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ABSTRACT

Earth-system models describe the interacting components of the climate system and

technological systems that affect society, such as communication infrastructures. Data

assimilation addresses the challenge of state specification by incorporating system

observations into the model estimates. In this research, a particular data assimi-

lation technique called the Local Ensemble Transform Kalman Filter (LETKF) is

applied to the ionosphere, which is a domain of practical interest due to its effects

on infrastructures that depend on satellite communication and remote sensing. This

dissertation consists of three main studies that propose strategies to improve space-

weather specification during ionospheric extreme events, but are generally applicable

to Earth-system models:

Topic I applies the LETKF to estimate ion density with an idealized model of

the ionosphere, given noisy synthetic observations of varying sparsity. Results show

that the LETKF yields accurate estimates of the ion density field and unobserved

components of neutral winds even when the observation density is spatially sparse

(2% of grid points) and there is large levels (40%) of Gaussian observation noise.

Topic II proposes a targeted observing strategy for data assimilation, which uses

the influence matrix diagnostic to target errors in chosen state variables. This strat-

egy is applied in observing system experiments, in which synthetic electron density

observations are assimilated with the LETKF into the Thermosphere-Ionosphere-

Electrodynamics Global Circulation Model (TIEGCM) during a geomagnetic storm.

Results show that assimilating targeted electron density observations yields on av-

erage about 60%–80% reduction in electron density error within a 600 km radius of

the observed location, compared to 15% reduction obtained with randomly placed

vertical profiles.

Topic III proposes a methodology to account for systematic model bias arising
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from errors in parametrized solar and magnetospheric inputs. This strategy is ap-

plied with the TIEGCM during a geomagnetic storm, and is used to estimate the

spatiotemporal variations of bias in electron density predictions during the transi-

tionary phases of the geomagnetic storm. Results show that this strategy reduces

error in 1-hour predictions of electron density by about 35% and 30% in polar regions

during the main and relaxation phases of the geomagnetic storm, respectively.
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Chapter 1

INTRODUCTION

Earth system models refer to the various interacting components that comprise the

physical climate system, and include the atmosphere, oceans, land surface, sea ice and

their related biogeochemical processes. The definition of Earth-system models may be

expanded to include other processes that are important for society’s well being, such

as water, food and energy supply, as well as communication infrastructures. By its

very nature, the development of Earth-system models requires highly interdisciplinary

modeling efforts in vastly different domains. A key challenge in modeling of Earth

systems includes not only the representation of dynamics in the individual components

but also an accounting of the dynamics governing the interaction among them.

Modeling of the Earth system and its individual components can generally be

posed as a three-dimensional initial/boundary value problem whose solution esti-

mates the spatiotemporal evolution of the various physical quantities that make up

the system of interest. The dynamical system describing this evolution may be used

to predict the system’s future state given an initial condition. Although the dynam-

ics governing Earth-system components and their interaction with each other ideally

may be represented through coupled models based on first principles, it is often neces-

sary to represent some processes as boundary conditions or parameterizations, either

because these processes are not understood well enough or because it is impractical

to represent them explicitly. For example, sub-grid processes are often accounted for

through parameterizations, or the influence of external conditions may be represented

through changing boundary conditions.
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Typical difficulties in spatiotemporal forecasting of Earth-system models include

an incomplete understanding of the dynamics and physics, as well as uncertainties in

the specification of initial conditions. Data assimilation addresses the latter problem

by incorporating system measurements and observations to help constrain estimates

and predictions made with a given dynamical system. The focus of this dissertation is

on ensemble-based approaches to data assimilation, which offer a computationally fea-

sible methodology for the estimation of state variables and model parameterizations,

and uncertainty quantification of high-order non-linear dynamical models. Addition-

ally, ensemble-based data assimilation techniques are highly portable, since the data

assimilation procedure is essentially decoupled from the modeling component.

As observations of the various components of the Earth-system are becoming more

abundant, efficient and innovative methodologies for the assimilation of these data are

in high demand. This dissertation focuses on the application of techniques developed

within the framework of a specific ensemble-based data assimilation scheme, called

the local ensemble transform Kalman filter (LETKF). These techniques are applied

and presented for the ionosphere, but it is emphasized that they can be generalized to

other ensemble-based approaches and also be applied various components of Earth-

system models.

1.1 Brief History of Data Assimilation

Much of the recent progress in numerical weather prediction can be attributed

to advancements made in data assimilation. Early data assimilation approaches in-

volved directly fitting observations to a grid on which the model equations were

propagated. Some examples include empirical schemes such as successive correction

methods (SCM) and Newtonian relaxation (or nudging), and statistical techniques

such as optimal interpolation. Due to the relative scarcity and irregular distribu-
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tion of the observations, these approaches were limited in providing reliable initial

conditions needed to integrate atmospheric models of full complexity.

A more effective approach is to use a prior estimate of the atmospheric state, usu-

ally referred to as the background estimate, which contains state estimates at each

of the model grid points, and computes a state update based on the observations.

Initially, climatology was used as the background, but as numerical weather predic-

tion capabilities improved, short-range forecasts were used as initial conditions. The

resulting model state after assimilating observations is typically referred to as the

analysis and it represents the best system state estimate with the given information

in the observations and background estimate.

The basis of many data assimilation systems, which continue to be used even

in modern operational systems today, is known as the analysis cycle. This cycle is

essentially one long model integration, in which the model predictions are “corrected”

at regular time intervals by assimilating observations, so that system predictions

remain close to the state of the real atmosphere. The analysis cycle consists of an

analysis computation step, where observations are assimilated to obtain an updated

state estimate, and a forecast step where the analysis is used as the initial condition

for a short-term forecast that produces the background estimate for the next analysis

computation step.

A major difficulty in the assimilation of observations is a reliable representation of

the temporal variations in the forecast error statistics. After Edward Lorenz made his

fundamental discovery about the chaotic nature of atmospheric flows, which implied

that any single deterministic forecast would eventually be rendered useless, (Epstein,

1969) and (Leith, 1974) proposed that a stochastic approach should be taken, where

the atmosphere’s probability distribution function (PDF) is estimated from a given

initial PDF estimate. The Fokker-Planck equation provides a theoretical approach
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to achieve this, but the explicit propagation of an operational atmospheric model’s

PDF is computationally unfeasible.

A more computationally feasible approach is ensemble foresting, which uses a set

of individual forecasts generated from statistically equivalent sets of initial conditions

and/or model configurations to produce a set of predictions that are a representative

random sample of the atmospheric model’s PDF. This approach attempts to account

for the chaotic evolution of the atmosphere and the imperfections in the atmospheric

initial conditions. Ensemble forecasting can typically provide a set of forecasts whose

ensemble mean is more accurate within the first few days than the individual forecasts,

and it also provides an estimate of the forecast uncertainty (Kalnay, 2003). Ensemble

forecasting has been used operationally in the US and Europe since 1992 (Kalnay,

2003, Chapter 1).

The ensemble forecasting approach also helped improve forecast error statistics

of the background estimate during the assimilation of observations (Hamill and Sny-

der, 2000). For example, some data assimilation systems may use a long time series

of previous forecasts to specify spatially homogeneous and temporally invariant ap-

proximations to background error statistics. These simplified approaches are often

employed due to the computational difficulties in associated with estimating flow-

dependent error statistics.

A relatively recent and promising approach to data assimilation has been the En-

semble Kalman Filter (Evensen, 1994), which naturally incorporates the benefits of

ensemble forecasting into the Kalman filter. This approach implements the analysis

cycle for a set (or ensemble) of parallel short-term forecasts and a data assimila-

tion correction updates the ensemble mean and forecast covariance matrix using the

classical Kalman filter. This correction then provides an ensemble of initial condi-

tions that are individually integrated with the forecast model. While the forecast
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covariance matrix is propagated with linear dynamics in the Kalman filter, the en-

semble Kalman filter estimates the forecast error covariance matrix from the sample

covariance of the ensemble of model forecasts, which is evolved from the fully nonlin-

ear model dynamics. Under assumptions of linear dynamics and Gaussian errors in

the observations and forecast, it can be shown that the EnKF produces the correct

background error covariance matrix as the ensemble size increases (Burgers et al.,

1998). For smaller ensembles, however, the EnKF is severely rank deficient and its

background covariance estimates suffer from sampling errors, including spurious long

distance correlations.

In practice, the forecast covariance matrix for contemporary global weather models

is enormous: the state vector at operational resolution contains on the order of 1010

elements, so it is impractical to compute the analysis explicitly. To circumvent this

difficulty, contemporary meteorological data assimilation schemes fall roughly into two

classes: variational schemes, which use an iterative method and a linearized version

of the forecast model, and ensemble schemes, which use sets of forecasts started from

statistically equivalent initial conditions to provide low-rank, Monte Carlo estimates

of the forecast error covariance matrix. There is a large literature on both classes.

Overviews of the underlying theory may be found in the review articles by (Ghil and

Malanotte-Rizzoli, 1991) and (Talagrand, 1997), as well as books by (Lewis et al.,

2006), (Daley, 1992), and (Kalnay, 2003). A detailed description of ensemble data

assimilation methods may be found in (Evensen, 2009) and at the European Center

for Medium-Range Weather Forecasts’ 4DVAR operational data assimilation scheme

at www.ecmwf.int.
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1.2 Data Assimilation in the Ionosphere

The Earth-system component of interest in this dissertation is the ionosphere,

which is a layer of the upper atmosphere that is characterized by its significantly ion-

ized composition and electron density population. The ionosphere’s electron density

structure varies considerably over its spatial extent and displays temporal variability

with diurnal, seasonal, and solar cycles. Many climate-like dynamics of the ionosphere

have been reproduced with first-principles models, but the prediction and monitoring

of space weather is still a major challenge due to the relative lack of observations and

an incomplete understanding of the ionosphere’s response to its temporally varying

external drivers. Specification and prediction of ionospheric space weather is of prac-

tical interest due to its potential adverse effects on high-frequency communication

systems, navigation systems that use Global Positioning System satellites (Dubey

et al., 2006), satellite remote sensing and power grids located in the middle to high

latitudes (Stauning, 2013).

The ionosphere is a system that responds rapidly to changing external conditions,

which must be continually estimated in addition to the ionospheric state. The primary

ionospheric drivers include solar activity, geomagnetic conditions and the state of the

charge-neutral upper atmosphere. Of particular interest are extreme space-weather

events, which are typically associated with powerful solar events, such as solar flares.

During extreme events, the ionosphere and its dynamical drivers undergo significant

changes: ionization and heating rates rise sharply, geomagnetic activity undergoes sig-

nificant disturbances, and the upper atmosphere expands due to enhanced pressure

fields and wind circulation that modifies neutral and ionized composition. See (Tsu-

rutani et al., 2009) for an overview of the effects of solar flares on the ionosphere and

(Buensanto, 1999) for overview on ionospheric storms.
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General circulation models of the ionosphere typically model the ionosphere and

thermosphere, and their associated electrodynamical processes, explicitly as a single

system (Matsuo and Araujo-Pradere, 2011). The main dynamical variables of inter-

est in this setting include neutral winds and the thermosphere’s neutral composition,

which mainly consists of atomic and molecular oxygen. However, other important

drivers, such as the ionosphere’s response to changing solar activity and its coupling

with the magnetosphere in high-latitude regions are represented with auxiliary em-

pirical models. Thus the influence of these key dynamical drivers is specified through

parameterized inputs, which makes parameter estimation an important component

of ionospheric data assimilation.

Relative to the lower atmosphere and oceans, space-weather prediction efforts in

the ionosphere through data assimilation have not been as prevalent due to the rel-

ative lack of observations. This is quickly changing, however, as observing networks

for the ionosphere are growing quickly and this trend is expected to continue (Schunk

et al., 2003). As the ionospheric observational network continues to grow, data as-

similation is becoming an increasingly important tool for space weather monitoring

and modeling. Data assimilation techniques that have proven to be effective in the

lower atmosphere, such as ensemble Kalman filter (EnKF) techniques, are also being

proposed for the ionosphere. In particular, the mandatory inference of unobserved

variables and parameters makes EnKF approaches attractive for the ionosphere.

One of the primary challenges for ionospheric space-weather prediction arises from

the ionosphere’s compliant dynamics, in which the main variable of interest (electron

density) is continually influenced by its external drivers and its updated state has

little feed back on their evolution. Thus, predictions of the ionospheric state largely

depend on the correct specification of these external drivers, whereas in the lower

atmosphere short term predictions have more dependence on the initial state. The
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ionosphere’s compliant dynamics require that data assimilation systems be able to

infer the ionosphere’s drivers from the available observations, which are mostly of

electron density. Since electron density is largely a passive variable, the challenge for

data assimilation systems is to infer the state of the ionosphere’s dynamical drivers

from the observations of the electron density field that these drivers produced.

Another challenge in ionospheric weather prediction is that the response of the

ionosphere to changing solar and geomagnetic activity are typically specified para-

metrically. The parametric representation of these mechanisms is likely to overly

simplify the global response of the ionosphere to changes in these drivers, which may

not adequately describe mechanisms associated with the ionosphere’s response during

extreme events and introduce significant model error. Additionally, the parametric

representation of these drivers does not offer any predictive capabilities, which lim-

its general predictability in the ionosphere, especially during extreme events, where

solar and magnetospheric conditions undergo significant changes. Although these

issues are more closely related to ionospheric modeling, data assimilation systems

can help improve modeling efforts to an extent through the adjustment of solar and

magnetospheric mode inputs using the assimilated observations.

This dissertation is composed of several studies in which the local ensemble trans-

form Kalman filter (LETKF) (Hunt et al., 2007) is proposed for ionospheric data

assimilation. The LETKF is an ensemble square root filter that computes an analy-

sis (updated forecast) that provides a new set of initial conditions for a subsequent

short-range forecast and an updated, low-rank estimate of the forecast error statis-

tics. The analysis is computed independently grid point by grid point, by assimilating

nearby observations simultaneously, making the LETKF amenable to efficient imple-

mentation on a parallel computer cluster. In the studies presented, the LETKF is used

to improve state specification and prediction of the time-evolving three-dimensional
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field of electron density by assimilating synthetic observations of electron density into

an ionospheric model with operational capabilities. This dissertation presents two

primary appendages that are formulated within the LETKF framework that are de-

signed to address some of the challenges in ionospheric data assimilation described

above, particularly during extreme space-weather events. Although these strategies

are designed and applied in the context of data assimilation for the ionosphere, they

are readily applicable to other components of Earth-system models.

The first appendage, presented in Chapter 5, is a methodology that quantifies the

relative sensitivity of each analyzed state variable with respect to each of the assimi-

lated observations using the observation influence diagnostic. This formulation is used

as the basis of a targeted observation strategy that determines where to optimally

place additional observations to improve state specification in a chosen variable. This

strategy helps address issues related to the sparsity of observations in the ionosphere

by optimally selecting where observations should be placed during extreme space-

weather events and also serves as a diagnostic tool for the design of future observing

networks. For example, future development of observational networks may use this

tool to examine which dynamical variables should be targeted to improve short-term

predictions of electron density or other mechanisms of interest during geomagnetic

storms. It is particularly notable that this strategy can be used to improve estimates

of unobserved dynamical variables (which drive the electron density evolution) using

targeted observations of electron density, even though electron density is a largely

passive variable. This is promising for ionospheric data assimilation because the cor-

rect specification of these drivers is important for prediction, but their observability

is much more limited in comparison to electron density.

The second appendage, presented in Chapter 6, develops a strategy for the esti-

mation of model bias to help addresses issues related to model error and mitigating
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its effects on electron density predictions. As mentioned above, a primary source

of model bias in ionospheric modeling arises from the parametrized representation

of solar and magnetospheric drivers, which are often misspecified during extreme

events. This proposed bias estimation methodology offers greater flexibility in the

representation of systematic errors that arise from the misrepresentation of storm-

time effects due to the parametric representation of these drivers. Application of this

bias estimation strategy may help remove bias effects from short-term space-weather

predictions and may also serve as a tool to discover systematic biases that may be

present in ionospheric models. The numerical experiments presented in Chapter 6

show that considerable improvements in electron density predictions may be obtained

even when using this bias estimation strategy with a simple model for evolution of

the bias estimates..

The layout of this dissertation is as follows. Chapter 2 describes the ionosphere

and ionospheric modeling in terms of data assimilation and space-weather prediction.

Chapter 3 introduces data assimilation using Kalman filter based approaches and de-

scribes the LETKF. Chapter 4 describes an initial study, which is published in Physica

Scripta, where the LETKF is applied to estimate ionospheric weather prediction with

an idealized regional ionospheric model. Chapter 5 presents a targeted observation

strategy, based on the observation influence diagnostic, which is applied in observing

system experiments to improve ionospheric space-weather specification during a geo-

magnetic storm event. This targeted observation strategy is published in the Journal

of Geophysical Research: Space Physics, which is a leading journal in ionospheric

studies. Chapter 6 presents a bias correction strategy, designed for sparsely observed

and high dimensional system, which is also applied to improve space-weather pre-

diction during a geomagnetic storm event. The proposed bias estimation strategy is

under review in the Journal of Geophysical Research: Space Physics.
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Chapter 2

IONOSPHERIC WEATHER PREDICTION

The ionosphere is an layer of the upper atmosphere that extends from about 60 km

to 1000 km in altitude. It is characterized by its significant ionized composition and

is partly embedded over multiple atmospheric layers, including the upper mesosphere

and thermosphere. Solar radiation is absorbed in these atmospheric layers at different

wavelength ranges, primarily by atomic oxygen (O1), molecular oxygen (O2) and

molecular nitrogen (N2) gases, which ionizes the atmospheric neutral composition.

Ionization patterns vary considerably over the ionosphere’s spatial extent and exhibits

temporal variability with diurnal, seasonal, and solar cycles. Of particular interest

is the population of free electrons resulting from the ionization of thermospheric

composition.

Although the electron density population begins to form around 30 km altitude,

it begins to have a noticeable effect on radio signals at about 60-90 km altitudes, and

that is generally the altitude where the ionosphere begins. The vertical structure of

the ionosphere consists of three primary layers, known as the D, E, and F layers.

Each layer differs in its influences on radio waves and the manner in which they are

created throughout the diurnal cycle. Although the altitude extent of each layer varies

with solar activity and location, each layer is generally host to a local electron density

peak. Figure 2.1(a) shows the typical structure of an electron density vertical profiles

as computed with the thermosphere-ionosphere-electrodynamics general circulation

model (TIEGCM). The horizontal axis is electron density in el/cm3 and the vertical

axis is altitude in km. The vertical profiles shown are averaged over the day-time (red)

and night-time (blue) sectors at high-latitude regions. Figure 2.1(b) shows similar
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vertical profiles over the equatorial regions.
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Figure 8: (a) Examples of electron density vertical profiles, obtained with the TIEGCM,
located at high-latitude regions, averaged over the day (red) and night (blue) sectors. The
horizontal axis is electron density in el/cm3 and the vertical axis is altitude in km. (b)
Analogous plot of vertical profile, but located in the equatorial region.

8

Figure 2.1: (a) Examples of electron density vertical profiles, obtained with
the TIEGCM, located at high-latitude regions, averaged over the day (red) and
night (blue) sectors. The horizontal axis is electron density in el/cm3 and the verti-
cal axis is altitude in km. (b) Analogous plot of vertical profile, but located in the
equatorial region.

The ionosphere’s electrically-charged content is the basis for radio communica-

tion. Each ionospheric layer is able to reflect a radio signal up to a certain frequency

threshold, called the critical frequency, which is directly proportional to electron den-

sity. The D layer is the lowest altitude region, extending from about 60 km to 90 km

altitude and is present only during the day, when solar radiation is strong enough

to sustain it. Its main effect is the absorption or attenuation of radio communica-

tion signals in the low-frequency and medium-frequency ranges. The E layer is the

ionospheric layer directly above, existing at about 100 km to 125 km altitude. The

E layer also attenuates radio signals, but its ionization is strong enough to refract

radio signals to the degree where they may be returned to Earth. Its intensity is

decreased during the night, but is still strong enough to attenuate signals in the lower

portions of the high frequency (HF) range.

The F layer is the densest ionospheric layer and typically contains the maximum

electron density. Its exact altitude varies considerably with location and solar activity.
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For example, the F-layer in the vertical profiles shown in Figure 2.1 can vary from

about 300 km to 450 km altitude. The F layer reflects signals in the HF range

and is used to establish long-distance communication throughout the day and night

sectors. Since the F layer is host to global electron density peaks, any signal with

frequency higher than the F layer critical frequency will penetrate the ionosphere

and continue on to outer space. Signals at that frequency range are used for satellite

communication. For a comprehensive description of the physical mechanisms involved

in the formation of these ionospheric layers, see the book by (Kelley, 2009).

2.1 Ionospheric Modeling

The ionosphere is a system that exhibits compliant dynamics, in which its state

responds rapidly to continually changing external conditions. The nature of these dy-

namics has important implications on the reliability of ionospheric predictions, since

the correct specification of the initial ionospheric state may not produce accurate

predictions, if estimates of its time-dependent external drivers are not adequately

adjusted Chartier et al. (2013). Thus, ionospheric-weather prediction is restricted to

the predictability of its external forcing, but understanding of these external forces is

often limited, which imposes limitations in the range of phenomena that can be repro-

duced with ionospheric models ((Siscoe and Solomon, 2006)). Further improvement

in ionospheric modeling is thus dependent on the understanding of dynamics of its

external drivers, as well as the ionosphere’s response to these changing drivers. The

most important drivers of the ionosphere include solar activity, geomagnetic con-

ditions, the state of the charge-neutral thermosphere, and planetary gravity waves

arising from the mesosphere.

The ionosphere displays climate-like dynamics, which are slow in time-scale, and

many of its features have been reproduced with ionospheric models derived from first

13



principles. However, as the interface between Earth and outer space, the ionosphere

experiences significant external forcing from neutral winds, solar radiation and mag-

netospheric forcing. As a result, the ionosphere’s electron density structure displays

complex weather-like behavior, commonly referred to as space weather, that can vary

on time scales from hours to days. The prediction and monitoring of space weather is

still a major challenge due to lack of observations with sufficient spatial and temporal

resolution and reliable estimates of ionospheric drivers.

The ionosphere is of great practical interest due to its influence on many com-

munication systems. Uncertainty in ionospheric weather prediction can have adverse

effects on high-frequency communication systems, over-the-horizon radars, and nav-

igation systems that use Global Positioning System (GPS) satellites (Coster et al.,

2003). Improvement in the estimate of the spatial distribution of electron density

as well as mesoscale structures throughout the ionospheric domain can help mitigate

these unwanted effects.

2.1.1 Extreme Space-Weather Events

Ionospheric storms refer to events where the ionosphere undergoes large-scale

changes in ionization distribution relative to quiet time conditions and are typi-

cally caused by massive energy inputs in the upper atmosphere from extreme solar

events. As a result of such solar events, the ionospheric state and its drivers undergo

significant changes: ionization and heating rates rise sharply, geomagnetic activity

undergoes significant disturbances, and the thermosphere expands, creating signifi-

cant pressure fields and enhanced wind circulation patterns. Thus ionospheric storms

are typically associated with geomagnetic storms, which refer to disturbances in the

Earth’s magnetic field due to the impact of solar wind particles on the Earth’s mag-

netosphere, and thermospheric storms, which refer to the large-scale modification of
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neutral composition due to the enhancement of neutral wind circulation as the ther-

mosphere expands. See (Tsurutani et al., 2009) for an overview of the effects of solar

flares on the ionosphere and see (Buensanto, 1999) for an overview of ionospheric

storms. A introductory description of the space physics in the upper atmosphere is

provided by (Prolss and Bird, 2004).

Solar events that are strong enough to cause such events are typically associated

with solar flares and coronal mass ejections (CMEs). Solar flares and CMEs are solar

events involving enormous eruptions of energy, typically caused from an explosive re-

alignment of the Sun’s magnetic field. Solar flares refer to the flash of light associated

with the eruption that emit radiation in several bands (white light, ultraviolet, x-ray,

gamma rays) and can reach Earth on the order of minutes. CMEs are clouds of

magnetized solar particles and plasma that are launched from the sun and typically

take 3-4 days to reach the Earth. CME eruptions accelerate energetic particles into

the near-Earth space environment, which can disturb the Earth’s magnetic field and

create currents that drive particles down towards the Earth’s poles.

Such variations in solar inputs drive many of the primary ionospheric mechanisms.

Solar winds compress the Earth’s magnetosphere which creates electric fields in the

high-latitude ionosphere, that may extend to lower latitudes during stronger solar

events. These electric currents couple the high-latitude ionosphere to the magneto-

sphere. Strong electric fields and increased ionospheric conductivity from energetic

particle impact cause in electric currents and frictional heating due to collisions be-

tween accelerated plasma and ambient neutrals. Heating of neutral composition ex-

pands the thermosphere, creating pressure gradients, which then modify the global

circulation of neutral winds and has a major effect on the ionospheric state. During

extreme events, expansion of the neutral thermosphere is sudden and can modify the

global thermospheric circulation significantly. In particular, there may be composi-
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tion disturbance zones, which travel from high latitudes to mid latitudes, and appear

in the ionosphere as large-scale traveling disturbances that can change the F-layer

altitude.

Energy inputs to the upper atmosphere typically consist of enhanced electric fields,

currents, and energetic particle precipitation. Energetic particles refer to highly ener-

getic electrons, protons, neutrons, and ions that are accelerated into the atmosphere

and enter primarily through polar regions. These energetic particles often ionize and

dissociate atmospheric constituents. High latitude energy precipitation and magne-

tospheric convection are important drivers for global ionospheric models. During

geomagnetic storms, the cross-polar-cap potential drop, which refers to the difference

between the maximum and minimum of electric potential in high latitude regions and

is an indicator of the of energy influx from the solar winds, increases significantly, lead-

ing to intensification and expansion of the magnetospheric convecting electric fields.

These magnetospheric drivers have significant effects on the high-latitude plasma

structure.

The behavior of the ionosphere during geomagnetic storms is also influenced by

the evolution of the thermosphere, which consists of changes in the neutral winds and

composition that lead to changes in rates of production and loss of ionization. This

results in ionospheric positive and negative storm effects. Typically, the ionosphere’s

response is positive during the initial phase of a storm and then is negative afterward,

but the duration and magnitude of each phase depends on latitude and season. Due

to the intimate coupling between the ionized and charge-neutral composition, models

of the upper atmosphere typically model the ionosphere and thermosphere as a single

system, to obtain self-consistent solutions for the state of each atmospheric layer.

Recent examples of significant geomagnetic storms include the 1989 storm, which

caused a blackout in a large portion of the power grid in Quebec, Canada (Bolduc,
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2002), the 2001 Bastille event (Webber et al., 2002), the 2003 Halloween storms (Weaver,

2004), and the storm of 26 September 2011 (Klimenko et al., 2015). Even stronger ge-

omagnetic events are possible. For example, a series of powerful solar flares observed

in July 2012 missed the Earth by about a margin of about 9 days, and are estimated

to have induced geomagnetic storms that rival the Carrington event of 1859, if the

solar ejections had been Earth-directed (Ngwira et al., 2013). This powerful solar

event occurred during a relatively quiet solar cycle (Baker et al., 2013), so it is a

plausible extreme space-weather scenario for which society should be prepared.

2.1.2 External Driver Representation

Global circulation models of the ionosphere typically represent its interaction with

the thermosphere explicitly. However, the ionosphere’s response to other key iono-

spheric drivers is typically represented through parameterized inputs. In particular,

the ionosphere’s response to solar activity and magnetospheric inputs at high-latitude

regions are represented with auxiliary empirical models. The empirical representation

of the key dynamical drivers presents a major challenge for ionospheric forecasting,

since parameterized inputs offer no predictive capabilities. Additionally the paramet-

ric representation of complex ionospheric response to variations in solar and geomag-

netic activity may be overly simplified. The solar and magnetospheric inputs to the

TIEGCM, which is the ionospheric model of primary focus on in this dissertation,

are discussed below.

Solar Conditions

The main source of ionization in the ionosphere, and thus one of its primary dynami-

cal drivers, is the absorption of solar radiation in the thermosphere, in the soft X-ray

ultraviolet (XUV, 0.05 nm — 30 nm), extreme ultraviolet (EUV, 30 nm – 120 nm)
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and far ultraviolet (FUV, 120 nm — 200 nm) wavelength range, primarily by O1,

O2 and N2 neutral gases, through photon ionization and dissociation. The TIEGCM

represents effects of solar irradiance and its variability through auxiliary empirical

models. The default solar input model, which is used in the TIEGCM configura-

tion for this research, is the EUV flux model for aeronomic calculations (EUVAC)

irradiance model (Richards et al., 1994). The EUVAC model specifies important

ionospheric processes related to solar activity in the spectral range from 5 nm —

105 nm. The EUVAC model contains a reference spectrum at solar minimum and a

wavelength-dependent solar variability that is parameterized by the F10.7 index, which

is a daily measurement radio flux at 10.7 cm wavelength, and its 81-day average. The

solar input directly affects important ionospheric processes such as ionization rates,

including direct and photoelectron, dissociation rates, and heating rates of neutrals,

electrons and ions, and thus has a major impact on the production of electron density.

The F10.7 index is an indicator of solar activity and is one of the longest running

records of solar activity (measured since 1947). It can be reliably measured on a

day-to-day basis from the Earth’s surface in all types of weather, so its data set is

robust and has few gaps or calibration issues. It is reported in terms of “solar flux

units”, which correspond to 10−22 W/m2Hz and its values range from below 50 to

above 300 to describe different levels of solar activity. Because of its long record, the

F10.7 index provides climatology of solar activity over six solar cycles. The extreme

ultraviolet emissions that impact the ionosphere and modify the upper atmosphere

track well with the F10.7 index. Many UV emissions that affect the stratosphere and

ozone also correlate with the F10.7 index. The F10.7 index data set can be found at

the space weather prediction center (SWPC) division of NOAA.
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Geomagnetic Activity

Another key driver of ionospheric dynamics is geomagnetic activity. The ionosphere

is strongly coupled to the magnetosphere in high-latitude regions but is often approx-

imated with auxiliary empirical models due its complexity. Geomagnetic activity is

typically characterized with the Kp index, which is a widely used index derived from

the horizontal component of geomagnetic field disturbances. Kp indices are provided

every 3 hours and the index values range from 0 to 9, to describe geomagnetic condi-

tions ranging from quiet to extremely disturbed. The global Kp index is then obtained

through an average of the local station Kp indices. Kp indices range from 0 to 9,

where indices below 5 correspond to quite or minor geomagnetic activity, indices be-

tween 5 and 6 correspond to mild-moderate geomagnetic storms, and indices greater

than 6 correspond to strong-severe storms.

The default magnetospheric input, which is used in the TIEGCM configuration

for this research, is the Heelis model (Heelis et al., 1982). The Heelis model is pa-

rameterized with the Kp index to calculate high-latitude auroral precipitation (Hp),

which specifies energy inputs, and the cross-tail potential (Cp), which specifies ion

convection patterns. The formulation is shown in Equations (2.1) and (2.2). His-

torical records of Kp indices are provided by the National Oceanic and Atmospheric

Administration (NOAA).

Cp(Kp) = 153.13 + 15Kp + 0.8Kp2 (2.1)

Hp(Kp) =





16.82e(0.32Kp) − 4.86 Kp ≤ 7

153.13 + Kp−7
9−7

(300− 153.13) Kp > 7

(2.2)
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The Heelis model specifies important high-latitude processes in the ionosphere,

such as electric field patterns and auroral energy inputs, for different levels of geo-

magnetic activity. These inputs are specified directly with the Heelis model above

20◦ co-latitude and computed explicitly below 35◦ colatitude. Between 35◦ and 20◦

colatitudes, the electric field is computed as a linear combination of the explicit and

parametric calculations. The TIEGCM allows for other magnetospheric inputs, such

as the Weimer model (Weimer, 2005) and AMPERE model (Anderson et al., 2014),

but they are not considered for this study.

A time series of the solar and magnetospheric indices described above is shown in

Figure 2.2 during the geomagnetic storm event of 26-27 September 2011, as published

by NOAA. The top row shows the indices ten days before and after 26 September

2011. Figure 2.2(a) shows that there is a sudden increase in solar activity prior to 26

September, corresponding to enhanced solar ejections, and Figures 2.2(b)-(c) show a

corresponding increase in geomagnetic disturbance slightly after 26 September. The

second row shows the same indices during 26-27 September. Figures 2.2(e)-(f) show

that the onset of geomagnetic disturbance beings around 10:00 UTC on 26 September,

which led to a subsequent geomagnetic storm event

Figure 2.3 shows TIEGCM simulations of the temporal evolution of the global

electron density field, in el/cm3, during 25 September, when geomagnetic conditions

were relatively quiet, and after the onset of geomagnetic disturbances on 26 Septem-

ber 2011, at the times indicated. The color scale denotes electron density and the

maps are averaged from 250 km to 500 km altitudes. Note the formation of electron

density enhancement that forms over high latitude regions during the initial storm

phase (14:30 UTC), and that this enhancement grows significantly during the main

phase of the storm (17:30 UTC and 20:30 UTC). Although geomagnetic conditions

begin to relax after 23:30 UTC, the electron density enhancements still extend into
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Figure 2.2: (a)-(c) Time series of solar and magnetospheric indices: (a) solar
flux (F10.7) in solar flux units (10−22W/(m2Hz)), (b) cross-tail potential (Cp) in kV,
and (c) hemispheric power (Hp) in GW . The time origin is at 00:00 UTC on 26
September 2011, with the time interval spanning from ten days prior to ten days
after. (d)-(f) Time series of the same indices beginning 00:00 UTC on 26 September
2011 and continuing to 23:30 UTC on 27 September 2011.

the higher-latitudes, compared to the period of quiet geomagnetic conditions. This

simulated evolution of electron density during geomagnetic disturbances demonstrates

the degree to which the global distribution of electron density changes relative to ge-

omagnetically quiet conditions. Data assimilation is becoming an increasingly useful

tool to capture and predict these ionospheric deviations from the normal ionosphere

during extreme events, so that uncertainties in space-weather specification can be

mitigated.
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Figure 2.3: (a) Comparison of electron density distribution during quiet (25 Septem-
ber) geomagnetic conditions and during the onset of geomagnetic disturbances (26
September) at the indicated times. The color scale denotes electron density in el/cm3.

2.2 Data Assimilation in the Ionosphere

While data assimilation has developed into a mature practice for weather predic-

tion in the lower atmosphere and in oceans, development in the ionosphere has been

slower, primarily due to the scarcity of observations. The majority of available mea-

surements in the ionosphere are of electron content. The first sources of observations

where ionosondes, which reflected signals from the ionosphere at certainty frequency

ranges, revealing the electron content and its altitude at different ionospheric lay-

ers. Over the past few decades, the observational network has grown vastly, with the

development of satellite communication, and it is expected that this trend will con-

tinue (Schunk et al., 2003). Newer observation sources include ground-based digison-

des, which are generally limited to space above land. Radio occultation techniques

on board satellite missions have helped provide global observational coverage of the
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ionosphere, including space above oceans. However, observations of other variables,

such as winds or temperature remain relatively scarce.

With an increasing ionospheric observation dataset, data assimilation techniques

that have proven to be effective for the lower atmosphere, such as ensemble-based

techniques, are being tested in the ionosphere. However there are aspects of the iono-

sphere that are different than the lower atmosphere, which may require more than

a simple transplant of data assimilation schemes. Despite the expanding observing

network, the observational data set is still significantly smaller than that of the at-

mosphere and the variety of observed dynamical variables is smaller. Additionally,

compliant ionospheric dynamics imply that the predictability of the ionosphere can be

advanced only as far as the predictability of its external forcing. These considerations

must be accounted for in the development of operational data assimilation systems.

Many global-scale characteristics of ionospheric storms have now been reproduced by

global first-principles theoretical models, but local features during specific storms are

difficult to accurately predict, largely due to uncertainties in the inputs required by

the models. Data assimilation is a promising tool to understand and reproduce these

ionospheric mechanisms.

A key component of ionospheric weather prediction is the correct representation

of the solar and magnetospheric conditions, which are specified with parameterized

inputs in the TIEGCM. However, geomagnetic indices are notoriously difficult to

measure accurately during periods of magnetospheric disturbance and solar irradiance

patterns can deviate significantly from proxy models. Storm time effects can be

difficult to model and predict in sign, magnitude and direction. The mechanisms

behind these processes are are not completely understood and may pose significant

uncertainties, not only due to sub-optimal drivers, but from inherent limitations of

the parameterizations. For example, the study by (Pedatella et al., 2009) discusses
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the significant enhancement in F2-layer electron density peak and altitude during

the geomagnetic storm of 15 December 2006. In particular, these storm time-effects

were observed to be very long-lasting after the main phase of this geomagnetic storm.

Observational analysis on the initial phase of this geomagnetic storm are presented

by (Lei et al., 2008b) and a study about observed traveling ionospheric disturbances

are discussed in (Lei et al., 2008a).

Some recent efforts to apply data assimilation to the ionosphere include the Global

Assimilative Ionospheric model (USC/JPL GAIM), which includes four-dimensional

variational and Kalman filter methods (Wang et al., 2004); the Ionospheric Data As-

similation Three-Dimensional (IDA3D) model, which uses a three-dimensional varia-

tional data assimilation scheme (Bust and Mitchell, 2008); the Utah State University

Global Model Assimilation of Ionospheric Measurements (USU-GAIM), which uses a

Kalman filter (Scherliess et al., 2004); a global three-dimensional ionospheric electron

density reanalysis using a Kalman filter to assimilate multi-source data (Yue et al.,

2012); a global ionosphere-thermosphere model (GIMT) that uses the Local Ensem-

ble Transform Kalman Filter (LETKF) (Koller et al., 2013); and the Thermosphere-

Ionosphere Global Circulation Model (TIEGCM) that uses an ensemble Kalman filter

from the Data Assimilation Research testbed (DART) ((Lee et al., 2012).

24



Chapter 3

DATA ASSIMILATION

In framework of spatiotemporal prediction of Earth-system models, the state esti-

mate of a given system is typically produced with a numerical forecast model, which

approximates the spatiotemporal evolution of the system dynamics. Due to the in-

herent limitations in numerical models, stemming from an incomplete understanding

of the system dynamics and physics, it is often necessary to use information obtained

directly from measurements or observations of the system to update estimates of the

model, and to synchronize the model predictions with the system that produced the

observations. The improved state estimate is then used as the initial condition to re-

start the model and propagate the system state and to produce a forecast at a future

time. The procedure by which observations are used to update the system state is

broadly referred to as data assimilation. Generally, this procedure is a discrete state

estimate/update approach in which the forecast model is used to predict the system

state and the data assimilation scheme is used to update the system state, based on

the available observations

The data assimilation scheme used in this dissertation is the local ensemble trans-

form Kalman filter (LETKF). The LETKF is described in some detail over the next

few sections, but the reader is referred to Hunt et al. (2007) for a complete descrip-

tion and mathematical justification of this scheme. The LETKF is a type of ensemble

square root filter, which is in turn based on the classical Kalman filter. The Kalman

Filter is a method by which two estimates of a given state can be optimally combined

to produced the best linear unbiased estimate of the “true” state (Talagrand, 1997).

The Kalman filter requires information about the statistical error in the two pieces
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of information in addition to the estimates themselves. Generally, the procedure is

independent of the source of these two pieces of information, but since the focus

of this research is on state estimation of Earth-system models, it is assumed that

one estimate is the output of a forecast model and the other is from an empirical

measurement or observation.

This chapter begins with a simple scalar example of the Kalman filter, and then

progress to a more general multi-dimensional example. Practical problems associated

with the direct application of the Kalman filter in practice and approaches to circum-

vent these difficulties are also discussed. Finally, the approach used for LETKF and

a discussion of its computational efficiency is presented.

3.1 Kalman Filter: Scalar Example

Consider some unknown scaler quantity of interest, say temperature, T , defined at

a point in space and time. Also suppose there is a temperature estimate, Tb = T + εb,

made with a model (say a thermostat) and a temperature measurement, To = T + εo,

made with a thermometer. The quantities εb and εo are error terms which reflect

that Tb and To are noisy estimates. The Kalman filter assumes that εo and εb are

independent, normally distributed random variables with zero mean and variance

given by σ2
o and σ2

b , respectively. The probability distribution (PDF) of the errors in

each estimate is given by:

pb(t) = 1√
2πσb

e−(t−Tb)2/(2σ2
b ) (3.1)

po(t) = 1√
2πσo

e−(t−To)2/(2σ2
o) (3.2)

The optimal combination of these two PDFs is given by the most likely state in their

joint distribution. To and Tb are assumed to be independent, so their joint PDF is
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given by

p(t) = Ce−((t−Tb)2/(2σ2
b )+(t−To)2/(2σ2

o)), (3.3)

where C is the constant acquired through multiplication and normalization of the

joint distribution. The Kalman filter finds a temperature, Ta, that maximizes Equa-

tion (3.3), or equivalently minimizes

J(t) = (t− Tb)2/σ2
b + (t− To)2/σ2

o . (3.4)

To find the minimizer, the quadratic Equation (3.4) is expanded. Completing the

square on the resulting expression yields

J(t) =

(
1

σ2
b

+
1

σ2
o

)[
t− σ2

oTb + σ2
bTo

σ2
b + σ2

o

]2

+ F, (3.5)

where F is constant with respect to t. The minimizer of J(t) is given by

Ta =
σ2
oTb + σ2

bTo
σ2
b + σ2

o

. (3.6)

Ta is referred to as the analyzed temperature estimate, or simply the analysis. Under

the statistical assumptions about the errors in the estimates mentioned above, Ta is

the best linear unbiased estimate of the true temperature The same minimizer may

be obtained by differentiating Equation (3.4) with respect to t, setting the result to

0 and solving for t, but the approach shown in Equation 3.5 is applicable in the case

where temperatures are multi-dimensional, so it is shown here for clarity.

Equation (3.5) also shows that the variance in Ta is given by

1

σ2
a

=
1

σ2
b

+
1

σ2
o

=
σ2
o + σ2

b

σ2
oσ

2
b

, (3.7)

which implies that the variance in Ta is smaller than both of the background and

observed estimates. Defining the quantity

K =
σ2
b

σ2
b + σ2

o

, (3.8)
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which is often referred to as the ”Kalman gain”, Equations (3.6) and (3.7) become

Ta = Tb +K(To − Tb) (3.9)

σ2
a = (1−K)σ2

b . (3.10)

Equations (3.9) and (3.10) provide an intuitive description of the Kalman filter

update. The difference between the predicted and observed temperatures, Tb− To, is

commonly referred to as the innovation, or the observational increment, since it repre-

sents the new information provided by the observation. According to Equation (3.9),

the updated temperature is simply the original model prediction, plus some optimally

weighted innovation, K, where 0 ≤ K ≤ 1.

If the observed measurement, To, is extremely accurate relative to the thermostat

measurement (σ2
o � σ2

b ), then K ≈ 1 and Ta ≈ To, with uncertainty σ2
a ≈ σ2

o .

An analogous result is obtained when σ2
b � σ2

o . If both temperatures have similar

uncertainty σ2
b ≈ σ2

o , then K ≈ 1/2 and Ta ≈ (To + Tb)/2, or simply the average of

the two estimates.

3.2 Kalman Filter: Multi-Dimensional Case

Now consider a temperature field, Q, defined on a discrete three-dimensional grid,

as would the output of an atmospheric model. The grid points can be ordered into

an m × 1 vector, xt, where m is the number of grid points. Similarly, let xb be the

m-dimensional vector of background temperature estimates. Suppose there is a col-

lection of ` observations, organized in an `-dimensional vector, yo. The observations

are measurements taken from the temperature field, Q, but generally need not be

located on the model grid where xb is defined.

The observation or forward operator relates the temperature field defined on the

model grid to the observation locations. Since temperature is a model variable and
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also the observed variable, H is simply an interpolation procedure. More generally,

observed variables may not necessarily be state variables, but functions of the state

variables, in which case, H is a functional description of the physical relationship

between them, which may be non-linear.

The Kalman filter supposes that the background is related to the system state as

xb = xt+εb, where εb is a m×1 normally distributed random vector, with zero mean.

Similarly, the observation vector is assumed to be of the form yo = H(xt) +εo, where

εo is a normally distributed `× 1 vector with zero mean. Furthermore it is assumed

that εo and εb are mutually independent. The uncertainties in each of the estimates

are now characterized with covariance matrices Pb and R, respectively. The objective

function analogous to Equation (3.4) is given by quadratic cost function:

J(x) =
[
x− xb

]T

(Pb)−1
[
x− xb

]
+
[
yo −H(x)

]T
R−1

[
yo −H(x)

]
(3.11)

In the case of linear observation operator and model dynamics, Equation (3.11) has

a unique minimizer that can readily be found using a similar “complete the square”

approach used in Section 3.1. Expanding Equation (3.11) into its quadratic, linear

and constant components yields

J(x) =
[
x− xb

]T

(Pb)−1
[
x− xb

]
+ [yo −Hx]T R−1 [yo −Hx]

= xT
[
(Pb)−1 + HTR−1H

]
x− xT

[
(Pb)−1xb + HTR−1yo

]

−
[
(xb)T(Pb)−1 + (yo)TR−1HT

]
x + C1,

(3.12)

where C1 is the constant with respect to x. The goal is to write Equation (3.12) in

the form:

J(x) = [x− xa]T (Pa)−1 [x− xa]T

= xT
[
(Pa)−1

]
x− xT

[
(Pa)−1xa

]
−
[
(xa)T(Pa)−1

]
x + C2,

(3.13)

where C2 is constant with respect to x. Equating the quadratic and linear terms of

equation (3.13) with those of equation (3.12) yields the Kalman filter state update
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and its associated covariance matrix:

Pa =
[
(Pb)−1 + HTR−1H

]−1

(3.14)

xa = Pa
[
(Pb)−1xb + HTR−1yo

]
(3.15)

Equations (3.15) and (3.14) can be written in many different but equivalent ways.

Introducing the Kalman gain matrix:

K = PaHTR−1 (3.16)

Equations (3.14) and 3.15 become

Pa =
[
I + PbHTR−1H

]−1

Pb (3.17)

xa = xb + K
(
yo −Hxb

)
. (3.18)

The details of this reformulation are provided in Appendix F. Similarly to the scalar

case, the analyzed updated consists of the background state plus a suitably weighted

innovation vector, yo −Hxb.

3.2.1 The Analysis Cycle

The analysis cycle is essentially one long model integration, consisting of discrete

state estimation and update steps, with the goal of estimating the state trajectory

of a dynamical system uti that is unknown, with the exception of noisy observations

available at a set of discrete times ti. In the simplest case, the dynamics at time ti are

governed by a linear model, xti = Mix
t
i−1, and the observations are linear functions of

the system state: yo = Hiu
t
i + εoi , where εoi models observation processing noise as a

random vector drawn from a normal distribution of mean 0 and covariance matrix Ri.

Let ubi denote the background, i.e., an estimate of the current state vector at

time ti, and let Pb
i be its associated covariance matrix. In practice, ubi is a short-

range forecast produced by a dynamical model. Given a vector of observations yoi
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obtained at time ti, the analysis, uai , and an updated estimate of its uncertainty, Pa
i ,

are obtained by minimizing Equation (3.11), as given by Equations (3.17) and (3.18).

uai serves as an updated initial condition for a subsequent short-term integration of

the dynamical model to time ti+1, which yields a new background state vector ubi+1

and associated covariance matrix, Pb
i+1:

ubi+1 = Mi+1u
a
i (3.19)

Pb
i+1 = Mi+1P

a
iMi+1. (3.20)

The model is integrated to a time ti+1, where there is a new collection of obser-

vations yoi+1, to be assimilated and the analysis procedure is repeated to compute

uai+1 and Pa
i+1. This cycle alternates between a forecast step and an update step

indefinitely, ideally frequently enough such that model state trajectory remains close

to that of the system of interest.

3.2.2 Practical Difficulties

The cycle analysis procedure described in Section 3.2.1 provides an approach that

in principle yields optimal state estimation and uncertainty quantification of high-

order dynamical systems, but there are numerous practical difficulties that make

its direct application unfeasible in operational numerical weather prediction (NWP)

settings.

The primary difficulty is associated with the enormous state size of operational

atmospheric models. In particular, the computation of Equations (3.17) and (3.18)

is highly impractical due to the state size. To circumvent this difficulty, iterative

methods are often used to minimize Equation (3.11) directly. This is the basis of

31



variational data assimilation and it typically requires the development of a tangent

linear model of the forecast model to make the minimization problem feasible.

The number of observations in NWP settings is usually considerably smaller than

the state size, and observations are often taken from independent sets of instruments,

so the associated observation error covariance matrix, Ri is diagonal or block diagonal;

operations involving Ri or its inverse are not problematic. However, the state size for

NWP is typically about m = 106− 107 depending on model resolution, making oper-

ations involving its m×m covariance matrix, Pb
i , in the minimization of (3.11) highly

impractical. Additionally, Pb
i is often not known precisely and in any case, would be

difficult or impossible to invert given its dimension. Furthermore, if the observation

operator, Hi is non-linear, which is often the case in practice, Equation (3.11) is not

guaranteed to have a unique unbiased minimizer.

Another major source of practical difficulties is the propagation of the forecast

uncertainty. Even in the case of linear dynamics, computational costs are still pro-

hibitive due to the state size. Pb can be propagated as shown in Equation (3.20), but

this approach would require the equivalent of 2m model integrations, where m is the

number of grid points.

These practical limitations make the classical Kalman filter approach impossible

to apply in NWP settings. The forecast uncertainty estimate is important for accu-

racy since it describes important dynamical relationships among dynamical variables

and balance constraints. Due to the complexity of operational atmospheric models,

the temporal evolution of the forecast covariance matrix is often not known precisely,

and thus simplified version are often employed. For example, model covariance matri-

ces are typically approximated as spatially homogeneous and isotropic (Wang et al.,

2006). They may be may also be held constant or updated less often, but this ap-
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proach comes at the expense of deteriorated analysis estimates due to “errors of the

day” that may be missed (Kalnay, 2003).

Although the optimality of the Kalman filter scheme can be rigorously proven only

in the case of linear dynamics and complete knowledge of the forecast and observation

covariance matrices, data assimilation schemes using variations of Equation (3.11)

have been effective in many operational settings (Kalnay, 2003). Data assimilation

approaches based on sub-optimal Kalman filter updates, such as ensemble Kalman

filters, have also shown promise. In the following sections, an overview of these types

of approaches is provided.

3.3 Ensemble Kalman Filter

Correct specification of the forecast covariance matrix, Pb
i is essential for accuracy

in the computation of the analysis, but it cannot be feasibly computed and propa-

gated at its full complexity in numerical weather prediction settings throughout the

data assimilation cycle. The ensemble Kalman filter (EnkF) attempts to address

both of these issues, by using the sample statistics of a set, or ensemble of model

realizations. In particular, the most likely state is estimated by the ensemble mean

and the model covariance is approximated by the sample covariance of the ensemble.

The EnKF addresses the challenge of propagating the forecast uncertainty by evolv-

ing each individual ensemble member according to the possibly non-linear dynamics

of the model, which presumably yields a reasonable flow-dependent approximation of

the forecast uncertainty to account for the “errors of the day”, provided that the en-

semble size is large enough. Additionally, the EnKF formulation is relatively simple,

compared to variational approaches, since there is no need for the maintenance of a

model dependent tangent linear model. Additionally, EnKF schemes are essentially
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independent of the specific forecast model used, making them highly adaptable to

Earth-system models.

In the EnKF formulation, the ensemble mean and the forecast covariance ma-

trix are updated according to the classical Kalman filter equations, given by Equa-

tions (3.17) and (3.18). Thus there is an underlying Gaussian assumption on the

model and observation errors, as well as linearity in the model dynamics. In the

case of a nonlinear model, if each forecasting step of the assimilation cycle is rela-

tively short, the model propagation is approximately linear, so the initial Gaussian

distribution can be approximately retained and can be used in the next analysis step.

A typical formulation for EnKF schemes is provided below. The EnKF evolves an

ensemble of forecasts according to the model dynamics, and when observations be-

come available to be assimilated, the entire ensemble is adjusted in tandem, reflecting

the new state estimate as dictated by the observations. The discussion describes the

analysis calculations at a fixed time, so the time notation is dropped for clarity.

Denote the background ensemble of size k by {xb(i)}ki=1. It is assumed that its

ensemble mean,

x̄b = k−1

k∑

i=1

xb(i) (3.21)

is the best available state estimate before observations are assimilated. Construct the

matrix of background perturbations, Xb, whose ith column to be xb(i)− x̄b. Then the

forecast covariance matrix is approximated by the sample covariance of the ensemble

as

Pb = (k − 1)−1Xb(Xb)T (3.22)

The EnKF produces an “analysis” ensemble, {xa(i)}ki=1, whose ensemble mean

x̄a = k−1

k∑

i=1

xa(i) (3.23)
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represents the new state estimate after observations have been assimilated and its

associated uncertainty is given by the analyzed covariance matrix

Pa = (k − 1)−1Xa(Xa)T, (3.24)

where the matrix Xa, is the matrix of analysis perturbations, constructed so that

its ith column is given by xa(i) − x̄a. The transformation from background ensemble

{xb(i)}ki=1 to analysis ensemble {xa(i)}ki=1 is done by updating the background ensemble

mean x̄b and its associated sample covariance matrix Pb according to the classical

Kalman filter, such that it produces an updated ensemble whose ensemble mean x̄a

and covariance matrix Pa, match Equations (3.17) and (3.18).

Computing the Kalman gain, K, as it is written in Equation (3.16), is of order

`3 and computing Pa involves operations on m×m matrices, where ` is the number

of observations and m is the number of grid points. By construction, the columns

of Xb sum to zero, implying that its rank is at most k − 1, and thus the sample

forecast covariance matrix as given in Equation 3.22 is also at most rank k− 1. This

implies that K and Pa are both at most rank k − 1, which is typically much smaller

than the number of observations and model grid points for NWP applications. Thus

the analysis equation can be computed efficiently, for example with an eigenvalue or

singular value decomposition.

To construct the analysis ensemble, one must find a collection of forecasts, whose

perturbation matrix, Xa, satisfies Equation (3.24) and has the correct ensemble mean.

For a given background ensemble and collection of observations, all EnKF-based

algorithms yield the same update for the analyzed ensemble mean, x̄a, and covariance

matrix, Pa. However, the ensemble of forecasts that have these two statistics is

not unique, and this is where many EnKF-based schemes differ. One method for

35



computing the analysis ensemble is through an update of the form Xa = XbY, where

Y is a matrix to be determined.

Each EnKF scheme is based on the choice of Y and many types of ensemble filters

may be constructed with different choices of Y, since for any arbitrary k× k unitary

matrix, U, analysis ensembles constructed as

Xa = XbYU, (3.25)

will yield the same sample covariance matrix, Pa. It is demonstrated by (Tippet

et al., 2003) that these types of schemes are part of a larger class of methods known

as square-root filters. Although these square root filters yield the same update on the

ensemble mean and sample covariance, higher order statistical moments can be differ-

ent, which is an important aspect to consider when using a non-linear forecast model.

Another important consideration, particularly for NWP settings, is that square root

filters may differ on how the computational complexity scales as the number of ob-

servations or the state size grows. See (Tippet et al., 2003) for more discussion on

these two last points.

Examples ensemble square root filters are the Local Ensemble Kalman Filter (Ott

et al., 2004), Ensemble Adjusted Kalman Filter (Anderson, 2001), the Ensemble

Transform Kalman Filter (Bishop et al., 2001) and the Local Ensemble Transform

Kalman Filter (Hunt et al., 2007). Square root filters are also know as a determin-

istic EnKF (Whitaker and Hamill, 2001), as opposed to earlier versions of EnKF

schemes ((Evensen, 1994), (Burgers et al., 1998),(Houtekamer and Mitchell, 1997)),

which are stochastic in the sense that they perturb the observations randomly in

generating each ensemble member.
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3.3.1 Challenges With Ensemble Kalman Filters

EnKF-based schemes offer a computationally tractable methodology for comput-

ing and propagating a flow-dependent forecast covariance matrix, Pb. However Pb is

at most rank k−1, and thus can only account for forecast uncertainty in at most k−1

directions. Computational limitations restrict the ensemble size to be much smaller

than the state size, which yields a severely rank-deficient approximation of the actual

covariance matrix of the global state estimate. This rank deficiency can introduce

degraded analysis quality due to sampling errors. Since a larger ensemble may not be

an option due to practical limitations, there are other approaches to remedy sampling

errors as described in the following sections.

Covariance Localization

In operational NWP settings, model state updates using data assimilation occur

every one to six hours, depending on the model. Covariance localization suppresses

correlations among model variables beyond some prescribed spatial distance to a given

grid point so that the update state at that grid point depends only on observations

and model variables within a finite distance. This is a desirable approach since it is

expected that the nearby observations and model variables have a stronger correlation

to the quantities defined at the given grid point so that their covariance are better

represented with a reasonably sized ensemble of forecasts. Localization also avoids

influence from distant observations, which despite not having a physically meaningful

correlations with the given grid point, may have spurious correlations generated from

sampling errors of the undersized ensemble. Locally, atmospheric dynamics tend

to evolve in a much smaller subspace (Patil et al., 2001), and thus not only can a

local region contain the majority of the dynamical information that is relevant to

37



the grid point, but it will also have an effectively larger-rank approximation of the

covariance matrix within that local space. This enables a modestly sized ensemble to

effectively capture local model dynamics and directions of growing uncertainty in a

computationally affordable way.

Although covariance localization may effectively suppress long-distance spurious

correlations, using a localization radius that is too small may also degrade the anal-

ysis, since it may suppress physically and temporally meaningful correlations that

would be beneficial for the analysis accuracy. A small localization radius may also

introduce imbalances or undesired small-scale noise into the analysis, especially if

the observation network is sparse. These discontinuities may occur at points where

adjacent model grid points are updated using sets of observations with little overlap,

that is, where one or more observations are included at one grid point and excluded

at the next. A typical approach to avoid this is multiply the EnKF background error

sample covariances by a weighting factor that decreases smoothly to zero at finite

distance, so that the influence of observations decreases to zero smoothly.

The optimal localization size depends on physical length scales present in the

model dynamics as well as the ensemble size that is permitted by practical consider-

ations. The localization radius should ideally be large enough to capture physically

meaningful correlations but small enough to exclude long distance spurious correla-

tions as much as possible. (Miyoshi, 2014) suggests that rather than simply increasing

the localization radius, it may be more beneficial to adaptively choose a localization

geometry in an ellipsoid shape that encapsulates all the physically related points only.

This localization geometry is dependent on the dynamics being modeled, and may be

different from grid point to grid point, so an adaptive scheme that can distinguishing

physically meaningful correlations from spurious ones would be required.
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Covariance Inflation

Ensemble Kalman filters approximate the model forecast covariance matrix through

the sample covariance of its ensemble. Although, this gives computationally feasible

approximation of the temporally varying model covariance, model errors and non-

linearities may be sources of errors in this representation of the model uncertainty.

However the primary source of error arises from sampling errors due to the size of

the ensemble. In the case of large non-linear forecast models, the ensemble size may

be several orders of magnitude smaller than the model covariance matrix, which may

cause the ensemble to not be statistically representative of the global model dynamics

and is likely to misrepresent long distance correlations (Hamill et al., 2001). Strong

non-linearities and model error may contribute to this error but such sampling errors

can also occur in perfect model scenarios (Anderson, 2007).

Covariance localization compensates for sampling errors to a degree, but the en-

semble may still misrepresent model covariance locally in some regions due to the

non-linearities of the model. After multiple analysis cycles, the ensemble covariance

may not be representative of the actual model uncertainty. This overconfidence may

lead to filter divergence, where the ensemble covariance inadequately underestimates

the model uncertainty and the influence of observations is reduced greatly, or even

ignored.

Covariance inflation is an ad hoc approach to compensate for this, where the

background perturbation matrix, Xb, is multiplied by a constant factor ρ > 1 to

increase its ensemble spread, which effectively reduces the confidence that the EnkF

scheme has on the background ensemble. Covariance inflation has been helpful in for

a variety of ensemble filters but it may be difficult to apply since it can be costly to

find covariance inflation values that perform well for a given application, especially
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for large models. (Hunt et al., 2007) discusses more details about covariance inflation

in the LETKF when applied to the Global Forecast System model. It may be the

case that covariance inflation needs to change with space, time, and for different

state variables (Anderson, 2009), so adaptive covariance inflation schemes have been

proposed and are discussed in (Anderson, 2009; Li et al., 2009; Petrie and Dance,

2010). The adaptive covariance inflation scheme used in this study is the one proposed

by (Miyoshi, 2011), and it is briefly described in Section 3.4.4.

3.4 Local Ensemble Transform Kalman Filter

A detailed description and mathematical derivation of the local ensemble trans-

form Kalman filter (LETKF) data assimilation scheme can be found in (Hunt et al.,

2007). A simplified derivation of the LETKF approach is provided here and an out-

line of the algorithm is given in Appendix A. The following discussion describes how

the analysis is computed for a fixed analysis time step, the time notation is dropped

for simplicity. The LETKF is a local ensemble square-root filter that transforms the

background ensemble at a fixed time, {ub(j)}kj=1, into an analysis ensemble, {ua(j)}kj=1.

Each model grid point is processed independently, assimilating only the observations

that lie within a prescribed distance, to produce an ensemble of analyzed local state

vectors as is described below. The collection of analyzed local ensembles are assem-

bled to form an ensemble of global analyzed states.

The LETKF addresses challenges seen in EnKF scheme through its localized ap-

proach and also offers considerable computational efficiency that scales well to large

dynamical systems. Each local analysis needs only to account for forecast uncertainty

locally, which is typically much lower dimensional than global uncertainty. Thus the

global analysis may be accurately computed using only a moderately sized ensemble.

Each grid point is updated independently, making the LETKF a naturally parallel
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algorithm. Additionally, the operations involved in the an lysis calculation scale with

ensemble size and number of observations and not the state size, which allows this

approach to be readily scaled to large models.

3.4.1 Analysis Computation

Consider a fixed model grid point, indexed as L and associate a local window,

consisting of the region within a prescribed horizontal and vertical distance from

its location. The subscript L is used to emphasize that the following quantities are

associated with a specific grid point and its associated local window. Denote the d

components of the jth background state, ub(j) that are located within the local window

by the d-vector, x
b(j)
L . The vector x

b(j)
L contains all the state variables defined at each

of the grid points in the local window that are being updated, or analyzed. The local

background ensemble mean is given by x̄bL = k−1
∑k

j=1 x
b(j)
L . The d×k matrix of local

background ensemble perturbations, Xb
L, is the matrix whose jth column is given by

X
b(j)
L = x

b(j)
L − x̄bL. The local model covariance matrix is approximated by the sample

covariance of the ensemble as Pb
L = (k − 1)−1Xb

L(Xb
L)T.

As discussed in Section 3.3, the analysis equations may be computed efficiently

using a low-rank approximation of the forecast covariance matrix, Pb
L. This low-

rank approximation of Pb
L is not invertible, but the minimization problem given in

Equation (3.30) has a (Pb)−1 factor. To ensure that the minimization problem is

well defined, (Ott et al., 2002, 2004) compute a reduced-rank analysis in the space

S spanned by the background ensemble perturbations, Xb
L, using the eigenvectors

of Pb
L as an orthonormal basis of S . Thus they write Pb

L = QP̃b
LQT where P̃b

L is

a (k − 1) × (k − 1) diagonal matrix of the non-zero eigenvalues of Pb
L, and Q is

an n × (k − 1) orthogonal matrix of the corresponding eigenvectors. The matrix
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P̃b
L represents the background covariance matrix in the chosen orthogonal coordinate

system of S and makes the (Pb
L)−1 term in Equation (3.11) well-defined.

A similar approach is taken in the LETKF, but with the coordinate system con-

structed with Q = Xb
L, such that Pb = Xb

LP̃b
L(Xb

L)T and

P̃b
L = (k − 1)−1Ik, (3.26)

where Ik is the k-dimensional identity matrix. Thus the LETKF seeks to minimize

an objective function similar to Equation (3.11), but in the column space, S, of Xb
L.

This same decomposition of Pb
L is used in the ETKF (Bishop et al., 2001).

Although Xb
L spans the space S, its columns are necessarily linearly dependent by

construction, so they do not form a basis for S. However, as a real symmetric matrix,

Pb
L is one-to-one in its column space, S , which is also the column space of Xb

L. Thus

Xb
L is a linear transformation from a k-dimensional space S̃ to the (k−1)-dimensional

space S, relative to which Pb
L has a well defined inverse.

Consider a Gaussian random vector w ∈ S̃ with mean 0 and covariance matrix

P̃b
L = (k−1)−1Ik. Then xL = x̄bL+Xb

Lw is also a Gaussian random vector with mean

x̄b and covariance matrix Pb
L (Hunt et al., 2007). This motivates a cost function

analogous to Equation (3.30) in the space S̃:

J∗(w) = (k − 1)−1wTw + [yo −H(x̄bL + Xb
Lw)]TR−1[yo −H(x̄bL + Xb

Lw)] (3.27)

Denote the `-vector of observations within the local window as yoL, and its associ-

ated `× ` covariance matrix as RL. The background observation predictions for the

jth local forecast are denoted by the `-vector

y
b(j)
L = HL

(
ub(j)

)
, (3.28)
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where HL is the local forward operator that relates model state quantities to the local

observations. The operator defined by HL may be a linear interpolation, or it may be

a non-linear function whose linearization is assumed to provide a good approximation

of HL within the local window. The linearization is constructed by computing the

`×1 ensemble mean of the predicted observations, ȳbL = k−1
∑k

i=1 y
b(i)
L , and the `×k

observation perturbation matrix, Yb
L, whose jth column is given by Y

b(j)
L = y

b(j)
L −ȳbL.

so that

H(x̄bL + Xb
Lw) = ȳbL + Yb

Lw, (3.29)

Equation (3.27) becomes

J∗(w) = (k − 1)−1wTw + [yoL − ȳbL −Yb
Lw]TR−1

L [yoL − ȳbL −Yb
Lw], (3.30)

which has the the same form as the original cost function J given by Equation 3.11,

but with P̃b
L = (k − 1)−1I, w̄ = 0, and Yb

L replacing the linear observation operator,

H. The analogue of the analysis Equations (3.17) and (3.18) in the space S̃ are given

by

P̃a
L =

[
(k − 1)In − (Yb

L)TR−1
L Yb

L

]−1

(3.31)

w̄a
L = P̃a

L(Yb
L)TR−1

L

(
yoL − ybL

)
(3.32)

In particular, if w̄a
L minimizes J∗, then xL = x̄bL + Xb

Lwa
L minimizes the original

cost function J in model space given by Equation (3.11) (Hunt et al., 2007).

The ensemble mean of the analyzed local state at the grid point L is an adjustment

of the background ensemble mean, consisting of a linear combination of local forecast

perturbations given by w̄a
L. The analysis in model state space is given by

Pa
L = Xb

LP̃a
L(Xb

L)T (3.33)

xaL = xbL + Xb
L.w̄

a
L (3.34)
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The analysis calculations above are computationally efficient since they scale with

the number of observations and ensemble size, and not the state size. The cor-

responding model state and covariance matrix in S can then easily be found with

Equations (3.33) and (3.34) respectively.

3.4.2 Analysis Ensemble Construction

The final stage of the analysis computation at the fixed grid point L is the con-

struction of an ensemble, {xa(j)
L }kj=1, whose perturbation matrix, Xa

L, has an ensemble

mean given by x̄aL and whose covariance satisfies Pa
L = (k− 1)−1Xa

L(Xa
L)T. This con-

struction is accomplished by choosing Xa
L such that

Xa
L = Xb

LWa
L, (3.35)

where Wa
L is the matrix square root of (k − 1)P̃a

L, or in other words, Wa
L(Wa

L)T =

(k − 1)P̃a
L. With this choice of analysis ensemble, the analyzed covariance matrix is

constructed as needed:

(k − 1)−1Xa
L(Xa

L)T = (k − 1)−1(Xb
LWa

L)(Xb
LWa

L)T

= (k − 1)−1Xb
LWa

L(Wa
L)T(Xb

L)T

= Xb
LP̃a

L(Xb
L)T

= Pa
L

Also, with this construction, the columns of Xa
L add to zero (Hunt et al., 2007), so

the correct ensemble mean can be obtained by adding x̄aL to each of its columns. The

choice of symmetric square root, Wa
L as the symmetric square root for the construc-

tion of Xa
L is important due to the localized approach in the LETKF. This choice

of Wa
L ensures that each local analysis covariance matrix, Pa

L, varies continuously

among the grid points and it also ensures that the resulting analysis ensemble of
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perturbations is the closest to the background ensemble of perturbations, so that the

resulting global analysis is smooth, provided that there is enough overlap of observa-

tions from grid point to grid point. See (Ott et al., 2004) and (Hunt et al., 2007) for

further discussion on this choice of matrix square root.

The analyzed global ensemble consists of the collection of analyzed local ensem-

bles, {xa(j)
L }kj=1, at each model grid point L. All of the above steps can be performed

independently at every grid point, which allows the LETKF to be implemented effi-

ciently on parallel computers. The LETKF has only three adjustable parameters: the

ensemble size k and the localization radius associated with each grid point L. The

third adjustable parameter is the covariance inflation factor ρ, which can vary with

space and time, as described in Section 3.4.4.

3.4.3 Unobserved Variables and Parameter Estimation

For each grid point, L, the LETKF formulation provides a low-rank estimate of

the local model covariance, Pb
L, which approximates the cross-correlations among

all state variables and parameters within the associated local window. This enables

the estimation of unobserved state variables and model parameters with the state

augmentation approach, as described below.

Denote the parameter being estimated as p and for simplicity assume it is a

global parameter, such that it is physically correlated to the observed quantities

at all grid points in the domain. Associated with the ensemble of global background

vectors,{ub(j)}kj=1, is an ensemble of background parameter estimates,{pb(j)}kj=1. Con-

sider a fixed grid point L and the ensemble of local background state vectors within

its associated local window, {xb(j)L }kj=1, as described in Section 3.4. The ensemble
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of local state vectors is augmented with the ensemble of parameters {pb(j)}kj=1, such

that the jth local state vector is given by

z
b(j)
L =

[(
x
b(j)
L

)T (
pb(j)

)T]
. (3.36)

The analyzed local state vector, z
a(j)
L , is updated as in Equation (3.34), and contains

an ensemble of analyzed parameter estimates at the grid point L, which is denoted

as {pa(j)
L }kj=1. Repeating this process at each grid point yields an ensemble of local

analyzed parameter estimates at each grid point. Each value of {pa(j)
L }kj=1, is calcu-

lated at each grid point, L, using observations located within their respective local

windows, so these quantities vary in space and time.

The ensemble of analyzed parameters, {pa(j)}kj=1, that is used in the propagation

of the forecast is typically obtained through a suitable choice of spatial average among

the ensemble of analyzed parameters at each grid point. In the case of non-global

parameters, a spatial average over the grid points within a specific region is used.

Multiple model parameters may be estimated in a similar manner, by augmenting

their values to each of the local states. An overview of parameter estimation strategies

in data assimilation is presented in (Ruiz et al., 2013) and additional parameter

estimation strategies with Ensemble Kalman filters for non-global parameters are

discussed in (Bellsky et al., 2014).

3.4.4 Covariance Inflation

As discussed in Section 3.3.1, localization compensates for sampling errors to a

degree, but the ensemble may still misrepresent model covariance locally in some

regions due to the non-linearities of the model. After multiple analysis cycles, the

ensemble covariance may underestimate the actual model uncertainty. This puts the

data assimilation system at risk of filter divergence, where the ensemble covariance
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inadequately underestimates the model uncertainty and the influence of observations

is reduced greatly.

Approaches to mitigate these effects typically involve the artificial inflation of the

forecast covariance matrix. Covariance inflation is typically applied by manually tun-

ing it, which may be unfeasible with complex models. (Hunt et al., 2007) discusses

more details about covariance inflation in the LETKF when applied to the Global

Forecast System model. Adaptive covariance inflation schemes have been proposed

for this and are discussed in (Anderson, 2009) and (Li et al., 2009). The adaptive

covariance inflation scheme derived by (Miyoshi, 2011), which is designed to work

specifically for the LETKF, is used in this study. A brief description of its implemen-

tation is provided below and the reader is referred to (Miyoshi, 2011) for a thorough

description.

The covariance inflation is computed for each grid point L along with each lo-

cal analysis ensemble, yielding spatially and temporally varying analysis covariance

inflation factors. Each inflation factor is computed using the update

αaL =
αbLv

o
L + αoLv

b
L

voL + vbL
, (3.37)

where αbL and αoL are the current and observed inflation factors, respectively. Their

respective variances are vbL, which is a fixed parameter used to control temporal

variations of adaptive covariance inflation values, and voL, which is updated at each

analysis time based on new observations. The factors αoL and voL are computed under

the assumption that the local innovation, dL = yoL− ȳbL, has expected value 〈ddT〉 =

HLPb
LHL + RL. The covariance inflation scheme tries to find an inflation factor αoL

such that αoLPb
L approximately satisfies the innovation relation. These considerations

yield the local “observation covariance” update

αoL =
tr
(
dLdT

L ◦R−1
L

)
− `

tr
(
HLPb

LHT
L ◦R−1

L

) , (3.38)

47



where ` is the number of local observations, tr denotes the trace, and ◦ is the

Hadamard (elementwise) product. The variance voL of αoL is updated as

voL =
2

`

(
αbL tr(HLPb

LHL ◦R−1
L ) + `

tr(HLPb
LHT

L ◦R−1
L )

)
. (3.39)

In the LETKF, the analyzed covariance inflation factor for a grid point, αaL, is

computed prior to the analysis calculation at L and is efficiently incorporated in the

calculation by modifying P̃a in Equation (3.32) by replacing the (k − 1)Ik term with

(k − 1)Ik/α
a
L.
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Chapter 4

OBSERVING SYSTEM EXPERIMENTS WITH AN ELECTRODYNAMICS

MODEL

The work in this chapter is based on (Durazo et al., 2016), which is published in

the journal Physica Scripta.

4.1 Introduction

This chapter presents numerical experiments to test the skill of the Local Ensemble

Transform Kalman Filter (LETKF) (Hunt et al., 2007) for assimilating synthetic

ionospheric observations in cases where the domain is sparsely sampled. In particular,

the LETKF is applied to a mesoscale model that incorporates the effect of neutral

turbulence as a driving force, whose timescales are fast compared to those in a global

weather forecast model.

The ionospheric model used here is a regional idealized model, called iDiablo, that

extends from the E region to part of the F region (approximately 80 km to 440 km in

altitude). It is built from a three-dimensional direct numerical solver for the Navier-

Stokes equations of neutral flow (Taylor, 2008) and simulates the time evolution of an

ion density field as it interacts with neutral winds from an idealized gravity wave and

electrostatic forcing from the movement of charged ions. In particular, this model

focuses on the interaction between neutral and charged flows due to collision forces.

It should the noted that the real ionosphere is significantly influenced by external

solar conditions and is thus compliance-driven to some extent. Ionospheric models

typically account for solar conditions parametrically, and ensemble Kalman filters,

including the LETKF, can incorporate changes in these parameters through state-
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augmentation techniques, as described in Section 3.4.3. However, iDiablo does not

include dynamics resulting from changes in solar conditions. Thus this dynamical sys-

tem, which includes a local ionosphere region and its interaction with the propagating

gravity waves, is more persistence driven than to compliance driven.

At lower altitudes (80 km to 130 km), ion- and electron-neutral collisions can

be significant due to the large density of neutral particles, so the specification of

neutral winds within this region is important. The ion density structure at these

lower altitudes has been difficult to model due to the high number of collisions and

resulting complex coupled electrostatic fields. In addition, the altitude of this region

is too low for orbiters and too high for radiosondes to make direct measurements,

so observations in this region are especially sparse. Although the use of satellite-

derived observations with the radio occultation technique, such as those provided

by the COSMIC satellites, provides near global coverage, these observations have

been shown to have significant uncertainties at these altitudes (Yue et al., 2010;

Liu et al., 2010). At higher altitudes (above 200 km), the ion- and electron-neutral

collision processes become much weaker as the density of neutral particles decays with

altitude. The iDiablo model was chosen for this investigation because it focuses on

the interaction of an ion density field with neutral winds, and the neutral winds can

be modified easily to study their effects on the ion density field.

The goal in this study is to to forecast mesoscale structures of a regional ion den-

sity field as it interacts with the driving force of neutral winds. These structures are

large enough to be of practical interest and small enough to be resolved in global iono-

spheric models. Instead of deducing the neutral winds from observations of charged

content, the time evolution of the neutral winds is specified within an iDiablo model

realization and is used to generate synthetic observations. These synthetic obser-

vations are then assimilated into a set of forecast ensembles at fixed time intervals
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using the LETKF scheme to obtain an estimate of the time evolution of the neutral

winds. The estimates are compared with the original model realization to assess the

accuracy of the forecast. In other words, iDiablo is assumed to perfectly represent the

ionospheric dynamics; errors arising in forecasts restarted from the analyses reflect

the performance of the data assimilation system. Of course, an actual forecast system

for the Earth’s ionosphere must cope with errors in the model as well as in the data,

but this approach lets us separate the two issues for this initial investigation.

Section 4.2 describes the iDiablo model, Section 4.3 outlines the initialization of

the forecast ensembles and the data assimilation parameters that are varied. Sec-

tion 4.4 describes the numerical results, and conclusions are presented in Section 4.5.

4.2 Ionospheric Model: iDiablo

4.2.1 Overview

The ionospheric model used in this paper, which is called iDiablo, is a modification

of a three-dimensional direct numerical simulation package that is explained in more

detail in (Tang and Mahalov, 2013). This model simulates the time evolution of a

three-dimensional ion density and its electrostatic potential field on a 44× 44× 361

grid as it is perturbed by neutral winds from an idealized gravity wave. The three

physical directions in the model are the zonal (X), meridional (Z), and vertical (Y )

directions. Physically, this domain spans 80 km to 440 km altitudes in the vertical

and a 44 km × 44 km region in the horizontal direction, so it captures the E region

and the part of the F region. The initial condition for the ion density field is obtained

from the IRI2007 model, on 25 June 1991 at 20:00 LT, at 35◦N, 136◦W in geographic

latitude and longitudes (Bilitza and Reinisch, 2007).

The ion density field is uniform at first and its vertical profile is shown in Fig-
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Figure 4.1: Mean ion density field profile at the beginning of the simulation. The
vertical axis is altitude in kilometers and the horizontal axis is the ion density scaled
by 106 cm−3.

ure 4.1. There is a local maximum in the ion density in the E region at around

105 km altitude and another in the F region at around 335 km altitude. The E-

region density peak experiences significant forcing from the gravity wave via ion- and

electron-neutral particle collisions. However, this process weakens as the altitude in-

creases, especially at the ion density peak in the F -region. Figure 4.2 shows that the

gravity wave has a damped sinusoidal magnitude in each of its three components as

altitude increases, reflecting this collision process. The gravity wave has a period of

15 minutes and a speed of 15 m s−1.

The movement of charged particles by the gravity wave creates an electric field,

captured by its electrostatic potential, which is shown in Figure 4.3 for the lower alti-

tudes of the domain (80 km to 150 km). The greatest magnitudes of the electrostatic

potential correspond to the strongest neutral winds, which are located in the lower

part of the domain. As the altitude increases, the gravity wave winds dampen and
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Figure 4.2: (a) Mean Y -Z plane and (b) mean vertical profile of each component
of the gravity wave used as the forcing in the truth run. For each component, the
vertical axis is altitude and the horizontal axis is the position in the Z direction in
kilometers. The wind speed is shown in scaled units (1 = 15 m s−1).

the electromagnetic forcing is reduced accordingly. Together with the wind forcing

from the gravity wave, the electrostatic potential contributes to the structure of the

resulting ion density field as time evolves.

The ion density field has periodic boundary conditions in the horizontal directions.

The boundary condition at the top of the domain is set so that diffusive equilibrium is

maintained and the bottom has zero-flux boundary conditions. Spectral methods are

used to compute derivatives in the horizontal directions, and finite differences are used

for derivatives in the vertical direction. The time evolution of the ion density field is
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Figure 4.3: Mean Y -Z plane of the electrostatic potential field for the altitudes
of interest. The vertical axis is the altitude in kilometers and the horizontal axis is
the horizontal position in kilometers. The color coding shows the potential in scaled
units (1 = 5.5876× 103 volts).

done through an explicit Runge-Kutta-Wray method. The time step corresponds to

about 1% of the gravity wave period.

4.2.2 Model Dynamics

The “perfect model” assumption is made here so that a “truth run” of the model

can be compared with ensemble forecasts to assess the skill of the data assimilation

system. The “truth run” starts with a pre-specified initial condition that includes the

ion density field and the neutral winds. The dynamics in iDiablo are driven by the

gravity wave, and the ion density field does not feed back on the neutral dynamics.

Thus, to predict the structure of the ion density field, the gravity wave forcing must

be specified accurately. Synthetic observations of one component of the neutral winds

are generated from the truth run and are assimilated at intervals corresponding to

about half the gravity-wave period.
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4.3 Ensemble Initialization and Data Generation

Because the observational coverage of the ionosphere is sparse, the main goal in

the numerical experiments described below is to study how the accuracy of ensemble

analyses of the ion density field varies with the density of assimilated neutral wind ob-

servations. Each component of the gravity wave used in these numerical experiments

is uniform in the X (zonal) direction, sinusoidal in the Z (meridional) direction, and

damped sinusoidal in the Y (vertical) direction. Each component consists of the sum

of two wave modes that may have different amplitudes, as follows:

Un1 = A1 cos

(
Z + Y +H1 +

t

p+H2

)
+A2 cos

(
λZ + Y +H3 +

t

p+H4

)
(4.1)

Un2 = −A3 cos

(
Z + Y +H1 +

t

p+H2

)
+A4 cos

(
λZ + Y +H3 +

t

p+H4

)
(4.2)

Un3 = A5 sin

(
Z + Y +H1 +

t

p+H2

)
+A6 sin

(
λZ + Y +H3 +

t

p+H4

)
(4.3)

where H1, H2, H3, and H4 are perturbation terms, t is time, p is the wave period,

and each Ai is a wave amplitude.

In the truth run, the gravity wave is produced by Equation (4.1) with H1 = H2 =

H3 = H4 = 0. Synthetic observations are generated from the truth run at selected

model grid points by adding a Gaussian random noise with zero mean. The noise

variance is scaled to be 10% of the magnitude of the truth run’s neutral winds at

the grid point where the observation is generated (larger variances are considered the

third set of the numerical experiments below). Although all three components of the

gravity wave are analyzed, the synthetic observations are only of the Un1 component.

Ensemble forecasting schemes start from sets of initial conditions that are assumed

to be statistically equivalent. In the numerical experiments below, an initial condition

for each ensemble solution is obtained by choosing values of H1, H2, H3, and H4 from

a Gaussian distribution with mean zero and variance 0.5; the same values of Hi are

applied to each component of the gravity wave. The H1 and H3 terms perturb the
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phase of each of the gravity wave mode and the H2 and H4 terms perturb the period.

The amplitude of each mode also is perturbed by adding a random Gaussian random

variable with zero mean and variance equal to 20% of the amplitude. A set of 40

initial conditions is generated in this way. The period of the gravity wave is about

15 minutes; observations are assimilated every half-wave period, and the forecast-

analysis cycle lasts for 8 wave periods (about 2 hours).

All ensemble Kalman filters require a sufficiently large forecast ensemble to ad-

equately sample the forecast covariance. The LETKF presumes that the dynamics

are locally low dimensional, that is, the short-term forecast error lies in a relatively

low-dimensional subspace compared to the size of the space spanned by all the com-

ponents of the model state vector within a given local region. This behavior is char-

acteristic of numerical weather models (Patil et al., 2001), and 40 ensemble members

provided good results when the LETKF was applied to the Global Forecast System

model (Szunyogh et al., 2005). However, the minimum ensemble size required for the

forecast-analysis system described here is not quantified in this study.

4.4 Numerical Experiments

In the numerical experiments described below, a set of 40 ensemble initial condi-

tions is generated and the forecast-analysis cycle run as described in Section 4.3 with

observations at a randomly chosen set of 25%, 10%, 5%, 2% and 1% of the model grid

points. The performance of the LETKF is then assessed with respect to changes in

the size of the local regions and the amplitude of the observational noise. The final

experiment considers a situation in which all observations lie in vertical columns at

randomly chosen horizontal locations.

56



4.4.1 Measures of Accuracy

The principal measure of analysis accuracy used is the root-mean-square (RMS)

difference between the “truth run,” Ti,k,j(tn) and the analysis ensemble mean, Ai,k,j(tn),

in various regions of the three-dimensional model grid; i, k, j index the grid points

in the zonal, meridional, and vertical directions, respectively, and tn is the analysis

time. There are Nx = Nz = 44 grid points in the zonal and meridional directions and

Ny = 361 vertical levels; each simulation consists of M = 16 assimilation cycles.

The overall RMS (ORMS) error at each tn is the RMS difference between the

analysis mean and the truth over the entire model grid:

ORMS(tn) =


N−1

x N−1
z N−1

y

∑

i,k,j

(
Ti,k,j(tn)− Ai,k,j(tn)

)2




1/2

. (4.4)

The altitude RMS (ARMS) error at the jth vertical level is the time average of the

RMS difference between the analysis and truth over the X-Z plane:

ARMS(j) = M−1

M∑

n=1


N−1

x N−1
z

∑

i,k

(
Ti,k,j(tn)− Ai,k,j(tn)

)2




1/2

. (4.5)

The plane RMS (PRMS) error is also defined to explore the error structures that form

as time advances. It is defined for each vertical and meridional level in the model grid

as the time-averaged value of the RMS difference between the analysis mean and the

truth:

PRMS(k, j) = M−1

M∑

n=1


N−1

x

∑

i

(
Ti,k,j(tn)− Ai,k,j(tn)

)2




1/2

. (4.6)

4.4.2 First Set of Numerical Experiments

All the numerical experiments described in this paper are variations on this ini-

tial one, which uses synthetic observations of one component of the neutral wind as

described in Sec. 4.3. At each grid point, observations are assimilated from a local
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region consisting of 7 grid points in each of the horizontal directions and 15 grid

points in the vertical, corresponding to 16% of the model grid extent in each hori-

zontal direction and about 9% in the vertical. The observations are taken randomly

selected subsets of 25%, 10%, 5%, 2% and 1% of the model grid points. A covariance

inflation factor of 15% (ρ = 1.15 in Step 2 of the LETKF cookbook (Hunt et al.,

2007)) is used to compensate for the effect of nonlinearities and the underestimation

of forecast covariance that is typical of ensemble Kalman filters.

Forecast Errors in the Neutral Winds

First, the time stability of the LETKF scheme in forecasting the neutral winds is

examined. Figure 4.4 shows the ORMS error of each neutral wind component for all

the cases of observational coverage. The vertical axis is scaled relative to the speed

of the gravity wave, which is 15 m s−1; that is, an ORMS value of 1 corresponds to

15 m s−1. The results are plotted for every model time step; each period of the gravity

wave is about 15 minutes, corresponding to 100 time steps; data are assimilated every

50 time steps.

Although only observations of the Un1 component of the wind are assimilated,

the ORMS value of each wind component is less than half of that obtained in the

absence of data assimilation. The filter appears to remains stable for all choices

of observational coverage considered here, although there is a slow upward drift in

the RMS error of the vertical wind component, particularly for the sparsest (1%

and 2%) levels of observational coverage. The ORMS error rises as the observation

density is decreased, but the results for 25%, 10%, and 5% observational coverage are

similar. These results suggest that in the case of randomly located observations, the

minimal coverage required for good forecast accuracy is between 2% and 5% of the

grid points. Similar results were found in perfect-model experiments of the LETKF
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Figure 4.5: Altitude RMS (Equation 4.5) of the three components of the neutral
winds as a function of observational coverage. In each panel, the vertical axis is the
altitude in kilometers and the horizontal axis is the ARMS value in scaled units as
for Figure 4.4.

with the Global Forecast System (GFS) model (Szunyogh et al., 2005).

Figure 4.5 shows the altitude RMS (ARMS) errors, Equation 4.5, for the neutral

winds. The errors are similar for observational coverage down to 5% of the model grid

points. Even with observational density at 2% of the grid points, the ARMS error is

still significantly smaller compared to the case with no data assimilation. However,
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(a)

(b)

Figure 4.6: Planar RMS error, Equation 4.6, of the three components of the neutral
wind at (a) 1% and (b) 2% observational density. The vertical axis is the altitude
and the horizontal, the meridional direction in kilometers. The color bar represents
magnitudes in scaled units, as in Figure 4.4.

there are noticeable local maxima as a function of height at the lowest observtional

densities.

Figures 4.6(a) and 4.6(b) show the corresponding planar RMS (PRMS) error dis-

tribution, Equation 4.6, for the cases of 1% and 2% observational coverage, respec-

tively. The error distributions reflect the damped sinusoidal magnitude of the gravity

wave in all three components. The magnitude of the error is considerably larger at

1% coverage than at 2% coverage, and in both cases is largest in the vertical (Un3)

component of the wind.
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Figure 4.7: ARMS error of the vertical profile of the analyzed ion density field
averaged over time. Each curve corresponds to a different observational density as
indicated.

Errors in the Ion Density and Electrostatic Potential Fields

Next consider the electrostatic and ion density analyses. Figure 4.7 shows a more

pronounced increase in the ARMS of the ion density, compared to the neutral winds,

as the observational density decreases. However, as long as the observational density

remains at 2% or more of the grid points, the RMS error of the ion density is less

than the case where no observations are assimilated. The largest contribution to the

analysis errors occurs near the E-region ion density peak. The neutral winds from

the gravity wave still have significant magnitude at this altitude. These altitudes also

are the regions where the ensemble spread is largest, as shown in Figure 4.8.

Figure 4.9 shows the PRMS errors for (a) the ion density field and (b) the electro-

static field. The errors in the ion density field follows those of the gravity wave winds

in cases of low observational coverage. The gravity wave is strongest in magnitude

near the bottom of the domain, and these error structures become smaller as the

neutral winds get weaker at altitudes of 100–130 km. The errors in the electrostatic

field are largest at the bottom of the domain and are approximately halved when the

observational coverage is increased to 2% from 1%.

61



  Ensemble Spread (2%)

0 0.5 1 1.5 2 2.5
x 10−3

100

120

140

  t=1

  Ion Density

  Y
(K

m
)

 

 

0 1 2 3 4
x 10−3

100

120

140

  t=15

  Ion Density

  Y
(K

m
)

 

 

0 1 2 3 4
x 10−3

100

120

140

  t=60

  Ion Density

  Y
(K

m
)

 

 

0 1 2 3 4
x 10−3

100

120

140

  t=120

  Ion Density

  Y
(K

m
)

 

 

Ensemble
Mean
Truth

Ensemble
Mean
Truth

Ensemble
Mean
Truth

Ensemble
Mean
Truth

  Ensemble Spread (10%)

0 0.5 1 1.5 2 2.5
x 10−3

100

120

140

  t=1

  Ion Density

  Y
(K

m
)

 

 
Ensemble
Mean
Truth

0 0.5 1 1.5 2 2.5 3
x 10−3

100

120

140

  t=15

  Ion Density

  Y
(K

m
)

 

 
Ensemble
Mean
Truth

0 0.5 1 1.5 2 2.5 3
x 10−3

100

120

140

  t=60

  Ion Density

  Y
(K

m
)

 

 
Ensemble
Mean
Truth

0 0.5 1 1.5 2 2.5 3
x 10−3

100

120

140

  t=120

  Ion Density

  Y
(K

m
)

 

 
Ensemble
Mean
Truth

(a)

(b)

Figure 4.8: Vertical profiles of the analysis ion density field at (a) 2% and (b) 10%
observational density. The blue and red curves show the ion density from the “truth
run” and the analysis ensemble mean, respectively; green curves show the values for
selected ensemble solutions. The plots are for 1, 15, 60 and 120 minutes (0, 1, 4, and
8 gravity-wave periods), respectively. In each plot, the vertical axis is the altitude in
kilometers and the horizontal axis is the ion density.
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(a)

(b)

Figure 4.9: PRMS error of (a) the ion density field and (b) the electrostatic field
in the case of no data assimilation (left panel) and data assimilation with observa-
tions located at a random choice of 1% and 2% of the model grid points, respectively.
For each panel, the vertical and horizontal axes are altitude and horizontal loca-
tion respectively in kilometers. The colorbar depicts the magnitude of the errors as
indicated.

4.4.3 Set 2: The Effect of Local Region Size

In the remainder of this paper, the first set of numerical experiments is repeated for

varying selected parameters of the LETKF data assimilation scheme. The remaining

figures show the ion density ARMS and PRMS errors.

When the observational coverage becomes sufficiently sparse, the local regions

surrounding many grid points lack any observations. This set of experiments assesses

the effect of approximately doubling the extent of the local regions in each direction.
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Specifically, 15 grid points are included in each horizontal direction (about 32% of the

horizontal extent) and 53 grid points in the vertical direction (about 15% of the verti-

cal extent). Although a larger local region allows more observations to be assimilated,

it may also include greater model nonlinearities, the ensemble sample covariance may

fail to adequately approximate the actual forecast uncertainty, and more distant ob-

servations may be less correlated with the dynamics near each analyzed grid point.

In addition, for a fixed ensemble size, the computational complexity of the LETKF is

linear in the number of observations at each grid point, so more observations increase

the computational expense.

Despite these potential difficulties, an increase in the local region size has bene-

ficial effects in the perfect-model simulations at sparser observational densities. Fig-

ure 4.10(a) shows the analyzed vertical profiles of ion density, whose accuracy is

significantly improved compared to those in Figure 4.7. Figure 4.10(b) shows the

same PRMS error profiles of the ion density as Figure 4.9(b). Even at observational

densities as low as 1%, the local errors are substantially reduced compared to the

initial choice of local region size.

4.4.4 Set 3: Larger Observational Noise

This set of numerical experiments is the same as the previous one, except that

the noise in the synthetic observations is quadrupled to 40% of the magnitude of the

neutral wind in the truth run at the grid points where observations are generated.

Figure 4.11 displays the same quantities as Figure 4.10. The errors have a similar

structure, but they are larger at each altitude compared to those in Set 2. These

results suggest that the LETKF can provide good analyses for the iDiablo model

when the data has as few as 2 significant bits of accuracy.
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Figure 4.10: (a) Analysis mean of ion density as a function of altitude using larger
local regions in the LETKF. (b) Corresponding PRMS plots of the ion density with
no data assimilation and with the LETKF at 1% and 2% observational coverage.

4.4.5 Set 4: Structured Observational Network

Finally, an observing network in which measurements are taken throughout a

randomly located set of vertical columns is considered. The observational noise levels

and local region size are as in Set 2. There are 442 horizontal grid points, so the

observing network at 1% coverage consists of 19 randomly selected horizontal locations

at which synthetic observations at each vertical model level are generated. Figure 4.12

is analogous to Figure 4.11; (a) shows the RMS errors in ion density as a function of

altitude, and (b) shows the structure of the RMS error averaged in the zonal direction
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Figure 4.11: (a) Analysis mean of ion density as a function of altitude using ob-
servations with larger noise levels. (b) Corresponding PRMS plots of the ion density
with no data assimilation and with the LETKF at 1% and 2% observational coverage.

at each vertical level. With a suitably large local region, the analyses at each grid

point are reasonably accurate all the way to 1% observational coverage.

4.5 Discussion and Conclusions

In this paper, the efficacy of the Local Ensemble Transform Kalman Filter (LETKF)

is tested on an idealized ionospheric model that includes the interaction of an ion

density field and a gravity wave, along with the subsequent electromagnetic forcing

caused by the movement of charged particles. Observations of one component of
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Figure 4.12: (a) Analysis mean of ion density as a function of altitude using obser-
vations throughout randomly located vertical columns in the model domain. (b) Cor-
responding PRMS plots of the ion density with no data assimilation and with the
LETKF at 1% and 2% observational coverage.

the neutral wind are assimilated to compute updated initial conditions that include

the ion density field. In these numerical experiments, a gravity wave with a linear

structure is used as the forcing. Initial results suggest that the LETKF is effective

when the observational density is sparse. The analyses of the wind and ion density

fields are almost as good with 2% observational coverage as they are with many more

observations, at least in this perfect-model scenario. Good results are also obtained

when the noise levels in the synthetic data are quadrupled from their original values.

Because the LETKF assimilates observations only in a local region about each model
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grid point, its performance depends on the size of the local regions, particularly when

the observational density is low.

One of the main attractions of the LETKF scheme is its relatively low compu-

tational cost. The model grid used here consists of three neutral wind components

defined on 702,768 grid points. Although the LETKF is amenable to efficient imple-

mentation on parallel computers, it can also be implemented efficiently in MATLAB,

which was the computing platform used for this initial investigation. In the first set of

experiments, which used the smaller local regions, the LETKF required about 2 min-

utes per data assimilation step with observations at 5% of the grid points; the larger

local regions required about 15 minutes per assimilation step. Significantly greater

performance is possible in compiled implementations using multiple processors.

Like all ensemble Kalman filter schemes, the forecast model must be run from

many initial conditions. This is usually the most expensive step; in this investigation,

the iDiablo model was compiled and run on a high-performance computing cluster.

The MATLAB program imported the model fields and implemented the LETKF to

generate the updated initial conditions.

The results suggest that the LETKF can perform well with rather sparse obser-

vational networks, provided that the density is reasonably uniform and that the local

regions are chosen sufficiently large. Future work will address questions of model er-

ror and more complex forcing. With the amount of observational coverage expected

to increase over the next few years, data assimilation will play a larger role in iono-

spheric space weather forecasting. However, observational coverage is likely to remain

sparse over many regions of the globe. For these reasons, the LETKF merits further

consideration as a data assimilation system for space weather forecasting.
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Chapter 5

LETKF FOR IONOSPHERIC DATA ASSIMILATION: OBSERVATION

INFLUENCE ANALYSIS DURING A GEOMAGNETIC STORM EVENT

This chapter presents observing system experiments in which a targeted observa-

tion strategy is used to estimate the global distribution of electron density during the

26 September 2011 geomagnetic storm. The work in this chapter is based on (Durazo

et al., 2017) and is published in the Journal of Geophysical Research: Space Physics.

5.1 Introduction

The ionospheric model used for this study is the Thermosphere Ionosphere Elec-

trodynamics Global Circulation Model (TIEGCM). Synthetic observations of electron

density are assimilated using the local ensemble transform Kalman filter (LETKF)

data assimilation scheme, and the proposed targeted observation strategy is devel-

oped using the observation influence matrix diagnostic (Cardinali et al., 2004). The

observation influence is used to identify regions where additional observed vertical

profiles may have a significant impact on forecast accuracy. In particular, a strategy

for choosing locations to place these additional vertical profiles to target errors in spe-

cific state variables is developed and the impact of this choice on forecast accuracy

is examine. This strategy may be useful for deployment of observations in real time

to mitigate unwanted effects due to space-weather uncertainty or to inform future

development of observational infrastructure in the future.

This approach is novel in that the analogue of the influence matrix has not been

used with ensemble Kalman filters or the LETKF, and it has not been used as the

basis for a targeted observation strategy in space weather forecasting. The use of
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targeted locations for observations provides a considerable improvement in electron

density estimation within a 600 km radius compared to randomly chosen locations

for augmented vertical profiles. Our targeting strategy may also be used to improve

accuracy in the estimation of other state variables or ionospheric drivers, which is

demonstrated here for neutral wind estimates.

The layout of this chapter is as follows. An overview of the data assimilation

system used in this work is provided in Section 5.2, Section 5.3 describes the influence

matrix implementation in the LETKF and how it is used for targeted observations,

Section 5.4 describes the observing system experiments with targeted observations

and presents results, and a discussion and conclusions of these results are given in

Section 5.6.

5.2 Overview

The data assimilation scheme used in these numerical experiments is the LETKF.

For discussion purposes of this chapter, the main components of the assimilation

procedure are briefly mentioned below, but the reader is referred to Section 3.4.1 for

a more complete description of the LETKF procedure. In the following discussion, the

analysis calculations are performed at time ti only and the time subscript is excluded

for clarity.

The LETKF procedure begins with an ensemble of k forecast (background) vec-

tors, {ub(j)}kj=1, whose ensemble mean ūb may be regarded as a maximum likelihood

estimator of the ”true” state ut. For each fixed grid point, L, there is an associ-

ated local window. Denote the d components of ub(j) that represent the model state

variables within the associated local window as x
b(j)
L . The forecast covariance matrix

within the local window is given by the d×d matrix, Pb
L = (k−1)−1Xb

L(Xb
L)T, where

Xb
L is the d× k matrix of background ensemble perturbations
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Let yoL be the `-vector of observations in the local region and RL the associated

` × ` covariance matrix. In a similar way, let y
b(j)
L = HLub(j) denote the ensemble

of predicted (background) measurements associated with the observation operator

within the local region, with j = 1, 2, . . . , k. Given the mean, ȳbL = k−1
∑k

i=1 y
b(i)
L ,

construct the d× k observation perturbation matrix Yb
L whose jth column is Y

b(j)
L =

y
b(j)
L − ȳbL, with j = 1, 2, . . . , k. The analysis procedure is then carried out at each of

the grid points as discussed in Section 3.4.1.

5.2.1 Data Assimilation System

The TIEGCM-LETKF data assimilation system runs as a forecasting step, which

estimates the state of the ionosphere-thermosphere (I-T) system using the TIEGCM

up to a time tn + ∆t, followed by an analysis step in which observations in the

time window [tn − ∆t, tn + ∆t] are assimilated using the LETKF. In all numerical

experiments presented in this paper, the radius of the analysis window is taken to be

∆t = 0.5 hrs, as has been done in other I-T data assimilation systems (Lee et al.,

2012) (Matsuo et al., 2013). The result of the analysis step is an updated I-T state

estimate at tn that serves as the initial condition for the subsequent forecasting step.

This forecast/analysis sequence is repeated at 1-hr intervals for the duration of the

simulation starting at at 00:30 UTC on 26 September 2011. (Forecast/analysis time

steps of less than 1-hr have been suggested by (Chen et al., 2016), but they are not

consider here.)

Each integration of the TIEGCM yields a 1-hr forecast of the I-T state vector.

During each analysis step, a subset of the components are analyzed, i.e., updated

using the assimilated observations. This subset is referred to as the LETKF state

vector. The components of the TIEGCM state vector that are not included in the

LETKF state vector are left unchanged during the analysis step. In our numerical
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experiments, the LETKF state vector is composed of electron density (Ne), neutral

temperature (Tn), zonal (Un) and meridional (Vn) components of neutral winds, as

well as atomic (O1) and molecular (O2) mass mixing ratios. This choice of LETKF

state vector is done following the work of (Matsuo et al., 2013),(Lee et al., 2012).

Prior to each analysis calculation, each component of the LETKF state vector is

divided by their respective background global mean to yield a non-dimensionalized

value. Following the analysis calculation, the respective factors for each state variable

are used to dimensionalize the analyzed LETKF state vector.

5.2.2 Ionosphere Model

The ionospheric model used in this study is the TIEGCM, which is a first-

principles, three-dimensional, non-linear model of the coupled I-T system that solves

the momentum, energy, and continuity equations for neutral and plasma species, ac-

counting for the electrodynamical processes governing their coupling. The coordinate

system is spherical, with horizontal resolution of 5◦ × 5◦ in longitude and latitude.

The vertical resolution is of half-scale height, extending from about 97 km to about

600 km, depending on solar activity. A thorough model description can be found at

the NCAR HAO website (http://www.hao.ucar.edu/modeling/tgcm/tie.php).

The ionosphere’s interactions with thermospheric variables, such as neutral wind

circulation, temperature, and oxygen composition, are represented explicitly. The ef-

fects of solar activity on the I-T system are represented parametrically using the daily

solar radio flux at 10.7 cm (F10.7). In high-latitude regions, geomagnetic activity is

parameterized using the Heelis model (Heelis et al., 1982) and the Kp index. In par-

ticular, the Kp index is used to compute the hemispheric power (Hp) index, which

parameterizes high-latitude auroral precipitation, and the cross-tail potential (Cp)
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index, which parameterizes high-latitude ion convection. See Section 2.1.2 for more

thorough description of these parameter inputs.

5.2.3 Generation of Synthetic Observations

Observations are synthetically generated from a “truth run”, which is taken to

be a TIEGCM simulation driven with the set of solar and geomagnetic parameters

published by NOAA for 26 September 2011. The temporal evolution of these pa-

rameters is shown in the top two rows of Figure 5.1. The results shown in this

chapter (Section 5.4) represent a “perfect model” scenario, in which the TIEGCM

perfectly describes the state trajectory of the I-T system, and any forecast errors that

arise are solely due to the performance of the data assimilation system. In reality,

data assimilation systems must cope with errors and biases in the forecast model and

in the observations, as they can contribute significantly to forecast uncertainty. The

perfect-model assumption separates these issues from the performance of our tar-

geted observation strategy and data assimilation system for this investigation. The

true state trajectory is referred to as {uti}Ni=1 and the associated F10.7, Hp and Cp

indices used to generate it are referred to as {pti}.

Synthetic observations are generated by sampling the electron density component

of uti, as described in Section 5.2.3 at the same times and locations as the observing

network of the Constellation Observing System for Meteorology, Ionosphere, and

Climate/ Formosa satellite 3 (COSMIC) (Rocken et al., 2000) during 26 September

2011. The COSMIC electron density vertical profiles typically vary from about 80 km

to 800 km in altitude, with a vertical resolution of about 10 km. About 85 profiles

are available for assimilation during each hour.

For the purposes of our targeted observation strategy, an augmented network of
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Figure 2. (a)-(c) Time series of the “true” forcing parameters: (a) solar flux (F107d) in solar flux

units (10�22W/(m2Hz)), (b) cross-tail potential (Cp) in kV, and (c) hemispheric power (Hp) in GW .

The time origin is at 00:00 UTC on 26 September 2011, with the time interval spanning from ten days prior

to ten days after. (d)-(f) Analogous time series of forcing parameters beginning 00:00 UTC on 26 September

2011 and continuing to 00:00 UTC on 28 September 2011.
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Figure 5.1: (a)-(c) Time series of the forcing parameters: (a) solar flux (F10.7) in solar
flux units (10−22W/(m2Hz)), (b) cross-tail potential (Cp) in kV, and (c) hemispheric
power (Hp) in GW . The time origin is at 00:00 UTC on 26 September 2011, with
the time interval spanning from ten days prior to ten days after. (d)-(f) Time series
of the “true” forcing parameters beginning 00:00 UTC on 26 September 2011 and
continuing to 00:00 UTC on 28 September 2011. (g)-(i) Analogous time series of
the forcing parameter ensemble. The thin red curves represents individual ensemble
members, the thick black curves are the respective ensemble means, and the green
curves is the “truth”.

observations, consisting of 62 globally distributed synthetic electron density vertical

profiles are considered for assimilation during selected analysis steps. These vertical

profiles are also generated from electron density component of uti and extend from

100 km to 550 km in altitude with resolution of 5 km. The locations of the vertical

profiles in the augmented network are fixed throughout the simulation.

The vertical profiles in the COSMIC and augmented networks are generated with

additive Gaussian noise to represent observation processing error: yo = Hut+ε, where

H interpolates the electron density component of uti to the respective observation
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locations and times, and ε is a Gaussian random vector with zero mean and covariance

matrix R.

The observing errors are assumed to be independent and to scale as a percentage

of the “truth” at the observation locations, i.e., R is diagonal and its main diagonal

is given by σ2Hut. Although observations obtained through retrievals, such as the

COSMIC profiles, are typically correlated, they are treated as uncorrelated in our

simulations for simplicity, but with an inflated value of the variance as described

below. COSMIC retrievals have also been shown to have significant uncertainties

associated with the Abel transform used in their inversion process, specifically at low

altitudes in the ionosphere (Yue et al., 2010),(Liu et al., 2010).

The retrieval errors are approximated from the data in the third column of Figure 3

of (Liu et al., 2010), which shows the horizontal error structure at at 150, 200, 250

and 300 km altitudes from 60◦S-60◦N latitudes at 06:00 UTC, on April-June 2008.

Our reconstruction of these error structures at the same altitudes and hour are shown

in panels (a)-(d) of Figure 5.2. The retrieval errors are shown in terms of percentage

of relative error, which ranges from -80% to 80%. The horizontal retrieval errors are

linearly interpolated to obtain the vertical structure shown in Panels (e)-(f) at local

midnight (60◦W) and local noon (60◦E), respectively. These vertical error structures

compare well with the third column of Figure 4 in (Liu et al., 2010).

To apply the error structures shown in Figure 5.2 in the data assimilation system,

this data is interpolated to all the grid points of the TIEGCM domain. Between

150 km and 300 km, Abel errors are linearly interpolated to all model altitudes and

above 300 km altitudes, the errors are linearly extrapolated to zero. The errors are

kept constant below 150 km altitudes and at latitudes above 60◦N and south of 60◦S.

Temporally, it is assumed that this error structure remains the same and simply shifts
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Figure 17. (a)-(d) Maps of estimated retrieval errors due to the Abel transform at 06:00 UTC. The maps

are shown at 150, 200, 250 and 300 km altitudes from 60�S-60�N latitudes. (d)-(f) Altitudinal structure of

retrieval errors from 100 to 700 km altitudes at local midnight (60�W) and noon (60�E). The color scale

represents error in terms of percentage and is the same in all panels.
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Figure 5.2: (a)-(d) Maps of estimated retrieval errors due to the Abel transform at
06:00 UTC. The maps are shown at 150, 200, 250 and 300 km altitudes from 60◦S-
60◦N latitudes. (e)-(f) Altitudinal structure of retrieval errors from 100 to 700 km
altitudes at local midnight (105◦W) and local noon (105◦E). The color scale is relative
error given as a percentage and is the same in all panels.

towards the west at 2.5 deg/hr. The resulting error structure is linearly interpolated

to the locations of the vertical profiles in the COSMIC and augmented networks to

obtain σinv.

In reality, the retrieval errors are correlated in ways that depend in possibly com-

plicated ways on the nature of the satellite observing platforms. To accommodate

this reality, an extra 10 percent is added to the overall error variance. In all nu-

merical experiments, the noise level used to generate the synthetic observations in

the COSMIC and augmented networks is 10% measurement error plus the estimated

error associated with the retrieval ( σ = 0.10 + σinv). A similar approach to specify-

ing observation error to COSMIC-like synthetic profiles is done in (Hsu et al., 2014).

Although the error structures related to the inversion process may differ considerably
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during a geomagnetic storm, the error structure used here provides a reasonable rep-

resentation of the dependence that the retrieval errors have on altitude. Panels (e)

and (f) of Figure 5.2 show that the largest retrieval errors occur at altitudes below

250 km, especially during the nighttime. The results presented in Sections 4 and 5

have been computed with synthetic data generated with the error structures shown

in Figure 5.2.

An ensemble of 40 forecasts is utilized in all numerical experiments presented in

this chapter. Each member of the forecast ensemble is driven with parameter values

of F10.7, Hp and Cp drawn from a normal distribution centered around {pti}Ni=1 at

each forecast time. The standard deviation of the distribution of F10.7 is taken to

be its 21-day standard deviation during the spin-up period, which is taken to be

from the 5 to 25 September 2011, and the standard deviation for the geomagnetic

parameters is taken from ±1.0 units of Kp. The respective standard deviations are

13×10−22 W/m2Hz for F10.7, 8.4 kV for Cp, and 7.2 GW for Hp. A similar approach

to specifying standard deviations for these forcing parameters is used by (Matsuo

and Araujo-Pradere, 2011),(Lee et al., 2012),(Chen et al., 2016). The third row of

Figure 5.1 shows the temporal evolution of the forcing parameter ensemble throughout

the simulation. Starting from the same climatology conditions provided by NCAR,

each ensemble member is spun up from 00:00 UTC on 5 September 2011 to 00:30 on

26 September 2011, which is when the first batch of observations is assimilated.

5.3 Targeted Observation Strategy Using the Influence Matrix

As described in Section 5.2.3, a set of synthetic observations, consisting of electron

density vertical profiles, is partitioned into two observation networks. The first net-

work consists of observations sampled according to the COSMIC observing network

on 26 September 2011, and the second network consists of a group of 62 globally
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distributed vertical profiles. These two observation networks are referred to as the

COSMIC and augmented observation networks, respectively, and the combined set of

observations as the full observation network.

In numerical experiments presented, the COSMIC network is regarded as the base

set of observations that are assimilated during 26 September 2011, and the potential

benefits of assimilating additional synthetic electron density vertical profiles is con-

sidered. To begin, consider the analysis obtained when assimilating the full network

of observations. The influence matrix is used to quantify the relative contribution to

the analysis from each vertical profile in the augmented network, which is used to

rank the contribution of the augmented vertical profiles according to the metric in

Section 5.3.2. A formulation to compute the analysis adjustment due to the assimila-

tion of augmented vertical profiles is also provided, which can be used to retrieve the

baseline analysis obtained from the COSMIC network only. Below, the formulation

of the influence matrix for data assimilation with the LETKF and how it might be

used as a targeted observation strategy for ionospheric weather forecasting during the

26 September 2011 geomagnetic storm is presented.

5.3.1 Influence Matrix Formulation

The influence matrix is a diagnostic tool that quantifies the contribution of each

assimilated observation on the analysis. It has typically been used in the context of

linear estimators, and (Cardinali et al., 2004) introduced its analogue in the context

of data assimilation for numerical weather prediction using the Kalman filter. In

this section, a brief derivation of its analogue for the LETKF is presented; additional

derivation details may be found in Appendix C. The influence of the assimilated ob-

servations is computed independently for each grid point, along with the computation

of each of the local analyses. As done in the assimilation procedure described in Sec-
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tion 3.4.1, consider a fixed grid point L, and use L as a subscript to denote quantities

associated with the grid point or its associated local region.

Suppose there are ` observations from the full observation network within the local

region associated with L. Denote the vector of local observations and their associated

Gaussian errors with the ` × 1 vectors yFL and εFL , respectively, and the observation

covariance matrix by RF
L . The F superscript emphasizes that these observational

quantities are associated with the full observation network. Consider the d compo-

nents in the LETKF state vector. Denote the background ensemble mean at L by

the d× 1 vector x̄bL, its d× 1 vector of Gaussian errors by εbL, and its associated d× d

local forecast covariance matrix by Pb
L. The local observation operator is denoted by

the ` × d matrix HF
L . See Section 3.4.1 for additional details on the construction of

these matrices.

Following the notation and derivation in (Cardinali et al., 2004), let

zFL =
[
(yFL )T (x̄bL)T

]T

and εL =
[
(εFL)T (εbL)T

]T

be the (` + d) × 1 augmented state

and error vectors, respectively. Also define the (`+ d)× d matrix ZF
L =

[
(HF

L)T Id

]T

,

where Id is the d × d identity matrix. The Kalman filter analysis problem may be

posed as the weighted linear regression problem

zFL = ZF
LxtL + εL, (5.1)

where xtL refers to the d components of the state vector corresponding to the “truth” at

the grid point L. The observation and background errors are assumed to be mutually

independent, so the system covariance matrix is given by the (`+ d)× (`+ d) block

diagonal matrix ΩF
L =

[
RF
L 0

0 Pb
L

]
. The least squares solution of problem (5.1) is given

by ẑL = ZF
L x̂L, where

x̂L =
(

(ZF
L)T(ΩF

L)−1ZF
L

)−1

(ZF
L)T(ΩF

L)−1zFL (5.2)

is equivalent to the analysis ensemble mean, x̄
a(F )
L , of the Kalman filter (Cardinali
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et al., 2004). The (` + d)× (` + d) influence matrix for the regression problem (5.1)

is defined to be

SL =
∂ẑL
∂zL

=




∂(HF
L x̄a

L)

∂yF
L

∂(HF
L x̄a

L)

∂x̄b
L

∂x̄a
L

∂yF
L

∂x̄a
L

∂x̄b
L


 =


 HF

LP
a(F )
L (HF

L )T(RF
L )−1 HF

LP
a(F )
L (Pb

L)−1

P
a(F )
L (HF

L )T(RF
L )−1 P

a(F )
L (Pb

L)−1


 . (5.3)

The entries of SL are the partial derivatives of the local analysis, x̄
a(F )
L , in obser-

vation and model space, with respect to each of the ` observations and d analyzed

components of the background state vector at L. Denote the lower and upper left

sub-matrices of SL as SXFL and SFFL , respectively. SXFL is a d × ` matrix of partial

derivatives whose jth column quantifies the influence of the jth observation on the d

components of x̄
a(F )
L . Similarly, SFFL is an `×` matrix whose jth column quantifies the

influence of the jth observation on each component of the `× 1 analyzed observation

vector, HF
L x̄

a(F )
L . The subscript L emphasizes that the influences are derived strictly

from observations in the local region about the grid point L; the superscripts denote

that the influences are from the full network of observations and act upon the analyzed

state vector in model space (XF ) and in observation space (FF ), respectively.

Denote the matrices of ensemble perturbations for the background forecast and ob-

servations associated with L as Xb
L and YF

L , respectively, and the analysis covariance

matrix in the space of the local ensemble solutions as P̃
a(F )
L (see Section 3.4.1). Using

these quantities together with Equation (3.33) yields SXFL = Xb
LP̃

a(F )
L (YF

L )T(RF
L)−1

and SFFL = YF
L P̃

a(F )
L (YF

L )T(RF
L)−1. As long as the set of assimilated observations

varies smoothly among neighboring grid points, P̃
a(F )
L also varies smoothly (see Sec-

tion 3.4.1), and so does the observation influence.

Suppose that the observations from the COSMIC and augmented networks are

given by the `C × 1 vector yCL and the `A × 1 vector yAL , respectively. For the pur-

pose of exposition, the observations in the full network are partitioned as yFL =
[

(yCL )T (yAL)T
]T

, but it is emphasized that the following results do not depend on
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this ordering. The associated partitions on YF
L and RF

L are given by

YF
L =

[
(YC

L )T (YA
L )T

]T

and RF
L =

[
RC
L 0

0 RA
L

]
. The partitioned structure of the in-

fluence matrices SXFL and SFFL is then

SXFL =

[
SXCL SXAL

]
=

[
Xb
LP̃

a(F )
L (YC

L )T(RC
L)−1 Xb

LP̃
a(F )
L (YA

L )T(RA
L)−1

]
(5.4)

SFFL =




SCCL SCAL

SACL SAAL


 =




YC
L P̃

a(F )
L (YC

L )T(RC
L)−1 YC

L P̃
a(F )
L (YA

L )T(RA
L)−1

YA
L P̃

a(F )
L (YC

L )T(RC
L)−1 YA

L P̃
a(F )
L (YA

L )T(RA
L)−1


 .(5.5)

The sum of the kth row of SXCL and SXAL are respectively referred to as the cumu-

lative influence of the COSMIC and augmented networks on the kth component of

x̄
a(F )
L . Computing SXCL and SXAL at each grid point yields the spatial structure of

the cumulative observation influence of each observation network on the kth ana-

lyzed component of the global state vector. The top row of Figure 5.3 shows maps

of the cumulative COSMIC observation influence on the analyzed (a) electron den-

sity, (b) zonal component of neutral winds, and (c) molecular oxygen composition,

at 370 km altitude, at 12:30 UTC on 26 September 2011. The magenta markings

denote the locations of the COSMIC vertical profiles. The white horizontal lines in

the top row mark the 77.5◦N latitude, where the observation influence variations with

respect to altitude are shown for the same variables in the bottom row. The white

lines in the bottom row marks the 370 km altitude. As described in Section D.2.3, the

analyzed state variables and observations are non-dimensionalized, so the observation

influences shown are in non-dimensional units.

A positive observation influence at L indicates that the analysis would increase (de-

crease) if the assimilated COSMIC observations were to increase (decrease), at the

rate given by the cumulative influence. For example, over the Persian Gulf region,

where electron density has positive observation influence (red areas) of about 1 unit,
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(a) Electron Density (b) U-Wind (c) Mol. Oxygen MMR

Figure 4. (Top row) Global maps of satellite observation influence at 12:30 UTC on 26 September 2011 at

altitude of 370 Km for (a) electron density, (b) zonal component of neutral winds and (c) molecular oxygen

composition mass mixing ratio (MMR). (Bottom row) Maps of the same variables and time as the top, show-

ing variations of satellite observation influence at a fixed latitude of 77.5�N, as denoted by the white dotted

line in the top row. The location of the synthetic satellite observations are marked by the magenta lines. All

figures are in non-dimensional units (see Section 4.2).
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Figure 5.3: (Top row) Global maps of satellite observation influence at 12:30 UTC
on 26 September 2011 at altitude 370 km for (a) electron density, (b) zonal component
of neutral winds and (c) molecular oxygen composition mass mixing ratio (MMR).
(Bottom row) Maps of the same variables and time as the top, showing variations
of satellite observation influence at a fixed latitude of 77.5◦N, as denoted by the
white dotted line in the top row. The white line in the second row denotes the
370 km altitude. The location of the synthetic satellite observations are marked by
the magenta lines. All figures are in non-dimensional units (see Section 3).

a cumulative increase (decrease) of 1 unit in the local COSMIC observations would

result in an increase (decrease) of 1 unit in the analyzed electron density. The

Siberian region has negative observation influence (blue areas) of −4 units for the

zonal component of neutral winds (shown in the second column), so a cumulative

increase (decrease) of 1 unit in the local COSMIC observations would result in an

decrease (increase) of 4 units in the analyzed zonal component of neutral winds at

L. Regions where the observation influence is near 0 (light green areas) are regions

where COSMIC observations have little contribution to the analysis, relative to the

augmented observations or the background forecast.

Let x̄
a(F )
L and x̄

a(C)
L denote the local analysis ensemble means determined by assim-

ilating observations in the local region about L from the full and COSMIC observation
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networks, respectively. The difference between them can be computed from a rank-`A

update given by

x̄
a(F )
L − x̄

a(C)
L = SXAL

[
I− SAAL

]−1

rAL , (5.6)

where rAL = yAL −HA
L x̄

a(F )
L is the s× 1 vector of analysis residuals at the observation

locations from the augmented network. The derivation of Equation (5.6) and an

equivalent but more computationally efficient formulation to compute the inverse

factor is provided in Appendix C. The quantity given by Equation (5.6) is referred

to as the analysis adjustment due to the augmented observations at the grid point L

and may be used to retrieve x̄
a(C)
L without explicitly computing it.

5.3.2 Using the Influence Matrix to Target Observations

Maps of cumulative observation influence from augmented observations, which are

constructed at each grid point L by summing over the columns of SXAL (see Equa-

tion (5.4)), can identify where vertical profiles from the augmented network have the

highest degree of influence on the analyzed components of the global state vector.

However, these maps do not quantify the total influence that each individual aug-

mented vertical profile has on the components of the analyzed global state vector.

For example, at a fixed grid point, if multiple augmented vertical profiles are assim-

ilated, the distribution of influence among the augmented profiles may be roughly

equal, or one of the profiles may have a majority of the influence. The distribution

of influence among augmented vertical profiles also generally changes for each grid

point, and while some vertical profiles may influence the global analyzed state vector

at some of the same grid points, they will generally also influence different sets of

grid points. In what follows, the metric used to measure the total influence of each
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augmented vertical profile on the global analyzed state vector is presented. Consider

a vertical profile, P , from the augmented network. Generally the observations in P

belong to the local region associated with a set of grid points Gp. Choose a grid point

L ∈ GP . The influence from each augmented observation on x̄
a(F )
L is given by SXAL .

If P is the only augmented vertical profile within the local region associated with

L, then the entries of SXAL give the influence of each observation in P on L. The sum

of the kth row in SXAL yields the cumulative influence of the whole vertical profile,

P , on the kth component of x̄
a(F )
L , which is denote by I

(P )
L(k). The total influence

contribution of P on the kth component of the analyzed global state vector is given

by summing the cumulative influence of P over all grid points L ∈ GP :

T
(P )
k =

∑

L∈GP

∣∣∣I(P )
L(k)

∣∣∣ , (5.7)

where the vertical bars denote the absolute value. If there are s > 1 augmented

vertical profiles in the local region associated with L, partition SXAL as SXAL =[
SXA1
L SXA2

L · · ·SXAs
L

]
, where SXAi

L contains the observation influence of each obser-

vation in the ith augmented vertical profile on x̄
a(F )
L . Then the cumulative influence

of the ith augmented vertical profile is obtained by summing over the columns of

SXAi
L .

The metric defined by Equation (5.7) is used to rank the total influence of each

vertical profile from the augmented network on the analyzed state variables. As seen

in Figure 5.3, the observation influence is generally different for each analyzed state

variable, which directly affects the ranking of vertical profiles from the augmented

network. The kth state variable is said to be targeted when the m highest ranked

augmented vertical profiles for the kth state variable are selected to be included in

the analysis procedure.(The value m = 5 is taken in the numerical experiments shown
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in the next section.) A comparison of forecast improvement when targeting different

state variables is also given in the next section.

5.4 Numerical Experiments and Results

This section described the results of several observing system experiments in which

the geomagnetic storm of 26 September 2011 is simulated with the TIEGCM-LETKF

data assimilation system described in Section 5.2.1. In particular, the targeted ob-

servation strategy discussed in Section 5.3.2 is employed to optimally select the most

influential vertical profiles from the augmented network of observations. The bene-

fits of assimilating targeted observations during the main geomagnetic storm phase

are quantified by comparing the results to the forecast obtained without targeted

observations.

The first row of Figure 5.4 shows the temporal evolution of the altitude-averaged

background estimates of electron density during the geomagnetic storm at 12:30,

16:30, and 20:30 UTC on 26 September 2011. At the beginning of the geomagnetic

storm (12:30 UTC), the peak electron density is located mostly in the daytime equato-

rial region and extends into the mid-latitudes. The background estimates of electron

density overestimate the true electron density in the daytime low-to mid-latitudes

and also at the polar regions as indicated by the positive (red) deviations from the

truth shown in the third row of Figure 5.4.

During peak geomagnetic disturbance conditions (16:30 UTC), electron density

is significantly enhanced in daytime mid-to high-latitude regions, especially in the

southern hemisphere, and also in the nighttime high-latitude regions. In the day

time regions, electron density is overestimated in the mid-latitude regions, especially

over the Atlantic Ocean area and also in the nighttime equatorial regions. Electron

density is significantly underestimated in the southern polar region as indicated by
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(a) 26 Sept. 12:30 UTC (b) 26 Sept. 16:30 UTC (c) 26 Sept. 20:30 UTC

Figure 5. Global maps of background (first row) and analysis (second row) estimates of electron density,

in el/cm3, averaged from 200 km to 500 km altitudes at 12:30, 16:30 and 20:30 UTC on 26 September 2011.

Rows 2-3: Analogous global maps of electron density deviations from the truth for the background and an-

alyzed estimates, in el/cm3, at 12:30, 16:30 and 20:30 UTC on 26 September 2011. The analyzed electron

density (second row) and its deviation from the truth (fourth row) are obtained by assimilating only synthetic

COSMIC observations, whose locations are shown by magenta markings. The color scale in the first and

second rows differs from the third and fourth rows.
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Figure 5.4: Global maps of background (first row) and analysis (second row) esti-
mates of electron density, in el/cm3, averaged from 200 km to 500 km altitudes at
12:30, 16:30 and 20:30 UTC on 26 September 2011. Rows 3-4: Analogous global
maps of electron density deviations from the truth for the background and analyzed
estimates, in el/cm3, at 12:30, 17:30 and 20:30 UTC on 26 September 2011. The
analyzed electron density (second row) and its deviation from the truth (fourth row)
are obtained by assimilating only synthetic COSMIC observations whose locations
are shown by magenta markings. The color scale in the first and second rows differs
from the third and fourth rows.

the negative (blue) deviations from the truth in the third row. Finally, as geomag-

netic conditions relax (20:30 UTC), the electron density remains overestimated in the

daytime mid-latitude and nighttime equatorial regions, but high-latitude estimates

improve.

The second and fourth rows of Figure 5.4 show the analysis obtained by assim-

ilating the COSMIC network of observations and its the deviation from the truth,

respectively. The locations of the assimilated vertical profile are shown by the ma-
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genta markings, The assimilation of these observations reduces many of the electron

density errors seen in the background estimates, except in regions of sparse data cov-

erage and also in the southern polar region during the peak geomagnetic disturbance

conditions (16:30 UTC). The goal of our targeted observation strategy is to optimally

choose vertical profiles from the augmented network and add them to the set of as-

similated COSMIC observations to reduce these electron density errors throughout

the geomagnetic storm.

Now consider the potential impact of assimilating vertical profiles from the aug-

mented network. The first row of Figure 5.5 shows global maps of cumulative ob-

servation influence from augmented vertical profiles on the analyzed electron density

estimates at 12:30, 16:30, and 20:30 UTC. The locations of the vertical profiles in

the augmented network are denoted by the white circles in each of the panels. These

maps are constructed by summing over the columns of each SXAL (see Equation (5.4))

as described in Section 5.3.1. Augmented vertical profiles generally have positive

influence on the analyzed electron density and the influence is strongest in areas of

sparse COSMIC network coverage.

The cumulative observation influence from augmented observations on the ana-

lyzed estimates of Un and O1 is shown in the second and third rows of Figure 5.5. The

observation influence for Un is generally restricted to high-latitude regions, where the

strongest neutral wind activity occurs. At 50◦ latitude and higher there are nearly ad-

jacent regions of positive and negative observation influence on the analyzed estimate

of Un. The influence of augmented observations on O1 is strongest at high latitudes

although it does extend to the mid-latitudes as well. Each panel of Figure 5.5 also

denotes the location of the five most influential vertical profiles for each respective

analyzed variable with the white circles, as computed by the procedure described in

Section 5.3.2. The locations of the five most influential vertical profiles vary consid-
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(a) 26 Sept. 12:30 UTC (b) 26 Sept. 16:30 UTC (c) 26 Sept. 20:30 UTC

Figure 7. Global maps of influence from the augmented vertical profiles on the analysis, averaged over

200 km to 500 km altitudes at 12:30, 16:30 and 20:30 UTC. The observation influence fields are constructed

and non-dimensionalized as described in Section 3 for (row 1) electron density, (row 2) the zonal components

of the neutral winds and (row 3) molecular oxygen composition. The color scale differs for each of the rows.

Satellite and augmented vertical profile locations are marked in magenta and white, respectively. The five

most influential augmented profiles for each respective variable, as described in Section 4.3, are circled in

white in each figure.
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Figure 5.5: Global maps of influence from the augmented vertical profiles on the
analysis, averaged over 200 km to 500 km altitudes at 12:30, 16:30, and 20:30 UTC.
The observation influence fields are constructed and non-dimensionalized as described
in Section D.2 for (row 1) electron density, (row 2) the zonal components of the
neutral winds and (row 3) molecular oxygen composition. The color scale differs for
each of the rows. COSMIC and augmented vertical profile locations are marked in
magenta and white, respectively. The five most influential augmented profiles for
each respective variable, as described in Section 5.3.2, are circled in white in each
panel.

erably depending on the analyzed variable being considered. A state variable is said

to be targeted when the five vertical profiles from the augmented network with the

largest influence on that variable are included in the assimilation procedure.

Now focus on the impact of assimilating the five most influential vertical profiles

from the augmented observation network on the analyzed electron density. The pan-

els in Figure 5.6(a) show the temporal evolution of the altitude-averaged analyzed

electron density from 11:30 UTC to 21:30 UTC on 26 September 2011. The five ver-

tical profiles from the augmented network selected to target electron density during

each analysis time are included in the assimilation procedure, and their locations are
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shown by the thick white circles. A few of the selected vertical profiles are located in
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(a)
11:30 UTC 13:30 UTC 15:30 UTC

17:30 UTC 19:30 UTC 21:30 UTC

(b)
11:30 UTC 13:30 UTC 15:30 UTC

17:30 UTC 19:30 UTC 21:30 UTC

Figure 10. Global maps of analyzed electron density, in units of el/cm3, obtained when using the targeting

scheme described in Section 4.3 to target the zonal component of neutral winds (Un). The global maps are

shown starting from 10:30 UTC to 20:30 UTC on 26 September 2011 and each map is averaged over 200 km

to 500 km altitudes. Synthetic COSMIC and augmented vertical profile locations are shown in magenta and

white, respectively, with the top five most influential augmented vertical profiles for Un that are included

in the assimilation procedure circled in white. The combined region of influence from the five augmented

vertical profiles is enclosed by the white areas.
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Figure 5.6: (a) Global maps of analyzed electron density, in units of el/cm3, obtained
when using the targeting scheme described in Section 5.3.2 to target electron density.
The global maps are shown starting from 11:30 UTC to 21:30 UTC on 26 September
2011 and each map is averaged from 200 to 500 km in altitude. (b) Analogous maps
of analyzed zonal component of the neutral winds (Un) obtained when targeting the
zonal component of neutral winds (Un). Synthetic COSMIC and augmented vertical
profile locations in each case are shown in magenta and white, respectively, with the
top five most influential augmented vertical profiles in each case circled in white.

equatorial regions, for example at 11:30 UTC and 13:30 UTC, but the majority are lo-

cated in the nighttime high-latitude regions, where the rapidly changing geomagnetic

conditions occur.

The panels in Figure 5.6(b) show the analyzed altitude-averaged analyzed Un

in the case where the five most influential vertical profiles for Un are included in

the assimilation procedure. The locations of these vertical profiles correspond to

regions where the influence of augmented vertical profiles have the most benefit on

the analyzed Un estimate. The locations of the vertical profiles selected to target Un

are considerably different than those selected to target electron density, though the

majority of the targeted vertical profiles are also located in the high latitude regions.
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The impact of targeted vertical profiles is evaluated with the RMSE difference of

the forecast from the truth, defined as

RMSE =

√∑
L∈I
(
eL − etL

)2

N
, (5.8)

where eL is the electron density component of the LETKF state vector, xL, at the

grid point L and etL is the corresponding truth. The summation is done over the set

I of N grid points located within a 600 km horizontal radius of the vertical profiles

selected to target electron density, shown by the thick white circles in Figure 5.6(a).

Figure 5.7(a) shows the time series of the root mean square error (RMSE) of analyzed

electron density estimates obtained without assimilating any vertical profiles from

the augmented network (blue) and when assimilating five vertical profiles selected to

target electron density (red).

Augmented vertical profiles are assimilated starting at 11:30 UTC, which corre-

sponds to the onset of disturbed geomagnetic conditions, so the RMSE is the same

in both cases before 11:30 UTC. As geomagnetic conditions become increasingly dis-

turbed, the RMSE of analyzed electron density increases sharply when no augmented

vertical profiles are assimilated, peaking at 14:30 UTC and 16:30 UTC, and then de-

creasing as geomagnetic activity relaxes, suggesting that areas of large electron den-

sity uncertainty are identified during peak geomagnetic disturbance conditions. On

the other hand, the RMSE of analyzed electron density with the five vertical profiles

targeting electron density remains relatively constant throughout the geomagnetic

storm, demonstrating that the errors in these regions of large electron density uncer-

tainty are reduced. The largest improvement due to assimilation of the five targeted
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Figure 13. Row 1: Time series of root-mean-square error (RMSE) of analyzed electron density in units

of el/cm3, averaged vertically from 200 km to 500 km altitudes and horizontally over 300 km and 600 km

regions centered around the 5 augmented vertical profiles used to target electron density errors. The blue and

red curves correspond to the analysis RMSE with and without the 5 targeted vertical profiles, respectively.

Rows 2-3: Analogous plots of analyzed electron density RMSE centered around the 5 vertical profiles used to

target the zonal component of neutral winds and molecular oxygen composition mass mixing ratio.
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Figure 5.7: (a) Time series of root-mean-square error (RMSE) of analyzed electron
density in units of el/cm3, averaged vertically from 100 km to 550 km altitudes and
horizontally over 600 km regions centered around the 5 augmented vertical profiles
used to target electron density. The red and blue curves correspond to the analyzed
electron density RMSE with and without the 5 targeted vertical profiles, respectively.
(b)-(c) Analogous plots of the RMSE of (a) analyzed electron density and (c) the
zonal component of neutral winds (Un) centered around the 5 vertical profiles used
to target the zonal component of neutral winds. (d) Time series of RMSE ratios
of analyzed electron densities obtained with and without five augmented electron
density vertical profiles. The thick red curve corresponds to the ratio of the red to
blue curves in panel (a) and thin curves show the analogous RMSE ratios obtained
for six different sets of five randomly chosen vertical profiles. (e)-(f) Analogous plots
of analyzed electron density and Un RMSE ratios corresponding to the RMSE curves
shown in (b) and (c), respectively. In panels (e)-(f), the same sets of randomly chosen
augmented vertical profiles are assimilated.

vertical profiles occurs at 16:30 UTC, where the analyzed electron density RMSE is

reduced by about 80% over the 600 km regions.

Figure 5.7(b) shows an analogous RMSE time series of analyzed electron density,

with I in Equation (6.11) corresponding to 600 km regions centered around the five

vertical profiles selected to target Un, whose locations are shown by the thick white
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circles in Figure 5.6(b). These are regions where the analyzed estimates of Un are

relatively uncertain and could potentially cause significant uncertainties in electron

density estimates. The largest improvement in RMSE is of about 60% and it occurs

during the main phase (16:30 UTC). Figure 5.7(c) shows an analogous time series

of RMSE for the analyzed estimates of Un, computed over the same regions as in

Figure 5.7(b). The RMSE values calculated here are done with a similar equation

to (6.11), but for the Un component of the LETKF state vector. The largest im-

provements in the analyzed neutral wind estimates are about 30% as geomagnetic

conditions become increasingly disturbed between 11:30 and 15:30 UTC.

As expected, RMSE values of analyzed electron density and neutral winds do

improve within the 600 km region centered around the augmented vertical profiles.

The relative benefit of using our targeting procedure is compared against the benefit

of using randomly selected vertical profiles from the augmented network. To do so,

conisder the ratio of analyzed electron density RMSE values that are obtained with

and without the assimilation of the five vertical profiles selected to target electron

density. For example, the thick red curve in Figure 5.7(d) is the ratio of the time

series of analyzed electron density RMSE values that correspond to the curves shown

in Figure 5.7(a). For comparison, the analogous time series of RMSE ratio values of

analyzed electron density is computed for six different sets of five vertical profiles that

are randomly selected from the augmented observation network. Since the region I

over which the RMSE values are computed in each case is different, the RMSE ratio

values yield a direct comparison of improvement in analyzed electron density RMSE

values. The RMSE ratio time series for the each set of randomly chosen vertical

profiles is shown by the thin curves in Figure 5.7(d).

Figure 5.7(d) shows that using augmented vertical profiles that are randomly

chosen reduces electron density RMSE values on average by about 15% over 600 km
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regions throughout the geomagnetic storm, which is considerably less than the average

of 65% RMSE reduction seen when assimilating vertical profiles chosen to target

electron density. Additionally, the RMSE reduction obtained with targeted vertical

profiles is more consistent for each analysis calculation during the geomagnetic storm

and the RMSE reduction is at the very least 60% after 14:30 UTC, demonstrating

that the regions of largest electron density uncertainty are consistently identified and

improved.

Figure 5.7(e) shows the analogous time series of analyzed electron density RMSE

ratio obtained when using vertical profiles to target Un, where the thick red curve

corresponds to the ratio of the curves shown in Figure 5.7(b). The RMSE ratio for

the same six sets of randomly chosen vertical profiles is also shown. Assimilating

five augmented vertical profiles chosen to target Un generally yields larger reduction

of RMSE in analyzed electron density than the groups of randomly vertical profiles,

most notably during the sharp increase in geomagnetic disturbance from 13:30 to

16:30 UTC, where improvements on average are about 40% and are as large as 70%.

After 16:30 UTC, the RMSE reduction is on average comparable to those obtained

with randomly selected vertical profiles, which may indicate that there are no regions

with outstanding levels of uncertainty in Un, compared to the peak geomagnetic

disturbance conditions that occur from 13:30 to 16:30 UTC.

Figure 5.7(f) shows the time series of RMSE ratio values for analyzed Un estimates

when targeting Un, with the thick red curve corresponding to the ratio of RMSE val-

ues on Figure 5.7(c). Similarly to electron density estimates at these locations as

Figure 5.7(e), there is considerable reduction in RMSE during peak geomagnetic dis-

turbance conditions from 12:30 to 16:30 UTC compared to when using the randomly

chosen vertical profiles. The RMSE reduction in analyzed estimates of Un during this

time period are on average about 25%, whereas the average RMSE reduction when
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using randomly chosen vertical profiles during this same time period is only of about

2%. The RMSE reduction in analyzed Un obtained with targeted vertical profiles is

on average comparable to that of the randomly selected vertical profiles, as geomag-

netic conditions begin to relax after 16:30 UTC, which is also seen in Figure 5.7(e).

These RMSE time series results demonstrate that our targeting strategy may be used

to effectively target areas of large uncertainty in electron density, and other state

variables such as neutral winds to considerably improve forecast estimates.

5.5 Analysis Adjustment Due to the Assimilation of Augmented Observations

In this section, the observation influence is used to efficiently compute the exact

change in the analysis at a grid point L due to the assimilation of the augmented

observations. Consider the analysis at the grid point x̄
a(F )
L obtained when assimi-

lating the full network of observations (yFL ). Due to the mathematical formulation

of the influence matrix, the effect of assimilating the augmented set of observations

is quantified with the change in x̄
a(F )
L when excluding these observations from the

assimilation procedure. Begin by first computing x̄
a(F )
L . The observing network when

excluding the augmented network is simply the COSMIC network (yCL ), which yields

the analysis denoted by x̄
a(C)
L . Suppose there are `A augmented observations being

assimilated. The adjustment on the analysis state vector is derived from a rank-`A

update given by

x̄
a(F )
L − x̄

a(C)
L = SXAL

[
I− SAAL

]−1

rAL , (5.9)

where rAL = yAL − HA
L x̄

a(F )
L is the s × 1 vector of analysis residuals corresponding

to the observations from the augmented network. Equation (5.9) gives the analysis

adjustment due to augmented observations at L. (If `A = 0, no observations from

the augmented network are in the local region, and so the analysis adjustment is

0.) Repeating this procedure for every grid point yields the spatial structure of the

94



analysis adjustment due to the augmented network on the analyzed components of

the global state vector. Additionally, Equation (5.9) can be used to readily retrieve

x̄
a(C)
L without its explicit computation. A similar approach can be taken to derive

the analysis adjustment due to the assimilation of any subset of the full network of

observations.

The first row of Figure 5.8 shows the altitude-averaged global analysis adjustment

due to the assimilation of the augmented network for electron density at 12:30, 16:30

and 20:30 UTC on 26 September 2011. Regions where the analysis adjustment is

positive (negative) indicate that the analyzed electron density is increased (decreased)

when assimilating vertical profiles from the augmented network, relative to when

only assimilating observations from the COSMIC network. Comparison with the

third row of Figure 5.4 ishows that in regions where the analysis adjustment tends to

correct the analysis errors obtained when only assimilating the COSMIC network. For

example, electron density in the southern polar region in the third row of Figure 5.4 at

16:30 UTC is underestimated (blue) and in this same region, the analysis adjustment

due to augmented observations is positive. The analysis adjustment of the zonal

component of neutral winds (Un) and molecular oxygen composition (O1) are shown

in the second and third rows of Figure 5.8, respectively.

Equation (5.9) requires the inversion of the `A × `A matrix,
[
I− SAAL

]
, which

may be numerically costly if `A is large. An equivalent but typically more efficient

formulation for this inversion (derived in the next section) is given by

[
I− SAAL

]−1

= I + (RF
L)−1YF

L P̃
a(C)
L (YF

L )T, (5.10)

where P̃
a(C)
L is constructed exactly as the covariance matrix in Equation (3.32) in

the main text, but using only the `C observations in yCL . The computation of P̃
a(C)
L

requires the inversion of an m × m matrix, where m is the ensemble size, and so
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(a) 26 Sept. 12:30 UTC (b) 26 Sept. 16:30 UTC (c) 26 Sept. 20:30 UTC

Figure 6. Row 1: Global maps of the analysis adjustment for electron density, in el/cm3, averaged over

200 km to 500 km altitudes at 12:30, 16:30 and 20:30 UTC. The analysis adjustments are constructed as

described in Section 4.2 and refers to the difference between the analyses obtained when assimilating the

full network of observations (augmented and COSMIC) and when assimilating only COSMIC observations.

Rows 2-3: Analogous maps of analysis adjustments for the zonal component of the neutral winds in cm/s

and molecular oxygen composition, in mass mixing ratio units, at the same times. The color scale differs for

each row. The location of satellite and augmented vertical profile locations are marked in magenta and white,

respectively.
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Figure 5.8: Row 1: Global maps of the analysis adjustment for electron density, in
el/cm3, averaged over 200 km to 500 km altitudes at 12:30, 16:30 and 20:30 UTC.
The analysis adjustments are constructed as described in Section 4 and are defined
as difference between the analyses obtained when assimilating the full network of
observations (augmented and COSMIC) and the COSMIC observations only (see
Equation (5.6). Rows 2-3: Analogous maps of analysis adjustments for the zonal
component of the neutral winds in cm/s and molecular oxygen composition in mass
mixing ratio units, at the same times. The color scale differs for each row. The
locations of vertical profiles from the COSMIC and augmented observing networks
are marked in magenta and white, respectively. The top 5 most influential augmented
vertical profiles for each respective variable are denoted by the thick white circles.

this approach is more efficient in computing equation (5.9) if the ensemble size is

smaller than the number of observations being excluded (m < `A), which can be

expected in an operational setting. In general, computing the analysis adjustment

using equation (5.9) is more computationally efficient than computing x̄
a(F )
L and x̄

a(C)
L

explicitly, and then finding the difference.

5.6 Discussion

A targeted observation strategy based on the influence matrix diagnostic is pro-

posed for ionospheric data assimilation with the LETKF scheme. A forecast ob-
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tained when assimilating a set of synthetic vertical profiles that represent those of

the COSMIC network is first considered. Using this targeted observation strategy,

the observation vector is augmented with additional vertical profiles whose locations

are optimally chosen to mitigate forecast errors during the geomagnetic storm of 26

September 2011. The augmented observations come from a network of 62 globally

distributed vertical profiles (shown by the white dots in Figure 5.6(a)) and the contri-

bution each of these vertical profiles would have if they were assimilated is quantified

with the influence matrix diagnostic. The five augmented vertical profiles with the

largest influence on the global analysis, according to the strategy described in Sec-

tion 5.3.2, are then selected to be included in the assimilation procedure. The targeted

observation strategy is used at each analysis time from 11:30 UTC to 23:30 UTC on 26

September 2011, which corresponds to the onset and main phase of the geomagnetic

storm.

This chapter develops a strategy to identify regions where additional observations

may yield the largest forecast improvement. This diagnostic tool may help identify

regions that should be observed in future extreme events as the ionospheric observing

network expands. However, there are also practical aspects that should be considered,

such as ease of observability and quality of the observations, that should be considered

for future work. In operational settings, the deployment of additional observations in

near-real time should also be addressed, but this also restricts the type and location

of these observations.

In the augmented network chosen for this chapter, the longitude distance between

vertical profiles ranges from 30◦ at the equator to 60◦ in the polar regions, and their

latitude distance is 25◦. With the 5◦ × 5◦ horizontal grid resolution used in the

TIEGCM, at least one vertical profile is located within the local region of every grid

point during each analysis calculation. A higher resolution augmented observation
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network may be beneficial since it would offer more choices from which the most

influential vertical profiles are chosen. In future work, the benefits of a higher reso-

lution network of augmented vertical profiles with a higher resolution version of the

TIEGCM will be examined.

In the numerical experiments presented, augmented vertical profiles located in the

nighttime and mid-to high-latitude regions have the most influence on the forecast,

especially in regions of sparse COSMIC data coverage. The benefit of assimilating

the five most influential vertical profiles is evaluated with the RMSE of analyzed

electron density within 600 km regions centered around the selected vertical profiles.

Compared to when no vertical profiles from the augmented network are assimilated,

analyzed electron density RMSE values are reduced on average by about 65% when

using five vertical profiles selected to target electron density, whereas using five ran-

domly selected vertical profiles from the augmented network reduces the RMSE of

analyzed electron density by about 15% on average. Similarly, selecting five aug-

mented vertical profiles to target the zonal component of neutral winds (Un) reduce

RMSE values of analyzed Un on average by about 25% during the transition from

quiet to disturbed geomagnetic conditions (11:30 UTC to 16:30 UTC), whereas using

five randomly selected vertical profiles reduces the RMSE values of analyzed Un by

about 2% on average during the same time period.

These results demonstrate that the proposed targeted observation strategy can

optimally select locations for augmented vertical profiles that yield the most im-

provement in electron density estimates, as well as other state variables. The scope

of this paper is to propose a targeting strategy based on the observation influence

and demonstrate its application to reduce forecast errors for electron density and Un

estimates. Selecting targeted observations to improve estimates in other state vari-

ables may also be beneficial. In future work, approaches were subsets of the available
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augmented vertical profiles are used to simultaneously target groups of different state

variables, rather than using all augmented vertical profiles to target a single state

variable, will be explored.

In this study, it is assumed that the temporal evolution of the parameters as-

sociated with solar conditions and geomagnetic activity is known throughout the

geomagnetic storm. The estimation of these parameters is a challenging and impor-

tant component of ionospheric data assimilation that must be accounted for in an

operational setting, especially during extreme events. The proposed targeting strat-

egy may be used to identify locations of augmented vertical profiles that would be the

most influential to the estimation of these parameters and the benefits of assimilat-

ing these targeted vertical profiles may then be quantified. In future work, the data

assimilation system and targeted observation strategy will be expanded to include a

parameter estimation component.
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Chapter 6

DATA ASSIMILATION FOR IONOSPHERIC SPACE-WEATHER

FORECASTING IN THE PRESENCE OF MODEL BIAS

This chapter presents observing system experiments in which a model bias es-

timation strategy for ionospheric space-weather forecasting is proposed. The work

presented in this chapter has been submitted for publication in the Journal of Geo-

physical Research: Space Physics.

6.1 Introduction

Modeling efforts in the ionosphere require the continual estimation of its time-

dependent external drivers. The benefits of modeling the ionosphere and thermo-

sphere, and their associated electrodynamical processes, with a single general circula-

tion model have been observed (Matsuo and Araujo-Pradere, 2011). However, other

important ionospheric drivers are specified with auxiliary empirical models. The

ionosphere is strongly coupled to the magnetosphere in high-latitude regions, and the

related processes associated with the electric field patterns and energy precipitation

for different geomagnetic conditions are represented empirically. (Edwin et al., 2011).

The ionospheric response to solar activity is also typically modeled empirically. The

empirical representation of these dynamical drivers puts great importance on the pa-

rameterizations and their respective inputs used to drive the ionosphere, especially

during extreme events. Although the quality of parametric models used to represent

these key dynamics is an important consideration, the scope of this paper focuses on

the optimization of an already established configuration of parameterized inputs.
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Inputs to solar and geomagnetic parameterizations are typically measured directly

and are physically meaningful, but it is not always clear if these are the optimal

indices to drive an ionospheric model for a selected time period; they often need to be

adjusted, especially during extreme events. Although solar activity does not typically

vary significantly on a daily time-scale, extreme ionospheric space-weather events are

usually related to powerful solar events that are difficult to predict, and the associated

solar inputs must be specified accordingly. Geomagnetic conditions are also difficult to

represent during moderate to strong perturbation periods, and geomagnetic indices

have been shown to have uncertainties, ranging from limited station observability

coverage to limited representation of associated physical mechanisms (Xu, 2008).

Additionally, geomagnetic indices are issued over 3 hour intervals, which is longer

than the typical time-scales of ionospheric responses during extreme events (Du et al.,

2010). The development of improved indicators of geomagnetic activity, such as the

methods described in (Wing et al., 2005) is an ongoing research effort.

Parameter estimation techniques based on the Ensemble Kalman Filter (EnKF)

are a promising approach for the optimization of parameter inputs, based on the

available observations of the system state. The EnKF formulation produces a low-

rank estimate of the flow-dependent model state covariance matrix, which can be used

to infer the state of unobserved state variables, such as the coupled thermospheric

state, and of driver parameters. EnKF approaches have been shown to be effective

in estimating the state of the coupled ionosphere-thermosphere system (Matsuo and

Araujo-Pradere, 2011; Hsu et al., 2014) and ionospheric forcing parameters (Matsuo

et al., 2013). An overview of parameter estimation strategies in data assimilation is

presented in (Ruiz et al., 2013) and additional parameter estimation strategies with

Ensemble Kalman filters for non-global parameters are discussed in (Bellsky et al.,

2014).
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Extreme events may present processes or features that are not well understood and

may not be captured with existing model parameterizations in terms of magnitude

or duration. For example, geomagnetic storms often have significant and persistent

storm-time effects that modify the state of the ionosphere relative to quiet time

conditions. See (Pedatella et al., 2009) for a study of the long-lasting positive storm-

time effects observed in the geomagnetic storm of 15 December 2006. (Chartier

et al., 2016) also discusses some storm-time electron density enhancements that are

difficult to predict during the 10 September 2005 geomagnetic storm. The limited

representation of storm-time effects provided by parameterizations may not capture

the variability of ionospheric dynamics, which may introduce systematic model biases

that can be difficult to remedy with further parameterization adjustments.

In this chapter, a strategy to compute spatially-varying corrections to compen-

sate for model bias introduced from sub-optimal parameterized inputs during extreme

events is proposed. It is assumed that solar and magnetospheric parameter config-

uration, which may be specified through some parameter estimation approach, is

already in place. The proposed strategy treats the global distribution of model bias

as a collection of bias correction parameters, which are estimated using an ensemble

Kalman filter. The bias corrections are not used to adjust the model state vector di-

rectly. Instead, spatially-varying bias corrections are applied in the evaluation of the

observation operator, with the intent of reducing model bias in its electron density

predictions prior to the assimilation of observations. This methodology is proposed

in (Baek et al., 2006), where it is applied in observing system experiments with the

Lorenz 40-variable model.

The application of spatially-varying bias corrections extends the degrees of free-

dom in the predictions made with a given parameterized configuration, which may

be beneficial in capturing storm-time effects. The corrections are computed inde-
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pendently of parameterized inputs, so this strategy may be applied together with

direct parameter estimation. Furthermore, this approach helps provide more gentle

state estimation updates due to the adjusted forecast predictions, which may help

to avoid the introduction of spurious dynamical artifacts from drastic adjustments to

the system state that may occur due to strong model bias presence during an extreme

event. To the author’s knowledge, the proposed bias correction strategy has not been

applied previously to an ionospheric model with operational capabilities.

The proposed bias estimation strategy, which is designed for high-dimensional

ionospheric systems that are sparsely observed, is applied in observing system ex-

periments, where the global state of the ionosphere is estimated throughout the 26

September 2011 geomagnetic storm, in the presence of model bias resulting from

sub-optimal parameterized solar and magnetospheric inputs. The local ensemble

transform Kalman filter (LETKF) (Hunt et al., 2007) is used to assimilate synthetic

electron density vertical profiles into the Thermosphere-Ionosphere-Electrodynamics-

Global-Circulation-Model (TIEGCM). The profile locations are the same as that of

the Formosa/Constellation Observing System for Meteorology, Ionosphere, and Cli-

mate satellites 3 (COSMIC) (Rocken et al., 2000), during 26-27 September 2011.

The LETKF is a type of ensemble square root filter that computes its analysis us-

ing a low-rank estimate of the forecast covariance matrix. The analysis is computed

independently grid point by grid point, by assimilating nearby observations simulta-

neously. The LETKF has been applied in the ionosphere with an idealized regional

model (Durazo et al., 2016) and for space-weather specification during an extreme

events with the TIEGCM by (Durazo et al., 2017). The LETKF has also been used

with the Global Ionosphere-Thermosphere Model to estimate solar parameters during

periods of low and high solar activity (Koller et al., 2013; Godinez et al., 2015).

The layout of this chapter is as follows. Section 6.2 describes the proposed bias
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estimation methodology Sections 6.3 and 6.4 describe observing system experiments,

in which the bias estimation approach is applied during a geomagnetic storm event.

A discussion and conclusions of these results are given in Section 6.5.

6.2 Bias Estimation Methodology

Consider the application fo the LETKF in the context of a forecast model for which

there is some systematic difference between its predicted state umn+1 of the ionosphere

at time tn+1 and the “true” state. More precisely, the vector umn+1 contains all the

dynamical variables associated with the model’s depiction of ionospheric processes,

such as electron density, thermospheric composition, etc., over the global model grid.

The ionospheric model may be regarded as a collection of maps Mn, n = 1, 2, . . . , N ,

that yield global model state vectors of the form

umn+1 = Mn (umn ) (6.1)

for discrete times t1, t2, . . . , tN over some interval of interest. The ionospheric model

approximates a corresponding “true” set of state vectors utn at each time and grid

point. That is, the sequence

utn+1 = Fn

(
utn
)

(6.2)

may be regarded as a finite-dimensional projection of the ionosphere’s evolution to the

grid points of the ionospheric forecast model at each time tn. A perfect model would

produce a sequence umn that is identical to utn for each n, provided that the initial

state of the ionosphere and its drivers is the same. In practice, however, the initial

ionosphere-thermosphere state is not known precisely. Additionally, the specification

of solar and magnetospheric drivers, and the description of the ionosphere’s reaction to

their temporal variations, which produces each umn is different than evolution operator

that produces the true ionospheric states utn. Thus the vectors umn and utn differ, and
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the objective is to develop a scheme to approximate these differences within the state

space of the forecast model in the context of a data assimilation system.

The proposed approach is based on one suggested by (Baek et al., 2006) (bias

model II), in which it is assumed that the dynamics of the ionospheric model evolve

on a different attractor from the “true” dynamics of the ionosphere. In such a case,

substituting utn (or a vector close to it) into the model Mn may excite spurious

dynamics or inconsistencies between thermospheric and ionospheric states, possibly

because the dynamical drivers represented by the model differ from those of the truth.

For example, strong systematic biases may be introduced due differences in solar and

magnetospheric drivers during extreme events.

To avoid this situation, the evolution of the state vector on the model attractor

is regarded as a time-dependent translation of corresponding points on the true at-

tractor. Rather than attempting to substitute the truth into the forecast model, the

discrepancy between the truth and forecast state vectors is compensated for within

the data assimilation system, whose objective now is to find the model state vector

that yields the best forecast. For this purpose, define the model bias at each time tn

as

cn+1 = Fn(utn)−Mn(umn ) (6.3)

where

umn = utn − cn. (6.4)

Generally, the correction cn+1 depends on cn as well as on Fn and Mn. To make

the scheme approach practicable within a data assimilation system, and following
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the work of (Baek et al., 2006), suppose that the corrections cn evolve according to

another dynamical system and implement the following augmented model:

ubn+1 = Mn(uan) (6.5)

cbn+1 = Gn(uan, c
a
n). (6.6)

Here the subscript b refers to the “background” state vector (i.e., the forecast) and a

to the “analyzed” state vector (i.e., the output of the data assimilation system).

The data assimilation procedure described in Section 3.4.1 proceeds as before, but

it begins with an ensemble of augmented state vectors of the form

[(
u
b(j)
n

)T (
c
b(j)
n

)T
]T

,

where j indexes each ensemble member. In lieu of Equation (3.28), the observation

operator at time tn becomes

y
b(j)
L = HL

(
ub(j)n + cb(j)n

)
. (6.7)

In other words, the model error is compensated for by adding a correction term

to the model state vector whenever a comparison to observations is made, but the

model state vector is not modified. The data assimilation procedure produces an

augmented analysis ensemble of the form

[(
u
a(j)
n

)T (
c
a(j)
n

)T
]T

, which is used as the

initial condition in the subsequent forecasting step. Equations (6.5)-(6.6) are then

applied to produce the augmented state,

[(
u
b(j)
n+1

)T (
c
b(j)
n+1

)T
]T

, for the next analysis

step.

The algorithm is complete once a choice of the bias evolution operators Gn is

made. In this study, two simple choices are considered. Section 6.3 describes the

results when Gn is persistence, i.e., cn+1 = cn. Section 6.4 describes the results when

Gn implements a exponential growth-relaxation correction term.

In principle, the bias correction procedure doubles the number of state variables

that must be estimated from the same set of observations, which increases the variance
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in the analyzed fields. On the other hand, not all model biases contribute equally to

the forecast error, and it may suffice to apply the bias correction procedure only to

some of the components of the model state vector; that is, the components of cbn are

taken to be zero except for those corresponding to fields of greatest forecast interest.

In the numerical experiments described in this chapter, the bias estimation procedure

is applied only to the electron density component of the TIEGCM.

6.3 Numerical Experiment 1: Persistent Bias Evolution

In the following numerical experiments, the LETKF scheme is used to assimilate

synthetic electron density vertical profiles into the TIEGCM. The observation network

consists of synthetic electron density vertical profiles, whose locations are given by

the COSMIC network for 26-27 September 2011. The implementation of this data

assimilation system is the same as the one used in Chapter 5 and in (Durazo et al.,

2017).

The main source of ionization in the ionosphere, and thus one of its primary dy-

namical drivers, is the absorption of solar radiation in the thermosphere, primarily

by O1, O2 and N2 neutral gases. The TIEGCM represents effects of solar irradiance

and its variability through auxiliary empirical models. The default solar input model,

which is used in the TIEGCM configuration of this study, is the EUVAC irradiance

model (Richards et al., 1994). The EUVAC model specifies important ionospheric pro-

cesses related to solar activity, such as ionization and dissociation rates, and heating

of neutral gases, ions and electrons. The empirical representation of solar irradiance is

parameterized with the F10.7 index, which is a daily measurement radio flux at 10.7 cm

wavelength, and its 81-day average. The TIEGCM offers the option to use measured

spectral irradiance as the solar input (available at http://lasp.colorado.edu/see), but

those options are not considered in this study. Solar proxy models parameterized with
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the F10.7 index have been widely used in other recent ionospheric data assimilation

studies such as the ones in (Lee et al., 2012) and (Matsuo and Araujo-Pradere, 2011).

Another key driver of ionospheric dynamics is geomagnetic activity. The iono-

sphere is strongly coupled to the magnetosphere in high-latitude regions but is typi-

cally approximated with auxiliary empirical models due its complexity. The default

magnetospheric input, which is used in the configuration of the TIEGCM, is the

Heelis model (Heelis et al., 1982). The Heelis model specifies important high-latitude

processes in the ionosphere, such as electric field patterns and auroral energy in-

puts, for different levels of geomagnetic disturbance. The TIEGCM allows for other

magnetospheric inputs, such as the Weimer model (Weimer, 2005) and AMPERE

model (Anderson et al., 2014), but they are not considered in this study.

The Heelis model is parameterized with the Kp index, which is a widely used index

derived from the horizontal component of geomagnetic field disturbances. Kp indices

are provided every 3 hours and range in value from 0 to 9, to describe geomagnetic

conditions ranging from quiet to extremely disturbed. In particular, the Kp index

is used to calculate high-latitude auroral precipitation (Hp), which specifies high-

latitude energy inputs, and the cross-tail potential (Cp), which specifies ion convection

patterns in the polar regions. Historical records of F10.7 and Kp indices are provided

by the National Oceanic and Atmospheric Administration (NOAA).

6.3.1 Experiment Set Up

The numerical experiments presented in this paper simulate a scenario in which an

ionospheric forecast is driven with sub-optimal specification of magnetospheric and

solar inputs during a period of high geomagnetic disturbance. Geomagnetic indices

are difficult to measure accurately during periods of magnetospheric disturbance, and

solar irradiance patterns can deviate significantly from proxy models during extreme
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solar events. Storm time effects can be difficult to model and predict in sign and

magnitude, primarily due to uncertainties in these key inputs, as well as inherent

limitations of the parameterized representations. For example, the study by (Pe-

datella et al., 2009) discusses the significant enhancement in F-layer electron density

peak and altitude during the geomagnetic storm of 15 December 2006. In particu-

lar, these storm time effects were observed to be long-lasting after the main phase of

this geomagnetic storm. Observational analyses on the initial phase of this geomag-

netic storm are presented by (Lei et al., 2008b) and a study about observed traveling

ionospheric disturbances are discussed in (Lei et al., 2008a).

The goal in the following numerical experiments is to evaluate the benefit of ap-

plying the proposed bias correction strategy to reduce model bias in electron density

predictions during a period of geomagnetic disturbance. these tests are presented with

observing system experiments, in which the true state of the ionosphere-thermosphere

system is taken to be given by a TIEGCM simulation. This ”perfect model” assump-

tion is made to isolate the performance of the bias estimation strategy from other

issues that may arise in data assimilation problems, such as gross misrepresentation

from model dynamics or complex error distribution in the assimilated observations.

The focus of the experiments is on the 26 September 2011 geomagnetic storm event.

An ensemble of 40 forecasts is generated with normally distributed parameter

values of F10.7, Hp and Cp. Each parameter is centered around the respective index

values published for 26-27 September 2011. The standard deviation for the F10.7

distribution is its 21-day standard deviation during the spin-up period, which is taken

to be to be from 5 to 25 September 2011, and the standard deviation for Kp is

±1.0 units of Kp. The respective standard deviations for F10.7, Cp and Hp are

13× 10−22 W/m2Hz, 8.4 kV and 7.2 GW, respectively. Figures 6.1(a)-(c) summarize

the temporal evolution of the ensemble of forecast parameters (pink) and the ensemble
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mean (red) for each respective parameter. The horizontal axis for each figure is time in

hours, starting from 00:30 UTC on 26 September 2011 to 23:30 UTC on 27 September

2011.
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Figure 1. (a) Time series of F10.7 indices in solar flux units
�
10�22W/(m2Hz)

�
, (b) cross-tail po-

tential (Cp) in kV, and (c) hemispheric power (Hp) in GW. The horizontal axis is in hours, starting at

00:30 UTC on 26 September and ending at 23:30 UTC on 27 September 2011. The parameters used to drive

the truth are shown in green, the parameters used to drive the ensemble of forecasts are shown in pink and

their respective ensemble means are shown in red. The deviation of each parameter from those used in the

control simulation is shown in gray, and the ensemble mean of the deviations is shown in black.
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Figure 6.1: (a) Time series of F10.7 indices in solar flux units
(
10−22W/(m2Hz)

)
,

(b) cross-tail potential (Cp) in kV, and (c) hemispheric power (Hp) in GW. The
horizontal axis is in hours, starting at 00:30 UTC on 26 September and ending at
23:30 UTC on 27 September 2011. The parameters used to drive the truth are shown
in green, the parameters used to drive the ensemble of forecasts are shown in pink and
their respective ensemble means are shown in red. The deviation of each parameter
from those used in the control simulation is shown in gray, and the ensemble mean
of the deviations is shown in black.

The control simulation is driven with forcing parameters that have the same tem-

poral evolution as the published indices but are shifted as shown by the green curves

in Figure 6.1(a)-(c). This shift is introduced to simulate the scenario where the solar

and magnetospheric inputs used to drive the forecast are a misspecification relative to
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the ”true” state of the ionosphere-thermosphere system. The imposed bias on F10.7,

shown in Figure 6.1(a) for the ensemble (gray) and the ensemble mean (black), is

10× 10−22 W/m2Hz and is kept constant throughout the simulation. The bias in the

magnetospheric inputs is introduced by adding a shift of 1.0 units in the Kp index.

The corresponding bias on Cp and Hp values is shown in Figures 6.1(b)-(c). Al-

though the bias in the Kp index is fixed, the resulting bias in the Cp and Hp indices

is temporally varying. Prior to the onset of the geomagnetic storm, which is about

12:30 UTC on 26 September, the bias in the magnetospheric inputs is relatively small

and constant but increases considerably over the next 6 hours. The strongest bias

occurs during the main phase of the geomagnetic storm, which takes place at about

16:30–19:30 UTC on 26 September. As geomagnetic conditions relax over the next

12 hours, the bias in the magnetospheric inputs also decreases accordingly.

6.3.2 Results

Model Bias Distribution

In the following section, it is tested how well the proposed bias estimation strategy,

assuming that the bias evolution is persistence can capture the spatiotemporal evo-

lution of model bias in the electron density field, resulting from the misspecification

of the solar and magnetospheric model inputs. The misspecification of the param-

eterized input is assumed to be constant for solar inputs and time-varying for the

magnetospheric inputs as shown in Figure 6.1.

At a given time tn, denote the electron density component of the background

state vectors, {ub(j)n }kj=1, as {eb(j)n }kj=1 and its ensemble mean as ē
b(j)
n . Similarly, denote

the ”true ”electron density component from the control simulation as etn. Define the
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electron density bias to be given by the deviation of the forecast mean from the truth:

bn = ēbn − etn. (6.8)

Figure 6.2(a) shows the global distribution of electron density bias, in units of el/cm3,

at a fixed altitude of 375 km, which is about the altitude of the F-layer over the equa-

torial day-time ionosphere during this time period. The selected times show the

distribution of electron density bias on 26 September 2011 before the major onset

of geomagnetic disturbances (12:30 UTC), during the main phase of the geomag-

netic storm (15:30 UTC, 18:30 UTC), and as geomagnetic disturbances begin to

relax (21:30 UTC). The locations of the observed electron density profiles available

for assimilation at each respective time are shown with the magenta markings.

Also shown in Figure 6.2(a) are 4 geographical regions over which the model

bias is examined. The boundaries for the Northern and Southern high-latitude re-

gions (R1 and R2) are located at the 30◦ magnetic co-latitudes, since processes associ-

ated with magnetospheric inputs are calculated explicitly by the TIEGCM below this

co-latitude. Above the 20◦ magnetic co-latitudes, magnetospheric inputs are imposed

directly with the Heelis model. Between these co-latitude bands, a linear combina-

tion of the imposed parametric and model solutions is used. See the TIEGCM model

description for more information (http://www.hao.ucar.edu/modeling/tgcm/). The

low-to-mid altitude regions are also separated in the day-time (R3) from the night-

time (R4).

A positive (negative) sign indicates that the background electron density overes-

timates (underestimates) the true electron density. Prior to the main phase of the

geomagnetic storm, the most notable bias structure is in the day-time mid-latitude

regions (R3), where there is a negative bias. As geomagnetic conditions become

increasingly disturbed, the misspecification in the magnetospheric input grows, re-
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Figure 2. (a) Global maps of electron density bias in units of el/m�3, at a fixed 375 km altitude at the in-

dicated times on 26 September 2011. The electron density bias is computed as deviation from the truth of the

ensemble mean of the forecast (ēb � et). The black curves denote the boundaries of the geographical regions,

labeled in white, that partition the domain horizontally. The locations of the COSMIC vertical profiles at each

time are shown with the magenta markings. (b) Vertical structure of electron density bias at a fixed 77.5�N

latitude at 11:30, 15:30, 19:30 and 23:30 UTC on 26 September 2011. The vertical partitioning of the domain

is denoted with the black curves, which correspond to pressure levels -2.5, 0, 2.5 and 5. (c) Analogous plots

of the electron density bias vertical structure at a fixed 77.5�S latitude.
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Figure 6.2: (a) Global maps of electron density bias in units of el/m3, at a fixed
375 km altitude at the indicated times on 26 September 2011. The electron density
bias is computed as deviation from the truth of the ensemble mean of the forecast (ēb−
et). The black curves denote the boundaries of the geographical regions, labeled in
white, that partition the domain horizontally. The locations of the COSMIC vertical
profiles at each time are shown with the magenta markings. (b) Vertical structure of
electron density bias at a fixed 77.5◦N latitude at 11:30, 15:30, 19:30 and 23:30 UTC
on 26 September 2011. The vertical partitioning of the domain is denoted with the
black curves, which correspond to pressure levels -2.5, 0, 2.5 and 5. (c) Analogous
plots of the electron density bias vertical structure at a fixed 77.5◦S latitude.

sulting in the formation of a significant negative bias structure over the Southern

Polar region (R1). The negative bias structure continues to grow over regions R1 and

R3 over the next few hours throughout the rest of the main storm phase. There is

also a formation of negative bias in the Northern polar region (R2) and a positive

bias forming over the night-time low-to-mid latitude region (R4). After the main

phase (21:30 UTC), the negative bias in the polar regions is largely diminished but
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the bias over the day-time mid-latitudes remains relatively constant. This suggests

that the misspecification of F10.7, which is held constant throughout the simulation

has its largest effect over the low-to-mid latitude regions. Over this time period,

the temporal evolution of electron density bias has a pronounced westward drift of

approximately 15◦/h, so the persistent dynamics of the bias evolution operator, G,

provide a reasonable representation of the model error.

Figure 6.2(b) shows the vertical structure of the electron density bias at the 77.5N◦

geographical latitude at the same times. The black horizontal curves denote model

pressure levels -2.5, 0, 2.5 and 5, which correspond to altitudes of about 145 km,

215 km, 325 km and 460 km, respectively. Throughout the main phase of the ge-

omagnetic storm, the most notable bias is negative, occurring above 250 km and

280 km altitudes in the day- and night-time regions, respectively, which is about the

altitude of the lower portion of the F-layer. Figure 6.2(c) shows the vertical structure

of the electron density bias at the 77.5◦S geographical latitude. Similarly, the most

notable bias is observed above the 280 km altitude. However, there is pronounced

positive bias at about a 250 km altitude, which is located slightly below the F-layer

peak density.

Region-Averaged Bias Estimates

Following the procedure described in Section 6.2, the ensemble of global bias correc-

tion vectors at a given time tn, {cb(j)n }kj=1, is updated to form an ensemble of analyzed

global bias correction vectors, {ca(j)
n }kj=1. Generally, each c

b(j)
n is a md × 1 vector,

where m is the number of grid points and d is the number of state variables being

analyzed. As discussed at the end of Section 6.2, bias corrections are considered only

for the electron density field. For simplicity in notation, regard each c
b(j)
n to be an

m× 1 vector corresponding to the electron density field corrections only.
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The forecast/analysis cycle is initialized at time t0 with electron density corrections

bias corrections at each grid point is given by

cb(j)n =
1

4

(
eb(j)n − ēbn

)
, (6.9)

which has ensemble mean 0 and reflects the spatial correlations of the electron den-

sity field. The procedure described in Section 6.2 is then carried out for subsequent

analysis steps to produce spatially- and time-varying bias estimates throughout the

domain that are evolved according to Gn, which in this section is taken to be the

identity map. For each grid point L, variance inflation is applied to the bias correc-

tion component so that its ensemble variance is at least 20% of the electron density

component at L.

The model state vector is analyzed without the bias corrections for the first few

analysis cycles after the forecast spin-up, so that errors associated with the unadjusted

thermospheric state are reduced and the electron density bias is primarily dependent

on the misspecification of the solar and magnetospheric inputs. Eight analysis cycles

are computed, from 16:30 to 23:30 UTC on 25 September 2011, before using the bias

correction strategy for the first time at 00:30 UTC on 26 September 2011.

To evaluate the skill of the bias estimation strategy, the model bias estimates, av-

eraged over the 4 geographical regions, shown in Figure 6.2(a) are examined. Consider

a fixed bias region, R, where R = R1, . . . , R4 as defined above. Denote the electron

density component of the jth forecast, e
b(j)
L , averaged over all grid points L ∈ R, as

D
b(j)
R = N−1

R

∑
L∈R e

b(j)
L , where NR is the number of grid points in R. Similarly, form

the region-averaged electron density of the control simulation, Dt
R = N−1

R

∑
L∈R etL.

The region-averaged deviation from the truth for the jth forecast is given by

B
b(j)
R = D

b(j)
R −Dt

R, j = 1, . . . , k (6.10)

which yields an ensemble of regionally-averaged model bias estimates, whose ensemble
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mean, B̄b
R = 1

k

∑k
j=0 B

b(j)
R is the most likely state of the regionally averaged model

bias.

Figure 6.3(a) summarizes the temporal evolution of the region-averaged electron

density bias in the Southern polar region (R1) averaged between 1.0 and 5.5 pressure

levels, which correspond altitudes of about ∼260 km to ∼485 km. The horizontal

axis is time in hours, starting at 00:30 UTC on 26 September, 2011 and ending

at 23:30 UTC on 27 September 2011, and the vertical axis is electron density in

units of el/cm3. The ensemble of spatially-averaged background electron densities,

{Db(j)
R }kj=1 and their ensemble mean, D̄b

R, are denoted with thin pink curves, and

thick red curve, respectively. The analogous region-averaged electron density for the

control simulation, Dt
R, is given by the green curve. The ensemble of bias correction

parameters, {Cb(j)
R }kj=1 and their ensemble mean, C̄b

R, is shown with the cyan and

thick blue curves, respectively. For direct comparison, the negative of the region-

averaged forecast deviations, {Bb(j)
R }kj=1, is also shown with the thin gray curves and

their respective ensemble mean, B̄b
R, is given by the thick black curve.

The region-averaged electron density for the control simulation varies considerably

within region R1, particularly during the period of main geomagnetic disturbance,

where the electron density increases sharply between 12:30 UTC and 16:30 UTC on 26

September. After the main storm phase, electron density content drops considerably

and remains relatively constant throughout the rest of the simulation. The region-

averaged electron density trajectories for the forecast evolve similarly. Prior to the

onset of geomagnetic disturbances, the electron density bias is relatively small, but

it rises sharply during the main phase, peaking at around 16:30 UTC. The electron

density bias is maintained until about 19:30 UTC, where it begins to drop considerably

and remains relatively constant after 23:30 UTC on 26 September, until there is a

small resurgence towards the end of the simulation.
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(a) Region R1 (b) Region R2

(c) Region R3 (d) Region R4

Figure 3. (a) Time series of the true electron density (green), in units of el/cm3, averaged over region

R1 (as defined in Figure 2(a)), at the indicated altitudes. The electron density, averaged over the same re-

gion, for the background ensemble (pink) and its ensemble mean (red) are also shown. The deviation of the

background ensemble and its ensemble mean from the truth are given by the thin gray and thick black curves,

respectively. The time series of the ensemble of bias parameters and their ensemble mean is shown by the thin

cyan and the thick blue curves, respectively. The horizontal axis is time in hours, starting at 00:30 UTC on 26

September 2011 and ending at 23:30 UTC on 27 September 2011. (b)-(d) Analogous time series of electron

density, averaged over region R2 (Northern polar region), region R3 (day-time mid-latitudes), and region

R4 (night-time mid-latitudes), respectively.
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Figure 6.3: (a) Time series of the true electron density (green), in units of el/cm3,
averaged over region R1 (as defined in Figure 6.2(a)), at the indicated altitudes. The
electron density, averaged over the same region, for the background ensemble (pink)
and its ensemble mean (red) are also shown. The deviation of the background en-
semble and its ensemble mean from the truth are given by the thin gray and thick
black curves, respectively. The time series of the ensemble of bias parameters and
their ensemble mean is shown by the thin cyan and the thick blue curves, respectively.
The horizontal axis is time in hours, starting at 00:30 UTC on 26 September 2011 and
ending at 23:30 UTC on 27 September 2011. (b)-(d) Analogous time series of elec-
tron density, averaged over region R2 (Northern polar region), region R3 (day-time
mid-latitudes), and region R4 (night-time mid-latitudes), respectively.

Prior to the onset of geomagnetic disturbances (12:30 UTC), the bias strategy

correctly detects the near zero positive bias and continually adjusts its estimates

as model bias starts to increase during the transition into the main phase of the

geomagnetic storm around 12:30 UTC. Although the temporal variations in the bias

estimates evolve in a similar manner as the model bias, the temporal variations are

not captured during this transitionary periods where the model bias increases and
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decreases sharply during the initial and relaxation phases, respectively. Most notably,

the bias corrections adjust too slowly and underestimate the model bias peak during

the initial storm phase. After the main phase, the model bias decreases sharply and

although the bias corrections adjust, they do so too slowly and overestimate the model

considerably after 20:30 UTC for the next 8 hours.

The region-averaged bias over the day-time low-to-mid-latitude region (R3), shown

in Figure 6.3(c), exhibits a relatively larger bias compared to the high-latitude re-

gions but remains relatively constant throughout the simulation, since the misspec-

ification of F10.7, which is held constant throughout the simulation, is the primary

driver of bias over this region. The bias correction parameters approach the model

bias relatively quickly and follow its temporal variations well, particularly during the

relaxation phase where the model bias decreases gradually. The bias in the night-

time region (R4), shown in Figure 6.3(d), is considerably smaller than the bias in

its surrounding regions. Its temporal evolution is relatively constant throughout the

simulation and is well represented with the bias corrections.

Validation of Bias Correction

To validate the bias correction strategy, 1-hour predictions of electron density are

compared before and after the bias corrections are applied. Since the bias corrections

are applied only during the evaluation of the forward operator, the benefit of the bias

corrections is evaluated at the observed locations. In particular, the prediction RMS

error averaged over all vertical profiles is compared within each of the geographical

regions:

RMSE =

√∑
i∈R
(
ȳbi − yti

)2

`R
, (6.11)

118



where yti and ȳbi are the true and predicted electron densities at the ith observation

location. The RMSE in Equation (6.11) is averaged over the set of `R observations

located in the given region, R.

Figure 6.4(a) shows the RMSE time series of 1-hour predictions over region R1,

where the blue and red curves are computed with Equation (6.11), by taking ȳbi to be

the forecast predictions before and after the bias corrections are applied, respectively.

Prior to the main phase of the geomagnetic storm (12:30 UTC), there is little benefit

in applying the bias corrections due to the relatively small bias present during this

time period. Considerable benefits in using the bias correction are observed between

15:30 UTC and 19:30 UTC, where the RMSE of uncorrected predictions reaches its

peak. Due to the misrepresentation of the model bias over region R1 during the

relaxation phase, as seen in Figure 6.3(a), the bias corrections do not yield benefits

in 1-h predictions and actually increase the forecast RMSE considerably throughout

the relaxation storm phase. In the next section, it is shown that using a growth-

relaxation model for the bias evolution significantly improves the temporal variations

of the model bias during this time period.

Figure 6.4(b) shows the analogous RMSE time series for region R2, which is similar

to that of region R1, in that there is a peak in RMSE during the main phase of the

geomagnetic storm, although it is smaller in magnitude. The improvements prior to

the onset of geomagnetic disturbances are relatively small, but there is significant

improvement of about 30% during the main phase. During the relaxation phase, the

RMSE is about the same with and without the bias correction, so the bias corrections

do not yield much benefit during this time period.

Figure 6.4(c) shows analogous RMSE time series for the low-to-mid-latitude day-

time region (R3). The RMSE time series for this region has a less pronounced peak

during the main phase and the improvement due to the applied bias corrections is
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(a) Region R1
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(b) Region R2
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(c) Region R3
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(d) Region R4
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Figure 4. (a) Time series of the root mean squared error (RMSE) of 1-hour forecasted electron density

predictions, in el/cm3, averaged over all the observed locations in region R1 (as defined in Figure 2). The

RMSE values are shown for predictions before (blue) and after (red) the bias correction is applied. (b)-(d)

Analogous time series of region-averaged RMSE values and ratios for regions R2, R3 and R4. In all figures,

missing values indicate that there are no observations in that region during that time. All time series begin at

00:30 UTC on 26 September 2011 and end at 00:30 UTC on 28 September 2011, with 1 hour intervals.
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Figure 6.4: (a) Time series of the root mean squared error (RMSE) of 1-hour fore-
casted electron density predictions, in el/cm3, averaged over all the observed locations
in region R1 (as defined in Figure 6.2). The RMSE values are shown for predictions
before (blue) and after (red) the bias correction is applied. (b)-(d) Analogous time
series of region-averaged RMSE values and ratios for regions R2, R3 and R4. In all
figures, missing values indicate that there are no observations in that region during
that time. All time series begin at 00:30 UTC on 26 September 2011 and end at
00:30 UTC on 28 September 2011, with 1 hour intervals.

consistent throughout the simulation, although there are a few time periods where

the bias corrections offer little to no improvement near the end of the simulation.

The RMSE time series for the night-time region (R4) is shown in Figure 6.4(d). In

this region, the bias is also is relatively constant and the benefits of applying the bias

corrections are consistent.
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6.4 Numerical Experiment 2: Bias Estimation With Time-Varying Evolution

Operator

The numerical experiments presented in Section 6.3 show that the bias correction

strategy considerably improves 1-hour forecast forecasts throughout the domain, par-

ticularly during the main phase of the geomagnetic storm. However, some limitations

of the strategy are observed during transitionary periods of the geomagnetic storm,

where model bias undergoes relatively fast temporal variations. Most notably, the

high-latitude bias corrections underestimate the sharp increase in model bias during

the initial storm phase and overestimate the model bias as it sharply decreases dur-

ing the relaxation storm phase. The misrepresentation of model bias during these

time periods is primarily due to the choice of bias evolution operator, Gn, which

assumes the model bias remains constant during each forecasting step. Consequently,

the predicted bias corrections partially diverge from the true state and yield inad-

equate background bias correction estimates over high-latitude regions. Due to the

sparsity of observations, the bias estimates computed during each analysis step are

not sufficiently adjusted to capture the temporal variations of the model bias.

To improve the estimation of the temporal model bias variations, a growth-

relaxation model is implemented for Gn to propagate the model bias during the

transitionary periods of the geomagnetic storm. In the following section, the numeri-

cal experiments presented in Section 6.3 are repeated with a growth-relaxation model

for G, as is now described.

6.4.1 Bias Propagation

The proposed growth-relaxation model for the bias evolution is of the form

Gn(can) = eλncan (6.12)
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to describe the temporal evolution of model bias estimates at each time tn, such that

the bias estimate for the jth forecast is given by c
b(j)
n+1 = Gn(c

a(j)
n ). The parameter λn

may vary with time tn to describe the rate of model bias growth or decay, depending

on the storm phase. With this choice of Gn, the model bias estimate is evolved

autonomously, in that it only depends only on its current state, c
a(j)
n , and not on the

state of the model, u
b(j)
n .

Due to the different mechanisms driving the model bias in the ionosphere, suitable

values for λn may change depending on location and altitude in the domain. To

provide the necessary flexibility in the representation of the model bias evolution, λn

is allowed to vary spatially, and denote its value at the Lth grid point as λn(L). The

component of Gn(can) at the grid point L is given by eλn(L)can(L), where can(L) is the

Lth component of the bias vector can.

It may be impractical to find optimal values of λn(L) for each grid point due to the

possibly complex mechanisms that drive the bias evolution. However, within suitably

chosen geographical regions, the model bias evolution may have similar spatiotem-

poral variations that may be adequately represented with a simple model. To this

end consider a time-varying parameter λn(R), which governs the change in model bias

from one assimilation time point to the next, within each of the geographic regions

R, that were defined in Section 6.3.2. The value λn(L) = λn(R) is set for all the grid

points L ∈ R at each fixed pressure level on the model grid, to account for the vertical

structure of the electron density bias.

Specific values for λn(R) are obtained as follows. Figure 6.5(a) shows a time se-

ries (blue dots) of electron density RMSE averaged over all grid points L ∈ R1 at

pressure level 2.0 (∼375 km altitude). To obtain suitable values for λn(R) at this pres-

sure level during the initial phase of the storm, an exponential curve is fit (using the

fit function in MATLAB) to the RMSE time series from 10:30 UTC to 13:30 UTC on
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26 September, as shown by the red curves in Figure 6.5(a). The growth factor used in

this exponential fit is used as the value for λn(R1) at pressure level 2.0 for the duration

indicated by the curve (10:30 UTC to 13:30 UTC). Similarly, an exponential decay

curve is fit to the RMSE time series from 19:30 UTC on 26 September to 06:30 UTC

on 27 September to obtain λn(R1) used during the relaxation storm phase. During

all other times, there is no red curve, indicating that λn(R1) = 0, so that persistent

dynamics are used for those times.

A similar approach is taken to compute λn(R1) at each pressure level above 0.5,

which corresponds to the lower portion of the F-layer. Below this pressure level, the

value λn(R1) = 0 is set, since the model bias generally does not display a strong growth

or decay at these pressure levels during transitionary periods of the storm and is also

much weaker in magnitude relative to the topside ionosphere.

Figure 6.5(b). shows the vertical structure of λn(R1) values used during the ini-

tial (left) and relaxation (right) storm periods for region R1 above pressure levels 1.0

and 0.5, respectively. During the initial storm phase, the largest rate of growth is at

about pressure level 3.0 (∼350 km altitude), which is about the top portion of the

F-layer. Similarly, the greatest rates of decay are seen between pressure levels 3.0

and 4.0, which correspond to about 350 km and 400 km altitudes. Growth-relaxation

rates are computed similarly for regions R2 and R3, and are shown in Figure 6.6.

The growth-relaxation bias evolution model is not used in the night-time region (R4)

since the bias is not observed to have a pronounced growth or decay component as

the other regions.

6.4.2 Results

The time series of region-averaged bias estimates, in the case where the growth-

relaxation model described in Section 6.4.1 is used for G, are shown for regions
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Figure 5. (a) RMSE time series of electron density bias in units of el/cm3, at pressure level

3.5 (⇠375 km), averaged over all grid points in region R1. The horizontal axis is time in hours. The growth

and decay factors used in the bias evolution operator, �R1 , are shown by the red curves and are applied only

during the times that these curves cover. (b) Vertical structure of each �R1 , during the initial (left) and relax-

ation (right) phases of the geomagnetic storm. The vertical axis is in pressure levels and the horizontal axis is

the value of �R1 .
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Figure 6.5: (a) RMSE time series of electron density bias in units of el/cm3, at
pressure level 3.5 (∼375 km), averaged over all grid points in region R1. The hori-
zontal axis is time in hours. The growth and decay factors used in the bias evolution
operator, λR1 , are shown by the red curves and are applied only during the times that
these curves cover. (b) Vertical structure of each λR1 , during the initial (left) and
relaxation (right) phases of the geomagnetic storm. The vertical axis is in pressure
levels and the horizontal axis is the value of λR1 .

R1 and R2 in Figures 6.7(a)-(b). The quantities in these figures are computed as

described in Section 6.3.2 and are analogous to Figures 6.3(a)-(b). Regions R1 and

R2 are the high-latitude regions over which rapid temporal variations occur during

the transitionary periods of the geomagnetic storm. Comparison with Figure 6.3(a)-

(b) reveals that the growth-relaxation model for G provides a considerably improved

representation in the initial and relaxation phases of model bias throughout the main
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(a) ⇠375 km. Altitude (Region R3)
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Figure 2. (a) RMSE time series of electron density bias in units of el/m3, at pressure level 3.5 (⇠375 km),

averaged over all grid points in region R3. The horizontal axis is time in hours. The growth and decay factors

used in the bias evolution operator, �R1 , are shown by the red curves and are applied only during the times

that these curves cover. (b) Vertical structure of each �R3 , during the initial (left) and relaxation (right) phases

of the geomagnetic storm. The vertical axis is in pressure levels and the horizontal axis is the value of �R3 .
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(a) ⇠375 km. Altitude (Region R2)
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Figure 1. (a) RMSE time series of electron density bias in units of el/m3, at pressure level 3.5 (⇠375 km),

averaged over all grid points in region R2. The horizontal axis is time in hours. The growth and decay factors

used in the bias evolution operator, �R2 , are shown by the red curves and are applied only during the times

that these curves cover. (b) Vertical structure of each �R2 , during the initial (left) and relaxation (right) phases

of the geomagnetic storm. The vertical axis is in pressure levels and the horizontal axis is the value of �R2 .
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Figure 6.6: (a) Analogous plots of λ values to the ones shown in Figure 6.5, for bias
regions R2 and R3, respectively.

phase of the geomagnetic storm. The bias estimates still slightly underestimate the

rapid growth of the model bias in region R1 during the beginning of the initial phase

between 11:30 and 13:30 UTC, but the application of G allows the bias estimates to

quickly grow and adequately estimate the peak of the model bias at 16:30 UTC and

also follow the sharp decrease in model bias following the main storm phase. The bias

evolution in region R2 is similarly well represented throughout the simulation with

the growth-relaxation model of G.

Figures 6.7(c)-(d) show the corresponding RMSE time series of 1-h electron density

predictions over regions R1 and R2 in the case where the growth-relaxation model is

used for G. These RMSE time series are computed as described in Section 6.3.2 and

are analogous to those shown in Figure 6.4(a)-(b). An overall improvement is seen

throughout the duration of the geomagnetic storm over regions R1 and R2. The most

notable benefits of the bias corrections occur during the relaxation phase, where there

is improvement of about 40% and 20% in regions R1 and R2, respectively, compared
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to when using persistent bias evolution model.
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(a) Region R1 (b) Region R2

(c) Region R1
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(d) Region R2
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Figure 6. (a)-(b) Time series of bias correction parameters averaged over regions R1 and R2 respectively.

The bias correction values in this figure are calculated in the same manner as Figure 3(a)-(b), but in the case

where the bias evolution operator described in Section 5 is used. (c)-(d) Time series of the root mean squared

error (RMSE) of 1-hour forecasted electron density predictions, in el/cm3 in regions R1 and R2, respec-

tively. The RMSE values in this figure are calculated in the same manner as Figure 4(a)-(b), but in the case

where the bias evolution operator described in Section 5 is used.
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Figure 6.7: (a)-(b) Time series of bias correction parameters averaged over regions
R1 and R2 respectively. The bias correction values in this figure are calculated in the
same manner as Figure 6.3(a)-(b), but in the case where the bias evolution operator
described in Section 5 is used. (c)-(d) Time series of the root mean squared er-
ror (RMSE) of 1-hour forecasted electron density predictions, in el/cm3 in regions R1

and R2, respectively. The RMSE values in this figure are calculated in the same man-
ner as Figure 6.4(a)-(b), but in the case where the bias evolution operator described
in Section 6.4.1 is used.

Figure 6.8 summarizes the spatial distribution of the bias corrections at same rep-

resentative times of the geomagnetic storm. For comparison, Figure 6.8(a) shows the

same background electron density bias from Figure 6.2(a), computed as ēb− et. This

quantity yields the model error in 1-h electron density predictions at each of the indi-

cated altitudes and times. Figure 6.8(b) shows the global distribution of background

bias corrections, c̄b, at the same altitude and times as Figure 6.2(a). Locations where

there the bias corrections are red (blue) correspond to regions where the bias cor-
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rections are positive (negative). Comparison with Figure 6.8(a) demonstrates that

the spatial structure of bias corrections provides a reasonable estimate of the elec-

tron density bias, particularly over the day-time mid-latitude regions. Figure 6.8(c)

shows the difference between Figure 6.8(b) and Figure 6.8(a), which indicate what

the remaining model error would be after the bias corrections are added at each grid

point. Locations where the bias corrections overestimate (underestimate) the model

bias are shown in red (blue).
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Figure 7. (a) Global maps of electron density bias shown in Figure 2(a). (b) Spatial structure of the bias

correction estimates, c̄b
L, at the same times and altitudes. (c) Analogous global maps of electron density bias

after the field of correction estimates is applied.
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Figure 6.8: (a) Same global maps of electron density bias as shown in Figure 6.2(a).
(b) Spatial structure of the bias correction estimates, c̄bL, at the same times and alti-
tudes.. (c) Analogous global maps of electron density bias after the field of correction
estimates is added.

.
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Although there is considerable improvement in the overall bias distribution, there

are a few locations where the bias correction misrepresents the model bias, mainly in

regions of sparse data coverage. The misrepresentation in some of these locations can

be relatively large, which is why these corrections are not used to directly modify the

state of the electron density. Overall, the background prediction of electron density

is improved at the observed locations, so that the data assimilation procedure may

produce a more gentle update during the assimilation of the observations.

Figure 6.9(a) shows 1-h predictions of electron density averaged over all vertical

profiles in region R1 at 12:30, 15:30, 18:30 and 21:30 UTC on 26 September 2011.

The horizontal axis is electron density in el/cm3 and the vertical axis is altitude

in km. The region-averaged observations are shown in green and the analogously

averaged electron density is shown for the background ensemble mean before (blue)

and after (red) the bias corrections are applied. The vertical structure of the ap-

plied bias corrections is given by the black curves. The vertical structure of the bias

corrections varies similarly to that of the electron density profiles, although the max-

imum corrections are applied above the F-layer and there are negative corrections

applied at altitudes slightly below the F-layer at certain assimilation times. The ap-

plied bias corrections improve state estimates of the maximum electron density in the

F2-layer (NmF2) and its altitude (hmF2) considerably, particularly during the main

phase of the storm (15:30 UTC and 19:30 UTC). Analogous plots of bias corrections

applied to regions R2 and R3 are shown in Figures 6.9(b)-(c), respectively. Similar

improvements in peak density and altitude are observed over these regions. The bias

corrections for the most part correctly increase the electron density peak and its alti-

tudes, but there are times where the electron density peak is correctly for improved

agreement with the truth.
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(c) Region R3
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Figure 8. (a) Comparison of 1-hour electron density vertical profile predictions at the indicated times on

26 September 2011. The green profile in each figure is the average of all COSMIC electron density verti-

cal profiles located in region R1 (as defined in Figure 2(a)). The forecasted electron density is also shown

before (blue) and after (red) the bias correction, shown by the magenta curve, is applied. (b)-(c) Analogous

comparison of electron density predictions over regions R2 and R3 at the same times. In all figures, the

vertical axis is altitude in km and the horizontal axis is electron density in el/cm3.
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Figure 6.9: (a) Comparison of 1-hour electron density vertical profile predictions
at the indicated times on 26 September 2011. The green profile in each figure is
the average of all COSMIC electron density vertical profiles located in region R1 (as
defined in Figure 6.2(a)). The forecasted electron density is also shown before (blue)
and after (red) the bias correction, shown by the black curve, is applied. (b)-(c)
Analogous comparison of electron density predictions over regions R2 and R3 at the
same times. In all figures, the vertical axis is altitude in km and the horizontal axis
is electron density in el/cm3.

6.5 Discussion and Conclusions

A strategy for model bias correction, within a data assimilation system for com-

plex and sparsely observed dynamical systems is presented. The proposed strategy

is applied in observing system experiments, in which the geomagnetic storm of 26

September 2011 is simulated with the TIEGCM. Synthetic electron density vertical

profiles, whose locations are given by the COSMIC network during the time period

of the storm, are assimilated using the LETKF. Systematic model bias in electron

density predictions is simulated through the misspecification of parameterized so-
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lar and magnetospheric inputs to the TIEGCM, which specify key dynamics in the

ionosphere. The spatial distribution of electron density bias is estimated through a

state-augmentation approach. The bias estimates are applied in the evaluation of

the forward operator, with the intent to reduce the effect of model errors in the pre-

dicted electron densities prior to the assimilation of observations. This methodology

permits spatially varying estimation of model bias, which may be useful during ex-

treme events, to account for storm time effects that are not well represented with the

parameterized representation of the solar and magnetospheric drivers alone.

Results show that the bias correction strategy yields reasonable estimates of model

bias and improves 1-hour electron density forecasts overall. However, during transi-

tionary periods of the geomagnetic storm, where there are sudden large-scale temporal

variations in electron density over high-latitude regions, the bias correction strategy

does not adjust its bias estimates quickly enough to capture the temporal variability

of the model bias. In particular, the bias adjustments underestimate the sudden in-

crease of model bias during the initial storm phase and overestimate the model bias

during the relaxation storm phase. This is primarily due to the choice of bias evolu-

tion model, G, which is initially taken to be persistence. During these transitionary

periods, the model bias undergoes significant variations, while this choice of G holds

the bias estimates constant during each forecasting step, causing some divergence of

the bias estimates from the model bias during each forecasting step. Additionally,

the observing network is relatively sparse over these regions during this time period,

which further slows the adjustment of the bias estimates. Nevertheless, the bias cor-

rections yield considerable improvements before the onset of the geomagnetic storm

and during the initial and main phases, but yield inadequate adjustments during the

relaxation phase.
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To improve estimates of the temporal variations in the model bias during transi-

tionary periods, a growth-relaxation model for G, is implemented at certain pressure

levels to approximate the estimated model bias. Over high-latitude regions, the large-

scale increase in model bias during the initial storm phase is modeled with exponential

growth, while the decrease in model bias that occurs during the relaxation phase is

modeled with exponential decay. The rates of growth or decay used in the growth-

relaxation model vary by geographical region and altitude.

The benefits of using the growth-relaxation model for G are primarily seen 1-h

electron density predictions over high-latitude regions during transitionary periods

of the geomagnetic storm, where the temporal variations in model bias are most

prominent. Model bias corrections over the Southern polar region (R1) yield on aver-

age about a 45% and 35% improvement in 1-h electron density predictions during the

main and relaxation phases of the storm, respectively. The Northern polar region (R2

displays a similar peak in model bias evolution and bias corrections yield an improve-

ment of about 45% and 20% during the main and relaxation phases, respectively.

Over day-time low-latitude regions, a steady improvement of about 25% is observed

throughout the simulation. 1-h predictions of the global distribution of model bias

are approximated reasonably well with the bias correction strategy overall. The bias

corrections also yields adequate estimates of the vertical structure of the model bias

and considerably improves 1-hour electron density predictions of the observed vertical

profiles, including the adjustment of the F-layer peak and its altitude.

This work proposes a flexible methodology to extend the capabilities of existing

parameterized inputs to drive ionospheric global circulation models. The choice of

bias evolution operator is an important component of this methodology when there

are significant temporal variations in model bias and the observing network is sparse.

This chapter demonstrates the benefits that a simple growth-relaxation model for bias
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evolution provides for ionospheric weather forecasting during a geomagnetic storm. Of

course, there may be benefit in the development of more sophisticated bias evolution

models for G through statistical studies of other geomagnetic storms, although there

may be potential difficulties in determining adequate inputs for G. On the other hand,

it may be more suitable to use simple models for G, such as the growth-relaxation

model used in this paper, and use re-analysis studies of different geomagnetic storm

events to formulate appropriate growth and relaxation rates to describe temporal

variations of model bias for different extreme events, depending on annual season or

geomagnetic conditions. There may also be benefits in tuning the region configuration

over which G is applied, depending on the specific storm-time effects of interest

or biases that a particular model may be known to have. These extensions offer

significant potential and merit future consideration.
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Chapter 7

CONCLUSION

In this dissertation, the local ensemble transform Kalman filter (LETKF) is proposed

as a data assimilation scheme for ionospheric space-weather forecasting. Due to re-

cent advancements in observational coverage in the ionosphere, data assimilation is

becoming an increasingly important component for specification and prediction of

space weather in the ionosphere. Thus, innovative data assimilation approaches are

in high demand. The purpose of this dissertation is to present research done to apply

the LETKF for the purposes of space-weather prediction in the ionosphere.

One of the main attractions of the LETKF scheme is its computational efficiency.

and model independence. The LETKF is highly amenable to efficient implementation

on parallel computers, which is an important consideration due to time constraints

that may be involved in space-weather forecasting operations. Due to its localized

approach, the operations involved in the LETKF analysis calculation are relatively

small and this efficiency scales well to larger systems, since the dimensions involved

in the calculations depend on the number of observations and ensemble size, but not

state size. These considerations suggest that the LETKF merits consideration as an

ionospheric data assimilation scheme. This dissertation is comprised of three main

studies where the LETKF is applied to the ionosphere, as discuss below.

The work shown in Chapter 4 is based on (Durazo et al., 2016), which is published

in Physica Scripta. In this study, the LETKF is applied to an idealized ionospheric

model that focuses the interaction of an ion density field and a gravity wave, and

the subsequent electromagnetic forcing caused by the movement of charged particles.

The results found in this study suggest that the LETKF is effective even when the
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observational density is sparse, at least in this perfect-model scenarios. Good results

are also obtained even when using large noise levels in the generation of synthetic

observations. The results also suggest that the LETKF can perform well with sparse

observational networks, provided that the density is reasonably uniform and that the

local assimilation regions are chosen to be sufficiently large.

The work shown in Chapter 5 is based on (Durazo et al., 2017), which is published

in the Journal of Geophysical Research: Space Physics. In this study, the LETKF is

applied to the TIEGCM, which is a global circulation model of the ionosphere with

operational capabilities. Furthermore, the distribution of the assimilated synthetic

observations taken from a realistic satellite network.

A targeted observation strategy based on the influence matrix diagnostic is pro-

posed for ionospheric data assimilation with the LETKF. The targeted observation

strategy can be used to optimally select locations for additional observations to tar-

get errors in specific state variables. The numerical experiments presented showed

results in the case where electron density and zonal component of the neutral winds

are targeted. The ability to target errors in this manner can help mitigate ionospheric

forecast errors during geomagnetic storms. The quantification of the contribution in

each observation is computed simultaneously with the analysis computation, using

quantities that are already created, so this targeting strategy can be employed effi-

ciently.

This work is novel in that it formulates the observation influence for the LETKF,

and can readily be generalized to other ensemble kalman filters. This work provides a

diagnostic tool to identify regions that should be observed in future extreme events,

or where future observing infrastructure should be developed as the ionospheric ob-

serving network expands. The strategy may also be applied to target errors in other

state variables and parameterized solar/magnetospheric inputs, which is an important
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since these inputs drive many of the dynamics in the ionosphere. Results demonstrate

that, in principle, this strategy can be be used to improve space-weather specification

during extreme events, and lays a foundation that can be extended to more realistic

operational settings.

The work shown in Chapter 6 is in revision for publication in the Journal of

Geophysical Research: Space Physics. The work presented in this study describes a

methodology to estimate the effects of model bias on 1-hour electron density fore-

casts. Systematic model bias in electron density predictions is simulated through the

misspecification of parameterized solar and magnetospheric inputs to the TIEGCM,

which specify key dynamics in the ionosphere. The model bias effects are effectively

estimated and used to reduce error in the predicted electron densities.

The work shown in Chapter 6 is novel in that it proposes a bias estimation strategy,

which has not previously been applied to complex models with operational capabili-

ties. This work proposes a flexible methodology to extend the capabilities of existing

parameterized inputs to drive ionospheric global circulation models. This approach

permits spatially varying estimation of model bias, which may be useful during ex-

treme events, to account for storm time effects that are not well represented with the

parameterized representation of the solar and magnetospheric drivers alone.

The bias estimation methodology also allows for the prescription of a dynamical

model to describe the temporal evolution of the model bias. This work demonstrates

the potential benefits that a simple growth-relaxation model for bias evolution can

provide for ionospheric weather forecasting during a geomagnetic storm. The ap-

proach shown in this work serves as a foundation to improve bias estimation in fu-

ture extreme events. For example, re-analysis studies of different geomagnetic storm

events can be used to formulate adequate growth and relaxation rates to describe

temporal variations of model bias for different geomagnetic storms, that depend on
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annual season or geomagnetic conditions. These extensions offer significant potential

that in principle can greatly improve ionospheric weather prediction and merit future

consideration for use in operational settings.
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Appendix A

LETKF ALGORITHM PSEUDOCODE 1: TARGETED OBSERVATION
STRATEGY
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A.1 Observation Influence Algorithm Pseudocode

The following algorithm demonstrates the analysis procedure used to compute the
analysis at an arbitrary grid point L, and how the observation influence is calculated.
We assume there are d components in the state vector and that the ensemble is of
size k. The quantities below are related to the grid point L and its associated local
region, where we assume there are `C and `A observations from the COSMIC and
augmented networks, respectively. The total number of observations is ` = `C + `A.
The computations below may be performed independently (and in parallel) at each
grid point L.

1. Analysis computation. A detailed description of the analysis calculation and
the associated computational requirements can be found in (Hunt et al., 2007).

(a) Compute the d × k and ` × k matrices, Xb
L and Yb

L as described in Sec-
tion .3.4.1

(b) Form the k × ` matrix GF
L = (YF

L )T(RF
L)−1.

(c) Compute the k × k analysis covariance matrix

P̃
a(F )
L =

[
(k − 1)I/αL + GF

LYF
L

]−1
.

(d) The analysis ensemble is constructed in terms of the “weight matrix”,

W
a(F )
L , which is computed in two steps.

i. Compute the k × k symmetric square root of the analysis covariance

matrix Ŵ
a(F )
L = [(k − 1)P̃

a(F )
L ]1/2.

ii. Define the k-vector w̄a(F ) = P̃
a(F )
L GF

L(yF − ȳFL ) and add it to each

column of Ŵ
a(F )
L to form the k × k weight matrix W

a(F )
L .

(e) Compute the analysis perturbation matrix X
a(F )
L = Xb

LW
a(F )
L .

(f) The jth column of the analysis ensemble is formed by adding the back-

ground ensemble mean, x̄bL, to the jth column of X
a(F )
L , j = 1, 2, . . . , k.

2. Observation influence on x̄
a(F )
L

(a) Compute the k × `C and k × `A matrices GC
L = (YC

L )T(RC
L)−1 and GA

L =
(YA

L )T(RA
L)−1, respectively.

(b) Compute the d× `C matrix of influence from local COSMIC observations

SXCL = Xb
LP̃

a(F )
L GC

L .

(c) Compute the d×`A matrix of influence from local augmented observations

SXAL = Xb
LP̃

a(F )
L GA

L .

(d) The sum of the columns of SXCL and SXAL respectively yields the d-vectors
of total observation influence from the COSMIC and augmented networks

on each component of x̄
a(F )
L .

3. Compute analysis adjustment, x̄
a(F )
L − x̄

a(C)
L , due to the augmented

observations.
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(a) Compute the `A × `A matrix
[
I− SAAL

]−1
. If k < `A, use the more effi-

cient formulation
[
I− SAAL

]−1
= I+(RA

L)−1YA
L P̃

a(C)
L (YA

L )T, where P̃
a(C)
L =[

(k − 1)I/αL + GC
LYC

L

]−1
.

(b) Compute the `A-vector of analysis residuals at the augmented observation

locations, rAL = yAL −HA
L x̄

a(F )
L

(c) Compute the d-vector of analysis adjustments

x̄
a(F )
L −x̄

a(C)
L = SXAL

[
I− SAAL

]−1
rAL . The ith entry contains the adjustment

on the ith analyzed component of x̄
a(F )
L .
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Appendix B

LETKF ALGORITHM PSEUDOCODE 2: BIAS ESTIMATION STRATEGY
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B.1 Bias Estimation Algorithm Pseudocode

The following algorithm demonstrates the procedure used to compute the analysis
at an arbitrary grid point L, and how the model bias corrections are applied and
updated. We assume there are d components in the local state vector, xbL, including
the bias correction parameter, and that the ensemble is of size k. The quantities below
are related to the grid point L and its associated local region, where we assume there
are ` observations. The computations below may be performed independently (and
in parallel) at each grid point L.

1. Analysis computation. A detailed description of the analysis calculation and
the associated computational complexity is provided in (Hunt et al., 2007). In
the following suppose the forecast and bias estimates have been propagated to

a time tn, so that the global state vector is given by u
b(j)
n = Mn(u

a(j)
n−1) and the

global bias correction vector is given by cbn = Gn−1(can−1). Now consider the

analysis update of a local state vector, x
b(j)
L at a fixed grid point L.

(a) Construct the d×k matrix Xb
L, corresponding to the augmented local state

vector

[(
x
b(j)
L

)T (
c
b(j)
L

)T
]T

(b) Construct the ` × k matrix, Yb
L = HL(ub(j) + cb(j)) as described in Sec-

tion 6.2.

(c) Form the k × ` matrix GL = (YL)T(RL)−1.

(d) Compute the k × k analysis covariance matrix

P̃a
L =

[
(k − 1)I/αL + GLYL

]−1
.

(e) The analysis ensemble is constructed in terms of the “weight matrix”, Wa
L,

which is computed in two steps.

i. Compute the k × k symmetric square root of the analysis covariance

matrix Ŵa
L = [(k − 1)P̃a

L]1/2.

ii. Define the k-vector w̄a = P̃a
LGL(yo − ȳL) and add it to each column

of Ŵa
L to form the k × k weight matrix Wa

L.

(f) Compute the analysis perturbation matrix Xa
L = Xb

LWa
L.

(g) The jth column of the analysis ensemble is formed by adding the back-
ground ensemble mean, x̄bL, to the jth column of Xa

L, j = 1, 2, . . . , k.

2. Propagate ionospheric and model bias state estimates

(a) Apply forecast model Mn (given by the TIEGCM). Computes u
b(j)
n+1 =

Mn+1(u
a(j)
n )

(b) Apply bias evolution operator G, to compute cbn+1 = Gn+1(can)

147



Appendix C

DERIVATION OF THE ANALYSIS ADJUSTMENT DUE TO AUGMENTED
OBSERVATIONS
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C.0.1 Derivation of Analysis Adjustment

The discussion below describes the derivation of the analysis adjustment, as de-
scribed in Section 5.5. Consider the weighted regression system given in Equa-
tion (5.1) of the main text at a fixed grid point L, which consists of the full set
of observations and background forecast at L. Due to the partitioning of the full
network of observations into the COSMIC and augmented networks discussed in Sec-
tion 4, the system of regressions for the full system may also be partitioned as ZF

L =[
(HC

L)T (HA
L)T Id

]T
and the associated predictants as zFL =

[
(yCL )T (yAL)T (x̄bL)T

]T
.

The superscripts C and A refer to quantities associated with the COSMIC and aug-
mented observation networks, respectively, and the b denotes the background forecast.
The full system covariance matrix is given by

ΩF
L =



[
RC
L 0

0 RA
L

]
0

0 Pb
L


 . (C.1)

The vector of regression parameters for the full network is given by

βFL =
[
(ZF

L)T(ΩF
L)−1ZF

L

]−1

(ZF
L)T(ΩF

L)−1zFL , (C.2)

which is equivalent to equation (12) in the main text. The solution of system (C.2)
for the full observing network is then given by

ẑFL = ZF
Lβ

F
L =

[
(HC

Lβ
F
L )T (HA

Lβ
F
L )T (βFL )T

]T

. (C.3)

The analyzed components of the state vector at L obtained with the full observation
network regression are thus given by βFL .

We now consider the solution of the analogous weighted regression system, in
which all augmented observations are not included in the observation vector. Suppose
the augmented observations system consists of regressions, predictants and covariance
matrix given by ZA

L = HA
L , zAL = yAL and ΩA

L = RA
L , respectively. Due to the

partitioning of the full observation network, the resulting system has only quantities
associated with COSMIC observations and the background forecast. We denote these
quantities with the superscripts C and b respectively. The matrix of regressions
and the vector of predictants associated with resulting system are given by ZC

L =[
(HC

L)T Id
]T

and zCL =
[
(yCL )T (x̄bL)T

]T
, and the system covariance matrix is given

by ΩC
L =

[
RC 0
0 Pb

L

]
. The vector of regression parameters given only the COSMIC

observing system is

βCL =
[
(ZC

L)T(ΩC
L)−1ZC

L

]−1

(ZC
L)T(ΩC

L)−1zCL . (C.4)

The COSMIC-only system solution is given by

ẑCL = ZC
Lβ

C
L =

[
(HC

Lβ
C
L )T (βCL )T

]T

. (C.5)
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Similarly to the full network regression, the analyzed components of the state vector
at L obtained with the COSMIC-only observation network regression are given by
βCL . The analysis adjustment due to augmented observations is thus quantified by
computing βFL − βCL . To do so, we make use of the identities

(
P
a(F )
L

)−1

= (ZF
L)T(ΩF

L)−1ZF
L (C.6)

(ZF
L)T(ΩF

L)−1ZF
L = (ZC

L)T(ΩC
L)−1ZC

L + (ZA
L)T(ΩA

L)−1ZA
L (C.7)

(ZF
L)T(ΩF

L)−1zFL = (ZC
L)T(ΩC

L)−1zCL + (ZA
L)T(ΩA

L)−1zAL , (C.8)

which can be verified by simply expanding both sides of each equation. Applying
identities (C.6) and (C.7) to equation (C.4) yields

βCL =
[
(P

a(F )
L )−1 − (ZA

L)T(ΩA
L)−1ZA

L

]−1

(ZC
L)T(ΩC

L)−1zCL

Applying the Woodbury matrix identity on the inverse factor yields

[
(P

a(F )
L )−1 − (ZA

L)T(ΩA
L)−1ZA

L

]−1

= P
a(F )
L + P

a(F )
L (ZA

L)T
[
ΩA
L − (ZA

L)TP
a(F )
L (ZA

L)T
]−1

ZA
LP

a(F )
L

= P
a(F )
L + P

a(F )
L (ZA

L)T(ΩA
L)−1

[
I− (ZA

L)TP
a(F )
L (ZA

L)T(ΩA
L)−1

]−1

ZA
LP

a(F )
L

= P
a(F )
L

[
I + (ZA

L)T(ΩA
L)−1

[
I− SAAL

]−1

ZA
LP

a(F )
L

]
,

where we used P
a(F )
L = Xb

LP̃
a(F )
L (Xb

L)T (equation (12) of the main text) to obtain SAAL .
The matrix SAAL is the influence matrix of augmented observations on the analyzed
augmented observations in equation (11) of the main text. The vector of regression
parameters for the COSMIC system becomes

βCL = P
a(F )
L

[
I + (ZA

L)T(ΩA
L)−1

[
I− SAAL

]−1

ZA
LP

a(F )
L

]
(ZC

L)T(ΩC
L)−1zCL .

Making use of identities (C.6), we rewrite equation (C.2) as βFL = P
a(F )
L (ZF

L)T(ΩF
L)−1zFL .

and then we apply identity (C.8). The difference between the regression parameters
for the full and COSMIC-only systems is given by

βFL − βCL = P
a(F )
L (ZA

L)T(ΩA
L)−1

[
zAL −

[
I− SAAL

]−1

ZA
LP

a(F )
L (ZC

L)T(ΩC
L)−1zCL

]

= SXAL

[
zAL −

[
I− SAAL

]−1

ZA
LP

a(F )
L (ZC

L)T(ΩC
L)−1zCL

]

= SXAL

[
I− SAAL

]−1
[[

I− SAAL

]
zAL − ZA

LP
a(F )
L (ZC

L)T(ΩC
L)−1zCL

]
,
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where SXAL is the influence matrix of augmented observations on the analyzed com-
ponents of the state vector at the grid point L, given in equation (10) of the main
text. Making use of identity (C.7) again to rewrite (ZC

L)T(ΩC
L)−1zCL , we obtain (after

cancellation)

βFL − βCL = SXAL

[
I− SAAL

]−1 [
zAL − ZA

LP
a(F )
L (ZF

L)T(ΩF
L)−1zFL

]

= SXAL

[
I− SAAL

]−1 [
zAL − ZA

Lβ
F
L

]

= SXAL

[
I− SAAL

]−1

rAL , (C.9)

where rAL is the vector of analysis residuals for the analyzed augmented observations.

C.0.2 Efficient Computation of the Analysis Adjustment

The computation of the analysis adjustment as shown in equation (C.9) requires

the inversion of the `A × `A matrix,
[
I− SAAL

]−1
=
[
I− (RA

L)−1YA
L P̃a(F )(YA

L )T
]−1

,

where `A is the number of augmented observations. This operation is repeated for
all grid points that are influenced by augmented observations, so its calculation may
be computationally expensive if `A is large. In this section, we present an equivalent
formulation that may be more computationally efficient. We begin by writing

[
I− (RA

L)−1YA
L P̃a(F )(YA

L )T
]−1

=
[
RA
L −YA

L P̃a(F )(YA
L )T
]−1

RA
L . (C.10)

The Woodbury matrix identity yields

[
RA
L −YA

L P̃
a(F )
L (YA

L )T
]−1

= (RA
L)−1 + (RA

L)−1YA
L

[(
P̃
a(F )
L

)−1

− (YA
L )T(RA

L)−1YA
L

]−1

(YA
L )T(RA

L)−1

= (RA
L)−1 + (RA

L)−1YA
L

[
α−1
L (k − 1)I + (YC

L )T(RC
L)−1YC

L

]−1

(YA
L )T(RA

L)−1

= (RA
L)−1 + (RA

L)−1YA
L P̃

a(C)
L (YA

L )T(RA
L)−1,

where we make use of the identity
(YF

L )T(RF
L)−1YF

L = (YC
L )T(RC

L)−1YC
L + (YA

L )T(RA
L)−1YA

L . Thus equation (C.10) be-
comes [

I− SAA
]−1

= I + (RA
L)−1YA

L P̃
a(C)
L (YA

L )T. (C.11)

P̃
a(C)
L is constructed exactly as the covariance matrix in equation (4) in the main text,

but using only the `C observations from the COSMIC network. Computing P̃
a(C)
L

requires the inversion of a k × k matrix, where k is the ensemble. This formulation
yields a more efficient computation when the ensemble size is smaller than the number
of augmented observations, which can be expected in an operational setting. In the
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case that there are only augmented observations in the analysis calculation at a grid

point L, then P̃
a(C)
L = αL(k − 1)−1I, and

[
I− SAA

]−1

= I + αL(k − 1)−1(RA
L)−1YA

L (YA
L )T, (C.12)

which does not require any matrix inversions. In this case, the analysis adjustment
given by Equation (C.9) is simply the difference between the analysis and the back-
ground at L.
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Appendix D

INITIAL APPLICATION OF THE LETKF TO AN IONOSPHERIC GLOBAL
CIRCULATION MODEL
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D.1 Initial Application of the LETKF to an Ionospheric Global Circulation Model

This section presents initial numerical experiments, where the local ensemble
transform Kalman filter (LETKF) is used to assimilate synthetic observations into
a global circulation model of the ionosphere called the thermosphere-ionosphere-
electrodynamics general circulation model (TIEGCM). The assimilated observations
are of synthetic electron density observations, whose locations are given by a real-
istic satellite-derived observing network, into ionospheric forecasts made with the
TIEGCM. We employ a ”perfect” model assumption in which the ”true” state of
the I-T system is computed with a TIEGCM simulation. The ionospheric state of
this control simulation is then ”observed” at the observation locations to estimate
the unknown spatiotemporal evolution of the three dimensional ”true” state of the
ionosphere and its dynamical drivers.

The system used to carry out the observing system experiments is comprised of the
forecast model and data assimilation scheme, which are the TIEGCM and LETKF,
respectively. We refer to this data assimilation system as the TIEGCM-LETKF
system. The primary goal of this section is to describe the TIEGCM-LETKF data
assimilation system that will be used in the forecast experiments, give an overview
of the general experiment set up, and present the initial results. The same data
assimilation system is used in the remaining chapters of this thesis.

The observing system experiments are carried out with synthetic observations that
are generated from a TIEGCM simulation, which we regard as the ”true” state of
the ionosphere. With this perfect model assumption, we test the LETKF in its skill
to adjust the forecast towards some unknown ”true” state trajectory, and errors that
arise are solely due to the performance of the data assimilation system. In reality,
data assimilation systems must be able to cope with errors in the model as well as in
the data as they can contribute significantly to forecast uncertainty, but these perfect
model experiments allow us to separate the two issues for this initial investigation.

In the synthetic experiments we make a direct comparison of the analysis with
the truth to obtain a global distribution of the error structures. In particular, we
are interested in the approximation of important ionospheric descriptors, such as
the electron density peak in the F2 (NmF2) layer and its elevation (HmF2), and
also quantify the improvement of ionospheric drivers, including multiple unobserved
thermospheric state variables, and the solar and geomagnetic parameterizations.

D.1.1 Ionospheric Forecast Model

The model used in this study is the Thermosphere-Ionosphere-Electrodynamics
Global Circulation Model (TIEGCM), which is a first principles, three dimensional,
non-linear representation of the coupled ionosphere-thermosphere (I-T) system. The
TIEGCM self-consistently solves the fully coupled, non-linear, hydrodynamic, ther-
modynamic, and continuity equations of neutral gas, the ion and electron energy and
momentum equations, the ion continuity equation, and solves for neutral wind dy-
namo. The coordinate system is spherical and is fixed with respect to the rotating
Earth, with longitude and latitude as the horizontal coordinates and pressure surface
as the vertical coordinate. The pressure surfaces are defined as z = ln(P0/P ), where
P0 is a reference pressure at 5×10−5 Pa. The model has standard spatial resolution of
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5◦ × 5◦ in the horizontal direction, covering −87.5◦ to 87.5◦ in latitude and −180◦ to
180◦ in longitude. In the vertical direction there are 29 pressure surfaces ranging from
-7 to 7 that extend to altitudes of about about 97 km to about 600 km depending
on solar activity. The standard time step is of 2 minutes. An overview of the main
equations solved is provided in Appendix E, and a comprehensive model description
can be found at (http://www.hao.ucar.edu/modeling/tgcm/).

D.2 TIEGCM-LETKF Data Assimilation System

Our TIEGCM-LETKF data assimilation system runs as a forecasting step, which
estimates the state of the ionosphere-thermosphere (I-T) system, using the TIEGCM,
up to a time tn + ∆t, followed by an analysis step, in which observations in the time
window [tn −∆t, tn + ∆t] are assimilated using the LETKF. In all data assimilation
experiments presented in this thesis, the radius of the analysis window is taken to
be ∆t = 0.5 hrs, as has been done in other I-T data assimilation systems (Lee
et al., 2012) (Matsuo et al., 2013). The result of the analysis step is an updated I-T
state estimate at the time tn that serves as the initial condition for the subsequent
forecasting step. This forecast/analysis sequence is repeated at 1-hr intervals for the
duration of the simulation. The benefits of employing forecast/analysis time steps of
less than 1 h have been suggested by (Chen et al., 2016), but we do not consider them
for our data assimilation experiments. The specific details regarding the dates of the
simulations will be provided in the subsections that describe the forecast simulations.
We describe the details of the TIEGCM-LETKF system below.

D.2.1 Forecast Initialization

The initialization phase of the data assimilation system consists of a simula-
tion that produces a ”spin-up” of a forecast, which is used as the background es-
timate for the first analysis step. In the TIEGCM-LETKF system, the initial con-
dition for the spin-up is obtained from a climatology simulation of the ionosphere-
thermosphere (I-T) system that is created with the TIEGCM by the High Altitude
Observatory (HAO). The climatology simulations are a representation of the average
conditions of the I-T system throughout its seasonal cycle. To account for year-
to-year variabilities, solar and geomagnetic indices published by NOAA are used to
drive the simulation towards a state that is representative of the solar and geomag-
netic conditions of the period of interest. This approach is taken to generate the
control simulation that is regarded as the ”true” state of the I-T system.

This approach is also taken to generate the ensemble of k background forecasts
used in the data assimilation cycle. Each of the k forecasts begin from the same
initial condition, as given by the climatological simulations discussed above, and
is integrated with k normally distributed solar and magnetospheric parameterized
inputs to the TIEGCM. The center of the parameter distribution for the solar and
magnetospheric parameters are taken to be those published by NOAA (also used for
the control simulation) during the time period of the simulations, but we also consider
centering the parameter distribution on other values. The standard deviation for the
distribution of each parameter is taken to be the standard deviation of each parameter
over the duration of the spin-up period. Specific values for the distribution mean and
standard deviation for each parameter are given during the discussion of individual
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numerical experiments.
This approach yields an ensemble of k statistically equivalent forecasts, whose

variability covers a wide range of representative I-T states that for the time period
of interest. A similar approach for ensemble generation is used in wide variety of
ionospheric data assimilation experiments. See for example, (Lee et al., 2012; Matsuo
and Araujo-Pradere, 2011; Matsuo et al., 2013; Hsu et al., 2014; Chen et al., 2016).

D.2.2 Observation Operator

The observation operator is used to relate quantities defined on the model grid
to the observed quantities during each analysis calculation. In the context of the
LETKF, the input of the observation operator is a vector of the relevant state variables
defined at the grid points located within the local region centered around a given
grid point, and the output consists of model predictions for the observed quantities
at their corresponding spatiotemporal location. In our TIEGCM-LETKF system,
the only observed variable is electron density, which is also a state variable, so the
observation operator consists of an interpolation procedure to the locations and times
of the observed electron density vertical profiles. The location of the observed electron
density vertical profiles are given horizontally in terms of longitude and latitude, and
the vertical coordinate is in terms of kilometers.

The horizontal coordinates of the TIEGCM model grid are also defined in terms
of longitude and latitude. However, the vertical coordinate is defined in terms of
pressure levels, as discussed in Section D.1.1. The corresponding altitude for each
grid point has dependence on several state variables (i.e temperature), so it varies
with location, time and is different for each forecast in the ensemble. Figure D.1(a)
shows the horizontal structure of the geometric altitudes at the fixed pressure level
3.0, as described in Section D.1.1 at 11:30 UTC on 26 September 2011. Generally, the
day-time ionosphere is located at higher altitude by about 50 km for fixed pressure
level. Figure D.1(b) shows the vertical structure of the geometric altitudes at 17.5◦N
latitude. Also shown are level curves corresponding to fixed altitudes of 200 km,
350 km and 500 km.

The interpolation of electron density to the observation locations is done as fol-
lows. For a given vertical profile, find the model longitude and latitude coordinates
which contain it. Within these coordinates, interpolate the model altitudes to a fixed
altitude grid for each ensemble member, with the altitude chosen to be the minimum
among the ensemble members (to avoid extrapolation at the top of the domain), and
discard all observations located above. The variability of altitude among ensemble
members is generally about 1%. From this fixed-altitude grid, electron density is
interpolated to the observation locations using trilinear interpolation in space. Gen-
erally, interpolation in time is also needed, since all observations taken within a time
window of the forecast time are assimilated. This is accomplished by applying the
vertical interpolation procedure described above at multiple model times, and then
linearly interpolating to the observation times. The same procedure is repeated for
each of the observed vertical profile.
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(a) Pressure Level 3.0 (b) 17.5�N Latitude

Figure 1: (a) Global map of geometric altitude in km at pressure level 3.0, as defined in the
TIEGCM description. (b) Vertical structure of geometric altitude at 17.5�N latitude (black
curve shown in (a)). The black curves denote 200 km, 350 km, and 500 km altitudes.

1

Figure D.1: (a) Global map of geometric altitude in km at model pressure level
3.0, as defined in Section D.1.1, at 11:30 UTC on 26 September 2011. (b) Vertical
structure of geometric altitude at 17.5◦N latitude (black curve shown in Figure (a))
at the same time. The black curves denote 200 km, 350 km, and 500 km altitudes.

D.2.3 LETKF State Vector Augmentation

The ionosphere is strongly coupled with the thermosphere, as described in Sec-
tion 2.1. This is a feature that must be accounted for in forecasting of ionospheric
weather forecasting. The TIEGCM is a model of the coupled I-T system, so the
dynamics involving their coupling are accounted for during the forecasting stage of
the data assimilation cycle. However, the benefits of incorporating the I-T coupling
during the analysis calculation, by updating thermospheric state variables in addition
to electron density, have been shown (Matsuo and Araujo-Pradere, 2011).

The inference of unobserved state variables is readily accomplished with the
LETKF (and other ensemble-based Kalman filters), through state augmentation, as
discussed in Section 3.4.3. Through the state augmentation approach, the same lin-
ear combination of local forecasts used to compute analyzed electron density is used
to compute the analysis for the augmented unobserved thermospheric state variables
and model parameters. Thus observations of electron density can be used to infer an
analyzed state of thermospheric state variable based on the observations that are as-
similated. The accuracy in the state augmentation approach depends on the electron
density having strong correlation with the thermospheric variables being inferred and
also this correlation being well represented with the ensemble of forecasts.

Each integration of the TIEGCM yields a 1-hr forecast of the I-T state vector.
During each analysis step, a subset of the components are analyzed, i.e., updated using
the assimilated observations. We refer to this subset as the LETKF state vector. The
components of the TIEGCM state vector that are not included in the LETKF state
vector are left unchanged during the analysis step. In our numerical experiments, the
LETKF state vector is composed of electron density (Ne), neutral temperature (Tn),
zonal (Un) and meridional (Vn) components of neutral winds, as well as atomic (O1)
and molecular (O2) mass mixing ratios. This choice of LETKF state vector is done
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following the work of (Matsuo et al., 2013),(Lee et al., 2012). The importance of also
updating ionospheric drivers, such as solar and geomagnetic parameters, during the
analysis steps has been shown by (Matsuo and Araujo-Pradere, 2011), (Hsu et al.,
2014). The estimation of these parameterized drivers may be done using the same
state augmentation approach described in Section 3.4.3, and is shown later in this
section.

D.3 Initial Synthetic Observation Experiments

We generate the ’true’ ionosphere state trajectory, {uti}, which is a TIEGCM
simulation containing temporal evolution of all TIEGCM state variables at each time
step ti. The dynamical trajectory of the true system state is driven with a set of solar
and magnetospheric forcing parameters, which we denote as {pti, i = 1, 2, . . . , N}. For
each time ti, pt

i is vector containing the F107, Cp and Hp values used to drive the
control simulation. A description of these parameters and their effect on ionospheric
modeling is described in Section 2.1.2. Similarly, denote the set of k parameters used

to drive the ensemble of background forecasts as {pb(j)i , j = 1, 2, . . . , k}, where p
b(j)
i

contains the normally distributed values of f10.7, Cp and Hp for the jth forecast at
the time ti.

Synthetic observations are generated by sampling the electron density component
of uti at the times and locations of the COSMIC observing network (Rocken et al.,
2000), during 26 September 2011. The COSMIC electron density vertical profiles
typically vary from about 80 km to 800 km in altitude, with a vertical resolution of
about 10 km. About 85 profiles are available for assimilation during each hour. The
COSMIC electron density profile data set is available at the COSMIC Data Analysis
and Archive Center (CDAAC) at UCAR (http://cdaac-www.cosmic.ucar.edu).

Synthetic observations are generated with additive Gaussian noise to represent
observation processing noise: yoi = Hiu

t
i + εi, where Hi interpolates the electron

density component of uti to the respective observation locations and times during the
ith analysis step and εi is a Gaussian random vector with zero mean and covariance
matrix Ri. Observation errors are assumed to be independent so Ri, is diagonal.
The standard deviation of ε is assumed to scale as 10% of the of the electron density
component of ut at the observation locations. Minimum and maximum thresholds
of 1 × 103 and 1 × 104 are applied to the standard deviation in the generation of
observations, following the error description provided in the CDAAC website.

D.3.1 Results: Synthetic Observation Experiments

The first row of Figure D.2 shows global maps of electron density maps in el/cm3

at 12:30 UTC, 16:30 UTC and 20:30 UTC on 26 September 2011. The maps are
averaged over 250 km to 450 km altitudes, so they cover the the F-layer. The selected
times show the electron density at the onset of geomagnetic disturbance (12:30 UTC)
during the main phase of the geomagnetic storm (16:30 UTC) and as geomagnetic
conditions begin to relax (20:30 UTC). The second row of Figure D.2 shows maps of
electron density at the same times after the observations, whose locations are shown
by the magenta markings, are assimilated. The second and third rows of Figure D.2
show the deviation from the truth for the background and analyzed electron density,
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respectively. Regions where the deviation from the truth are positive (negative) are
shown in red(blue). Comparison of the second and third rows demonstrate that the
electron density error is significantly reduced after the assimilation of observations.

Electron Density
(a) 12:30 UTC (b) 16:30 UTC (c) 20:30 UTC

Figure 2: Global maps of background (first row) and analyzed (second row) estimates of
electron density, in el/cm3, averaged from 200 km to 500 km altitudes at 12:30, 16:30 and
20:30 UTC on 26 September 2011. Rows 2-3: Analogous global maps of electron density
deviations from the truth for the background and analyzed electron density at the same
times. The analyzed electron density (second row) and its deviation from the truth (fourth
row) are obtained by assimilating only synthetic COSMIC observations, whose locations are
shown by magenta markings. The color scale in the first and second rows di↵ers from the
third and fourth rows.

2

Figure D.2: Global maps of background (first row) and analyzed (second row)
estimates of electron density, in el/cm3, averaged from 200 km to 500 km altitudes
at 12:30, 16:30 and 20:30 UTC on 26 September 2011. Rows 2-3: Analogous global
maps of electron density deviations from the truth for the background and analyzed
electron density at the same times. The analyzed electron density (second row) and
its deviation from the truth (fourth row) are obtained by assimilating only synthetic
COSMIC observations, whose locations are shown by magenta markings. The color
scale in the first and second rows differs from the third and fourth rows.

Figure D.3 shows analogous global maps of the zonal component of neutral winds Un

in units of cm/s. These maps are shown at the same times and are averaged over
the same altitudes as Figure D.2. Although only observations of electron density are
used, the estimates of Un are significantly improved. Similarly, the assimilation of
electron density observations also improve the composition of atomic oxygen at the
same times and altitudes.
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26 Sept. 2011
(a) 12:30 UTC (b) 16:30 UTC (c) 20:30 UTC

Figure 3: Global maps of background and analyzed estimates of neutral winds (Un), in cm/s.
The times and locations are the same as the maps shown in Figure 1.

3

Figure D.3: Global maps of background and analyzed estimates of neutral
winds (Un), in cm/s. The times and locations are the same as the maps shown
in Figure 1.

Figure D.5(a) shows time series of root mean square error of the electron density
estimates, averaged over the Southern polar region, which we define to be all grid
points south of 60◦S latitude. The time series begins at 00:30 UTC on 26 September
2011 and ends at 23:30 UTC on 27 September 2011. The thin and thick red curves
correspond to the background and analyzed electron density estimates respectively,
when analyzing electron density and the other neutral state variables described in
Section D.2.3. Similarly, the blue curves show the background and analyzed electron
density when only electron density is analyzed. For comparison, a free run, where
no observations are assimilated, is also shown in black. Results show a pronounced
reduction in RMSE for the analyzed electron density estimates compared to the free
run. However, during the main phase of the geomagnetic storm, between 12:30 UTC
and 23:30 UTC, the background electron density estimates are worse than the free
run, suggesting that some ionospheric drivers are not adjusted adequately during this
time period. Figure D.5(b) shows analogous RMSE time series plots. Similar im-
provements in the analyzed electron density are seen throughout the simulation. The
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26 Sept. 2011
(a) 12:30 UTC (b) 16:30 UTC (c) 20:30 UTC

Figure 4: Global maps of background and analyzed estimates of atomic oxygen composition,
in units of mass mixing ratio (mmr). The times and locations are the same as the maps
shown in Figure 1.

4

Figure D.4: Global maps of background and analyzed estimates of atomic oxygen
composition, in units of mass mixing ratio (mmr). The times and locations are the
same as the maps shown in Figure D.2.

background also shows significant improvement, implying that there is improvement
in 1-hour predictions of electron density.

Analogous time series of RMSE for the zonal components of neutral winds (Un)
and atomic oxygen composition are shown in Figures D.6 and D.7. In both cases
there are signifcant improvements in the background and analyzed estimated of each
variable over both polar regions.

An important aspect of ionospheric forecasting is the correct specification of solar
and magnetospheric inputs. In the TIEGCM, these inputs are specified through
auxiliary parameters. As previously described, these parameters may be estimated
through state augmentation approaches. Figure D.8 show the time evolution of each
ionospheric forcing parameters. The ”true” values correspond to the indices published
by NOAA during 26-27 September 2011 and are shown with the green curves. The
ensemble of forcing parameters for each respective parameter are shown in red and
the ensemble means are shown in black. The parameter estimates follow the overall
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(a) High-Latitude South
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(b) High-Latitude North
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Figure 5: (a) Time series of the root mean squared error (RMSE) of background (thin red)
and analyzed (thick red) electron density estimates, in el/cm3, averaged over the Norther
polar region. The black curve show an analogous RMSE time series for a simulation where
no observations are assimilated. The time series begin at 00:30 UTC on 26 September 2011
and end at 00:30 UTC on 28 September 2011, with 1-hour intervals. (b)-(c) Analogous time
series of region-averaged RMSE values for Southern high- and low-tp-mid latitude regions,
respectively.
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Figure D.5: (a) Time series of the root mean squared error (RMSE) for electron
density estimates in units of el/cm3 averaged over the Southern polar regions. The
thin and red curves correspond to the RMSE of the background and analyzed es-
timates, respectively, when analyzing electron density and the other neutral state
variables given in Section D.2.3. Similarly, the thin and thick curves give the RMSE
for background and analyzed electron density in the case where only electron density
is analyzed. Also shown is a free run, where no variables are analyzed with observa-
tions (black). (b) Analogous RMSE plots averaged over the Northern polar region.
The time series begin at 00:30 UTC on 26 September 2011 and end at 23:30 UTC on
27 September 2011, with 1-hour intervals.

trend of the temporal evolution, particularly during the geomagnetically disturbed
periods, although these estimates are relatively noisy.

Discussion

The synthetic observation experiments presented in this section aimed at studying
the skill of the LETKF system in forecasting ionospheric electron density in a perfect
model scenario. This constrains forecasting errors to arise only from the data assim-
ilation system itself. Although data assimilation systems must be able to cope with
other issues, such as model bias and non-Gaussian observation errors with missing
information, the perfect model experiments allows us to isolate the issues.

In this framework, the LETKF is able to skillfully estimate and forecast the state
of the electron density field using a moderately size ensemble of 40 members. The
assimilation of the synthetic satellite observations produced analysis estimates that
were a significant improvement over the background estimates throughout the entire
model domain. However the analysis estimates were not perfect, and small uncertain-
ties in these initial conditions and in the forcing parameters caused uncertainties to
grow over the subsequent forecasting step. The forecast deviation from the truth was
continually corrected by assimilating more observations, and as a result, the errors
in the forecasted states were always significantly smaller compared to the free run,
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(a) High-Latitude South
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(b) High-Latitude North
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Figure 6: (a)-(c) Analogous time series to the ones showed in Figure 2, but for the zonal
component of neutral winds in units of cm/s.
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Figure D.6: (a)-(c) Analogous RMSE time series to the ones showed in Figure D.5,
but for the zonal components of the neutral winds Un in units of el/cm.

(a) High-Latitude South
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(b) High-Latitude North
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Figure 7: (a)-(c) Analogous time series to the ones showed in Figure 2, but for the atomic
oxygen composition in units of mass mixing ratio (MMR).
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Figure D.7: (a)-(c) Analogous time series to the ones showed in Figure D.5, but for
the atomic oxygen composition O1 in units of mass mixing ratio (MMR).

where no observations were assimilated.
Although forecasting results remained stable and accurate even when using a noisy

and sparse observing network, it must be noted that several challenges existing in real
numerical weather forecasting applications were not considered in these experiments.
For example, we did not consider model bias here, but it is a significant source of
forecast uncertainty and non-trivial to overcome. Additionally, the observations were
mutually independent and Gaussian as expected in the in the Kalman filter, and their
representation within the LETKF was perfectly known. In practice, the statistical
properties of the observations are not known accurately and are often not Gaussian.
Additionally, they are often correlated and this is not captured by a diagonal obser-
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Figure 3. (a)-(c) Timeseries of estimated and true forcing parameters: (a) solar flux (F107d) in solar flux

units (10�22W/(m2Hz)), (b) cross-tail potential (Cp) in kV, and (c) hemispheric power (Hp) in GW. The thin

red lines represent the analysis ensemble members, the black circled line is the ensemble mean, and the green

line with x-marks represents the truth. The timeseries begins 00:00 UTC on 26 September 2011 and continues

to 00:00 UTC on 28 September 2011.
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Figure D.8: Timeseries of analyzed F10.7 (a), Cp (b) and Hp (c) values obtained
during the simulation of the 26-27 September 2011 geomagnetic storm. The horizontal
axis shows time in hours, starting from 00:30 UTC on 26 September 2011 and ending
at 23:30 UTC on 27 September 2011. In each of the figure, the red curves correspond
to the ensemble members and the black lines are the respective ensemble means. The
parameters used to drive the ”truth” are given by the green curves and correspond
to the actual indices published by NOAA for this time period.

vation covariance matrix, R.
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Appendix E

MAIN EQUATIONS SOLVED IN THE TIEGCM
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E.1 TIEGCM: Main Equations

The TIEGCM self-consistently solves the fully coupled, non-linear, hydrodynamic,
thermodynamic, and continuity equations of neutral gas, the ion and electron elec-
tron energy and momentum equations, the ion continuity equation, and solves for
neutral wind dynamo. The full mathematical descriptions of the PDE’s solved in
the TIEGCM code are available in the model description document provide at High
Altitude Observatory (HAO). A full description of the neutral dynamics in the model
description available at the HAO website:
http://www.hao.ucar.edu/modeling/tgcm/doc/description/model description.pdf

E.1.1 Horizontal Momentum Equations

The zonal and meridional winds are solved from the momentum equations.
The zonal momentum equations have the form

∂un
∂t

=
gez

p0

∂

∂Z

[
µ∂un
H∂Z

]
+ f corvn + λxx(vExB,x − un) + λxy(vExB,y − vn)

− vn · ∇un +
∂unvn
RE

tan(λ)− 1

RE cos(λ)

∂Φ

φ
−W ∂un

∂Z
− hdu

(E.1)

The meridional momentum equations have the form

∂vn
∂t

=
gez

p0

∂

∂Z

[
µ∂vn
H∂Z

]
+ f corvn + λyy(vExB,x − vn) + λyx(vExB,y − un)

− vn · ∇vn +
∂unun
RE

tan(λ)− 1

RE cos(λ)

∂Φ

φ
−W ∂vn

∂Z
− hdv

(E.2)

The meaning of each terms for both equations are as follows:

∂un
∂t

= vertical viscosity + coriolis force + ion drag + horizontal advection

+ momentum + pressure gradient + vertical advection + horizontal diffusion
(E.3)

Leap frog is used for time stepping of momentum transport, geopotential gradient,
Coriolis force, and ion drag, while an implicit scheme is used for eddy and molecular
viscosity in the vertical direction. A Shapiro filter is also used for numerical stability.

E.1.2 Vertical Momentum Equations

The vertical velocity is calculated by solving the continuity equation of the ther-
mospheric neutral gas. The continuity equation has the form

1

R cosλ

∂

∂λ
(vn cosλ) +

1

R cosλ

∂un
∂φ

+ ez
∂

∂Z
(e−zW ) = 0 (E.4)

where the vertical velocity is given by W = ∂Z
∂t

. The vertical velocity relative to
a pressure level is the obtained by integrating the continuity equation over Z to get
W , and hen multiply W by the scale height H.
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E.1.3 Thermodynamics Equation

Neutral temperature is obtained by solving the equation of thermodynamics:

∂Tn
∂t

=
gez

p0Cp

∂

∂Z




KT

H

∂Tn
∂Z

+KEH
2Cpρ

[
g

Cp
+

1

H

∂T

∂Z

]
− vn · ∇Tn

−W
(
∂Tn
∂Z

+
RTn
Cpm

)
+
Qexp − ezLexp

Cp
− Limp

(E.5)

Where Cp is the specific heat per unit mass, p0 is the reference pressure, KT is the
molecular thermal conductivity, H is the pressure scale height, KE is the eddy dif-
fusion coefficient, ρ is atmospheric mass density, Vn is the horizontal neutral velocity
with the zonal and meridional components un and vn, W is the dimensionless vertical
velocity given by W = ∂Z

∂t
, R is the universal gas constant, m is the mean atmospheric

mass, and Q and L are the other heating and cooling terms.

Major species continuity equations
These equations have the form

∂ΨO

∂t
or
∂ΨO2

∂t
= vertical molecular diffusion + vertical eddy diffusion + horizontal/vertical

advection+ chemical production loss + ΨN2
= 1−ΨO −ΨO2

This equation is solved to obtain the species ΨO,ΨO2 and ΨN2 .

Minor species continuity equations
These equations have the form

∂ψO

∂t
= vertical molecular diffusion + vertical eddy diffusion + horizontal/vertical

advection+ chemical production loss, + chemical production

This equation is solved to obtain the species ψN(4S), ψNO

Thermodynamic equation (energy equation)
This equation has the form

∂Tn
∂t

= vertical molecular and eddy heat conduction + horizontal/vertical advection

+ heating (solar, geomagnetic and collisions) + radiative cooling

This equation is solved to obtain neutral temperature Tn

Electron energy equation assuming a thermal quasi-stable state
This equation has the form

divergence of electron heat + heating (solar radiance, auroral particle precipitation)

= cooling due to collisions with ion and neutrals
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This equation is solved to obtain electron temperature Te

Ion energy equation assuming a thermal quasi-stable state
This equation has the form

Heating due to electron-ion collisions + Joule heating

= cooling due to collisions with ion and neutrals

This equation is solved to obtain ion temperature Ti

Steady state electro-dynamo equation
This equation has the form

horizontal divergence of height-integrated current density−
field-aligned current from the magnetosphere

This equation is solved to obtain the electric potential Φ

Ion Continuity equation
This equation has the form

∂nO
∂t

= transport by neutral wind + transport by ambipolar diffusion

+ transport byE ×B + chemical preduction + chemical loss

This equation is solved to obtain the ion density nO
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Appendix F

REFORMULATION OF KALMAN FILTER ANALYSIS EQUATIONS
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F.1 Kalman Filter Reformulation

This is the reformulation to go from equation 3.14 and 3.15 and :

Pa =
[
(Pb)−1 + HTR−1H

]−1

(F.1)

xa = Pa
[
(Pb)−1xb + HTR−1yo

]
(F.2)

To equations 3.17 and 3.18.

Pa =
[
In + PbHTR−1H

]−1

Pb (F.3)

xa = xb + PaHTR−1
(
yo −Hxb

)
(F.4)

Where In is the identity matrix of dimension n × n and n is the number of grid
points. To obtain equation F.4, we solve equation F.1 for (Pb)−1 and performing
some algebraic manipulations:

xa = Pa
[
(Pb)−1xb + HTR−1yo

]

= Pa

[[
(Pa)−1 −HTR−1H

]
xb + HTR−1yo

]

=
[
In −PaHTR−1H

]
xb + PaHTR−1yo

= xb + PaHTR−1
(
yo −Hxb

)

Introducing the Kalman gain matrix, K = PaHTR−1, we get the desired result.
To obtain equation F.3, we right multiply equation F.1 by (Pb)−1Pb and perform
some algebraic manipulations

Pa =
[
(Pb)−1 + HTR−1H

]−1

=
[
(Pb)−1 + HTR−1H

]−1

(Pb)−1Pb

=

[
(Pb)

(
(Pb)−1 + HTR−1H

)]−1

Pb

=
[
In −PbHTR−1H

]−1

Pb
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