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ABSTRACT 

One of the key infrastructures of any community or facility is the energy system which 

consists of utility power plants, distributed generation technologies, and building heating 

and cooling systems. In general, there are two dimensions to “sustainability” as it applies 

to an engineered system. It needs to be designed, operated, and managed such that its 

environmental impacts and costs are minimal (energy efficient design and operation), and 

also be designed and configured in a way that it is resilient in confronting disruptions 

posed by natural, manmade, or random events. In this regard, development of quantitative 

sustainability metrics in support of decision-making relevant to design, future growth 

planning, and day-to-day operation of such systems would be of great value. In this 

study, a pragmatic performance-based sustainability assessment framework and 

quantitative indices are developed towards this end whereby sustainability goals and 

concepts can be translated and integrated into engineering practices. 

New quantitative sustainability indices are proposed to capture the energy system 

environmental impacts, economic performance, and resilience attributes, characterized by 

normalized environmental/health externalities, energy costs, and penalty costs 

respectively. A comprehensive Life Cycle Assessment is proposed which includes 

externalities due to emissions from different supply and demand-side energy systems 

specific to the regional power generation energy portfolio mix. An approach based on 

external costs, i.e. the monetized health and environmental impacts, was used to quantify 

adverse consequences associated with different energy system components. 

Further, this thesis also proposes a new performance-based method for characterizing 

and assessing resilience of multi-functional demand-side engineered systems. Through 
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modeling of system response to potential internal and external failures during different 

operational temporal periods reflective of diurnal variation in loads and services, the 

proposed methodology quantifies resilience of the system based on imposed penalty costs 

to the system stakeholders due to undelivered or interrupted services and/or non-optimal 

system performance. 

A conceptual diagram called “Sustainability Compass” is also proposed which 

facilitates communicating the assessment results and allow better decision-analysis 

through illustration of different system attributes and trade-offs between different 

alternatives. The proposed methodologies have been illustrated using end-use monitored 

data for whole year operation of a university campus energy system. 
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Chapter 1 – Introduction 

1.1 Sustainability and Sustainable Development- Definitions and Approaches 

Sustainability is a complex multifaceted concept with direct implications towards all 

activities associated with human development, and consequently, has been the focus of 

researchers from various disciplines as well as practitioners from a wide range of 

disciplines. It has gained enormous attention in a variety of fields during the past few 

decades. The numerous definitions and approaches one comes across in the published 

literature have to be viewed in the context in which they appear. The definition of 

sustainable development proposed in 1987 by the World Commission on Environment 

and Development is probably the most cited: “Development that meets the needs of the 

present without compromising the ability of future generations to meet their own needs” 

[1]. Such aspirational definitions, despite providing insight into the ultimate goal of 

sustainable development, lack one basic feature, i.e. the necessary specificity to be 

operationalized. 

In ecology, healthy endurance of biological systems over a long period of time 

requires that the system remain diverse and productive which are two critical attributes of 

such systems. This approach can suggest a more generalized definition of sustainability 

applicable to a variety of systems from different domains. The sustainability criteria need 

to be customized pertinent to the domain and its specifications tailored to a particular 

system to include those attributes which guarantee “healthy endurance of the system”. 

For example, a sustainable educational system should be more impacted, or characterized 

by, equity, diversity, etc. In this study we have defined sustainability as: 
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“Ability of a system to endure while consistently meeting requirements pertinent to 

critical aspects of the system and its surrounding environment” 

This definition is applicable to different systems as the critical aspects of different 

systems are different. Such critical aspects, hereafter referred to as “sustainability 

criteria” or “sustainability attributes”, are crucial to system endurance and should not be 

compromised. Sustainability criteria are broad categories comprised of various metrics 

(also known as indicators) capturing certain features of the system. In selecting and 

defining sustainability criteria and metrics relevant to a particular system, critical aspects 

of the system and its interactions with the surrounding environment, including both 

physical environmental and society, should be considered. Such criteria and related 

limitations would change in time, location, and system scale. For instance, “water 

consumption” would be extremely critical in a location with arid climate but not so 

important in another location with heavy rainfall. Of course, these sustainability criteria 

ought to be selected by consensus of different stakeholders and authorities, after which 

the goal would be to find solutions able to satisfy all sustainability criteria, i.e. fall within 

the desired solution space. The system stakeholders (users, owners, etc.) may prioritize 

different sustainability criteria in order to magnify or lessen their relative importance, and 

so one single “best” solution even for a relatively well defined spatial region may be a 

simplistic goal. 

In the context of energy and energy systems, there is consensus on the important 

sustainability criteria, i.e. environmental impacts, economic impacts, and social impacts, 

known as the triple bottom line. Figure 1-1 graphically represents the concept of 

sustainability for energy systems. The overlapped area or intersection of three 
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sustainability criteria denote the solution space in which system performance is able to 

satisfy all sustainability criteria. 

 
Figure 1-1- Triple bottom line: sustainability solution space 

 

1.2 Current Issues with Complex Energy Systems 

Finding a sustainable solution for the energy crisis is becoming more and more 

controversial both in terms of technical solutions as well as satisfying the perspectives of 

different stakeholders in terms of assigning acceptable environmental burden and 

economic costs. Integration of energy systems with other infrastructures, the whole 

society, and the environment introduces even higher levels of complexities which makes 

energy policy definitions and decision making extremely challenging. To overcome such 

challenges and find solutions for these “wicked” problems, a clear roadmap that can 

support sustainable development is essential. 

Much of the dialogue about sustainability and sustainable development tends to be 

largely at odds with current engineering analysis methods. Further, it is often heuristic 

and normative due to the introduction of “soft” issues such as social interactions and 

human values. Moving toward more sustainable energy systems and infrastructure 
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requires that the sustainability concept to be cast in the context of engineering practices 

and serves as a pointer to design and planning goals. In this regard, sustainability or 

sustainable performance of energy systems should be characterized using well-defined 

metrics which : (a) can capture critical features/attributes and primary  sustainability 

criteria; (b) can be aggregated into  a single (or a small few) sustainability index 

(indices); (c) can be calculated for different types of systems and facilities; (d) is based 

on data which can be gathered from monitoring, or public records or even by system 

simulation; and (e) can serve as a means to compare  different systems and design 

alternatives. Such multi-dimensional traits should be able to capture the tradeoffs 

associated with different development paths, design alternatives, and planning options, 

and thereby facilitate and support multi-criteria decision making. 

On the other hand, with the current technological and market barriers, fossil fuels will 

be in use for several decades into the future and cannot be immediately replaced by 

renewables. Therefore, ranking different power generation facilities may not provide 

useful insight for a sustainable energy infrastructure unless a longer time timeframe is 

considered during the analysis. Environmental impacts of electricity depend heavily on 

the energy portfolio mix. The fuel mix varies across utility companies and also changes 

over time (seasonally and hourly) since it  is dictated by the magnitude and variability of 

the loads to be met, the costs and availability of primary resources and the specific mix of 

power plant generation units [2]. In addition, similar types of power generation facilities 

would have different emission rates due to utilization of emission control strategies; 

consequently, environmental impacts assessment of energy systems, and essentially the 

sustainability assessment frameworks, would be case-specific and multidimensional. 
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1.3 Research Gaps and Objectives of This Study 

There are two dimensions to “sustainability” as it applies to an energy system. It needs 

to be: (a) designed, operated, managed, and supported in such a manner that its 

environmental impacts and costs are minimal- this is the concept of energy efficient 

design and operation; and (b) designed such that it is robust to disruptions and shocks 

posed by natural, manmade, or random events and, if possible, can dynamically transform 

and adapt, and be able to recover and deal with the aftermaths; these capabilities are 

generally referred to as “resilience”. Increased complexity of urban infrastructure 

systems on one hand, and more severe and more frequent natural disasters due to global 

climate change on the other hand, have forced researchers to consider resilience as an 

important and integral element of sustainability assessment of energy infrastructure and 

systems Therefore, sustainability criteria should explicitly include  environmental, 

economic, and resilience considerations of any  energy system, be it at an individual 

building level, at community scale, and at regional scale. 

This study will attempt to provide a more practical and general working definition of 

sustainable energy systems that includes criteria and metrics which capture all critical 

aspects of energy systems farmed in such a manner that it can be adopted in engineering 

design and planning practices. In other words, instead of common metrics and objective 

functions (usually maximizing system financial performance), this thesis is aimed at 

adapting sustainability criteria into the engineering practices. This would help designers, 

developers, and planners make informed and sustainability-conscious decisions 

accounting for different system attributes and acknowledging different perspectives 

regarding design of new systems, operation of existing ones, and planning for future 
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growth. To achieve this goal, a new quantitative sustainability assessment framework and 

indices have been developed which is described and illustrated in this thesis. 

In this research, in addition to the sustainability assessment framework itself, new 

methodologies have been developed for assessment and quantification of location and 

circumstance-specific environmental impacts and resilience performance of energy 

systems. The scope of this study is limited to community scale energy systems which 

have a well-defined central authority wherein policy decisions regarding social practices 

and engineering systems are easier to implement. At point of use, community-scale 

energy systems, including energy inputs from utilities (in the form of electricity and fuel), 

distributed power generation technologies, and building heating and cooling systems, are 

crucial in achieving sustainable development due to involvement of end-use  consumers 

on one hand [3], and their large contribution in the world’s energy use and GHG 

emissions on the other hand (according to [4] in 2017, 40% of total U.S. primary energy 

consumption was for residential and commercial buildings). 

1.4 Thesis Structure 

The thesis is primarily concerned with integrated energy systems which comprise of 

utility power plants, distributed generation technologies, and building heating and cooling 

systems. Hence, typical end-uses will be electricity loads, and heating and cooling 

thermal loads. Chapter 2 will provide a detailed description of how to assess 

environmental impacts of energy systems through a comprehensive life cycle assessment. 

Chapter 3 addresses resilience of energy systems which is as an important and integral 

sustainability criterion pertinent to energy systems, and describes and illustrates a way by 

which it can be quantified and incorporated into the whole framework. Chapter 4 
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considers the applicability of the proposed framework in designing, planning, and 

operating the energy systems and how the framework can support decision making with 

regard to sustainable development. Finally, a summary of this research study along with 

possible extensions are presented in chapter 5. Chapter 2, 3, and 4 have been written as 

three journal papers (all of which have been submitted to a engineering journal). 
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Chapter 2 – A Methodology to Assess Location-Specific Environmental Externalities 

Abstract 

A community scale integrated energy system (IES), which consists of utility power 

plants, distributed generation systems, and building heating and cooling systems, is a key 

element of any community or facility. Development of quantitative sustainability metrics 

in support of decision-analysis relevant to design, future growth planning and day-to-day 

operation of such systems would be of great value. This paper addresses one of the basic 

issues in this regard, i.e. quantification of location-specific environmental and health 

effects attributable to IES. This paper proposes a pragmatic methodology towards this 

end that incorporates Life Cycle Assessment which considers emission rates from 

different supply and demand-side energy systems, accounting for regional power 

generation energy portfolio mix. External cost approach, i.e. the monetized adverse 

health and environmental impacts, was used to quantify impacts associated with utility 

scale power generation, solar photovoltaics (PV) manufacturing, transportation, and 

installation, as well as those associated with the operation of combined heat and power 

(CHP) systems, boilers, and chillers. Uncertainties associated with various numerical 

inputs to this analysis are large, and the Monte Carlo approach is adopted to quantify 

their propagation into the final results. The proposed methodology has been illustrated 

using end-use monitored data for a whole year of operation of a university campus IES 

with a CHP system and large solar PV penetration. We found average external costs of 

purchased electricity, specific to the local power utility fuel mix, to be about 1.93 ¢/kWh, 

with minimal diurnal and seasonal variations, while the power generated by the PV 

systems are four times less detrimental. Accounting for recovered heat, the externalities 
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associated with the CHP system (which has a total efficiency of 71%) are of the same 

order of magnitude as those associated with the purchased electricity. External cost of 

heating generated by on-site boilers are estimated to be 6.7 $/GJ. These values can be 

effectively used by planner and operators to make sustainable-conscious decisions 

regarding design, expansion, and operation of integrated energy systems. 

Nomenclature 

EF_E  Emission factor (kg/MWh, kg/MW) from electricity generation 

EF_O  Emission factor (kg/MWh, kg/MW) from systems operation 

EF_M  Emission factor (kg/MWh, kg/MW) from systems manufacturing 

ExC  External costs ($, $/kg, ¢/kWh, $/GJ) 

FuCo  Cumulative fuel energy consumption (kJ) 

HC  Heat content of the fuel (kJ/m3) 

i  Pollutant index 

j  System index 

PuEl  Purchased electricity (MWh) 

SysCap System Capacity (MW) 

t  time (hr) 

TH  Time horizon (years) 

T&Dloss Electricity transmission and   distribution loss fraction 

𝜎𝜎                     Standard deviation 

 
Subscripts 
PE  Purchased electricity 

SO  System operation 
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SM  System manufacturing 

T  Total 

2.1 Introduction 

Meeting the energy needs of mankind imposes huge burdens on both society and the 

environment in the form of externalities, which are typically not accounted for either by 

energy providers or by consumers. Price tags of monetized externalities, referred to as 

external costs, are representative of the amount of money that should be spent to either 

offset the pollutant emissions or to deal with the associated adverse consequences. Just 

the health-related external damages of burning fossil fuels in the U.S. are estimated to be 

about $120 billion per year and said to result in 20,000 premature deaths each year [5]. 

Hohmeyer, in 1988, conducted one of the very first studies [6] on external costs of 

fossil fuels power generation using pollutant damages estimated by Wicke [7]. Since 

then, the external costs of various power generation sources have been examined 

extensively and in more depth. Rabl and Rabl estimated externalities of nuclear power 

generation inclusive of the frequency of nuclear accidents and compared them with 

external costs associated with wind plus NGCC (natural gas combined cycle) power 

generation which is an alternative with lowest external costs; they found that the external 

damages of the latter to be 1.22 €cent /kWh which was found to be higher than that of 

nuclear power (0.79 €cent /kWh) [8]. Rabl and Spadaro performed a life cycle 

assessment to evaluate the power generation externalities throughout the lifecycle of 

various power generation technologies in Europe for the purpose of environmental 

policies development; they found that coal power generation results in average external 

costs around 6.7 €cent /kWh, while wind energy external cost is only 0.18 €cent /kWh 
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[9]. The U.S. National Research Council (NRC) committee studied external costs of 

power generation and transportation from particulate matter (PM), sulfur dioxide (SO2), 

and nitrogen oxide (NOx), over the entire lifecycle of conventional power generation 

facilities and of transportation across the U.S.; they found that the mean damages 

associated with electricity generation from coal were 3.2 ¢/kWh (5th percentile < 0.5 

¢/kWh and 95th percentile > 12 ¢/kWh). On the other hand,  mean damages from natural-

gas-fired power plants were estimated to be 0.16 ¢/kWh (5th percentile < 0.05 ¢/kWh and 

95th percentile = 1 ¢/kWh) [10].  

Numerous in-depth studies focusing on individual energy/power technologies provide 

valuable insights in evaluation of associated environmental impacts. For example, Corona 

et al. investigated life cycle externalities of concentrating solar power (CSP) plants 

(parabolic troughs) in both basic and hybrid modes, and concluded that hybridizing CSP 

with natural gas will result in rapid increase in environmental damages from 2 €/MWh, 

from the solar-only mode, to around 13 €/MWh from the 30% Natural Gas mode [11]. 

Mattmann et al. focused on valuation of both positive and negative externalities 

associated with hydropower electricity generation from previously published studies and 

identified avoidance of greenhouse gas emissions as the main positive externality of the 

hydropower generation given the share of the hydropower in national energy production 

[12]. Zhang et al. evaluated and compared the externalities of small and large scale 

hydropower projects in China and found that the hydropower potentials to offset the 

GHG emissions have been overestimated as the externalities due to reservoir 

impoundment and occupation are overlooked [13]. Hacatoglu et al. assessed and 

compared GHG emissions, ozone-depleting substance emissions of wind-battery systems 
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and gas-fired technologies finding that wind-battery would emit 78% less ozone-

depleting substances and 87% less GHG [14]. 

The traditional remedy, in order to overcome market failures to appropriately consider 

and price such externalities, is government interventions in the form of taxes or tradable 

permits [10]. Using ExternE project results, Krewitt pointed out that the uncertainties of 

external costs estimates is a barrier to proper internalization of externalities [15]. 

Georgakellos evaluated effects of internalizing greenhouse-related external costs with 

electricity price generated in thermal power plants in Greece and found that this would 

increase the power generation costs by more than 52% [16].  Kosugi et al. studied the 

externalities of major global environmental issues and the effects of internalizing such 

impacts on economic growth [17]; they found that global warming is likely to account for 

10% to 40% of total environmental externalities in the 21st century. 

Analysis and comparison of the external costs associated with various energy 

resources would provide valuable insights into some of the controversies surrounding 

energy and sustainability. Owen investigated the effects of environmental externalities of 

renewable and conventional energy technologies on penetration of renewables, and 

concluded that such externalities, if internalized into the price of the electricity, could 

lead to wind and some application of biomass power generation technologies becoming 

economically competitive with coal-based power generation [18]. In addition, external 

costs estimation can be incorporated into quantitative sustainability assessment of energy 

infrastructure and system such as those proposed by Moslehi and Arababadi [19], Afgan 

et al. [20], and Evans et al. [21]. Furthermore, external costs can be considered to be a 

decision criterion in energy systems design and development both in supply and demand 



 

  

 13 

sides. For example, Diakoulaki et al. evaluated the energy-related externalities of two 

industrial units so as to compare different pollution abatement policies [22]; they found 

that substitution of fuel oil with Natural Gas could lead to 90% reduction in 

environmental damages and is by far the most effective strategy compared to “increasing 

the stack height” and  “relocating the facilities hundreds of kilometers far form the urban 

area”. Anastaselos et al. evaluated environmental performance of numerous energy 

systems commonly used in Greek residential buildings, focusing on production, disposal 

and transportation of the materials used in those energy systems; they found that a 

Natural Gas-fired boiler with floor heating and evacuated tube solar collector or poly-Si 

PV system would have the least environmental impacts [23]. Gaterell and McEvoy 

investigated the impacts of external costs and associated uncertainties on relative 

performance of insulation measures applied to number of residential houses and found 

that large variations in the external costs have significant impact on the cost-effectiveness 

of such energy conservation measures [24]. 

In order to address environmental challenges pertinent to energy systems, aggregated 

sustainability goals have to be translated to community level targets to be met by energy 

systems designers, developers, and operators [25]; however,  we contend that studies 

carried out with focus on energy-related externalities are limited to aggregated levels, i.e. 

to utility scale power generation (such as done in [8,12,26,27]). Therefore, the current 

study aims to bridge the gap between generic pathways and specific products by 

evaluating and quantifying the environmental and health externalities associated with 

community scale energy systems taking an Life Cycle Assessment (LCA) approach. We 

shall identify environmental and health impacts over the lifecycle of the system 
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components, which includes utility power generation facilities, distributed on-site power 

generation systems, and building heating and cooling equipment. Externalities of 

different sources and systems shall be estimated using external cost values associated 

with pollutant emissions. Hourly and seasonal variations in pollutant emissions due to 

changes in the power generation fuel mix shall be considered; to the best of our 

knowledge, there is only one published study that accounts for temporal variations in the 

power generation carbon footprint [28]. The proposed methodology will facilitate real-

time sustainable operation of energy systems in terms of dynamic/active building load 

management and optimal control and operation of integrated energy systems (IES)which 

would be of great importance as buildings operation corresponds to significant portion of 

total environmental impacts throughout life cycle of the building [29,30]. It will also 

allow evaluations into future system expansion and re-design options in terms of 

sustainability considerations 

2.2 Methodology 

Evaluating environmental and health impacts associated with a community IES 

requires a comprehensive LCA of each and every energy system and energy carrier. Such 

analysis would ideally include all life stages of energy technologies starting from material 

extraction and fuel mining, to construction of required infrastructure, fuels processing, 

power generation, distribution and transmission, for both utility and on-site energy 

system components.  

2.2.1 Life Cycle Assessment 

An extensive LCA is required to estimate the emissions associated with a community 

scale IES over its lifecycle. According to ISO 14040 standard [31], an LCA study is 
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comprised of four steps: goal and scope definition, life cycle inventory (LCI), life cycle 

impacts assessment (LCIA), and results interpretation. Each of theses steps are discussed 

in more detail and adopted to the scope of our analysis. 

(a) Goal and Scope Definition: This step includes defining goals and scopes of the 

LCA study, identifying systems boundaries, and defining the functional unit. Regarding 

the scope of this study, this should involve assessing the environmental and health 

impacts associated with meeting the service needs of a community (ranging from one 

building to hundreds of buildings) in terms of electricity or fuel. An attributional or 

comparative LCA approach (i.e., one which is meant to evaluate two or more existing 

systems) is more appropriate to identify and compare the impacts from various existing 

energy sources and systems. Figure 2-1 depicts the life cycle of the whole system along 

with the boundaries of this LCA study. It includes explicit consideration of various stages 

in the extraction and manufacturing of raw materials needed for various types of 

components, the subsequent conversion (or core) processes needed to meet the energy 

service load of the building. Location-specific power generation technologies/fuel mix, as 

well as heating, cooling, and on-site power generation equipment need to be considered. 

The environmental and health impacts should be identified during systems operation (for 

example, burning Natural Gas (NG) in boilers for heating) including upstream effects (for 

example, processing NG), as well as for system/infrastructure manufacturing and 

construction (for example, construction of a NG-fired power plant). 

Previous studies reveal that emission rates of on-site boilers and CHP systems 

manufacturing and end-of-life stages are negligible compared to other lifecycle phases 

[32–35]. Beccali et al. performed a comprehensive life cycle assessment on chillers 
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finding that operation of electric and absorption chillers (as appose to solar-driven 

absorption chillers) is the most impactful life stage accounting for more than 96% of 

global warming potentials (GWP) and more than 98% of global energy requirement 

(GER) [36]. Therefore, manufacturing and end-of life impacts of on-site boilers, CHP 

systems and chillers are excluded from the current analysis. 

 
Figure 2-1- Scope of the LCA analysis for a typical community Integrated Energy System (IES). 

Emissions associated with each step are represent as thick arrows. 

(b) Life cycle inventory: Here, emission data should be collected for all systems and 

during their lifecycle stages that are included in the scope of analysis. The impact 

categories, i.e. damage criteria, and the reference substances should be identified such 

that most of the adverse impacts imposed on the environment and on society are 

captured. Failing to include important damage criteria would likely bias the final 

decision. 
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Instead of being exhaustive, it would be more appropriate to identify important 

damage criteria/insults pertinent to energy systems. In order to do so, the share of each 

pollutant in the total external cost of power generation had to be estimated (Figure 2-2) 

using previous studies and based on the U.S. average power generation fuel mix (taken 

from [9]). It was found that more than 95% of the total externalities of power generation 

in the U.S. can be attributed to four damage criteria, i.e. CO2, SO2, NOx, and PM2.5. 

Therefore, we have chosen to limit our assessment to include only these four damage 

criteria  

 
Figure 2-2- Contribution of different pollutants to external costs attributable to electricity 
generation in the U.S., estimated based on external costs of utility scale power generation 

technologies estimated by Dones et al. [37] 

(c) Life cycle impact assessment: This step should involve translating the pollutant 

emissions from various systems and sources, gathered in the previous step (life cycle 

inventory), into negative impacts on the environment, natural resources, human health, 

flora and fauna, building materials, and other social assets. External cost approach was 

adopted in this study in order to capture environmental and health impacts associated 

with the selected pollutant types. Such effects may include local impacts and/or global 

consequences, such as climate change. Assigning monetary costs to the impacts from 

CO2, SO2, NOx, and PM2.5 will enable us to aggregate them into one number which 
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reflects overall impact of a particular system or energy source. This will facilitate 

comparison among various energy sources and alternative systems. 

(d) Results Interpretation: The final step of the LCA should be to analyze the data and 

results of the assessment in order to identify life stages, systems, or resources which have 

relatively high environmental and health impacts. This can help policy/decision makers 

and designers make informed decisions regarding short-term and long-term emission 

curtailment strategies. 

2.2.2 External (Hidden) Costs 

Monetizing externalities can be done through different means depending on type of 

the impacts which can be divided into two broad groups: (a) those with market value, 

such as loss in crops or loss in work days, and (b) those with no clear market values, such 

as premature death, quality of life degradation. Assessment of health externalities is 

usually done by allocating monetary values to premature death and other health 

endpoints, loss in work days, and costs imposed to the healthcare system. The estimated 

values of health impacts vary widely in the literature depending on the population 

density, the models used to evaluate pollutant concentration and concentration-response 

function to estimate the adverse  health effects of change in a particular pollutant 

concentration [38]. The external costs and damages from different criteria air pollutants 

also vary significantly depending on the location of the emitting sources [39]. 

 A relatively simple approach to monetize adverse health effects is the use of the 

“willingness to pay” concept, abbreviated as WTP, to infer the valuation that people 

place on a particular effect. These WTP values are often determined through surveys 

[40]. 
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2.2.3 Calculating the External Costs 

The objective of this study is to evaluate the overall environmental and health impacts 

associated with supplying a community with its energy needs which include electricity, 

and heating-cooling energy. The external cost approach allows us to quantify and 

aggregate environmental and health effects of various resources and systems used to 

generate, process, and transmit the required energy. Total impacts attributed to the IES, 

𝐸𝐸𝐸𝐸𝐸𝐸𝑇𝑇, can be expressed as: 

𝐸𝐸𝐸𝐸𝐸𝐸𝑇𝑇 = 𝐸𝐸𝐸𝐸𝐸𝐸𝑃𝑃𝑃𝑃 + 𝐸𝐸𝐸𝐸𝐸𝐸𝑆𝑆𝑆𝑆 + 𝐸𝐸𝐸𝐸𝐸𝐸𝑆𝑆𝑆𝑆  (2-1)        

where 𝐸𝐸𝐸𝐸𝐸𝐸𝑃𝑃𝑃𝑃 is the external costs associated with purchased electricity generation; 

𝐸𝐸𝐸𝐸𝐸𝐸𝑆𝑆𝑆𝑆 is the external costs of on-site systems during their operation to generate electrical 

power, heating, and cooling, such as burning natural gas in a boiler or by a CHP system; 

this term also includes upstream impacts of required fuel during extraction, processing, 

and distribution. The term 𝐸𝐸𝐸𝐸𝐸𝐸𝑆𝑆𝑆𝑆 captures external costs attributable to on-site systems 

manufacturing and on-site plant constructions. Each of these terms will be explained in 

more details in this paper. Regarding the manufacturing externalities, since the lifespan 

and age of energy systems and components are different, external costs associated with 

systems and manufacturing were simply spread over the life span of the corresponding 

system neglecting time value of money. On the other hand, the uncertainties associated 

with the external cost values are much higher than the discount rates (see Table 2-1 and 

[41]), and so there is little benefit in adopting a discounted cash flow approach. 

2.2.3.1 External Costs of Purchased Electricity 

Total external cost of purchased electricity (in $) over a specified time period (say, one 

year) can be formulated as: 
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𝐸𝐸𝐸𝐸𝐸𝐸𝑃𝑃𝑃𝑃 = (1 + 𝑇𝑇&𝐷𝐷𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙). [∑ (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 ∑ (𝐸𝐸𝐸𝐸_𝐸𝐸𝑖𝑖𝑖𝑖 . 𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖)𝑖𝑖 )𝑡𝑡 ] (2-2) 

where 𝑇𝑇&𝐷𝐷𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 is the fraction of transmission and distribution electrical power losses, 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 is the total purchased electricity at time step t (say, one hour) in kWh which can be 

obtained from monitored data or from system simulations, 𝐸𝐸𝐸𝐸_𝐸𝐸𝑖𝑖𝑖𝑖 is the ith pollutant 

emission factor correspond to purchased electricity, in kg/MWh  during hour 𝑡𝑡 of the 

year, and 𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖 is external cost of the ith pollutant in $/kg. 

The electrical power generation fuel mix varies greatly across the U.S. depending on 

the electric utility provider and available resources. Such huge differences will also be 

reflected in the corresponding environmental and health impacts. Therefore, it is crucial 

to consider the fuel mix of the specific location for estimating the external costs of 

purchased electricity. 

(a) Emission Factors: The fuel/energy mix  varies by location and changes over time 

(long-term and short-term) and is dictated by costs and availability of resources and 

power plants [2]. Monthly-averaged hourly emission factors are available from National 

Renewable Energy Laboratory (NREL) [42] for different eGRID sub-regions (map can 

be found in [43]). The emission factor data on CO2, NOx, and SO2 take into account the 

utility scale facilities being used in each region (i.e. power generation fuel mix), 

electricity imports and exports across sub-regions, diurnal and seasonal changes in the 

fuel mix, and transmission and distribution losses [42]. Figure 2-3 shows the hourly CO2, 

SO2, and NOx emission factors of power generation for the AZNM (Arizona and New 

Mexico) eGRID (Emissions & Generation Resource Integrated Database) sub-region for 

four different months representative of seasonal and diurnal variations. It is evident that 

the emission rates change only slightly during a day and also throughout a year. 
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Since hourly data on emission of PM2.5 were not available, we have assumed a 

constant emission rate for this pollutant based on emission factors from each facility type, 

i.e. coal, natural gas, nuclear, etc. and power generation fuel mix specific to each eGRID 

sub-region. For example, we estimated the PM2.5 emissions rate to be 0.094 kg per MWh 

of purchased electricity in the state of Arizona (energy mix were taken from [44]). This 

would be a reasonable assumption since according to [37], health and environmental 

effects of PM2.5 emissions is a considerable portion of total damages from hydro, PV, and 

wind power plants only during the manufacturing stage. 

 
Figure 2-3- Hourly (monthly-averaged) emission factors of electricity generation for AZNM 

eGRID sub-region for CO2 (in Ton/MWh) and SO2 and NOx (in kg/MWh), reported by NREL [42] 

(b) Transmission and Distribution Losses: The U.S. average electricity losses in 

transmission and distribution grids has been estimated by Energy Information 

Administration (EIA) to be about 5% [45]. This effect is already included in the emission 

factors estimated by NREL stated in (a) above. In case the emission factor data from 
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another source excludes such losses, the term 𝑇𝑇&𝐷𝐷𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 in Eq. 2-2 can be obtained from 

[46]. 

(c) External Cost Values per Damage Criteria: In this study, we have used the 

National Research Council (NRC) report for damage values (in $/Ton) estimated for SO2, 

NOx, and PM2.5 for most of the coal and natural gas power plants across the U.S. [10]. 

The estimated damages are assembled in Table 2-1 in terms of mean, standard deviation 

and the 5th and 95th percentiles (which are helpful for subsequent uncertainty analysis). 

Note that the distribution of the pollutant damages from coal power plants are close to 

normal while those from NG-fired power plants seem to be closer to log-normal. The 

wide range of damages per pollutant criteria is mainly due to the variations in the 

population size affected by the pollution; effective height of the stack is also an 

influential factor [10].  

The NRC analysis considers the entire life cycle of each power generation technology 

whereas most other studies exclude upstream activities in the life cycle. It investigated 

emissions from 406 coal-fired power plants and 498 natural-gas-fired power plants 

considering location of each power plant, applied emission control strategies, population 

density and demographics. The analysis applied the APEEP model (Air Pollution 

Emissions Experiments and Policy) in order to link the ambient concentration of each 

pollutant to emissions from pollution sources which are then translated to damages using 

population-weighted exposure-response function in six categories, namely health 

(including premature mortality and morbidity), visibility, crop yields (major field crops), 

timber yields, building materials and recreation (limited to pollution damages to forests) 
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[10]. We chose to use this dataset due to comprehensiveness of the NRC analysis in terms 

of damages and the breadth of the pollutants source locations. 

Table 2-1- Distribution of criteria-air-pollutant damages in 2007 U.S. $/Ton from 406 coal-fired 
and 498 NG-fired power plants across the U.S. reported by NRC [10] 

  
Pollutant 

Coal-Fired Power Plants ($/Ton)  NG-Fired Power Plants ($/Ton) 

Mean 
Standard 
Deviation 

5th 
Percentile 

95th 
Percentile  Mean 

Standard 
Deviation 

5th 
Percentile 

95th 
Percentile 

SO2 5,800 2,600 1,800 11,000  13,000 29,000 1,800 44,000 
NOx 1,600 780 680 2,800  2,200 2,000 460 4,900 
PM2.5 9,500 8,300 2,600 26,000  32,000 59,000 2,600 160,000 

 

The external costs associated with global warming and climate change are usually 

reported per ton of carbon dioxide equivalent or carbon equivalent. Values found in the 

literature vary greatly depending on the assumptions of the analysis. The uncertainty 

mainly stems from unknown spatial scale and temporal horizons of the associated 

consequences. Although climate change is always regarded as a global dilemma, 

damages are, and will be, pronounced in specific locations. For example, local effects of 

extreme heat and cold conditions would affect people in mild climate who are more 

vulnerable due to human physiological adaptation. Based on different studies that have 

quantified global warming effects across the U.S., such as [47] and [39], we have 

assumed the CO2 external costs to be 30 $/Ton with a low (i.e. 5th percentile) of 10 $/Ton 

and a high (i.e. 95th percentile) of 50 $/Ton. 

2.2.3.2 External costs of System Operation (for on-site systems) 

The term 𝐸𝐸𝐸𝐸𝐸𝐸𝑆𝑆𝑆𝑆 in Eq. 2-1 accounts for external costs associated with on-site energy 

systems, such as CHPs, boilers, and chillers, meant to generate electrical power, heating, 

and cooling thermal energy streams during their operation. Such externalities are mainly 

attributable to burning fuels, typically natural gas, in boilers or CHP systems to generate 
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power and heat for domestic hot water, heating and cooling (via absorption chillers). 

Electrical equipment operation is already accounted for by the 𝐸𝐸𝐸𝐸𝐸𝐸𝑃𝑃𝑃𝑃 term. Upstream 

impacts of supplying required fuel during extraction, processing, and distribution, 

altogether referred to as pre-combustion stages, are also considered. The term 𝐸𝐸𝐸𝐸𝐸𝐸𝑆𝑆𝑆𝑆 ($) 

can be expressed as: 

𝐸𝐸𝐸𝐸𝐸𝐸𝑆𝑆𝑆𝑆 = ∑ ∑ �𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑗𝑗𝑗𝑗

𝐻𝐻𝐻𝐻𝑗𝑗
∑ 𝐸𝐸𝐸𝐸_𝑂𝑂𝑖𝑖𝑖𝑖 . 𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖 �𝑗𝑗𝑡𝑡  (2-3) 

where, 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑗𝑗𝑗𝑗 is fuel energy consumption (in Joules) of the jth system during time step 

t; 𝐸𝐸𝐸𝐸_𝑂𝑂𝑖𝑖𝑖𝑖 is the ith pollutant emission factor in kg/m3 for supplying and burning the fuel in 

the jth system; 𝐻𝐻𝐻𝐻𝑗𝑗 is the heat content of the fuel in Joules/m3 for the jth system and 𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖 

is the external damage costs of the ith pollutant in $/kg. Emission factors for combustion 

and delivering the NG to buildings are listed in Table 2-2. Heat content of the natural gas 

can be obtained from [48] for each state in the U.S separately for each year for the past 

five years. 

Table 2-2- Emission factors of supplying and burning natural gas [49] 

Pollutant 

Pre-combustion Emission 
Factors for Fuel Delivered to 

Buildings (kg/1000m3) 

NG combustion in a 
Commercial Boiler 

(kg/1000m3) 

NG combustion in 
Other Equipment 

(CHP) (kg/1000m3) 
CO2 4.46e-1 1.97e0 2.00e0 
SO2 1.95e-2 1.00e-5 1.00e-5 
NOx 2.62e-4 1.78e-3 5.62e-3 

 

2.2.3.3 External Costs in Manufacturing and Construction 

The last term in Eq. 2-1, i.e. 𝐸𝐸𝐸𝐸𝐸𝐸𝑆𝑆𝑆𝑆, accounts for the damages from on-site systems 

during manufacturing or construction stage which annualizes the external costs over the 

life span of the system. This parameter can be calculated from: 
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𝐸𝐸𝐸𝐸𝐸𝐸𝑆𝑆𝑆𝑆 = ∑ ∑ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑗𝑗.𝐸𝐸𝐸𝐸_𝑀𝑀𝑖𝑖𝑖𝑖.𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖

𝐿𝐿𝐿𝐿𝑗𝑗
𝑖𝑖𝑗𝑗 × 𝑇𝑇𝑇𝑇  (2-4) 

where, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑗𝑗 is the jth system capacity or size (in MW); 𝐸𝐸𝐸𝐸_𝑀𝑀𝑖𝑖𝑖𝑖 is the ith pollutant 

emission factor (in kg/MW) from the jth on-site system during its manufacturing or 

construction; 𝐿𝐿𝐿𝐿𝑗𝑗 is the jth system life span (in years) used to annualize the total external 

costs of system manufacturing/construction; 𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖 is the ith pollutant external cost in 

$ 𝑘𝑘𝑘𝑘⁄ , and 𝑇𝑇𝑇𝑇 is the time horizon of the analysis in years. 

For systems that do not emit any pollution during the operation phase, such as solar 

photovoltaic (PV) systems, embodied emissions have been estimated by considering 

panels manufacturing, transportation, and installation. The type of PV technology and the 

size of the installation are important factors. Solar PVs emission factors are sometimes 

reported in kg/kWh; however, it would be more accurate (and technically correct) if they 

are reported in kg/m2 or kg/kW since PV system efficiency and capacity factor would 

vary based on the location and other factors such as type of PV system mount. In this 

study, we have used the ecoinvent database to determine emission factors of solar PVs 

manufacturing and transportation [50]. 

Solar PV systems installed in the U.S. have been manufactured in different countries 

such as China, Malaysia, Mexico, Canada as well as in the U.S. Therefore, some panels 

have to be transported over long distances which might have considerable emissions and 

impacts on the environment. In this study, we have assumed marine transport for long 

distances (for instance, from China) and truck transport for shorter distances (for 

example, from Canada and Mexico). The emission factors associated with the 

transportation phase taken from various sources are gathered in Table 2-3. 



 

  

 26 

Table 2-3- Emission factors due to transportation-g/Tkm (data is taken from [50]) 
Transportation Mode CO2 NOx SO2 PM2.5 
Marine 10 0.14 0.02 0.04 
Truck 133 1.1 0.9 0.12 

In addition, installation of solar panels as well as the balance of systems (inverters and 

supporting structures and foundations), were found to be quite energy-intensive [51]. The 

embodied energy has been considered in this analysis to include the effects of solar PVs 

installation as well as the operation and maintenance effects. 

2.2.4 Uncertainty Analysis 

Evaluation of externalities involves large uncertainties in addition to the type of 

simplified models assumed. Two major sources of uncertainties associated with 

estimating the IES external costs are:  

(i) Uncertainties in emission rates for different types of pollutants: these depend 

mainly on the technology type, age and efficiency of energy systems and power plants, 

and implemented emission control devices. Since statistical data on emission rates are not 

available for all systems, we shall instead estimate total emission rates corresponding to 

purchased electricity from each individual power plant. As mentioned earlier, such data is 

provided by NREL for different regions across the U.S. in terms of average, minimum, 

maximum, and standard deviation of emission rates for CO2, NOx, and SO2 on an hourly 

basis.  

(ii) Uncertainties in damages resulting from the pollutants: results of the external 

costs analysis depend largely  on the pollution concentration model used to link 

emissions to ambient air quality, selected concentration-response functions, and the VSL 

(value of statistical life) used to monetize premature death [10]. 
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The Monte Carlo approach was adopted in this study in order to estimate the 

uncertainties in external costs associated with purchased electricity. This involves the 

following steps: 

(a) Uncertainties corresponding to emission rates of different pollutants: NREL data was 

used to generate 10,000 data points for each pollutant type using the known annual 

mean and standard deviation values. The emission rate distributions (mean values 

shown in Figure 2-3) were found to be close to normal since the reported minimum 

and maximum values were symmetrical around the mean, and the minimum and 

maximum values are very close to (𝑚𝑚𝑚𝑚𝑎𝑎𝑛𝑛 ± 3𝜎𝜎). 

(b) Uncertainties of external costs per pollutant type: data on criteria-air-pollutant 

damages reported by NRC (Table 2-1) was used to generate these distributions. Based 

on the damage percentiles, we fitted a log-normal distribution for NG-fired power 

plants and a normal distribution for coal-fired power plants (except for PM2.5 for 

which log-normal distribution was found to be a better fit). 

(c) Generation of distributions pertinent to damage values: in total, 10,000 data points for 

each pollutant type were generated. Normal distribution (assumed for coal-fired 

power plants) were used to generate 46% of the data points and the rest were 

generated using the log-normal distribution (assumed for NG-fired power plants) in 

order to be consistent with number of power plants of each type investigated by NRC 

(see part c in section 2.3.1 of this paper). 

(d) Total external costs of 1 kWh of purchased electricity: These were calculated for all 

10,000 data points using Eq. 2-2.  
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The same procedure was performed for the four selected months in order to investigate 

the seasonal changes in the mean and uncertainty bounds of the purchased electricity 

external costs. Results of this analysis are assembled in Table 2-4 in terms of percentiles, 

mean, and standard deviation of the external costs. We note that (i) the mean values are 

all close to 3 ¢/kWh and seasonal variations are not significant; and (ii) the distributions 

are right-skewed with the 5th and 95th percentiles around 1.1 ¢/kWh and 6.8 ¢/kWh 

respectively. Since the distributions are not normal, standard deviation is not a proper 

measure to characterize the distributions and thus, percentiles are shown in Table 2-4 

which are more meaningful. 

Table 2-4- Distribution of damages from generation and distribution of electricity in AZNM 
eGRID sub-region (¢/kWh) generated through Monte Carlo analysis 

 

 

 

 

Note that we have not considered the possible changes to the utility energy portfolio 

mixes across the U.S. and limited our assessment to the current situation. 

2.3 Case Study 

2.3.1 Energy System Description 

The methodology described above has been applied to IES of a university campus, 

located in Arizona, U.S., with more than 280 buildings. The entire energy system is 

extensively instrumented by an Energy Information System which collects and stores 

end-use data from various systems at 15-minute time intervals. Currently, the overall 

energy demand of the campus is met through a variety of sources ranging from electricity 

 Mean Standard 
Deviation 

5th 
Percentile 

25th 
Percentile 

50th 
Percentile 

75th 
Percentile 

95th 
Percentile 

Annual 3.00 3.67 1.06 1.70 2.29 3.06 7.02 
January 3.08 3.74 1.12 1.78 2.38 3.16 6.82 
April 3.08 3.53 1.09 1.78 2.38 3.20 7.17 
July 2.88 3.16 1.07 1.70 2.25 2.99 6.55 
Oct 3.03 4.02 1.04 1.71 2.30 3.11 6.76 
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purchases from a local power company to solar PV systems installed on several campus 

buildings and parking lots (15.5 MW total) and also from a 9 MW CHP plant. The 

cooling plant comprises of 10 centrifugal chillers each of capacity 2,000 Tons (one 

refrigeration Ton is 3.517 kW or 12,000 Btu/h), and 6 chilled water TES (Thermal 

Energy Storage) tanks each having a capacity of one million gallons of water. Solar 

panels are mostly polycrystalline and are either stationary or one-axis trackers. They are 

assumed to have an average of 1.7 m2 each across all PV systems installed. The lifetime 

of solar panels is assumed to be 25 years in order to estimate the annualized 

environmental and health impacts. Whole year of hourly monitored data on electricity 

and natural gas consumption was used in this analysis. 

2.3.2 Location-specific Damages 

It was assumed that the population density is the most important factor in assessing the 

external costs of different pollutants. In order to customize the damages from various 

pollutants, population density around each power plant owned by the local electrical 

utility provider had to be identified. Therefore, we have associated different percentiles of 

the external costs, obtained from the Monte Carlo analysis, to different tiers of population 

densities (see Table 2-5). More specifically, the 5th percentile corresponds to remote, 

sparsely populated areas while the 95th percentile to dense urban locations. Subsequently, 

we have identified the location of (and thereby the population density around) each 

power plant using the Census Bureau 2010 summary map [52], and then associated each 

power plant to the corresponding damage percentiles. Next, location-specific average of 

the damages corresponding to each pollutant criteria (rightmost column in Table 2-5) 
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were estimated by calculating the capacity-weighted average (weighted based on each 

power plant capacity) of damages for each pollutant type. 

Since locations of the utility power plants range from remote areas (with population 

density < 50 people/sq.mile) to densely populated cities (with population density > 5000 

people/sq.mile), upper and lower limits for the purchased electricity external costs were 

assumed to be equal to those estimated through the uncertainty analysis. The external cost 

value was assumed to be $30/Ton for CO2 emissions representing a global value, rather 

than a location-specific one, recognizing that such damages are considered to occur 

globally. 

Table 2-5- Pollutant damage costs ($/Ton) obtained from our Monte Carlo analysis. The 
percentiles are somewhat arbitrarily assigned to specific population densities as shown 

  Population Density (population per sq. mile) Location-
Specific 
Mean 

Values 

< 50 50 .. 500 500 .. 2500 2500 .. 5000 >5000 

Pollutant Mean 5th  

Percentile 
25th  

Percentile 
50th  

Percentile 
75th  

Percentile 
95th  

Percentile 
SO2 9,427 732 3,127 5,698 8,617 30,140 3,048 
NOx 1,902 392 1,017 1,616 2,330 4,458 818 
PM2.5 9,522 2,005 4,319 7,194 11,815 24,976 3,984 

 

The utility company power plants are mostly located in remote areas while only one 

gas-fired power plant, which contributes to 5% of the total capacity, is located in an 

urban area. Therefore, as can be seen in Table 2-5, the location-specific mean values are 

lower than those obtained from the distribution of damages across the U.S. 

2.4 Results and Discussions 

(a) Purchased electricity: External costs associated with generation and distribution of 

electricity were calculated for the whole year in hourly time steps consistent with how the 

campus energy information system stores the monitored data. Results are depicted in 

Figure 2-4 for the four selected months showing mean, 5th, and 95th percentile values. The 
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mean of estimated damage cost is found to be about 2 ¢/kWh for purchased electricity 

with the diurnal and seasonal variations being relatively minor. Uncertainty bands are 

relatively large compared to diurnal and seasonal changes. The values obtained in this 

study are consistent with values found in the literature (NRC values ranges from 0.16 to 

3.2 ¢/kWh). Maximum values can reach a high of 7.2 ¢/kWh which is obtained from the 

Monte Carlo analysis. The campus has purchased 116,841 MWh electricity from the grid 

during the investigated year which result in external costs of purchased electricity, 

𝐸𝐸𝐸𝐸𝐸𝐸𝑃𝑃𝑃𝑃, ranging from $1,235,000 to $8,198,750 (calculated based on the annual 5th and 

95th percentile of the purchased electricity external costs) with a mean of $2,250,000 over 

the course of one year. 
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Figure 2-4- Hourly variation of purchased electricity external costs for the case study campus 

Figure 2-5 illustrates the month-by-month contribution of each pollutant to the average 

external costs of purchased electricity. We note that damages corresponding to CO2 

emissions have the largest share in externalities of power generation and distribution 

(about 83.3%) followed by SO2 emissions (average of 10.3% of total externalities). NOx 

and PM2.5 related damages account for 6.4% of the total damages whereby NOx-related 



 

  

 33 

damages are twice than those from the PM2.5 emissions. Note also that the month-by-

month variation of the external costs of the individual pollutants is relatively minor 

(about ±5%). 

 
Figure 2-5- Breakdown of monthly averaged external costs of purchased electricity by pollutant 

type 

(b) NG-fired equipment: External costs associated with boilers and the CHP plant were 

estimated separately for the upstream (pre-combustion) and after combustion using the 

emission factors given in Table 2-2 and the heat content of NG for Arizona (38.2 MJ/m3). 

From the mean external costs of the CHP plant over one year of operation, it is noted that 

the upstream (pre-combustion) impacts are more severe, around $3.4 million, compared 

to burning NG in the engine which causes $1.25 million in terms of externalities (see 

Figure 2-6). It was also found that SO2 emissions during processing NG (specifically the 

sweetening step) is the most impactful stage, and can be considered to be a critical 

process. 
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Figure 2-6- Mean annual external costs of the CHP system operation 

The CHP system generated 45,908 MWh electricity and 288,725 GJ recovered heat 

over the year. Total external costs of the CHP plant were estimated to be $4.66 million 

with a minimum (5th percentile) of $0.73 million and a maximum (95th percentile) of 

$12.26 million. Figure 2-7 depicts the total external costs caused by each pollutant type 

pertinent to the CHP system along with the uncertainty bands showing the variability of 

the damage values associated with each pollutant. External costs of the SO2-eq emissions 

has the largest share among different pollutant types (due to the NG sweetening step) 

followed by damaged from CO2-eq emissions due to Methane leakage during the upstream 

processes as well as from the fuel combustion. 
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Figure 2-7- Annual external costs of the CHP system during the operation by pollutant type with 

5th and 95th percentile bands 

From Figure 2-8, the external costs of the on-site boilers serving the community, 

which generate 118,615 GJ of heating over the year, is found to be around $0.8 million. 

Therefore, the normalized external cost of the heating loads is 6.74 $/GJ. Again, pre-

combustions effects are considerable and dominated by SO2 impacts while external costs 

of fuel combustion are mainly due to CO2 emissions. 

 
Figure 2-8- Mean annual external costs of operating boilers 
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Figure 2-9 depicts the total external costs caused by each pollutant criteria pertinent to 

boilers along with the uncertainty bands. It can be seen that the NOx-related external 

costs are almost negligible compared to CO2 and SO2 related damages. 

 
Figure 2-9- Annual external costs of boilers during their operation by pollutant type with 5th and 

95th percentile bands 

The CHP system also provides heating energy besides the electrical power, and 

thereby less fuel will be consumed by the boilers. In order to account for this avoided 

external costs, we estimated the extra external costs associated with the boilers if 

recovered heat from the CHP system was not available. We found that by utilizing the 

recovered heat from the CHP systems we can avoid about $1.15 million in external costs 

which would otherwise occur from burning NG in boilers.  

(c) Solar PV Systems: As discussed earlier, pollutant emissions attributable to solar PV 

systems mostly occur during panels manufacturing, transportation and installation. The 

campus has installed 15.5 MW solar panels in 54 sites in the form of roof-mount panels 

and parking shades. Total external cost from solar PVs manufacturing was estimated 

using ecoinvent inventory database [50] which was found to be $45,200 per year 
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assuming the system lifetime to be 25 years. Figure 2-10 shows the breakdown of total 

annual external costs of solar PV panels manufacturing by pollutant type. It is observed 

that CO2 and SO2 emissions have the largest contributions to the external costs of solar 

PVs manufacturing. 

 
Figure 2-10- Total damages from PV systems manufacturing per year 

In order to evaluate the transportation effects of solar panels, we have identified 

location of manufacturing facilities for each of the 54 sites. We estimated that 13 kW 

solar panels have been shipped from Philippines, 7.03 MW from China (both assumed to 

be marine transport), 1.15 MW from Canada via truck, and the rest is assumed to be 

manufactured in the U.S. and shipped from close distances and therefore excluded from 

the analysis. Since transportation-related emissions happen once during the system 

lifetime, we have averaged the results over 25 years of the systems life span. Emission 

results can be found in Table 2-6. 
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Table 2-6- Solar panels transportation emissions and input data 
Input Data  Transportation Emissions (Ton/yr) 

Shipped 
from kW Weight 

(Ton) 
Transportation 

mode 
Distance 

(km)  CO2 NOx SO2 PM2.5 

Philippine 13 11.83 marine 12,000  5.69E-02 7.96E-04 1.14E-04 2.28E-04 
China 7034 6401 marine 10,500  2.71E+01 3.79E-01 5.41E-02 1.08E-01 
Canada 1152 1048 truck 3,500  1.86E+01 1.63E-01 1.34E-01 1.78E-02 

Then, external costs associated with these emissions have been estimated using the 5th 

percentile damage per ton of pollutant criteria (except for CO2 for which the impacts are 

somewhat global) reported by NRC [10] assuming that pollutants are emitted in remote 

areas. It was found that CO2 has the largest contribution in the external costs of both 

truck and marine transportation. Figure 2-11 depicts the normalized and annualized 

external costs of solar panels transportation. The total external costs of solar PVs 

transportation were found to be $2,300 per year which is around 5% of the manufacturing 

externalities. 

  
Figure 2-11- Normalized external costs of solar panels shipment through marine and truck 

transportation 

In addition to solar panels manufacturing and transportation, externalities associated 

with structural supports and required foundation, as well as the inverter and system 
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operation and maintenance, altogether referred as balance of system, should be included 

in the analysis. In order to evaluate such impacts, the embodied energy for the balance of 

system was estimated for each of the 54 solar systems across the campus. The embodied 

energy of the required foundation was included only for solar panels installed on parking 

structures. Total external cost of the balance of system was found to be $39,200 per year. 

Figure 2-12 shows the breakdown of the balance of system external cost.  

 
Figure 2-12- Breakdown of Solar PVs’ external costs associated with balance of system (total 

external cost is $39,200 per year) 

Therefore, results suggest that impacts associated with balance of system are in the 

same order as solar PVs manufacturing effects while external costs due to PV 

transportation are around 5% of the manufacturing related externalities. 

2.5 Summary 

Table 2-7 provides a summary of different life stages included in this analysis 

pertinent to each energy system component along with the type of the pollutants 

considered in the analysis. Manufacturing of the heating and cooling equipment was not 

included since the associated emissions were deemed negligible compared to those 

generated during the operational stages. Cooling systems are either electric-driven or 
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heat-driven (absorption chillers) which are explicitly considered in other system 

components. 

Table 2-7- Summary of the LCA analysis specifying stages and pollutants considered 

System Component 

Life Stages Analyzed  Pollutants Considered 
Construction/ 
Manufacturing 

Transp./ Transm./ 
Installation 

Operation/ 
Maintenance  CO2 SO2 NOx PM2.5 

Purchased 
Electricity 

Local 
Energy 
Mix 

Power Plants 
Construction 

Transmission and 
Distribution Losses Operation 

 
✓ ✓ ✓ ✓ 

On-site 
Generated 
Electricity 

PV Panel 
Manufacturing 

Transportation and 
Installation Maintenance  ✓ ✓ ✓ ✓ 

CHP - Transportation and 
processing of NG Operation  ✓ ✓ ✓ - 

Heating 
Systems Boilers - Transportation and 

processing of NG Operation  ✓ ✓ ✓ - 

Cooling 
Systems Chillers - - Operation  ✓ ✓ ✓ ✓ 

In order to compare the external costs associated with various electricity generation 

resources, aggregated monetary damages from available sources have been calculated 

and normalized against total electrical energy production throughout the year (Table 2-8). 

Location of the pollutant sources were considered resulting in more realistic evaluation of 

the damages. In this regard, the location-specific mean damage values, listed in Table 

2-5, were used for the purchased electricity. Regarding the CHP system, since the plant is 

located on campus with a high population density, maximum damage values (the 95th 

percentile value) were assumed for SO2 and NOx emissions through the CHP operation 

while minimum (5th percentile) damage values were considered for upstream effects (NG 

extraction and processing is carried out in remote areas), and average values were used 

for both upstream and on-site CO2 emissions as the associated damages happen mostly at 

global scale. Under such assumptions, total damage values associated with the CHP 

system during one year of operation would be around $2 million. Results of the analysis 

suggest that although power generation using CHP systems might be economically 
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beneficial (where natural gas price is low), the environmental and health effects would be 

more pronounced due to the location of the emitting source. If the exhaust heat from the 

CHP system can be recovered and used effectively, boilers loading and thereby the 

external costs associated with them can be reduced. The CHP external costs without and 

with taking the effect of thermal heat recovery into consideration are 4.36 ¢/kWh and 

1.86 ¢/kWh respectively (Recall that the purchased electricity external costs are almost 2 

¢/kWh). Therefore, CHP system would be economically and environmentally beneficial 

if the generated heat can be used to offset boilers fuel consumption. 

Solar panels external costs during manufacturing, transportation and installation of the 

system have been evaluated as well. Solar PVs can provide much cleaner electricity, 

compared to utility and on-site CHP systems, for which the external costs are around only 

0.5 ¢/kWh. This information is especially useful to developers, decision and policy 

makers, and energy systems operators who are interested in minimizing the 

environmental and health effects of energy systems. 

Table 2-8- Electricity generation and associated external costs from various sources 

 

Total 
Generation 

kWh/yr 

Total 
External 

Cost- $/yr 

Normalized 
External Cost- 

¢/kWh  
Purchased electricity 116,841,250 2,250,200 1.93  
On-site solar-generated electricity 17,561,540 88,430 0.50 
On-Site CHP-generated electricity (considering 
only generated electrical power) 45,907,610 2,000,860 4.36 
On-Site CHP-generated electricity (considering 
generated electricity and heating) 45,907,610 853,554 1.86 
* with the 5th and 95th percentiles about ¢1/kWh and ¢7/kWh respectively. 

Figure 2-13 provides a summary of the external costs associated with generation and 

distribution of electricity from various sources and systems. For the studied campus, 65% 

of the total electricity needs were purchased from the grid which accounts for 70% of the 
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total external costs associated with electricity needs of the campus. Of the latter, CO2 

emissions contribute 83% followed by SO2 emissions which has a 10% share. The onsite 

CHP system supplies 25% of the total electricity consumptions of the campus while 

accounting for 27% of total damages; SO2 emissions has the biggest share (68%) in the 

externalities from the CHP system; CO2 emissions accounts for 28% and NOx contributes 

to only 4%. The on-site solar PV systems were able to supply 10% of the campus 

electricity needs while being responsible for only 3% of total damage costs. 

 
Figure 2-13- (a) Percentage of electricity supplied from and (b) Contribution of different 

sources/systems in total external costs along with share of each pollutant type 
 

Assumptions and limitations of this LCA framework includes: 

• The uncertainties associated with the damages from the pollutants are assumed to 

be derived mainly from the population density around each pollution source. 

• External costs of CO2-eq emissions are assumed to be $30/Ton with the high of 

$50/Ton and low of $10/Ton. 

• Regarding the case study CHP system impacts, 95th percentile damage values were 

assumed for emissions occurring on-site, 5th percentile damages were assumed for 

upstream fuel processing and transport, and average values are assumed for all 

CO2-eq emissions. 
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2.6 Conclusions and Future Work 

This paper proposes a pragmatic LCA methodology to quantitatively evaluate 

monetary costs of human health and environmental impacts of a specific community 

scale Integrated Energy Systems (IES) which capture the effect of real-time emissions 

from various energy systems including, utility power plants, distributed generation 

facilities, and building heating and cooling systems. The uncertainties associated with the 

results have been analyzed using the Monte Carlo techniques. The approach described in 

this paper can be integrated into design, operation, and development planning practices 

toward more sustainable engineered systems and infrastructure. 

Some of the capabilities of the proposed methodology were illustrated through a case 

study on a large university campus with more than 280 buildings. The external costs of 

electricity generation using on-site CHP system were found to be about 4.4 ¢/kWh 

(neglecting the recovered heat) which is considerably higher than both on-site solar 

systems (0.5 ¢/kWh) and utility-generated electricity (2 ¢/kWh). It was found that the 

amount of recovered heat plays a crucial role in external costs of a CHP system. In other 

words, the waste heat from the exhaust flue gas and from the motor jacket can be used to 

offset boilers fuel consumption by reducing their loading.  The campus CHP system has 

an overall efficiency of 71% which results in the external costs to be 1.86 ¢/kWh. 

Therefore, we can conclude that expanding the size of the CHP plant along with thermal 

heat recovery to offset the use of boilers would be a more sustainable option. 

We also evaluated the variation in external costs of utility-generated electricity at the 

hourly level under seasonal changes in the fuel mix. One of the key findings of this 

analysis is that such variations are in the range of ±5% in seasonal and about ±8% in 
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hourly changes. These diurnal and seasonal variations are much lower than the 

uncertainties associated with the externalities of purchased electricity. The average of the 

purchased electricity external costs was estimated to be around 2 ¢/kWh and the 

distribution was found to be highly skewed, with 5% and 95% being about 1 ¢/kWh to 

more than 7 ¢/kWh respectively. 

Valuation of environmental and health impacts is an inherent and intrinsic part of any 

sustainability assessment study. Logical extensions of the proposed methodology should 

involve inclusion of water systems, transportation, and building materials. The proposed 

methodology could also be extended to the broader issue of sustainability assessment of 

community scale integrated energy systems as well as of other types of engineered 

systems and infrastructures in support of decision-analysis toward sustainable 

developments. 

 

 

 

  



 

  

 45 

Chapter 3 – Sustainability of Integrated Energy Systems: A Performance-Based 

Resilience Assessment Methodology 

Abstract 

One of the key elements of any community or facility is the integrated energy system 

(IES) which consists of utility power plants, distributed generation systems, and building 

heating and cooling systems. Assessing the sustainability of an IES would be of great 

value to decision-making relevant to design, future growth planning, and operation of 

such systems. This paper addresses one of the basic issues in this regard, i.e. resilience 

assessment and quantification of IES. A new performance-based method for 

characterizing and assessing resilience of multi-functional demand-side engineered 

systems is proposed in this study. Through modeling of system response to potential 

internal and external failures (called failure modes) during different operational temporal 

periods (such as different diurnal and seasonal periods of the year), the proposed 

methodology quantifies resilience of the system based upon loss in the services which the 

system is designed to deliver. A three-dimensional matrix, called Loss Matrix, is 

introduced whose elements represent the undelivered system services under different 

scenarios, i.e. combinations of failure modes and different operational temporal periods. 

Assigning monetary penalty costs to such losses and including them in the objective 

function of an optimization model of the entire system allows the three-dimension loss 

matrix to be reframed into a two-dimensional Consequence Matrix where individual 

elements represent the imposed penalty costs to the system stakeholders due to 

undelivered services and/or non-optimal system performance. Normalizing the individual 

elements results in the Resilience Matrix of the system for different scenarios. The 
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developed methodology is illustrated for IES of a large office building meant to satisfy 

critical and noncritical electrical, heating, and cooling loads. The resilience assessment 

framework proposed in this paper would serve as a mean to identify critical components 

of a particular IES, thereby facilitating resilient design and operation, and also to evaluate 

different cost-effective resilience enhancement strategies. 

Nomenclature 

DP Disruption Period 

f functionality 

FL Functionality Loss 

IC Imposed Costs 

IP Interruption Period 

OC Operational Costs 

PC Penalty Costs 

Re Resilience 

t time 

T time period 

x flow (electricity, fuel, heat, etc.) 
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3.1 Introduction 

Increased complexity of urban infrastructure systems on one hand, and more severe 

and increasingly frequent natural disasters due to global climate change on the other 

hand, require analysis methods which can improve their preparedness, resistance, and 

rapid recovery against disruptions. The energy infrastructure, consisting of power 

generation and distribution, transporting pipelines, and transportation systems (marine, 

railroad, truck lines, etc.), is critical for sustainable development under normal 

conditions, and in confronting natural and other types of extreme events and disasters. 

The world energy crisis has been more pronounced in developing countries, particularly 

in rural areas, where people experience massive power outages in forms of planned, 

unplanned, unanticipated faults and burnouts. Absence of power has drastic detrimental 

impacts on the economy, on education, on healthcare and, more generally, on sustainable 

development itself.  Making infrastructure systems more resilient is thus an area of 

research which has gained considerable momentum in recent years. 

The concept of resilience was first introduced in the 19th  century in physics and 

material science as the ability of an object to resist loads without permanent distortion 

[53]. This concept has then been adopted in a variety of contexts such as, medicine, 

psychology, as well as in engineering. Such terms as ecological resilience, psychological 

resilience, disaster resilience, seismic resilience, family resilience, etc. have been 

introduced. The scope of this paper is, however, limited to resilience of engineered 

systems only. 

Numerous studies have been conducted trying to characterize and assess resilience of 

different types of systems and proposed new definition for resilience. In general, 
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resilience assessment methods can be categorized in three groups: (i) structural 

assessment methods (ii) performance-based methods, and (iii) hybrid methods being a 

combination of the first two ones. Structural assessment methods focus on the structure 

and general characteristics of the system and generally tend to be qualitative or semi-

quantitative, in that, systems are scored using results of numerous questions categorized 

based on pre-identified resilience indices or metrics (e.g. vulnerability, capability, 

resourcefulness, etc.) [54]. On the other hand, performance-based assessment methods 

evaluate system resilience based upon the functionality of the system. Through a 

particular interruption scenario, this method measures, or simulates, the system 

performance during and after the disruption. The performance-based methods specifically 

consider the speed with which the system can return to the post-interruption condition, 

known as rapidity [55], as one of the basic aspects of resilience. The two general 

resilience evaluation methods, i.e. the structural and the performance-based methods, are 

complementary; while the structural assessment can explain whether a system is likely to 

be resilient, the performance-based approaches specify how much the system is resilient. 

Numerous qualitative and quantitative studies have been conducted to define and 

evaluate resilience of engineered systems. These studies are different in objective and 

scope based on type of the assessment (quantitative, qualitative, or semi-qualitative), type 

of the system, and type of the disruptive event. For example, Hatvani-Kovacsa et al. 

integrated planning and design of infrastructures and buildings in addition to public 

health and social research to qualitatively assess the heat stress resilience [56]; Bozza et 

al. proposed a framework to quantitatively assess the disaster resilience of urban systems 

by introducing efficiency and quality of life as indicators to be identified before and after 
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an extreme event and also during the recovery time [53]; Zobel and Khansa proposed a 

new resilience measure for multiple related disastrous events adopting the concept of 

resilience triangle which characterizes system resilience based on the functionality loss 

and duration of the recovery time [57]; Chang et al. have developed a practical approach 

to evaluate infrastructure resilience at a community scale based on historical experiences 

and judgments of technical specialists to identify which critical services could be lost, to 

what extent, and for how long; they have also investigated the ripple effect, i.e. how 

disruption in one infrastructure sector can have impacts on downstream sectors [58]; 

Maliszewski and Perrings have investigated resilience of the power distribution systems 

suggesting that resilience of such systems depend on power distribution infrastructure 

and its biophysical environment, and also on the priority given to restoration by the 

power company [59]; Cimellaro et al. proposed a framework for quantitatively evaluating 

resilience of health care facilities subjected to earthquakes by using an analytical function 

that fits both technical and organizational issues [60]; Attoh-Okine et al. formulated a 

resilience index for urban infrastructure using Belief function accounting for 

interdependencies among systems [61]; Cutter et al. developed a framework to assess 

disaster resilience at local or community scale focusing on social resilience [62]. Ouyang 

et al. (2012) developed a multi-stage framework to assess and analyze infrastructure 

resilience. They defined resilience as the joint ability of a system/infrastructure to resist 

(prevent and withstand) any possible disruption or shock, absorb the initial damages, and 

recover to normal operation [63]. 

Resilience assessment frameworks are useful both during the design phase and during 

system retrofitting. Ouyang and Fang (2017), improved on their earlier work, and 
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developed a tri-level decision-making model which supports critical infrastructure 

resilience optimization in order to find the best defensive strategies by identifying 

vulnerable system components and protecting them against intentional [64] and spatially 

localized [65] attacks. They introduced the resilience metric based on the performance of 

the interdependent infrastructures under natural hazards (such as hurricanes [66]) and 

random failures relative to target performance of the system [67]. Lin and Bie proposed a 

new Defender-Attacker-Defender (DAD) model to identify hardening and operational 

restoration measures as two main resilience aspects of power systems [68]; they found 

that hardening strategies are strongly influenced by topology reconfiguration and the 

distributed generation installation. Alderson et al. developed a resilience assessment 

model which quantifies operational resilience of an infrastructure system and can help 

developers and policy makers identify critical vulnerabilities in the system [69]. Matelli 

and Goebel developed a conceptual framework for resilient design of a cogeneration 

system through stochastic failure propagation simulation [70]. 

Researchers from Sandia National Laboratory (for example, Vugrin et al. [71]; Vugrin 

et al. [72]) have developed complex resilience assessment models to quantify operational 

resilience of an infrastructure system and help developers and policy makers identify 

critical vulnerabilities in the system. They have developed detailed methodologies and 

operating software ranging from an individual infrastructure to a whole region with 

multiple infrastructures based on both network models as well as multiagent modeling 

approaches.  The methodology requires extensive involvement of local experts in all 

relevant areas such as engineering, social and governance which is needed in both 

gathering necessary data as well as developing the interactions between infrastructures. A 
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book by Biringer et al. [73] describes this general approach called IRAM (Infrastructure 

Resilience Assessment Methodology).  It is an extension of RAMCAP originally 

developed for hostile threats on infrastructure systems. IRAM takes into account the 

following considerations (which traditional methods tend to overlook): (i) Provides 

precise and actionable definition of resilience, (ii) Explicitly considers costs and resource 

requirements of adaptation and recovery, (iii) Proposes definitions and resulting 

measurement methods which are generally valid to all 18 infrastructure systems, (iv) 

Proposes a performance-based assessment that is flexible and uses different methods and 

models to generate performance metrics, (v) Minimizes subjective elements, (vi) Meant 

not only to assess resilience but also to design resilient systems. 

While most of the previous studies are focused on quantifying and characterizing 

resilience of infrastructure systems at aggregated levels, the current study addresses how 

resilience of demand-side systems with multiple functions can be defined, characterized, 

and improved. A new quantitative performance-based resilience assessment framework is 

developed, and a resilience matrix is introduced which captures essential dimensions of 

resilience pertinent to engineered systems. The proposed methodology is illustrated for a 

typical integrated energy system (IES) and energy-related measures are assessed in terms 

of resilience improvements. 

3.2 Methodology 

This section describes the methodologies and mathematical approaches adopted in this 

study to quantitatively evaluate the resilience of demand-side engineered systems. 
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3.2.1 Definition of Resilience 

Earlier published literature viewed resiliency of a system as its ability recover once it 

has been compromised due to a short-acting shock. However, the concept has evolved 

and has been expanded greatly, it now includes additional set of characteristics and 

capabilities. Such capabilities can be classified into three groups relative to the 

occurrence of the disruption: (1) “Pre-disruption” phase: involve capabilities to anticipate 

shocks and adapt in order to respond properly while minimizing initial damages; 

adaptability and robustness are some examples of pre-disruption capabilities. (2) 

“During-the-disruption” phase: involve ability to minimize functionality losses through 

capabilities such as fail safe meant to prevent failure propagation, or resourcefulness 

enabling implementation of alternative sources to maintain system functionality. (3) 

“Post-disruption” phase: involve the capacity to deal with the consequences of failure and 

with the rapidity i.e., how fast the interrupted system can be recovered.  Numerous 

definitions have been proposed in the literature for resilience of systems to include these 

capabilities relative to the type of the interruption and to the type of the system itself. 

When supply-side systems, such as power generation infrastructure are targeted, fast 

recovery, would be an important resilience characteristic; but, when demand-side systems 

are investigated, robustness, reliability, and adoptability should be given more 

importance. For an IES, which can be considered a demand-side system, system 

performance depends on the performance of up-stream systems, i.e. the supply side 

electric grid and fuel distribution system and if they fail, the system performance will be 

adversely affected. In this case, the recovery process is outside the control of the owner 

or user of the system. Internal failures (for example failure of a chiller), will also affect 
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the system performance and can be addressed through reliability improvements aimed at 

lowering the probability of random failures (for example by performing regular 

maintenance), or through redundancy to prevent functionality losses (for example by 

having a stand-by chiller), and any other possible measure to help the system deliver its 

services/products when disrupted. In transmission and distribution networks, the ability 

of the system to prevent propagation of failures is the main focus of resilience studies 

rather than recovery features [74]. Therefore, a new definition for resilience of 

engineered systems is proposed which is focused on functionality of the system of 

interest, rather than on the system characteristics as: 

“Resilience is the ability of the system to minimize the costs imposed to the 

stakeholders due to functionality losses, damages to assets and people, and recovery 

processes when interrupted by either external or internal disruptions” 

This definition is holistic, in that it is not limited to the type of engineered system nor 

to a specific characteristic of the system, nor to a specific type of disruption. In other 

words, there are numerous resilience characteristics pertinent to engineered systems and 

no definition can contain them all. Instead, the suggested definition relates the system 

resilience to the level of system functionality losses since the primary goal is to maintain 

the system functionality at the desired level. On the other hand, quantification of 

resilience based on this definition, which is application and circumstance specific, will be 

more convenient and can be integrated into engineering practices (discussed below). The 

suggested definition can be adopted to different types of engineered systems, such as 

transportation or water distribution systems. 
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3.2.2 Quantification of Resilience 

Resilience of a demand-side system such as community scale integrated energy 

systems (IES) can be characterized by its performance when stressed by internal or 

external disruptions. The term Interruption, then, refers to the system inability to deliver 

its functional service(s) during the disruption and afterwards. In this study, we have only 

considered the functionality losses and assumed that the damage costs and recovery costs 

are zero. Figure 3-1 schematically illustrates performance of a system when undergoing a 

disruption. Curve (1-3) represents the desired performance level identified by demand(s) 

provided by the system, while curve (1-2-3) shows the actual system performance due to 

the disruption. Let the time interval t0 ≤ t ≤ t0 +TDP be the time of the disruption 

occurrence which essentially depends on nature of the event and can range from 

momentary ones, such as electric grid voltage drop, to long-lasting ones, like hurricanes 

and floods. Curve (1-2) shows how the system response to the disruption during this 

time; functional services loss rate might be slower at the beginning due to robustness of 

the system components. Curve (2-3) illustrates how the system bounces back to its 

desired state after a partial failure; depending on the disruption and the system 

characteristics, complete failure may occur, as illustrated by curve (2´-3´), and all 

functional services might be lost. The time interval t0 ≤ t ≤ t0 +TIP represents the 

interruption period during which the system cannot perform at its desired level. Note that 

the interruption period can be the same as disruption period meaning that the system is 

able to perform at the desired level right after the disruption has passed. At any moment 

during the interruption period, difference between the desired performance level and the 

actual performance identifies system functional service loss, denoted by floss(t). Therefore, 
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the shaded area in Figure 3-1 represents total functional service losses due to the 

disruption: 

𝐹𝐹𝐹𝐹 = ∫ [𝑓𝑓𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑡𝑡) − 𝑓𝑓𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡)]. 𝑑𝑑𝑑𝑑𝑡𝑡0+𝑇𝑇𝐼𝐼𝐼𝐼
𝑡𝑡0

= ∫ 𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑡𝑡). 𝑑𝑑𝑑𝑑𝑡𝑡0+𝑇𝑇𝐼𝐼𝐼𝐼
𝑡𝑡0

 (3-1) 

 
Figure 3-1- Schematic of functionality and performance curves of an interrupted system under 

partial (curve 1-2-3) and complete failure (1-2´-3´); interruption period is assumed to be longer 
in the case of complete failure 

Ideally, a resilient system would meet its performance targets during the entire 

interruption period. Two attributes characterize this attribute: (a) preparedness before the 

disruption, and (b) agility in recovery after the disruption. However, we argue that not all 

kinds of interruptions require a recover period after the disruption is passed. For instance, 

if performance of a manufacturing unit is interrupted due to “lack of raw material” 

(disruption), it can start delivering its service as soon as the disruption is over. In this 

case, disruption and interruption periods are the same and there is no recovery process as 

such. Therefore, this analysis quantifies resilience of engineered system based upon the 
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system performance during the interruption period, characterized by functional service 

losses, rather than solely based on specific attributes or metrics (as in most of the 

published literature). 

A large number of disruptions can be identified for a particular system and it would be 

impossible to analyze the system resilience in terms of all such disruptions. Instead, for 

any system with given number of the system components, we can identify a finite number 

of failure modes. Regardless of cause of failures, i.e. the disruptions, analyzing effects of 

failures on system performance would be of great value. Therefore, in this study we 

focus on effects of system components failures rather than the inherent cause of the 

failure. Hence, a resilient system should be able to minimize losses in delivering its 

services, for any possible failure mode, and during all operational temporal periods. This 

can be represented as a three-dimensional matrix: 

 (3-2) 

where arrays are service losses (each identified by Eq. 3-1 and shaded area in Figure 

3-1), j represent various failure modes correspond to failure of system components, k 

identifies system functional services (1≤ k), and i shows various operational temporal 

periods impacting the resilience of the system. Operational temporal periods may 

represent temporal variations in the system operation and are meant to reflect extreme 
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cases such as maximum demands in various seasons of the year. Hereafter, combinations 

of failure modes and operational temporal periods are referred to as scenarios. 

Analyzing and studying a three-dimensional matrix would be inconvenient, especially 

for large systems with numerous many components and failure modes. We, therefore, 

suggest assigning monetary penalty costs to functional service losses and thereby 

reducing the matrix order to two. To do so, at any given i and j, i.e. for a given scenario, 

we estimate total imposed costs due to functional service losses and non-optimal system 

operations as: 

𝐼𝐼𝐼𝐼𝑖𝑖,𝑗𝑗|𝑓𝑓𝑗𝑗 = �𝑂𝑂𝑂𝑂𝑖𝑖,𝑗𝑗 + ∑ �𝐹𝐹𝐹𝐹𝑖𝑖,𝑗𝑗,𝑘𝑘 × 𝑃𝑃𝑃𝑃𝑖𝑖,𝑘𝑘�𝐾𝐾
𝑘𝑘=1 � − 𝑂𝑂𝑂𝑂𝑖𝑖_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (3-3) 

where 𝐼𝐼𝐼𝐼𝑖𝑖,𝑗𝑗|𝑓𝑓𝑗𝑗 denotes the imposed costs due to failure mode j, 𝑂𝑂𝑂𝑂𝑖𝑖,𝑗𝑗 is the operational 

costs during failure mode j and time period i, K is the total number of system functional 

services, and 𝑃𝑃𝑃𝑃𝑖𝑖,𝑘𝑘 represents the penalty costs associated with one unit of k functional 

service loss during time period i. Further, we have assumed that the penalty costs do not 

vary based on the failure modes, but may vary depending on the time period. For 

instance, penalty costs of unmet electrical loads (in $/unmet kWh) in a commercial unit 

are independent of why the system is unable to meet the loads (i.e. the failure mode) but 

may vary throughout the day depending on criticality of electrical loads during different 

hours of the day. 𝑂𝑂𝑂𝑂𝑖𝑖_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 is the operational cost for uninterrupted system running 

optimally during time period i. More detailed discussions on identification of failure 

modes and calculation of imposed costs are provided below. Note that repair and 

replacement recovery costs of failed or damaged systems can be included in estimating 

the imposed costs in real-case applications. Also, more complex penalty cost functions 
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can be used to estimate the imposed costs but linear penalty cost functions were used in 

this study. 

Using Eq. 3-3, the three-dimensional Loss Matrix can be reduced to a two-dimensional 

matrix called “Consequence Matrix” which includes the imposed monetary costs 

associated with different scenarios:   

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = �
𝐼𝐼𝐼𝐼1,1 ⋯ 𝐼𝐼𝐼𝐼1,𝐽𝐽

⋮ ⋱ ⋮
𝐼𝐼𝐼𝐼𝐼𝐼,1 ⋯ 𝐼𝐼𝐼𝐼𝐼𝐼,𝐽𝐽

� (3-4) 

Therefore, resilience of the system can be characterized by the Consequence Matrix 

containing total monetary costs incurred to the system stakeholders (users, owners, etc.) 

under different scenarios. Such failures could range from random failure of the system 

components, to deliberate attacks, to personnel mistakes. In any case, one or multiple 

system components would fail whereby functionality of the system is compromised if the 

system is not fully resilient. Failing to deliver the functional services at the desired level 

may cause considerable damages to assets, products, or even to reputation of the 

provider. Such damages can be often expressed in monetary penalty costs. For instance, 

according to Hamachi LaCommare and Eto, economic costs associated with power 

interruption to the U.S electricity customers is estimated to be about $80 billion annually 

[75]. 

Imposed costs can be used to develop a quantitative resilience index. Since resilience 

is a positive attribute, higher numbers should reflect better performance while higher 

imposed costs ought to represent poorer resilience in dealing with disruptions. Therefore, 

in this analysis, the resilience index is defined pertinent to each scenario as: 
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𝑅𝑅𝑅𝑅𝑖𝑖,𝑗𝑗 = 𝐼𝐼𝐼𝐼𝑖𝑖
𝑀𝑀𝑀𝑀𝑀𝑀−𝐼𝐼𝐼𝐼𝑖𝑖,𝑗𝑗

𝐼𝐼𝐼𝐼𝑖𝑖
𝑀𝑀𝑀𝑀𝑀𝑀  (3-5) 

where 𝐼𝐼𝐼𝐼𝑖𝑖
𝑀𝑀𝑀𝑀𝑀𝑀 is the maximum possible imposed costs in each scenario, i.e. if all 

functional services during operational temporal period i are lost.  Figure 3-2 

schematically illustrates the resilience index as (𝑆𝑆ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴
𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻ℎ𝑒𝑒𝑒𝑒 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴� ). 

Therefore, resilience index ranges between 0 and 1, and corresponds to the worst and best 

level of resilience respectively. Re = 0 reflects the situation that system would not be able 

to deliver any of its functional services, and Re =1 indicates that functionality of the 

system would not be interrupted at all. 

 
Figure 3-2- Schematic of the imposed costs curves of an interrupted system under (a) partial 

failure (curve 1-2-3) and (b) complete failure (1-2´-3´) 

The Resilience Matrix which includes resilience indices for all identified scenarios can 

be represented as: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =

⎣
⎢
⎢
⎢
⎡

𝐼𝐼𝐼𝐼1
𝑀𝑀𝑀𝑀𝑀𝑀−𝐼𝐼𝐼𝐼1,1
𝐼𝐼𝐼𝐼1

𝑀𝑀𝑀𝑀𝑀𝑀 ⋯ 𝐼𝐼𝐼𝐼1
𝑀𝑀𝑀𝑀𝑀𝑀−𝐼𝐼𝐼𝐼1,𝐽𝐽

𝐼𝐼𝐼𝐼1
𝑀𝑀𝑀𝑀𝑀𝑀

⋮ ⋱ ⋮
𝐼𝐼𝐼𝐼𝐼𝐼

𝑀𝑀𝑀𝑀𝑀𝑀−𝐼𝐼𝐼𝐼𝐼𝐼,1
𝐼𝐼𝐼𝐼𝐼𝐼

𝑀𝑀𝑀𝑀𝑀𝑀 ⋯ 𝐼𝐼𝐼𝐼𝐼𝐼
𝑀𝑀𝑀𝑀𝑀𝑀−𝐼𝐼𝐼𝐼𝐼𝐼,𝐽𝐽

𝐼𝐼𝐼𝐼𝐼𝐼
𝑀𝑀𝑀𝑀𝑀𝑀 ⎦

⎥
⎥
⎥
⎤

= �
𝑅𝑅𝑅𝑅1,1 ⋯ 𝑅𝑅𝑅𝑅1,𝐽𝐽

⋮ ⋱ ⋮
𝑅𝑅𝑅𝑅𝐼𝐼,1 ⋯ 𝑅𝑅𝑅𝑅𝐼𝐼,𝐽𝐽

� (3-6) 
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Note that the proposed methodology is a performance-based approach. Expressing 

resilience of the system in monetary terms will enable planners and designers to perform 

cost-effectiveness analysis of various resilience enhancement options more conveniently. 

3.2.2.1 Failure Modes 

In this study, disruptions are defined based on failure of individual system components 

regardless of the causes and type of events which caused them. It should be noted that 

while cause of failures for various system components are not explicitly involved in the 

analysis, investigating causes of various components failures would be of great value in 

reducing failure risks. This will improve predictive and adaptive performance of the 

system in order to reduce the probability of failures, and thereby enhance resilience of the 

system. In addition, enhancing robustness of individual components against prevailing 

disruptions can improve resilience of the whole system.    

Failure of any set of system components can be considered as a system failure mode. 

Total number of single-component failures disruption scenarios can be as large as number 

of system components. Since system complexity is often defined as number of 

components and their connections, the proposed framework also accounts for complexity 

of the system considered as an important factor affecting system resilience. 

This study is more focused on single-component failures in order to identify the 

critical components of the system and the level of functionality losses. This should not be 

confused with “cascading failures” which are considered in this analysis through system 

performance simulation during different failure modes; cascading failure (or sometimes 

referred to as ripple effects) occurs when failure of one component propagates to other 

components of the system and causes additional failures. In this analysis, cascading 
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effects are modeled. The case of multiple-components failures is left for future extensions 

of this study as proper sampling methods and prior domain knowledge regarding 

simultaneous failures, especially for systems will large number of components, is 

required. 

3.2.2.2 Imposed Costs Calculation 

Imposed costs due to system failures would have many different aspects and may vary 

depending on type of failure, type of undelivered functions, and failure duration. The 

imposed costs are those forced on the system stakeholders due to disruptions and ought to 

be distinguished from operational costs of the system during normal operations. 

In order to estimate losses in functional services, the investigated system has to be 

modeled at the appropriate granularity and fidelity levels. The system model should be 

able to realistically reflect behavior of the system during normal operation, as well as 

during each failure mode. Network systems modeling, also known as graph models, can 

be used to simulate the interactions between various components within the system and 

with upstream systems. 

Performance of engineered systems are constrained by economic, physical, and 

operational limitations which can be easily formulated and incorporated into an 

optimization model reflective of how the system can and ought to perform. Applying 

physical and practical constraints requires background knowledge of the system, and 

relatively detailed component and interaction models are needed. The objective of the 

optimization model will reflect desired performance of the system which can be 

minimum operational costs, maximum revenue, etc. Defining the resilience index in 

terms of monetary costs enables us to formulate the objective function of the optimization 
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model as minimum imposed costs for each failure mode during each operational temporal 

period. Since the penalty costs associated with functional service losses are included in 

the imposed costs, the optimization model will set the system status, i.e. load of different 

components, such that those losses are minimal. Therefore, the system will adopt and 

actively respond to each failure. Further discussions and mathematical formulations are 

provided in section 3.3. 

3.2.2.3 Penalty Costs 

The costs imposed to the stakeholders, due to inability to deliver functional services, 

damages to the system, and non-optimal operation are used to quantify the resilience 

index. This would essentially depend on type of products and/or services provided by the 

system and the assigned monetary values to losses in delivery of those services. One 

example can be economic values of uninterrupted electricity services which can be 

estimated through various perspectives and methods [76]; these methods include: (i) 

surveying customers to assign dollar values to the costs that might incurred during an 

outage. This can be direct costs such as loss of production in an industrial unit, for which 

market prices are available, or contingent costs for services with no market value. In the 

latter case, “willingness to accept” or “willingness to pay” concepts are often used in 

order to monetize the damages. (ii) Proxy methods through which cost of the outage is 

evaluated by an observable behavior such as the amount of money industrial customers 

would invest on back-up generators to prevent loss of functional services and damages 

due to electric grid failures. Such back-up systems are usually sized based on the critical 

functions (critical functions/outputs are those that will impose huge cost to the 

stakeholders if interrupted) such as life safety loads in a health care hospital. Further 
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discussions on critical loads can be found in “critical loads securing” literature (such as 

studies by Pipattanasomporn et al. [77] and by Sujil et al. [78]). 

3.3 System Modeling and Simulation 

To estimate the system functional service losses due to a disruptive event, i.e. to 

identify how failure of each individual system component affects the whole system 

functionality, a realistic model of the entire system with proper level of fidelity is 

required. Scope and purpose of the analysis identifies how detailed such a system model 

should be. As stated earlier, we suggest the use of optimization model of the system as it 

provides several advantages [69]. Such models not only are able to capture topological 

features of the system, i.e. number of system components and their interconnections, but 

also, they account for physical and operational limitations through model constraints. 

With inclusion of penalty costs (due to undelivered functional services) in the objective 

function of the optimization model, adaptation would be an in-built capability of the 

system to respond to various failure modes. Additionally, prioritizing different functional 

services of the system can be easily accomplished by assigning proper penalty costs to 

undelivered services proportional to their criticality. This is one of the unique features of 

the current study. 

The proposed resiliency assessment methodology is illustrated for an integrated 

energy system (IES) shown in Figure 3-3. The system includes various types of on-site 

power generation systems, such as combined heat and power (CHP) and solar 

photovoltaics (PV), electrical energy storage systems, and heating and cooling 

equipment. The energy system loads, i.e. heating, cooling, and electrical loads, are 

classified as critical and noncritical loads. This classification will help in prioritizing 
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various types of services and to treat them differently when maximizing system 

resilience. Loads classification depends on type of the system and should be specified by 

the stakeholders. On the other hand, multiple number of equipment of each type are 

usually installed in order to provide redundancy and also to achieve more efficient 

performance. The corresponding network representation of the IES is shown in Figure 

3-4. System components are shown as nodes and linked through vectors or edges. 

Depending on type of the system, these vectors can be electric transmission lines, 

pipelines, roads, etc. 

 
Figure 3-3- A typical integrated energy system diagram which includes utility electricity and 
Natural Gas inputs, on-site power generation, heating and cooling equipment, and the facility 

loads. 
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Figure 3-4- Network representation of the IES shown in Figure 3-3 

Figure 3-4 illustrates the network model of the IES. Node 0 and node 21 are imaginary 

nodes added to the network model to fulfill the conservation laws for the energy system 

network. Node 0 represents total energy enters the system and node 21 is an energy sink 

which captures all energy losses from system components. Component performance (or 

efficiency) models identify the lost portion of the input energy to that component. 

Various linear (constant efficiency) and non-linear (variable efficiency based on the 

system part-load ratio) models for each component type can be found in the literature (see 

[79,80] for more detailed discussions on component models and control optimization of 

integrated energy systems). Segmented-linear models were used in this study in order to 

reduce the computational burdens while accounting for non-linear nature of efficiency 

performance of these components. The developed optimization models have been 

validated by independent evaluations with two other research groups [81]. By connecting 

all the system outputs and the sink node (node #21) to the source node (node #0), the 

conservation law for the entire system will be fulfilled. 



 

  

 66 

Figure 3-4 is the connected directed graph for the IES assumed in Figure 3-3. The 

network shows energy flows between system components. In this case, the optimization 

model objective function can be defined as: 

min  �𝑂𝑂𝑂𝑂𝑖𝑖,𝑗𝑗 + �∑ 𝐹𝐹𝐹𝐹𝑖𝑖,𝑗𝑗,𝑘𝑘 × 𝑃𝑃𝑃𝑃𝑖𝑖,𝑘𝑘
𝐾𝐾
𝑘𝑘=1 �� (3-7) 

This optimization model is subject to physical and operational constraints. 

Interconnections among system components are captured by conservation laws as: 

∑ 𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝 − ∑ 𝑥𝑥𝑞𝑞𝑞𝑞𝑟𝑟 = 0        𝑓𝑓𝑓𝑓𝑓𝑓       𝑞𝑞 = 1,2, … . , 𝑁𝑁 (3-8) 

where 𝑥𝑥𝑝𝑝𝑝𝑝 represents flows enter the node q and 𝑥𝑥𝑞𝑞𝑞𝑞 represents flows leave the node q 

and N shows total number of nodes (i.e. system components). Eq. 3-8 can be expressed in 

the matrix form as: 

[𝐴𝐴]𝑁𝑁×𝑀𝑀[𝑋𝑋]𝑀𝑀×1 = 0 (3-9) 

where matrix A is the node-edge incidence matrix, i.e. rows represents nodes and 

columns represents edges and entries are -1 or +1 or 0 (refer to a graph theory textbook 

such as [82] for further details). The matrix X arrays, i.e. 𝑥𝑥𝑝𝑝𝑝𝑝s are flows (energy flows in 

this case) from node p to node q (p,q=1,2,…,N) and 𝑀𝑀 denotes total number of edges 

(connections) in the graph. Depending on type of the system, other operational and 

physical constraints should also be included in the optimization model. Detailed 

discussions on the IES optimization model constraints can be found in [79,80]. 

When IES are analyzed, functional service losses would involve unmet heating, 

cooling, and electrical loads (both normal and critical). As discussed earlier, proper 

penalty cost values should be assigned to unmet loads (in Dollar per unmet MJ) reflective 

of criticality of loads. The optimization model, then, minimizes the operational and 
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penalty costs during each scenario (recall that each scenario is a combination of a failure 

mode happening during an operational temporal period). For instance, one failure mode 

can be electric grid failure; depending on the facility loads at each operational temporal 

period, on-site power generation components, such as the CHP system and the solar PVs 

might not be able to entirely meet the loads. Therefore, the optimization model will 

prioritize different system functions based on the assigned penalty costs and will try to 

cover the more critical ones first such that the penalty costs are minimum. 

The operational costs, i.e. electricity and fuel costs, should also be determined from 

the optimization model, modified to treat the conditional case where one or more nodes 

and/or one or more links are broken. Under such cases, the needed services can be met by 

operating the numerous equipment differently. For instance, when the electric grid fails, 

cooling loads can be met by electric chillers fed by on-site generated power or by the 

absorption chiller which can use the heat generated by the boiler or recovered from the 

CHP system. The optimization model identifies which alternative would be more 

economical. Note that the assigned penalty costs to unmet loads should be larger than 

operational costs otherwise the optimization model would choose not to meet the loads in 

order to minimize the objective function. 

The flowchart depicted in Figure 3-5 summarizes all the steps in the proposed 

resilience assessment methodology. 
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Figure 3-5- Flowchart illustrating the various steps of the proposed resilience assessment 

framework 

 

3.4 Case Study 

The integrated energy system shown in Figure 3-3 is assumed in order to illustrate the 

capabilities of the developed framework. A large office building with 5,500 m2 floor area 

located in Boston, MA is assumed whose IES consists of two CHP systems, two boilers, 

two vapor compression (VC) chillers, and one absorption chiller (Table 3-1) [79,80]. The 

baseline case does not include solar PVs and electrical battery storage systems. 

Table 3-1- Equipment specifications for IES case study  
 Prime Mover Boilers VC Chiller Abs. Chiller 

Quantity 1 (reciprocating engine) +  
1 (turbine) 2 (identical) 2 (identical) 1 

Capacity (unit) 788+242 (kW) 7063.7 MJ/h 600 Ton 155 Ton 
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In this case study, four operational temporal periods have been selected representative 

of various seasonal and diurnal operational conditions of the system. The Summer and 

Winter design days were selected to be July 24th and February 2nd respectively. In 

addition, six system functional services have been considered in the current study as 

specified in Table 3-2. Penalty costs associated with critical and noncritical electrical 

unmet loads were taken from  prior research  which assigned monetary costs to  electric 

utilities service reliability for different types of customers across the U.S. [83]. However, 

we could not find similar penalty costs for heating and cooling unmet loads; therefore, 

the values listed in Table 3-2 are assumed only for the purpose of this analysis. Note that 

these penalty costs are case-specific and the best practice would be to conduct surveys 

and seek system stakeholders participation to decide on the operational temporal 

scenarios, load classifications, and the assigned penalty costs. 

Table 3-2- Case study operational temporal periods, system functions, and assigned penalty costs 

Operational 
Temporal Periods 

IES Functional Services 
Noncritical 

Elec. 
($/kWh) 

Critical 
Elec. 

($/kWh) 

Noncritical 
Heating 
($/GJ) 

Critical 
Heating 
($/GJ) 

Noncritical 
Cooling 
($/GJ) 

Critical 
Cooling 
($/GJ) 

1- Summer-Day 
(6AM-5PM) 20 200 50 500 100 1000 

2- Summer-Night 
(6PM-5AM) 10 200 25 500 50 1000 

3- Winter-Day 
(6AM-5PM) 20 200 50 500 100 1000 

4- Winter-Night 
(6PM-5AM) 10 200 25 500 50 1000 

Table 3-3 summarizes hourly critical and noncritical loads of the studied IES averaged 

during the specified time interval of each operational temporal periods (these were 

determined by a detailed hourly building energy simulation program described in [25]). 

Note that the case study is conducted on an hourly basis due to unavailability of data on 
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failure durations for most of the failure modes and large uncertainties associated with 

those for which data could be found (e.g. power grid failure). 

Table 3-3- Assumed critical and noncritical loads of the case study energy system 

Operational 
Temporal Periods 

Hourly Average Loads 
Noncritical 

Elec. 
(kWh) 

Critical 
Elec. 

(kWh) 

Noncritical 
Heating 

(GJ) 

Critical 
Heating 

(GJ) 

Noncritical 
Cooling 

(GJ) 

Critical 
Cooling 

(GJ) 
1- Summer-Day  1480 295 1.4 0.3 9.7 1.9 
2- Summer-Night  530 106 1.0 0.2 4.2 0.9 
3- Winter-Day  1482 296 6.8 1.4 3.5 0.7 
4- Winter-Night  650 130 4.3 0.9 1.8 0.4 

Ten specific failure modes were considered in this analysis: 1- electric power grid 

failure; 2- natural gas distribution grid failure; 3- reciprocating engine (prime mover) 

failure; 4- turbine (prime mover) failure; 5- both prime movers failure; 6- one boiler 

failure; 7- both boilers failure; 8- one vapor compression chiller (VC) failure; 9- both 

VCs failure; and 10- absorption (Abs.) chiller failure. The IES was simulated through 

each of these failure modes and deficiencies in desired functional services were evaluated 

for all scenarios. 

3.5 Results and Discussion 

3.5.1 Baseline Case 

The Loss Matrix (Eq. 3-2) is generated for this case study as a 4×6×10 matrix (shown 

in Figure 3-6); each array identifies unmet loads (in GJ) due to one failure mode and 

during one operational temporal period. 
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Figure 3-6- Loss Matrix associated with the case study IES. Functional service losses are in 

GJ/h. 

Zero values in the loss matrix imply that the corresponding load or service is being 

fully met. It can be seen that critical electrical loads are all met during all scenarios. 

Using an optimization model of the system along with proper penalty cost values enable 

the system to prioritize different functionalities based on their criticality and manage 

available sources to first satisfy more critical ones. As noted from the Loss Matrix, none 
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of the unmet critical loads are greater than noncritical ones for any given scenario which 

identifies that the model is capable of prioritizing different tasks based on their criticality. 

Consequence Matrix for the investigated IES is shown in Figure 3-7. Using Eq. 3-3 

and the penalty cost values given in Table 3-2, imposed costs were calculated for each 

failure mode and operational temporal period. It is obvious from the results that the 

“Electric Grid Failure” mode would cause the highest imposed costs mainly due to high 

electrical loads, specifically during the “Summer Day” and “Winter Day” operational 

temporal periods. The “NG Grid Failure” mode would be the next critical failure mode 

followed by the “Both VC Chillers Failure” mode which would impose penalty costs due 

to unmet cooling loads during the “Summer Day” operational temporal period. It is worth 

mentioning that failure modes 3, 4, 5, and 10 would not impose any penalty costs, and all 

the imposed penalty costs are due to non-optimal performance of the IES. All other 

failure modes result in some amount of penalty costs. Comparing failure mode 6 with 

failure mode 7, and failure mode 8 with 9, demonstrate that the provided redundancy can 

reduce the unmet loads due to failure of the equipment thereby improves resilience of the 

IES. 
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Figure 3-7- Consequence Matrix for the case study IES 

Finally, the values of the Resilience Matrix, calculated according to Eq. 3-5 and Eq. 3-

6 are shown in Figure 3-8. Recall that Re=0 implies total loss in functional services and 

that Re = 1 implies no loss in delivered services. 

 
Figure 3-8- Resilience Matrix for the case study IES for different failure modes and operational 

temporal periods 

As expected, resilience indices correspond to “electric Grid Failure” during “Summer 

Day” and “Winter Day” are the lowest amongst all investigated scenarios. We can 

conclude that resilience improvement strategies should be focused on strengthening 

against these scenarios. On the other hand, natural gas grid distribution network is more 
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reliable compared to electric grids and other forms of energy transport systems mostly 

because it is underground [84]. 

3.5.2 Resilience Improvement Measures 

Since the “Electric Grid Failure” mode is found to be by far the most critical one, it is 

reasonable to focus on improving the system resilience against this failure mode. 

Therefore, two improvement strategies, called Resilience Improvement Measures (RIM), 

were considered: RIM1: adding a solar PV system; and RIM2: adding an electrical 

battery storage. The PV system and the battery system are sized such that the initial costs 

are equal for both RIMs. First, a 700-kW PV system was modeled using PVWatts 

calculator developed by NREL [85] (standard panel type, fixed mount with 42° tilt angle 

equal to the location latitude); the PV system capacity was selected such that it can cover 

30% of the peak total electrical loads during the Summer design day (July 24th); then, the 

initial cost of the PV system was calculated based on $3/Watt (according to [86]) which 

was found to be around $2 million. Battery system capacity, calculated based on similar 

initial investment ($2 million), was found to be 7000 kWh (battery price was assumed to 

be $300/kWh [87]). We assumed that 10% of battery charge is always available for 

emergency situations, such as sudden grid failure.  

It should be noted that solar PVs and battery storage systems are reliable systems. 

According to Vazquez and Roy-Stolle, solar PVs failure rates are in the order of 10-3 

failures per year [88]. Reliability of battery storage systems drops sharply after certain 

number of cycles which depends on storage system configuration and management 

strategies [89]; before reaching to such point, battery systems are reliable if sized and 

maintained properly. On the other hand, failure of the PV or the battery components 
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would degrade the whole system performance to the baseline case. Therefore, PV and 

battery storage failure modes were not considered for the improved IES. In general, 

adding a new component to the baseline case should be considered by defining an 

additional failure mode.  

Figure 3-9 assembles the results of the constrained optimization for unmet noncritical 

electrical loads for the three cases. Both the RIMs have reduced the unmet loads for the 

two “Summer Day” and “Winter Day” operational temporal periods with battery option 

being more effective. However, for the two night periods, there is no unmet loads in all 

three instances. The uncertainty bands shown for RIM1 reflects the variability of the PV 

system output during each operational temporal period; the upper limit corresponds to 

zero PV output (say due to overcast sky) and the lower limit is when the PV system 

generates at its maximum capacity during that operational temporal period. Such 

variability is a drawback of PV systems, or any other non-dispatchable power generation 

technology, with regards to resilience performance. No critical electrical load is left 

unmet in all cases (i.e. the baseline as well as the two improved cases) suggesting that on-

site power generation (CHP system) has improved system resilience during “Electric 

Grid Failure” mode; such capability is often referred to as self-sufficiency or adaptability. 
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Figure 3-9- Unmet noncritical electrical loads comparison along with uncertainty bands 

associated with PV outputs 

Results of the first RIM, i.e. solar PV implementation, corresponds to electric grid 

failure are: 
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and for the second RIM: 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀, 𝑅𝑅𝑅𝑅𝑅𝑅2 = �
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1
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RIM2 can improve the resilience index of the system by 18.1% for both “Summer 

Day” and “Winter Day” periods while RIM1 improves the system resilience by 9.5% 

during the “Summer Day” and by 6.7% during the “Winter Day”. Thus, we conclude that 

battery storage can result it much lower imposed costs and higher resilience indices. 

Therefore, from the resilience standpoint, having a battery storage would be a better 

option compared to the PV system. In addition, PV system output is stochastic and may 

not be available during the grid failure mode should it be cloudy. Thus, we would 
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conclude that battery storage system has a better design value in term of enhancing the 

IES resilience. Other types if RIMs can be evaluated in a similar fashion. 

In dealing with electric grid outages, frequency and duration of outages, which varies 

considerably by country and region, would be decisive factors. Such statistics are usually 

collected, tracked, and published by federal and governmental authorities. American 

Public Power Association (APPA) has published grid reliability data for various U.S. 

regions [90]. Customer Average Interruption Duration Index (CAIDI), reported in 

minutes, and System Average Frequency Interruption Index (SAIFI), reported in number 

of occurrences per annum, are particularly helpful regarding end-use energy systems. The 

large office building studied here is located in Boston, MA, in the APPA region 8 for 

which the CAIDI is 65 minutes and the SAIFI is 0.51 (almost once in two years with 

average during around one hour). This information can be used to assess the real value of 

the resilience improvement measures over the lifecycle of the energy system. For 

instance, according to SAIFI of the given location, 12 outages are expected during 

lifespan of the PV system (assumed to be 25 years). Note that APPA region 8 has one of 

the most reliable electric grids in the U.S, and thus, resilience improvements measure 

would be more significant in other regions. For example, the SAIFI for region 3 is 1.63 

and therefore 41 outages would be expected during the 25-year horizon. Average 

interruption duration is also higher in region 3 (191.25 minutes); resilience improvements 

would be crucial in such regions. 

3.6 Summary and Future Work 

Sustainable and resilient infrastructure systems are critical to achieve sustainable 

development under normal conditions, and in confronting extreme events and disasters. 
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Improving infrastructure systems resilience, as a crucial attribute of sustainable systems, 

is thus an area of research which has gained considerable momentum in recent years. 

Developing quantitative resilience assessment methods in support of decision-analysis 

regarding operation, design, and retrofitting resilient engineered systems would be one of 

the first steps towards this goal. 

In this study, resilience is regarded as an umbrella term which covers several concepts 

including reliability, robustness, adaptability, self-sufficiency, etc. A new simple and 

comprehensive definition is proposed for resilience of engineered systems which can be 

adopted to different types of systems and captures different operational and structural 

resilience characteristics. This paper proposed a mathematical resilience assessment 

framework for multi-functional demand-side engineered systems. Through modeling and 

constrained optimization of system response to potential internal and external failures, the 

proposed methodology allows resilience to be quantified in terms of functional loss and 

monetary costs arising from loss in services which the system is designed to deliver. A 

three-dimensional matrix, called Loss Matrix, is introduced which represents undelivered 

system services under different scenarios, i.e. combination of the specified failure modes 

during different operational temporal periods (such as different diurnal and seasonal 

periods of the year). By assigning monetary cost penalties to different service losses for 

different temporal periods, the three-dimension loss matrix can be reframed into a two-

dimensional Consequence Matrix where individual elements represent the imposed 

penalty costs to the system stakeholders due to undelivered services and/or non-optimal 

system performance under different scenarios. Normalizing the individual elements 

results into the Resilience Matrix of the system whose elements range between 0 and 1, 
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with 0 denoting total loss in all functional services and 1 denoting no loss under the 

corresponding scenario.  

The developed methodology was applied to assess resilience of an integrated energy 

system of a large office building, composed of on-site power generation, electricity and 

natural gas inputs from utility, and heating and cooling equipment serve to satisfy critical 

and noncritical electrical, heating, and cooling loads (i.e., six end-use services in all). 

Performance of the IES case study was simulated during four operational temporal 

periods and 10 failure modes using a constrained optimization model capable of 

capturing economic, physical, and practical limitations. Critical components of the IES 

were identified as those whose failure causes greatest imposed costs, and two resilience 

improvement measures, i.e. adding solar PV system and adding electrical battery storage, 

were evaluated. Results showed that adding battery storage system would be a more 

effective strategy to improve IES resilience. 

The proposed resilience assessment framework offers several advantages compared to 

the existing ones: (i) through a constraint optimization model of the system, the system 

performance during disruption can be realistically modeled accounting for physical, 

economic, and operational limitations; such models are usually available for operational 

control and optimization and can be modified to include penalty costs and possible failure 

scenarios to be used for resilience assessment purposes; (ii) the developed framework can 

be implemented for different types of engineered systems and is able, and meant to, 

handle multi-functional systems; (iii) quantification of resilience performance in 

monetary terms facilitates resilience considerations to be incorporated in cost-

effectiveness analyses; (iv) it directly targets system performance when confronted a 
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disruption, rather than focusing on system characteristics, e.g. faster recovery, which may 

or may not improve the system respond to the disruption.  

Note that assigning penalty costs ought to be based on the condition and type of 

building/facility and ranges from “loss in personnel productivity” to “loss of lives”. For 

instance, in a residential building located in an extreme cold weather, heating loads are 

more critical as residents may lose their lives in the absence of heat supplies; in this case, 

different, and potentially very high, penalty costs would be assigned to the critical 

heating loads. Value of Statistical Life (VSL), which is an economic value used to 

quantify the benefit of avoiding fatalities, can be used to estimate the associated penalty 

costs to the critical heating loads. 

Assumptions and limitations of the proposed resilience assessment framework 

includes: 

• Physical damages and recovery paths are considered in this analysis. 

• Duration of failures in the analyzed case study are assumed to be one hour due to 

lack of information regarding typical duration of different failure modes. 

• Constant penalty costs are assumed in this analysis while more complex, and 

potentially non-linear penalty costs functions will be considered in future 

extensions of this study. 

The methodology proposed in this paper can be extended/improved in a number of 

ways: (i) more subtle consideration of the criticality of loads (rather than simply 

considering them as critical and non-critical) and expressing associated service loss 

penalties as a non-linear function with relevant uncertainties stated as, say fuzzy 
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numbers, (ii) extending the current methodology which is limited to events that cause 

little or no physical damage to more extreme events including disasters, (iii) including 

frequency of occurrences of different failure modes and their duration which is important 

for resilience-enhancing investment. 
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Chapter 4 – Performance-Based Sustainability Assessment of Integrated Energy Systems 

Abstract 

One of the key infrastructures of any community or facility is the energy system which 

consists of utility power plants, distributed generation technologies, and building heating 

and cooling systems. In general, there are two dimensions to “sustainability” as it applies 

to an engineered system. It needs to be designed, operated, managed, and supported in 

such a manner that its environmental impacts and costs are minimal (energy efficient 

design and operation), and also be designed and configured in such a way that it is robust 

to extreme disruptions and shocks posed by natural, manmade, or random events 

(resilience). These somewhat conflicting attributes call for a multi-criteria analysis 

framework. This paper proposes such an assessment framework for community energy 

systems involving location and circumstance-specific sustainability indices that monetize 

the economic, environmental and resiliency characteristics throughout the lifecycle of the 

system components. The proposed framework, thus, allows translating sustainability 

goals into engineering practices and is applicable to: (i) design of new energy systems, 

(ii) assessing performance of an existing system, (iii) day-to-day scheduling and 

operation of the energy systems, and (iv) future growth planning. A new type of diagram 

called “Sustainability Compass” is also proposed which allows decision-makers to 

visually track the direction and magnitude of changes in the individual sustainability 

indices of different energy scenarios which can then be more easily communicated to 

various stakeholders. The proposed methodology and the usefulness of the Sustainability 

Compass diagram have been illustrated using end-use monitored data for a whole year of 

operation of a university campus energy system in order to evaluate five alternative 
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energy development scenarios involving a combined heat and power system and solar 

photovoltaic systems with different penetration levels.  

4.1 Introduction and Background 

Based on EIA (Energy Information Administration) [4], buildings account for 40% of 

the U.S. primary energy use, over 70% of the electricity use and 40% of carbon 

emissions. Emissions associated with residential and commercial sectors, known as the 

“building sector”, are dominated by indirect emissions of electrical power generation 

[46]. Therefore, sustainable development of energy infrastructure should explicitly 

include generation, transmission, and consumption sectors, or in other words the whole 

life cycle of the building stock. In order to achieve this goal, one should be able to 

characterize sustainability of energy systems which includes social, environmental, and 

economic values and burdens known as the triple bottom line (TBL). 

4.1.1 Overview of Sustainability Assessment 

Many researchers have conducted sustainability assessment studies on various power 

generation technologies in order to provide insight and compare sustainable performance 

of such technologies and to examine development potentials in power sectors. They have 

adopted different sustainability criteria and indicators pertinent to type and scale of the 

system/technology. Most commonly, TBL impacts of energy systems have been 

investigated using different indicators (sometimes known as metrics) which are 

normalized and weighted to determine a composite score. Additionally, it is crucial to 

assess sustainability of energy systems and technologies in a bigger picture and 

throughout the system lifecycle. 
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Although TBL is often regarded as main sustainability criteria, other criteria might as 

well be integrated into sustainability assessment framework depending on the system 

type, scope, and scale of the assessment. There are two dimensions to “sustainability” as 

it applies to an energy system. It needs to be: (a) designed, operated, managed, and 

supported in such a manner that its environmental impacts and costs are minimal- this is 

the concept of energy efficient design and operation; and (b) designed such that it is 

robust to disruptions and shocks posed by natural, manmade, or random events and, if 

possible, can dynamically transform and adapt, and be able to recover and deal with the 

aftermaths; these capabilities are generally referred to as resilience. Both design 

objectives (a) and (b) are to some extent contradictory. Energy efficient design requires 

that little (to no) redundancies be built into the system contrary to what is usually 

followed to make energy systems resilient. Increased complexity of urban infrastructure 

systems on one hand, and more severe and more frequent natural disasters due to global 

climate change on the other hand, have forced researchers to explicitly consider resilience 

in or along with sustainability assessment of infrastructures. 

Social dimensions of energy systems have been rarely included in technical studies as 

a separate aspect, but have been combined in some manner with multi-criteria 

sustainability assessment studies. Kowalski et al.  [91] considered social cohesion, 

employment, effect on public spending, import independency, social justice, and security 

of supply as social characteristics of four renewable energy scenarios along with cost and 

environmental impacts. Atilgan and Azapagic [92] also accounted for employment, 

worker safety and energy security of various power production facilities of Turkey. 

Moslehi and Arababadi [19] conducted a life cycle sustainability assessment of broad 
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implementation of solar PVs at local scale accounting for safety and accountability of 

energy systems as social sustainability metrics. 

Three general methods can be found in the literature regarding developing and 

quantifying sustainability indices for energy systems:  

(a) Most of the existing sustainability assessment systems use weight factors to capture 

preferences among sustainability indicators (such as [93–95]). Since many different 

weighting methods exists generally relying on value judgments about relative 

importance of indicators, the analysis results are somewhat arbitrary and the decision 

analysis process may be affected by the selected weighting method. 

(b) To overcome such issues, many studies (such as [96]) present the midpoint 

sustainability assessment results separately for each sustainability indicator in its 

actual unit normalized against the selected functional unit (say ton CO2/ MWh), rather 

than combine the impacts into one sustainability index. While this type of analysis 

provides valuable insight into potentials and limitations of energy systems in support 

of national and regional scale energy development and transition policies, it may not 

be suitable for decision analysis, in that, no single system/technology would have 

superior attributes in all indicators. For instance, one system may have lower CO2 

emissions while another may emit lower SOx emissions. 

(c) Another methodology includes ranking different alternatives based on each indicator 

and scale impacts (usually between 0 and 1) relative to the worst and the best 

alternatives (such as [97–102]). Disadvantage of this method is that the relative 

importance of different metrics will be improperly captured. Such an approach was the 

basis of a study by Phillips [103] who performed a sustainability assessment on large-
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scale solar photovoltaic solar power plants by converting qualitative-based results of 

the study conducted by Turney and Fthenakis [104] into quantitative indices through 

assigning relative scores to various sustainability indicators. There is not enough 

published studies supporting the reasoning behind the allocation of scores [105]. 

Further, the scoring systems does not account for uncertainty or variability in the 

perception of metrics [105]. 

We have expanded on this approach by combining and aggregating different indicators 

in each sustainability criteria which relies on monetary external/penalty costs estimated 

based on surveys and statistical analysis; this allows proper accounting for the relative 

importance of different metrics within each sustainability criteria.  

One common way to quantify burdens of energy systems on the environment and 

society is through assigning price tags to them, referred to as external costs. Many 

researchers have used this method to come up with a single environmental sustainability 

index for national and utility scale power generation technologies; Hohmeyer 

[6]conducted one of the very first studies on external costs of fossil fuels power 

generation in 1988, using pollutant damage costs estimated by Wicke [7]. Roth et al. 

[106] evaluated and incorporated external costs of different power generation 

technologies at national scale to evaluate future development strategies in Switzerland. 

Rabl and Spadaro [9] performed a life cycle assessment to evaluate the power generation 

externalities throughout the lifecycle of various power generation technologies in Europe. 

This quantification method, which is adopted in the current study, provides several 

advantages compared to the review scoring and normalization methods; (i) presenting 

results in monetary costs would attract more public attention and reflects the actual 
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burdens on the society; and (ii) relative importance of different environmental impacts is 

reflected in the assigned monetary damages; e.g. monetary costs associated with emission 

of one ton of CO2 and one ton of SOx reflects the relative impacts they might have on the 

environment and people health. Additionally, as proposed in this study, developing 

sustainability indices in terms of monetary costs facilitates effective incorporation of 

sustainability goals into cost-effective design and operation of energy systems. 

4.1.2 Sustainability Assessment at National or Regional Scale 

 Great deal of effort has been devoted to assessing sustainability of energy 

infrastructure at national scale for policy development purposes. Begic and Afgan [107] 

conducted a multi-criteria sustainability assessment on various power generation 

technologies, including renewable and non-renewable technologies in Bosnia using non-

numeric, non-exact, and non-complete information. They considered four sustainability 

criteria: resources, environment, economic, and social, with each including multiple 

indicator aggregated through applying weight factors. In order to compare the overall 

sustainability performance of various systems, they defined two cases where different 

sustainability criteria are prioritized based on assumed relative importance. Karger and 

Hennings [108] investigated the advantages and disadvantages of distributed electricity 

generation for Germany through sustainability assessment of four specified future 

scenarios regarding power generation decentralization. Through interviews with 11 

representatives with different backgrounds, they compiled sustainability criteria classified 

into environmental protection, health protection, security of supply, economic aspects, 

and social aspects each involving detailed indicators. Based on expert judgments, they 

found that decentralization has positive effects on “CO2 emissions” while “conservation 
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of materials” will be negatively affected. Impacts of decentralization on “security of 

supply” is characterized by number of contradictory factors and large uncertainties. 

Schlor et al. [109] developed two indices, index of sustainable development (ISUD) and 

standardized sustainability index (SSEI) in order to identify the degree to which 

sustainability is achieved according to the sustainability goals set by the German 

government. Dapkus and Streimikiene [110] conducted a sustainability assessment on 

various power generation technologies in order to identify most sustainable development 

paths in the EU. Using a multi-criteria decision method called MULTIMOORA, they 

found that solar and hydro power systems are the most sustainable technologies followed 

by wood CHP (combined heat and power) systems and wind energy. Santoyo-Castelazo 

and Azapagic [93] assessed sustainability of eleven future electricity supply scenarios in 

Mexico considering environmental, economic, and social sustainability dimensions. 

4.1.3 Sustainability Assessment at Community Scale 

Rather than regional and national scales, it is easier to tackle these sustainability 

concerns in the narrower context of communities (campuses, neighborhoods, etc.), where 

considerable work has already been done and which have a well-defined central authority 

whereby policy decisions regarding social practices and engineering systems are easier to 

implement. At point of use, community-scale energy systems are crucial in achieving 

sustainable development due to involvement of end-use consumers on one hand [3], and 

their large contribution in the world’s energy use and GHG emissions on the other hand 

(according to [4] in 2017, 40% of total U.S. energy consumption was from residential and 

commercial buildings). 
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There are few published work on sustainability assessment of community-scale energy 

systems. Lo Prete et al. [111] developed a framework for quantitative sustainability and 

reliability assessment of different power generation scenarios at regional scale in 

European electricity market. Results of their analysis suggest that the power network 

which includes fossil-fueled microgrid and a price on CO2 emissions yields the highest 

sustainability index which is comprised of environmental, economic, technical, and 

reliability sub-indices. Safaei et al. [112] proposed a life-cycle model to estimate cost and 

environmental impacts of three different cogeneration and solar technologies in 

buildings. They found that specific design and operation strategies have to be adopted for 

distributed power generation systems in order to meet the cost and environmental impacts 

reduction goals. 

4.1.4 Objectives 

The objective of this paper is to propose a multi-criteria sustainability assessment 

framework which: (i) captures the two important dimensions of sustainability (i.e., 

minimal impact on the environment via efficient performance and resilience) pertinent to 

end-use energy systems at community scale, (ii) allows presenting the results so that 

trade-offs and system impacts are clear and well defined in order for stakeholders to 

participate and make informed decisions. The framework and indices proposed will be 

useful for a variety of sustainability-relevant tasks: (i) for sustainability-conscious design 

of new energy systems, (ii) for assessing performance of an existing system, (iii) for day-

to-day scheduling and operation of the energy systems, and (iv) for development and 

planning for future growth. 
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4.2 Quantification and Benchmarking 

We propose a performance-based sustainability assessment framework for 

benchmarking and evaluating different kinds of energy systems at the community scale. 

This framework would be akin to energy benchmarking of individual buildings meant to 

compare and rank measured energy performance of a particular building against a 

distribution of similar buildings. The benchmarking index commonly used is the Energy 

Use Intensity (EUI), in units of kWh/sqft.yr or Btu/sqft.yr. 

4.2.1 Economic/Cost Index 

Life Cycle Cost analysis is a financial approach which helps decision makers identify 

the most cost-effective measure among competing alternatives. Costs associated with a 

particular product or service can be divided into capital costs, consumption costs, and 

O&M (operation and maintenance) costs. In the case of energy systems, capital costs 

include procurement of new equipment and systems while consumption costs refer to 

purchase of electricity (actual electricity costs and demand charge rates and incentives 

and rebates) and natural gas from utility providers. Other direct costs of the energy 

system might be considered based on the scope and goal of the analysis. 

We propose a normalized economic index called Energy Costs Intensity (EnCI), 

which is the sum of annualized initial costs of different energy system components, 

annual consumption costs, and O&M costs normalized per unit area of the 

building/facility served by the energy system. The EnCI index, expressed in $/m2/year, 

provides multiple advantages compared to the existing energy metrics (such as EUI 

index): first, in addition to the energy consumption, the EnCI index includes the energy 

related capital, consumption costs (and the temporal variations in rate structures), and 
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O&M costs. Further, it accounts for the demand charges which are usually a big portion 

of the energy bills for commercial and industrial facilities. For instance, implementing a 

peak-load shifting strategy has no impact on the EUI, while EnCI can capture such 

effects. 

4.2.2 Environmental Impacts Index 

 
Environmental and health impacts are often very decisive sustainability criteria. 

Environmental impacts of any product or service can be evaluated and quantified through 

a life cycle assessment (LCA). An extensive LCA is required to estimate emissions and 

the associated environmental and health burdens of end-use energy systems as numerous 

processes and infrastructure are involved (refer to Chapter 2 for more details). 

We propose an environmental sustainability index called External Costs Intensity 

(ExCI) which is the monetized locations-specific environmental and health impacts of the 

energy system imposed to the society normalized against unit area of the building/facility 

served by the energy system. The ExCI index, represented in $/m2/year, involves all 

lifecycle stages of any source and system required to meet the electrical, heating and 

cooling energy needs of the community.  

External cost approach, i.e. the monetized adverse health and environmental impacts, 

was used to quantify the environmental and health impacts associated with various 

components of the energy system throughout their lifecycle. The proposed methodology 

for evaluating the environmental and health impacts of the end-use energy systems is 

specific to the location of the facility and accounts for regional power generation energy 

portfolio mix which is necessary due to two main reasons: (a) power generation fuel mix 
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and thereby the associated environmental and health impacts vary drastically across the 

U.S. (b) features of the environment which receives the pollution, including climatic 

conditions and population density, identify how and at what level the impacts would be 

[95]. Note also that one of the drawbacks of relying on EUI is that it cannot reflect the 

quality of the energy being used for the building while the ExCI index, along with the 

EnCI index, reflect both quantity and quality of the consumed energy. 

4.2.3 Resilience Index 

A new performance-based method for characterizing and assessing resilience of multi-

functional engineered systems has been proposed by the authors (Chapter 3). The 

proposed methodology quantifies resilience of the system based upon loss in the services 

which the system is designed to deliver. 

The area-normalized costs imposed to the system stakeholders due to loss of 

functionality over a certain period of time (say, one year), is considered as the resilience 

cost intensity, ReCI, represented in $/m2/year. This index would essentially depend on 

types of services provided by the community and represent the imposed penalty costs to 

the system stakeholders due to undelivered services and/or non-optimal system 

performance. The index is also location specific due to type, frequency, severity and 

duration of extreme events vary from one region to another. 

Resilience assessment also has to be location and case specific since the type and 

frequency of occurrence of disruptions may vary from place to place; for instance, 

electric grid reliability statistics confirms that outages are more frequent and last longer 

in some regions. 
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4.2.4 Representation of Results- Sustainability Compass Diagram 

Analyzing alternative scenarios and identifying their sustainability status allow 

decision-makers to ascertain whether one scenario is more sustainable than another. Our 

framework involves characterizing the sustainability of energy systems by three indices, 

namely EnCI, ExCI, and ReCI. Mapping different scenarios on a plot will enhance 

comprehension since people can interpret visual results more easily. The Sustainability 

Compass diagram proposed is illustrated in Figure 4-1. Any point on the compass 

represents a system status reflecting two joint sustainability attributes of the system. The 

Sustainability Compass can also be used to identify whether a particular strategy or 

modification will improve sustainability of the system compared to the baseline case. 

The results can be represented in two different ways: 

(a) if the system stakeholders only want to evaluate the system sustainability during 

normal operation, then the two indices EnCI and ExCI are the appropriate ones to 

consider (Figure 4-1-a). 

(b) if resilience attributes, i.e. the system performance in dealing with disruptions, have to 

be assessed, then EnCI and ReCI are more appropriate (Figure 4-1-b) since 

maintaining/restoring system functionality is more critical than minimizing the 

environmental impact of the system during the relatively short interruption period. 

In the imaginary case shown in Figure 4-1, the change from point A (represent the 

baseline status of the system) to point B (after implementation of a particular 

modification) suggests that the economic and resilience performance of the system are 

improved (i.e. lower EnCI and ReCI indices) but at the expense of the environmental 

impacts (i.e. higher ExCI index). Thus, the Sustainability Compass not only shows the 
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direction and magnitude of the change in each sustainability criterion, it also helps in 

identifying the potential tradeoffs among different sustainability indices. Ideally, we 

would like that point B to fall in the lower left quadrant of the compass. 

 
Figure 4-1- Sustainability Compass allows visualizing the magnitude and direction of change in 

the sustainability status of an energy system/community when system changes are made 
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4.2.5 Sustainability Assessment Framework 

The overall sustainability assessment framework proposed in this study (Figure 4-2) 

starts by defining the goals and scope of the analysis. System modifications (or 

scenarios that are technically feasible options) should then be defined and documented 

based on the goals. These scenarios can be design/development alternatives at the early 

stages of a project, scheduling/operating options, or even the implementation of different 

EEMs (Energy Efficiency Measures) or ECMs (Energy Conservation Measures). 

The next step is data collection; for an existing energy system monitored data can be 

used, failing which it can be generated by system simulation. The data requirements 

(length, frequency, accuracy, level of granularity) would depend on the scope of the 

analysis. Energy modeling should also allow for predicting system performance when 

different scenarios are being evaluated. Also, time scale of the monitored or simulated 

data would depend on the specific scenario being evaluated; for example, 15-minute data 

might be necessary for electric demand charge calculations while seasonal/annual 

estimations would be adequate for future growth evaluations. Energy consumption of the 

on-site facilities (such as chillers, boilers, etc.) operated to meet the energy demands need 

to be considered. For each system and at each time step, the environmental impacts, 

including direct emissions and fuel/electricity consumption along with associated costs, 

i.e. operational, maintenance, and capital costs have to be calculated and aggregated in 

order to reflect overall system behavior. 

The next step is to calculate the sustainability indices by conducting the Life Cycle 

Assessment (LCA), Life Cycle Costing (LCC), during normal operation conditions as 

well as analyzing the resilience performance of the energy system under disruptions. The 
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sustainability indicators, i.e. environmental, economic, and resilience performance 

indices, will be mapped on the Sustainability Compass in order to facilitate the decision-

making process. Stakeholders might assign membership functions to different indices 

using fuzzy logic framework in order to either magnify or lessen the importance of a 

particular index. They could also assign penalty costs to the system functionality losses 

based on the time of interruption, type of lost functionalities, and number of people 

affected. 

In this study, stakeholder preferences are viewed as reflective of the social dimension 

of sustainability of the community energy systems. Health effects of the systems (also 

part of social impacts) are included in the LCA analysis while other social metrics such 

as social justice, equity, employment, human rights, etc., have not been included here. 

Health effects of the systems, which can be considered as part of social impacts, are 

included in the LCA of the energy system. 
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Figure 4-2- Flowchart of the sustainability assessment framework proposed 

4.3 Case Study 

4.3.1 Energy System Description 

The proposed methodology described above has been applied to the integrated energy 

system (IES) of a university campus with more than 280 buildings located in Arizona, 

U.S.A. The entire energy system is extensively instrumented by an Energy Information 

System which collects and stores end-use data from various systems at 15-minute time 

intervals. The overall energy demand of the campus is met through a variety of sources 

ranging from electricity purchases from a local power company to solar PV systems 
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installed on several campus buildings and parking lots, as well as a CHP plant consisting 

of a 7-MW gas turbine and a 2-MW steam turbine. The cooling plant comprises of 10 

centrifugal chillers each of capacity 2,000 Tons (one refrigeration Ton is 3.517 kW or 

12,000 Btu/h), and 6 chilled water TES (Thermal Energy Storage) tanks each having a 

capacity of one million gallons of water. Solar panels are mostly polycrystalline and are 

either stationary or one-axis trackers. Whole year of hourly monitored data on electricity 

and natural gas consumption has been used in this analysis. 

4.3.2 Development/Design Scenarios 

Six design/development scenarios were considered in order to illustrate how the 

proposed sustainability assessment method can be used to quantify and compare different 

alternatives from the sustainability standpoint. Scenarios were constructed based on 

different penetration level of solar PVs and capacity of the CHP system as listed in Table 

4-1. Scenario A, which serves as the baseline, does not include any on-site power 

generation, and therefore all electrical loads (including cooling loads) are fed by the 

utility grid. In scenario B, a 9-MW CHP system (a 7-MW gas turbine plus a 2-MW steam 

turbine) were added to the baseline energy system. Scenario C considers the 

implementation of on-site solar PVs; a 6.85 MW solar PV was added to the baseline 

system and sized such that the initial costs are equal to that for the CHP system used in 

scenario B. Scenario D considers higher levels of solar power penetration by introducing 

a 13.7 MW solar PV system to the baseline system and scenario E includes both PV and 

CHP systems used in scenario B and scenario C. Note that scenario D and scenario E 

would have equal initial capital costs before the incentives are applied. Scenario F 
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includes three 2 MW diesel generators which are to be operated only under emergency 

conditions. 

Table 4-1- Specification of the baseline energy system (scenario A) and five alternative scenarios 
evaluated 
Scenarios Solar PV CHP Diesel Generator notes 

A - - - Baseline (no on-site power generation) 
B - 9 MW* - Addition of CHP system 
C 6.85 MW - - Lower solar penetration 
D 13.7 MW - - Higher solar penetration 
E 6.85 MW 9 MW* - Lower solar penetration with CHP 
F - - 3 x 2000 kW Traditional stand-by generator 

*7MW gas turbine + 2MW steam turbine 

4.3.3 Results and Discussions 

4.3.3.1 Cost Analysis Results 

Evaluation of the economic performance of the campus energy system involved 

conducting a LCC analysis which takes into account the energy consumption costs, 

including purchasing electricity and natural gas from the utility companies, demand 

charges, O&M costs, and annualized initial costs considering incentives. Table 4-2 

summarizes the input data assumed for this LCC analysis for on-site generation systems, 

i.e. the solar PVs and the CHP system. Following [41], discount rate is taken to be 2%. 

 
Table 4-2- Financial input data 

* this includes module, inverter, balance of system (BOS), install labor, tax and overhead costs 

Electrical energy and demand charge tariffs are assembled in Table 4-3. Natural gas 

price fluctuates from a low of $7.21/GJ in December to a high of $9.88/GJ in June; 

however, we have assumed an annual average of $8.54/GJ. 

System Lifespan Initial Cost Incentives O&M Costs 

CHP 25 years 
[113] 

$1000/kW (gas turbine) 
$1300/kW (steam turbine) 

[114] 
500 $/kW [114] 40 $/kW/yr [113] 

Solar PV 25 years $1.62/W installed* [86] 
30% Federal tax credit 
[115] plus 10% state 

tax credit [116] 
$14/kW/yr [86] 

Diesel Gen. 25 years $1000/kW [117] - $3.6/kW/yr [118] 
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Table 4-3- Electrical and demand charge rates 
 Electrical Energy 

($/kWh) 
Demand Charge 

($/kW) 
On-peak 0.04483 19.229 
Off-peak 0.0355 2.974 

First, a cashflow analysis was conducted for the different scenarios. Savings due to 

lower consumption costs and lower demand charges are calculated and cumulated to 

estimate the payback time for the different scenarios. It was found that, after 25 years, the 

cumulative savings from scenario B and C are $16.3 million and $11.1 million 

respectively; therefore, the CHP system has better economic performance compared to 

the PV system as its payback time is shorter and total saving over its lifespan are larger. 

Comparing scenario D and E, which have equal initial costs, also confirms that the CHP 

system has better economic performance than the PV system mainly due to higher 

capacity factor. In addition, CHP systems are dispatchable and can be run at different 

part-loads depending on the campus energy needs and the electricity rate structures. 

Regular costs of the energy system include, electricity costs, fuel costs, demand 

charges, and operational and maintenance costs. Results of our financial analysis reveal 

that the demand costs are very significant, while additional O&M costs due to adding 

new systems are negligible compared to other costs (see Figure 4-3). In scenarios B and 

E, annual fuel costs are higher than the demand charges due to NG-fired on-site power 

generation. For scenarios C and D, the introduction of solar PV systems has reduced both 

energy costs and demand charges with the later saving being slightly greater. 
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Figure 4-3- Contribution of different types of costs to annual costs 

The EnCI index (Figure 4-4-a) has been compared across the different scenarios along 

with the payback periods (Figure 4-4-b). Comparison between scenario B and scenario C 

results confirms that the CHP system has a payback period of 7.2 years while it takes 

around 9.4 years for solar PVs to pay off the capital investment in scenario C. Scenario D 

with an installed PV system double that of scenario C results in longer payback time 

around 10.6 years. The payback period for scenario E is found to be 8.3 years. It can be 

seen that all scenarios improve EnCI indices compared to the baseline case (scenario A) 

except for scenario F which does not provide any savings in normal conditions; scenario 

E has the best EnCI index among the analyzed scenarios. The EnCI index includes a 

variety of costs including initial capital costs, consumption costs, operation and 

maintenance costs, and incentives, and therefore offers a comprehensive comparison 

among the competing alternatives. 
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Figure 4-4- EnCI index and payback time of different scenarios, no pay-back time is 

calculated for scenario F since the emergency diesel generators does not provide any saving 
during normal operation 

4.3.3.2 Environmental Impacts Analysis Results 

Chapter 2 reported on location-specific environmental impacts of power generation at 

utility scale in the AZNM eGRID sub-region where the university campus is located. 

Temporal variations in the emission factors due to change in the utility power generation 

fuel mix are included as are the environmental costs of on-site CHP and boilers operation 

and manufacturing, transportation, operation and maintenance of the PV systems. 

The ExCI indices for the different energy scenarios along with the contribution of 

purchased electricity, the natural gas burnt in the CHP system and boilers, and the PV 

systems, are shown in Figure 4-5. The implementation of the CHP system results in 

higher environmental impacts although boilers loads and amount of purchased electricity 

are reduced (see Figure 4-5-a). As shown by the results of scenario C and scenario, solar 

PV systems can reduce the environmental impacts of the campus energy system. 

Combination of solar PV and the CHP systems (scenario E) can also slightly improve the 

performance of the energy system with regards to environmental burdens. In addition, the 

impacts associated with the solar PVs lifecycle were found to be insignificant compared 

to purchased utility electricity and fuels. Our environmental impacts assessment (using 
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ecoinvent database [50]) confirms that impacts associated with the diesel generators 

manufacturing are negligible relative to those from purchased electricity and NG given 

the amount of purchased electricity, and therefore scenario A and F would have equal 

environmental and health impacts. 

 
Figure 4-5- ExCI indices and total annual external costs associated with different sources 

The energy system in Scenario B imposes $2.1 million additional externalities 

(compared to the baseline) to the society over the system lifetime while scenario C and 

scenario D reduces total externalities by $2.6 million and $5.3 million respectively. 

Implementing both PV and CHP system in scenario E would result in minor reduction of 

$0.5 million over the 25-year horizon. Note that with the same initial investments, 

savings on external costs from the solar PV system are higher than the increase in 

externalities from the CHP system. 

4.3.3.3 Resilience Assessment Results 

A resilience assessment framework which characterizes and quantifies resilience of an 

end-use energy system based upon the unmet electrical, heating, and cooling loads was 

proposed in Chapter 3. The resilience cost intensity captures the cost that the system 

stakeholders would incur due to functionality losses due to interrupted services. In this 

case study, we have used historical hourly data obtained from the campus energy 
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information system (EIS), in order to assess resilience performance of the developed 

scenarios. Total electrical loads (including the cooling loads) were collected separately 

for Summer Days, Summer Nights, Non-summer Days, and Non-Summer Nights, as 

different operational temporal periods, to reflect variability in the campus loads and in the 

solar PVs output. We assumed that critical safety and sensitive laboratory loads are 20% 

of total electrical loads. Since the developed scenarios focuses on electrical energy 

systems, we have opted not to include heating loads in our resilience analysis. On the 

other hand, natural grid distribution network is more reliable compared to electric grids 

and other forms of energy transportations as it is underground [84]. Therefore, the 

campus energy system ought to be more resilient against electric grid failure since it is 

the more critical failure mode. Failure of other on-site power generating systems, i.e. PVs 

and the CHP systems, will not leave any electrical loads unmet as the grid utility can feed 

the campus. 

Duration and frequency of failures over the timeframe of the study affects the costs 

imposed on the system stakeholders. Such statistics are available for electric grid failures 

across the U.S. for different APPA (American Public Power Association) regions as 

CAIDI (Customer Average Interruption Duration Index) and SAIFI (System Average 

Frequency Interruption Index) [90]. CAIDI is reported as average length of outages (in 

minutes) that a customer would experience in a year while SAIFI describes the frequency 

of sustained outages experienced by customers in one year [75]. The campus studied here 

is located in the state of Arizona (APPA region 6) for which the CAIDI is 106.8 minutes 

and the SAIFI is 1.36. Table 4-4 assembles the campus critical and non-critical electrical 

loads along with the penalty costs assigned to unmet loads estimated based on a study 
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conducted by Lawrence Berkley National Laboratory (LBNL) on value of the electric 

utility service reliability for different types of customers [119]. 

Table 4-4- Penalty costs of unmet critical and non-critical electrical loads 
 Non-Critical Elec. Loads 

(kWh) 
 Critical Elec. Loads 

(kWh) 
 Assigned Penalty 

Costs ($/kWh) 
 min Average Max  min Average Max  Non-critical Critical 
Summer* Days** 13,098 20,629 25,442  3,275 5,157 6,360  30 200 
Summer Nights 11,269 16,760 21,676  2,817 4,190 5,419  15 200 
Non-Summer Days 3,442 18,752 23,992  860 4,688 5,998  20 200 
Non-Summer Nights 3,439 15,422 19,506  860 3,856 4,876  10 200 

* May through October 
** 7AM to 7PM 

Since electrical loads vary by time of the day and throughout the year, the imposed 

penalty costs were calculated for grid failure were they to occur during different 

operational temporal periods and lasting for 106 minutes. In scenario A, for which the 

resilience assessment results are depicted in Figure 4-6, all critical and non-critical 

electrical loads will be unmet since there is no on-site power generation. Figure 4-6 

shows the imposed costs if electric grid failure occurs during any of the operational 

temporal periods. The depicted error bars in the imposed costs are due to the variations in 

the campus loads (minimum and maximum loads are given in Table 4-4 for critical and 

non-critical loads during different operational temporal periods). For instance, if the 

power grid fails during a Summer day, the average imposed costs (from both critical and 

non-critical loads) would be around $4 million ranging from the low of $2.5 million to 

the high of $4.9 million. 
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Figure 4-6- Scenario A (baseline), imposed costs due to unmet critical and non-critical electrical 
loads during electric grid failure. The error bands correspond to minimum and maximum loads 

during the respective seasons 

In scenario B, a 9-MW CHP system was added to the baseline case. Since the gas 

turbine prime movers have fast ramping rates, we assumed that the CHP system will 

attain its maximum capacity very quickly once started in case of electric grid failure. It is 

obvious that the imposed costs (Figure 4-7) are considerably lower in scenario B as none 

of the critical loads are unmet. We found that the CHP system is able to meet a portion of 

the non-critical loads as well.  

 
Figure 4-7- Scenario B (9MW CHP), imposed costs due to unmet critical and non-critical 

electrical loads during electric grid failure 
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Scenarios C, D, and E involve different penetration level of solar PV systems. Since 

the PV system output depends on the weather condition, three different conditions, 

namely overcast, partly sunny, and sunny, were considered so as to capture the variability 

in the PV output. Results of scenario C resilience assessment (Figure 4-8) indicate that 

the 6.8 MW solar PV cannot cover all the critical loads even if the weather conditions are 

favorable (sunny) unless critical loads are at their minimum levels. Since priority will be 

given to meet the critical loads, non-critical loads will not be covered before all critical 

loads are met; this can be achieved through optimal control of the energy system which 

incorporates the assigned penalty cost to the functionality losses (see Chapter 3). If a 

failure occurs during a Non-Summer sunny day during a period when the loads are at 

their minimum level, the solar PV system will be able to meet both critical and non-

critical loads. 

 
Figure 4-8- Scenario C (6.8MW Solar PV), imposed costs due to unmet critical and non-critical 

electrical loads during electric grid failure 
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Doubling the solar PV system capacity to 13.7 MW will improve the resilience 

performance of the energy system. This will enable the system to fully meet the critical 

loads and even partially cover the noncritical loads when it is sunny (see Figure 4-9). 

 
Figure 4-9- Scenario D (13.7MW PV), imposed costs due to unmet critical and non-critical 

electrical loads during electric grid failure 

Comparing scenario D and scenario E results reveal that scenario E can provide better 

resilience compared to scenario D as all critical loads are met and some portion of the 

non-critical loads are covered as well. On the other hand, if the outage occurs during the 

night, the CHP system is able to cover the critical loads while in solar-only scenarios the 

energy system will not be resilient during nights. 
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Figure 4-10- Scenario E (6.8MW PV + 9MW CHP), imposed costs due to unmet critical and non-

critical electrical loads during electric grid failure 

Figure 4-11 shows the energy system resilience in scenario F. It is evident that the 

diesel generators can cover all critical loads while also partially cover the non-critical 

electrical loads. 

 
Figure 4-11- Scenario F (stand-by diesel generators), imposed costs due to unmet critical and 

non-critical electrical loads during electric grid failure 
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evaluate the system resilience when loads are quite high (Figure 4-12). It was found that 

utilization of the CHP system (with fast ramping rate) and emergency diesel generators 

can considerably improve resilience performance of the energy system. Regarding the 

scenarios with solar penetration (i.e. scenarios C, D, and E), average PV power output 

(partly sunny condition) was assumed for ReCI calculations. Implementation of solar PVs 

improves resilience performance of the system only during day time and is proportional 

to the solar penetration level. Comparing scenarios B and C, which have equal upfront 

cost, indicates that CHP systems, specifically with fast ramping characteristics, would 

improve energy systems resilience significantly.  

 
Figure 4-12- Resilience cost intensities (ReCI) for electric grid failure across all scenarios 
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Results of the sustainability assessment of the energy system have been mapped on the 
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are shown relative to the base case (scenario A) and to each other informing decision-

maker how and to what extent each scenario affects the system performance in each 

sustainability criteria. Figure 4-13-a illustrates the IES performance in normal operation 

while Figure 4-13-b shows the system performance in confronting grid failure. 

Comparing scenarios B and C, which have the same initial costs, reveals that scenario 

B has higher environmental impacts while it can improve resilience and economic 

performance of the system more significantly. If a stakeholder would like to double the 

investment, scenarios D and E would be the logical options. Results indicate that scenario 

E has much better economic and resilience performance while also reducing the overall 

environmental and health impacts compared to scenario A. Scenario F does not affect the 

ExCI index as the diesel generators will only run during outages. Also, the EnCI of the 

system will be higher in scenario F (compared to scenario A) as this option does not 

provide any savings during normal operation and the initial investments will result in a 

higher EnCI index. The EnCI-ReCI compass can be used to estimate how much to invest 

on resilience improvement measures as against potential imposed costs. 
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Figure 4-13-Sustainability Compass, EnCI versus ExCI changes 

4.4. Summary and Future Works 

Sustainable and resilient energy infrastructure are critical for sustainable development 

under normal conditions, and in confronting extreme conditions and disasters. Improving 
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sustainability and resilience of energy systems have thus become a strategic goal both at 

national and local scales. This calls for a multi-criteria framework to assess sustainability 

of energy systems in different conditions enabling policy and decision makers to evaluate 

and track performance of such systems. This paper proposes a holistic assessment and 

quantification framework supporting sustainability-conscious design, operation, and 

development of energy systems at community scale. 

As an extension to the EUI concept applied to individual buildings, we propose the use 

of three performance-based indices for sustainability benchmarking. The developed 

sustainability indices reflect normalized energy costs, environmental/health externalities 

and potential penalty costs associated with economic, environmental, and resilience 

dimensions respectively. A new way of communicating the analysis results via the 

“Sustainability Compass” diagram is proposed which would allow better decision-

making since the direction and magnitude of changes in the sustainability indices under 

different scenarios is better revealed. 

The proposed methodology has been illustrated using end-use monitored data for 

whole year operation of a university campus energy system; four energy development 

scenarios, with implementation of CHP system and various solar PV penetration levels, 

were identified and their sustainability performance were compared with the baseline 

case. Results of this analysis suggested that, with equal initial investments, CHP systems 

can provide 1.5 times more savings in EnCI (energy cost intensity) and 5 times more 

savings in ReCI (resilience cost intensity) indices compared to PV systems while causing 

more environmental/health impacts (higher ExCI, i.e. external cost intensity) relative to 

the base case. Given the uncertainties associated with ReCI index, it was found that only 
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scenario E (both CHP and PV systems are implemented) can improve the energy system 

performance in all three sustainability criteria. 

We anticipate three categories of extensions of the suggested sustainability assessment 

framework and of the Sustainability Compass representation. One category would be 

inclusion of other infrastructure systems, such as water system/infrastructure and 

transportation integrated with the community energy system. Second category would 

consider building construction and materials which may have both direct and indirect 

impacts on sustainability performance of the community. The third category is the 

extension of these concepts to optimally control and operate the energy systems based 

upon all sustainability criteria rather than solely based on economic variables. 
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Chapter 5 – Summary and Future Work  

5.1 Summary 

This study proposes a framework to assess, characterize and quantify key attributes of 

sustainability of integrated energy systems, which is one of the key elements of any 

community or facility, Sustainability of such systems, comprised of utility power plants, 

distributed generation technologies, and building heating and cooling systems, would 

essentially include two dimensions: 

 (a) system performance under normal conditions. A sustainable system has to be 

designed, operated, and supported such that its environmental impacts and costs are 

minimal; this is the concept of functional efficiency; 

 (b) system performance when stressed by internal or external disruptions posed by 

natural, manmade, or random events. In this circumstance, the system ought to be 

designed and managed such that losses of lives, assets, and functionalities are minimal. 

This can be achieved through various capacities, depending on type of the disruption and 

the system functions, such as robustness, adaptivity, and fast recovery, to name a few; 

these capabilities are generally referred to as resilience. 

In this thesis, a new life-cycle and performance-based quantitative sustainability 

assessment framework have been developed which is focused on community scale energy 

systems. A more practical and specific definition of sustainable energy systems has been 

proposed and new quantitative sustainability indices and metrics have been suggested 

whereby sustainability concepts can be integrated more effectively into engineering 

design and planning practices. In addition, comprehensive methodologies have been 

developed for identifying and quantifying location and circumstance-specific 



 

  

 116 

environmental impacts under normal condition, and resilience of energy systems when 

disruptions occur. Specific features and key findings of each of the developed 

methodologies are summarized below: 

(a) Functional efficiency under normal operation analysis enhanced by LCA (Chapter 2) 

A pragmatic LCA methodology to quantitatively evaluate monetary costs of human 

health and environmental impacts of a specific community scale Integrated Energy 

Systems (IES) has been developed which capture the effect of real-time emissions from 

various energy systems including, utility power plants, distributed generation facilities, 

and building heating and cooling systems. The uncertainties associated with the results 

were analyzed using the Monte Carlo techniques. The developed approach described in 

this thesis can be integrated into design, operation, and development planning practices 

toward more sustainable engineered systems and infrastructure. Some of the capabilities 

of the proposed methodology were illustrated through a case study on a large university 

campus with more than 280 buildings. The external costs of electricity generation using 

on-site CHP system were found to be about 4.4 ¢/kWh (neglecting the recovered heat) 

which is considerably higher than both on-site solar systems (0.5 ¢/kWh) and utility-

generated electricity (2 ¢/kWh). It was found that the amount of recovered heat plays a 

crucial role in external costs of a CHP system. In other words, the waste heat from the 

exhaust flue gas and from the motor jacket can be used to offset boilers fuel consumption 

by reducing their loading.  The campus CHP system has overall efficiency of 71% which 

results in the external costs to be 1.86 ¢/kWh. Therefore, we can conclude that expanding 

the size of the CHP plant along with thermal heat recovery to offset the use of boilers 

would be a sustainable option. 
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(b) Performance based resiliency analysis (Chapter 3) 

Through modeling of system response to potential internal and external failures (called 

failure modes) during different operational temporal periods (such as different diurnal 

and seasonal periods of the year), the proposed methodology quantifies resilience of the 

system based upon loss in the services which the system is designed to deliver. A three-

dimensional matrix, called Loss Matrix, is introduced whose elements represent the 

undelivered system services under different scenarios, i.e. combinations of failure modes 

and different operational temporal periods. Assigning monetary penalty costs to such 

losses and including them in the objective function of an optimization model of the entire 

system allows the three-dimension loss matrix to be reframed into a two-dimensional 

Consequence Matrix where individual elements represent the imposed penalty costs to 

the system stakeholders due to undelivered services and/or non-optimal system 

performance. Normalizing the individual elements results in the Resilience Matrix of the 

system for different scenarios. 

The performance-based resilience assessment framework developed in this study 

offers several advantages compared to the existing ones: (i) through a constraint 

optimization model of the system, the system performance during disruption can be 

realistically modeled accounting for physical, economic, and operational limitations; such 

models are usually available for operational control and optimization and can be modified 

to include penalty costs and possible failure scenarios to be used for resilience assessment 

purposes; (ii) the developed framework can be implemented for different types of 

engineered systems and is able, and meant to, handle multi-functional systems; (iii) 

quantification of resilience performance in monetary terms facilitates resilience 
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considerations to be incorporated in cost-effectiveness analyses; (iv) it directly targets 

system performance when confronted a disruption, rather than focusing on system 

characteristics, e.g. faster recovery, which may or may not improve the system respond to 

the disruption. 

(c) Combining normal operation and resilience and introduction of the sustainability 

compass (Chapter 4) 

New sustainability indices were proposed for energy systems which capture the 

impacts on environment and people heath, economic performance of the system, and 

resilience performance, identified by normalized environmental/health externalities, 

energy costs, and penalty costs respectively. A new way of presentation of results, called 

“Sustainability Compass” diagram is proposed which facilitates communication of the 

assessment results and would allow sounder decision-analysis since different system 

attributes are captured and trade-offs between different scenarios are better identified and 

revealed. 

The proposed methodology has been illustrated using end-use monitored data for a 

whole year of operation of a university campus energy system; four energy development 

scenarios, with implementation of CHP system and various solar PV penetration levels, 

were identified and their sustainability performance were compared with the baseline 

case. Results of this analysis suggested that, with equal initial investments, CHP systems 

can provide 1.5 times more savings in EnCI (energy cost intensity) and 5 times more 

savings in ReCI (resilience cost intensity) indices compared to PV systems while causing 

more environmental/health impacts (higher ExCI, i.e. external cost intensity) relative to 

the base case. Given the uncertainties associated with ReCI index, it was found that only 
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scenario E (both CHP and PV systems are implemented) can improve the energy system 

performance in all three sustainability criteria. 

5.2 Future Work 

This research opens up a number of avenues worth exploring. These have been 

divided into immediate (or lower-level) issues, and broader extensions, the latter 

requiring a higher level of conceptual formulation and development effort. 

5.2.1 Immediate Extensions 

(a) Integration of the developed concepts to optimally control and operate energy systems 

based upon a larger set of sustainability criteria, which may not be translated into 

economic variables.  

(b) More subtle consideration of the criticality of loads (rather than simply considering 

them to be critical and non-critical and expressing associated service loss penalties as 

a non-linear function with relevant uncertainties stated as, say fuzzy numbers. 

(c) Including frequency of occurrences of different failure modes and their duration 

which is important for investments relate to enhancing resiliency. 

(d) Aggregation of various scenario results of system resilience analysis into one 

composite resilience index. 

(e) Apply the developed methodology to a real-world case using data collected for 

multiple years in which weather and building load variabilities, both seasonally and 

across years, are represented in a probabilistic manner. 

(f) Emphasizing the social elements in the analysis through fuzzy weights applied during 

the decision analysis process. 
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5.2.2 Broader Extensions 

(a) Inclusion of building construction and materials into the LCA analysis which may 

have both direct and indirect impacts on sustainability performance of the community; 

direct effects are those economic, environmental, and resilience impacts associated 

with the materials and construction techniques, while indirect effects could be, for 

instance, effects of the selected material on energy performance of buildings. 

(b) Extending the developed framework to the energy infrastructure at aggregated levels 

(such as electric grid) which would include a whole new set of sustainability metrics. 

(c) Defining the concept of “absolute sustainable system/community” as a reference 

point, akin to the exergy efficiency concept. The best sustainable building would be 

defined depending upon type of the building, geographical location, and climatic 

conditions since availability of renewable energies, as a key element, and power 

generation resources varies greatly from place to place. 

(d) Inclusion of water, sewage, communication, and transportation system/infrastructure 

coupled with the community energy system. Analyzing the interconnection among 

these infrastructures, their reliance on each other, and service losses due to various 

failure modes will provide insight towards resilience of complex systems. 

(e) Extending the current resilience assessment methodology which is limited to events 

that cause little or no physical damage, to more extreme events including disasters.  
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Abstract 

Work undertaken towards modeling and optimization in support of optimal receding 

horizon scheduling and control of integrated energy systems (IES) composed of on-site 

power generation, electrical and thermal energy storage, heating and cooling equipment 

is described in this appendix. The objective function is defined as accumulative 

operational cost of the IES over the simulation period which has been selected as 24 

hours. Various black-box models of equipment performance were integrated into the 

optimization framework to identify the optimal values for dispatch and loading of 

different system components which were selected as decision variables. These inherently 

non-linear performance models were then replaced by segmented linear models in order 

to simplify the optimization model to a MILP (Mixed Integer Linear Problem) problem to 

reduce the numerical and computational burden. Hourly values over a 24-hour period of 

electricity and fuel price structures and building electrical and thermal loads along with 

individual component capacities and performance constraints are the needed inputs to the 

model. 

A case study IES systems was carefully selected and inputs properly defined so that 

different solution methodologies of optimization could be performed (different 

linearization schemes, different solution approaches, different solvers and programming 

languages). The IES modeled in this case study includes 2 prime movers, 2 boilers, 2 VC 

chillers and one absorption chiller as well as a battery storage; the optimization modeling 

was performed for 4 sample days, namely Summer day with high loads, Summer day 

with low loads, Winter day with high loads, and Winter day with low loads. The results 
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of our analysis were very consistent with those obtained by two other groups of 

researchers within the framework of a separate funded research study.   

Nomenclature 

𝑎𝑎1, 𝑎𝑎2, … Model coefficients 

𝐶𝐶  Cost ($) 

𝐶𝐶𝑝𝑝  Specific heat (kJ/kg. oC) 

𝐶𝐶𝐶𝐶  Charge level 

𝐷𝐷𝐷𝐷𝐷𝐷  Depth of Discharge of storage systems 

𝐸𝐸  Electrical energy (kWh) 

EES  Electrical Energy Storage 

𝐹𝐹  Fuel consumption (kJ/h) 

𝑖𝑖  Component indicator 

𝑚𝑚  Mass flow rate (kg/s) 

𝑄𝑄  Thermal energy (heating or cooling) 

𝑅𝑅𝑅𝑅  Ramp Down rate of equipment 

𝑅𝑅𝑅𝑅  Ramp Up rate of equipment 

𝑆𝑆  System/component availability indicator (binary values, 1: available, and 

0: unavailable) 

𝑆𝑆𝑆𝑆𝑆𝑆  State of Charge (kWh or MMBtu) 

𝑡𝑡  Time step (h) 

𝑇𝑇  Temperature (˚C) 

TES  Thermal Energy Storage 
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𝑇𝑇𝑇𝑇  Time Lock 

𝑋𝑋  Minimum allowable part-load-ratio 

 

Subscripts: 

𝑎𝑎  Air 

𝐴𝐴𝐴𝐴  Absorption chiller 

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  Building 

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  Boiler 

𝑏𝑏𝑏𝑏𝑏𝑏  Buying electricity from utility 

𝑐𝑐  Cooling 

𝐶𝐶𝐶𝐶  Capacity Ratio 

𝐶𝐶𝐶𝐶  Cooling Tower 

𝑐𝑐𝑐𝑐𝑐𝑐  Condenser inlet 

𝑐𝑐ℎ𝑟𝑟𝑟𝑟  Charging 

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑛𝑛𝑛𝑛 Cooling 

𝑑𝑑𝑑𝑑  Dry-bulb 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 Demand 

𝑑𝑑𝑑𝑑𝑑𝑑  Discharging 

𝐸𝐸𝐸𝐸𝐸𝐸  Electrical Energy Storage 

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  Electricity 

𝑔𝑔𝑔𝑔𝑔𝑔  Natural gas (or any other fuel) 

𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔  Electrical grid 
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ℎ  Used for heating 

ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 Heating 

𝐻𝐻𝐻𝐻𝐻𝐻  Heat recovery unit 

𝐻𝐻𝐻𝐻  Heat Exchanger 

𝑖𝑖𝑖𝑖  Inlet 

𝑚𝑚𝑚𝑚𝑚𝑚  Maximum 

𝑚𝑚𝑚𝑚𝑚𝑚  Minimum 

𝑛𝑛  Number of components 

𝑜𝑜𝑜𝑜/𝑜𝑜𝑜𝑜𝑜𝑜 Component on/off status 

𝑜𝑜𝑜𝑜𝑜𝑜/𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 On-peak and off-peak hours  

𝑃𝑃𝑃𝑃𝑃𝑃  Part-Load Fraction 

𝑃𝑃𝑃𝑃𝑃𝑃  Part-Load Ratio 

𝑃𝑃𝑃𝑃  Prime mover 

𝑃𝑃𝑃𝑃  Photovoltaic 

𝑠𝑠𝑠𝑠𝑠𝑠  Saturation 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  Sellback electricity to utility 

𝑇𝑇𝑇𝑇𝑇𝑇  Thermal Energy Storage 

𝑉𝑉𝑉𝑉  Vapor compression chiller 

𝑤𝑤  Water 

𝜂𝜂  Efficiency 

𝜀𝜀  Effectiveness 

Superscript 
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*  Rated condition/Capacity 

A.1 Introduction 

This appendix describes the scheduling and optimal dispatch of Integrated Energy 

Systems (IES) as well as results of the analyzed case study. Details of how the objective 

function, the underlying part-load models of the various systems along with the range 

bounds and constraints have been framed are provided. The part-load component 

performance models are non-linear, and combined with the equipment scheduling aspect 

which involve binary variables to identify on/off status of each component, the 

optimization problem falls in the mixed integer non-linear programming (MINLP) 

category. Lingo software package was used for the purpose of this optimization analysis. 

However, initial evaluations led us to conclude that the MINLP approach to IES 

optimizing problems are time consuming and do not seem to converge to proper global 

minimum. Hence, the part-load models have been reframed as segmented linear models, 

which was later independently verified to be a valid approach by two other research 

groups tasked to analyze the same scenario using optimization models and software 

developed independently. 

A.2 IES Plant Subsystems and Components 

Figure A-1 is a schematic of a generic IES depicting how some of the main 

subsystems and components, i.e. prime movers, boilers, vapor compression chillers, 

absorption chillers, wet cooling towers and heat recovery loop are often connected to 

serve the building/facility heating, cooling, and electrical loads. The sketch includes a 

solar PV system but thermal and battery storage sub-systems have not been included. An 

IES can contain additional (or fewer) individual equipment than that shown here. 
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Figure A-1- Generic Schematic of an IES system without storage 



 

  

 138 

A.3 Description of Mathematical Optimization Model 

A.3.1 Model Scenarios 

The test simulation scenario described in this section is meant to minimize operational 

costs of a grid-connected IES system which includes CHP systems, vapor compression 

chillers, absorption chillers, boilers, and PV system. The optimization includes costs of 

purchased electricity and fuel (natural gas) over a time period, usually 24-hour time 

horizon, with the understanding that scheduling and continuous control of individual 

equipment can be done in hourly time steps only. Note that demand charges were not 

considered in the model. The model can handle variable price rate structures and multiple 

components of each type. Solar photovoltaics are also included and sellback to grid can 

be an option. The optimization allows for energy dumping, both cooling and heating 

thermal energy if needed (even though this is usually not implemented practically by 

most IES system operators). Finally, the relevant models for electrical and thermal 

storage systems are also described. 

A.3.2 Objective Function 

Simulation time step is chosen as one hour. Operating cost is to be minimized over a 

24-hour time horizon: 

𝑚𝑚𝑚𝑚𝑚𝑚�∑ �𝐶𝐶𝑔𝑔𝑔𝑔𝑔𝑔(𝑡𝑡)�𝐹𝐹𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(t) + 𝐹𝐹𝑃𝑃𝑃𝑃(t)� + 𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑏𝑏𝑏𝑏𝑏𝑏(𝑡𝑡). 𝐸𝐸𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔,𝑏𝑏𝑏𝑏𝑏𝑏(t) −24
t=1

𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡). 𝐸𝐸𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(t)��   (A-1) 

where the individual terms are defined in the nomenclature. Note that the above 

objective function only includes operational costs and demand charges and maintenance 

costs are not included. 
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A.3.3 Model Constraints 

The constraints are essentially mass and energy balances which are applied at both 

system level and at individual component level. Other practical constraints such as 

ramping rates, start-up costs, and time locks are also considered in this analysis, and 

discussed in the following sections. 

A.3.3.1 Energy Balance Constraints at System Level 

System level energy balance equations include electrical energy balance equation, 

heating energy balance equation, and cooling energy balance equation, as detailed below. 

a) Electrical Energy: 

Electrical energy balance equation includes distributed on-site electrical energy 

generation by the prime movers and solar PVs, purchased electricity from and sell-back 

to the utility grid, non-cooling electrical loads of the building, and electricity consumed 

by the electrical vapor compression chillers. Energy consumption of cooling towers fans 

should also be included if cooling towers performance is considered in the optimization 

model. 

𝐸𝐸𝑃𝑃𝑃𝑃(𝑡𝑡) + 𝐸𝐸𝑃𝑃𝑃𝑃(𝑡𝑡) + 𝐸𝐸𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔,𝑏𝑏𝑏𝑏𝑏𝑏(𝑡𝑡) − 𝐸𝐸𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡) = 𝐸𝐸𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑡𝑡) + 𝐸𝐸𝑉𝑉𝑉𝑉(𝑡𝑡) (A-2) 

b) Heating Energy: 

The total heating energy generated by boilers and recovered through the heat recovery 

units should be equal to, or larger than, the facility heating loads (Equation A-3). The 

excess amount can be dumped through a cooling tower. Equations (A-4.1) and (A-4.2) 

bound the amount of heat which can be recovered from the prime mover through the heat 

recovery unit and used for either heating or/and absorption cooling. 

𝑄𝑄𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑡𝑡) + 𝑄𝑄𝐻𝐻𝐻𝐻𝐻𝐻(𝑡𝑡) = 𝑄𝑄ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑡𝑡) + 𝑄𝑄ℎ,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑡𝑡)  (A-3) 
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𝑄𝑄𝑃𝑃𝑃𝑃(𝑡𝑡) = 𝑄𝑄𝑃𝑃𝑃𝑃,ℎ(𝑡𝑡) + 𝑄𝑄𝐴𝐴𝐴𝐴,𝑖𝑖𝑖𝑖(𝑡𝑡) (A-4.1) 

𝑄𝑄𝑃𝑃𝑃𝑃,ℎ(𝑡𝑡) ∗ 𝜀𝜀𝐻𝐻𝐻𝐻 ≥ 𝑄𝑄𝐻𝐻𝐻𝐻𝐻𝐻(𝑡𝑡)  (A-4.2) 

c) Cooling Energy: 

The cooling energy balance constraint includes cooling energy provided by the 

absorption and vapor compression chillers (or any other cooling equipment that might be 

used) at each time step which ought to be equal to the total cooling demands with the 

excess amount to be dumped (or be stored if chilled water storage system is available). 

𝑄𝑄𝐴𝐴𝐴𝐴(𝑡𝑡) + 𝑄𝑄𝑉𝑉𝑉𝑉(𝑡𝑡) = 𝑄𝑄𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡) + 𝑄𝑄𝑐𝑐,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑡𝑡) (A-5) 

A.3.3.2 Component Models and Practical Constraints 

a) Prime Movers 

At each time step, the total electrical power, fuel consumption, and heat generated by 

the combined heat and power (CHP) plant are summations of these variables across 

individual prime movers: 

𝐸𝐸𝑃𝑃𝑃𝑃(𝑡𝑡) = ∑ 𝐸𝐸𝑃𝑃𝑃𝑃
𝑛𝑛𝑛𝑛𝑛𝑛
𝑖𝑖=1 (𝑖𝑖, 𝑡𝑡) (A-6) 

 𝐹𝐹𝑃𝑃𝑃𝑃(𝑡𝑡) = ∑ 𝐹𝐹𝑃𝑃𝑃𝑃
𝑛𝑛𝑛𝑛𝑛𝑛
𝑖𝑖=1 (𝑖𝑖, 𝑡𝑡)  (A-7) 

𝑄𝑄𝑃𝑃𝑃𝑃(𝑡𝑡) = ∑ 𝑄𝑄𝑃𝑃𝑃𝑃
𝑛𝑛𝑛𝑛𝑛𝑛
𝑖𝑖=1 (𝑖𝑖, 𝑡𝑡) (A-8) 

Part-load performance of the prime movers are modeled using the regression model 

developed by Hudson [1]. This model can be applied to fuel cells, reciprocating engines, 

and microturbines. Generalized coefficients proposed by Hudson can be implemented for 

each type of the prime mover; alternatively, model coefficients specific to a particular 

system can be identified through regression analysis if monitored historical data is 

available. 
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𝐹𝐹𝑃𝑃𝑃𝑃(𝑖𝑖, 𝑡𝑡) = 𝐸𝐸𝑃𝑃𝑃𝑃(𝑖𝑖,𝑡𝑡)×𝐹𝐹𝑃𝑃𝑃𝑃
∗ (𝑖𝑖)

𝐸𝐸𝑃𝑃𝑃𝑃
∗ (𝑖𝑖)×𝑃𝑃𝐿𝐿𝐿𝐿

  (A-9) 

Where: 

𝑃𝑃𝑃𝑃𝑃𝑃 = �𝑎𝑎0𝑃𝑃𝑃𝑃(𝑖𝑖) + 𝑎𝑎1𝑃𝑃𝑃𝑃(𝑖𝑖)
𝐸𝐸𝑃𝑃𝑃𝑃(𝑖𝑖, 𝑡𝑡)
𝐸𝐸𝑃𝑃𝑃𝑃

∗ (𝑖𝑖) +𝑎𝑎2𝑃𝑃𝑃𝑃(𝑖𝑖) �
𝐸𝐸𝑃𝑃𝑃𝑃(𝑖𝑖, 𝑡𝑡)
𝐸𝐸𝑃𝑃𝑃𝑃

∗ (𝑖𝑖) �
2

+ 𝑎𝑎3𝑃𝑃𝑃𝑃(𝑖𝑖) �
𝐸𝐸𝑃𝑃𝑃𝑃(𝑖𝑖, 𝑡𝑡)
𝐸𝐸𝑃𝑃𝑃𝑃

∗ (𝑖𝑖) �
3

� 

The capacity of the prime mover needs to be bounded between the minimum 

allowable part-load-ratio (𝑋𝑋𝑃𝑃𝑃𝑃) and its rated capacity (𝐸𝐸𝑃𝑃𝑃𝑃
∗ ). Also, a binary integer 

variable 𝑆𝑆𝑃𝑃𝑃𝑃(𝑖𝑖, 𝑡𝑡) needs to be included which specifies whether the ith prime mover is 

available at time step 𝑡𝑡 or not. Time-lock constraints (discussed later) are also introduced 

to identify the proper value for this variable. The following equation applies to each 

prime mover and similar equation is required for each component: 

𝑆𝑆𝑃𝑃𝑃𝑃(𝑖𝑖, 𝑡𝑡). 𝑋𝑋𝑃𝑃𝑃𝑃(𝑖𝑖). 𝐸𝐸𝑃𝑃𝑃𝑃
∗ (𝑖𝑖) ≤ 𝐸𝐸𝑃𝑃𝑀𝑀(𝑖𝑖, 𝑡𝑡) ≤ 𝑆𝑆𝑃𝑃𝑃𝑃(𝑖𝑖, 𝑡𝑡). 𝐸𝐸𝑃𝑃𝑃𝑃

∗ (𝑖𝑖) (A-10) 

The amount of heat generated by the prime mover can be determined as: 

𝑄𝑄𝑃𝑃𝑃𝑃(𝑖𝑖, 𝑡𝑡) =  𝐹𝐹𝑃𝑃𝑃𝑃(𝑖𝑖, 𝑡𝑡) − 3600 × 𝐸𝐸𝑃𝑃𝑃𝑃(𝑖𝑖, 𝑡𝑡) (A-11) 

where the term 3600 is introduced to convert kW to kJ/h. 

Model coefficients for two types of prime movers, namely reciprocating engines and 

gas turbines, are listed in Table A-1 along with model coefficients for boilers, VC 

chillers, and absorption chillers. 

Table A-1- Numerical values of the part-load model coefficients of various equipment ([1]) 

 
Reciprocating 

gas engine 
(Eq. A-9) 

Gas turbine 
(Eq. A-9) 

Vapor compression 
chiller (Eq. A-18) 

Absorption 
chiller 

(Eq. A-22) 

Boiler 
(Eq. A-14) 

a0 0.4866 0.3279 0.640844 -0.00383696 0.082597 
a1 1.0214 1.1542 -1.171278 -0.2129657 0.996764 
a2 -0.508 -0.4821 0.7008978 0.3856205 -0.079361 
a3 - - -0.3400201 0.4719114 - 
a4 - - 0.1119608 0.3726551 - 
a5 - - 1.046851 -0.0071625 - 
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 Figure A-2 shows the variation of the part-load factors (PLF) curves for various 

generic types of prime movers (taken from [2]). 

 Figure A-2- Part-load electrical efficiency factors for different distributed generation equipment 

(PLF factors shown in Eq. A-9) (from [2]) 

b) Boilers 

Equations (A-12) and (A-13) capture the fact that the total generated heating and fuel 

consumed by the boilers are the summation of these variables across individual boilers. 

𝑄𝑄𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑡𝑡) = ∑ 𝑄𝑄𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
𝑖𝑖=1 (𝑖𝑖, 𝑡𝑡)  (A-12) 

𝐹𝐹𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑡𝑡) = ∑ 𝐹𝐹𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
𝑖𝑖=1 (𝑖𝑖, 𝑡𝑡) (A-13) 

A second order part-load-performance model is adopted in this study: 

𝐹𝐹𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑖𝑖, 𝑡𝑡) = 𝑄𝑄𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑖𝑖, 𝑡𝑡) × �𝐹𝐹𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
∗ (𝑖𝑖)

𝑄𝑄𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
∗ (𝑖𝑖)� / 𝑃𝑃𝑃𝑃𝑃𝑃  (A-14) 

  

where PLF=�𝑎𝑎0𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑖𝑖) + 𝑎𝑎1𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑖𝑖) �𝑄𝑄𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑖𝑖,𝑡𝑡)
𝑄𝑄𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

∗ (𝑖𝑖)
� + 𝑎𝑎2𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑖𝑖) �𝑄𝑄𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑖𝑖,𝑡𝑡)

𝑄𝑄𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
∗ (𝑖𝑖)

�
2

� 
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and the limiting constraint on the capacity of the boilers reflects the condition that 

operating performance should be between its rated capacity and a pre-stipulated 

minimum: 

𝑆𝑆𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑖𝑖, 𝑡𝑡). 𝑋𝑋𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑖𝑖). 𝑄𝑄𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
∗ (𝑖𝑖) ≤ 𝑄𝑄𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑖𝑖, 𝑡𝑡) ≤ 𝑆𝑆𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑖𝑖, 𝑡𝑡). 𝑄𝑄𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

∗ (𝑖𝑖) (A-15) 

Boiler model coefficients are given in Table A-1, while the PLF factor is plotted in 

Figure A-3. Though this is non-linear, we note that the curve is fairly linear down to PLR 

= 0.5, and that 3 linear segments should capture the total variation quite well. 

 
Figure A-3- Part-load performance of boilers- PLF factor from Eq. A-14 (adopted from [3]) 
 

c) Vapor Compression Chillers (VC): 

Total cooling energy generated and electricity consumed by the plant at each time step 

are simply the respective sums of the generation and consumption of individual vapor 

compression chillers. 

𝑄𝑄𝑉𝑉𝑉𝑉(𝑡𝑡) = ∑ 𝑄𝑄𝑉𝑉𝑉𝑉
𝑛𝑛𝑛𝑛𝑛𝑛
𝑖𝑖=1 (𝑖𝑖, 𝑡𝑡) (A-16) 
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𝐸𝐸𝑉𝑉𝑉𝑉(𝑡𝑡) = ∑ 𝐸𝐸𝑉𝑉𝑉𝑉
𝑛𝑛𝑛𝑛𝑛𝑛
𝑖𝑖=1 (𝑖𝑖, 𝑡𝑡) (A-17) 

Although our previous analysis indicated that Gordon and Ng model [4] would 

outperform the black-box approach, we found that the models being non-linear in the 

basic variables, lead to numerical problems in that the optimization package has difficulty 

finding an optimum. However, no such difficulties were found with black-box model 

developed by [5]. Hence, in order to reduce the numerical complexity, we have adopted 

the later modeling approach. 

𝐸𝐸𝑉𝑉𝑉𝑉(𝑖𝑖, 𝑡𝑡) = 𝐸𝐸𝑉𝑉𝑉𝑉
∗ (𝑖𝑖) ∗ 𝑃𝑃𝑃𝑃𝑃𝑃 (A-18) 

 

where 𝑃𝑃𝑃𝑃𝑃𝑃 = �𝑎𝑎0𝑉𝑉𝑉𝑉(𝑖𝑖) + 𝑎𝑎1𝑉𝑉𝑉𝑉(𝑖𝑖) �𝑇𝑇𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉(𝑖𝑖,𝑡𝑡)
𝑇𝑇𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉

∗ (𝑖𝑖)
� + 𝑎𝑎2𝐴𝐴𝐴𝐴(𝑖𝑖) �𝑇𝑇𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉(𝑖𝑖,𝑡𝑡)

𝑇𝑇𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉
∗ (𝑖𝑖)

�
2

+

𝑎𝑎3𝑉𝑉𝑉𝑉(𝑖𝑖) �𝑄𝑄𝑉𝑉𝑉𝑉(𝑖𝑖,𝑡𝑡)
𝑄𝑄𝑉𝑉𝑉𝑉

∗ (𝑖𝑖) � + 𝑎𝑎4𝑉𝑉𝑉𝑉(𝑖𝑖) �𝑄𝑄𝑉𝑉𝑉𝑉(𝑖𝑖,𝑡𝑡)
𝑄𝑄𝑉𝑉𝑉𝑉

∗ (𝑖𝑖) �
2

+ 𝑎𝑎5𝑉𝑉𝑉𝑉(𝑖𝑖) �𝑇𝑇𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉(𝑖𝑖,𝑡𝑡)
𝑇𝑇𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉

∗ (𝑖𝑖)
� �𝑄𝑄𝑉𝑉𝑉𝑉(𝑖𝑖,𝑡𝑡)

𝑄𝑄𝑉𝑉𝑉𝑉
∗ (𝑖𝑖) �� 

The model coefficients are given in Table A-1 and plotted in Figure A-4. Notice that 

there are only two regressors in the model: the cooling load and the condenser water inlet 

temperature (which is equal to the cooling tower water leaving temperature). The chilled 

water set temperature is assumed to be fixed and so does not appear in the above 

equation. The capacity constraint for the vapor compression chillers is that operation 

should be between its rated capacity and a predefined minimum allowable part-load-ratio: 

𝑆𝑆𝑉𝑉𝑉𝑉(𝑖𝑖, 𝑡𝑡). 𝑋𝑋𝑉𝑉𝑉𝑉(𝑖𝑖). 𝑄𝑄𝑉𝑉𝑉𝑉
∗ (𝑖𝑖) ≤ 𝑄𝑄𝑉𝑉𝑉𝑉(𝑖𝑖, 𝑡𝑡) ≤ 𝑆𝑆𝑉𝑉𝑉𝑉(𝑖𝑖, 𝑡𝑡). 𝑄𝑄𝑉𝑉𝑉𝑉

∗ (𝑖𝑖) (A-19) 
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Figure A-4- Part-load performance of fixed-speed, electric-driven centrifugal chiller – PLF given 

by Eq. A-18 (from [5]) 

d) Absorption Chillers (AC) 

 The total generated cooling thermal output and heat input to the AC units at each time 

step are given by: 

𝑄𝑄𝐴𝐴𝐴𝐴(𝑡𝑡) = ∑ 𝑄𝑄𝐴𝐴𝐴𝐴
𝑛𝑛𝑛𝑛𝑛𝑛
𝑖𝑖=1 (𝑖𝑖, 𝑡𝑡)  (A-20) 

𝑄𝑄𝐴𝐴𝐴𝐴,𝑖𝑖𝑖𝑖(𝑡𝑡) = ∑ 𝑄𝑄𝐴𝐴𝐴𝐴,𝑖𝑖𝑖𝑖
𝑛𝑛𝑛𝑛𝑛𝑛
𝑖𝑖=1 (𝑖𝑖, 𝑡𝑡) (A-21) 

The black-box approach is adopted in this analysis which relates the heat input to the 

generator of each absorption chiller based on the cooling output and the condenser water 

inlet temperature, at both part-load and rated conditions. 

𝑄𝑄𝐴𝐴𝐴𝐴,𝑖𝑖𝑖𝑖(𝑖𝑖, 𝑡𝑡) = 𝑄𝑄𝐴𝐴𝐴𝐴,𝑖𝑖𝑖𝑖
∗ (𝑖𝑖)   ∗ 𝑃𝑃𝑃𝑃𝑃𝑃  (A-22) 

 where 𝑃𝑃𝑃𝑃𝑃𝑃 = �𝑎𝑎0𝐴𝐴𝐴𝐴(𝑖𝑖) + 𝑎𝑎1𝐴𝐴𝐴𝐴(𝑖𝑖) �𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑖𝑖,𝑡𝑡)
𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴

∗ (𝑖𝑖) � + 𝑎𝑎2𝐴𝐴𝐴𝐴(𝑖𝑖) �𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑖𝑖,𝑡𝑡)
𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴

∗ (𝑖𝑖) �
2

+

𝑎𝑎3𝐴𝐴𝐴𝐴(𝑖𝑖) �𝑄𝑄𝐴𝐴𝐴𝐴(𝑖𝑖,𝑡𝑡)
𝑄𝑄𝐴𝐴𝐴𝐴

∗ (𝑖𝑖) � + 𝑎𝑎4𝐴𝐴𝐴𝐴(𝑖𝑖) �𝑄𝑄𝐴𝐴𝐴𝐴(𝑖𝑖,𝑡𝑡)
𝑄𝑄𝐴𝐴𝐴𝐴

∗ (𝑖𝑖) �
2

+ 𝑎𝑎5𝐴𝐴𝐴𝐴(𝑖𝑖) �𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑖𝑖,𝑡𝑡)
𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴

∗ (𝑖𝑖) � �𝑄𝑄𝐴𝐴𝐴𝐴(𝑖𝑖,𝑡𝑡)
𝑄𝑄𝐴𝐴𝐴𝐴

∗ (𝑖𝑖) �� 
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Model coefficients are given in Table A-1, and the part-load curves are plotted in 

Figure A-5. The chiller cooling output should be bounded between its rated capacity and 

a predefined minimum allowable part-load-ratio: 

𝑆𝑆𝐴𝐴𝐴𝐴(𝑖𝑖, 𝑡𝑡). 𝑋𝑋𝐴𝐴𝐴𝐴(𝑖𝑖). 𝑄𝑄𝐴𝐴𝐴𝐴
∗ (𝑖𝑖) ≤ 𝑄𝑄𝐴𝐴𝐴𝐴(𝑖𝑖, 𝑡𝑡) ≤ 𝑆𝑆𝐴𝐴𝐴𝐴(𝑖𝑖, 𝑡𝑡). 𝑄𝑄𝐴𝐴𝐴𝐴

∗ (𝑖𝑖)  (A-23) 

 

 
Figure A-5- Part-load performance of absorption chiller- PLF given by Eq. A-22 (from [5]) 

Cooling tower models are required to predict the inlet water temperature to the chiller 

condenser which is assumed to be equal to the outlet water temperature from the cooling 

tower. However, the effect of the cooling tower has been neglected in this analysis by 

assuming that the outlet water temperature is equal to the rated value (an assumption 

made by the other two groups also). 

e) Time-locks 

Time locks are constraints which require that equipment must operate for a certain 

period of time after they are started. This is meant to prevent frequent start-stop 

operation. We have assumed a similar formulation to model turning off or turning on the 
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various IES components. The following set of equations can be applied to any 

component. 

∑ 𝑠𝑠(𝑖𝑖, 𝜏𝜏) ≥ 𝑇𝑇𝑇𝑇 × [𝑠𝑠(𝑖𝑖, 𝑡𝑡) − 𝑠𝑠(𝑖𝑖, 𝑡𝑡 − 1)]𝑡𝑡−1
𝜏𝜏=𝑡𝑡−𝑇𝑇𝑇𝑇  (A-24) 

∑ [1 − 𝑠𝑠(𝑖𝑖, 𝜏𝜏)] ≥ 𝑇𝑇𝑇𝑇 × [𝑠𝑠(𝑖𝑖, 𝑡𝑡) − 𝑠𝑠(𝑖𝑖, 𝑡𝑡 − 1)]𝑡𝑡−1
𝜏𝜏=𝑡𝑡−𝑇𝑇𝑇𝑇  (A-25) 

where TL represents time lock (hours) and 𝜏𝜏 is a dummy variable and 𝑠𝑠 is the on/off 

binary variable for any component. 

f) Battery Storage (Electrical Energy Storage- EES) 

Energy balance equation should be framed to include battery charging and 

discharging: 

𝐸𝐸𝑃𝑃𝑃𝑃(𝑡𝑡) + 𝐸𝐸𝑃𝑃𝑃𝑃(𝑡𝑡) + 𝐸𝐸𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔,𝑏𝑏𝑏𝑏𝑏𝑏(𝑡𝑡) − 𝐸𝐸𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡) + ƞ𝐸𝐸𝐸𝐸𝐸𝐸,𝑑𝑑𝑑𝑑𝑑𝑑𝐸𝐸𝑑𝑑𝑑𝑑𝑑𝑑(𝑡𝑡) − 𝐸𝐸𝑐𝑐ℎ𝑟𝑟𝑟𝑟(𝑡𝑡) =

𝐸𝐸𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑡𝑡) + 𝐸𝐸𝑉𝑉𝑉𝑉(𝑡𝑡) (A-26) 

The battery model can be defined as: 

𝑆𝑆𝑆𝑆𝑆𝑆𝐸𝐸𝐸𝐸𝐸𝐸(𝑖𝑖, 𝑡𝑡) = ƞ𝐸𝐸𝐸𝐸𝐸𝐸,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑖𝑖) × 𝑆𝑆𝑆𝑆𝑆𝑆𝐸𝐸𝐸𝐸𝐸𝐸(𝑖𝑖, 𝑡𝑡 − 1) + ƞ𝐸𝐸𝐸𝐸𝐸𝐸,𝑐𝑐ℎ𝑟𝑟𝑟𝑟(𝑖𝑖) × 𝐸𝐸𝑐𝑐ℎ𝑟𝑟𝑟𝑟(𝑖𝑖, 𝑡𝑡) −

𝐸𝐸𝑑𝑑𝑑𝑑𝑑𝑑(𝑖𝑖, 𝑡𝑡) (A-27) 

where SOC is battery state of charge at each time step which should be bounded 

between some predefined charge level identified by depth of discharge (DoD) and the 

battery capacity as: 

𝑋𝑋𝐸𝐸𝐸𝐸𝐸𝐸(𝑖𝑖) × 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
∗ (𝑖𝑖) ≤ 𝑆𝑆𝑆𝑆𝑆𝑆𝐸𝐸𝐸𝐸𝐸𝐸(𝑖𝑖, 𝑡𝑡) ≤ 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸

∗ (𝑖𝑖) (A-28) 

where 𝑋𝑋𝐸𝐸𝐸𝐸𝐸𝐸(𝑖𝑖) = 1 − 𝐷𝐷𝐷𝐷𝐷𝐷𝐸𝐸𝐸𝐸𝐸𝐸(𝑖𝑖), and charging and discharging rates (in Watts) are also 

limited depending on the state of charge at that time step: 

0 ≤ 𝐸𝐸𝑐𝑐ℎ𝑟𝑟𝑟𝑟(𝑖𝑖, 𝑡𝑡) ≤ 𝐸𝐸𝑐𝑐ℎ𝑟𝑟𝑟𝑟,𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡) (A-29) 

0 ≤ 𝐸𝐸𝑑𝑑𝑑𝑑𝑑𝑑(𝑖𝑖, 𝑡𝑡) ≤ 𝐸𝐸𝑑𝑑𝑑𝑑𝑑𝑑,𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡) (A-30) 
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It should be noted that constant charging and discharging rates were assumed for both 

battery and thermal storage system (next section) in this research project to simplify the 

problem. 

g) Thermal Energy Storage (TES) System 

Chilled water thermal storage system was also considered in one of the scenarios 

assumed. Cooling energy balance equation would include two extra terms associated with 

the thermal storage system as: 

𝑄𝑄𝐴𝐴𝐴𝐴(𝑡𝑡) + 𝑄𝑄𝑉𝑉𝑉𝑉(𝑡𝑡) + ƞ𝑇𝑇𝑇𝑇𝑇𝑇,𝑑𝑑𝑑𝑑𝑑𝑑𝑄𝑄𝑑𝑑𝑑𝑑𝑑𝑑(𝑡𝑡) = 𝑄𝑄𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡) +  𝑄𝑄𝑐𝑐,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑡𝑡) + 𝑄𝑄𝑐𝑐ℎ𝑟𝑟𝑟𝑟(𝑡𝑡) (A-31) 

The TES model is defined as: 

𝑆𝑆𝑆𝑆𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇(𝑖𝑖, 𝑡𝑡) = ƞ𝑇𝑇𝑇𝑇𝑇𝑇,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑖𝑖) × 𝑆𝑆𝑆𝑆𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇(𝑖𝑖, 𝑡𝑡 − 1) + ƞ𝑇𝑇𝑇𝑇𝑇𝑇,𝑐𝑐ℎ𝑟𝑟𝑟𝑟(𝑖𝑖) × 𝑄𝑄𝑐𝑐ℎ𝑟𝑟𝑟𝑟(𝑖𝑖, 𝑡𝑡) −

𝑄𝑄𝑑𝑑𝑑𝑑𝑑𝑑(𝑖𝑖, 𝑡𝑡) (A-32) 

where SOC is storage system state of charge at each time step which should be bounded 

between some predefined charge level identified by depth of discharge (DoD) parameter 

and the storage capacity as: 

𝑋𝑋𝑇𝑇𝑇𝑇𝑇𝑇(𝑖𝑖) × 𝑄𝑄𝑇𝑇𝑇𝑇𝑇𝑇
∗ (𝑖𝑖) ≤ 𝑆𝑆𝑆𝑆𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇(𝑖𝑖, 𝑡𝑡) ≤ 𝑄𝑄𝑇𝑇𝑇𝑇𝑇𝑇

∗ (𝑖𝑖) (A-33) 

where 𝑋𝑋𝑇𝑇𝑇𝑇𝑇𝑇(𝑖𝑖) = 1 − 𝐷𝐷𝐷𝐷𝐷𝐷𝑇𝑇𝑇𝑇𝑇𝑇(𝑖𝑖), and charging and discharging rates (in MMBtu) are 

also limited depending on the state of charge at that time step: 

0 ≤ 𝑄𝑄𝑐𝑐ℎ𝑟𝑟𝑟𝑟(𝑖𝑖, 𝑡𝑡) ≤ 𝑄𝑄𝑐𝑐ℎ𝑟𝑟𝑟𝑟,𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡) (A-34) 

0 ≤ 𝑄𝑄𝑑𝑑𝑑𝑑𝑑𝑑(𝑖𝑖, 𝑡𝑡) ≤ 𝑄𝑄𝑑𝑑𝑑𝑑𝑑𝑑,𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡) (A-35) 

h) Ramping Constraints 

Ramping constraints limit the rate at which power, heating, or cooling generation of a 

particular system component may increase or decrease between two successive time 

steps. In this study, ramping rates are considered for both ramping-up and ramping-down 
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conditions, and expressed in the same unit as the output of the corresponding component. 

Ramping constraints for boilers (as an example) can be expressed as: 

−𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑖𝑖) ≤ 𝑄𝑄𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑖𝑖, 𝑡𝑡) − 𝑄𝑄𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑖𝑖, 𝑡𝑡 − 1) ≤ 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑖𝑖) (A-36) 

where RU and RD are the ramp up and ramp down rates respectively. 

A.4 Piecewise Linear Modeling of Nonlinear Models 

This section provides some theoretical background of how to best approximate non-

linear models using segmented linear models. Next, it applies the methodology to various 

equipment of the integrated energy system. 

A.4.1 Piece-wise linear function using integer programming 

Suppose that y = f(x) is a non-linear function. The aim is to approximate this non-

linear function with a piecewise linear function for which the slope and intercept depend 

on x value. More specifically, there are n break points and the value of x could be in n-1 

different closed intervals formed by these break points and the slope and intercept is 

different for each interval such that the function is still smooth. 

The notation is as follows: 

𝑎𝑎𝑗𝑗: Slope at interval j 

𝑏𝑏𝑖𝑖: break point i 

𝑓𝑓(𝑏𝑏𝑖𝑖) : Output value at break point i 

𝑍𝑍𝑖𝑖 ∈ [0,1]: The convex combination coefficient 

𝑦𝑦𝑗𝑗 =  �1       𝑖𝑖𝑖𝑖 𝑥𝑥 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑗𝑗𝑗𝑗ℎ 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
0   𝑂𝑂𝑂𝑂ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 

Note that when the value of independent variable lies in interval j, its value is in the 

range [𝑏𝑏𝑗𝑗 , 𝑏𝑏𝑗𝑗+1]. In this case we would have: 
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𝑥𝑥 = 𝑍𝑍𝑗𝑗 ∗ 𝑏𝑏𝑗𝑗 + 𝑍𝑍𝑗𝑗+1 ∗ 𝑏𝑏𝑗𝑗+1  (A-37) 

𝑓𝑓(𝑥𝑥) =  ∑ 𝑍𝑍𝑖𝑖 ∗ 𝑓𝑓(𝑏𝑏𝑖𝑖)𝑛𝑛
𝑖𝑖=1  (A-38) 

As the value of x should lie on only one of the intervals, we need to add the following 

constraint to the model: 

𝑦𝑦1 + 𝑦𝑦2 + ⋯ + 𝑦𝑦𝑛𝑛−1 = 1   (A-39) 

where all 𝑦𝑦𝑗𝑗 are binary variables. 

Also, as any interval is defined as points between two consecutive break points, the 

following constraint is also needed. 

𝑧𝑧1 + 𝑧𝑧2 + ⋯ + 𝑧𝑧𝑛𝑛 = 1   (A-40) 

as 𝑧𝑧𝑖𝑖s are convex combination coefficients, they all should be positive. 

Finally, as convex combination coefficient for a break point will be nonzero only if the 

point lies in one of the two intervals that formed by that point, we also added the 

following constraints to the model. 

𝑧𝑧1 ≤  𝑦𝑦1  (A-41) 

𝑧𝑧𝑘𝑘 ≤  𝑦𝑦𝑘𝑘−1 + 𝑦𝑦𝑘𝑘  (A-42) 

for k = 2,3,…,n-1: 

𝑧𝑧𝑛𝑛 ≤  𝑦𝑦𝑛𝑛−1 
Note that the first and last break points show up just in one interval and that is why we 

have different constraints for these points. 

A.4.2 Model Intercept 

While the above model is zero-intercept, the model developed by Group#2 does 

include different intercepts for different intervals. To be consistent and in order to take 

care of this issue, we changed the first slope, such that in the second break point, the 
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value of the function defined above be equal to the first intercept of interest. For the 

subsequent intervals no change is needed and the model takes care of intercepts by 

calculating function value at break points and considering these border values in 

subsequent calculations. Table A-2 lists the values of the segmented linear model slopes 

used in our analysis. 

Table A-2- Piecewise linear model parameters 
Component Interval Lower Bound Upper Bound Slope 

Prime mover 
1 150 210 0.01397588 
2 210 370 0.00630502 
3 370 500 0.00657468 

Boiler 
1 1.2 2.1 5.340555788 
2 2.1 4 0.596682831 
3 4 8 0.265743355 

Vapor compression 
chiller 

1 0.3599795 1 72.9080578 
2 1 1.9 32.95726035 
3 1.9 2.399863 35.80207305 

Absorption chiller 
1 0.23746162 0.61 1.869511783 
2 0.61 1.05 1.189568592 
3 1.05 1.583077 1.507863263 

 

A.5 Case Study 

A.5.1 Description of Scenario 

This section summarizes the analysis and validates the case study results for which 

specifications of the energy system components are listed in Table A-3. 

Table A-3- Specifications of the BCHP system components 
 Building Type Large Office 

Prime Mover 
Quantity (Type) 1 (recip) + 1 (turbine) 
Rated electric output- kW 788+242 
Rated net gas- MMBtu/h 7.22+2.84 

Electrical Energy Storage Rated Capacity- MWh 2 
Thermal Energy Storage Rated Capacity- Cooling MMBtu - 

Boilers 
Quantity 2 
Rated heat output- MMBtu/h 6.695 
Natural gas use- MMBtu/h 8.165 

Vapor Compression Chiller 
Quantity 2 
Cooling Capacity- MMBtu 7.2 
Electrical power input- kW 188.1 

Absorption Chiller 
Quantity 1 
Cooling capacity- MMBtu 1.86 
Heat Input- MMBtu 2.657 
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A.5.2 Linearization of Non-linear Component Models 

Component models described earlier in this appendix are non-linear and further binary 

variables are required to identify which component is on/off at any time step. This makes 

the optimization problem a mixed integer non-linear problem. Due to large number of 

non-linear variables, global optimal solutions could not be found by the commercial 

software used, and therefore component models were re-expressed as linear or piecewise 

linear ones in order to overcome the convergence issue. 

A.5.3 Results 

In this case study, four sample days, i.e. a typical Summer day and a typical Winter 

day each with high taken to be 9 cents/kWh during on-peak hours (from 9AM to 7PM) 

and 3 cents/kWh during off-peak hours. The battery charging and discharging rates are 

limited to 500 kWh/h with the initial SOC of 50%. The battery SOC at the end of the 24 

hours is forced to be equal to its initial SOC. During the summer days, when the heating 

loads are low, all heating loads are covered by the heat recovered from the prime movers 

and both boilers are off. 

Results for the Summer day with high loads are depicted in Figure A-6; figure (a) 

illustrates electrical systems performance while figure (b) shows the battery SOC; heating 

and cooling loads and presented in figures (c) and (d) respectively. Following noteworthy 

points can be gleaned from the results of the optimization modeling for the Summer day 

with high loads: 

• Battery gets fully charged before the on-peak hours and gets totally depleted till 

12PM in order to minimize the amount of purchased electricity during the on-peak 

hours. 
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• Building electrical loads are entirely met by grid power before 6AM. From 6AM to 

9AM the recip prime mover ramps up to feed the VC chillers, cover the rising heating 

loads, and charge the battery along with the grid power. 

• The recip prime mover runs at its full capacity throughout the on-peak hours. The 

turbine also runs at full capacity from 9AM to 5PM after which the building electrical 

loads reduces. 

• Building heating loads are entirely met by the recovered heat from the prime movers 

and both boilers are off over the 24-hour horizon. 
• Cooling loads are mainly covered by the VC chillers while the absorption chiller is 

running only during on-peak hours when the prime movers generate enough heat. 

Figure A-7 presents results of the optimization modeling for the Summer day with 

low loads. It is evident that the battery charging and discharging and other equipment 

loadings are almost similar to those of the Summer-high-load case. The only difference 

would be VC-Chiller 2 which is off throughout the day due to lower heating loads 

compared to the Summer-high-load case. 
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Figure A-6- Scheduling and dispatching results, Summer day with high loads 
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Figure A-7- Scheduling and dispatching results, Summer day with low loads 
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Figure A-8 and Figure A-9 show results of the analysis for the selected Winter days 

with high and low loads respectively. Battery charging and discharging trends are quite 

similar to those resulted for the Summer days. Note that differences in the battery 

recharging at the end of the day would not cause any difference in the operational costs as 

there might be multiple equally-optimal solution; in other words, there is no difference in 

charging the battery at 10PM or at 11PM. Salient points identified from the results for the 

selected Winter days are: 

• Prime movers are running at maximum capacity during the on-peak hours in order to 

minimize the purchased electricity from the utility grid. 

• Battery is fully charged before on-peak and depleted after four hours during the on-

peak hours. 

• Heating loads are covered by the recovered heat from the prime movers and also 

boiler1 while the second boiler remains off during the day. 

• Cooling loads are very low before 5AM and after 11PM and the cooling generated by 

one VC chiller at 15% PLR is still larger than the cooling loads and therefore the 

excess amount should be dumped; note that we do not let the VC chillers to run below 

the 15% of their full capacity. 

• VC chiller 2 is stand by throughout the day while the absorption chiller runs only five 

hours during the on-peak hours. 

In Figure A-9 (c), loading is exchanges between boiler1 and boiler2 at 9AM. Note that 

the two boilers are identical and switching between them would not result in lower costs 

rather returns an equally optimal result. To prevent this issue, we could slightly alter the 
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efficiency curve of one of the boilers so that the optimization model prefers one boiler 

over another; however, we decided not to do that as this might result in non-continuity in 

the segmented linear models. 



 

  

 158 

 
Figure A-8- Scheduling and dispatching results, Winter day with high loads 
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Figure A-9- Scheduling and dispatching results, Winter day with low loads 
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Table A-4 assembles results of the optimization analysis performed by different teams 

working on this project. We note that results obtained by ASU and Group#2 are close, 

thus confirming that the implemented optimization framework has been developed 

accurately.  

Table A-4- Inter-comparison of operational costs results (penalty costs are included) 
  Group#1 ASU Group#2 
Summer High $1784 $1787 $1787 
Summer low $1688 $1692 $1689 
Winter high $2948 $2591 $2618 
Winter low $2086 $1923 $1936 

 

Table A-5 shows the penalty costs in various investigated days associated with 

possible mismatches in energy balance equations due to errors in approximating 

nonlinear equipment output performance behavior by segmented linear models. Small 

penalty costs indicate that the segmented linear models are accurate and all the energy 

balance equations are satisfied. 

Table A-5- Penalty costs due to linearized component models 
  Group#1 ASU Group#2 
Summer High $1.1 $0.2 $0.1 
Summer low $3.3 $0.3 $0.2 
Winter high $12.4 $0.3 $0.2 
Winter low $10.2 $0.5 $0.1 

 

A.6 Conclusions 

In this study, the accuracy of the developed optimization models was evaluated against 

those developed by Group#1 and Group#2 teams for several scenarios. The closeness of 

the results partially validates and confirm this objective.  Mathematical formulation of the 

objective function, component part-load performance models, energy balance constraints, 

ramping and time-lock constraints have been described in this section.  We have also 

developed a model to optimally identify the break-point of the segmented linear models 
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used instead of regressive non-linear component models. Effect of linearization of the 

component models on total operational costs was found to be marginal confirming that 

the fitted segmented models can accurately approximate the actual performance of the 

equipment. Results of the case studies independently analyzed by different teams were 

very close although different solvers and software packages were used. 
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