using ensemble member E1 and E8,
respectively. Bands of one standard deviation above and below the mean annual cycle
are shaded with the corresponding color.
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Despite consistent decreases in sensible heat, latent heat fluxes associated with

perennial bioenergy crop expansion exhibits geographically dependent changes

(Fig. 2.11). During the growing season, latent heat fluxes increase, by up to 55

W m-2, over Pacific Coast, western mountains, and western Great Plains regions

(regions 1, 2, and 3) under the full deployment scenario. However, over eastern portions

of the U.S. (regions 4 and 5), latent heat fluxes decrease, generally between 15-25 W

m-2 for full and reduced deployment scenarios. In addition, according to time series

plots of latent heat flux differences (Fig. 2.12), regions 1, 2, and 3 display higher latent

heat fluxes associated with perennial bioenergy crops through early portions of the

summer, followed by a gradual decrease until October. Over regions 4 and 5, latent

heat flux differences are small during the growing season. Notably, decreases in latent

heat fluxes are evident from April to May, and October to November, coinciding with

lower LAI and vegetation fraction values for perennial bioenergy crops relative to the

existing land cover (see Fig. 2.2b-c).
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Figure 2.11: Seasonally averaged latent heat flux difference (W m-2) (Perennial100_E1
- Control_E1) over one decade (2000-2009) for (a) DJF, (b) MAM, (c) JJA, and (d)
SON. (e)-(h) Same as (a)-(d) but for difference of Perennial100_E8 minus Control_E8.
(i)-(l) Same as (a)-(d) but for difference of Perennial25_E1 minus Control_E1. (m)-
(p) Same as (a)-(d) but for difference of Perennial25_E8 minus Control_E8. Red
rectangles outline five sub-regions for time series calculations.
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Figure 2.12: Annual cycle of latent heat flux difference (W m-2) averaged only over
grid cells undergoing land surface modification under Perennial100 scenario (a) region
1, (b) region 2, (c) region 3, (d) region 4, and (e) region 5. (f)-(j) Same as (a)-(e) but
under Perennial25 scenario. Green and red lines indicate averaged annual cycle of
simulated impact over decadal period using ensemble member E1 and E8, respectively.
Bands of one standard deviation above and below the mean annual cycle are shaded
with the corresponding color.
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2.3.2.3 Soil moisture

Changes in soil moisture associated with perennial bioenergy crops are inversely

related with latent heat flux changes. Soil moisture changes are evident in both

shallow (10 - 40 cm; Fig. S1) and deeper (40 - 100 cm; Fig. 2.13) soil depth levels.

Under the full deployment scenario, soil moisture was reduced over western and central

portions of the U.S. (regions 1, 2, and 3) during summer and fall. Within these regions,

volumetric soil moisture decreased by up to 0.17 m3 m-3 and 0.20 m3 m-3 for shallow

and deeper soil depths, respectively. In the central/eastern U.S. (region 4), unlike

other regions, soil moisture increased by up to 0.07 m3 m-3 and 0.10 m3 m-3 for

shallow and deeper soil depths, respectively. Soil moisture differences were minimal

under the reduced deployment scenario with minor changes manifested in regions 4

and 5, respectively (<0.05 m3 m-3).
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Figure 2.13: Seasonally averaged soil moisture difference (m3 m-3) at 40-100 cm
soil depth (Perennial100_E1 - Control_E1) over one decade (2000-2009) for (a)
DJF, (b) MAM, (c) JJA, and (d) SON. (e)-(h) Same as (a)-(d) but for difference
of Perennial100_E8 minus Control_E8. (i)-(l) Same as (a)-(d) but for difference of
Perennial25_E1 minus Control_E1. (m)-(p) Same as (a)-(d) but for difference of
Perennial25_E8 minus Control_E8. Red rectangles outline five sub-regions for time
series calculations.
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Although time-averaged changes in soil moisture raise concerns associated with

water depletion within the soil column, time series analyses of soil moisture provide

insight into the progressive trend of these effects. Time series of soil moisture differences

show seasonal and annual trends of soil moisture depletion, most notably at deeper

soil depths (40-100 cm), with statistically significant decreasing trends in regions 2

and 3 under the full deployment scenario (Fig. 2.14, Table 2.3). In terms of seasonal

differences, soil moisture associated with perennial bioenergy crops decreases during

the growing season and then partially recharges from November until the following

April over regions 1, 2, 3, and 5 (Fig.2.14a-c, e). This evolution of soil moisture

differences is inversely related to changes in latent heat flux (for regions 1, 2, and 3)

and is partially coincident with large-scale rainfall reduction (for region 5, see Figs.

S2-S3). Under full bioenergy crop deployment, these differences are most noticeable

with decreased soil moisture reaching 0.12 m3 m-3 over regions 2 and 3. Over the

simulated decade and for these regions (western mountains and western Great Plains),

soil moisture is depleted by roughly one-third of the initial soil moisture availability.

Moreover, soil moisture decreases progressively with each subsequent year for

regions 2 and 3 under the full deployment scenario (with family-wise Type I error rate

< 0.05 for simultaneous testing of all soil moisture difference trends; see Table 2.3).

These progressive drying trends, however, are not evident in regions 1 (Pacific Coast),

4 (central/eastern U.S.), and 5 (Gulf Coast). Modified Mann-Kendall and sieve

bootstrap tests show agreement in the trend test results.
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Figure 2.14: Spatially averaged soil moisture difference (m3 m-3) at 40cm-1m soil
depth for grid cells undergoing land surface perturbation: (a) region 1, (b) region 2,
(c) region 3, (d) region 4, and (e) region 5. Dark green and dark blue curves indicate
ensemble member E1 and E8, respectively. Solid and dashed curves represent impact
under Perennial100 scenario and Perennial25 scenario, respectively.
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Table 2.3: Relative changes of soil moisture at the end of the 10th simulation year
(Perennial minus Control), normalized by the corresponding initial soil moisture at
shallow and deeper soil depths.? and # indicates statistically significant monotonic
trends with 95% family-wise confidence (p-value < 0.001 for each test under the
Bonferroni correction for multiple hypothesis tests), based on the Mann-Kendall test
for serially correlated measurements and sieve bootstrap for Mann-Kendall tests,
respectively.

Soil depth Region
Perennial
100_E1 -

Control_E1

Perennial
100_E8 -

Control_E8

Perennial
25_E1 -

Control_E1

Perennial
25_E8 -

Control_E8

10-40 cm

1 -0.0997 -0.0863 0.0046 -0.0145
2 -0.1469 -0.1223 -0.0364 -0.0137
3 -0.1553 -0.1568 -0.1719 -0.0399
4 0.0297 0.0159 0.0153 0.0124
5 0.0007 -0.0022 -0.0075 -0.0037

40-100 cm

1 -0.2186 -0.2069 -0.0005 -0.0098
2 -0.3483?,# -0.3353?,# -0.1001 -0.0586
3 -0.3652?,# -0.3058?,# -0.3057 -0.0580
4 0.0107 -0.0076 -0.0011 -0.0065
5 0.0009 -0.0072 -0.0162 -0.0074

? and # indicates statistically significant monotonic trends with 95% family-wise

confidence (p-value < 0.001 for each test under the Bonferroni correction for multiple

hypothesis tests), based on the Mann-Kendall test for serially correlated measurements

and sieve bootstrap for Mann-Kendall tests, respectively.

2.3.2.4 Radiation balance

Changes in net radiation balance play an important role in driving the afore-

mentioned hydroclimatic impacts. Overall, net radiation decreased, with the largest

reduction occurring during summer (Fig.2.15a-d). These changes are largely responsi-

ble for the previously discussed changes in temperature and sensible heat flux. Under
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Figure 2.15: Summer (JJA) averaged net radiation difference (W m-2) over one decade
(2000-2009) (a) Perennial100_E1 - Control_E1, (b) Perennial100_E8 - Control_E8,
(c) Perennial25_E1 - Control_E1, and (d) Perennial25_E8 - Control_E8. (e)-(h)
Same as (a)-(d) but for net shortwave radiation (W m-2). (i)-(l) Same as (a)-(d) but
for net longwave radiation (W m-2).

the full deployment scenario, the largest reduction in net radiation (up to 60 W

m-2) occurs over the southern Great Plains (mainly within region 3). Under the

reduced deployment scenario, net radiation decreases 20-30 W m-2, primarily over the

central/eastern U.S. (region 4) and Gulf Coast (region 5). According to time series

plots of spatially-averaged net radiation differences, these decreases mainly occurred

from mid-April to mid-October (Fig. S4).

The large-scale net radiation reduction is dominated by the decrease of shortwave

radiation at the surface (Fig. 2.15e-h), resulting from enhanced surface reflectivity

(Fig. 2.3c and 2.3g). Summer net shortwave decreases up to 50 W m-2 over the
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southern Great Plains (the same region with maximum net radiation depletion),

whereas the reduction of summer net longwave radiation peaks at roughly 12 W m-2

over southeastern areas of the U.S.

2.4 Discussion and Conclusions

Here we investigate hydroclimatic impacts of perennial bioenergy crop expansion

over CONUS using continuous ensemble-based WRF simulations (2000 through 2009)

and a suite of realistic deployment scenarios. Our results demonstrate that converting

abandoned and degraded farmlands to perennial bioenergy croplands can lead to

significantly cooler temperatures and potentially unintended consequences of soil

moisture depletion for some regions of the U.S. Temperature decreases associated with

perennial bioenergy crop deployment are largest over the Great Plains, generally 4-5

°C lower during the growing season compared to the unperturbed landscape (Figs.

2.7-2.8). Simulated soil moisture associated with perennial bioenergy crops shows

a progressive decrease for some regions, most notably at deeper soil depths (40-100

cm). This decrease is most apparent under the full deployment scenario over the

western Plains, with soil moisture depleted by 35% relative to the initial soil moisture

availability (see Figs. 2.13-2.14). However, we note that, in general, smaller differences

were evident under the reduced deployment scenario, although even in such instances

soil moisture reduction was apparent (e.g., region 3; Table 2.3). Therefore, large-scale

perennial bioenergy crop expansion over abandoned farmlands could have undesirable

regional hydroclimatic consequences, but these effects are reduced for most areas

undergoing small-scale deployment.

Biophysical parameters, including albedo, vegetation fraction and LAI, were shown
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to serve as key factors characterizing hydroclimatic impacts due to perennial bioenergy

crop expansion, in agreement with previous work focused on hypothetical landscape

transitions (Georgescu et al. 2011; Davin et al. 2014; Zhu et al. 2017). Unlike previous

studies (Le et al. 2011; Khanal et al. 2013; Abraha et al. 2015), changes in latent

heat flux associated with perennial bioenergy crop expansion varied spatially (i.e.,

increased latent heat fluxes over some regions but minimal changes, or even decreases,

over other regions).

We posit that a lack of statistically significant monotonic trends in soil moisture

(Fig. 2.14; Table 2.3) accompanied by areas of regional cooling can be a determining

factor in identifying suitable hotspots of bioenergy crop deployment. Perennial bioen-

ergy crop expansion, therefore, could be sustainable in regions 4 and 5 (central/eastern

U.S. and Gulf Coast states) based on the amount of soil moisture available during

the annual cycle and the minimal to positive soil moisture changes simulated over the

decadal timescale examined. Moreover, sections of Wisconsin and Missouri, extending

eastward through the Ohio River Valley, could be posited as favorable locations for

deployment due to seasonal soil moisture recharge (Fig. 2.13). Our results indicate

statistically significant decreasing trends in soil moisture (up to 35% of initial soil

moisture content) for regions 2 and 3 over the 10-year simulation period (see Table 2.3),

highlighting these areas as potentially unsuitable. Although we do not observe a sta-

tistically significant trend in soil moisture for region 1 (i.e., California) the incomplete

recovery of differences relative to the Control scenario during the winter season, does

raise water resource concerns vis-à-vis depletion/interaction with the water table,

which requires further investigation. However, it is worth noting that benefits may

still exist as a decrease in runoff would lead to less soil erosion and therefore, could

improve water quality over potential unsuitable areas.
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We characterize the simulated large-scale hydroclimatic impacts associated with

perennial bioenergy crop expansion as robust since the two sets of experiments (i.e.,

E8 and E1) converged to similar conclusions. Over most perennial bioenergy crop

deployment regions, the best (i.e., E8) and least (i.e., E1) skilled ensemble members

yielded similar results in terms of the magnitude and extent of regional cooling, changes

in latent and sensible heat fluxes, and soil moisture impacts. Additionally, the overlaid

climate variability ranges associated with the mean annual cycle of sub-regionally

averaged cooling and changes of surface energy balance components between the

aforementioned two ensemble members provide further confidence in our results. It

is important to mention that the predicted temperature in our simulations exhibits

reduced scattering compared to precipitation. This suggests that the errors observed

in precipitation, owing to utility of different cloud microphysics parameterizations,

do not have significant impact on the dynamics simulated by WRF. If these errors

were important, they would have affected the dynamics through temperature changes

caused by the release or absorption of latent heat. Consequently, the scattering in

temperature and precipitation would have been closely correlated. However, this was

not observed in our simulations, consistent with previous research (e.g., Done et al.

2005; Okalebo et al. 2016). Nevertheless, from a purely physics and model development

perspective additional insights characterizing the parameterization aspects leading

to quantitative determination detailing differences in simulated results (e.g., what

particular aspects of parameterized features contributes to this variability) is an

important research avenue for pursuit, but is beyond the focus of this manuscript.

Finally, the principal highlights of this research establish a framework of feedback

assessment between LULCC and water resource impacts where analogous energy

pathways involving landscape modification are being considered (e.g., natural landscape
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conversion to oil palm in Indonesia). Via identification of suitable hotspots of bioenergy

crop deployment, due to simultaneous regional-scale cooling in conjunction with

minimal adverse effects on soil moisture, we also identify areas wherein cultivation

can effectively reduce projected warming due to large-scale climate change.
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Chapter 3

SPATIO-TEMPORAL MODELING FOR REGIONAL CLIMATE MODEL

COMPARISON: APPLICATION ON PERENNIAL BIOENERGY CROP IMPACTS

3.1 Introduction

Deployment of perennial bioenergy crops is an alternative energy pathway to miti-

gate climate change, increase energy independence, stabilize energy prices, and achieve

hydroclimatic sustainability in some marginal lands. Previous studies used regional

climate models (RCMs) to quantify perennial bioenergy crops impacts (Anderson et al.

2013; Georgescu et al. 2011; Khanal et al. 2013; Wagner et al. 2017; Wang et al. 2017).

However, RCMs with different physics parameterizations could generate significantly

different outputs, leading to uncertainties of results to be examined. Therefore, in

order to examine the robustness of simulated perennial bioenergy crop impacts, it is

essential to assess the significance of factors associated with RCM performance.

The uncertainties of RCM outputs have been studied using both descriptive and

inferential statistics. Specifically, Taylor diagrams and Hövmoller diagrams have

been applied to evaluate RCM simulation skill using multiple performance metrics

(Hovmöller 1949; Taylor 2001; Wang et al. 2017). However, the abovementioned

diagrams cannot be used to assess the significance of factors associated with simulation

skill. Sansom et al. (2013) assigned different weights to ensemble members of RCMs,

based on an ANOVA framework. This method did not take into account spatiotemporal

dependencies. Kang et al. (2012) applied hierarchical Bayesian spatial random-effects

model to quantify the climate signal of individual RCMs. Although spatially correlated
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processes could be captured, the proposed framework did not include a temporal

component. Given that spatio-temporal dependencies are inherent to RCM outputs,

spatio-temporal statistical models are needed.

There is a variety of Bayesian hierarchical spatio-temporal models (BHM) and

corresponding R packages, such as spBayes, spTDyn, spate, spTimer (Finley et al.

2013; Bakar et al. 2016; Sigrist et al. 2015; Bakar et al. 2016). For spatio-temporal

modeling of lattice data, the R package named surveillance can be used (Meyer et al.

2014); nlme and lme4 can model spatial and temporal effects by fitting linear mixed

models (Pinheiro 2009; Bates et al. 2014); CARBayesST can implement hierachical

spatio-temporal generalized linear mixed models (Lee et al. 2017).

Alternative methods have been used for estimating the posterior distribution

of BHM, such as Markov chain Monte Carlo (MCMC) sampling (Christian and

Casella 1999), and Integrated nested Laplace approximations (INLA) (Rue et al.

2009; Blangiardo and Cameletti 2015). MCMC methods refers to sampling from a

probability distribution by constructing a Markov chain that has the desired posterior

distribution as its stationary distribution. Several MCMC algorithms have been

used to approximate multidimensional integrals. For example, Metropolis–Hastings

algorithm generates random samples using a proposal density with some probability

of acceptance and rejection (Metropolis et al. 1953; Hastings 1970); and Gibbs

samplig, which samples from the conditional posterior distributions exactly (hence, it

does not require any ’tuning’) (Geman and Geman 1987). However, MCMC is not

straightforward to implement and may be slow to converge. INLA overcomes these

issues as posteriors are estimated using numerical approximations (hence, random

sampling is avoided). It is considered to be superior to MCMC in terms of accuracy and
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computational efficiency, although it is restricted for only analyzing latent Gaussian

models.

To our knowledge, a limited number of research works compare alternative param-

eter estimation approaches and models with different spatio-temporal autocorrelation

structures. In this study, multiple spatio-temporal models are compared for modeling

RCM outputs; the motivating application aims to evaluate perennial bioenergy crop

impacts. More specifically, the work in this chapter investigates the following research

questions:

a. Do physics parameterizations and observations have a significant impact on

WRF control simulations?

b. Is WRF-simulated temperature impact associated with perennial bioenergy

crops robust to alternative physics parameterizations?

c. Which spatio-temporal residual correlation structure is the most appropriate

given the fixed effects?

This chapter is arranged as follows. Section 3.2 presents a review of three commonly

used Bayesian hierarchical spatio-temporal models for lattice data, as well as the

methodology of modeling RCM output ensembles. The application is presented and

discussed in Section 3.3. Concluding remarks and suggestions for future work are

discussed in Section 3.4.
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3.2 Methodology

3.2.1 Bayesian hierarchical spatio-temporal models for lattice data

Let A = {A1, . . . , AS} be a set of S non-overlapping lattice units. Data are

collected with S spatial units and T consecutive time periods, available in a S × T

rectangular array. Y = (Y1, . . . ,YT ) = (Y11, . . . , YS1, . . . , Y1T , . . . , YST ) denotes the

vector of continuous response variable. For one lattice unit s at time period t, where

s = 1, . . . , S and t = 1, . . . , T , xst =
(
xst1, . . . , xstp

)
is a vector of p known covariates.

Bayesian hierarchical space-time models for lattice data can be considered within

the linear mixed model framework (Lee et al. 2017); the general formulation is given

by:

Yst|µst ∼ N(µst, σ
2),

µst = xT
stβ +Mst,

β ∼ N(µβ,Σβ).

(3.1)

where β = (β1, . . . , βp) is a vector of covariate parameters, a multivariate Gaussian

prior with mean µβ and diagonal variance matrix Σβ. The Mst term is a latent

component that captures remaining spatio-temporal autocorrelation for lattice unit s

at time period t.

3.2.2 Spatio-temporal models for Mst

The spatio-temporal autocorrelation of data, M , where M = (M1, . . . ,MT )

and Mt = (M1t, . . . ,MSt), are commonly modeled as random effects by the class of
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Bayesian Conditional Autoregressive (CAR) prior distributions. CAR distributions

are a type of Markov random field model, meaning that adjacent variables (i.e., in

space or time) are autocorrelated, whereas variables for non-neighboring lattice units

are conditionally independent given the remaining variables. The autocorrelation with

respect to space is determined by a S×S spatial neighborhood matrixW = (wsj), j =

1, . . . , S. W is symmetric, consisting of binary elements. (wsj) has value 1 if lattice

units (As, Aj) are close in space (i.e., share a common border) and is zero otherwise.

Additionally, (wjj)= 0. Similarly, the binary T × T temporal neighborhood matrix is

defined as D = (dtj), j = 1, . . . , T , where dtj = 1 if |t− j| = 1 and dtj = 0 otherwise.

Based on the neighboring information, three spatio-temporal autocorrelation structures

M are considered in this chapter, namely STCARlinear, STCARanova, and STCARar.

The implementation of these three models can be found in R package CARBayesST

(Lee et al. 2017).

3.2.2.1 Model-1: STCARlinear

STCARlinear is a spatially varying linear time trends model (Bernardinelli et al.

1995). It is formulated as:

Mst = β1 + φs + (α + δs)t
∗, (3.2)

where β1 + φs denotes region-specific intercept and α + δs represents region-specific

temporal trend. t∗ =
t− t̄
T

=
t−
∑T

t=1 t/T

T
denotes the linear temporal covariate

running over a centered unit interval. Specifically, β1 is the intercept in β (Eq. (3.1))

and α denotes a global slope parameter which is normally distributed with mean µα

and variance σ2
α.

The spatial correlation in φs and δs is enforced by the CAR prior (Leroux et al.
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2000). These parameters are mean centered (Lee et al. 2017) and their conditional

distributions are formulated as::

φs|φ−s,W ∼ N

 ρint
∑S

j=1wsjφj

ρint
∑S

j=1wsj + 1− ρint
,

τ 2int

ρint
∑S

j=1wsj + 1− ρint

 ,

δs|δ−s,W ∼ N

 ρslo
∑S

j=1wsjδj

ρslo
∑S

j=1wsj + 1− ρslo
,

τ 2slo
ρslo

∑S
j=1wsj + 1− ρslo

 ,

(3.3)

where ρint and ρslo are spatial dependence parameters which are assigned Uniform(0, 1)

priors; values of 1 (i.e., intrinsic CAR prior proposed by Besag et al. (1991)) and 0

correspond to spatial dependence and independence, respectively. In addition, τ 2int

and τ 2slo are assigned inverse-gamma priors with shape a and scale b. In this chapter,

the corresponding hyper priors (a, b, µα, σ
2
α) are specified to be 0.001, 0.001, 0, and

1000, respectively [in accordence with Lee et al. (2017) so that the priors are weakly

informative]. Using the above structure, spatio-temporal autocorrelation of data is

a function of time with spatial dependencies assumed by their priors; the spatial

associations are related to the spatial weight matrix W .

3.2.2.2 Model-2: STCARanova

STCARanova consists of three components of spatio-temporal variation: an overall

spatial effect φ = (φ1, . . . , φS), an overall temporal trend δ = (δ1, . . . , δS), and

independent space-time interactions γ = (γ11, . . . , γST ) (Knorr-Held and Besag 1998;

Knorr-Held 1999):

Mst = φs + δt + γst. (3.4)
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The first (two, mean centered) components are assigned the CAR prior proposed by

Leroux et al. (2000):

φs|φ−s,W ∼ N

 ρS
∑S

j=1wsjφj

ρS
∑S

j=1wsj + 1− ρS
,

τ 2S

ρS
∑S

j=1wsj + 1− ρS

 ,

δt|δ−t,D ∼ N

 ρT
∑T

j=1 dtjδj

ρT
∑S

j=1 dtj + 1− ρT
,

τ 2T

ρT
∑S

j=1 dtj + 1− ρT

 ,

(3.5)

Optional set of spatial and temporal interaction effects γst can be specified in the

model to capture nonlinear patterns. Four possible types of interaction assume:

independence, purely spatial dependence, purely temporal dependence, and spatio-

temporal autocorrelation (Knorr-Held 1999). In this chapter, however, the space-time

interaction is not included in the model. The avoidance of interaction term could

reduce complexity while increasing flexibility for space-time modeling (López-Quılez

and Munoz 2009).

In Eq.(3.5), ρs and ρt are spatially and temporally dependent parameters, respec-

tively, distributed with Uniform(0.1) priors. Similarly, τ 2s and τ 2t are spatially and

temporally dependent parameters, respectively, which are assigned inverse-gamma(a, b)

priors. The hyper parameters (a, b) are both chosen to be 0.001 [in accordance with

the suggestion of Lee et al. (2017) as weakly informative priors].

3.2.2.3 Model-3: STCARar

STCARar models the spatio-temporal structure as a multivariate first order

autoregressive process with a spatially correlated precision matrix (Rushworth et al.
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2014). The model specification is given by:

Mst = φst,

φ1 = (φ11, . . . , φS1) ∼ N(0, τ 2Q(W , ρS))−1)

φt|φt−1 ∼ N(ρTφt−1, τ
2Q(W , ρS))−1, t = 2, . . . , T,

(3.6)

where φt is the vector of random effects at time period t; ρT denotes a temporal

autoregressive parameter and ρTφt−1 induces temporal autocorrelation; variance

τ 2Q(W , ρS))−1 imposes spatial autocorrelation with:

Q(W , ρS) = ρS
[
diag(W1)−W

]
+ (1− ρS)I, (3.7)

where 1 is the S × 1 vector of ones and I is the S × S identity matrix. The precision

matrix Q(W , ρs) corresponds to the CAR prior (Leroux et al. 2000), with specification

at time period 1:

φs1|φ−s1, ρS, τ
2,W ∼ N

 ρS
∑S

j=1wsjφj1

ρS
∑S

j=1wsj + 1− ρS
,

τ 2

ρS
∑S

j=1wsj + 1− ρS

 . (3.8)

In Eq.(3.8), ρS controls the level of spatial smoothness, with ρS = 1 leading to CAR

model proposed by Besag et al. (1991) while ρS = 0 inducing identical and independent

(iid) normal prior distributions. In this Chapter of study, ρS is fixed at unity.

3.3 Spatio-temporal modeling for simulated temperature differences

3.3.1 Description of datasets

The analyzed data are seasonally averaged WRF-simulated temperatures from 2000

to 2009 over the conterminous U.S. Two types of datasets are analyzed (Table 3.1).

The first type relates to simulation bias, i.e., the difference of reproduced temperature
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and the corresponding observations. Sixteen scenarios are included in this group:

scenarios vary by choices of microphysics schemes, cumulus schemes, utility of spectral

nudging, and observations. Each of the aforementioned factors includes two levels.

The second type of dataset relates to biofuel impact: the difference of reproduced

temperature and temperature under full-deployment scenario of perennial bioenergy

crops expansion. In the second data type, only two scenarios are included, varied by

combinations of physics parameterizations for best and worst skilled model, selected

based on the results presented in Chapter 2. Details with regard to the experimental

design can be found in Wang et al. (2017). Both types of datasets are gridded data

with spatio-temporal dependence. In this chapter, the datasets were resampled using

bilinear interpolation to include S = 348 pixels at each time period, with T = 40 time

periods in total (seasonal values in consecutive 10 years)1.

3.3.2 Spatio-temporal statistical modeling

For each scenario, the expected response (i.e., differences of reproduced temperature

and the corresponding observations for first type of datasets; and temperatures changes

associated with perennial bioenergy crop expansion) was modeled using the following

specification:

µst = β0 + β1x1 + β2x2 + β3x3 +Mst (3.9)

where x1, x2, x3 are fixed effects of seasons (i.e., the effects of Spring, Summer, and

Fall relative to Winter, respectively), while β1, β2, and β3 denote the coefficients of

corresponding factors. Mst represents the spatio-temporal random effect, which may

1Bilinear interpolation is a resampling method which estimates a new pixel value by a weighted
average of the four nearest pixels, according to distance.
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Table 3.1: Description of datasets.

Type of
dataset Scenarios Microphysics Cumulus

physics
Spectral nudging

technique
Observed

data

simulation
bias

S1 WSM3 Kain–Fritsch No DW
S2 WSM3 Kain–Fritsch Yes DW
S3 WSM3 Grell 3D No DW
S4 WSM3 Grell 3D Yes DW
S5 WDM6 Kain–Fritsch No DW
S6 WDM6 Kain–Fritsch Yes DW
S7 WDM6 Grell 3D No DW
S8 WDM6 Grell 3D Yes DW
S1 WSM3 Kain–Fritsch No GC
S2 WSM3 Kain–Fritsch Yes GC
S3 WSM3 Grell 3D No GC
S4 WSM3 Grell 3D Yes GC
S5 WDM6 Kain–Fritsch No GC
S6 WDM6 Kain–Fritsch Yes GC
S7 WDM6 Grell 3D No GC
S8 WDM6 Grell 3D Yes GC

biofuel
impact

S1 WSM3 Kain–Fritsch No N/A
S8 WDM6 Grell 3D Yes N/A

follow the specifications from equations 3.2 to 3.6, i.e., STCARlinear, STCARanova,

STCARar.

Posterior samples of spatial and temporal dependence parameters for each model

and each scenario were compared using box plots. The model that had consistent

spatio-temporal structure across scenarios was applied on the pooled data (com-

bined scenarios), in order to assess the significance of factors associated with RCM

performance and the robustness of estimated perennial bioenergy crop impacts.
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3.3.3 Modeling multiple spatio-temporal processes simultaneously

When modeling multiple spatio-temporal processes, the aforementioned specifica-

tions cannot be applied, since they are designed for a single spatio-temporal process.

Here, we propose a new method to model several spatio-temporal processes simultane-

ously. First of all, each univariate spatial-temporal process is modeled individually

using each candidate model. Then the performances of each model can be evaluated:

the preferred candidate model should be the one that best captures the spatio-temporal

autocorrelation of each single spatio-temporal process. The spatio-temporal autocorre-

lation structure of the selected model can then be considered as a consensus structure

for all univariate processes. Lastly, multiple spatio-temporal processes are pooled

together and modeled, using the selected specification. The neighborhood matrix

W = (wsj) is modified to be Wconsensus = I
⊗
W , where I is the m by m identity

matrix, with m denoting the number of spatio-temporal processes.

It was assumed that all scenarios of the same data type have a consistent spatio-

temporal structure: this structure was selected based on the results of scenario-specific

models. Scenario-combined models were different from scenario-specific models only

with regard to the fixed effects part. For simulation bias, the mean of the set of

processes were modeled using the specification as Eq. (3.1), whereX contains columns

(x1, x2, x3, x4, x5, x6, x7, x1x4, x1x5,x1x6, x1x7, x2x4, x2x5, x2x6, x2x7, x3x4, x3x5,

x3x6, x3x7), with (x1, x2, x3) denoting fixed effects for seasons , (x4, x5, x6, x7) denot-

ing factors for microphysics parameterizations, cumulus scheme parameterizations,

spectral nudging and observations, respectively, and x1x4, x1x5,x1x6, x1x7, x2x4, x2x5,

x2x6, x2x7, x3x4, x3x5, x3x6, x3x7) denoting interactions. β are the corresponding

coefficients.
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For biofuel impact, datasets were modeled using the the same specification

as Eq.(3.1), but now X contains columns (x1, x2, x3, x4, x1x4, x2x4, x3x4), where

(x1, x2, x3) represent fixed (seasonal) effects, x4 denotes alternative physics char-

acterizations, and (x1x4, x2x4, x3x4) represent the corresponding interaction effects.

3.3.4 Model selection and the selection criteria

After the spatio-temporal autocorrelation structure have been chosen, model

selection was conducted in order to derive a parsimonious model. The final models

were selected by evaluating criteria which favor high likelihood while penalizing model

complexity. Three criteria are frequently used: Akaike Information Criterion, Bayesian

Information Criterion, and Deviance Information Criterion (i.e., AIC, BIC, and DIC,

respectively). Let k be the number of estimated parameters in the model for a

particular data; let L̂ be the maximized value of the likelihood function for the model

and n the sample size. AIC is formulated as (Akaike 1998):

AIC = −2 ln(L̂) + 2k (3.10)

Compared to AIC, BIC contains a modified penalty term for the number of parameters

(Schwarz et al. 1978):

BIC = −2 ln(L̂) + ln(n)k (3.11)

In bayesian analysis, DIC is frequently used; it is based on posterior distributions

of the model by MCMC simulation, and follows similar ideas to AIC and BIC, as it

evaluates both "goodness of fit" and "complexity" of the model. More specifically, fit

is measured via the deviance as D(θ) = −2log(p(data|θ)), where θ are the unknown

parameters of the model and p(data|θ) is the likelihood function. Complexity is

measured via either pD = E(D)−D(D̄) (i.e., posterior mean deviance minus deviance
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evaluated at the posterior mean of the parameters) (Spiegelhalter et al. 2002), or

by pD = 1/2var(D̂) (Gelman et al. 2014). In general, smaller values of AIC, BIC,

or DIC indicate superior specifications; models with value differences smaller than

5 in the above criteria could be considered as equivalent. In this case, combining

these equivalent models via model averaging may result in a more robust specification

(Hoeting et al. 1999).

In this chapter, we first applied the aforementioned Bayesian hierachical specifica-

tions for each scenario; simultaneous modeling of multiple spatio-temporal processes

was based on the relative degree of consensus in space-time parameter estimation and

DIC. For multiple spatio-temporal processes, we conducted conventional (frequentist)

linear regression and applied exhaustive model selection based on AIC to exclude

non-significant factors. Using this procedure, the number of model candidates for

modeling multiple spatio-temporal processes was brought down to 5 models. BHM was

performed for these specifications and DIC was used to select the final spatio-temporal

model.

3.4 Results

3.4.1 Model comparison for a single scenario

For each scenario, a single chain with a total of 100,000 iterations was simulated.

The number of iterations for the burnin period was 10,000, and the thinning rate

was 100 so the number of samples used for the estimation of the parameters was 900.

MCMC was evaluated using the Geweke diagnostic (Geweke et al. 1991), which should
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be within the range of -2 and 2. The minimum acceptable effective sample size was

set to be equal to 150.

Table 3.2 presents DIC values for all combinations of datasets, scenarios, and

statistical models. For all scenarios of simulation bias data-type, STCARar achieves

the lowest DIC consistently, while STCARlinear attains higher DIC than STCARanova

in all scenarios except S5, S6, S8 and S14. On the contrary, STCARar models achieves

the highest DIC and STCARlinear the lowest for biofuel impact data-type. Thus,

STCARlinear fits the simulation bias data-type worse than the other two spatio-

temporal structures, whereas it fits the biofuel impact data-type better than the other

structures. STCARar, on the other hand, fits the simulation bias data-type better,

but achieves the worst performance for biofuel impact data-type.

3.4.2 Spatio-temporal modeling of individual scenarios

3.4.2.1 Fixed effect estimates

The medians of fixed effects are very close across spatio-temporal models; on the

other hand, the 95% confidence intervals (CIs) differ dramatically (Table 3.3). This

finding is consistent across the 3 models. For example, the estimated medians of

simulation biases based on scenario S1 are equal to 2.20, 0.46, 3.51, and 2.75 for

the Intercept, Spring-Winter difference, Summer-Winter difference, and Fall-Winter

difference (i.e., β̂0, β̂1, β̂2, and β̂3), respectively. The widest 95% CIs, however, are

observed using STCARar, whereas the narrowest using STCARlinear. It is worth

noting that there are no significant differences for fixed effect estimates derived from

alternative approximation methods (i.e., MCMC vs INLA) as the corresponding 95%
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Table 3.2: DIC values for single scenarios. The scenario with the smallest values per
scenario is highlighted in bold.

Type of
dataset Scenarios STCARlinear STCARanova STCARar

simulation
bias

S1 30556.8 30299.61 27239.83
S2 29659.08 29469.15 26759.66
S3 30323.23 30067.83 26602.55
S4 29607.56 29502.47 26718.72
S5 29185.82 28949.95 26354.89
S6 27905.07 27948.96 26548.55
S7 29028.95 28669.41 26214.85
S8 28002.11 28040.67 27057.49
S1 30610.51 30308.43 27032.93
S2 29696.17 29525.09 27066.27
S3 30288.61 30054.88 26887.28
S4 29586.9 29494.1 26848.38
S5 29120.41 28823.15 26502.2
S6 27803.51 27841.85 26549.3
S7 29221.08 28876.18 26213.22
S8 27715.63 27701.42 26467.08

biofuel
impact

S1 39255.33 39354.91 39368.12
S8 38915.38 39041.54 39098.31

CIs are overlaid. An algorithm for STCARar using INLA is not currently available,

so the corresponding results are not included in Table 3.3.

Results show that simulated temperature biases differ significantly by season. The

simulated temperature relative to observation DW is approximately 2.2 °C lower in

Winter. However, biases are 0.46, 3.5 and 2.7 °C higher in Spring, Summer, and Fall

than in Winter, respectively (Table 3.3). Therefore, the simulated temperatures are

1.74 °C lower than observation DW, whereas 1.31, and 0.57 °C higher in Summer, and

Fall, respectively.
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Table 3.3: Fixed effect estimates of simulation bias data-type (scenario S1)

Fixed effect Model 95% Confidence Interval
CARlinear CARanova CARar

Median 2.50% 97.50% Median 2.50% 97.50% Median 2.50% 97.50%

β0
MCMC -2.2 -2.26 -2.14 -2.21 -2.38 -2.05 -2.21 -2.49 -1.95
INLA -2.13 -2.21 -2.06 -2.21 -2.4 -2.01

β1
MCMC 0.46 0.38 0.54 0.47 0.2 0.72 0.47 -0.01 0.91
INLA 0.46 0.37 0.54 0.46 0.19 0.73

β2
MCMC 3.51 3.44 3.59 3.53 3.27 3.82 3.52 3.09 3.99
INLA 3.51 3.43 3.59 3.52 3.25 3.79

β3
MCMC 2.75 2.67 2.84 2.77 2.53 3.01 2.78 2.36 3.26
INLA 2.75 2.67 2.84 2.77 2.5 3.04

3.4.2.2 Spatio-temporal correlation

For STCARlinear, the range of spatial intercepts and slopes overlay consistently

across scenarios (Fig.3.1). When modeling simulation bias, the means of spatially

dependent intercepts lie between 0.9 and 0.95 whereas the majority of means of

spatially dependent slopes range from 0.8 to 0.9 (Fig. 3.1(a) and (b)). The spatially

dependent variances of slopes differ, with larger magnitudes across scenarios relative

to the ones that correspond to intercepts (Fig.3.1(c) and (d)). The overall spatial

intercepts are generally greater than 0 for all scenarios (Fig. 3.1(e)). For biofuel

impacts, however, the differences of posterior samples across scenarios are relatively

small (Fig. 3.1(f) - (j)).

For STCARanova, although the posterior distributions of spatially dependent

means are similar across scenarios, the rest of posterior samples differ dramatically

(Fig.3.2(a)-(e)). Specifically, temporally dependent variances and error variances

for simulation bias data, possess significantly different posterior distributions across

scenarios. However, posterior distributions related to biofuel impacts do not differ

dramatically, similar to what is observed for STCARlinear.

Posterior samples of STCARar differ largely across scenarios for both simulation

bias and biofuel impact data types (Fig. 3.3). Specifically, posterior samples of
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temporally autoregressive parameters and variances of spatial autocorrelations could

differ on the order of five to seven times across scenarios (Fig. 3.3(b) and (c)).

Taking into account the model comparisons presented above and the interest of

combining scenarios in a single specification, STCARlinear appears to be the best

choice: a consistent spatial-temporal structure can be assumed across scenarios using

this structure, given that seasonal factors are included.
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Figure 3.1: (a) Box-plots of posterior samples of spatio-temporal random effects
using STCARlinear. Each box plot corresponds to a scenario-specific model: (a)
mean of spatially dependent intercept, associated with simulation bias data-type;
(b)-(e) the same as (a) but for mean of spatially dependent slope, variance of spatially
dependent intercept, variance of spatially dependent slope, and overall slope parameter,
respectively; (f)-(g) the same as (a)-(e), but associated with biofuel impact data-type.
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Figure 3.2: Box-plots of posterior samples of spatio-temporal random effects using
STCARanova. Each box plot corresponds to a scenario-specific model: (a) spatially
dependent mean, associated with simulation bias data-type; (b)-(e) the same as (a) but
for temporally dependent mean, spatially dependent variance, temporally dependent
variance, and prior for the Gaussian error variance, respectively; (f)-(g) the same as
(a)-(e), but associated with biofuel impact data-type.
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Figure 3.3: Box-plots of posterior samples of spatio-temporal random effects using
STCARar. Each box plot corresponds to a scenario-specific model: (a) spatially
autoregressive parameters, associated with simulation bias data-type; (b)-(c) the
same as (a) but for temporally autoregressive parameters, and variances of spatial
autocorrelations, respectively; (d)-(f) the same as (a)-(c), but associated with biofuel
impact data-type.
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3.5 Spatio-temporal modeling for scenario-combined data using STCARlinear

3.5.1 Simulation bias

By modeling the scenario-combined data using STCARlinear, the significance of

seasons, observations, physics parameterizations, as well as their interactions was

examined (Table 3.4). Each of the five candidate specifications (selected based on

AIC, see Section 3.3.4, with parameters listed in Table 3.4) was evaluated using

STCARlinear. We used a single chain with a total of 400,000 iterations. The number

of iterations for the burnin period was 100,000, and the thinning rate was 100, so

the number of samples used for the estimation of the parameters was 3000. As

before, MCMC convergence was assessed using the Geweke diagnostic and the effective

sample size was monitored as well. DIC values of the five specifications were 460476.7,

455997.2, 466952.4, 460424.7, and 464820.6, respectively. Therefore, Model2 offers the

most satisfactory description of the data.
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However, some values of the Geweke diagnostic for Model2 are outside the

acceptable range, such as factor (Fall-Winter) and interaction term (Summer-

Winter)*spectral_nudging. In addition, the effective sample size for factors Intercept,

spectral nudging, cumulus, microphysic, and spectral _nudging*microphysic are small.

The above findings suggests our estimate could be unreliable. Given the length of

MCMC and the associated computation burden, a more efficient estimation method

is needed; this issue will be addressed in the next chapter.

Nevertheless, the range of posterior samples of spatio-temporal random effects

using scenario-combined data are more concentrated than those of scenario-specific

data (Figure 3.1 and Figure 3.4). Therefore, these posterior samples can be considered

as weighted averages across all scenarios.

Figure 3.4: Box-plots of posterior samples of spatio-temporal random effects for
simulation bias data-type using STCARlinear. (a) mean of spatially dependent
intercept; (b)-(e) the same as (a) but for mean of spatially dependent slope, variance
of spatially dependent intercept, variance of spatially dependent slope, and overall
slope parameter, respectively.
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3.5.2 Biofuel impacts

Five candidate models with different factors are selected to analyze the biofuel

impact dataset using STCARlinear. A single chain with a total of 100,000 iterations

is used for the MCMC. The number of iterations for the burnin period is 10,000, and

the thinning rate is 100, so the number of samples used for the estimation of the

parameters was 900. As before, the Geweke diagnostic is used to examine MCMC

convergence; effective sample size was also monitored.

The seasonal factors are consistently included in each of the five candidate models,

whereas the scenario factor appears only in Models 1, 3, and 5. With regard to

interaction terms, the effect of (Summer-Winter)*scenario appears in all of the 5

candidate models, whereas the other interactions appear occasionally.

Among the five candidates, Model1 with fixed effects for seasons, a scenario indica-

tor, and the (Summer-Winter)*scenario interaction term (i.e., x1,x2,x3, x4, and x2x4)

resulted in the smallest DIC (84154, see Table 3.5). Seasonal factors and (Summer-

Winter)*scenario interaction are statistically significant based on the 95% posterior

credible interval. It can be observed that the averaged cooling impact associated with

perennial bioenergy crops are 0.2°C and 0.3°C in Spring and Fall, respectively, relative

to Winter. Comparing summer to winter, the simulated cooling impact is around

1.5°C using physics parameterizations scenario S1 (i.e., WDM6 for Microphysics, Grell

3D for cumulus scheme, and spectral nudging is applied); whereas 1.8°C cooling impact

is estimated when simulated with Microphysics WSM3, Kain-Fritsch, and without

spectral nudging. Overall, estimated temperature impacts associated with perennial

bioenergy crops are robust across different physics parametizations, except for summer

relative to winter. Similar to the simulation bias data, the range of posterior samples

76



of spatio-temporal random effects using scenario-combined data are more concentrated

than the ones derived from scenario-specific data (Figure 3.1 and Figure 3.5). The

above results can be considered reliable, as the values of Geweke diagnostics are within

the acceptable range and the effective sample size is satisfactory for all parameters

(Table 3.5).

Figure 3.5: Box-plots of posterior samples of spatio-temporal random effects for
biofuel impact dataset using STCARlinear. (a) mean of spatially dependent intercept;
(b)-(e) the same as (a) but for mean of spatially dependent slope, variance of spatially
dependent intercept, variance of spatially dependent slope, and overall slope parameter,
respectively.
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3.6 Concluding remarks

In this chapter, WRF simulated temperatures associated with control simulation

bias, as well as biofuel impacts, were modeled using spatio-temporal bayesian hierar-

chical models. Our findings suggest that models with spatially varying intercepts and

slopes can offer a satisfactory description of the spatio-temporal dependence of the

data. The simulated cooling impact associated with perennial bioenergy crops differ

by seasons significantly. Most importantly, simulated impacts on temperatures due

to perennial bioenergy crop expansion are found robust to physics parameterizations.

This robustness, however, does not hold in summer relative to winter.

This work has several limitations. One of them is that sensitivity analysis of prior

distributions is not performed: different prior specifications may result in different

inferences. Besides, parameter estimation techniques (i.e., MCMC vs INLA) are

not compared in depth. A more thorough comparison of estimation accuracy and

computation times should be considered. In addition, issues related to change of

support and alignment were ignored at the pre-processing data stage. Most importantly,

MCMC simulation requires a large number of iterations to achieve convergence, for

the BHM examined. Therefore, a more efficient modeling approach for large spatio-

temporal datasets should be considered.

It is worth noting that the physics parameterizations and observations are included

in the models as fixed effects under the assumption of spatial and temporal homo-

geneity. However, it is possible that spatially varying effects exist (Kang et al. 2012).

Moreover, multivariate hierarchical spatio-temporal modeling (i.e., for temperature

and precipitation simultaneously) should be performed as the aforementioned vari-

ables are both significant for climate model comparison. Despite the above-mentioned
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limitations, this work establishes a framework to quantitatively assess the impact of

physics parameterizations on WRF simulation, focusing on an application associated

with perennial bioenergy crops expansion.
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Chapter 4

SPATIO-TEMPORAL MODELING FOR REGIONAL CLIMATE MODEL

EVALUATION: EIGENVECTOR FILTERING VERSUS BAYESIAN CAR

4.1 Introduction

A suite of 10-year ensemble-based simulations was conducted to investigate the

hydroclimatic impacts due to large-scale deployment of perennial bioenergy crops

across the continental United States (Wang et al. 2017). Given the deterministic

nature of the simulations, uncertainties of hydroclimatic impacts caused by physics

parameterizations exist within the ensemble. To better examine the robustness of

impacts on climate and hydrology associated with bioenergy crops expansion, Bayesian

hierarchical spatio-temporal statistical modelling (BHM) has been implemented (see

results in Chapter 3). However, BHM were estimated based on MCMC, which may

take a long time to converge, especially for large datasets.

The simulated data are lattice data that are correlated in space and time. To take

into account spatial correlation, one popular approach is eigenvector spatial filtering

(ESF; Griffith 1996; 2000; 2003), which is mathematically associated with Moran

coefficients (Moran 1948; Tiefelsdorf and Griffith 2007; Griffith and Paelinck 2011;

Chun and Griffith 2013; Cressie and Wikle 2015). ESF models spatial dependencies

via including proxy variables in the standard linear (Griffith 2003) or generalized

linear regression framework (Griffith 2002; 2004b; Chun 2008). These proxies are a

subset of the orthogonal and uncorrelated eigenvectors which are constructed based on

the available (through a weights matrix) spatial neighborhood information (Pace et al.
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2013; Griffith 2004a; Griffith and Peres-Neto 2006; Thayn and Simanis 2013; Griffith

and Fischer 2016; Griffith 2011; Thayn and Simanis 2013). Statistical properties

of unbiasedness, efficiency, and consistency are held by the ESF estimators (Chun

and Griffith 2014; Griffith 2017). At least two alternative specifications of proxy

variables can be constructed, leading them to be either correlated or orthogonal with

the explanatory variables. Using the latter type of proxy variables, Hughes and Haran

(2013) extended ESF with a random effects specification (RE-ESF), which took into

account spatial confounding, i.e., the proposed method mitigated the variance inflation

due to the collinearity between explanatory variables and a latent spatial process

(Reich et al. 2006; Hodges and Reich 2010). Murakami and Griffith (2015) further

improved RE-ESF by introducing a computationally efficient REML estimation scheme

and by examining the effects of scale in the spatial dependency structure. Hefley et al.

(2017) optimize predictive ability of the RE-ESF and jointly regularize the regression

coefficients and spatial random effects. Recently, spatially varying coefficients within

the ESF framework are also studied (Helbich and Griffith 2016; Murakami et al. 2017).

When temporal information should also be considered, ESF coupled with gener-

alized linear mixed models (GLMM) have been studied to incorporate both spatial

and temporal components efficiently and effectively (Chun and Griffith 2011; Patuelli

et al. 2011; Chun 2014). In this specification, spatial autocorrelation is captured by

adding orthogonal and uncorrelated eigenvectors as specified in ESF, while temporal

components are captured as random effects in GLMM. Chun (2014) also studied ESF

associated with GLMMs by simultaneously allowing spatial and temporal correlation

structures. Recently, conventional ESF has been extended to eigenvector space-time

filtering via specifying a matrix that summarizes spatio-temporal neighborhood rela-

tionships (i.e., spatio-temporal contemporaneous structure, Griffith and Chun 2015).
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However, the discussion about this model is very limited; in addition, the efficiency

and performance of this approach has not been examined.

The efficiency and performance of ESF can also be influenced by the way of

selecting the most relevant candidates from a large number of eigenvectors. These

selected eigenvectors capture different scales of spatial autocorrelation in the residuals,

leading the remaining part of the residuals to be uncorrelated. Some strategies of

eigenvector selection have been proposed and studied. Tiefelsdorf and Griffith (2007)

proposed a semiparametric approach based on the criterion of MC/MCmax > 0.25,

where MCmax is the largest positive MC value. However, the choice of this criterion

appears to be subjective. Stepwise regression (Griffith 2003) has also been applied

to select the most significant eigenvectors. Nevertheless, stepwise selection results

may be inconsistent, affected by stochastic errors, and may not reach global optimal

solution (Fan and Li 2001; Shen and Ye 2002; Whittingham et al. 2006).

Alternatively, Seya et al. (2015) investigated the least absolute shrinkage and selec-

tion operator (Lasso), a penalized estimator, as a faster and more reliable eigenvector

selection procedure. However, problems related to Lasso are that it could shrink and

select eigenvectors according to the same tuning weight, and that it does not possess

oracle properties (i.e., being consistent in parameter estimation and variable selection)

in some circumstances when the predictors are significantly correlated (Zou 2006).

In this chapter, we propose a framework of spatio-temporal eigenvector filtering

(hereafter: STEF). Spatial and temporal effects are modeled simultaneously based on

a spatio-temporal contemporaneous structure. Three approaches of introducing proxy

variables to the model are specified in terms of dealing with the spatial confounding

problem: proxy variables with spatial confounding, proxy variables without spatial

confounding, and proxy variables with intermediate spatial confounding (hereafter,
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STEF_CF, STEF_NCF, and STEF_ICF, respectively). For each approach, two

alternative two-stage modeling strategies are used. In addition, Adaptive LASSO,

a regularization method which avoids overfitting and possesses oracle properties, is

used to select significant eigenvectors. Specifically, a fast approximation of Adaptive

LASSO estimates – the Least Squares Approximation (LSA) to Adaptive LASSO

is implemented in the model to decrease computational time. For STEF_ICF,

Variance inflation factor (VIF) based filtering and Sure Independence Screening (SIS)

algorithms are applied before LSA to alleviate spatial confounding and improve LASSO

performance. Monte Carlo experiments are conducted using the proposed methods.

In addition, STEFs are applied to quantify the robustness of simulated hydroclimatic

impacts associated with bioenergy crops to alternative physics parameterizations.

This chapter is arranged as follows. Section 4.2 presents a review of the ESF

approach and its extensions for spatio-temporal correlation structures; in addition,

adaptive LASSO is discussed. The STEF approaches are introduced in Section 4.3

and Monte Carlo simulation experiments are presented in Section 4.4. The application

to the robustness of hydroclimatic impacts associated with perennial bioneregy crops

expansion is studied in Section 4.5. Concluding remarks and suggestions for future

work are presented in Section 4.6.
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4.2 Methodology

4.2.1 The eigenvector spatial filtering (ESF) approach

4.2.1.1 The Moran coefficient (MC)

MC is a diagnostic statistic for spatial dependence, which is formulated as (see,

Anselin and Rey 1991):

MC[y] =
N

1′C1

y′MCMy

y′My
. (4.1)

N represents sample size, 1 is a N × 1 vector of ones, C is a symmetric connectivity

matrix whose diagonal elements are zero, M is a projection matrix, and y is a

vector of values of georeferenced data. Two alternative types of projection matrix M ,

M(1) = I − 1(1′1)−11′ = I − 11′

N
, and M(X) = I −X(X ′X)−1X ′ = I − PX , can

be specified, where I is an N ×N identity matrix, and X is a N ×K matrix of K

explanatory variables.

The expectation of MC is:

E [MC] =


− 1

N − 1
for M(1),

− N

1′C1

tr
[
(X ′X)−1X ′CX

]
N −K − 1

for M(X).

(4.2)

where tr is the trace of a matrix. MC > E[MC], MC < E[MC], and MC = E[MC]

imply positive, negative, and no spatial dependence, respectively; hence, MC is positive

if the values in y display positive spatial dependence and negative if they demonstrate

negative spatial dependence.

The ESF approach accounts for global and local spatial autocorrelation in the

residuals; subsequently, ordinary least squares estimates can be computed as in
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an i.i.d. setting. Moran ESF is based on the MC. Let {e1, . . . eN}(1) be a set of

eigenvectors of M(1)CM(1) in Eq. 4.1, and {λ1, . . . , λN}1 be the set of corresponding

eigenvalues. Similarly, let {e1, . . . eN}(X) be a set of eigenvectors of M(X)CM(X),

and {λ1, . . . , λN}X be the set of corresponding eigenvalues. ESF utilizes eigenvectors

{e1, . . . eN}(1) or {e1, . . . eN}(X), which are mutually uncorrelated and orthogonal.

Each eigenvector is associated with a certain degree of latent spatial dependence,

representing global to local map patterns (Tiefelsdorf and Griffith 2007). Let E(1)

and E(X) be N ×N matrices which are composed of elements of {e1, . . . eN}(1) and

{e1, . . . eN}(X), respectively. E(X) contains columns which are orthogonal to the

explanatory variables in X, whereas the columns in E(1) are potentially correlated

with the columns in X (Griffith 2003).

To interpret the eigenvectors in terms of the MC coefficient, MCM can be

eigen-decomposed as MCM = EΛE′. In this case E is used to represent E(1) or

E(X) (i.e., the ith column of E corresponds to the ith eigenvector ei). In addition, Λ

represents a N ×N diagonal matrix, with the ith element on the diagonal being the

ith eigenvalue λi. Thus the MC of ei is represented as (Murakami and Griffith 2017):

MC[ei] =
N

1′C1

e′iMCMei
e′iMei

=
N

1′C1

e′iEΛE′ei
e′iei

=
N

1′C1
λi

(4.3)

Therefore, the eigenvectors can be interpreted as follows: “The first eigenvector, e1,

is the set of real numbers that has the largest MC value achievable by any set for the

geographical arrangement defined by the spatial connectivity matrix C; the second

eigenvector is the set of real numbers that has the largest achievable MC by any set

that is orthogonal (hence uncorrelated) with e1; the third eigenvector is the third

such set of real numbers; and so on, through eN , the set of real numbers that has
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the largest negative MC achievable by any set that is orthogonal with the preceding

N − 1 eigenvectors” (Griffith 2003).

4.2.1.2 Conventional/standard ESF

The ESF regression model is formulated as:

y = Xβ +Eγ + ε, ε ∼ N(0, σ2I) (4.4)

where y is a N × 1 vector of response variable values; X is a N × K matrix of

explanatory variables; E is a N ×L matrix composed of a subset of L eigenvectors (L

< N) from M(1)CM(1) or M(X)CM(X); β and γ are parameter vectors whose sizes

are K × 1 and L × 1, respectively; ε represents a Normally distributed error term,

with variance σ2.

4.2.2 Space-time eigenvector filter (STEF) framework

Extending the idea of ESF from spatial to spatio-temporal phenomena, STEF was

introduced (Griffith 2012; Griffith and Chun 2015; Griffith and Paelinck 2018) based on

the latent structure of the space-time Moran Coefficient (Cliff and Ord 1981; Griffith

1981). Instead of using a spatial weight matrix C, in this case a contemporaneous

spatio-temporal dependence matrix was considered:

CST = IT ⊗CS +CT ⊗ IS (4.5)

IT is a T × T identity matrix, IS is a N × N identity matrix, CS is the N × N

spatial weight matrix, CT is a T × T temporal weight matrix, with upper and lower

off-diagonal elements equal to 1 and zeroes elsewhere. Therefore CST is of dimension
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n×n where n = N×T . Using this specification, the spatio-temporal contemporaneous

structure assumes that a value at a given location for a particular point in time, is

associated with a value at that location for the previous point in time and the values

of nearby locations for the same point in time (Fig. 4.1).

Figure 4.1: Spatio-temporal contemporaneous specification. Black dot represents the
value at a specific location at time t; green dots represent the associated instantaneous
values at neighboring locations; red dots represent the associated values at the same
location at time t− 1 and t+ 1.

CST in Eq. 4.5 can be considered as a more general form of weight matrix (Griffith

and Paelinck 2018). If T = 1,

CST = 1⊗CS + 0⊗ IS = CS (4.6)

In this case, CST corresponds to the conventional MC, which is static.
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In this chapter, the spatial weight matrix CS in Eq. 4.5 is defined using the queen’s

adjacency criterion. Instead, rook’s adjacency criterion is used for STEF in other

studies of (i.e., Griffith 2012; Griffith and Chun 2015; Griffith and Paelinck 2018). To

further examine the influence of weight matrices on the results of STEF, a Monte

Carlo experiment is conducted in section 4.4.

Analogous to the preceding discussions of ESF, STEF adds a set of synthetic

proxy variables as control variables into a regression model. These proxies are selected

eigenvectors associated with a space-time contemporaneous connectivity matrix, which

connects elements together in both space and time. Hence these eigenvectors can be

interpreted as follows:

“The first eigenvector, say e1, is the set of real numbers that has the largest

space-time MC achievable by any set for the areal unit articulation defined by the

space-time connectivity matrix CST ; the second eigenvector is the set of real numbers

that has the largest achievable space-time MC by any set that is orthogonal (hence

uncorrelated) with e1; the third eigenvector is the third such set of real numbers; and

so on through eL, the set of real numbers that has the largest negative space-time MC

achievable by any set that is orthogonal and uncorrelated with the preceding N − 1

eigenvectors” (Griffith 2012).

In general, the STEF regression model is formulated as:

y = Xβ +Eγ + ε, ε ∼ N(0, σ2I) (4.7)

where y is a n× 1 vector of response values, with n = N × T , given y with N areal

units and T temporal units; X is a n × K matrix of explanatory variables; E is

a n × L matrix composed of a subset of L eigenvectors (L < n, the choice of L is

discussed in the next section) based on MCSTM ; β and γ are parameter vectors
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whose sizes are K × 1 and L× 1, respectively; ε represents a Normally distributed

error term, with variance σ2.

4.2.2.1 Eigenvector selection

ESF often constructs an excessive number of eigenvectors: several strategies

have been proposed aiming to reduce the number of eigenvectors to obtain a more

parsimonious model. Particularly, Seya et al. (2015) studied the use of the least

absolute shrinkage and selection operator (Lasso) to select significant eigenvectors.

The Lasso is a regularization technique for simultaneous estimation and variable

selection (Tibshirani 1996). In this case coefficient estimates are derived by solving

the following optimization problem:

β̂lasso = argminβ

 N∑
i=1

(yi − x′iβ)2 + λ

p∑
j=1

| βj |

 (4.8)

with λ representing a nonnegative regularization parameter. The second term in

Eq. 4.8 is the so-called “penalty”, which is crucial for the success of the technique:

the Lasso continuously shrinks the coefficients towards 0 as λ increases, and some

coefficients are shrunk to 0 exactly if λ is sufficiently large. This procedure takes into

account the bias-variance trade-off, leading to high predictive accuracy relative to

conventional least squares estimates. However, depending on the correlation structure

of the predictors, Lasso may not possess the oracle properties (Meinshausen and

Bühlmann 2006).

Adaptive Lasso, an alternative penalized estimator which is similar to Lasso, is

based on coefficient-specific penalties. Adaptive Lasso possesses the same advantage

as the Lasso: it performs parameter estimation and feature selection via continuously

shrinking some coefficients to zero. Furthermore, it possesses the oracle properties
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given a suitable tuning parameter λ and a consistent initial estimator. In a linear

regression setting, the Adaptive Lasso seeks to minimize (Zou 2006; Wang and Leng

2007):

β̂alasso = argminβ

 N∑
i=1

(yi − x′iβ)2 +

p∑
j=1

λj | βj |

 (4.9)

In this chapter, Least squares approximation(LSA) to Adaptive Lasso is imple-

mented, since it provides efficient computation of the Adaptive Lasso estimates (Wang

and Leng 2007). This approach uses Least Angle Regression (LARS) algorithm to

find the solution path of Adaptive Lasso, at the computational cost of a single OLS

fit (Efron et al. 2004). In addition, LSA estimator is as efficient as the oracle asymp-

totically, as long as the tuning parameters are selected appropriately (Wang and Leng

2007).

4.2.2.2 Spatial confounding alleviation

The previous strategies can be applied to select significant eigenvectors from

{e1, . . . eN}(X), as these eigenvectors are mutually uncorrelated and orthogonal to the

explanatory variables X. However, when the set of eigenvectors {e1, . . . eN}(1) based

on M(1)CM(1) is used, some columns in X might be strongly correlated with these

eigenvectors (i.e., causing multicolinearity), leading to variance inflation in parameter

estimation. Although M(1)CM(1) does not take into account spatial confounding,

according to Griffith (2017) the confidence intervals estimated using M(1)CM(1) may

be more accurate.

Filtering analyses based on variance inflation factors (VIF) are applied to alleviate

severe multicollinearity. These filtering analyses consist of two components: filtering

for explanatory variables and filtering for eigenvectors. First of all, stepwise selection
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of explanatory variables based on VIF is used to remove collinear predictors. This

procedure computes VIF for each explanatory variable using the whole set of predictors;

then, the predictor with the highest VIF is removed if a VIF-threshold is exceeded.

VIF is calculated again using the reduced set of predictors and the predictor with

the highest VIF is removed if a VIF-threshold is exceeded. The previous step is

repeated until all predictors possess VIFs which are below a pre-specified threshold

[10 in this Chapter, which corresponds to R2 = 0.9 in Eq.4.10 below]. Specifically,

VIF is calculated as:

VIF =
1

1−R2
(4.10)

where R2 is the coefficient of determination of the predictor-specific regression model

which includes all the remaining predictors in the explanatory part.

For filtering analysis on eigenvectors, each eigenvector is regressed on all the

explanatory variables. Since eigenvectors are mutually orthogonal, the rest of eigen-

vectors are not included in the regression for VIF calculation. Then all the VIF values

for each specific eigenvector (Eq. 4.10) are calculated, where R2 is the coefficient of

determination of the eigenvector-specific regression equation. If the value of VIF is

greater than 10, the corresponding eigenvector will be considered highly collinear with

the fixed effects and it will be removed.

In addition, sure independence screening (vanilla SIS, or SIS) is implemented

after VIF filtering to further eliminate non-significant eigenvectors (Fan and Lv 2008;

Barut et al. 2016). SIS eliminates predictors with low marginal correlation with the

response, reducing the dimension of the dataset (Fan and Lv 2008), thus improving the

efficiency of the Adaptive Lasso estimator. In general, SIS first ranks the VIF-selected

p eigenvectors based on their marginal correlations ĉorr((e(i),y), where i ∈ {1, . . . , p};

it then retains d eigenvectors which have the corresponding d largest correlation. Fan
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and Lv (2008) proposed the following threshold:

d = n/log n, (4.11)

where n = N × T is the sample size of the data. However, since there may still

exists correlation between fixed effects and selected eigenvectors and data may still be

autocorrelated in space and time, effective sample size n? should be used instead of

conventional sample size n. According to Griffith (2005),

n? = (1−R2)n. (4.12)

In this case, R2 is the goodness of fit metric for the regression model that contains

the residuals of y with VIF-filtered predictors as its response and all the significant

eigenvectors in the explanatory part. Finally, d? eigenvectors will be selected based on

d? = n?/log n?. (4.13)

Using VIF-SIS, significant eigenvectors will be selected appropriately, when spatial

confounding exists. The VIF-SIS filtering procedure is summarized in Algorithm 1.

4.2.2.3 STEF specifications

Based on the previous discussion, three approaches of introducing proxy variables

can be specified in order to address the spatial confounding problem: proxy variables

which allow spatial confounding, proxy variables which do not allow spatial confound-

ing, and proxy variables which partially allow spatial confounding, but eliminate strong

collinearity between Moran eigenvectors and predictors (i.e., STEF_CF, STEF_NCF,

and STEF_ICF, respectively). More specifically, in what follows STEF_CF is speci-

fied using only the positive eigenvectors of M(1)CSTM(1) (The suggestion of using
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Algorithm 1 VIF-SIS filtering
1: Inputs: All eigenvectors {e1, . . . , en} from M(1)CSTM(1).
2: Perform VIF filtering from (4.10) on X (i.e., K explanatory variables) using

stepwise selection, obtain a modified (filtered) X including r variables that do not
have severe multicollinearity, where r ∈ {1, . . . , K}.

3: For every i ∈ {1, . . . , n}, perform VIF filtering from (4.10) for ei using the
modified (filtered) X based on Step 2, and keep only p eis that do not have severe
multicollinearity, where p ∈ {1, . . . , n}.

4: For every j ∈ {1, . . . , p}, calculate marginal correlation of eigenvector
ĉorr((e(i),y).

5: Rank all the p marginal correlations and retain the top d eigenvectors from (4.11)
with the largest absolute correlations.

6: Obtain multiple correlation R2 for y regressed on the selected d eigenvectors.
7: Obtain effective sample size n? from (4.12).
8: Obtain d?, the modified number of eigenvectors being selected, from (4.13).
9: Outputs: d? eigenvectors {e(1), . . . , e(d?)} are selected.

only positive eigenvectors can be found in Hughes and Haran (2013)); STEF_NCF

is also based on positive eigenvectors, using M(X)CSTM(X); STEF_ICF, is based

on all eigenvectors of M(1)CSTM(1) but VIF-SIS (see Algorithm 1) is implemented

first to remove collinear explanatory variables, problematic eigenvectors which con-

tribute to severe confounding, and irrelevant eigenvectors which reduce the efficiency

of Lasso-type estimators.

For each approach of introducing proxy variables, two alternative two-stage STEF

modeling strategies are used. In the first method (named method1), the LSA approxi-

mation to adaptive Lasso is applied first; both explanatory variables and eigenvectors

are selected in this step. However, given that we are interested in estimating the coeffi-

cients of the explanatory variables, we only considered the selection of the eigenvector

part, while keeping the explanatory variables in our model. Explanatory variables

and selected eigenvectors are then used in a conventional linear regression framework

to make statistical inference. This least squares after Lasso type of model estimation
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has been shown to possess equivalent rates of convergence compared to Lasso, but

smaller bias (Belloni et al. 2013).

On the contrary, the second method (i.e., method2) first obtains residuals from the

covariates-only model and then, using these residuals as input, STEF is fitted to select

eigenvectors that best capture the spatio-temporal autocorrelation structure, based

on the LSA approximation to adaptive Lasso. Combining these eigenvectors with

covariates, the regression model which using y as input is fitted to obtain estimates of

fixed effects coefficients.

Combining different methods for creating proxy variables with alterna-

tive modeling strategies, we end up with six alternative STEF spefications;

namely, STEF_CF_method1, STEF_CF_method2, STEF_NCF_method1,

STEF_NCF_method2, STEF_ICF_method1, and STEF_ICF_method2. In

this chapter, the performance of STEF ensemble modeling will be examined in a

series of Monte Carlo experiments.

4.3 Monte Carlo simulations

4.3.1 Simulated data

In this section, Monte Carlo experiments are performed in order to examine the

capability of capturing the true coefficients and the true spatio-temporal structure of

the data. In all Monte Carlo experiments, the spatial domain is a 10× 10 lattice, with

coordinates of the domain vertices restricted to the unit square, and t = 1, . . . , 20 time

periods. Thus there are 100 areal units for 20 consecutive time period and the total

sample size is 2000. These units possess spatio-temporal contemporaneous structure
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(Eq. 4.5), which is formed by a combination of a spatial weight matrix and a temporal

weight matrix (Fig. 4.2).

Figure 4.2: Visualization of the (a) spatial weight matrix for a 10× 10 lattice, and (b)
temporal weight matrix for 20 consecutive time period.

The design matrix for the explanatory variables are chosen to be X = [x1,x2],

with values of x1 and x2 given by the longitude and latitude coordinates of the lattice

within the unit square, respectively. Each explanatory variable (i.e., x1 or x2) is a

vector of length 2000 × 1, ordered by the first 100 data points to be the set of all

100 spatial locations at time 1, the next 100 are the set of spatial points for time 2

and so on. Specifically, x1 =
[
x11,1 , . . . , x1100,1 , x11,2 , . . . , x1100,2 , . . . , x11,20 , . . . , x1100,20

]′
and x2 =

[
x21,1 , . . . , x2100,1 , x21,2 , . . . , x2100,2 , . . . , x21,20 , . . . , x2100,20

]′. Since coordinates

of these 100 areal units are fixed, the values of X are repeated for every 100 elements.

In addition, we let the coefficients of X to be β = (β1, β2)
′ = (1, 1)′ .

The first 100 values of Xβ (i.e., values of all 100 spatial locations at time 1) are

shown in space in Fig. 4.3. For example, the first areal unit at time 1 is located
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at the lower left corner of the panel, with value
[
x11,1, x21,1

]
β = [0.1, 0.1] (1, 1)′ =

0.2; the second areal unit at time 1 is right next to the previous pixel with value[
x12,1, x22,1

]
β = [0.2, 0.1] (1, 1)′ = 0.3 ; and the 100th areal unit at time 1 is located

on the upper right corner with value
[
x1100,1, x2100,1

]
β = [1, 1] (1, 1)′ = 2. It can be

seen that the values of Xβ increase toward east and north.

Figure 4.3: The spatial distribution of Xβ at one time point.

Based on the two different MCM as discussed in Section 4.2.1, eigenvalues and

eigenvectors of M(1)CSTM(1) and M(X)CSTM(X) are generated. Fig. 4.4 shows the

eigenvalues for the 10× 10× 20 spatio-temporal domain derived from two alternative

MCM . In general, the eigenvalues are very similar between these two MCM s; 876

out of 2000 eigenvalues are positive for M(1)CSTM(1) (Fig. 4.4(a)), whereas 875 are
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positive for M(X)CSTM(X) (Fig. 4.4(b)). The smallest positive eigenvalues in these

two cases are both equal to 0.0071 approximately.

Figure 4.4: Eigenvalues of simulated spatio-temporal domain based on (a)M(1)CM(1)

and (b)M(X)CM(X), respectively. The indices of the eigenvalues (in decreasing order)
are shown in x-axis, and the corresponding eigenvalues are displayed in y-axis. Red
lines indicate the indices of the eigenvalues with smallest positive value, 876 and 875
for (a) M(1)CM(1) and (b) M(X)CM(X), respectively.

Eigenvectors e1, e400, and e800 from time 1 to time 3 based on M(1)CM(1) and

M(X)CM(X) are displayed in Figure 4.5 (a) and (b), respectively. These three

eigenvectors are selected as they are associated with large, median, and small positive

eigenvalues, respectively. Values in e1 are more homogeneous, reflecting stronger

spatial correlation; whereas values in e800 are more heterogeneous, indicating smaller

scale of spatial dependence. For one specific spatial unit, the values are consistently

positive (or negative) over time, showing a temporal correlation structure.

The simulated data field y =
(
y1,1, y2,1, . . . , y100,20

)
is produced as a combination of
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Figure 4.5: Eigenvectors e1, e400, and e800 at time 1, 2, and 3 based on (a)M(1)CM(1)

and (b) M(X)CM(X), respectively.

a linear function of covariates Xβ and the space-time mixture structure. To generate

y, four spatio-temporal autocorrelation structures are implemented. First, two spatio-

temporal components are generated in accordance with the STEF mechanism, based

on two alternative MCSTM . Then, the space-time structure complies with the

BHM structures presented in Chapter 3. Finally the spatio-temporal associations are

based on a Gaussian random field. Hence, in the last set of experiments the data

generating mechanism is not associated with any of the models that are discussed

so far. Experiments for these scenarios are named EFM1, EFMX, AR, and RF,

respectively; for each scenario 50 replicates are generated.

4.3.2 Scenario 1: Spatio-temporal autocorrelation structure of EFM1

The synthetic response y is generated following Eq. 4.7. M(1)CSTM(1) is used

for creating proxy variables (i.e., eigenvectors) for the spatio-temporal residual
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structure. In particular, these proxy variables are a set of 50 eigenvectors ran-

domly selected from the first 200 positive eigenvectors of M(1)CSTM(1), E =

{e(1), . . . , e(50)}. The corresponding coefficients γ = (γ1, . . . , γ50) are generated from

γi ∼ discrete U(1, 10), for i = 1, . . . , 50. In order to evaluate the effects of residual

variance, σ2 is assigned to be 0.001, 1, and 10. Therefore, three sets of simulated y

are examined. Fig. 4.6(a) showing the simulated data in the first three time periods

over all areal units. Note that values of y are strongly correlated in space and time

when σ2 = 0.001, whereas values of y are more randomly scattered when σ2 = 10.

Therefore, spatial-temporal autocorrelation dominates dynamics when σ2 is small.

Figure 4.6: Simulated y from t = 1 to t = 3, for different values of σ2, using
spatio-temporal autocorrelation structure of (a) EFM1 and (b) EFMX, respectively.
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4.3.2.1 Scenario 2: Spatio-temporal autocorrelation structure of EFMX

For EFMX, the synthetic response y is generated as in Scenario 1, except that

M(X)CSTM(X) is used instead of M(1)CSTM(1). Fig. 4.6(b) shows three sets of

simulated y in the first three time periods over all areal units, for different values

of σ2. Similar to Fig. 4.6(a), values of y are strongly correlated in space and time

when σ2 = 0.001, whereas values of y are more randomly scattered when σ2 = 10.

Therefore, spatial-temporal autocorrelation dominates dynamics when σ2 is small.

Scenario 1 and scenario 2 are in accordance with the STEF_CF and STEF_NCF

approaches, respectively. It is interesting to evaluate how STEF_ICF performs in

this case.

4.3.2.2 Scenario 3: AR spatio-temporal autocorrelation structure

For Scenario 3, residual structure per pixel is characterized by an AR(1) structure

over time; pixels which are located close in space possess similar autocorrelation

parameters φ. Hence, for ith pixel at time t, the spatio-temporal component is

specified as:

Ei,t = φiEi,t−1 + ε, ε ∼ N(0, σ2), i = 1, . . . , 100, t = 1, . . . , 20. (4.14)

where φi =
max(x1i, x2i)

1.2
. This ensures that temporal processes in the AR(1) model

have φi < 1 so they satisfy the stationarity condition (see Fig. 4.7); σ2 takes values

0.001, 1, and 10, respectively, for 3 different white noise levels. The spatio-temporal

random components E are added to the fixed effect part (i.e., Xβ), resulting in

simulated y with three different structures (Fig. 4.8). Similar to Scenario 1, spatial-

temporal autocorrelation is more apparent when σ2 is small.
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Figure 4.7: The values of φ in the spatial domain.

4.3.2.3 Scenario 4: Gaussian random field structure (RF).

For Scenario 4, residuals possess a Gneiting Gaussian random field structure. For

a random process E(s, t), (s, t) ∈ R2 × R, with the values of a space-time variable

indexed at the coordinates (s1, t1), . . . , (s100, t20), the stationary covariance function

of the process is defined as:

C(h, u) = cov
(
E(s, t), E(s+ h; t+ u)

)
, (h, u) ∈ R2 × R, (4.15)
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Figure 4.8: Simulated y using AR spatio-temporal autocorrelation structure for
different values of σ2 at t = 1, t = 2, and t = 3, respectively.

where (h, u) is the space-time lag. The Gneiting covariance function is specified as:

C(h, u) =
1

1 + a|u|λ
exp{− c‖h‖ν

(1 + a|u|λ)0.5νγ
}, (4.16)

where a and c are nonnegative temporal and spatial scaling parameters, respectively;

λ and ν are temporal and spatial smoothing parameters, respectively, taking values in

[0, 2]; finally γ is a space-time interaction parameter which takes values in [0,1]: γ = 0

corresponds to a purely separable model and γ = 1 to a purely nonseparable model.

The values of parameters are chosen to be: ν = 1, λ = 1.544, c = 0.00134, a = 0.901,
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and γ = 1 to mimic a valid Gneiting – Gaussian random field process (Gneiting 2002).

Fig. 4.9 depicts the generated y from time 1 to time 3.

Figure 4.9: Simulated y using RF spatio-temporal autocorrelation structure at t = 1,
t = 2, and t = 3, respectively

4.3.3 Experimental design of Monte Carlo simulations

Monte Carlo experiments are performed using multiple STEF specifications com-

bined with alternative modeling strategies as described in section 4.2.2. In order to

examine the capability of recovering the true coefficients and the true spatio-temporal

structure, STEFs are evaluated on four types of spatio-temporal datasets as described

in section 4.3.1. Finally, Bayesian hierarchical spatio-temporal statistical models (i.e.,

STCARs, including STCARlinear, STCARanova, and STCARar, introduced in Chap-

ter 3) are also applied for comparison. To summarize, 90 Monte Carlo experiments

are discussed in what follows: 27 of the experiments are performed using data with

EFM1 structure, and 27 of the experiments are performed using data with EFMX

structure (Table 4.1); 27 of the experiments are performed on simulated data with

AR structure, and 9 experiments analyze data with RF structure (Table 4.2).
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Table 4.1: The design of Monte Carlo experiments (part 1)

Monte
Carlo

experiment

Spatio-temporal
autocorrelation

structure of data
σ2 Modeling method M matrix Eigenvectors

used for modeling

EFM1_1
EFM1

0.001
STEF_CF_method1 M(1) positiveEFM1_2 1

EFM1_3 10

EFM1_4
EFM1

0.001
STEF_CF_method2 M(1) positiveEFM1_5 1

EFM1_6 10

EFM1_7
EFM1

0.001
STEF_NCF_method1 M(X) positiveEFM1_8 1

EFM1_9 10

EFM1_10
EFM1

0.001
STEF_NCF_method2 M(X) positiveEFM1_11 1

EFM1_12 10

EFM1_13
EFM1

0.001
STEF_ICF_method1 M(1) allEFM1_14 1

EFM1_15 10

EFM1_16
EFM1

0.001
STEF_ICF_method2 M(1) allEFM1_17 1

EFM1_18 10

EFM1_19
EFM1

0.001
STCARlinearEFM1_20 1

EFM1_21 10

EFM1_22
EFM1

0.001
STCARanovaEFM1_23 1

EFM1_24 10

EFM1_25
EFM1

0.001
STCARarEFM1_26 1

EFM1_27 10

EFMX_1
EFMX

0.001
STEF_CF_method1 M(1) positiveEFMX_2 1

EFMX_3 10

EFMX_4
EFMX

0.001
STEF_CF_method2 M(1) positiveEFMX_5 1

EFMX_6 10

EFMX_7
EFMX

0.001
STEF_NCF_method1 M(X) positiveEFMX_8 1

EFMX_9 10

EFMX_10
EFMX

0.001
STEF_NCF_method2 M(X) positiveEFMX_11 1

EFMX_12 10

EFMX_13
EFMX

0.001
STEF_ICF_method1 M(1) allEFMX_14 1

EFMX_15 10

EFMX_16
EFMX

0.001
STEF_ICF_method2 M(1) allEFMX_17 1

EFMX_18 10

EFMX_19
EFMX

0.001
STCARlinearEFMX_20 1

EFMX_21 10

EFMX_22
EFMX

0.001
STCARanovaEFMX_23 1

EFMX_24 10

EFMX_25
EFMX

0.001
STCARarEFMX_26 1

EFMX_27 10
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Table 4.2: The design of Monte Carlo experiments (part 2)

Monte
Carlo

experiment

Spatio-temporal
autocorrelation

structure of data
σ2 Modeling method M matrix Eigenvectors

used for modeling

AR_1
AR

0.001
STEF_CF_method1 M(1) positiveAR_2 1

AR_3 10

AR_4
AR

0.001
STEF_CF_method2 M(1) positiveAR_5 1

AR_6 10

AR_7
AR

0.001
STEF_NCF_method1 M(X) positiveAR_8 1

AR_9 10

AR_10
AR

0.001
STEF_NCF_method2 M(X) positiveAR_11 1

AR_12 10

AR_13
AR

0.001
STEF_ICF_method1 M(1) allAR_14 1

AR_15 10

AR_16
AR

0.001
STEF_ICF_method2 M(1) allAR_17 1

AR_18 10

AR_19
AR

0.001
STCARlinearAR_20 1

AR_21 10

AR_22
AR

0.001
STCARanovaAR_23 1

AR_24 10

AR_25
AR

0.001
STCARarAR_26 1

AR_27 10

RF_1 RF STEF_CF_method1 M(1) positive

RF_2 RF STEF_CF_method2 M(1) positive

RF_3 RF STEF_NCF_method1 M(X) positive

RF_4 RF STEF_NCF_method2 M(X) positive

RF_5 RF STEF_ICF_method1 M(1) all

RF_6 RF STEF_ICF_method2 M(1) all

RF_7 RF STCARlinear

RF_8 RF STCARanova

RF_9 RF STCARar
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To evaluate the Monte Carlo experiments, the performance of STEF ensemble

members and three STCAR models will be examined. Results are evaluated in terms

of eigenvector selection, confidence intervals and their widths, coverage with respect

to the true coefficient, as well as computational times. In addition, RMSE and MAE

values are calculated to quantify the accuracy (i.e., the distance of estimates β̂1j and

β̂2j , j = 1, . . . , 50, from the true values β1 = 1 and β2 = 1, respectively):

RMSE =

√√√√ 1

n

50∑
j=1

(β̂ij − 1)2 , and (4.17)

MAE =
1

n

50∑
j=1

| (β̂ij − 1) | (4.18)

where i = 1, 2, and 50 is the total number of replicates for one Monte Carlo experiment.

It is worth noting that all STEF methods are essentially frequentist approaches,

whereas STCARs are Hierarchical Bayesian specifications. Hence the uncertainty

associated with parameter estimates is illustrated using conventional frequentist

confidence intervals (CI) for STEF-based approaches whereas credible intervals (CI)

are reported for STCARs. Fundamentally, confidence interval treat their bounds as

random variables and the parameter as fixed; whereas credible intervals consider their

bounds as fixed and the estimated parameter as a random variable, with knowledge of

prior distribution. These two types of CIs differ philosophically, but are still analogous

to each other. Therefore, CIs are conducted and compared in this study.

When doing STCAR modeling, different settings with respect to MCMC are speci-

fied, based on the complexities of model structure. STCARlinear and STCARanova

both use a single chain with a total of 100,000 iterations. The number of iterations

for the burnin period is 10,000, and the thinning rate is 100 so the number of samples

used for the estimation of the parameters is 900. For STCARar, a single chain with

107



a total of 500,000 iterations is conducted. The number of iterations for the burnin

period is 100,000, and the thinning rate is 100 so the number of samples used for

the estimation of the parameters is 4,000. MCMC are evaluated using the Geweke

diagnostic (Geweke et al. 1991), which should be within the range of -2 and 2. The

minimum acceptable effective sample size is set to be equal to 150. According to the

diagnostics of convergence, the results of Monte Carlo experiments that follow neglect

STCAR estimates which do not appear to have converged after large threshold of

MCMC iterations has been exceeded.

4.3.4 Results of Monte Carlo experiments

4.3.4.1 Scenario EFM1

STEF results in different eigenvector selection depending on the selected imple-

mentation. The numbers of nonzero eigenvectors selected for scenario EFM1 are

shown in Fig. 4.10. As σ2 increases, the numbers of selected eigenvectors decrease

dramatically for both CF and NCF (in this case, signal to noise ratio decreases, so it

is harder to identify the correct structure). However, for ICF the number of selected

eigenvectors when σ2 is moderate is significantly larger compared to the corresponding

number when σ2 is large. Using STEF_CF_method1 and STEF_CF_method2,

the numbers of selected eigenvectors are 55, 45, and 5 on average for σ2 = 0.001, 1,

and 10, respectively. Using STEF_NCF_method1 and STEF_NCF_method2, the

numbers of selected eigenvectors are similar to CF for σ2 = 1, and 10, whereas more

eigenvectors (i.e., around 100) are selected when σ2 = 0.001. The numbers of selected

eigenvectors stay less than 20 for data with extreme σ2 values when using STEF_ICF,
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different from the case of σ2 = 1 (i.e. large number of selected eigenvectors). The two

methods of two-step STEF specifications (i.e., method1 and method2, described in

Section 4.2.2.3) show general agreement in terms of the number of selected eigenvec-

tors, except for a dramatically different performance of CF when σ2 equals 0.001 (i.e.,

concentrated around 50 for method1 whereas it ranges from 50 to 100 for method2).

In general, STEF_CF performs better in terms of capturing numbers of eigenvectors.

This finding is expected a priori, as STEF_CF complies with the data generating

mechanism for this scenario.

Figure 4.10: Box plots o thef numbers of nonzero eigenvalues selected for scenario EFM1
by(a) STEF_CF_method1, (b) STEF_CF_method2, (c) STEF_NCF_method1,
(d) STEF_NCF_method2, (e) STEF_ICF_method1, and (f) STEF_ICF_method2.
The numbers 1, 2, and 3 on x-axis represent data with σ2 of 0.001, 1, and 10,
respectively.

The confusion matrix of eigenvector selection for Scenario EFM1 is shown in

Table 4.3. STEF_CF captures the majority of eigenvectors that participate in the

data generating mechanism when σ2 is small (i.e. large signal to noise ratio). As the

signal to noise ratio drops, STEF excludes eigenvectors that contribute to the data

generating mechanism. STEF_NCF performs the worst as the FN, and FP magnitudes

are all relatively high. When the random error component is weak, STEF_ICF show

good performances with zero FN. Note that the total number of eigenvectors is large
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(2000) for STEF_ICF, whereas it is close to 850 for STEF_CF and STEF_NCF.

Therefore the number of TN is much larger for STEF_ICF relative to STEF_CF and

STEF_NCF, as expected.

Table 4.3: Confusion matrix of eigenvector selection for Scenario EFM1. The numbers
of True negative (TN), False negative (FN), False positive (FP), and True positive
(TP) are included. Each column is the corresponding mean or standard deviation
across 50 replicates. Results corresponding to simulated data with σ2 equal to 0.001,
1, and 10 are shown in red, black, and blue, respectively. Table cells are colored for
displaying results based on different methods.

TN FN FP TPMC experiments σ? Modeling method Number of
eigenvector

used
Mean sd Mean sd Mean sd Mean sd

EFM1_1 0.001 825.62 0.97 0.00 0.00 0.38 0.97 50.00 0.00
EFM1_2 1 820.06 3.73 11.88 2.19 5.94 3.73 38.12 2.19
EFM1_3 10

STEF_CF_method1
824.88 1.39 44.66 3.79 1.12 1.39 5.34 3.79

EFM1_4 0.001 812.18 11.96 0.00 0.00 13.82 11.96 50.00 0.00
EFM1_5 1 821.28 2.48 11.88 2.12 4.72 2.48 38.12 2.12
EFM1_6 10

STEF_CF_method2

876

825.42 1.03 45.76 4.07 0.58 1.03 4.24 4.07
EFM1_7 0.001 747.68 10.75 17.16 3.16 77.32 10.75 32.84 3.16
EFM1_8 1 797.96 3.72 33.38 2.60 27.04 3.72 16.62 2.60
EFM1_9 10

STEF_NCF_method1
820.98 4.01 47.98 2.03 4.02 4.01 2.02 2.03

EFM1_10 0.001 747.68 10.75 17.16 3.16 77.32 10.75 32.84 3.16
EFM1_11 1 797.96 3.72 33.38 2.60 27.04 3.72 16.62 2.60
EFM1_12 10

STEF_NCF_method2

875

821.86 3.78 48.32 2.02 3.14 3.78 1.68 2.02
EFM1_13 0.001 1950.00 0.00 46.16 2.01 0.00 0.00 3.84 2.01
EFM1_14 1 1932.00 21.61 11.10 2.94 18.00 21.61 38.90 2.94
EFM1_15 10

STEF_ICF_method1
1947.48 2.90 42.38 4.67 2.52 2.90 7.62 4.67

EFM1_16 0.001 1950.00 0.00 46.16 2.01 0.00 0.00 3.84 2.01
EFM1_17 1 1930.16 22.33 11.02 2.92 19.84 22.33 38.98 2.92
EFM1_18 10

STEF_ICF_method2

2000

1947.78 2.70 42.74 4.58 2.22 2.70 7.26 4.58
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Among the results of STEFs, STEF_CF performs the best whereas STEF_NCF

performs the worst, in terms of accuracy and coverage. The outperformance of

STEF_CF can be expected as the data generating mechanism is based on STEF_CF.

In addition, the results of STEF_ICF are relatively close to STEF_CF. The medians

of β̂1 across 50 replicates for all STEF methods, for varying signal to noise rations, are

all close to 1 (Tables 4.4). However, STEF_CF and STEF_NCF provide narrower

confidence intervals (CI) than STEF_ICF; the CI get wider as the random error of

data increases (Tables 4.5). When the σ2 is low (hence the spatiotemporal component

dominates), STEF_CF achieves the best coverage (greater than 90%), whereas

STEF_NCF leads to much lower coverage (less than 4%). For realistic values of σ2,

however, STEF_ICF dominates among STEF. In addition, coverage stays close to

85% for all STEF methodologies when σ2 is large.

With regard to accuracy, RMSE and MAE of STEF increase as σ2 increases,

in accordance with prior expectations. Among the alternative STEF approaches,

STEF_CF results in the smallest RMSE and MAE, and STEF_ICF shows relatively

smaller RMSE and MAE, compared to STEF_NCF (Table 4.6). However, STEF_ICF

dominates for realistic values of σ2. Overall, the precision and coverage of the β

by STEF_CF and STEF_ICF do not change significantly as the variability of the

random error increases; on the other hand the widths of confidence intervals increase.

Despite all the similarities and discrepancies, the two strategies of 2-stage STEF,

namely method1 and method2, do not show significant differences.

STCAR estimates are also close to the true values with credible intervals signifi-

cantly wider relative to STEF (the widest intervals are observed for STCARar whereas

the narrowest for STCARlinear). Wide credible intervals lead to higher coverage of

the estimated coefficients, as expected (75 to 100%). In terms of RMSE and MAE,
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STCAR performance is close to STEF when moderate to weak signal to noise ratios,

when signal to noise ratios are moderate or weak; STEF on the other hand is more

accurate when the spatio-temporal structure dominates.

STEF_ICF requires shorter time for modeling due to the estimation using smaller

number of eigenvector selected based on extra steps of VIF and SIS (Table 4.7).

Computational times increase to around 40s, 150s, 120s for STEF_CF or STEF_NCF,

STCARlinear, and STCARanova respectively. In addition, much longer time (i.e., 660s)

is needed For STCARar. It is worth noting that there exists a MCMC convergence

problem for the STCAR models as discussed in Chapter 3. By closely examining

convergence through Geweke diagnostics, only a half to two thirds of simulations

appear as convergent. In such cases parameter estimation is unreliable; hence the

corresponding results are not reported (Table 4.14).
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Table 4.4: Parameter estimation of Monte Carlo experiments for Scenario EFM1.
Each column is the corresponding median across 50 replicates. Results corresponding
to simulated data with σ2 equal to 0.001, 1, and 10 are shown in red, black, and blue,
respectively. Table cells are colored for displaying results based on different methods.

β1 β2MC experiments σ2 Modeling method estimate 95%CI estimate 95%CI
EFM1_1 0.001 1.0005 0.9960 1.0045 0.9998 0.9955 1.0040
EFM1_2 1 0.9955 0.8509 1.1596 0.9998 0.8550 1.1451
EFM1_3 10

STEF_CF_method1
0.9603 0.5536 1.3783 1.0528 0.6565 1.4333

EFM1_4 0.001 0.9993 0.9884 1.0099 1.0007 0.9902 1.0109
EFM1_5 1 1.0111 0.8651 1.1332 1.0072 0.8837 1.1324
EFM1_6 10

STEF_CF_method2
1.0347 0.6591 1.4090 1.0323 0.6603 1.4071

EFM1_7 0.001 0.9713 0.9677 0.9750 1.0170 1.0133 1.0207
EFM1_8 1 1.0150 0.9018 1.1283 1.0119 0.8976 1.1263
EFM1_9 10

STEF_NCF_method1
1.0305 0.6582 1.3999 1.0503 0.6785 1.4274

EFM1_10 0.001 0.9713 0.9677 0.9750 1.0170 1.0133 1.0207
EFM1_11 1 1.0150 0.9018 1.1283 1.0119 0.8976 1.1263
EFM1_12 10

STEF_NCF_method2
1.0305 0.6572 1.4019 1.0503 0.6785 1.4274

EFM1_13 0.001 0.9560 0.8546 1.0611 1.0148 0.9133 1.1208
EFM1_14 1 0.9961 0.8681 1.1275 1.0051 0.8738 1.1284
EFM1_15 10

STEF_ICF_method1
1.0112 0.6386 1.3938 1.0205 0.6430 1.4047

EFM1_16 0.001 0.9560 0.8546 1.0611 1.0148 0.9133 1.1208
EFM1_17 1 1.0122 0.8775 1.1285 0.9956 0.8699 1.1212
EFM1_18 10

STEF_ICF_method2
1.0344 0.6672 1.4024 1.0205 0.6431 1.3910

EFM1_19 0.001 1.0601 0.7232 1.5048 1.0601 0.5493 1.3861
EFM1_20 1 1.0770 0.7119 1.3431 1.0770 0.8389 1.4264
EFM1_21 10

STCARlinear
1.0200 0.5082 1.5336 1.0200 0.5033 1.5268

EFM1_22 0.001 0.9390 0.6407 1.3775 0.9843 0.6214 1.3352
EFM1_23 1 1.1238 0.7711 1.3716 0.9377 0.6737 1.2394
EFM1_24 10

STCARanova
1.0885 0.5865 1.6183 1.0163 0.4918 1.5306

EFM1_25 0.001 0.9216 0.3906 1.4854 0.9216 0.6090 1.4629
EFM1_26 1 1.0833 0.6000 1.6190 1.0833 0.5661 1.6001
EFM1_27 10

STCARar
0.9972 0.2332 1.6297 0.9972 0.2382 1.6137
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Table 4.5: CI length and coverage for Scenario EFM1. Results corresponding to
simulated data with σ2 equal to 0.001, 1, and 10 are shown in red, black, and blue,
respectively. Table cells are colored for displaying results based on different methods.

CI length of β1 CI length of β2 coverageMC experiments σ2 Modeling method median Sd median Sd β1 β1
EFM1_1 0.001 0.0076 0.0014 0.0076 0.0014 94.00% 94.00%
EFM1_2 1 0.3370 0.1268 0.3374 0.1270 68.00% 72.00%
EFM1_3 10

STEF_CF_method1
0.7647 0.2006 0.7646 0.2009 82.00% 82.00%

EFM1_4 0.001 0.0283 0.0177 0.0283 0.0177 92.00% 90.00%
EFM1_5 1 0.2362 0.0678 0.2362 0.0679 78.00% 80.00%
EFM1_6 10

STEF_CF_method2
0.7459 0.0126 0.7459 0.0126 88.00% 86.00%

EFM1_7 0.001 0.0073 0.0002 0.0073 0.0002 2.00% 4.00%
EFM1_8 1 0.2298 0.0038 0.2298 0.0038 48.00% 52.00%
EFM1_9 10

STEF_NCF_method1
0.7428 0.0148 0.7428 0.0148 88.00% 88.00%

EFM1_10 0.001 0.0073 0.0002 0.0073 0.0002 2.00% 4.00%
EFM1_11 1 0.2298 0.0038 0.2298 0.0038 48.00% 52.00%
EFM1_12 10

STEF_NCF_method2
0.7465 0.0150 0.7465 0.0150 88.00% 88.00%

EFM1_13 0.001 0.2061 0.0186 0.2061 0.0186 66.00% 66.00%
EFM1_14 1 0.2383 0.0534 0.2381 0.0533 90.00% 86.00%
EFM1_15 10

STEF_ICF_method1
0.7437 0.1317 0.7436 0.1306 88.00% 84.00%

EFM1_16 0.001 0.2061 0.0186 0.2061 0.0186 66.00% 66.00%
EFM1_17 1 0.2359 0.0460 0.2359 0.0459 82.00% 78.00%
EFM1_18 10

STEF_ICF_method2
0.7415 0.0150 0.7415 0.0150 88.00% 84.00%

EFM1_19 0.001 0.7795 0.2424 0.7509 0.2482 78.57% 85.71%
EFM1_20 1 0.5328 0.1935 0.5278 0.1985 86.67% 73.33%
EFM1_21 10

STCARlinear
1.0148 0.0601 1.0459 0.0543 93.75% 93.75%

EFM1_22 0.001 0.8013 0.2969 0.7610 0.3046 84.62% 92.31%
EFM1_23 1 0.5435 0.1912 0.5431 0.2202 83.33% 75.00%
EFM1_24 10

STCARanova
1.0393 0.0393 1.0227 0.0467 83.33% 83.33%

EFM1_25 0.001 1.2373 0.2156 0.8540 0.1223 100.00% 100.00%
EFM1_26 1 1.0386 0.0865 1.0668 0.0802 100.00% 90.00%
EFM1_27 10

STCARar
1.3726 0.2544 1.4181 0.2789 100.00% 100.00%

114



Table 4.6: RMSE and MAE for Scenario EFM1. Results corresponding to simulated
data with σ2 equal to 0.001, 1, and 10 are shown in red, black, and blue, respectively.
Table cells are colored for displaying results based on different methods. (To do: check
STEF_NCF two methods)

RMSE MAEMC experiments σ2 Modeling method
β1 β2 β1 β2

EFM1_1 0.001 0.0021 0.0022 0.0018 0.0018
EFM1_2 1 0.2613 0.2561 0.1729 0.1639
EFM1_3 10

STEF_CF_method1
0.3413 0.3860 0.2634 0.2953

EFM1_4 0.001 0.0117 0.0120 0.0080 0.0082
EFM1_5 1 0.1496 0.1470 0.0954 0.0920
EFM1_6 10

STEF_CF_method2
0.2160 0.2478 0.1667 0.1962

EFM1_7 0.001 0.1386 0.1327 0.1037 0.0999
EFM1_8 1 0.1857 0.1828 0.1412 0.1371
EFM1_9 10

STEF_NCF_method1
0.2106 0.2366 0.1654 0.1933

EFM1_10 0.001 0.1386 0.1327 0.1037 0.0999
EFM1_11 1 0.1857 0.1828 0.1412 0.1371
EFM1_12 10

STEF_NCF_method2
0.2106 0.2366 0.1654 0.1933

EFM1_13 0.001 0.1096 0.1054 0.0865 0.0823
EFM1_14 1 0.0792 0.0866 0.0615 0.0659
EFM1_15 10

STEF_ICF_method1
0.2682 0.2799 0.2145 0.2120

EFM1_16 0.001 0.1096 0.1054 0.0865 0.0823
EFM1_17 1 0.1259 0.1308 0.0824 0.0868
EFM1_18 10

STEF_ICF_method2
0.2262 0.2580 0.1763 0.2016

EFM1_19 0.001 0.2320 0.2320 0.1849 0.1849
EFM1_20 1 0.1712 0.1712 0.1555 0.1555
EFM1_21 10

STCARlinear
0.2268 0.2268 0.1722 0.1722

EFM1_22 0.001 0.2158 0.1951 0.1608 0.1342
EFM1_23 1 0.3382 0.3164 0.2348 0.2492
EFM1_24 10

STCARanova
0.3059 0.3216 0.2521 0.2600

EFM1_25 0.001 0.3009 0.3009 0.2571 0.2571
EFM1_26 1 0.1815 0.1815 0.1615 0.1615
EFM1_27 10

STCARar
0.2909 0.2909 0.2090 0.2090
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Table 4.7: Computational times of Monte Carlo experiments for Scenario EFM1.
Results corresponding to simulated data with σ2 equal to 0.001, 1, and 10 are shown
in red, black, and blue, respectively. Table cells are colored for displaying results
based on different methods. For STCARar, computational times correspond to the
time taken to reach the specified limit of MCMC samples.

computation timeMC experiments σ2 Modeling method median sd
EFM1_1 0.001 42.5105 2.0212
EFM1_2 1 43.5345 1.3962
EFM1_3 10

STEF_CF_method1
43.4325 1.4501

EFM1_4 0.001 42.8935 1.4639
EFM1_5 1 42.7985 1.7588
EFM1_6 10

STEF_CF_method2
42.5430 1.5519

EFM1_7 0.001 42.0515 1.9313
EFM1_8 1 42.8050 1.4856
EFM1_9 10

STEF_NCF_method1
42.0040 1.4979

EFM1_10 0.001 41.3315 1.8090
EFM1_11 1 42.0895 1.1233
EFM1_12 10

STEF_NCF_method2
42.8250 1.6336

EFM1_13 0.001 14.3410 0.0638
EFM1_14 1 15.0740 0.1006
EFM1_15 10

STEF_ICF_method1
15.7160 0.2781

EFM1_16 0.001 14.3395 0.0212
EFM1_17 1 15.0905 0.1483
EFM1_18 10

STEF_ICF_method2
15.7240 0.4042

EFM1_19 0.001 160.0530 4.9513
EFM1_20 1 159.3945 1.0391
EFM1_21 10

STCARlinear
159.3785 0.6456

EFM1_22 0.001 122.0965 0.6476
EFM1_23 1 122.3565 0.5656
EFM1_24 10

STCARanova
123.6325 1.5100

EFM1_25 0.001 667.1880 8.9738
EFM1_26 1 668.1145 2.3917
EFM1_27 10

STCARar
680.4655 8.5840
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Table 4.8: Percentage of convergent replications of models based on STCAR for
scenario EF. Models with Geweke diagnostics values within -2 and 2 are considered as
convergent.

σ2 = 0.001 σ2 = 1 σ2 = 10
STCARlinear 0.70 0.75 0.80
STCARanova 0.65 0.60 0.60
STCARar 0.20 0.50 0.25

4.3.4.2 Scenario EFMX

The average number of selected eigenvectors ranges from 5 to 100, from 5 to

50, and from 5 to 25 for STEF_CF, STEF_NCF, and STEF_ICF, respectively

(Fig. 4.11). As the variability for the random error component increases, the average

numbers of selected eigenvectors decrease for all STEF approaches. When the data

generating mechanism is based on STEF_NCF and σ2 is small, STEF_CF selects

less eigenvectors than STEF_NCF. The number is further reduced for STEF_ICF

through the VIF-SIS steps.

The confusion matrix of eigenvector selection for Scenario EFMX is shown in

Table 4.9. As random error variability increases, true and false negatives increase,

whereas false and true positives decrease for all STEFs. However, STEF_NCF captures

the most eigenvectors compared to STEF_CF and STEF_ICF. Specifically for large

signal to noise ratios, STEF_NCF identifies all 50 eigenvectors that contribute to the

data generating mechanism without any false negatives.
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Figure 4.11: Box plots of numbers of nonzero eigenvalues selected for scenario EFMX
by(a) STEF_CF_method1, (b) STEF_CF_method2, (c) STEF_NCF_method1,
(d) STEF_NCF_method2, (e) STEF_ICF_method1, and (f) STEF_ICF_method2.
The numbers 1, 2, and 3 on x-axis represent data with σ2 of 0.001, 1, and 10,
respectively.

Table 4.9: Confusion matrix of eigenvector selection for Scenario EFMX. Each col-
umn is the corresponding mean or standard deviation across 50 replicates. Results
corresponding to simulated data with σ2 equal to 0.001, 1, and 10 are shown in red,
black, and blue, respectively. Table cells are colored for displaying results based on
different methods.

TN FN FP TPMC experiments σ? Modeling method Number of
eigenvector

used
Mean sd Mean sd Mean sd Mean sd

EFMX_1 0.001 755.16 11.34 18.02 2.74 70.84 11.34 31.98 2.74
EFMX_2 1 798.10 4.36 32.14 2.76 27.90 4.36 17.86 2.76
EFMX_3 10

STEF_CF_method1
822.48 4.63 48.06 2.20 3.52 4.63 1.94 2.20

EFMX_4 0.001 760.60 10.78 18.70 3.09 65.40 10.78 31.30 3.09
EFMX_5 1 798.44 4.44 32.28 2.68 27.56 4.44 17.72 2.68
EFMX_6 10

STEF_CF_method2

876

823.14 4.16 48.18 2.34 2.86 4.16 1.82 2.34
EFMX_7 0.001 824.66 0.72 0.00 0.00 0.34 0.72 50.00 0.00
EFMX_8 1 819.88 3.61 11.54 2.14 5.12 3.61 38.46 2.14
EFMX_9 10

STEF_NCF_method1
823.88 1.90 43.90 5.02 1.12 1.90 6.10 5.02

EFMX_10 0.001 824.40 0.44 0.00 0.00 0.76 0.47 50.00 0.00
EFMX_11 1 818.53 3.55 12.19 3.64 4.66 4.59 38.83 2.98
EFMX_12 10

STEF_NCF_method2

875

823.83 2.43 45.34 6.44 0.25 2.07 4.82 4.24
EFMX_13 0.001 1934.50 3.36 40.38 2.60 15.50 3.36 9.62 2.60
EFMX_14 1 1937.94 2.77 41.90 2.31 12.06 2.77 8.10 2.31
EFMX_15 10

STEF_ICF_method1
1946.78 4.08 48.58 1.62 3.22 4.08 1.42 1.62

EFMX_16 0.001 1934.64 3.48 40.32 2.53 15.36 3.48 9.68 2.53
EFMX_17 1 1937.94 2.77 41.90 2.34 12.06 2.77 8.10 2.34
EFMX_18 10

STEF_ICF_method2

2000

1946.84 4.09 48.60 1.64 3.16 4.09 1.40 1.64

118



For scenario EFMX, data are characterized by the EF spatio-temporal correlation

structure with eigenvectors from MX (Tables 4.10 to 4.13), thus STEF_NCF out-

performs other STEF methods in terms of coverage and accuracy. The median value

of β̂1 and β̂2 are close to 1 for both STEFs and STCARs (Tables 4.10). CI width

ranges from 0.01 to 0.8 when derived using STEFs, with STEF_NCF the smallest

and STEF_ICF the largest (Tables 4.11). In accordance with prior expectations, CI

width increases with σ2.

All estimated coverages are higher than 70% for STEF methods, except when

STEF_CF is used with large signal to noise ratios: : in this case the estimated coverage

is less than 30% (Table 4.11). The lowest values of RMSE and MAE are achieved

by STEF_NCF, in accordance with a-priori expectations; the worst performance is

observed for STEF_CF (Table 4.12). STEF_ICF is close to the best performing

STEF_NCF for realistic values of σ2. Computational times are around 10s shorter

for STEF_NCF relative to STEF_CF. In addition, STEF_ICF requires the shortest

time for modeling. The fast computation of STEF_ICF is because its VIF-SIS step

removes more eigenvectors through screening, accelerating the eigenvector selection

and model fitting (Tables 4.13). Despite these variability of results, the two approaches

of 2-stage STEF (i.e. method1 and method2) are not significantly different.

The confidence intervals are wider for STCAR models, as their width ranges from

0.8 to 1.4. When the random error of data is small or moderate, the coverage may reach

100%; such estimates are based on small sample sizes though, as a significant percentage

of STCAR replicates did not converge (Table 4.14). The accuracy of STCARs are

lower, with RMSE and MAE higher than 0.5. Nevertheless, STCARlinear is the

best performing approach among STCARs; its performance is close to STEF_ICF.
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The computational time required for STCARs is about 10 times the time required to

implement STEFs.

Table 4.10: Parameter estimation of Monte Carlo experiments for Scenario EFMX.
Each value is the corresponding median across 50 replicates. Results corresponding to
simulated data with σ2 equal to 0.001, 1, and 10 are shown in red, black, and blue,
respectively. Table cells are colored for displaying results based on different methods.

β1 β2MC experiments σ2 Modeling method estimate 95%CI estimate 95%CI
EFMX_1 0.001 1.0452 1.0337 1.0552 0.9808 0.9703 0.9932
EFMX_2 1 0.9875 0.8555 1.1196 1.0237 0.8774 1.1594
EFMX_3 10

STEF_CF_method1
1.0041 0.5813 1.4305 0.9783 0.5721 1.3901

EFMX_4 0.001 1.0255 1.0123 1.0382 0.9945 0.9855 1.0054
EFMX_5 1 0.9938 0.8659 1.1161 1.0116 0.8669 1.1576
EFMX_6 10

STEF_CF_method2
0.9588 0.5832 1.3362 1.0339 0.6628 1.4064

EFMX_7 0.001 1.0000 0.9964 1.0037 1.0000 0.9964 1.0036
EFMX_8 1 1.0007 0.8848 1.1169 1.0030 0.8870 1.1190
EFMX_9 10

STEF_NCF_method1
1.0462 0.6778 1.4145 0.9790 0.6121 1.3451

EFMX_10 0.001 1.0000 0.9964 1.0037 1.0000 0.9964 1.0036
EFMX_11 1 1.0007 0.8848 1.1169 1.0030 0.8870 1.1190
EFMX_12 10

STEF_NCF_method2
1.0462 0.6778 1.4145 0.9790 0.6110 1.3451

EFMX_13 0.001 1.0073 0.9299 1.0851 1.0000 0.9212 1.0819
EFMX_14 1 0.9850 0.8422 1.1356 1.0086 0.8693 1.1493
EFMX_15 10

STEF_ICF_method1
0.9563 0.5840 1.3312 1.0237 0.6555 1.3913

EFMX_16 0.001 1.0065 0.9301 1.0858 0.9993 0.9171 1.0821
EFMX_17 1 0.9894 0.8433 1.1356 1.0031 0.8629 1.1396
EFMX_18 10

STEF_ICF_method2
0.9563 0.5840 1.3312 1.0237 0.6555 1.3913

EFMX_19 0.001 1.0289 0.4979 1.5303 1.0289 0.5190 1.5642
EFMX_20 1 1.0181 0.6411 1.3295 1.0181 0.6956 1.3934
EFMX_21 10

STCARlinear
1.0577 0.4744 1.5603 1.0577 0.6034 1.6758

EFMX_22 0.001 1.0462 0.5116 1.4313 1.0449 0.5098 1.5887
EFMX_23 1 1.0513 0.6710 1.4102 1.0384 0.6907 1.4328
EFMX_24 10

STCARanova
1.1327 0.6551 1.6416 1.1384 0.5454 1.6601

EFMX_25 0.001 1.0320 0.4539 1.3950 1.0320 0.3344 1.4022
EFMX_26 1 1.0737 0.4895 1.6339 1.0737 0.5462 1.6711
EFMX_27 10

STCARar
1.1084 0.4765 1.9884 1.1084 0.3830 1.8172
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Table 4.11: CI length and coverage for Scenario EFMX. Each value is the corresponding
median across 50 replicates. Results corresponding to simulated data with σ2 equal
to 0.001, 1, and 10 are shown in red, black, and blue, respectively. Table cells are
colored for displaying results based on different methods.

CI length of β1 CI length of β2 coverageMC experiments σ2 Modeling method median Sd median Sd β1 β1
EFMX_1 0.001 0.0241 0.0086 0.0241 0.0086 8.00% 6.00%
EFMX_2 1 0.2508 0.1472 0.2508 0.1473 80.00% 74.00%
EFMX_3 10

STEF_CF_method1
0.7570 0.1955 0.7570 0.1960 92.00% 90.00%

EFMX_4 0.001 0.0294 0.0102 0.0294 0.0102 26.00% 22.00%
EFMX_5 1 0.2385 0.0904 0.2384 0.0905 86.00% 90.00%
EFMX_6 10

STEF_CF_method2
0.7505 0.0145 0.7505 0.0145 98.00% 98.00%

EFMX_7 0.001 0.0072 0.0001 0.0072 0.0001 94.00% 96.00%
EFMX_8 1 0.2286 0.0038 0.2286 0.0038 100.00% 98.00%
EFMX_9 10

STEF_NCF_method1
0.7419 0.0149 0.7419 0.0149 98.00% 100.00%

EFMX_10 0.001 0.0072 0.0001 0.0072 0.0001 94.00% 96.00%
EFMX_11 1 0.2286 0.0038 0.2286 0.0038 100.00% 98.00%
EFMX_12 10

STEF_NCF_method2
0.7437 0.0162 0.7437 0.0162 98.00% 100.00%

EFMX_13 0.001 0.1661 0.0331 0.1660 0.0330 74.00% 86.00%
EFMX_14 1 0.2848 0.0209 0.2848 0.0209 94.00% 94.00%
EFMX_15 10

STEF_ICF_method1
0.7501 0.0398 0.7501 0.0398 98.00% 98.00%

EFMX_16 0.001 0.1661 0.0299 0.1660 0.0300 80.00% 88.00%
EFMX_17 1 0.2844 0.0208 0.2843 0.0208 94.00% 94.00%
EFMX_18 10

STEF_ICF_method2
0.7507 0.0139 0.7507 0.0139 98.00% 98.00%

EFMX_19 0.001 1.0522 0.2768 1.0012 0.2914 100.00% 100.00%
EFMX_20 1 0.7234 0.2739 0.7430 0.2760 100.00% 100.00%
EFMX_21 10

STCARlinear
1.0333 0.0526 0.9984 0.0572 93.33% 93.33%

EFMX_22 0.001 1.0699 0.3433 1.1064 0.3619 100.00% 100.00%
EFMX_23 1 0.8024 0.3466 0.8102 0.3643 100.00% 100.00%
EFMX_24 10

STCARanova
1.0127 0.0542 1.0514 0.0879 90.00% 80.00%

EFMX_25 0.001 1.0295 0.1213 0.9044 0.2776 100.00% 100.00%
EFMX_26 1 1.1627 0.1023 1.0974 0.1109 100.00% 100.00%
EFMX_27 10

STCARar
1.3936 0.3448 1.3998 0.3427 87.50% 87.50%
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Table 4.12: RMSE and MAE for Scenario EFMX. Results corresponding to simulated
data with σ2 equal to 0.001, 1, and 10 are shown in red, black, and blue, respectively.
Table cells are colored for displaying results based on different methods.

RMSE MAEMC experiments σ2 Modeling method
β1 β2 β1 β2

EFMX_1 0.001 0.0679 0.0618 0.0550 0.0518
EFMX_2 1 0.2095 0.2033 0.1389 0.1357
EFMX_3 10

STEF_CF_method1
0.2821 0.2766 0.2067 0.2095

EFMX_4 0.001 0.0519 0.0475 0.0397 0.0373
EFMX_5 1 0.0876 0.0906 0.0663 0.0758
EFMX_6 10

STEF_CF_method2
0.1681 0.1565 0.1330 0.1249

EFMX_7 0.001 0.0019 0.0018 0.0015 0.0014
EFMX_8 1 0.0521 0.0499 0.0426 0.0425
EFMX_9 10

STEF_NCF_method1
0.1752 0.1581 0.1455 0.1201

EFMX_10 0.001 0.0019 0.0018 0.0015 0.0014
EFMX_11 1 0.0521 0.0499 0.0426 0.0425
EFMX_12 10

STEF_NCF_method2
0.1752 0.1581 0.1455 0.1201

EFMX_13 0.001 0.0903 0.0871 0.0578 0.0533
EFMX_14 1 0.0978 0.0986 0.0670 0.0686
EFMX_15 10

STEF_ICF_method1
0.1764 0.1596 0.1404 0.1222

EFMX_16 0.001 0.0736 0.0763 0.0491 0.0455
EFMX_17 1 0.0961 0.0972 0.0652 0.0670
EFMX_18 10

STEF_ICF_method2
0.1758 0.1579 0.1395 0.1210

EFMX_19 0.001 0.0719 0.0719 0.0565 0.0565
EFMX_20 1 0.1160 0.1160 0.0944 0.0944
EFMX_21 10

STCARlinear
0.2454 0.2454 0.1781 0.1781

EFMX_22 0.001 0.0977 0.0805 0.0760 0.0612
EFMX_23 1 0.2031 0.1921 0.1595 0.1324
EFMX_24 10

STCARanova
0.2999 0.3138 0.2476 0.2652

EFMX_25 0.001 0.1968 0.1968 0.1812 0.1812
EFMX_26 1 0.2147 0.2147 0.1791 0.1791
EFMX_27 10

STCARar
0.2776 0.2776 0.2116 0.2116
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Table 4.13: Computational times of Monte Carlo experiments for Scenario EFMX.
Results corresponding to simulated data with σ2 equal to 0.001, 1, and 10 are shown
in red, black, and blue, respectively. Table cells are colored for displaying results
based on different methods.

computation timeMC experiments σ2 Modeling method median sd
EFMX_1 0.001 42.7425 1.5440
EFMX_2 1 42.7440 1.4962
EFMX_3 10

STEF_CF_method1
43.0965 1.2726

EFMX_4 0.001 41.6610 1.6117
EFMX_5 1 42.0165 1.8203
EFMX_6 10

STEF_CF_method2
42.5565 1.3642

EFMX_7 0.001 27.9990 2.3704
EFMX_8 1 28.2675 3.3698
EFMX_9 10

STEF_NCF_method1
29.0260 3.3962

EFMX_10 0.001 27.6560 0.5791
EFMX_11 1 27.7075 0.6518
EFMX_12 10

STEF_NCF_method2
27.5960 0.5301

EFMX_13 0.001 14.6780 0.0794
EFMX_14 1 14.7950 0.0451
EFMX_15 10

STEF_ICF_method1
14.8245 0.0327

EFMX_16 0.001 14.6725 0.0526
EFMX_17 1 14.7715 0.0455
EFMX_18 10

STEF_ICF_method2
14.8170 0.0353

EFMX_19 0.001 160.0530 5.3354
EFMX_20 1 159.3080 1.0932
EFMX_21 10

STCARlinear
159.4725 0.5712

EFMX_22 0.001 122.2265 0.6241
EFMX_23 1 122.3960 0.5952
EFMX_24 10

STCARanova
123.6650 1.6923

EFMX_25 0.001 666.9475 10.1538
EFMX_26 1 668.4720 2.4693
EFMX_27 10

STCARar
682.1515 9.5181
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It is worth noting that there exists a MCMC convergence problem for the STCAR

models as discussed in Chapter 3. By closely examining convergence through Geweke

diagnostics, only a half to two thirds of simulations appear as convergent. Parameter

estimation and corresponding inference are based on the convergent replicates only

(Table 4.14).

Table 4.14: Percentage of convergent replications of models based on STCAR for
scenario EF. Models with Geweke diagnostics values within -2 and 2 are considered as
convergent

σ2 = 0.001 σ2 = 1 σ2 = 10
STCARlinear 0.62 0.58 0.5
STCARanova 0.74 0.68 0.64
STCARar 0.72 0.64 0.44

4.3.4.3 Scenario AR

For scenario AR, STEF_CF and STEF_NCF result in similar numbers of nonzero

eigenvectors (around 80) for different values of σ2 (Fig. 4.12). However, around 10

eigenvectors are selected using STEF_ICF for data with small random error, while 40

eigenvectors are selected on average when data have moderate to large random error.

The small number of selected eigenvectors by STEF_ICF when σ2 is small, may due

to the exclusion of large number of eigenvectors through SIS screening process.

STEF and STCAR estimates are all close to the true values for small and moderate

σ2 when signal to noise ratio is large or moderate in this scenario, which favors

STCARar estimates (Table 4.15). For σ2 = 10, however, STEF_CF_method1 seems

to perform significantly better than STEF_CF_method2, and the rest of STEFs. In
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Figure 4.12: Box plots of numbers of nonzero eigenvalues selected for scenario AR
by (a) STEF_CF_method1, (b) STEF_CF_method2, (c) STEF_NCF_method1,
(d) STEF_NCF_method2, (e) STEF_ICF_method1, and (f) STEF_ICF_method2.
The numbers 1, 2, and 3 on x-axis represent data with σ2 of 0.001, 1, and 10,
respectively.

addition, mis-specification of STCAR (i.e., STCARlinear or STCARanova, rather

than STCARar) seems to have dramatic consequences.

The average CI width of STEF equal 0.0002, 0.2 and 2 for σ2 = 0.001, 1, and10,

respectively (Table 4.16). CI widths derived from STCAR are wider relative to the ones

derived from STEF. Specifically, CI widths derived by STCARlinear and STCARanova

are on average equal to 0.03, 1.5, and 13 for σ2 = 0.001, 1, and10 respectively. Average

CI widths reduce to 0.03, 0.8 and 6 for STCARar.

STCAR appear to possess high coverage rates, but these rates are not so reliable

since they are based on a small number of replications due to convergence issues

(Table 4.19). Nevertheless, the coverage of STCAR is superior to that of STEF. In

addition, STCARar shows the best performance in terms of RMSE and MAE as

one would expect a-priori since it is compliant with the data generating mechanism

(Table 4.17). The effects of mis-specification appear to be significant: STCARlinear

and STCARanova do not perform well in terms of accuracy. STEF_CF_method1

does not perform well neither with high RMSE and MAE; however, STEF_NCF
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performs better and STEF_ICF is close to STEF_NCF, both displaying satisfactory

performance.

The computational times for STEF_CF and STEF_NCF are similar, but times

decrease dramatically for STEF_ICF which uses VIF and SIS procedures (Table 4.18).

As before, computational times for STCAR models are high. The convergence rates

for STCAR experiments range from 46% to 76% (Table 4.19). This is to say, STCAR

methods have a serious disadvantage if they are so slow to converge even if the

data generating mechanism complies with their design. Thus if we take into account

accuracy, computational times and convergence rates, STEF methods (especially

STEF_ICF) are superior to STCAR.
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Table 4.15: Parameter estimation for Scenario AR. Each value is the corresponding
median across 50 replicates. Results corresponding to simulated data with σ2 equal
to 0.001, 1, and 10 are shown in red, black, and blue, respectively. Table cells are
colored for displaying results based on different methods.

β1 β2MC experiments σ2 Modeling method estimate 95%CI estimate 95%CI
AR_1 0.001 0.9999 0.9997 1.0001 1.0001 0.9999 1.0004
AR_2 1 0.9753 0.8127 1.2222 1.0354 0.7951 1.2317
AR_3 10

STEF_CF_method1
1.0154 -0.9501 3.0597 1.0682 -0.8591 2.9304

AR_4 0.001 1.0000 0.9999 1.0002 1.0000 0.9999 1.0002
AR_5 1 1.0230 0.8907 1.1625 0.9718 0.8413 1.1057
AR_6 10

STEF_CF_method2
0.4648 -0.9475 1.8069 2.2068 0.8867 3.4815

AR_7 0.001 1.0000 0.9999 1.0001 1.0000 0.9999 1.0001
AR_8 1 0.9831 0.8601 1.1061 0.9693 0.8483 1.0887
AR_9 10

STEF_NCF_method1
0.5092 -0.7141 1.7656 1.7928 0.5414 3.0615

AR_10 0.001 1.0000 0.9999 1.0001 1.0000 0.9999 1.0001
AR_11 1 0.9831 0.8601 1.1061 0.9693 0.8483 1.0887
AR_12 10

STEF_NCF_method2
0.5092 -0.7268 1.7897 1.7928 0.5414 3.1337

AR_13 0.001 1.0000 0.9999 1.0002 1.0000 0.9999 1.0002
AR_14 1 0.9432 0.7902 1.0900 0.8827 0.7364 1.0478
AR_15 10

STEF_ICF_method1
0.5152 -0.9238 1.9173 1.8018 0.3273 3.2600

AR_16 0.001 1.0000 0.9999 1.0002 1.0000 0.9998 1.0002
AR_17 1 0.9761 0.8410 1.1188 0.9846 0.8424 1.1228
AR_18 10

STEF_ICF_method2
0.5152 -0.9238 1.9173 1.8379 0.4229 3.3835

AR_19 0.001 1.0010 0.9826 1.0165 1.0010 0.9826 1.0151
AR_20 1 0.8568 0.0892 1.6803 0.8568 0.2760 1.7667
AR_21 10

STCARlinear
-0.3873 -5.5111 5.8531 -0.3873 -3.9672 9.2695

AR_22 0.001 0.9999 0.9821 1.0160 0.9993 0.9825 1.0166
AR_23 1 0.8216 0.0681 1.5899 1.0479 0.3591 1.7464
AR_24 10

STCARanova
-0.4026 -6.9460 6.4161 2.0049 -5.6105 8.1311

AR_25 0.001 0.9999 0.9981 1.0017 0.9999 0.9986 1.0022
AR_26 1 0.9539 0.5171 1.4024 0.9539 0.6730 1.5441
AR_27 10

STCARar
1.4224 -1.6260 4.1034 1.4224 -4.0857 2.6154
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Table 4.16: CI length and coverage for Scenario AR. Each value is the corresponding
median across 50 replicates. Results corresponding to simulated data with σ2 equal
to 0.001, 1, and 10 are shown in red, black, and blue, respectively. Table cells are
colored for displaying results based on different methods.

CI length of β1 CI length of β2 coverageMC experiments σ2 Modeling method median Sd median Sd β1 β2
AR_1 0.001 0.0005 0.0002 0.0005 0.0002 36.00% 26.00%
AR_2 1 0.4958 0.1922 0.4959 0.1923 16.00% 12.00%
AR_3 10

STEF_CF_method1
4.4082 1.4395 4.4149 1.4406 48.00% 40.00%

AR_4 0.001 0.0003 0.0001 0.0003 0.0001 42.00% 42.00%
AR_5 1 0.2642 0.0579 0.2641 0.0580 46.00% 40.00%
AR_6 10

STEF_CF_method2
2.6547 0.6973 2.6549 0.6980 48.00% 48.00%

AR_7 0.001 0.0002 0.0000 0.0002 0.0000 36.00% 42.00%
AR_8 1 0.2504 0.0116 0.2504 0.0116 32.00% 30.00%
AR_9 10

STEF_NCF_method1
2.4810 0.1094 2.4810 0.1094 46.00% 38.00%

AR_10 0.001 0.0002 0.0000 0.0002 0.0000 36.00% 42.00%
AR_11 1 0.2504 0.0116 0.2504 0.0116 32.00% 30.00%
AR_12 10

STEF_NCF_method2
2.4915 0.1140 2.4915 0.1140 46.00% 38.00%

AR_13 0.001 0.0003 0.0000 0.0003 0.0000 30.00% 52.00%
AR_14 1 0.2997 0.0688 0.2998 0.0684 44.00% 32.00%
AR_15 10

STEF_ICF_method1
2.8736 0.6107 2.8733 0.6060 48.00% 52.00%

AR_16 0.001 0.0003 0.0000 0.0003 0.0000 30.00% 54.00%
AR_17 1 0.2876 0.0332 0.2876 0.0332 42.00% 36.00%
AR_18 10

STEF_ICF_method2
2.8675 0.2717 2.8666 0.2722 50.00% 46.00%

AR_19 0.001 0.0342 0.0030 0.0322 0.0036 100.00% 100.00%
AR_20 1 1.4676 0.2439 1.5048 0.2406 100.00% 100.00%
AR_21 10

STCARlinear
12.6832 3.3978 12.2392 3.3941 100.00% 100.00%

AR_22 0.001 0.0331 0.0026 0.0332 0.0033 100.00% 100.00%
AR_23 1 1.4533 0.2178 1.5047 0.2285 92.31% 100.00%
AR_24 10

STCARanova
13.4825 2.9377 13.5397 2.6753 100.00% 100.00%

AR_25 0.001 0.0036 0.0001 0.0036 0.0001 100.00% 100.00%
AR_26 1 0.8271 0.0710 0.8478 0.0692 68.75% 87.50%
AR_27 10

STCARar
6.2662 0.8210 5.4693 2.1809 75.00% 75.00%
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Table 4.17: RMSE and MAE for Scenario AR. Results corresponding to simulated
data with σ2 equal to 0.001, 1, and 10 are shown in red, black, and blue, respectively.
Table cells are colored for displaying results based on different methods.

RMSE MAEMC experiments σ2 Modeling method
β1 β2 β1 β2

AR_1 0.001 0.0006 0.0006 0.0004 0.0005
AR_2 1 0.8081 0.8052 0.6417 0.6467
AR_3 10

STEF_CF_method1
3.8819 3.8612 2.9160 3.0364

AR_4 0.001 0.0003 0.0003 0.0002 0.0002
AR_5 1 0.2308 0.2470 0.1884 0.2027
AR_6 10

STEF_CF_method2
2.1576 2.1159 1.6971 1.7996

AR_7 0.001 0.0002 0.0002 0.0002 0.0002
AR_8 1 0.2375 0.2579 0.1976 0.2165
AR_9 10

STEF_NCF_method1
2.1086 2.1544 1.6949 1.7611

AR_10 0.001 0.0002 0.0002 0.0002 0.0002
AR_11 1 0.2375 0.2579 0.1976 0.2165
AR_12 10

STEF_NCF_method2
2.1086 2.1544 1.6949 1.7611

AR_13 0.001 0.0002 0.0002 0.0002 0.0002
AR_14 1 0.3367 0.3437 0.2551 0.2715
AR_15 10

STEF_ICF_method1
2.3645 2.0136 1.7522 1.6528

AR_16 0.001 0.0002 0.0002 0.0002 0.0002
AR_17 1 0.2486 0.2735 0.2002 0.2179
AR_18 10

STEF_ICF_method2
2.0455 2.0329 1.6207 1.6841

AR_19 0.001 0.0012 0.0012 0.0011 0.0011
AR_20 1 0.2735 0.2735 0.2390 0.2390
AR_21 10

STCARlinear
1.7448 1.7448 1.5332 1.5332

AR_22 0.001 0.0012 0.0014 0.0008 0.0012
AR_23 1 0.3204 0.2803 0.2909 0.2267
AR_24 10

STCARanova
2.7691 2.2557 2.4641 1.9560

AR_25 0.001 0.0003 0.0003 0.0002 0.0002
AR_26 1 0.3877 0.3877 0.3253 0.3253
AR_27 10

STCARar
1.6939 1.6939 1.2755 1.2755
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Table 4.18: Computational time of Monte Carlo experiment for Scenario AR. Results
corresponding to simulated data with σ2 equal to 0.001, 1, and 10 are shown in red,
black, and blue, respectively. Table cells are colored for displaying results based on
different methods. For STCARar, computational times correspond to the time taken
to reach the specified limit of MCMC samples.

computation timeMC experiments sigma2 Modeling method median sd
AR_1 0.001 27.3650 0.7227
AR_2 1 27.4350 0.6649
AR_3 10

STEF_CF_method1
27.5475 0.8406

AR_4 0.001 27.7070 1.0551
AR_5 1 28.6310 0.7479
AR_6 10

STEF_CF_method2
28.9200 0.7168

AR_7 0.001 28.7425 0.9518
AR_8 1 28.8800 0.8158
AR_9 10

STEF_NCF_method1
28.7380 0.6743

AR_10 0.001 28.5210 0.7150
AR_11 1 28.3880 0.6447
AR_12 10

STEF_NCF_method2
28.4015 0.4983

AR_13 0.001 15.7010 0.0897
AR_14 1 15.6820 0.0395
AR_15 10

STEF_ICF_method1
15.6810 0.0334

AR_16 0.001 15.6825 0.0616
AR_17 1 15.6885 0.0572
AR_18 10

STEF_ICF_method2
15.6715 0.0331

AR_19 0.001 157.4050 3.1162
AR_20 1 157.6805 1.3098
AR_21 10

STCARlinear
157.5290 1.5456

AR_22 0.001 120.0130 0.9894
AR_23 1 120.0150 1.3507
AR_24 10

STCARanova
119.8780 1.0109

AR_25 0.001 646.8420 8.7537
AR_26 1 646.9295 2.2494
AR_27 10

STCARar
648.3700 3.0395
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Table 4.19: Percentage of convergent replications of models based on STCAR for
scenario AR. Models with Geweke diagnostics values within -2 and 2 are considered
as convergent

σ2 = 0.001 σ2 = 1 σ2 = 10
STCARlinear 0.62 0.66 0.46
STCARanova 0.7 0.68 0.76
STCARar 0.66 0.52 0.72

4.3.4.4 Scenario RF

The numbers of nonzero eigenvectors selected by STEF_CF and STEF_NCF are

constantly close to 20 on average, whereas this number reduces to 6 by STEF_ICF

(Fig. 4.13). In addition, the number of selected eigenvectors ranges from 0 to 50 for

STEF_CF and STEF_NCF whereas it ranges from 0 to 25 from STEF_ICF.

Figure 4.13: Box plots of numbers of nonzero eigenvalues selected for scenario RF by
(a) STEF_CF_method1, (b) STEF_CF_method2, (c) STEF_NCF_method1, (d)
STEF_NCF_method2, (e) STEF_ICF_method1, and (f) STEF_ICF_method2.

STEF and STCAR parameter estimates for β̂1 and β̂2 are all close to 1 (Table 4.20).

CI widths are close to 0.2 and 0.6 for STEF and STCAR, respectively (Table 4.21).

STEF coverage rates range from 56% to 78% whereas the corresponding rates are
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Table 4.20: Parameter estimation of Monte Carlo experiment for Scenario RF. Each
value is the corresponding median across 50 replicates. Table cells are colored for
displaying results based on different modeling methods.

β1 β2MC experiments Modeling method estimate 95%CI estimate 95%CI
RF_1 STEF_CF_method1 1.0215 0.8903 1.1385 0.9740 0.8596 1.1200
RF_2 STEF_CF_method2 1.0119 0.9027 1.1217 0.9811 0.8748 1.0841
RF_3 STEF_NCF_method1 1.0156 0.9136 1.1200 0.9873 0.8831 1.0933
RF_4 STEF_NCF_method2 1.0156 0.9136 1.1200 0.9873 0.8835 1.0933
RF_5 STEF_ICF_method1 1.0184 0.9082 1.1286 0.9783 0.8670 1.0896
RF_6 STEF_ICF_method2 1.0184 0.9082 1.1286 0.9808 0.8707 1.0911
RF_7 STCARlinear 1.0336 0.7097 1.3371 1.0336 0.6422 1.2683
RF_8 STCARanova 1.0384 0.6997 1.3309 0.9515 0.6190 1.2611
RF_9 STCARar 0.9655 0.7083 1.2009 0.9655 0.7850 1.2591

100% for STCAR-derived estimates (Table 4.21). The RMSE and MAE are the lowest

using STCARlinear and STCARar, whereas the highest using STEF_CF (Table 4.22).

However, the better performance of STCAR comes at a cost. In fact, it may not be

preferred given that it takes long time to get results. It is worth mentioning that

STEF_NCF and STEF_ICF are not very far from the best performing method while

they do not have any convergence issues.

Computational times are close to 28s for STEF_CF and STEF_NCF; STEF_ICF

requires about half of that time (Table 4.23). For STCAR, average computational

times are equal to 160, 122 and 667 seconds for STCARlinear, STCARanova, and

STCARar, respectively. The convergence rates for STCAR models are around 0.6 to

0.7 . Modeling by STCARanova leads to relatively more convergent simulations for

Scenario RF (Table 4.24).
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Table 4.21: CI length and coverage of Monte Carlo experiment for Scenario RF. Each
value is the corresponding median across 50 replicates. Table cells are colored for
displaying results based on different methods.

CI length_beta1 CI length_beta2 coverageMC experiments Modeling method median Sd median Sd beta1 beta2
RF_1 STEF_CF_method1 0.3356 0.1079 0.3359 0.1081 56.00% 56.00%
RF_2 STEF_CF_method2 0.2164 0.0080 0.2163 0.0080 72.00% 68.00%
RF_3 STEF_NCF_method1 0.2145 0.0082 0.2145 0.0082 74.00% 78.00%
RF_4 STEF_NCF_method2 0.2145 0.0083 0.2145 0.0083 74.00% 78.00%
RF_5 STEF_ICF_method1 0.2219 0.0226 0.2219 0.0223 76.00% 76.00%
RF_6 STEF_ICF_method2 0.2216 0.0053 0.2216 0.0053 76.00% 78.00%
RF_7 STCARlinear 0.6385 0.1022 0.6278 0.0919 100.00% 91.67%
RF_8 STCARanova 0.6478 0.0779 0.6528 0.0966 100.00% 100.00%
RF_9 STCARar 0.5002 0.0332 0.4963 0.0322 100.00% 87.50%

Table 4.22: RMSE and MAE of Monte Carlo experiment for Scenario RF. Table cells
are colored for displaying results based on different methods.

RMSE MAEMC experiments Modeling method
β1 β2 β1 β2

RF_1 STEF_CF_method1 0.2014 0.1074 0.1631 0.0805
RF_2 STEF_CF_method2 0.2068 0.1065 0.1702 0.0855
RF_3 STEF_NCF_method1 0.1008 0.1008 0.0789 0.0789
RF_4 STEF_NCF_method2 0.1000 0.1000 0.0795 0.0795
RF_5 STEF_ICF_method1 0.1117 0.1046 0.0864 0.0825
RF_6 STEF_ICF_method2 0.1047 0.1021 0.0828 0.0809
RF_7 STCARlinear 0.0769 0.0769 0.0631 0.0631
RF_8 STCARanova 0.0863 0.1449 0.0702 0.1120
RF_9 STCARar 0.0842 0.0842 0.0707 0.0707

Table 4.23: Computational time of Monte Carlo experiment for Scenario RF. Table
cells are colored for displaying results based on different methods.

computation timeMC experiments Modeling method median sd
RF_1 STEF_CF_method1 28.4100 18.4709
RF_2 STEF_CF_method2 28.1415 18.4742
RF_3 STEF_NCF_method1 28.2635 17.4285
RF_4 STEF_NCF_method2 28.0830 17.4515
RF_5 STEF_ICF_method1 14.1995 0.0819
RF_6 STEF_ICF_method2 14.1970 0.0351
RF_7 STCARlinear 160.0530 4.9513
RF_8 STCARanova 122.0965 0.6476
RF_9 STCARar 667.1880 8.9738
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Table 4.24: Percentage of convergent replications of models based on STCAR for
scenario RF. Models with Geweke diagnostics values within -2 and 2 are considered
as convergent.

BMH models convergence rate
STCARlinear 0.58
STCARanova 0.7
STCARar 0.58

4.3.5 Effects of spatial weight matrix on STEF

To examine the influence of different weight matrices on STEF results, two classical

spatial adjacency structures (queen and rook) are compared, focusing on the last

Monte Carlo experiment (scenario RF) which does not involve weight matrices in the

data generating mechanism (Table 4.25, 4.26, and 4.27). Following the same setting

of Monte Carlo experiments in Section 4.3.1., STEF ensemble with rook’s adjacency

strucure is applied to 50 replicates (hereafter scenario RF_rook). Note that scenario

RF (or RF_queen) is exactly based on queen’s structure. Therefore scenario RF and

scenario RF_rook are compared in this section.

In general, the parameter estimates, confidence intervals, coverages, and precisions

are similar across STEFs for different spatial weight matrices. Parameter estimates

are close to the true values and CI widths are close to 0.2 in both cases. Coverage

rates vary depending on the STEF method but results are similar for different weight

matrices. RMSE and MAE are also close, around 0.1 and 0.07, respectively. Therefore,

one can conclude that there is no significant influence with respect to spatial weight

matrix on the results of STEF.
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Table 4.25: Parameter estimation of Monte Carlo experiment for examining effects of
spatial weight matrix on STEF. Each value is the corresponding median across 50
replicates. Table cells are colored for displaying results based on different modeling
methods.

β1 β2Spatial weight matrix Modeling method estimate 95% CI estimate 95% CI
STEF_CF_method1 1.0215 0.8903 1.1385 0.9740 0.8596 1.1200
STEF_CF_method2 1.0119 0.9027 1.1217 0.9811 0.8748 1.0841
STEF_NCF_method1 1.0156 0.9136 1.1200 0.9873 0.8831 1.0933
STEF_NCF_method2 1.0156 0.9136 1.1200 0.9873 0.8835 1.0933
STEF_ICF_method1 1.0184 0.9082 1.1286 0.9783 0.8670 1.0896

Queen

STEF_ICF_method2 1.0184 0.9082 1.1286 0.9808 0.8707 1.0911
STEF_CF_method1 0.9718 0.8232 1.1263 1.0532 0.8714 1.1865
STEF_CF_method2 1.0080 0.9017 1.1143 0.9860 0.8781 1.0923
STEF_NCF_method1 1.0156 0.9099 1.1216 0.9873 0.8777 1.0949
STEF_NCF_method2 1.0156 0.9099 1.1216 0.9873 0.8777 1.0949
STEF_ICF_method1 1.0065 0.8976 1.1185 0.9825 0.8720 1.0939

Rook

STEF_ICF_method2 1.0104 0.9009 1.1208 0.9778 0.8660 1.0901

Table 4.26: CI length and coverage of Monte Carlo experiment for examining effects
of spatial weight matrix on STEF. Each value is the corresponding median across 50
replicates. Table cells are colored for displaying results based on different methods.

CI width of β1 CI width of β2 coverageSpatial weight matrix Modeling method median sd median sd β1 β2
STEF_CF_method1 0.3356 0.1079 0.3359 0.1081 56.00% 56.00%
STEF_CF_method2 0.2164 0.0080 0.2163 0.0080 72.00% 68.00%
STEF_NCF_method1 0.2145 0.0082 0.2145 0.0082 74.00% 78.00%
STEF_NCF_method2 0.2145 0.0083 0.2145 0.0083 74.00% 78.00%
STEF_ICF_method1 0.2219 0.0226 0.2219 0.0223 76.00% 76.00%

Queen

STEF_ICF_method2 0.2216 0.0053 0.2216 0.0053 76.00% 78.00%
STEF_CF_method1 0.3659 0.1441 0.3663 0.1411 58.00% 56.00%
STEF_CF_method2 0.2147 0.0076 0.2158 0.0078 70.00% 68.00%
STEF_NCF_method1 0.2154 0.0077 0.2154 0.0077 74.00% 78.00%
STEF_NCF_method2 0.2154 0.0077 0.2154 0.0077 74.00% 78.00%
STEF_ICF_method1 0.2224 0.0211 0.2235 0.0204 78.00% 74.00%

Rook

STEF_ICF_method2 0.2220 0.0064 0.2228 0.0066 74.00% 76.00%

4.4 Application to bioenergy crop impacts data

The application analyzes an ensemble of large scale spatio-temporal datasets.

This ensemble includes WRF-simulated seasonally averaged near-surface temperature

differences (°C) over a decade (2000-2009) due to large-scale deployment of perennial

bioenergy crops across the continental United States. Two scenarios are included

in the ensemble, based on two physics parameterizations under a full deployment
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Table 4.27: RMSE and MAE of Monte Carlo experiment for examining effects of
spatial weight matrix on STEF. Table cells are colored for displaying results based on
different methods.

RMSE MAESpatial weight matrix Modeling method
β1 β2 β1 β2

STEF_CF_method1 0.2014 0.1074 0.1631 0.0805
STEF_CF_method2 0.2068 0.1065 0.1702 0.0855
STEF_NCF_method1 0.1008 0.1008 0.0789 0.0789
STEF_NCF_method2 0.1000 0.1000 0.0795 0.0795
STEF_ICF_method1 0.1117 0.1046 0.0864 0.0825

Queen

STEF_ICF_method2 0.1047 0.1021 0.0828 0.0809
STEF_CF_method1 0.2357 0.1080 0.1828 0.0800
STEF_CF_method2 0.2408 0.1094 0.1933 0.0879
STEF_NCF_method1 0.1008 0.1008 0.0789 0.0789
STEF_NCF_method2 0.1000 0.1000 0.0795 0.0795
STEF_ICF_method1 0.1051 0.1076 0.0784 0.0808

Rook

STEF_ICF_method2 0.1137 0.1070 0.0892 0.0850

of perennial bioenergy crops (i.e., E1_100 and E8_100, respectively, as described

in Chapter 2). Seasonal averages of this biofuel related datasets over a decade are

displayed in Figure 4.14. In this analysis, a specific area located within region 5 (see

Figure 4.14) is selected. Region 5 is of interest since it is considered as a sustainable

area based on the results presented in Chapter 2. Therefore, the analyzed data

(hereafter, T2_biofuel dataset) includes 52 spatial units and 40 temporal units for

each scenario, leading to a sample size of 4160. The goal of this application is to

quantify the robustness of simulated bioenergy crops impacts (temperature difference)

to alternative physics parametrizations.

T2_biofuel is modeled with fixed effects phy_dummy, lat, lon, ele, and seasonal

indicator variables (i.e., indicator of using parameter estimation E8 relative to E1,

latitude, longitude, elevation, and seasonal indicators, respectively), as well as two-way

interactions of lat, lon, and ele. Therefore, 10 fixed effects are included in the model.

phy_dummy is of particular interest, as it can be used to quantify the robustness of

bioenergy crops impacts. lat, lon, ele, and seasonal indicator variables are included

in the model to introduce consistent spatio-temporal information across the two
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Figure 4.14: WRF-simulated seasonally averaged near-surface temperature differ-
ence (°C) over one decade (2000-2009) on (a) DJF, (b) MAM, (c) JJA, and (d)
SON using physics parameterization E1. (e)-(h) Same as (a)-(d) but using physics
parameterization E8. (Wang et al., 2017).

physics parameterizations. Note that all continuous variables (i.e., lat, lon, ele, and

response variable T2_biofuel) are standardized for numerical stability of calculations

for parameter estimation. STEF_CF, STEF_NCF, and STEF_ICF approaches are

applied to this T2_biofuel dataset. Since results produced by the alternative STEF

estimation procedure are similar, method1 is used for this application.

Results of eigenvector selection and computational times differ across STEFs. The

number of selected eigenvectors are 469s and 401s for STEF_CF and STEF_NCF,

respectively, whereas only 47 for STEF_ICF (Table 4.28). Nevertheless, absolute

magnitudes of estimated eigenvectors coefficients are consistently small (around 0.2),

compared to around 1 to 2 for fixed effects (Figure 4.15). Regarding to computational

times, STEF_CF and STEF_NCF procedures are close, by around 293.6s and 281.5s,

respectively. However, STEF_ICF only requires 60.6s (Table 4.28).

Parameter estimates and significance of fixed effects are partially consistent across

STEFs (Table 4.28). Variables phy_dummy, lon*ele, Spring-Winter, Summer-Winter,

and Fall-Winter are statistically significant. This result is confirmed by STEF_CF,
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Table 4.28: Parameter estimates, 95% confidence intervals, number of selected eigenvec-
tors and computational times for modeling T2_biofuel dataset by STEF. Statistically
significant variables are highlighted in red.

STEF_CF STEF_NCF STEF_ICF
Estimate 95% CI Estimate 95% CI Estimate 95% CI

phy_dummy 0.6296 0.5955 0.6636 0.3370 0.3313 0.3428 0.1341 0.1168 0.1514
lon 0.3730 -0.0349 0.7809 -0.1783 -0.3972 0.0407 0.0007 -0.0084 0.0099
lat -0.9286 -1.8822 0.0250 0.2836 -0.2292 0.7965 -0.0036 -0.0186 0.0115
ele 1.3060 0.2185 2.3935 1.7740 1.1438 2.4042

lon*lat -0.9143 -1.9210 0.0924 0.3130 -0.2323 0.8583
lon*ele 1.1695 0.2434 2.0956 1.2911 0.7503 1.8318 0.0530 0.0374 0.0687
lat*ele -0.1223 -0.4424 0.1978 -0.5079 -0.6555 -0.3603

Spring-Winter 0.3038 0.2723 0.3352 0.6325 0.6254 0.6396 0.5330 0.5017 0.5644
Summer-Winter -1.6329 -1.6665 -1.5992 -1.6668 -1.6739 -1.6597 -1.4194 -1.4475 -1.3912
Fall-Winter 0.0608 0.0365 0.0850 0.3459 0.3387 0.3530 0.4102 0.3779 0.4426

Number of nonzero eigenvectors 469 401 47
Computational time 293.6 281.541 60.5800

STEF_NCF, and STEF_ICF as these significant parameter estimates possess the

same sign (positive or negative) for all STEFs. Besides this agreement, STEF_ICF

excludes variables ele, lon*lat, lat*ele due to their colinearity with other fixed effects.

For those STEF_ICF-excluded fixed effects, variable lat*ele is not statistically signifi-

cant by STEF_CF whereas it is statistically significant by STEF_NCF; parameter

estimate of lon*lat by STEF_CF is negative in contrast with STEF_NCF. These

results suggest that outputs from STEF_CF are affected by multicollinearity. The

confidence interval lengths of fixed effects are shorter for STEF_NCF and STEF_ICF

(except for dummy variable Fall-Winter, see Table 4.29), which most probably is

also due to multicollinearity. When comparing the differences of parameter estimates

(i.e., deviance), STEF_ICF provides estimates which are close to STEF_NCF for

phy_dummy, lon, lat, Spring-Winter, and Fall-Winter (note that most of them are

significant variables).

STEF_ICF alleviates the spatial confounding effects and achieves high accuracy

without endorsing the assumptions of STEF_NCF. The effects of different physics

parameterizations are statistically significant although, not of the same practical
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Figure 4.15: Barplot of parameter estimates for modeling T2_biofuel dataset by
(a) STEF_CF, (b) STEF_NCF, and (c) STEF_ICF, respectively. For each panel,
the first 10 bars on the left, and the bars beginning from the 11th bars to the right
represent the parameter estimates for fixed effects, and eigenvectors, respectively.

significance compared to the effects of environmental and geographical predictors.

Controlling the other variables, temperature change associated with perennial bioen-

ergy crops is 0.13◦C higher using parameterization E8 than using parameterization

E1.2 Spatially, increasing one unit standard deviation of longitude and one unit stan-

dard deviation of elevation leads to temperature increasing by 0.052◦C. Comparing

2Since continuous explanatory variables and response variables are all standardized, the estimated
coefficients are scaled back to get the unit changes in original units of data. For example, 0.13
is calculated by multiplying parameter estimate phy_dummy (0.13) to the standard deviation of
response variable (0.98).
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Table 4.29: CI width and deviance of parameter estimates for modeling T2_biofuel
dataset by STEF. The deviances of CF-NCF and ICF-NCF are calculated as the
parameter estimate differences between using STEF_CF and STEF_NCF, and
between using STEF_ICF and STEF_NCF, respectively. Smallest and median
CI widths among STEF specifications are highlighted in red and blue, respectively;
smaller deviance among STEF specifications are highlighted in red; variables in gray
are correlated variables identified by STEF_ICF, which do not included in the analysis.

CI width Deviance
STEF_CF STEF_NCF STEF_ICF CF-NCF ICF-NCF

phy_dummy 0.0680 0.0115 0.0346 0.2925 -0.2030
lon 0.8158 0.4379 0.0183 0.5513 0.1790
lat 1.9072 1.0257 0.0301 -1.2122 -0.2872
ele 2.1750 1.2604 -0.4680

lon*lat 2.0134 1.0906 -1.2273
lon*ele 1.8522 1.0815 0.0313 -0.1216 -1.2380
lat*ele 0.6402 0.2952 0.3856

Spring-Winter 0.0629 0.0143 0.0627 -0.3287 -0.0994
Summer-Winter 0.0674 0.0143 0.0563 0.0340 0.2475
Fall-Winter 0.0485 0.0143 0.0646 -0.2851 0.0644

to Winter, cooling impacts associated with perennial bioenergy crop expansion are

0.52◦C and 0.4◦C lower in Spring and Fall, respectively; whereas 1.39◦C higher in Fall.

4.5 Discussion

This Chapter developed a framework for modeling space-time lattice data. Three

approaches of STEF- introducing proxy variables with, without, or with intermediate

spatial confounding - are evaluated. In addition, two alternative algorithms for

implementing each STEF method, are explored. LSA to Adaptive Lasso for eigenvector

selection can be considered as a method for consistent parameter estimation, which

increases computational efficiency. Applying VIF filtering and SIS screening reduce

the number of correlated explanatory variables and eigenvectors in the model, resulting

in a parsimonious specification. Most importantly, STEF with VIF-SIS approach

conducts similar results of BHM (i.e., STCARlinear, STCARanova, and STCARar)
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yet is much more computationally efficient. Therefore, STEF can be used as a more

reliable method for modeling spatio-temporal data. However, STEF_CF_method1

does not perform well under variety of spatio-temporal autocorrelation structure, so

other STEF methods should be considered. Seasons are statistically significant factors

for temperature changes associated with perennial bioenergy crops over the east coast

of the US. Thus our models suggest that the impacts of bioenergy crops are neither

fixed in time nor fixed in space. This region shows statistically significantly different

temperature impact, modeled by WRF with alternative physics parameterizations.

The spatial confounding effect is verified at different scales and at different spatio-

temporal structures in this study. For scenario AR or RF which do not in favor

of STEF algorithm, RMSE and MAE of STEF_CF are higher while CI widths

of STEF_CF are larger, relative to STEF_NCF. Therefore, taking into account

spatial confounding (i.e., using STEF_NCF rather than STEF_CF) could not only

increase the accuracy of the estimation, but also reduce the variance inflation of

parameter estimates. STEF_ICF, on the other hand, eliminated some eigenvectors

that are strongly correlated with the fixed-effects but does not fully eliminate spatial

confounding. Hence STEF_ICF lies between STEF_CF and STEF_NCF with regard

to estimation accuracy and variance as measured by RMSE, MAE, and CI width.

The coverage rate varies across modeling method and spatio-temporal correlation

structure of data. This uncertainty of coverage rate may due to the combined effect

of bias and variance. One would expect better coverage for smalle values of σ2.

However, this is not what we observe consistently for STEF methods. Considering

the spatial confounding scenario, the variance inflated leads to CI width increases,

resulting the possibility of covering larger of range of values. On the other hand,

eigenvectors that correlated with fixed effects variables may be introduced in the

141



model, causing the estimation of fixed effects to be biased. If this bias is so large

that the wider confidence interval cannot compensate, the coverage would still be low.

When modeling with STEF_ICF, the extra step of alleviating spatial confounding

can be considered as a third effect, thus the relative order of capability of coveraging

true values among STEF_CF, STEF_NCF, and STEF_ICF differs for data with

different spatio-temporal correlation. For STCAR models, coverage do not appear

to depend on σ2 neither ; most probably this is due to small sample sizes as several

MCMC procedures do not converge.

STEF show advantage of no assumption of underlying spatio-temporal structure

and relatively simple implementation, resulting in robust parameter estimates with

high computational efficiency. STEF performs well when the spatio-temporal autocor-

relation structure is in favor of eivenvector filtering algorithm. The well performance

for EFM1 and EFMX scenario verifies that STEF is capable of capturing latent

spatio-temporal autocorrelation structure at a variety of scale, resulting more precise

estimation and coverage, especially when spatial confounding is taken into account.

With the ability of capturing latent proxy structures, STEF fits a more general spatial

temporal model, which do not depends on the assumption of covariance structure of

the data. This property prevents model to be fitted too restricted to capture the true

value. Based on our study, STEF models (especially STEF_NCF and STEF_ICF)

still perform close to STCAR models even if the spatio-temporal strucure is more

complicated . The computational time of STEF, however, is around one tenth of

STCAR. It is worth noting that STCAR models only converge in a roughly of half

of modeling over long MCMC samplings, which reduce the valid replicates in Monte

Carlo experiments. Therefore, STEF has advantage of robust estimation with low

computational burden.
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The computational burden increases when one moves from spatial to spatio-

temporal analyses. Computational times for eigenvector filtering depend largely on the

speed of eigendecomposition for large datasets. Some eigendecomposition techniques

have been utilized, such as a approximate eigendecompostion based on Nystroom

extension by Murakami and Griffith (2017). In this Chapter, eigenvector decomposition

for sparse matrix is using R funtion RSpectra is suggested, aiming to improve the

capability of STEF for analyzing larger spatio-temporal data. Computational efficiency

is also determined by Adaptive Lasso, which computational time could increase as more

variables are included in the model. Using VIF-SIS procedures within STEF_ICF,

the model is more parsimonious by excluding correlated fixed effects and eigenvectors,

thus the computational time is largely reduced.

The application result using STEF differ from the results obtained using BHM

models in Chapter 3. In particularly, the physcis parameterization are statistically

significant based on STEF, whereas not significant using BHM. Fundamentally, these

two results are not comparable as the data in different resolutions and for different

regions. For BHM modeling, a resolution of 2.5 °C over the Continental US are used,

whereas 0.5 degeree in local area (within Region 5) is of focus. Nevertheless, given

the superior in capturing spatio-temporal autocorrelation structure of data with high

efficiency, STEF could provide a more reliable result. It could be possible that STEF

show statistically nonsignificance of effect of physics parameterization over the entire

U.S., although the locally difference has been found. In fact, this discrepancy of results

indicate the need of studying by spatial varying coefficient to capture spatio-temporal

structure in local.

It is worth noting that using projection matrix M(X) to generate eigenvectors

is under the assumption that all omitted (weak) predictors are orthogonal to the
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predictors in X. Spatial correlation may arise due to omitted (weak) predictors which

are spatially correlated: this is indeed the spatial error model. The eigenvectors

included in STEF could be considered to explain the effects of omitted predictors.

However, it is possible that there exists some extra predictors should be included

in the model and they are correlated with the already included predictors. In this

case, the assumption of eigenvectors based on M(X) as omitted predictors are not

valid as these eigenvectors are orthogonal to the predictors. Therefore, STEF_ICF

first alleviates the restriction of perpendicular of predictors and eigenvectors, then

reduce the collinearity could seems as a more general way. In fact, the Monte Carlo

experiments and application all show the high accuracy and coverage of STEF_ICF

without restricted assumption of orthogonality.

Some limitations of STEF should be mentioned. For instance, the results of STEF

depend on the criteria and methods of eigenvector selection. Changing the criteria

to determine the multicolinearity or regularization approaches may cause a different

specification to capture spatio-temporal correlation, leading to a possibly different

estimates. In addition, the conclusion about computational efficiency does not take

into account the sample size of data. A thorough analysis on different scale of sample

size is needed. Lastly, this method can only be study global parameter. In this case

one would have to consider extended versions of STEF, which include interaction

terms based on fixed effects and Moran eigenvectors.
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Chapter 5

CONCLUSIONS AND DIRECTIONS FOR FURTHER WORK

The hydroclimatic impacts associated with perennial bioenergy crop expansion

over the contiguous United States, are quantified using the Weather Research and

Forecasting Model, dynamically coupled to a land surface model (LSM). A suite of

continuous (2000–09) medium-range resolution (20-km grid spacing) ensemble-based

simulations is conducted using a seasonally evolving biophysical representation of

perennial bioenergy cropping systems within the LSM based on observational data.

Deployment is carried out only over suitable abandoned and degraded farmlands to

avoid competition with existing food cropping systems.

The WRF simulation results show that near-surface cooling (locally, up to 58 °C) is

greatest during the growing season over portions of the central United States. For some

regions, principal impacts are restricted to a reduction in near-surface temperature

(e.g., eastern portions of the United States), whereas for other regions deployment

leads to soil moisture reduction in excess of 0.15–0.2 m3 m−3 during the simulated

10-yr period (e.g., western Great Plains). This reduction (25%–30% of available soil

moisture) manifests as a progressively decreasing trend over time. The large-scale

focus of this research demonstrates the long-term hydroclimatic sustainability of

large-scale deployment of perennial bioenergy crops across the continental United

States, revealing potential hot spots of suitable deployment and regions to avoid.

Hovmöller and Taylor diagrams are utilized to evaluate simulated temperature

and precipitation. Using this technique, a quantitative analysis of model performance

is conducted. The best and least skilled physics parametrizations are selected for
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bioenergy crop expansion simulations. In addition, Mann–Kendall modified trend

tests and Sieve-bootstrap trend tests are used to evaluate the statistical significance

of trends in soil moisture differences. These two types of tests show consistent

results of statistically significant decreasing trends in soil moisture. Based on the

aforementioned analysis, potential hot spots of suitable deployment and regions to

avoid are determined.

Besides explanatory analysis of model performance, the robustness of WRF simula-

tions to alternative physics parametrizations is evaluated using Bayesian Hierarchical

spatio-temporal models. Specifications with spatially varying intercepts and slopes

can offer a satisfactory description of the spatio-temporal dependence structure of the

data. Simulated impacts on temperatures due to perennial bioenergy crop expansion

are found robust to physics parameterizations: the main findings of the analysis do

not change significantly with alternative parametrizations.

Given the computational burden of BHM, a spatio-temporal eigenvectoring filtering

scheme is proposed as a computationally efficient modeling approach. Three conditions

- introducing proxy variables with, without, or with intermediate spatial confounding -

are explored. In addition, two approaches for two-step STEF are utilized. VIF-based

filtering and Sure Independence Screening can reduce the total number of eigenvectors

in the model selection procedure, resulting in more accurate estimates. The least

squares approximation to Adaptive Lasso for eigenvector selection has been used

to obtain significant eigenvectors, aiming at consistent parameter estimation and

computational efficiency. STEF has shown superior for data in accordance with the

STEF data generating mechanism. For modeling data with other spatio-temporal

autocorrelation structure, STEF_NCF and STEF_ICF are still being suggested,

as they are not very far from the best performing method. At the same time they
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do not have convergence issues and they do not take long time to converge. More

importantly, STEF_ICF alleviates the spatial confounding effects and achieves high

accuracy without endorsing the assumptions of STEF_NCF.

Future studies may extend the work presented in this thesis. For example, STEF

method proposed in this thesis can be easily extended to take into account spatially

varying coefficients, by including interactions between fixed effects and the constructed

Moran eigenvectors. However, these interactions may be colinear with the fixed effects

in the model; STEF is expected to be valuable in this situation, as problematic

eigenvectors can be removed through filtering and screening and eigenvector selection

can be more accurate and fast. This model selection procedure proposed in this study

are useful to coupled with other statistical method, i.e., quantile regression, to increase

the precision. In addition, the comparison of geographically weighted regression

(McMillen 2004) with STEF for spatio-temporal datasets should be examined. These

topics are left for future research.

With regard to the application in the analysis of outputs from regional climate

models, one is interested in evaluating whether some parametrizations dominate in

regions of the examined spatial domain and whether ensemble schemes may be created

based on such properties. STEF with spatially varying coefficients can be used to

address such research questions. In addition, STEF modeling on different scale of

regional climate models outputs should be conducted to examine different scales of

phenomenon. These topics remains to be addressed in future research efforts.
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APPENDIX A

SUPPLEMENTAL MATERIAL FOR CHAPTER 2

Figure A.1: Seasonally averaged soil moisture difference (m3 m-3) at 10-40 cm soil
depth (Perennial100_E1-Control_E1) over one decade (2000-2009) for (a) DJF,
(b) MAM, (c) JJA, and (d) SON. (e)-(h) Same as (a)-(d) but for difference of
Perennial100_E8 minus Control_E8. (i)-(l) Same as (a)-(d) but for difference of
Perennial25_E1 minus Control_E1. (m)-(p) Same as (a)-(d) but for difference of
Perennial25_E8 minus Control_E8. Red rectangles outline five sub-regions for time
series calculations.
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Figure A.2: Seasonally averaged precipitation difference (mm d-1) (Perennial100_E1-
Control_E1) over one decade (2000-2009) for (a) DJF, (b) MAM, (c) JJA, and (d)
SON. (e)-(h) Same as (a)-(d) but for difference of Perennial100_E8 minus Control_E8.
(i)-(l) Same as (a)-(d) but for difference of Perennial25_E1 minus Control_E1. (m)-
(p) Same as (a)-(d) but for difference of Perennial25_E8 minus Control_E8. Red
rectangles outline five sub-regions for time series calculations.
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Figure A.3: Annual cycle of precipitation difference (mm d-1) averaged only over grid
cells undergoing land surface modification under Perennial100 scenario (a) region 1,
(b) region 2, (c) region 3, (d) region 4 and (e) region 5. (f)-(j) Same as (a)-(e) but
under Perennial25 scenario. Green and red lines indicate averaged annual cycle of
simulated impact over decadal period using ensemble member E1 and E8, respectively.
Bands of one standard deviation above and below the mean annual cycle are shaded
with the corresponding color.
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Figure A.4: Annual cycle of net radiation difference (W m-2) averaged only over grid
cells undergoing land surface modification under Perennial100 scenario (a) region 1,
(b) region 2, (c) region 3, (d) region 4, and (e) region 5. (f)-(j) Same as (a)-(e) but
under Perennial25 scenario. Green and red lines indicate averaged annual cycle of
simulated impact over decadal period using ensemble member E1 and E8, respectively.
Bands of one standard deviation above and below the mean annual cycle are shaded
with the corresponding color.
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APPENDIX B

R CODE FOR CHAPTER 4

B.1 Data generating process for Scenario EFM1 and EFMX

rm( l i s t=l s ( ) )

source ("~/STEF_function .R")

l i b r a r y ( r a s t e r )

l i b r a r y ( ng spa t i a l )

l i b r a r y (MASS)

l i b r a r y (monomvn)

l i b r a r y ( spdep )

l i b r a r y ( o r cu t t )

l i b r a r y (CARBayesST)

l i b r a r y ( glmnet )

l i b r a r y ( parcor )

l i b r a r y ( l s a )

l i b r a r y ( g en l a s s o )

l i b r a r y (Matrix )

l i b r a r y (demogR)

l i b r a r y ( horseshoe )

l i b r a r y (CompRandFld)

l i b r a r y ( spdep )

##########################################################################

t=20 #20 time po in t s

nlon=10 #number o f l a t po in t s

n l a t=10 #number o f lon po in t s

n t o t a l=nlon ∗ n la t #number o f t o t a l p i x e l s

ntota l_st = nto t a l ∗ t #number o f t o t a l p i x e l s ∗ time

rep=50 #number o f r e p l i c a t e s o f s pa t i a l−temporal da ta s e t s

sd_val = c (0 . 001 , 1 , 10 )
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##########################################################################

#crea t e spa t i a l−temporal p i x e l s and get coo rd ina t e s

##########################################################################

#crea t e spa t i a l−temporal b r i ck

r <− br i ck ( nrow=nlat , nco l=nlon , n l=t ,xmn=0.05 , xmx=1.05 ,ymn=0.05 ,ymx=1.05)

#get coo rd ina t e s

x = coo rd ina t e s ( r )

# big X matrix in space and time

X_st_big = r e p l i c a t e ( t , x ) #lon , l a t

X_st_big_vec = apply (X_st_big , 2 , c ) #big X matrix

##########################################################################

#crea t e s p a t i a l c on t i gu i t y matrix based on p i x e l

##########################################################################

#ra s t e r to polygon

r_poly=rasterToPolygons ( r [ [ 1 ] ] , fun=NULL, n=4, na . rm=TRUE, d i g i t s =12,

d i s s o l v e=FALSE)

p lo t ( r_poly )

n1 =poly2nb ( r_poly , queen=TRUE) #Construct ne ighbours l i s t from polygon l i s t

A <− nb2mat (n1 , s t y l e="B") #Spa t i a l weights matr i ce s f o r ne ighbours l i s t s

##########################################################################

#temporal ne ighbor ing matrix

##########################################################################

A_t=odiag ( rep (1 , t−1) ,−1)+odiag ( rep (1 , t−1) , 1)

A_t_raster=r a s t e r (A_t)

extent ( A_t_raster ) = c ( 0 . 5 , 2 0 . 5 , 0 . 5 , 2 0 . 5 )

A_t_polygon=rasterToPolygons ( A_t_raster )

#########################################################################

#space−time adjacency matrix ( contemporaneous )

#########################################################################

A_contemp = kronecker ( diag (1 , t ) ,A)+kronecker (A_t, d iag (1 , n t o t a l ) )

#########################################################################

#Moran operator f o r c r e a t i n g y

#########################################################################
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#For Scenar io EFMX:

P_st = X_st_big_vec %∗% so l v e ( t (X_st_big_vec ) %∗% X_st_big_vec ) %∗%

t (X_st_big_vec )

#For Scenar io EFM1:

#P_st = rep (1 , ntota l_st )%∗%t ( rep (1 , ntota l_st ) ) / ntota l_st

P_st_orthogonal = diag ( ntota l_st )−P_st

Moran_op_contemp = P_st_orthogonal %∗% A_contemp %∗% P_st_orthogonal

eigen_Moran = e igen (Moran_op_contemp)

#check p o s i t i v e e i g enva lu e s

i s . ze ro = func t i on (x , t o l = . Machine$double . eps ^0 .5)

{abs (x ) < t o l }

e i g enva lu e s=eigen_Moran$values

maxatt = match (TRUE, sapply ( e i genva lue s , i s . z e ro ) ) − 1

p r in t (maxatt )

#e i g env e c t o r s o f Moran operator

M_contemp_positive = e igen (Moran_op_contemp) $vec to r s [ , 1 : maxatt ]

# take e i g env e c t o r s w. r . t a l l p o s i t i v e e i g enva lu e s f o r e s t imat ing

#only take the f i r s t 200 e i g env e c t o r s o f Moran operator f o r gene ra t ing data

n_M_vector = 200

M_contemp = eigen_Moran$vectors [ , 1 : n_M_vector ]

#########################################################################

#genera t ing va lue s f o r y

#########################################################################

#c o e f f i c i e n t s f o r l a t and lon

beta=c (1 , 1 )

# make va lue s 1 to 10 , with each rep 5 t imes

delta_s_values = rep ( seq (1 ,10 ) , each=5)

Y_EF_all=l i s t ( l i s t ( ) , l i s t ( ) , l i s t ( ) ) #s t o r e a l l s p a t i a l−temporal dependent

da ta s e t s

de l ta_s_al l=l i s t ( l i s t ( ) , l i s t ( ) , l i s t ( ) ) #s t o r e de l t a

f o r ( s in 1 : 3 ) { #loop f o r sigma

cat (" s = " , s , "\n")
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f o r ( r in 1 : rep ) { #loop f o r r e p l i c a t e s 50 t imes

cat (" rep = " , r , "\n")

de l ta_s_al l [ [ s ] ] [ [ r ] ] = rep (0 , n_M_vector )

l o c a t i o n = sample ( 1 : 200 , l ength ( delta_s_values ) )

de l ta_s_al l [ [ s ] ] [ [ r ] ] [ l o c a t i o n ] = delta_s_values

# spat io−temporal random component

W = M_contemp%∗%delta_s_al l [ [ s ] ] [ [ r ] ]

# s imulate obs

Y_mean=X_st_big_vec%∗%beta + W

Y_EF_all [ [ s ] ] [ [ r ] ] = mvrnorm(1 ,mu=Y_mean, Sigma=diag ( ntota l_st ) ∗ sd_val [ s ] )

}

}

B.2 Data generating process for Scenario AR

##########################################################################

t=20 #20 time po in t s

nlon=10 #number o f l a t po in t s

n l a t=10 #number o f lon po in t s

n t o t a l=nlon ∗ n la t #number o f t o t a l p i x e l s

ntota l_st = nto t a l ∗ t #number o f t o t a l p i x e l s ∗ time

rep=50 #number o f r e p l i c a t e s o f s pa t i a l−temporal da ta s e t s

sd_val = c (0 . 001 , 1 , 10 )

##########################################################################

#crea t e spa t i a l−temporal p i x e l s and get coo rd ina t e s

##########################################################################

#crea t e spa t i a l−temporal b r i ck

r <− br i ck ( nrow=nlat , nco l=nlon , n l=t ,xmn=0.05 , xmx=1.05 ,ymn=0.05 ,ymx=1.05)

#get coo rd ina t e s

x = coo rd ina t e s ( r )

# big X matrix in space and time

X_st_big = r e p l i c a t e ( t , x ) #lon , l a t

X_st_big_vec = apply (X_st_big , 2 , c ) #big X matrix rbind
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##########################################################################

#crea t e s p a t i a l c on t i gu i t y matrix based on p i x e l

##########################################################################

#ra s t e r to polygon

r_poly=rasterToPolygons ( r [ [ 1 ] ] , fun=NULL, n=4, na . rm=TRUE, d i g i t s =12,

d i s s o l v e=FALSE)

p lo t ( r_poly )

#polygon to nb

n1 =poly2nb ( r_poly , queen=TRUE) #Construct ne ighbours l i s t from polygon l i s t

A <− nb2mat (n1 , s t y l e="B") #Spa t i a l weights matr i ce s f o r ne ighbours l i s t s

##########################################################################

#temporal ne ighbor ing matrix

##########################################################################

A_t=odiag ( rep (1 , t−1) ,−1)+odiag ( rep (1 , t−1) , 1)

A_t_raster=r a s t e r (A_t)

extent ( A_t_raster ) = c ( 0 . 5 , 2 0 . 5 , 0 . 5 , 2 0 . 5 )

A_t_polygon=rasterToPolygons ( A_t_raster )

#######################################################################

# generate rho va lue s o f AR in space

#######################################################################

rho = apply (x , 1 , max) /1 .2

# c r ea t e a r a s t e r f o r rho , only f o r p l o t

rho_raster <− r [ [ 1 ] ]

rho_raster [ ] <− rho #note the d i f f e r e n t p i x e l index

#######################################################################

# generate rho va lue s o f AR in space

#######################################################################

beta=c (1 , 1 ) #de f i n e c o e f f i c i e n t s f o r x ( l a t&lon )

#########################################################################

# generate va lue s f o r y

#########################################################################

Y_AR_all=l i s t ( l i s t ( ) , l i s t ( ) , l i s t ( ) )

f o r ( s in 1 : l ength ( sd_val ) ) { # loop f o r standard dev i a t i on va lue s
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cat (" s = " , s , "\n")

f o r ( r in 1 : rep ) { #loop f o r r e p l i c a t e s 50 t imes

cat (" rep = " , r , "\n")

Y_AR_mtx=matrix (NA, nrow=ntota l , nco l=t )

f o r ( i in 1 : n t o t a l ) { #loop f o r p i x e l

cat (" p i x e l = " , i , "\n")

Y_AR_mtx[ i , ]= arima . sim (model=l i s t ( ar=rho [ i ] ) , sd=sd_val [ s ] , n=t ) #random

component

}

Y_AR_all [ [ s ] ] [ [ r ] ]=X_st_big_vec%∗%beta+as . vec to r (Y_AR_mtx)

}

}

B.3 Data generating process for Scenario RF

##########################################################################

t=20 #20 time po in t s

nlon=10 #number o f l a t po in t s

n l a t=10 #number o f lon po in t s

n t o t a l=nlon ∗ n la t #number o f t o t a l p i x e l s

ntota l_st = nto t a l ∗ t #number o f t o t a l p i x e l s ∗ time

rep=50 #number o f r e p l i c a t e s o f s pa t i a l−temporal da ta s e t s

#c r ea t e spa t i a l−temporal b r i ck

r <− br i ck ( nrow=nlat , nco l=nlon , n l=t ,xmn=0.05 , xmx=1.05 ,ymn=0.05 ,ymx=1.05)

#r a s t e r to polygon

r_poly=rasterToPolygons ( r [ [ 1 ] ] , fun=NULL, n=4, na . rm=TRUE, d i g i t s =12,

d i s s o l v e=FALSE)

p lo t ( r_poly )

####################################################################

# crea t e spat io−temporal gauss ian random f i e l d

####################################################################

# with sepa rab l e spat io−temporal process , covar i ance exp_exp

# Def ine the spa t i a l−coo rd ina t e s o f the po in t s :

x <− seq ( 0 . 1 , 1 , 0 . 1 )

y <− seq ( 0 . 1 , 1 , 0 . 1 )

# Def ine the temporal−coo rd ina t e s :

t imes <− seq (1 , t , 1) #20 years
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####################################################################

# crea t e spat io−temporal gauss ian random f i e l d

#with nonseparable spat io−temporal process , covar i ance gne i t i n g

####################################################################

#check parameter o f c o r r e l a t i o n matrix :

CorrelationParam (" gne i t i n g ") #"power_s" "power_t" " sca le_s " " sca le_t " " sep "

#de f i n e va lue s o f parameters

data_gneit ing=l i s t ( ) #s t o r e a l l s p a t i a l−temporal dependent da ta s e t s

f o r ( r in 1 : rep ) { #loop f o r r e p l i c a t e s 10 t imes

cat (" rep = " , r , "\n")

data_gneit ing [ [ r ] ] <− RFsim(x , y , times , corrmodel="gne i t i n g " , g r i d=TRUE,

param=l i s t (mean = 0 , nugget = 0 , s i l l = 1 ,

power_s = 1 ,

power_t = 1 .544 , sca le_s = 0.00134 ,

sca le_t = 0 .901 , sep = 1) ) $data

}

##########################################################################

#crea t e spa t i a l−temporal p i x e l s and get coo rd ina t e s

##########################################################################

#crea t e spa t i a l−temporal b r i ck

r <− br i ck ( nrow=nlat , nco l=nlon , n l=t ,xmn=0.05 , xmx=1.05 ,ymn=0.05 ,ymx=1.05)

#get coo rd ina t e s

x = coo rd ina t e s ( r )

# big X matrix in space and time

X_st_big = r e p l i c a t e ( t , x ) #lon , l a t

X_st_big_vec = apply (X_st_big , 2 , c ) #big X matrix rbind

##########################################################################

#crea t e s p a t i a l c on t i gu i t y matrix based on p i x e l

##########################################################################

#ra s t e r to polygon

r_poly=rasterToPolygons ( r [ [ 1 ] ] , fun=NULL, n=4, na . rm=TRUE, d i g i t s =12,

d i s s o l v e=FALSE)

p lo t ( r_poly )

#polygon to nb
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#l i b r a r y ( spdep )

n1 =poly2nb ( r_poly , queen=TRUE) #Construct ne ighbours l i s t from polygon l i s t

A <− nb2mat (n1 , s t y l e="B") #Spa t i a l weights matr i ce s f o r ne ighbours l i s t s

##########################################################################

#temporal ne ighbor ing matrix

##########################################################################

A_t=odiag ( rep (1 , t−1) ,−1)+odiag ( rep (1 , t−1) , 1)

p l o t ( r a s t e r (A_t) ) #check ne ighbor ing matrix

#########################################################################

# generate va lue s f o r y

#########################################################################

#c o e f f i c i e n t s f o r l a t and lon

beta=c (1 , 1 ) #de f i n e c o e f f i c i e n t s f o r x ( l a t&lon )

Y_RF=l i s t ( ) #s t o r e a l l s p a t i a l−temporal dependent da ta s e t s

f o r ( r in 1 : rep ) { #loop f o r r e p l i c a t e s

cat (" rep = " , r , "\n")

Y_RF[ [ r ] ]=X_st_big_vec%∗%beta + as . vec to r ( data_gneit ing [ [ r ] ] )

}

B.4 STEF algorithms

#########################################################################

#space−time adjacency matrix ( contemporaneous )

A_contemp = kronecker ( diag (1 , t ) ,A)+kronecker (A_t, d iag (1 , n t o t a l ) )

########################################################################

#For method NCF

#########################################################################

#Moran operator

#########################################################################

P_st = X_st_big_vec %∗% so l v e ( t (X_st_big_vec ) %∗% X_st_big_vec ) %∗%

t (X_st_big_vec )

P_st = rep (1 , ntota l_st )%∗%t ( rep (1 , ntota l_st ) ) / ntota l_st
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P_st_orthogonal = diag ( ntota l_st )−P_st

Moran_op_contemp = P_st_orthogonal %∗% A_contemp %∗% P_st_orthogonal

eigen_Moran = e igen (Moran_op_contemp)

#check p o s i t i v e e i g enva lu e s

i s . ze ro = func t i on (x , t o l = . Machine$double . eps ^0 .5)

{abs (x ) < t o l }

e i g enva lu e s=eigen_Moran$values

maxatt = match (TRUE, sapply ( e i genva lue s , i s . z e ro ) ) − 1

p r in t (maxatt )

#e i g env e c t o r s o f Moran operator

M_contemp_positive = eigen_Moran$vectors [ , 1 : maxatt ]

# take e i g env e c t o r s w. r . t a l l p o s i t i v e e i g enva lu e s f o r e s t imat ing

# des ign matrix o f l a t , lon , e i g env e c t o r s

X_design_contemp = cbind (X_st_big_vec , M_contemp_positive )

#########################################################################

#For method CF

#########################################################################

#Moran operator

#########################################################################

P_st = rep (1 , ntota l_st )%∗%t ( rep (1 , ntota l_st ) ) / ntota l_st

P_st_orthogonal = diag ( ntota l_st )−P_st

Moran_op_contemp = P_st_orthogonal %∗% A_contemp %∗% P_st_orthogonal

eigen_Moran = e igen (Moran_op_contemp)

#check p o s i t i v e e i g enva lu e s

i s . ze ro = func t i on (x , t o l = . Machine$double . eps ^0 .5)

{abs (x ) < t o l }

e i g enva lu e s=eigen_Moran$values

maxatt = match (TRUE, sapply ( e i genva lue s , i s . z e ro ) ) − 1

p r in t (maxatt )

#e i g env e c t o r s o f Moran operator
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M_contemp_positive = eigen_Moran$vectors [ , 1 : maxatt ]

# take e i g env e c t o r s w. r . t a l l p o s i t i v e e i g enva lu e s f o r e s t imat ing

# des ign matrix o f l a t , lon , e i g env e c t o r s

X_design_contemp = cbind (X_st_big_vec , M_contemp_positive )

#########################################################################

#For method ICF

#########################################################################

#Moran operator

#########################################################################

P_st = rep (1 , ntota l_st )%∗%t ( rep (1 , ntota l_st ) ) / ntota l_st

P_st_orthogonal = diag ( ntota l_st )−P_st

Moran_op_contemp = P_st_orthogonal %∗% A_contemp %∗% P_st_orthogonal

eigen_Moran = e igen (Moran_op_contemp)

#######################################################################

#take a l l e i g env e c t o r s

M_contemp = eigen_Moran$vectors

# des ign matrix o f l a t , lon , e i g env e c t o r s

X_design_contemp = cbind (X_st_big_vec ,M_contemp)

####################################################################

# apply VIF on explanatory v a r i a b l e s

####################################################################

X_st_big_vec_Xvif = vi f_func (X_st_big_vec , thresh=10, t r a c e=T)

####################################################################

# apply VIF on e i g env e c t o r s

####################################################################

M_contemp_VIF = STEF_vif_func ( in_frame = M_contemp , X = X_st_big_vec_Xvif )

####################################################################

#apply SIS

####################################################################
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proc_time_SIS = l i s t ( l i s t ( ) , l i s t ( ) , l i s t ( ) )

M_contemp_VIF_SIS = l i s t ( l i s t ( ) , l i s t ( ) , l i s t ( ) )

M_contemp_VIF_SIS_eff = l i s t ( l i s t ( ) , l i s t ( ) , l i s t ( ) )

d = c e i l i n g ( ntota l_st / log ( ntota l_st ) )

d_eff = l i s t ( l i s t ( ) , l i s t ( ) , l i s t ( ) )

f o r ( s in 1 : l ength ( sd_val ) ) { # loop f o r standard dev i a t i on va lue s

cat (" s = " , s , "\n")

f o r ( r in 1 : rep ) { #loop f o r r e p l i c a t e s

cat (" rep = " , r , "\n")

co r_re su l t =

cbind ( 1 : dim(M_contemp_VIF [ [ 1 ] ] ) [ 2 ] , cor (M_contemp_VIF [ [ 1 ] ] , Y_EF_all [ [ s ] ] [ [ r ] ] ) )

cor_resu lt_order = cor_re su l t [ order ( co r_re su l t [ , 2 ] , d e c r ea s ing=TRUE) , ]

M_contemp_VIF_SIS [ [ s ] ] [ [ r ] ] = M_contemp_VIF [ [ 1 ] ] [ , cor_resu l t_order [ 1 : d ] ]

#get e f f e c t i v e sample s i z e

r e s = lm(Y_EF_all [ [ s ] ] [ [ r ] ] ~ X_st_big_vec_Xvif−1) $ r e s i d u a l s # get r e s i d u a l s

reg_vi f = STEF_VIF( lm( r e s~M_contemp_VIF_SIS [ [ s ] ] [ [ r ] ]−1) )

nto ta l_st_e f f = 1/ reg_vi f ∗ ntota l_st

#get number o f s e l e c t e d e i g env e c t o r s by SIS

d_eff [ [ s ] ] [ [ r ] ] = c e i l i n g ( ntota l_st_e f f / l og ( nto ta l_st_e f f ) )

M_contemp_VIF_SIS_eff [ [ s ] ] [ [ r ] ] =

M_contemp_VIF [ [ 1 ] ] [ , cor_resu lt_order [ 1 : d_eff [ [ s ] ] [ [ r ] ] , 1 ] ]

}

}

B.5 STEF functions

source ("LSA.R")

#######################################################################

#ca l c u l a t e VIF

#######################################################################
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STEF_VIF = func t i on (X)

{

# X i s a lm ob j e c t

1/(1 − summary(X) $r . squared )

}

###########################################################################

# VIF f i l t e r i n g f o r exp lanatory v a r i a b l e s

#i t app l i ed a s t epwi s e procedure to remove p r ed i c t o r s

###########################################################################

vif_func<−f unc t i on ( in_frame , thresh=10, t r a c e=T) {

in_frame = X_st_big_vec

r e qu i r e ( fmsb )

i f ( c l a s s ( in_frame ) != "data . frame ") in_frame<−data . frame ( in_frame )

#get i n i t i a l v i f va lue f o r a l l comparisons o f v a r i a b l e s

v i f_ in i t <−NULL

f o r ( va l in names ( in_frame ) ) {

form_in<−formula ( paste ( val , " ~ . " ) )

v i f_ in i t <−rbind ( v i f_ in i t , c ( val , VIF( lm( form_in , data=in_frame ) ) ) )

}

vif_max<−max( as . numeric ( v i f_ i n i t [ , 2 ] ) )

i f ( vif_max < thresh ) {

i f ( t r a c e==T){ #pr in t output o f each i t e r a t i o n

prmatrix ( v i f_ in i t , c o l l a b=c (" var " ," v i f ") , rowlab=rep ("" , nrow ( v i f_ i n i t ) ) , quote=F)

cat ("\n")

cat ( paste (" Al l v a r i a b l e s have VIF < " , thresh , " , max VIF

" , round ( vif_max , 2 ) , sep="") ,"\n\n")

}

re turn ( as . matrix ( in_frame ) )

}

e l s e {
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in_dat<−in_frame

#backwards s e l e c t i o n o f exp lanatory va r i ab l e s , s tops when a l l VIF va lues

are below " thresh "

whi le ( vif_max >= thresh ) {

v i f_va l s<−NULL

f o r ( va l in names ( in_dat ) ) {

form_in<−formula ( paste ( val , " ~ . " ) )

vif_add<−VIF( lm( form_in , data=in_dat ) )

v i f_va l s<−rbind ( v i f_va l s , c ( val , vif_add ) )

}

max_row<−which ( v i f_va l s [ , 2 ] == max( as . numeric ( v i f_va l s [ , 2 ] ) ) ) [ 1 ]

vif_max<−as . numeric ( v i f_va l s [max_row , 2 ] )

i f ( vif_max<thresh ) break

i f ( t r a c e==T){ #pr in t output o f each i t e r a t i o n

# th i s i s an o ld e r v e r s i on o f p r i n t . matrix

prmatrix ( v i f_va l s , c o l l a b=c (" var " ," v i f ") , rowlab=rep ("" , nrow ( v i f_va l s ) ) , quote=F)

cat ("\n")

cat (" removed : " , v i f_va l s [max_row , 1 ] , vif_max ,"\n\n")

f l u s h . con so l e ( )

}

in_dat<−in_dat [ , ! names ( in_dat ) %in% v i f_va l s [max_row , 1 ] ]

}

re turn ( as . matrix ( in_dat ) )

}

}

####################################################################
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# VIF f i l t e r i n g f o r f i l t e r i n g e i g env e c t o r s

####################################################################

STEF_vif_func<−f unc t i on ( in_frame ,X, thresh=10, t r a c e=T) {

#in_frame i s matrix o f e i g env e c t o r s ; X i s exp lanatory v a r i a b l e s

#get i n i t i a l v i f va lue f o r a l l comparisons o f v a r i a b l e s

v i f_ in i t <−NULL

f o r ( va l in 1 : dim( in_frame ) [ 2 ] ) {

t e s tda ta = cbind ( in_frame [ , va l ] ,X)

v i f_ in i t <−rbind ( v i f_ in i t , c ( val ,STEF_VIF( lm( t e s tda ta [ , 1 ] ~ t e s tda ta [ , −1 ] ) ) ) )

}

v i f_ i n i t = v i f_ i n i t [ v i f_ i n i t [ , 2 ] != Inf , ]

large_row<−which ( v i f_ i n i t [ , 2 ] >= thresh )

vif_max<−max( as . numeric ( v i f_ i n i t [ , 2 ] ) )

i f ( vif_max < thresh ) {

i f ( t r a c e==T){ #pr in t output o f each i t e r a t i o n

prmatrix ( v i f_ in i t , c o l l a b=c (" var " ," v i f ") , rowlab=rep ("" , nrow ( v i f_ i n i t ) ) , quote=F)

cat ("\n")

cat ( paste (" Al l v a r i a b l e s have VIF < " , thresh , " , max VIF

" , round ( vif_max , 2 ) , sep="") ,"\n\n")

}

in_dat = in_frame

}

e l s e {

in_dat<−in_dat [ ,− large_row ]

}

re turn ( l i s t ( in_dat , large_row , v i f_ i n i t ) )

}

####################################################################

#method 1

####################################################################

#func t i on
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STEF_method1 = func t i on (Y,X, M_contemp_positive ) {

#d i r e c t LSA, r e g r e s s y on x & a l l e i g env e c t o r s

X_design_contemp = cbind (X, M_contemp_positive )

lm_out <− lm(Y ~ X_design_contemp−1)

lsa_out <− l s a ( lm_out )

lsa_coef_aic<−as . numeric ( lsa_out$beta . a i c )

lsa_coef_bic<−as . numeric ( lsa_out$beta . b i c )

#a i c

#get s e l e c t e d e i g env e c t o r s

nonzero_aic = as . matrix (M_contemp_positive ) [ , ( l sa_coe f_aic [−c (1 , 2 ) ] !=0) ]

#des ign matrix i n c l ud ing x and s e l e c t e d e i g env e c t o r s

X_nonzero_aic = cbind (X, nonzero_aic )

#r e g r e s s y on x & s e l e c t e d e i g env e c t o r s

lm_out_final_aic <− lm(Y ~ X_nonzero_aic −1)

#bic

#get s e l e c t e d e i g env e c t o r s

nonzero_bic = as . matrix (M_contemp_positive ) [ , ( l sa_coef_bic [−c (1 , 2 ) ] !=0) ]

#des ign matrix i n c l ud ing x and s e l e c t e d e i g env e c t o r s

X_nonzero_bic = cbind (X, nonzero_bic )

#r e g r e s s y on x & s e l e c t e d e i g env e c t o r s

lm_out_final_bic <− lm(Y ~ X_nonzero_bic −1)

r e t u rn_ l i s t = l i s t ( lm_out , lsa_out , l sa_coef_aic , l sa_coef_bic ,

nonzero_aic , X_nonzero_aic , lm_out_final_aic ,

nonzero_bic , X_nonzero_bic , lm_out_final_bic ,

proc_time_STEF)

names ( r e t u rn_ l i s t ) = c (" lm_out" ," lsa_out " ," l sa_coe f_aic " ," l sa_coef_bic " ,

" nonzero_aic " ,"X_nonzero_aic " ," lm_out_final_aic " ,

"nonzero_bic " ,"X_nonzero_bic " ," lm_out_final_bic ")

re turn ( r e t u rn_ l i s t )

}
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####################################################################

#method 2

####################################################################

#func t i on

STEF_method2 = func t i on (Y,X, M_contemp_positive ) {

#stage 1 : convent iona l r e g r e s s i o n o f y with l a t l on , get r e s i d u a l s

lm_res idual=lm(Y~X−1) $ r e s i d u a l s

# l s a on r e s i d u a l s

lm_residual_out <− lm( lm_res idual ~ M_contemp_positive −1)

lsa_out <− l s a ( lm_residual_out )

#s e l e c t e i g env e c t o r s

nonzero_aic<−M_contemp_positive [ , ( l sa_out$beta . a i c !=0) ]

nonzero_bic<−M_contemp_positive [ , ( l sa_out$beta . b i c !=0) ]

# stage 2 : re−es t imate co e f o f x

X_design_final_aic = cbind (X, nonzero_aic )

X_design_final_bic = cbind (X, nonzero_bic )

lm_out_final_aic=lm(Y~X_design_final_aic −1)

lm_out_final_bic=lm(Y~X_design_final_bic −1)

r e t u rn_ l i s t = l i s t ( lm_residual , lm_residual_out , lsa_out ,

nonzero_aic , nonzero_bic ,

X_design_final_aic , X_design_final_bic ,

lm_out_final_aic , lm_out_final_bic ,

proc_time_STEF)

names ( r e t u rn_ l i s t ) = c (" lm_res idual " ," lm_residual_out " ," lsa_out " ,

" nonzero_aic " ," nonzero_bic " ,

"X_design_final_aic " ," X_design_final_bic " ,

" lm_out_final_aic " ," lm_out_final_bic ")

re turn ( r e t u rn_ l i s t )

}

B.6 STEF functions

source ("LSA.R")
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#######################################################################

#ca l c u l a t e VIF

#######################################################################

STEF_VIF = func t i on (X)

{

# X i s a lm ob j e c t

1/(1 − summary(X) $r . squared )

}

###########################################################################

# VIF f i l t e r i n g f o r exp lanatory v a r i a b l e s

#i t app l i ed a s t epwi s e procedure to remove p r ed i c t o r s

###########################################################################

vif_func<−f unc t i on ( in_frame , thresh=10, t r a c e=T) {

in_frame = X_st_big_vec

r e qu i r e ( fmsb )

i f ( c l a s s ( in_frame ) != "data . frame ") in_frame<−data . frame ( in_frame )

#get i n i t i a l v i f va lue f o r a l l comparisons o f v a r i a b l e s

v i f_ in i t <−NULL

f o r ( va l in names ( in_frame ) ) {

form_in<−formula ( paste ( val , " ~ . " ) )

v i f_ in i t <−rbind ( v i f_ in i t , c ( val , VIF( lm( form_in , data=in_frame ) ) ) )

}

vif_max<−max( as . numeric ( v i f_ i n i t [ , 2 ] ) )

i f ( vif_max < thresh ) {

i f ( t r a c e==T){ #pr in t output o f each i t e r a t i o n

prmatrix ( v i f_ in i t , c o l l a b=c (" var " ," v i f ") , rowlab=rep ("" , nrow ( v i f_ i n i t ) ) , quote=F)

cat ("\n")

cat ( paste (" Al l v a r i a b l e s have VIF < " , thresh , " , max VIF

" , round ( vif_max , 2 ) , sep="") ,"\n\n")

}

re turn ( as . matrix ( in_frame ) )

}

184



e l s e {

in_dat<−in_frame

#backwards s e l e c t i o n o f exp lanatory va r i ab l e s , s tops when a l l VIF va lues

are below " thresh "

whi le ( vif_max >= thresh ) {

v i f_va l s<−NULL

f o r ( va l in names ( in_dat ) ) {

form_in<−formula ( paste ( val , " ~ . " ) )

vif_add<−VIF( lm( form_in , data=in_dat ) )

v i f_va l s<−rbind ( v i f_va l s , c ( val , vif_add ) )

}

max_row<−which ( v i f_va l s [ , 2 ] == max( as . numeric ( v i f_va l s [ , 2 ] ) ) ) [ 1 ]

vif_max<−as . numeric ( v i f_va l s [max_row , 2 ] )

i f ( vif_max<thresh ) break

i f ( t r a c e==T){ #pr in t output o f each i t e r a t i o n

# th i s i s an o ld e r v e r s i on o f p r i n t . matrix

prmatrix ( v i f_va l s , c o l l a b=c (" var " ," v i f ") , rowlab=rep ("" , nrow ( v i f_va l s ) ) , quote=F)

cat ("\n")

cat (" removed : " , v i f_va l s [max_row , 1 ] , vif_max ,"\n\n")

f l u s h . con so l e ( )

}

in_dat<−in_dat [ , ! names ( in_dat ) %in% v i f_va l s [max_row , 1 ] ]

}

re turn ( as . matrix ( in_dat ) )

}

}
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####################################################################

# VIF f i l t e r i n g f o r f i l t e r i n g e i g env e c t o r s

####################################################################

STEF_vif_func<−f unc t i on ( in_frame ,X, thresh=10, t r a c e=T) {

#in_frame i s matrix o f e i g env e c t o r s ; X i s exp lanatory v a r i a b l e s

#get i n i t i a l v i f va lue f o r a l l comparisons o f v a r i a b l e s

v i f_ in i t <−NULL

f o r ( va l in 1 : dim( in_frame ) [ 2 ] ) {

t e s tda ta = cbind ( in_frame [ , va l ] ,X)

v i f_ in i t <−rbind ( v i f_ in i t , c ( val ,STEF_VIF( lm( t e s tda ta [ , 1 ] ~ t e s tda ta [ , −1 ] ) ) ) )

}

v i f_ i n i t = v i f_ i n i t [ v i f_ i n i t [ , 2 ] != Inf , ]

large_row<−which ( v i f_ i n i t [ , 2 ] >= thresh )

vif_max<−max( as . numeric ( v i f_ i n i t [ , 2 ] ) )

i f ( vif_max < thresh ) {

i f ( t r a c e==T){ #pr in t output o f each i t e r a t i o n

prmatrix ( v i f_ in i t , c o l l a b=c (" var " ," v i f ") , rowlab=rep ("" , nrow ( v i f_ i n i t ) ) , quote=F)

cat ("\n")

cat ( paste (" Al l v a r i a b l e s have VIF < " , thresh , " , max VIF

" , round ( vif_max , 2 ) , sep="") ,"\n\n")

}

in_dat = in_frame

}

e l s e {

in_dat<−in_dat [ ,− large_row ]

}

re turn ( l i s t ( in_dat , large_row , v i f_ i n i t ) )

}

####################################################################
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#method 1

####################################################################

#func t i on

STEF_method1 = func t i on (Y,X, M_contemp_positive ) {

#d i r e c t LSA, r e g r e s s y on x & a l l e i g env e c t o r s

X_design_contemp = cbind (X, M_contemp_positive )

lm_out <− lm(Y ~ X_design_contemp−1)

lsa_out <− l s a ( lm_out )

lsa_coef_aic<−as . numeric ( lsa_out$beta . a i c )

lsa_coef_bic<−as . numeric ( lsa_out$beta . b i c )

#a i c

#get s e l e c t e d e i g env e c t o r s

nonzero_aic = as . matrix (M_contemp_positive ) [ , ( l sa_coe f_aic [−c (1 , 2 ) ] !=0) ]

#des ign matrix i n c l ud ing x and s e l e c t e d e i g env e c t o r s

X_nonzero_aic = cbind (X, nonzero_aic )

#r e g r e s s y on x & s e l e c t e d e i g env e c t o r s

lm_out_final_aic <− lm(Y ~ X_nonzero_aic −1)

#bic

#get s e l e c t e d e i g env e c t o r s

nonzero_bic = as . matrix (M_contemp_positive ) [ , ( l sa_coef_bic [−c (1 , 2 ) ] !=0) ]

#des ign matrix i n c l ud ing x and s e l e c t e d e i g env e c t o r s

X_nonzero_bic = cbind (X, nonzero_bic )

#r e g r e s s y on x & s e l e c t e d e i g env e c t o r s

lm_out_final_bic <− lm(Y ~ X_nonzero_bic −1)

r e t u rn_ l i s t = l i s t ( lm_out , lsa_out , l sa_coef_aic , l sa_coef_bic ,

nonzero_aic , X_nonzero_aic , lm_out_final_aic ,

nonzero_bic , X_nonzero_bic , lm_out_final_bic ,

proc_time_STEF)

names ( r e t u rn_ l i s t ) = c (" lm_out" ," lsa_out " ," l sa_coe f_aic " ," l sa_coef_bic " ,

" nonzero_aic " ,"X_nonzero_aic " ," lm_out_final_aic " ,

"nonzero_bic " ,"X_nonzero_bic " ," lm_out_final_bic ")

re turn ( r e t u rn_ l i s t )
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}

####################################################################

#method 2

####################################################################

#func t i on

STEF_method2 = func t i on (Y,X, M_contemp_positive ) {

#stage 1 : convent iona l r e g r e s s i o n o f y with l a t l on , get r e s i d u a l s

lm_res idual=lm(Y~X−1) $ r e s i d u a l s

# l s a on r e s i d u a l s

lm_residual_out <− lm( lm_res idual ~ M_contemp_positive −1)

lsa_out <− l s a ( lm_residual_out )

#s e l e c t e i g env e c t o r s

nonzero_aic<−M_contemp_positive [ , ( l sa_out$beta . a i c !=0) ]

nonzero_bic<−M_contemp_positive [ , ( l sa_out$beta . b i c !=0) ]

# stage 2 : re−es t imate co e f o f x

X_design_final_aic = cbind (X, nonzero_aic )

X_design_final_bic = cbind (X, nonzero_bic )

lm_out_final_aic=lm(Y~X_design_final_aic −1)

lm_out_final_bic=lm(Y~X_design_final_bic −1)

r e t u rn_ l i s t = l i s t ( lm_residual , lm_residual_out , lsa_out ,

nonzero_aic , nonzero_bic ,

X_design_final_aic , X_design_final_bic ,

lm_out_final_aic , lm_out_final_bic ,

proc_time_STEF)

names ( r e t u rn_ l i s t ) = c (" lm_res idual " ," lm_residual_out " ," lsa_out " ,

" nonzero_aic " ," nonzero_bic " ,

"X_design_final_aic " ," X_design_final_bic " ,

" lm_out_final_aic " ," lm_out_final_bic ")

re turn ( r e t u rn_ l i s t )

}
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