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ABSTRACT 

Recently, a novel non-iterative power flow (PF) method known as the Holomorphic 

Embedding Method (HEM) was applied to the power-flow problem. Its superiority over 

other traditional iterative methods such as Gauss-Seidel (GS), Newton-Raphson (NR), 

Fast Decoupled Load Flow (FDLF) and their variants is that it is theoretically 

guaranteed to find the operable solution, if one exists, and will unequivocally signal if 

no solution exists. However, while theoretical convergence is guaranteed by Stahl’s 

theorem, numerical convergence is not. Numerically, the HEM may require extended 

precision to converge, especially for heavily-loaded and ill-conditioned power system 

models. 

In light of the advantages and disadvantages of the HEM, this report focuses on 

three topics: 

1. Exploring the effect of double and extended precision on the performance of 

HEM, 

2. Investigating the performance of different embedding formulations of HEM, 

and 

3. Estimating the saddle-node bifurcation point (SNBP) from HEM-based 

Thévenin-like networks using pseudo-measurements. 

The HEM algorithm consists of three distinct procedures that might accumulate 

roundoff error and cause precision loss during the calculations: the matrix equation 
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solution calculation, the power series inversion calculation and the Padé approximant 

calculation. Numerical experiments have been performed to investigate which aspect 

of the HEM algorithm causes the most precision loss and needs extended precision. It 

is shown that extended precision must be used for the entire algorithm to improve 

numerical performance. 

A comparison of two common embedding formulations, a scalable formulation and 

a non-scalable formulation, is conducted and it is shown that these two formulations 

could have extremely different numerical properties on some power systems. 

The application of HEM to the SNBP estimation using local-measurements is 

explored. The maximum power transfer theorem (MPTT) obtained for nonlinear 

Thévenin-like networks is validated with high precision. Different numerical methods 

based on MPTT are investigated. Numerical results show that the MPTT method works 

reasonably well for weak buses in the system. The roots method, as an alternative, is 

also studied. It is shown to be less effective than the MPTT method but the roots of the 

Padé approximant can be used as a research tool for determining the effects of noisy 

measurements on the accuracy of SNBP prediction. 
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1 INTRODUCTION 

1.1 Power-flow problem 

The power flow (PF) study is one of the most fundamental engineering studies 

conducted for power system steady-state analysis, planning and operation. It plays a 

key role in all other power system studies such as contingency analysis, power system 

expansion and transient stability simulations. The objective of the PF problem is to 

determine the magnitude and phase angle of the voltage at each bus in a balanced three 

phase power system [1]. As a by-product of the calculation, the real and reactive branch 

power flows and the losses in the network can be computed from the voltage solution.  

Traditional iterative PF methods such as Gauss-Seidel (GS), Newton-Raphson (NR) 

and the Fast Decoupled Load Flow (FDLF) [2]-[6] have been widely used in the 

industry and usually work reliably under normal loading conditions. However, as is 

well-known, one common shortcoming of these traditional methods is that their 

numerical performance heavily depends on the choice of the initial estimate. When the 

system is heavily loaded, these methods may fail to converge or converge to a non-

operable solution. Though many improvements to the existing PF algorithms have been 

proposed [7]-[13], the convergence is still not guaranteed in all cases and a more 

reliable method is needed. 
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1.2 Holomorphic embedding method 

In mathematics, a holomorphic function is a complex-valued function that is 

complex differentiable in a neighborhood of every point in its domain. Since a 

holomorphic function is infinitely differentiable, it can be expressed as its own Taylor 

series. The Holomorphic Embedding Method (HEM) is known as a mathematical tool 

that can be used to advantage for solving some types of nonlinear equations. 

The Holomorphic Embedding Load-flow Method (HELM), which is one variant of 

HEM method, was proposed by Dr. Antonio Trias in 2012 [14]. HELM represents a 

novel PF method that is distinct from established iterative PF methods. It is non-

iterative but may be described as recursive. It is theoretically guaranteed to find the 

operable solution when it exists and unequivocally signal when there is no solution. 

HEM is based on complex analysis. The central idea of HEM as it is applied to the 

PF problem, is to convert the non-holomorphic power balance equations (PBE’s) into 

holomorphic functions by embedding a complex parameter 𝛼 . Then the unknown 

variables can be expressed as a power series of 𝛼. The coefficients of the power series 

are calculated by establishing recursion relationship from the embedded PBE’s. Then 

the Padé approximant [15], which provides maximal analytic continuation, is used to 

extend the radius of the convergence of power series. Finally, by setting 𝛼 = 1, the 

voltage solution is obtained. 
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Though convergence is theoretically guaranteed, numerical convergence is another 

matter. HEM has numerical issues especially for stressed power systems or systems 

which are described as “ill-conditioned.” Practically, the closer the system loading level 

is to the Saddle Node Bifurcation Point (SNBP), the greater the number of terms of 

power series is required to get an accurate converged solution. Then, for example, when 

using the matrix Padé-approximate method, the matrix involved in the process can 

become severely ill-conditioned and thus cause precision loss. The issue of necessary 

precision is a non-negligible concern when implementing the HEM. Further, for a given 

problem, since there are an infinite number of embedding formulations, each with 

different numerical properties, the numerical performance issue is one that is likely to 

be investigated for some time to come. One of the first steps of course is deciding which 

formulation will, on average, have the best numerical performance, and that is a large 

problem deserving of study in and of itself.  

1.3 Objectives 

The research reported upon here has two main objectives. One is to explore how to 

improve the numerical performance of the HEM. Another one is to focus on one of its 

applications: Estimating the SNBP from HE-based reduced-order Thévenin-like 

network equivalents, which must be generated using pseudo-measurements and HE-

based method.  

This thesis covers the following topics. It: 
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• Introduces the theory of the HEM and describe two common HE 

formulations in detail. 

• Describes the concept of arbitrary precision and introduces the toolbox used 

to implement arbitrary precision in this research. 

• Shows the effect of high precision on the performance of HEM by two 

simple numerical examples. 

• Investigates the numerical issues of the HEM by testing which part of the 

HEM algorithm causes the most precision loss and compares the 

performance of implementing high precision with Padé-Weierstrass 

technique. 

• Explores the numerical properties of different embedding formulations to 

solve the PF problems. 

• Validates the HE-based Thévenin-like network to estimate the SNBP on 

medium-sized power systems and evaluates the numerical performance of 

this theory. 

1.4 Organization 

This thesis is organized into seven chapters: 

Chapter 2 includes a literature review of different methods of evaluating the saddle 

-node bifurcation point of a power system. 
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The implementation of an arbitrary-precision HEM is introduced in Chapter 3. In 

this chapter, two common HEM embedding formulations are discussed in detail and 

the improvement obtained by implementing the algorithms using high precision is 

illustrated in two simple numerical experiments: The PF results for the IEEE 14 bus 

system and the accuracy of the SNBP estimation from the HE-based so-called roots 

method for a two-bus system. 

Chapter 4 presents the investigation of the numerical performance of HEM when 

the implementation uses high precision. Numerical experiments have been performed 

on several power systems to investigate which aspect of the HEM algorithm suffers 

from the worst numerical roundoff error behavior and therefore needs higher precision. 

Both a high precision implementation and the Padé-Weierstrass method are used to 

improve the numerical convergence for a problematic 43 bus system.  

 The numerical properties of the scalable formulation and the non-scalable 

formulation are given in Chapter 5. The comparison of the two formulations is 

performed on the 43 bus system and the IEEE 145 bus system.  

Chapter 6 concentrates on the SNBP estimation from HE-based Thévenin-like 

networks using local-measurements. The Maximum Power Transfer Theorem (MPTT) 

is validated with extremely high precision. The comparison of four different numerical 

methods based on the MPTT are tested on the modified  IEEE 118-bus system using 

pseudo-measurements. The roots method is also been discussed and compared with the 
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MPTT method. The effect of noisy measurements on the accuracy of SNBP estimation 

is explored.   

Finally, the conclusion and the scope for the future work are included in Chapter 7. 

 

  



 

 

7 

2 LITERATURE REVIEW 

In recent years, power systems are operated under increasingly stressed conditions, 

which has elevated the concern about system voltage stability. The saddle-node 

bifurcation point (SNBP) can be used as a useful voltage-stability-margin metric and 

hence the prediction of SNBP has received significant attention [16].  

When the loads of a power system increase up to a critical limit, the static model of 

the power system will experience voltage collapse and this critical point is identified as 

a saddle-node bifurcation point. In mathematics, the SNBP represents the intersection 

points where different equilibria of a dynamical system meet [17]. When the dynamic 

model is constructed using classical machine models, the equilibria are represented by 

a set of nonlinear algebraic equations and the SNBP is a saddle-nose type of branch 

point in this set of algebraic equations. In this section, several methods of estimating 

the SNBP will be discussed. 

2.1 Continuation Power Flow  

The continuation power flow (CPF) [18] is a NR-based method which can be used 

to trace the P-V curve from a base case up to the maximum loading point by solving 

successive power flows while scaling up the load and generation level of the power 

system [18]. In the CPF method, the PF equations are reformulated to include a loading 

parameter to eliminate the singularity of Jacobian matrix when close to SNBP. The 

basic strategy behind the CPF is to use of a predictor-corrector scheme, which contains 
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two steps: One is to predict the next solution by taking a specified step size in the 

direction of a tangent vector corresponding to a different value of the load parameter. 

Then the other one is to correct the solution using a local parameterization technique.  

The computational complexity of the CPF is much higher than the Newton-Raphson 

method since it requires calculating each operating point on the P-V curve. In addition, 

the control of the step size and the continuation parameter plays a key role in 

computational efficiency of CPF. For example, a small step size gives too many 

solution points and requires much computation time, whereas a large step size may give 

a poor starting point in predictor and thus cause divergence in corrector. 

Various modified versions of CPF methods have been proposed to improve the 

accuracy and speed of the CPF. In [19]-[21], the geometric parameterization technique 

is used. In [22]-[24], modified predictor-corrector approaches are introduced. 

Techniques for controlling the step size are also proposed in [22]-[24]. In [25], multiple 

power injection variations in the power system are modeled. 

References [19]-[21] present an efficient geometric parameterization technique for 

the CPF from the observation of the geometrical behavior of PF solutions. The Jacobian 

matrix singularity is avoided by the addition of a line equation, which passes through a 

point in the plane determined by the total real power losses and loading factor.  

In [22], a singularity avoidance procedure is implemented around the SNBP. This 

method avoids the computational complexities of the existing CPFs and overcomes the 
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difficulty of how to smoothly cross through the SNBP and continue tracing the lower 

part of the P-V curve. In [23], the CPF with an adaptive step size control using a 

convergence monitor is proposed. It is shown that this approach needs much less time 

and does not need the critical buses preselected. A modified fast-decoupled power flow 

based CPF is reported in [24]. The use of a first-order polynomial secant predictor, 

where the step size controlled using the Euclidean norm of the tangent vector, reduces 

the number of iterations of the corrector step. 

In [25], an improved CPF is proposed that allows the power injections at each bus 

to vary according to multiple load variations and actual real generation dispatch.  

2.2 HEM-based methods 

Since holomorphic embedding method can eliminate the non-convergence issues of 

those traditional iterative methods, this advantage can be exploited to develop methods 

that can reliably estimate the SNBP of a system. In [26], four different HEM-based 

methods to estimate the SNBP are proposed and compared in terms of accuracy as well 

as computational efficiency: 

i. Power-Flow Search Method (PFSM) 

In this approach, the PF equations are embedded in a non-extrapolating way such 

that the formulation is only valid at α =1 and has no meaningful interpretation at any 

other value of α. A binary search, which is similar to CPF, is performed until the SNBP 

is reached. This involves solving multiple PF problems and is of the order of the 
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complexity of the CPF. This approach is computationally the most expensive method 

over the four proposed HEM-based methods. 

ii. Padé Approximant Search (PAS): 

By using an extrapolation embedding formulation, the solution obtained at different 

values of α can represent the solution when the loads and real power generations of the 

system are uniformly scaled by a factor of α. Therefore, the PF problem only needs to 

be solved once to get the Padé approximants (PA’s) and then, by evaluating the Padé 

approximants for various α values, using a binary search approach, the SNBP is 

obtained. 

iii. Extrapolating Sigma Method (ESM) 

The idea behind this method is to develop a two-bus equivalent network consisting 

of only slack bus and one retained bus and use the so-called σ index to estimate the 

SNBP of the system. The condition to ensure the system is short of or at its static voltage 

collapse point, called the ‘σ condition’ is given by: 

1

4
+ 𝜎𝑅 − 𝜎𝐼

2 ≥ 0         (2.1) 

With the proposed extrapolation formulation, 𝜎 is obtained as a function of α. Then 

the SNBP of the system can be estimated by evaluating the Padé approximates for all 

the 𝜎𝑖(α) at escalating values of α until the 𝜎 condition is violated.     

iv. Roots method 
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In this approach, the extrapolation formulation is used to estimate the SNBP using 

the poles and zeros of the Padé approximates of an arbitrary bus. The smallest real 

zero/pole is taken as the load-scaling factor at the SNBP. Unlike (i), (ii) and (iii), the 

roots method does not involve any binary search process, which could be 

computationally expensive. This method is shown to be the most efficient of all the 

HEM methods, provided a reference state for the scalable-form power flow exists.  

2.3 Measurement-based methods 

The main idea of the local-measurement-based approach [32]-[37] comes from the 

impedance matching concept of the single-port Thévenin equivalent circuit: The local 

voltage and local current measurements are used to build a Thévenin equivalent 

representing the rest of the system. When the system is at the voltage collapse point, 

the Thévenin impedance has the same magnitude as load impedance. The parameters 

of the Thévenin equivalent are estimated using the least-squares method [32], [33], or 

Kalman filter method [37], or other alternative methods [34], [35]. A comparative study 

of four Thévenin equivalent identification methods was examined in [36]. Once the 

Thévenin equivalent parameters are obtained, a voltage stability index is computed to 

track the voltage stability margin. Some other indices such as power margin have been 

used in [33], [37] to provide information of how much load should be shed.  

The wide deployment of phasor measurement units (PMU) has opened new 

perspectives for developing wide-area measurement-based methods to estimate voltage 
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stability margin [38]-[45]. Effort has been focused on building a more accurate model 

from measurements on all monitored buses [40], [41]-[43]. Reference [41] provides a 

modified coupled single-port model for long-term voltage stability assessment (VSA). 

In [42], a quasi-steady-state model for the external injections is constructed. A multiport 

Thévenin equivalent network has been built in [43] to better account for the different 

limits on individual tie-lines connecting to the load area. A comparison of different 

methods using local measurements or wide-area measurements to estimate the voltage 

stability margin was completed in [45]. 

  



 

 

13 

3 APPLICATION OF HIGH PRECISION IN HEM 

While in theory HEM is theoretically guaranteed to find the solution if it exists 

provide the problem formulation obeys the requirements of Stahl’s theorem, the 

limitation of precision can have significant effect on the performance of any numerical 

algorithm selected. In this chapter, the application of high precision to voltage series 

obtained from a HEM-based solution of the PF problem will be discussed and the 

benefits obtained from high precision will be illustrated in two numerical examples. 

From a research perspective, the use of high-precision supports Stahl’s theory of 

universal theoretical convergence (when a solution exists) and that non-convergence 

can be remedied through the use of high precision.    

3.1 Arbitrary precision application 

3.1.1 Floating-point arithmetic and arbitrary-precision arithmetic 

Floating-point representation is the most common way of representing the 

approximation of a real number in a digital computer. A floating-point number A is 

represented approximately in the following form: 

𝐴 = 𝐹 × 𝑟𝐸 

Where 𝐹  is represented using a fixed number of digits, which is referred to as the 

significand or mantissa, or coefficient, 𝑟 is the base which is normally two, ten or 

sixteen and 𝐸 is the exponent.  
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In the MATLAB environment, the floating-point numbers are represented in either 

double-precision or single-precision. The default is double precision. MATLAB 

constructs the floating-point data according to IEEE Standard 754. Any value stored as 

double in MATLAB will occupy 64 bits and its significand has a precision of 53 bits 

(about 16 decimal digits). 

Increasing the precision of the floating-point representation generally helps to 

reduce round-off errors. The IEEE 754 standard for quadruple precision is a binary 

format that occupies 128 bits and has a significand precision of 113 bits (approximately 

34 decimal digits). The binary formats for single precision, double precision and 

quadruple precision in IEEE Standard 754 are shown in Table 3.1. 

Table 3.1 IEEE 754 Binary Float Formats 

Type Sign bits Exponent bits Total bits Decimal digits 

Single 1 8 32 7 

Double 1 11 64 16 

Quadruple 1 15 128 34 

Arbitrary-precision arithmetic [46] consists of a set of algorithms, functions and 

data structures designed to deal with numbers that can be represented with arbitrary 

precision. There exist several software and libraries that support arbitrary-precision 

computations such as Maple, Mathematica, Multi-Precision Complex (MPC), etc. 

These implementations typically use variable arrays of digits instead of a fixed number 

of bits to store values. 
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3.1.2 Multiprecision Computing Toolbox 

The arbitrary-precision application used in this research is called the Multiprecision 

Computing Toolbox [47]. This toolbox was selected mainly because it allows easy 

porting of existing MATLAB programs to arbitrary precision-with little or no 

modifications to the source code. It supplies arbitrary-precision support to the majority 

of mathematical functions in MATLAB.  

Multiprecision Computing Toolbox is capable of working with any specified digit 

of precision if there is no hardware limitation. The default precision is assigned to 34 

decimal digits which conforms to IEEE 754 for quadruple precision. This toolbox is 

designed to rely on recent state-of-the-art algorithms and multi-core parallelism to 

provide high performance. The comparison of Multiprecision Computing Toolbox with 

Symbolic Math Toolbox online [48] indicates that in some cases, the speed of quadruple 

precision computations in toolbox is comparable (or even higher) than the double 

precision routines of MATLAB. 

3.2 Non-scalable formulation 

Consider an N-bus system consisting of a slack bus, called slack, a set PQ of PQ 

buses and a set PV of PV buses.  

The PBE for a PQ bus can be expressed as: 

∑ 𝑌𝑖𝑘𝑉𝑘 =
𝑆𝑖

∗

𝑉𝑖
∗  , 𝑖 ∈ 𝑃𝑄

𝑁

𝑘=1

                                                       (3.1) 
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where 𝑌𝑖𝑘 is the (𝑖, 𝑘) element of the bus admittance matrix, 𝑆𝑖 is the complex power 

injection at bus 𝑖 and 𝑉𝑖 is the bus voltage at bus 𝑖.  

The PBE for a PV bus are given by (3.2) and (3.3). 

𝑃𝑖 = 𝑅𝑒 (𝑉𝑖 ∑ 𝑌𝑖𝑘
∗ 𝑉𝑘

∗

𝑁

𝑘=1

) , 𝑖 ∈ 𝑃𝑉  (3.2) 

  |𝑉𝑖| = 𝑉𝑖
𝑠𝑝, 𝑖 ∈ 𝑃𝑉 (3.3) 

where 𝑃𝑖  is the real power injection at bus 𝑖  and 𝑉𝑖
𝑠𝑝

 denotes the specified voltage 

magnitude at bus 𝑖. 

The PBE for the slack bus is: 

𝑉𝑖 = 𝑉𝑠𝑙𝑎𝑐𝑘 , 𝑖 ∈ 𝑠𝑙𝑎𝑐𝑘 (3.4) 

where 𝑉𝑠𝑙𝑎𝑐𝑘 is the specified slack bus voltage in the system.    

3.2.1 Embedded PBE’s 

To solve the PF problem, (3.1)-(3.4) will first be holomorphically embedded with 

a complex parameter 𝛼.There are infinite number of ways to embed the PBE’s. One 

possible embedding formulation referred to as the non-scalable formulation is shown 

as follows: 

∑ 𝑌𝑖𝑘
𝑡𝑟𝑎𝑛𝑠𝑉𝑘(𝛼) =

𝛼𝑆𝑖
∗

𝑉𝑖
∗(𝛼∗)

− 𝛼𝑌𝑖
𝑠ℎ𝑢𝑛𝑡𝑉𝑖(𝛼)

𝑁

𝑘=1

, 𝑖 ∈ 𝑃𝑄   (3.5) 

∑ 𝑌𝑖𝑘
𝑡𝑟𝑎𝑛𝑠𝑉𝑘(𝛼) =

𝛼𝑃𝑖 − 𝑗𝑄𝑖(𝛼)

𝑉𝑖
∗(𝛼∗)

− 𝛼𝑌𝑖
𝑠ℎ𝑢𝑛𝑡𝑉𝑖(𝛼)

𝑁

𝑘=1

, 𝑖 ∈ 𝑃𝑉  (3.6) 
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𝑉𝑖(𝛼) ∗ 𝑉𝑖
∗(𝛼∗) = 1 + 𝛼(|𝑉𝑖

𝑠𝑝|
2
− 1), 𝑖 ∈ 𝑃𝑉   (3.7) 

𝑉𝑖(𝛼) = 1 + 𝛼(𝑉𝑠𝑙𝑎𝑐𝑘 − 1), 𝑖 ∈ 𝑠𝑙𝑎𝑐𝑘     (3.8) 

where 𝑌𝑖𝑘
𝑡𝑟𝑎𝑛𝑠 are the elements of the transmission admittance matrix, 𝑌𝑖

𝑠ℎ𝑢𝑛𝑡 are shunt 

admittances, 𝑄𝑖is the reactive power injection at bus 𝑖. Note that in   (3.5),  (3.6) and  

(3.7), the complex conjugate of the bus voltage is embedded as 𝑉∗(𝛼∗) instead of 

𝑉∗(𝛼). This is because 𝑉∗(𝛼) is not holomorphic since it does not satisfy Cauchy-

Riemann conditions. Therefore, this formulation uses the expression 𝑉∗(𝛼∗) to retain 

the holomorphicity of the function. For this reason,   (3.5), (3.6) and  (3.7) represent the 

original power system only for real 𝛼 values and only at 𝛼 = 1. 

Since 𝑉(𝛼) and 𝑄(𝛼) are holomorphic functions of the parameter 𝛼, they can be 

represented in their following Maclaurin series form: 

         𝑉(𝛼) = 𝑉[0] + 𝑉[1]𝛼 + 𝑉[2]𝛼2 + ⋯+ 𝑉[𝑛]𝛼𝑛    (3.9) 

𝑄(𝛼) = 𝑄[0] + 𝑄[1]𝛼 + 𝑄[2]𝛼2 + ⋯+ 𝑄[𝑛]𝛼𝑛    (3.10) 

The Maclaurin series for 𝑉∗(𝛼∗) is given by: 

𝑉∗(𝛼∗) = 𝑉∗[0] + 𝑉∗[1]𝛼 + 𝑉∗[2]𝛼2 + ⋯+ 𝑉∗[𝑛]𝛼𝑛  (3.11) 

Additionally, let a power series 𝑊(𝛼) represent the inverse of the voltage function. 

The 𝑊(𝛼) and 𝑊∗(𝛼∗) are given by (3.12), and (3.13). 

𝑊(𝛼) =
1

𝑉(𝛼)
= 𝑊[0] + 𝑊[1]𝛼 + 𝑊[2]𝛼2 + ⋯+ 𝑊[𝑛]𝛼𝑛 (3.12) 

𝑊∗(𝛼∗) =
1

𝑉∗(𝛼∗)
= 

         𝑊∗[0] + 𝑊∗[1]𝛼 + 𝑊∗[2]𝛼2 + ⋯+ 𝑊∗[𝑛]𝛼𝑛 

(3.13) 
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Observe that at 𝛼 = 1, the PBE’s are recovered from the embedded formulation, 

therefore, the solution at 𝛼 = 1 for 𝑉(𝛼) is the solution for the original PF problem. 

3.2.2 Reference state solution 

By substituting (3.9),  (3.10), (3.11) and (3.13) into   (3.5),  (3.6),  (3.7) and   (3.8), 

we obtain: 

∑ 𝑌𝑖𝑘
𝑡𝑟𝑎𝑛𝑠(𝑉𝑘[0] + 𝑉𝑘[1]𝛼 + 𝑉𝑘[2]𝛼2 + ⋯)

𝑁

𝑘=1

 

         = 𝛼𝑆𝑖
∗(𝑊𝑖

∗ + 𝑊𝑖
∗[1]𝛼 + 𝑊𝑖

∗[2]𝛼2 + ⋯), 𝑖 ∈ 𝑃𝑄  

(3.14) 

  

∑ 𝑌𝑖𝑘
𝑡𝑟𝑎𝑛𝑠(𝑉𝑘[0] + 𝑉𝑘[1]𝛼 + 𝑉𝑘[2]𝛼2 + ⋯)

𝑁

𝑘=1

 

        = (𝛼𝑃𝑖 − 𝑗(𝑄𝑖[0] + 𝑄𝑖[1]𝛼 + 𝑄𝑖[2]𝛼2 + ⋯) ∙ 

(𝑊𝑖
∗[0] + 𝑊𝑖

∗[1]𝛼 + 𝑊𝑖
∗[2]𝛼2 + ⋯) 

− α𝑌𝑖
𝑠ℎ𝑢𝑛𝑡(𝑉𝑖[0] + 𝑉𝑖[1]𝛼 + 𝑉𝑖[2]𝛼2 + ⋯), 𝑖 ∈ 𝑃𝑉  

(3.15) 

 

  
       (𝑉𝑖[0] + 𝑉𝑖[1]𝛼 + 𝑉𝑖[2]𝛼2 + ⋯) ∙ 

(𝑉𝑖
∗[0] + 𝑉𝑖

∗[1]𝛼 + 𝑉𝑖
∗[2]𝛼2 + ⋯) = 1 + 𝛼(|𝑉𝑖

𝑠𝑝|
2
− 1), 𝑖 ∈

𝑃𝑉  

(3.16) 

  
𝑉𝑖[0] + 𝑉𝑖[1]𝛼 + 𝑉𝑖[2]𝛼2 + ⋯ = 1 + 𝛼(𝑉𝑠𝑙𝑎𝑐𝑘 − 1), 𝑖 ∈ 𝑠𝑙𝑎𝑐𝑘 (3.17) 

The reference state represents the case where 𝛼 = 0, which for these equations 

represent the case where there is no load/generation in the system. It is calculated by 

setting α equal to 0. The set of equations to be solve for the reference state solution is 

given by: 

∑ 𝑌𝑖𝑘
𝑡𝑟𝑎𝑛𝑠𝑉𝑘[0] = 0

𝑁

𝑘=1

, 𝑖 ∈ 𝑃𝑄 (3.18) 



 

 

19 

∑ 𝑌𝑖𝑘
𝑡𝑟𝑎𝑛𝑠𝑉𝑘[0] = −𝑗𝑄𝑖[0]𝑊𝑖

∗[0]

𝑁

𝑘=1

, 𝑖 ∈ 𝑃𝑉 (3.19) 

𝑉𝑖[0] ∗ 𝑉𝑖
∗[0] = 1, 𝑖 ∈ 𝑃𝑉 (3.20) 

𝑉𝑖[0] = 1, 𝑖 ∈ 𝑠𝑙𝑎𝑐𝑘   (3.21) 

Notice that (3.18), (3.19), (3.20) and (3.21) can be satisfied if all the bus voltages 

are 1.0 pu and all reactive power injections at the PV buses are zero. Thus, the solution 

at 𝛼=0 can be easily obtained by observation instead of calculation. The reference state 

solution is: 

𝑉𝑖[0] = 1, 𝑖 ∈ 𝑃𝑄 ∪ 𝑃𝑉 ∪ 𝑠𝑙𝑎𝑐𝑘      (3.22) 

𝑊𝑖[0] =
1

𝑉𝑖[0]
1, 𝑖 ∈ 𝑃𝑄 ∪ 𝑃𝑉 ∪ 𝑠𝑙𝑎𝑐𝑘 (3.23) 

𝑄𝑖[0] = 0, 𝑖 ∈ 𝑃𝑉  (3.24) 

3.2.3 Power series calculation 

3.2.3.1 Recurrence relation 

In section 3.2.2, the constant terms of 𝑉𝑖(𝛼) and 𝑄𝑖(𝛼) have been obtained. The 

next step is to establish the recurrence relation to find the remaining terms of the power 

series. The recurrence relation is obtained by equating the coefficients of the same order 

of 𝛼  on both sides of equations (3.14), (3.15), (3.16) and (3.17). Obtaining the 

recurrence relation for PQ buses and slack bus is relatively straight forward. The 

recurrence relation is given by equations (3.25) and (3.26) respectively.  
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∑ 𝑌𝑖𝑘
𝑡𝑟𝑎𝑛𝑠𝑉𝑘[𝑛] = 𝑆𝑖

∗𝑊𝑖
∗[𝑛 − 1] − 𝑌𝑖

𝑠ℎ𝑢𝑛𝑡𝑉𝑖[𝑛 − 1]

𝑁

𝑘=1

, 𝑖 ∈ 𝑃𝑄 (3.25) 

𝑉𝑖[𝑛] = 𝛿𝑛0 + 𝛿𝑛1(𝑉𝑠𝑙𝑎𝑐𝑘 − 1),   𝑖 ∈ 𝑠𝑙𝑎𝑐𝑘   (3.26) 

where 𝛿𝑛𝑖 is the Kronecker delta, defined by (3.27). 

𝛿𝑛𝑖 = {
1, 𝑖𝑓 𝑛 = 𝑖

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

(3.27) 

For the PV buses, when equating the coefficients of 𝑛𝑡ℎ  order on both sides in 

(3.15), the −j𝑄𝑖(𝛼)𝑊𝑖
∗(𝛼) term can be written as a convolution of two power series. 

The recurrence relation is expressed as: 

∑ 𝑌𝑖𝑘
𝑡𝑟𝑎𝑛𝑠𝑉𝑘[𝑛] = 𝑃𝑖𝑊𝑖

∗[𝑛 − 1]

𝑁

𝑘=1

 

      −𝑗 ∑ 𝑄𝑖[𝑚]𝑊𝑖
∗[𝑛 − 𝑚] − 𝑌𝑖

𝑠ℎ𝑢𝑛𝑡𝑉𝑖[𝑛 − 1]

𝑛

𝑚=0

, 𝑖 ∈ 𝑃𝑉  

(3.28) 

Equating the coefficients on both sides in (3.16) yields, 

   𝑉𝑖[0]𝑉𝑖
∗[0] = 1 

⟹ 𝑉𝑖[0] = 1 (reference state) 

  

  𝑉𝑖[0]𝑉𝑖
∗[0] + 𝑉𝑖[1]𝑉𝑖

∗[0] = |𝑉𝑖
𝑠𝑝|

2
− 1 

  ⟹  𝑉𝑖
∗[1] + 𝑉𝑖[1] = 2𝑉𝑖𝑟𝑒[1] = |𝑉𝑖

𝑠𝑝
|
2
− 1 

 (3.29) 

⋮  

𝑉𝑖[0]𝑉𝑖
∗[𝑛] + 𝑉𝑖[1]𝑉𝑖

∗[𝑛 − 1] + ⋯+ 𝑉𝑖[𝑛 − 1]𝑉𝑖
∗[1] + 𝑉𝑖[𝑛]𝑉𝑖

∗[0]

= 0 
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   ⟹ 𝑉𝑖
∗[𝑛] + 𝑉𝑖[𝑛] = 2𝑉𝑖𝑟𝑒[𝑛] = − ∑ 𝑉𝑖[𝑘]𝑉𝑖

∗[𝑛 − 𝑘]

𝑛−1

𝑘=1

 

where 𝑉𝑖𝑟𝑒[𝑛] represents the real part of the 𝑛𝑡ℎ coefficient of the voltage power series. 

The notation 𝛿𝑛𝑖  as defined in (3.27) is used to write a generalized expression to 

evaluate 𝑉𝑖𝑟𝑒[𝑛]. The calculation of 𝑉𝑖𝑟𝑒[𝑛] for an arbitrary 𝑛 can be written as: 

𝑉𝑖𝑟𝑒[𝑛] = 𝛿𝑛0 + 𝛿𝑛1

|𝑉𝑖
𝑠𝑝|

2
− 1

2
−

1

2
∑ 𝑉𝑖[𝑘]𝑉𝑖

∗[𝑛 − 𝑘], 𝑖 ∈ 𝑃𝑉

𝑛−1

𝑘=1

 (3.30) 

Note that in equations (3.25) and (3.28), a new unknown 𝑊𝑖[𝑛] is introduced. The 

relationship between 𝑊𝑖[𝑛] and 𝑉𝑖[n] is obtained as given in (3.31) by equating the 

coefficients of the same order of 𝛼 on both sides of (3.12).  

   𝑊𝑖[0] 𝑉𝑖[0] = 1 

⟹ 𝑊𝑖[0] = 1 (reference state) 

  

  𝑊𝑖[0]𝑉𝑖[1] + 𝑊𝑖[1]𝑉𝑖[0] = 0 (3.31) 

⋮  

𝑊𝑖[0]𝑉𝑖[𝑛] + 𝑊𝑖[1]𝑉𝑖[𝑛 − 1] + ⋯+ 𝑊𝑖[𝑛 − 1]𝑉𝑖[1] + W[𝑛]𝑉𝑖[0] = 0 
 

The 𝑛𝑡ℎ coefficient for 𝑊𝑖(𝛼) can be calculated by: 

𝑊𝑖[𝑛] = −
∑ 𝑉𝑖[𝑘]𝑊𝑖[𝑛 − 𝑘]𝑛

𝑘=1

𝑉𝑖[0]
 (3.32) 

3.2.3.2 Calculation process 
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To recursively calculate the remaining coefficients of 𝑉𝑖(𝛼)  and 𝑄𝑖(𝛼) , all the 

knowns and unknowns in (3.25), (3.26), (3.28) and (3.30) need to be moved to the RHS 

and LHS respectively. Observe that in (3.28), the values 𝑄𝑖[𝑛] and 𝑊𝑖
∗[𝑛] on the RHS 

are unknowns. Rearrange equation (3.28) to obtain: 

∑ 𝑌𝑖𝑘
𝑡𝑟𝑎𝑛𝑠𝑉𝑘[𝑛] = 𝑃𝑖𝑊𝑖

∗[𝑛 − 1]

𝑁

𝑘=1

 

      −𝑗 (∑ 𝑄𝑖[𝑚]𝑊𝑖
∗[𝑛 − 𝑚]

𝑛−1

𝑚=1

+ 𝑄𝑖[0]𝑊𝑖
∗[𝑛] + 𝑄𝑖[𝑛]𝑊𝑖

∗[0])

− 𝑌𝑖
𝑠ℎ𝑢𝑛𝑡𝑉𝑖[𝑛 − 1], 𝑖 ∈ 𝑃𝑉  

 

∑ 𝑌𝑖𝑘
𝑡𝑟𝑎𝑛𝑠𝑉𝑘[𝑛] = 𝑃𝑖𝑊𝑖

∗[𝑛 − 1]

𝑁

𝑘=1

 

      −𝑗 (∑ 𝑄𝑖[𝑚]𝑊𝑖
∗[𝑛 − 𝑚]

𝑛−1

𝑚=1

+ 0 ∙ 𝑊𝑖
∗[𝑛] + 𝑄𝑖[𝑛] ∙ 1) 

       −𝑌𝑖
𝑠ℎ𝑢𝑛𝑡𝑉𝑖[𝑛 − 1], 𝑖 ∈ 𝑃𝑉  

(3.33) 

∑ 𝑌𝑖𝑘
𝑡𝑟𝑎𝑛𝑠𝑉𝑘[𝑛] + 𝑗𝑄𝑖[𝑛]𝑊𝑖

∗[0] = 𝑃𝑖𝑊𝑖
∗[𝑛 − 1]

𝑁

𝑘=1

 

         −𝑗 ∑ 𝑄𝑖[𝑚]𝑊𝑖
∗[𝑛 − 𝑚] − 𝑌𝑖

𝑠ℎ𝑢𝑛𝑡𝑉𝑖[𝑛 − 1], 𝑖 ∈ 𝑃𝑉

𝑛−1

𝑚=1

 

 

Breaking the transmission admittance matrix and complex coefficients of 𝑉(𝛼), 

𝑊(𝛼) into real and imaginary parts, the power series coefficients can be obtained by 

solving a real-valued linear matrix equation consisting of (3.25), (3.26) and (3.33). 

Assuming bus 1 is the slack bus, bus 𝑝 (𝑝 = 2,3. .𝑀) is a PV bus and bus 𝑞 (𝑞 = 𝑀 +

1,𝑀 + 2. . 𝑁) is a PQ bus, the matrix equation to compute the 𝑛𝑡ℎ term is given as: 
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[
 
 
 
 
 
 
 
 
 

1 0 ⋯ 0 0 ⋯ 0 0 ⋯
0 1 ⋯ 0 0 ⋯ 0 0 ⋯
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

𝐺𝑝1 −𝐵𝑝1 ⋯ 0 −𝐵𝑝𝑝 ⋯ 𝐺𝑝𝑞 −𝐵𝑝𝑞 ⋯

𝐵𝑝1 𝐺𝑝1 ⋯ 1 𝐺𝑝𝑝 ⋯ 𝐵𝑝𝑞 𝐺𝑝𝑞 ⋯

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
𝐺𝑞1 −𝐵𝑞1 ⋯ 0 −𝐵𝑞𝑝 ⋯ 𝐺𝑞𝑞 −𝐵𝑞𝑞 ⋯

𝐵𝑞1 𝐺𝑞1 ⋯ 0 𝐺𝑞𝑝 ⋯ 𝐵𝑞𝑞 𝐺𝑞𝑞 ⋯

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ]
 
 
 
 
 
 
 
 
 

 

[
 
 
 
 
 
 
 
 
 
𝑉1𝑟𝑒[𝑛]

𝑉1𝑖𝑚[𝑛]
⋮

𝑄𝑝[𝑛]

𝑉𝑝𝑖𝑚[𝑛]

⋮
𝑉𝑞𝑟𝑒[𝑛]

𝑉𝑞𝑖𝑚[𝑛]

⋮ ]
 
 
 
 
 
 
 
 
 

  

=

[
 
 
 
 
 
 
 
 
 
 
 
 
 

𝛿𝑛0 + 𝛿𝑛1(𝑉𝑠𝑙𝑎𝑐𝑘 − 1)
0
⋮

𝑅𝑒 {𝑃𝑝𝑊𝑝
∗[𝑛 − 1] − 𝑗 ∑ 𝑄𝑝[𝑚]𝑊𝑝

∗[𝑛 − 𝑚] − 𝑌𝑝
𝑠ℎ𝑢𝑛𝑡𝑉𝑝[𝑛 − 1]

𝑛−1

𝑚=1

}

𝐼𝑚 {𝑃𝑝𝑊𝑝
∗[𝑛 − 1] − 𝑗 ∑ 𝑄𝑝[𝑚]𝑊𝑝

∗[𝑛 − 𝑚] − 𝑌𝑝
𝑠ℎ𝑢𝑛𝑡𝑉𝑝[𝑛 − 1]

𝑛−1

𝑚=1

}

⋮
𝑅𝑒{𝑆𝑞

∗𝑊𝑞
∗[𝑛 − 1] − 𝑌𝑞

𝑠ℎ𝑢𝑛𝑡𝑉𝑞[𝑛 − 1]}

𝐼𝑚{𝑆𝑞
∗𝑊𝑞

∗[𝑛 − 1] − 𝑌𝑞
𝑠ℎ𝑢𝑛𝑡𝑉𝑞[𝑛 − 1]}

⋮ ]
 
 
 
 
 
 
 
 
 
 
 
 
 

 

−⋯−

[
 
 
 
 
 
 
 
 
 

0
0
⋮

𝐺𝑝𝑝

𝐵𝑝𝑝

⋮
𝐺𝑞𝑝

𝐵𝑞𝑝

⋮ ]
 
 
 
 
 
 
 
 
 

𝑉𝑝𝑟𝑒[𝑛] − ⋯ 

(3.34) 

where 𝐺𝑖𝑘 and 𝐵𝑖𝑘 are the real and imaginary parts of the transmission matrix entries 

𝑌𝑡𝑟𝑎𝑛𝑠(𝑖, 𝑘), and 𝑉𝑖𝑟𝑒 and 𝑉𝑖𝑖𝑚 are the real and imaginary parts of the voltage power 

series coefficients, respectively. Notice that all values of 𝑉𝑖𝑟𝑒[𝑛] for the PV buses are 

obtained from (3.30) before (3.34) is solved. 

In summary, the process used to calculate the power series is shown below: 

1. Calculate the reference state solution at 𝛼 = 0 using (3.22), (3.23) and (3.24). 
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2. Calculate 𝑊[𝑛 − 1] for all buses from 𝑊[𝑖] (𝑖 < 𝑛 − 1) and 𝑉[𝑖] (𝑖 ≤ 𝑛 − 1) 

using (3.32). 

3. Calculate 𝑉𝑖𝑟𝑒[𝑛] for PV buses using (3.30). 

4. Calculate 𝑉𝑖𝑟𝑒[𝑛]  for slack bus and PQ buses and 𝑉𝑖𝑖𝑚[𝑛]  for all buses by 

solving a linear matrix equation (3.34). 

5. Set 𝑛 = 𝑛 + 1. Repeat steps 2 through 4. 

3.2.4  Padé approximant 

As stated previously, the solution at 𝛼 = 1 is the solution of the PF problem. Since 

the power series obtained from the recurrence relationships given above will only 

converge within its radius of convergence (ROC), analytic continuation is used to find 

the converged solution of the voltage function. Stahl’s theorem [49] proves that the 

sequence of near-diagonal Padé approximant is the maximal analytic continuation of 

the power series, provided these equations obey the requirements stipulated in the 

equation. Thus, the Padé approximant will be used to evaluate the voltage solution. 

The Padé approximant is a rational-form approximation to a power series. Assume 

a power series is expressed as follows: 

𝑐(𝛼) = 𝑐[0] + 𝑐[1]𝛼 + 𝑐[2]𝛼2 + 𝑐[3]𝛼3 + ⋯ = ∑ 𝑐[𝑛]𝛼𝑛

∞

𝑛=0

 (3.35) 

where 𝑐[𝑛] is the power series coefficient of the 𝑛𝑡ℎ order term. 
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For the power series given by (3.35) truncated to L+M+1 terms, the Padé 

approximant can be expressed as the rational form of two polynomials, 𝑎(𝛼) and 𝑏(𝛼) 

as given in (3.36). 

         [𝐿 𝑀⁄ ] =
𝑎[0] + 𝑎[1]𝛼 + 𝑎[2]𝛼2 + ⋯𝑎[𝐿]𝛼𝐿

𝑏[0] + 𝑏[1]𝛼 + 𝑏[2]𝛼2 + 𝑏[𝑀]𝛼𝑀
 (3.36) 

In (3.36), 𝐿 is the degree of the numerator polynomial a(𝛼) and 𝑀 is the degree of the 

denominator polynomial 𝑏(𝛼).  

The approximant in (3.36) is referred as[𝐿 𝑀⁄ ] Padé. If 𝐿 = 𝑀, it is a diagonal Padé 

approximant. If |𝐿 − 𝑀| = 1, it is said to be a near-diagonal Padé approximant. The 

[𝐿 𝑀⁄ ] Padé can be evaluated from the power series in (3.35) truncated at (𝐿 + 𝑀)-th 

order, given in (3.37): 

𝑐(𝛼) = 𝑐[0] + 𝑐[1]𝛼 + 𝑐[2]𝛼2 + ⋯𝑐[𝐿 + 𝑀]𝛼𝐿+𝑀 + 𝑂(𝛼𝐿+𝑀+1) 

       =
𝑎[0] + 𝑎[1]𝛼 + 𝑎[2]𝛼2 + ⋯𝑎[𝐿]𝛼𝐿

𝑏[0] + 𝑏[1]𝛼 + 𝑏[2]𝛼2 + ⋯𝑏[𝑀]𝛼𝑀
=

𝑎(𝛼)

𝑏(𝛼)
 

(3.37) 

Multiplying (3.37) by 𝑏(𝛼) on both sides to obtain: 

(𝑐[0] + 𝑐[1]𝛼 + 𝑐[2]𝛼2 + ⋯𝑐[𝐿 + 𝑀]𝛼𝐿+𝑀)(𝑏[0] + 𝑏[1]𝛼 + 𝑏[2]𝛼2 

+⋯𝑏[𝑀]𝛼𝑀) = 𝑎[0] + 𝑎[1]𝛼 + 𝑎[2]𝛼2 + ⋯ 𝑎[𝐿]𝛼𝐿 
(3.38) 

Equating the coefficients of 𝛼0, 𝛼1, 𝛼2…𝛼𝐿at both sides of (3.38) , we obtain: 

𝑏[0]𝑐[0] = 𝑎[0] 

𝑏[0]𝑐[1] + 𝑏[1]𝑐[0] = 𝑎[1] 

𝑏[0]𝑐[2] + 𝑏[1]𝑐[1] + 𝑏[2]𝑐[0] = 𝑎[2] 

⋮ 

(3.39) 
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∑ 𝑏[𝑖]𝑐[𝐿 − 𝑖] = 𝑎[𝐿]

min (𝐿,𝑀)

𝑖=0

 

It can be observed that the coefficients of 𝛼𝐿+1 through 𝛼𝐿+𝑀 on the LHS of (3.38) 

have to be zero since there are no corresponding terms on the RHS of (3.38). Equating 

the coefficients of 𝛼𝐿+1, 𝛼𝐿+2, …𝛼𝐿+𝑀at both sides of (3.38), we obtain: 

𝑏[0]𝑐[𝐿 + 1] + ⋯𝑏[𝑀 − 1]𝑐[𝐿 − 𝑀 + 2] + 𝑏[𝑀]𝐶[𝐿 − 𝑀 + 1] = 0 

𝑏[0]𝑐[𝐿 + 2] + ⋯𝑏[𝑀 − 1]𝑐[𝐿 − 𝑀 + 3] + 𝑏[𝑀]𝐶[𝐿 − 𝑀 + 2] = 0 

⋮ 

𝑏[0]𝑐[𝐿 + 𝑀] + ⋯𝑏[𝑀 − 1]𝑐[𝐿 + 1] + 𝑏[𝑀]𝐶[𝐿] = 0 

𝑖𝑓 𝑀 > 𝐿, 𝑐[𝑗] = 0, 𝑗 < 0 

(3.40) 

Notice that with (3.39) and (3.40), we have L+M+1 knowns while there are L+M+2 

unknowns in 𝑎(𝛼) and 𝑏(𝛼). Therefore, one of the coefficients in either 𝑎(𝛼) or 𝑏(𝛼) 

is a free variable. For simplicity, the value for 𝑏[0] is chosen to be 1.0.  

The system of equations given in (3.40) can be written in the matrix form given by 

(3.41). The coefficients of the denominator polynomial 𝑏(𝛼)  can be obtained by 

solving (3.41) through the LU factorization of the Padé matrix and forward/backward 

substitution.  

[
 
 
 
 
𝑐[𝐿 − 𝑀 + 1] 𝑐[𝐿 − 𝑀 + 2] 𝑐[𝐿 − 𝑀 + 3] ⋯ 𝑐[𝐿]

𝑐[𝐿 − 𝑀 + 2] 𝑐[𝐿 − 𝑀 + 3] 𝑐[𝐿 − 𝑀 + 4] ⋯ 𝑐[𝐿 + 1]

𝑐[𝐿 − 𝑀 + 3] 𝑐[𝐿 − 𝑀 + 4] 𝑐[𝐿 − 𝑀 + 5] ⋯ 𝑐[𝐿 + 2]
⋮ ⋮ ⋮ ⋮ ⋮

𝑐[𝐿] 𝑐[𝐿 + 1] 𝑐[𝐿 + 2] ⋯ 𝑐[𝐿 − 𝑀]]
 
 
 
 

[
 
 
 
 

𝑏[𝑀]
𝑏[𝑀 − 1]

𝑏[𝑀 − 2]
⋮

𝑏[1] ]
 
 
 
 

 (3.41) 
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= −

[
 
 
 
 
𝑐[𝐿 + 1]

𝑐[𝐿 + 2]
𝑐[𝐿 + 3]

⋮
𝑐[𝐿 + 𝑀]]

 
 
 
 

 

With the coefficients obtained for 𝑏(𝛼), then from equation (3.39), the coefficients 

for the numerator polynomial 𝑎(𝛼) can be evaluated. Thus, both the numerator and 

denominator polynomials of Padé approximant can be obtained. For the PF problem, 

the converged solution evaluated from the Padé approximant of 𝑉(𝛼)  at 𝛼 = 1  is 

guaranteed to be the operable solution, provided a solution exists. 

3.3 Scalable formulation 

The non-scalable formulation given in section 3.2 represents the original PBE’s 

only at 𝛼 = 1  and the 𝑉(α) evaluated at any other value of α is meaningless. The 

scalable formulation [26] given in this section, however, can allow the solution obtained 

at different values of 𝛼  to represent the solution when all loads and real power 

generations are uniformly scaled by a factor of 𝛼 . Consider the following set of 

holomorphically embedded equations, where (3.42) represents the PBE for PQ buses 

(3.1), (3.43) represents the PBE for PV buses (3.2), (3.44) represents the voltage 

magnitude constraint for the PV buses (3.3) and (3.45) represents voltage constraint for 

the slack bus (3.4), 

∑ 𝑌𝑖𝑘𝑉𝑘(𝛼) =
𝛼𝑆𝑖

∗

𝑉𝑖
∗(𝛼∗)

𝑁

𝑘=1

, 𝑖 ∈ 𝑃𝑄 (3.42) 
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∑ 𝑌𝑖𝑘𝑉𝑘(𝛼) =
𝛼𝑃𝑖 + 𝑗𝛼𝑄𝑙𝑖 − 𝑗𝑄𝑔𝑖(𝛼)

𝑉𝑖
∗(𝛼∗)

𝑁

𝑘=1

, 𝑖 ∈ 𝑃𝑉 (3.43) 

𝑉𝑖(𝛼) ∗ 𝑉𝑖
∗(𝛼∗) = |𝑉𝑖

𝑠𝑝|
2
, 𝑖 ∈ 𝑃𝑉  (3.44) 

𝑉𝑖(𝛼) = 𝑉𝑠𝑙𝑎𝑐𝑘 , 𝑖 ∈ 𝑠𝑙𝑎𝑐𝑘   (3.45) 

where 𝑃𝑖  denotes the real power injection at bus 𝑖 , 𝑄𝑔𝑖(𝛼) denotes the reactive power 

generation at bus 𝑖 and 𝑄𝑙𝑖 denotes the reactive power load at bus 𝑖. Note that in (3.43),  

𝑄𝑔𝑖 is written as a function of 𝛼 so that the variable value of the reactive power generation 

needed to maintain bus voltage control is calculated from the power series while the real 

power injection 𝑃𝑖 and reactive power load 𝑄𝑙𝑖 are scaled by a factor of α. 

Substituting (3.9), (3.13) and 𝑄𝑔𝑖(𝛼), defined by 𝑄𝑔𝑖(𝛼) = 𝑄𝑔𝑖[0] + 𝑄𝑔𝑖[1]𝛼 +

𝑄𝑔𝑖[2]𝛼2 + ⋯into (3.42), (3.43), (3.44) and (3.45), we obtain: 

∑ 𝑌𝑖𝑘(𝑉𝑘[0] + 𝑉𝑘[1]𝛼 + 𝑉𝑘[2]𝛼2 + ⋯)

𝑁

𝑘=1

 

          = 𝛼𝑆𝑖
∗(𝑊𝑖

∗[0] + 𝑊𝑖
∗[1]𝛼 + 𝑊𝑖

∗[2]𝛼2 + ⋯), 𝑖 ∈ 𝑃𝑄  

(3.46) 

∑ 𝑌𝑖𝑘(𝑉𝑘[0] + 𝑉𝑘[1]𝛼 + 𝑉𝑘[2]𝛼2 + ⋯)

𝑁

𝑘=1

 

        = (𝛼(𝑃𝑖 + 𝑗𝑄𝑙𝑖) − 𝑗(𝑄𝑔𝑖[0] + 𝑄𝑔𝑖[1]𝛼 + 𝑄𝑖[2]𝛼2 + ⋯) ∙ 

             (𝑊𝑖
∗[0] + 𝑊𝑖

∗[1]𝛼 + 𝑊𝑖
∗[2]𝛼2 + ⋯) 

   −α𝑌𝑖
𝑠ℎ𝑢𝑛𝑡(𝑉𝑖[0] + 𝑉𝑖[1]𝛼 + 𝑉𝑖[2]𝛼2 + ⋯ ), 𝑖 ∈ 𝑃𝑉  

(3.47) 

 

  
(𝑉𝑖[0] + 𝑉𝑖[1]𝛼 + 𝑉𝑖[2]𝛼2 + ⋯) ∙  

(𝑉𝑖
∗[0] + 𝑉𝑖

∗[1]𝛼 + 𝑉𝑖
∗[2]𝛼2 + ⋯) = |𝑉𝑖

𝑠𝑝|
2
, 𝑖 ∈ 𝑃𝑉  

(3.48) 

  
  𝑉𝑖[0] + 𝑉𝑖[1]𝛼 + 𝑉𝑖[2]𝛼2 + ⋯ = 𝑉𝑠𝑙𝑎𝑐𝑘 , 𝑖 ∈ 𝑠𝑙𝑎𝑐𝑘 (3.49) 

3.3.1 Reference state calculation 
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The system of equations to be solved for the reference state at 𝛼 = 0 is given by 

(3.50)-(3.53). 

∑ 𝑌𝑖𝑘𝑉𝑘[0] = 0

𝑁

𝑘=1

, 𝑖 ∈ 𝑃𝑄 (3.50) 

∑ 𝑌𝑖𝑘𝑉𝑘[0] = −𝑗𝑄𝑔𝑖[0]𝑊𝑖
∗[0]

𝑁

𝑘=1

, 𝑖 ∈ 𝑃𝑉 (3.51) 

𝑉𝑖[0] ∗ 𝑉𝑖
∗[0] = |𝑉𝑖

𝑠𝑝|
2
, 𝑖 ∈ 𝑃𝑉  (3.52) 

𝑉𝑖[0] = 𝑉𝑠𝑙𝑎𝑐𝑘 , 𝑖 ∈ 𝑠𝑙𝑎𝑐𝑘   (3.53) 

Note that the reference state cannot be obtained only through observation. To 

calculate the reference state, the voltages and reactive power generation at 𝛼 = 0 can 

be represented as different Maclaurin series of the complex embedding parameter β, and 

the above equations (3.50)-(3.53) are going to embedded into a non-scalable form as 

given by (3.54)-(3.57), 

∑ 𝑌𝑖𝑘
𝑡𝑟𝑎𝑛𝑠𝑉𝑘_0(𝛽) = −𝛽𝑌𝑖

𝑠ℎ𝑢𝑛𝑡𝑉𝑖_0(𝛽)

𝑁

𝑘=1

, 𝑖 ∈ 𝑃𝑄 (3.54) 

∑ 𝑌𝑖𝑘
𝑡𝑟𝑎𝑛𝑠𝑉𝑘_0(𝛽) = −𝑗𝑄𝑔𝑖_0(𝛽)𝑊𝑖_0

∗ (𝛽) − 𝛽𝑌𝑖
𝑠ℎ𝑢𝑛𝑡𝑉𝑖_0(𝛽)

𝑁

𝑘=1

, 𝑖 ∈ 𝑃𝑉 (3.55) 

𝑉𝑖_0(𝛽) ∗ 𝑉𝑖_0
∗ (𝛽∗) = 1 + 𝛽(|𝑉𝑖

𝑠𝑝|
2
− 1), 𝑖 ∈ 𝑃𝑉  (3.56) 

𝑉𝑖0
(𝛽) = 1 + 𝛽(𝑉𝑠𝑙𝑎𝑐𝑘 − 1), 𝑖 ∈ 𝑠𝑙𝑎𝑐𝑘   (3.57) 

where the 𝑉𝑖_0 (𝛽 = 1)  and 𝑄𝑔𝑖_0(𝛽 = 1)  represent the voltage and reactive power 

generation under no-load conditions respectively. The approach for obtaining the 

solution is similar to that presented in section 3.2, so recursion relationships for the so-

called pre-reference state power flow in this section are not given.  
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3.3.2 Recurrence relationship 

Similar to the power series calculation for the non-scalable formulation presented 

in section 3.2.3, the recurrence relation for the scalable formulation is obtained by 

equating the coefficients of the same order of 𝛼 on both sides of equations (3.54), (3.55), 

(3.56) and (3.57). The recurrence relation is shown as follows: 

∑ 𝑌𝑖𝑘𝑉𝑘[𝑛] = 𝑆𝑖
∗𝑊𝑖

∗[𝑛 − 1]

𝑁

𝑘=1

, 𝑖 ∈ 𝑃𝑄 (3.58) 

𝑉𝑖[𝑛] = 0, 𝑛 ≥ 1   𝑖 ∈ 𝑠𝑙𝑎𝑐𝑘   (3.59) 

∑ 𝑌𝑖𝑘𝑉𝑘[𝑛] = (𝑃𝑖 + 𝑗𝑄𝑙𝑖)𝑊𝑖
∗[𝑛 − 1]

𝑁

𝑘=1

 

                   −𝑗 ∑ 𝑄𝑔𝑖[𝑚]𝑊𝑖
∗[𝑛 − 𝑚]]

𝑛

𝑚=0

, 𝑖 ∈ 𝑃𝑉  

(3.60) 

𝑉𝑖[0]𝑉𝑖
∗[𝑛] + 𝑉𝑖[𝑛]𝑉𝑖

∗[0] = − ∑ 𝑉𝑖[𝑘]𝑉𝑖
∗[𝑛 − 𝑘], 𝑛 ≥ 1    𝑖 ∈ 𝑃𝑉

𝑛−1

𝑘=1

 (3.61) 

Similarly, splitting the admittance matrix into real and imaginary parts, breaking 

the voltage series coefficients into real and imaginary parts and moving all the knowns 

and unknowns to the RHS and LHS, these equations can be written in matrix form, as 

given in (3.62). 
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[
 
 
 
 
 
 
 
 
 
 
 
 

1 0 ⋯ 0 0 0 0 0 ⋯ 0 0 ⋯
0 1 ⋯ 0 0 0 0 0 ⋯ 0 0 ⋯
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 ⋯ 𝑉𝑝𝑟𝑒[0] 𝑉𝑝𝑖𝑚[0] 0 0 0 ⋯ 0 0 ⋯

0 0 ⋯ 𝑊𝑝𝑟𝑒[0] −𝑊𝑝𝑖𝑚[0] 𝑉𝑝𝑟𝑒[0] −𝑉𝑝𝑖𝑚[0] 0 ⋯ 0 0 ⋯

0 0 ⋯ 𝑊𝑝𝑖𝑚[0] 𝑊𝑝𝑟𝑒[0] 𝑉𝑝𝑖𝑚[0] 𝑉𝑝𝑟𝑒[0] 0 ⋯ 0 0 ⋯

𝐺𝑝1 −𝐵𝑝1 ⋯ 𝐺𝑝𝑝 −𝐵𝑝𝑝 0 0 𝑊𝑝𝑖𝑚[0] ⋯ 𝐺𝑝𝑞 −𝐵𝑝𝑞 ⋯

𝐵𝑝1 𝐺𝑝1 ⋯ 𝐵𝑝𝑝 𝐺𝑝𝑝 0 0 𝑊𝑝𝑟𝑒[0] ⋯ 𝐵𝑝𝑞 𝐺𝑝𝑞 ⋯

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
𝐺𝑞1 −𝐵𝑞1 ⋯ 0 −𝐵𝑞𝑝 0 0 0 ⋯ 𝐺𝑞𝑞 −𝐵𝑞𝑞 ⋯

𝐵𝑞1 𝐺𝑞1 ⋯ 0 𝐺𝑞𝑝 0 0 0 ⋯ 𝐵𝑞𝑞 𝐺𝑞𝑞 ⋯

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ]
 
 
 
 
 
 
 
 
 
 
 
 

 

×

[
 
 
 
 
 
 
 
 
 
 
 
 
 
𝑉1𝑟𝑒[𝑛]

𝑉1𝑖𝑚[𝑛]
⋮

𝑉𝑝𝑟𝑒[𝑛]

𝑉𝑝𝑖𝑚[𝑛]

𝑊𝑝𝑟𝑒[𝑛]

𝑊𝑝𝑖𝑚[𝑛]

𝑄𝑔𝑝[𝑛]

⋮
𝑉𝑞𝑟𝑒[𝑛]

𝑉𝑞𝑖𝑚[𝑛]

⋮ ]
 
 
 
 
 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0
0
⋮

𝑅𝑒 {−
1

2
∑ 𝑉𝑝[𝑘]𝑉𝑝

∗[𝑛 − 𝑘]

𝑛−1

𝑘=1

}

𝑅𝑒 {− ∑ 𝑊𝑝[𝑘]𝑉𝑝[𝑛 − 𝑘]

𝑛−1

𝑘=1

}

𝐼𝑚 {− ∑ 𝑊𝑝[𝑘]𝑉𝑝[𝑛 − 𝑘]

𝑛−1

𝑘=1

}

𝑅𝑒 {(𝑃𝑝 + 𝑗𝑄𝑙𝑝)𝑊𝑝
∗[𝑛 − 1] − 𝑗 ∑ 𝑄𝑔𝑝[𝑚]𝑊𝑝

∗[𝑛 − 𝑚]

𝑛−1

𝑚=1

}

𝐼𝑚 {(𝑃𝑝 + 𝑗𝑄𝑙𝑝)𝑊𝑝
∗[𝑛 − 1] − 𝑗 ∑ 𝑄𝑔𝑝[𝑚]𝑊𝑝

∗[𝑛 − 𝑚]

𝑛−1

𝑚=1

}

⋮
𝑅𝑒{𝑆𝑞

∗𝑊𝑞
∗[𝑛 − 1]}

𝐼𝑚{𝑆𝑞
∗𝑊𝑞

∗[𝑛 − 1]}

⋮ ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (3.62) 

𝑊𝑖[𝑛] = −
∑ 𝑉𝑖[𝑘]𝑊𝑖[𝑛 − 𝑘]𝑛

𝑘=1

𝑉𝑖[0]
 

(3.63) 

The relationship between the voltage series 𝑉(𝛼) and the inverse of the voltage 

𝑊(𝛼) given by (3.63) will also be used to calculate the power series coefficients. The 

calculation process is: Calculate the reference state solution using (3.58)-(3.61) and 

then get the remaining terms of the power series using (3.62) and (3.63). 

After obtaining all needed power series terms, similar to section 3.2.4, the Padé 

approximant is used to evaluate the power series outside its radius of convergence. Note 
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that unlike the non-scalable formulation which represents the original PF problem only 

at 𝛼 = 1, the solution obtained at higher values of 𝛼 from the scalable formulation can 

represent the case when all loads and real power generation are scaled by a factor of 

𝛼.When this extrapolation-capable formulation is used, the poles and zeros of the Padé 

approximant can be used to estimate the SNBP using the so-called roots method. Some 

results on the effect of high precision on the roots method are shown in section 3.4. 

3.4 Numerical examples 

3.4.1 Solving a power flow problem using HEM 

The IEEE 14-bus system is used as an example to show the benefits of using high 

precision by comparing the numerical performance of the HEM using three different 

levels of precision: double precision, quadruple precision (34 digits) and 50 digits of 

precision. The MVA base is 100 MVA and the number of series terms used in this 

experiment is 90. The SNBP of the 14 bus system is encountered when 𝛼 = 4.07. 

The maximum PBE mismatch in pu vs. the number of terms in the power series for 

the base case of the 14 bus system is plotted in Figure 3.1. It can be observed that, the 

PBE mismatch error decreases as the number of terms used in the power series increases 

until a limit is encountered due to precision. The best PBE mismatch obtained from 

double precision is at the level of 10-14 while using 34 or 50 digits of precision, the level 

of accuracy can be achieved are 10-33 and 10-49 respectively. Now for this problem at 
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this loading level, all levels of precision are acceptable, but for some problems the use 

of double precision prevents convergence. 

 

Figure 3.1 Maximum PBE mismatch vs. number of terms for the IEEE 14 bus 

system at base case 

When all loads and real power generation of the 14 bus system are scaled by a factor 

of 4, so that the system is loaded to 98.3% of its SNBP, the convergence rate as shown 

in Figure 3.2 is much slower as compared to the base case as seen in Figure 3.1. When 

using double precision as represented by the blue solid line, the rate of the convergence 

decreases after the number of series terms reaches n=40, which indicates that the 

accumulated round-off errors due to limited precision start to impact the accuracy of 

the PF results at this point. However, the PF solution can continue converging at almost 
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the same rate when higher precision (34 digits or 50 digits of precision) is implemented. 

At n=90, the PBE mismatch for double precision is around 1 × 10−5 pu while for 34 

or 50 digits of precision, the PBE mismatch is around 2 × 10−8 pu. 

 

Figure 3.2 Maximum PBE mismatch vs. number of terms for the IEEE 14 bus 

system at load scaling factor=4 

If the PF mismatch tolerance is set to be 10−5 pu (0.001 MVA), the number of terms 

needed to converge within the given tolerance for these three different levels of 

precision is plotted against the load scaling factor (expressed as the percentage of the 

SNBP) when the 14 bus system is heavily loaded, as given in Figure 3.3. It can be 

observed that as the load increases, more number of terms are needed to reach the 

mismatch tolerance.  



 

 

35 

When the system is loaded to 98% of its SNBP, the number of terms needed for 

double precision and higher precision (34 or 50 digits of precision) are 49 and 59 terms, 

respectively. When the system is loaded to 98.5% of its SNBP, the MATLAB program 

with double precision cannot find the solution within 90 terms while the program with 

higher precision (34 or 50 digits of precision) can find the solution with 55 terms 

included in the power series.  

 

Figure 3.3 Number of terms needed vs. load scaling factor 

It can be concluded from the above figures that the implementation of high precision 

is able to improve the accuracy of computations especially when the system is close to 

the voltage collapse point. As shown in Figure 3.3, with higher precision, fewer number 

of terms are needed. However, the speed of the program typically would be slower. 

Thus, there exists a trade-off between the accuracy and execution time. Determining 

how many terms are needed and how many digits of precision must be used remains an 

open question. 
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3.4.2 Estimating the SNBP using roots method 

In the roots method [26], the scalable formulation is used to estimate the SNBP 

using the poles/zeros of the Padé approximant. The smallest positive-real-valued zero 

or pole is viewed as the estimation of the SNBP. 

A simple two-bus system comprised of a slack bus and a PQ bus as shown in Figure 

3.4 is used to demonstrate the effect of high precision on roots method, since the 

theoretical SNBP can be obtained as a reference. The parameters for this two-bus 

system are listed in Table 3.2.  

 

Figure 3.4 Two bus system diagram 

Table 3.2 Parameters for the two-bus system 

Parameter 𝑅 𝑋 𝑃 (injection) 𝑄(injection) 𝑉0 

Value (pu) 0.0 0.1 -0.15 -0.5 1.0 

The PBE for the PQ bus (bus 2) when the load and generation are scaled uniformly 

by a loading scale factor 𝑥 is given by (3.64), 

𝑉 − 𝑉0

𝑍
=

𝑆𝑠𝑐𝑎𝑙𝑒𝑑
∗

𝑉∗
 (3.64) 

where 𝑉  is the PQ bus voltage, 𝑉0  is the slack bus voltage, 𝑍 = 𝑅 + 𝑗𝑋  is the line 

impedance and 𝑆𝑠𝑐𝑎𝑙𝑒𝑑 = 𝑥 × 𝑆 = 𝑥 × (𝑃 + 𝑗𝑄) is the complex power injection at the 

PQ bus.  
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It is convenient to introduce a variable 𝑈 given by (3.65) and define 
𝑍𝑆𝑠𝑐𝑎𝑙𝑒𝑑

∗

|𝑉0|2
= σ, 

the PBE equation (3.64) can be rearranged to obtain (3.66). 

𝑈 =
𝑉

𝑉0

 
(3.65) 

𝑈 = 1 +
σ

𝑈∗ (3.66) 

The solutions for (3.66), which is a quadratic equation, can be obtained in closed form: 

𝑈 =
1

2
± √

1

4
+ 𝜎𝑅 − 𝜎𝐼

2 + 𝑗𝜎𝐼
 (3.67) 

where 𝜎𝑅 =
𝑥(𝑋𝑄+𝑅𝑃)

|𝑉0|2
 and 𝜎𝐼 =

𝑥(𝑋𝑃−𝑅𝑄)

|𝑉0|2
 are the real and imaginary parts of σ , 

respectively. 

These two solutions represent the high-voltage and low-voltage solutions for the 

two-bus network. The SNBP is the point where the two “branches” meet and that is the 

point at which the radicand becomes zero. Thus, the SNBP can be calculated by solving 

the equation shown below: 

1

4
+ 𝜎𝑅 − 𝜎𝐼

2 = 0 (3.68) 

Substituting parameter values into (3.68), we obtain: 

𝜎𝑅 =
𝑥(𝑋𝑄 + 𝑅𝑃)

|𝑉0|2
= −0.05𝑥 

𝜎𝐼 =
𝑥(𝑋𝑃 − 𝑅𝑄)

|𝑉0|2
= −0.15𝑥 

1

4
+ 𝜎𝑅 − 𝜎𝐼

2 = 9𝑥2 + 20𝑥 − 100 = 0 

(3.69) 
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𝑥 = 2.4025,−4.6248 

Thus, the exact SNBP (to 5 significant digits) is 2.4025. 

When using the scalable formulation to solve this two-bus system using 101 terms 

with double precision, the poles/zeros obtained from the Padé approximant are shown 

in Figure 3.5 plotted in the complex plane. While, theoretically, all poles/zeros that 

characterize the equation system should be purely real, precision limitations lead to 

small imaginary parts. Thus, all poles/zeros obtained numerically are expected to 

approach the real axis with insignificant imaginary parts. However, as seen in the pole-

zero plot of Figure 3.5 when using double precision, there are many spurious pole-zero 

pairs (Froissart doublets) accumulating on a circle centered at the origin of radius equal 

to the ROC of the series, which for this problem is the SNBP. In Figure 3.5, the 

pole/zero that is “near” the real axis and that has the smallest positive real part is the 

point located at (2.411,−3.872 × 10−5), which would be taken as the estimate of the 

SNBP. Therefore, the SNBP obtained from roots method with double precision is 2.411, 

which is quite accurate (to within 0.354%). Note that there is a spurious pole-zero pair 

at about 𝛼 = 1.69. The corresponding imaginary-to-real part ratio is 0.0969 so this 

pole-zero pair might be considered to be close enough to the real axis if the tolerance 

of the imaginary part is selected to be “too large”. In that case, roots method would give 

an incorrect estimation. The position of spurious poles is random and so, using a 

different order of the Padé approximant may eliminate any particular spurious 

poles/zero pair, or may create one even closer to the real axis. 
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Figure 3.5 The two-bus system pole-zero plot for [50/50] Padé approximant with 

double precision 

While using 200 digits of precision to obtain the poles/zeros of the Padé 

approximant as shown in Figure 3.6, the spurious-root circle caused by the double-

precision limitation as seen in Figure 3.5 disappears and all poles/zeros are much closer 

to the real axis. The estimated SNBP is 2.406, which is in error by only 0.14%. 



 

 

40 

 

Figure 3.6 The two-bus system pole-zero plot for [50/50] Padé approximant with 

200 digits of precision 

In [50], the exact location of those zeros for a simple two-bus system case can be 

obtained through derivation, as shown in (3.70): 

𝑧𝑘 =
1

2 (|𝜎|𝑐𝑜𝑠 (
𝜋𝑘

𝑛 + 1) − 𝜎𝑅)
, 𝑘 = 1,2, … 𝑛 (3.70) 

where 𝑛 is the degree of the numerator polynomial in the Padé approximant which must 

include 𝑛 zeros and 𝑘 represents the 𝑘𝑡ℎ one in that family of zeros.  

To validate the implementation used in this work, the following numerical 

experiment was conducted on the above two-bus system. In this experiment, 101 terms 

of power series were calculated and then used to solve for a [50/50] Padé approximant. 

Thus, the 𝑛 in (3.70) in this case is 50. The “exact” zeros computed using the above 
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equation are plotted in Figure 3.7. It can be observed that the zeros obtained from roots 

method using 200 digits of precision as shown in Figure 3.6 match closely the zeros 

shown in Figure 3.7, at least visually. The numerical comparison of the zeros values 

between the true zeros from the theory in (3.70) and that computed with double 

precision and 200 digits of precision are provided in Table 3.3. The first ten zeros on 

the positive real axis (listed in order from nearest to farthest from the origin) are listed 

in that table. As expected, the values of zeros calculated with 200 digits of precision 

are much closer to the exact values than those obtained using double precision. The 

imaginary parts of the smallest ten zeros when using 200 digits of precision are also 

much smaller than when using double precision, with all magnitudes less than 10−156. 

 
Figure 3.7 The exact zeros of the [50/50] Padé approximant for the 2-bus system 
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Table 3.3 The zeros on the positive real axis for the two-bus system 

No. 

Zeros 

(from 

(3.70) ) 

200 digits of precision Double precision 

Re(zero) Im(zero) Re(zero) Im(zero) 

1 2.4060 2.4060 −1.59 × 10−159 2.4113 −3.87 × 10−5 

2 2.4164 2.4164 −6.41 × 10−159 2.4380 −1.66 × 10−4 

3 2.4340 2.4340 −1.46 × 10−158 2.4840 −4.15 × 10−4 

4 2.4590 2.4590 −2.65 × 10−158 2.5516 −8.47 × 10−4 

5 2.4916 2.4916 −4.25 × 10−158 2.6449 −0.0016 

6 2.5325 2.5325 −6.31 × 10−158 2.7698 −0.0027 

7 2.5821 2.5821 −8.92 × 10−158 2.9354 −0.0045 

8 2.6413 2.6413 −1.22 × 10−157 3.1563 −0.0072 

9 2.7110 2.7110 −1.62 × 10−157 3.4556 −0.0116 

10 2.7925 2.7925 −2.11 × 10−157 3.8720 −0.0185 

As shown above, the roots method implemented with high precision is able to 

predict the SNBP more accurately and provide more accurate roots of the Padé 

approximant. From this example and some previous experiments [51], it was observed 

that the roots method worked well for predicting the SNBP with double precision on 

the systems tested provided a reasonable number of series terms was used. However, it 

has been observed when the system is heavily loaded, a greater number of terms are 

needed to achieve the same accuracy and the occurrence of spurious pole-zero pairs due 
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to limited precision might affect the ability of the roots method. In that case, using high 

precision will play an important role in achieving higher accuracy. 
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4 EXPLORING THE EFFECT OF HIGH PRECISION ON THE HEM 

ALGORITHM 

4.1 Investigation of precision loss in the HEM algorithm 

4.1.1 Precision tests  

HEM is theoretically guaranteed to converge provided Stahl’s conditions are 

satisfied. However, the limitation of machine precision can affect the numerical 

performance as shown in chapter 3. To further investigate in which part of the algorithm 

the loss of precision is most critical, different precision levels were assigned to different 

aspects of the HEM algorithm. (We only considered the non-scalable formulation in 

these numerical experiments.) There exist three places in the HEM algorithm that might 

accumulate roundoff error during the calculations: 

1) Matrix equation solution calculation 

In (3.25) and (3.28), the LU factorization of Y matrix needs to be performed to 

calculate voltage series coefficients. Though one LU factorization might not have 

significant effect on the precision issues in the calculation, the round-off errors in the 

series coefficients can accumulate because the 𝑛𝑡ℎ coefficients of voltage series, 𝑉[𝑛], 

are calculated based on 𝑉[𝑛 − 1] using a recurrence relationship. One aspect of the 

experiments will involve limiting and then enhancing the precision involved in both the 

factorization and forward/backward substitution phases of the matrix solution. This 

precision experiment will also reveal any sensitivities to an ill-conditioned Y matrix, 
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which occurs if some branch impedances are much larger or smaller than those of the 

rest of a system. 

2) Calculating the inverse of the voltage power series 

To solve for the series coefficients, we introduced a power series 𝑊(𝛼), which 

represents the inverse of the voltage power series as defined in (3.12). The 𝑊(𝛼) has 

to be calculated using the convolution of two power series as shown in (3.32). When 

the nested convolutions are performed in the process of obtaining the power series 

coefficients, roundoff error may accumulate. 

3) Calculating the numerator/denominator of the Padé approximant 

One drawback of the matrix method for calculating the Padé approximant is that as 

more series terms are included to create a higher-order Padé approximant, the Padé 

matrix shown in the LHS of (3.41) becomes increasingly more ill-conditioned. The rule 

of thumb recommends that M guarding digits are usually needed to maintain accuracy 

for a [L/M] Padé approximant [27]. 

4.1.2 Precision experiment description  

We explore which of the three parts of the HEM algorithm listed above has the most 

significant effect on solution accuracy by limiting each calculation to 16 digits of 

precision while the rest of the calculations are performed using higher precision (86 

digits of precision in this experiment) and observing which precision-limiting part of 

algorithm is most severely affecting solution accuracy. For comparison we also show 
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the accuracy performance when all three-phases of the calculation listed above are 

completed with 16 digits or 86 digits of precision. 

4.1.3 Numerical results on the IEEE 14 bus system 

4.1.3.1  The 14 bus system base case 

The above described precision limiting tests were conducted on the IEEE 14 bus 

system. The system load of the base case is 24.57% of the SNBP (estimated at load-

scaling factor=4.07, using CPF). The largest PBE mismatches in pu were plotted on a 

log scale against the number of terms used in the power series as shown in Figure 4.1. 

The curves labeled 1) “Matrix solution with 16 digit”, 2) “Series inversion with 16 digit” 

and 3) “Padé approximant with 16 digit” represent the PBE mismatch results when 

running the entire HEM PF program with 86 digits of precision but 1) using limited 16 

digits of precision to perform matrix equation solutions, 2) calculation of the inverse of 

the power series and 3) calculation of Padé approximant respectively. The labels “All 

with 86 digit” and “All with 16 digit” stand for the performing all arithmetic with 86 

digits and 16 digits precision respectively. The same figure legends will be used for the 

subsequent figures in this chapter. The voltage solutions obtained by using 86 digits of 

precision for all calculations in the HEM PF are regarded as the “true” values. The 

voltage results obtained using lower precision, i.e., 16 digits of precision (either used 

in only one part of the algorithm or the entire program) were compared with the “true” 

values and the corresponding maximum voltage errors obtained by considering the 
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errors of  all buses in the model are plotted in Figure 4.2 against the number of terms in 

the power series.  

 

Figure 4.1 Maximum PBE mismatch vs. number of terms in series for the 14 bus 

system base case 
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Figure 4.2 Maximum voltage error vs. number of terms in series for the 14 bus 

system base case 

It is observed from Figure 4.1 and Figure 4.2 that for the base case of IEEE 14 bus 

system, the effects of limited precision on different aspects of the algorithm had a 

different effect on solution accuracy, as expected. The order of the numerical 

performance from best to worst (i.e., least to most effect from reduced (16-digit) 

precision) when limiting one part of the algorithm to lower precision is: Series inversion 

> Padé approximant > Matrix solution. Therefore, the priority order (more to less 

important) for assigning increased precision to the aspects of the HEM PF are: Matrix 

solution > Padé approximant > Series inversion.  
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The matrix equation solution calculation is shown to cause the most precision loss 

in the solution; next the algorithm is most sensitive to precision of the Padé approximant, 

which is counter-intuitive. As we know, when computing the Padé approximant, there 

can be ill-conditioned problems where small variations in the power series coefficients 

might lead to huge variations in the Padé approximant coefficients. However, it is 

shown in [28] and [29] that though the relative errors in the numerator and denominator 

polynomial coefficients increase as the number of terms, 𝑛, increases, the relative errors 

in the computed Padé approximant is virtually unaffected, if 𝑛 and 𝛼 are not too large. 

This occurs because the ratio of the error in numerator and the error in denominator 

itself is a reasonable approximation to the Padé approximant [28]. In other words, one 

can expect to get a reasonably good voltage solution from the Padé approximant even 

though the coefficients of the denominator and numerator contain some roundoff errors. 

If we use different levels of precision to calculate the power series (involving both the 

matrix calculation and power series inversion) and the Padé approximant and then 

compare the coefficients in numerator and denominator of the Padé approximant and 

the voltage solutions with their respective “true” values obtained from extremely high 

precision (250 digits of precision in this experiment), the results we obtained are given 

in Table 4.1 and  

Table 4.2. The number of series terms used here was 32. From Table 4.1 and  
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Table 4.2, we can observe that the voltage solutions obtained from limited precision 

are much more accurate than the Padé approximant coefficients, which is consistent 

with the findings in [28] and [29]. For example, when using 64 and 56 digits of precision 

to compute the power series and the Padé approximants, respectively, the 

numerator/denominator coefficient of the Padé approximant matches to 46 digits when 

compared with its “true” value while the voltage solution can preserve 56 digits of 

precision.  

Table 4.1 Number of “matched-up” digits for Padé coefficients (worst case) 

Padé 

approximant 

Power series 

 16 digits 32 digits 56 digits 64 digits 86 digits 

16 digits 4 5 5 5 5 

32 digits 4 20 22 22 22 

56 digits 4 20 44 46 46 

64 digits 4 20 44 52 54 

86 digits 4 20 44 52 74 

 

Table 4.2 Number of “matched-up” digits for voltage solutions (worst case) 

Padé 

approximant 

Power series 

 16 digits 32 digits 56 digits 64 digits 86 digits 

16 digits 15 16 16 16 16 

32 digits 15 31 32 32 32 
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56 digits 15 31 55 56 56 

64 digits 15 31 55 63 64 

86 digits 15 31 55 63 85 

The maximum condition number of the Padé coefficient matrices over all buses for 

IEEE 14 bus system is plotted in Figure 4.3 versus the number of terms included in the 

power series. The condition number we used here and in subsequent sections in the 

chapter is the 2-norm condition number, defined as the ratio of the largest to smallest 

singular values. It is observed that, after around 42 terms, the condition number 

obtained (calculated using 86 digits of accuracy) when one or all of the three parts of 

HEM algorithm are executed using 16 digits of precision does not match the condition 

number calculated when 86 digits of precision are used for the entire HEM PF. This is 

caused by the accumulated roundoff error in Padé coefficient matrix, either due to the 

inaccuracy of computed power series using limited precision or the roundoff error 

generated in the Padé approximant calculation. In some sense, with limited precision, 

the Padé approximant cannot represent the original system and thus some 

characteristics are lost. 
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Figure 4.3 Maximum condition number vs. number of terms in series for the 14 

bus system base case 

4.1.3.2 The 14 bus system near the SNBP 

When the 14 bus system is loaded to 98% of its SNBP, the behavior of PBE 

mismatch and voltage error as number of terms increases are shown in Figure 4.4 and 

Figure 4.5, respectively. The voltage solution is calculated using [M/M+1] Padé 

approximant. It is shown that when the system is close to its SNBP, limiting precision 

in any one part of the algorithm has a similar effect. We can also observe that the 

convergence rate is much slower as compared to the base case as described in section 

4.1.3.1. 
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Figure 4.4 Maximum PBE mismatch vs. number of terms in series for the 14 bus 

system loaded to 98% of its SNBP 
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Figure 4.5 Maximum voltage error vs. number of terms in series for the 14 bus 

system loaded to 98% of its SNBP 

Figure 4.6 shows the maximum condition number of the Padé coefficient matrices 

over all buses for this 14 bus system. As shown in Figure 4.6, the breakpoint in the 

geometric behavior of the condition number occurs at around 46 terms and after the 

breakpoint, each line that represents the limiting precision in one or all of the three 

aspects appears to be relatively flat. In other words, the condition number seems to 

remain constant as the number of terms increases.  
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Figure 4.6 Maximum condition number vs. number of terms in series for the 14 

bus system loaded to 98% of its SNBP 

4.1.3.3 The 14 bus system at different loading conditions 

The condition number for the 14 bus system at different loading conditions (24.57%, 

50%, 75%, 85% and 98% of the SNBP loading) when using 16 digits or 86 digits of 

precision everywhere in the algorithm was plotted in Figure 4.7. It is seen that as the 

system load increases, the condition number decreases. Also, the difference in the 

behavior of condition number of the Padé matrices when using 16 digits of precision 

versus 86 digits of precision for each loading condition beyond the breakpoint has an 

interesting behavior. The angle between the two lines increases as load increases, which 

means the roundoff error due to precision limitations has a more significant effect as 
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the load increases. The difference in the condition number value for different loading 

conditions might be related to the properties of power series coefficients. Figure 4.8 

shows the magnitude of power series coefficients for bus number 2 at different loading 

scaling values given in percentage of the SNBP. 

 

Figure 4.7 Maximum condition number vs. number of terms in series for the 14 

bus system at different loading conditions 
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Figure 4.8 Magnitude of power series vs. number of terms in series for the 14 bus 

system at different loading conditions 

4.1.4 Conclusion 

The HEM algorithm is broken into three distinct calculation procedures where the 

roundoff error might accumulate in different ways and at different rate: matrix (equation 

solution) calculation, series inversion and Padé approximant calculation. The numerical 

tests on the IEEE 14 bus system show that limiting precision in any one of the above 

aspects has a similar effect. This numerical experiment was also conducted on IEEE 30 

bus system and IEEE 118 bus system and similar results were observed (not shown). 

The conclusion reached is that one must increase precision everywhere in the program 

to improve numerical performance. 
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4.2 Convergence issues for the 43 bus system 

An ill-conditioned 43 bus system [30] is used to test the numerical performance of 

the HEM method using the non-scalable formulation. The system has large R/X ratio 

branches and is heavily loaded. The loading level of the system is 98.15% of its SNBP 

loading. The SNBP of the 43 bus system is at 𝛼 = 1.018, obtained using HEM and the 

roots method while using 16 digits of precision in this calculation. The maximum PBE 

mismatch with double precision is plotted in Figure 4.9 against the number of terms 

used in the power series. It can be observed that the HEM PF with double precision (16 

digits) tends toward convergence early on in the recursion procedure but then fails to 

converge after 30 terms. The smallest mismatch (taken from the set of the largest 

mismatches over all buses in the system over number of series terms from 12 to 92) 

obtained was 5 × 10−5 pu. 
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Figure 4.9 Maximum PBE mismatch vs. number of terms in series for the 43 bus 

system with double precision 

4.2.1 Using high precision to enhance numerical performance 

One can increase precision to improve the numerical performance of HEM. As 

shown in Figure 4.10, the PF solution with 86 digits of precision can converge as the 

number of terms increases. The PBE mismatch error can be as small as 10−15 pu with 

a maximum of 112 terms. 
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Figure 4.10 Maximum PBE mismatch vs. number of terms in series for the 43 bus 

system when implementing different precision to each part of HEM algorithm 

The voltage error and condition number for the 43 bus system are shown in Figure 

4.11 and Figure 4.12, respectively. It is observed that the precision limitations in any 

aspect of the problem causes the convergence to stall. Precision limitations in the 

calculation of the Padé approximant (the yellow solid line in Figure 4.11 and Figure 

4.12) in particular lead to severe loss of precision and divergence in the Padé 

approximant after around 70 terms. This indicates that the Padé approximant might be 

the weakest place in HEM algorithm if a large number of terms are used. 
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Figure 4.11 Maximum voltage error vs. number of terms in series for the 43 bus 

system when implementing different precision to each part of HEM algorithm 
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Figure 4.12 Maximum condition number vs. number of terms in series for the 43 

bus system when implementing different precision to each part of HEM algorithm 

4.2.2 Using Padé-Weierstrass technique to enhance numerical performance 

Though using higher precision can improve the numerical performance, it could be 

computationally expensive. The Padé-Weierstrass (P-W) method proposed in [31] can 

be an alternative. This method allows one to calculate the power series in several steps 

using conformal mapping. At each stage, one can obtain an accurate partial solution at 

a value 0 < 𝛼0 < 1. Then the calculation procedure is repeated recursively until one is 

able to get a converged solution at 𝛼 = 1 at some P-W stage, k. For example, if the 

parameter 𝛼0  for the first 𝑘 − 1  stages is 𝛼0𝑚, 𝑚 = 1,2, … 𝑘 − 1 , and the partial 

solution obtained for each stage is 𝑉(𝛼0𝑚),𝑚 = 1,2, … 𝑘 − 1, then the final voltage 



 

 

63 

solution is 𝑉 = 𝑉(𝛼01) ∙  𝑉(𝛼02)… ∙ 𝑉(𝛼0𝑘−1) ∙ 𝑉(1)  (the 0k parameter for the last 

stage, 𝑘th stage, is 1) .  

The P-W method was used to solve the PF problem for the 43 bus system. We 

selected the parameter 𝛼0 for each stage by checking the voltage update error using 

binary search. This update error is calculated as the difference between two successive 

Padé approximants. The number of terms used to select 𝛼0 is 32 terms and the voltage 

update error tolerance is 10−11 . Only two stages are performed to get a converged 

solution for the 43 bus system. The 𝛼0 in the first stage is selected to be 0.6406. 

The PBE mismatch and voltage update error using only one P-W step and two P-W 

steps are shown in Figure 4.13 and Figure 4.14, respectively. Note that using only one 

P-W step in the P-W method, is exactly the same as solving PF problem using the non-

scalable formulation, i.e., the blue solid line in Figure 4.13 is identical to the line in 

Figure 4.9. As shown in Figure 4.13 and Figure 4.14, the P-W method is able to 

eliminate the convergence issue for the 43 bus system. 
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Figure 4.13 Voltage update error vs. number of terms in series using P-W method 
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Figure 4.14 PBE mismatch vs. number of terms in series using P-W method
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5 COMPARISON OF THE SCALABLE AND THE NON-SCALABLE 

FORMULATIONS 

When embedding the (possibly) complex-valued parameter 𝛼 into the PBE, there 

are infinitely many embedding formulations that satisfies the requirements of HEM. 

However, different formulations result in different algebraic curves and have different 

branching points, which could affect the numerical convergence of the Padé 

approximants. The comparison of two common embedding formulations, scalable and 

non-scalable formulation as demonstrated in section 3.3 and section 3.2 respectively, 

were discussed in this chapter. The numerical performance of the two formulations were 

tested on a 43 bus system and a 145 bus system. 

5.1 Reference state solution for scalable formulation 

As described in section 3.2.2, the reference state for the non-scalable form presented 

in that section can be obtained through observation. The reference state is 𝑉[0] = 1 and 

𝑄[0] = 0, which is the exact theoretical value without any roundoff error in calculation. 

For the scalable form, however, recurrence calculations need to be performed to solve 

the so-called pre-reference state power flow to obtain the reference state as 

demonstrated in section 3.3.1. Since the calculation of the power series starts from the 

reference state, it is important to investigate the effect of the accuracy in reference state 

on the accuracy in final voltage solution. The accuracy tests were performed on IEEE 

14 bus system and the process is shown below: 
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1) The “true” value of the reference state and final voltage solution is taken as 

that obtained using high precision (100 digits of precision in this experiment) 

2) The reference state was obtained using double precision and a different 

number of terms in power series (n from 2 to 8 in this experiment). 

3) For each reference state, double precision was used to calculate the final 

voltage solution as accurate as possible. 

4) The maximum error for reference state and final voltage solution was 

calculated in two ways: the magnitude of the difference between the 

complex-valued voltage and the complex-valued “true” solution; PBE 

mismatch error. 

The maximum PBE mismatch error for the final solution was plotted against the 

maximum PBE mismatch error for the reference state as shown in Figure 5.1. The 

maximum voltage error for the final solution was plotted against the maximum voltage 

error for the reference state in Figure 5.2. It can be observed that the accuracy in the 

reference state has a significant effect on the accuracy in final voltage solution and the 

relationship is almost linear. These plots show that the final solution can be no more 

accurate than the reference state. Therefore, when the numerical experiments are 

conducted to compare the properties of the scalable and non-scalable formulations, one 

must ensure that the reference state of the scalable form is accurate enough.  
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Figure 5.1 Maximum PBE mismatch for the final voltage solution vs. maximum 

PBE mismatch for the reference state 
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Figure 5.2 Maximum voltage error for the final voltage solution vs. maximum 

voltage error for the reference state 

5.2 Comparison of the scalable and non-scalable formulations on the 43 bus system 

The numerical performance of the scalable form and non-scalable forms was tested 

on a problematic system, the 43 bus system [30]. We observed that the two formulations 

show different numerical properties, which are discussed in the following subsections. 

5.2.1 Bus power mismatch 

Figure 5.3 shows the behavior of the PBE mismatch as the number of terms in series 

increases for the 43 bus system using the scalable form and non-scalable form. It can 

be observed that when using the non-scalable formulation, the PF fails to converge after 

around 30 terms while when using the scalable formulation, the PF solution continues 
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converging through 200 terms and the PBE mismatch error decreases to as small as 10-6 

pu using a 100 MVA base. 

 
Figure 5.3 Maximum PBE mismatch vs. number of terms in series for the 43 bus 

system using scalable/non-scalable form and matrix method 

In Figure 5.3, we use the matrix method to calculate the Padé approximant. As 

shown earlier, for the matrix method, which is an O(N3) method, the solution of the 

Padé matrix equation for the coefficients of the denominator polynomial (as shown in 

(3.41) ) may become ill-conditioned and thus cause precision loss. To avoid the effect 

of inaccuracy caused by the matrix method, we repeated this experiment using a Padé 

approximant method with O(N2) complexity, the eta method, which is computationally 

efficient and does not require matrix factorization. This method does not produce a 

rational function representation of the curve; rather it produces the value of the function 
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at the loading of interest. The hope was the less computationally complex method 

would incur less roundoff error and therefore have better performance as the number of 

series terms increased; however, the eta method produced similar results to those of the 

matrix method, as shown in Figure 5.4.  

 

Figure 5.4 Maximum PBE mismatch vs. number of terms in series for the 43 bus 

system using scalable/non-scalable form and eta method 

5.2.2 Voltage error 

We obtained the voltage solution for the scalable and non-scalable forms using 16 

digits and 86 digits of precision. The voltage error was obtained by calculating the 

difference between the complex-valued voltage with 16 digits of precision and the 

complex-valued voltage with 86 digits of precision (regarded as the “true” solution). 

The voltage error results for the scalable and the non-scalable form are shown in Figure 
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5.5 and Figure 5.6 respectively. Similar to section 5.2.1, it is shown that the HEM with 

the scalable form produces a converged solution for the 43 bus system while the voltage 

error values obtained from the HEM formulation using the non-scalable form fails to 

improve beyond about 30 series terms. 

 

Figure 5.5 Maximum voltage error vs. number of terms in series for the 43 bus 

system using scalable formulation 
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Figure 5.6 Maximum voltage error vs. number of terms in series for the 43 bus 

system using non-scalable formulation 

5.2.3 Series coefficient behavior 

The voltage power series obtained from the scalable and non-scalable formulations 

also have different behavior. The magnitude of the power series for the scalable form 

as shown in Figure 5.7 oscillates and has a tendency to decrease while the power series 

for the non-scalable form as shown in Figure 5.8 diverges quickly and approaches the 

behavior of a geometric series after 5 terms. 
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Figure 5.7 Magnitude of power series vs. number of terms in series at bus 2 for the 

43 bus system using scalable formulation 

 
Figure 5.8 Magnitude of power series vs. number of terms in series at bus 2 for the 

43 bus system using non-scalable formulation 
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5.2.4 Poles and zeros 

The distribution of poles/zeros for the scalable and non-scalable formulations are 

also different. Plotted in Figure 5.9 and Figure 5.10 are the poles/zeros of the [55/56] 

Padé approximant at bus 2, calculated with 16 digits of precision, using the scalable 

and non-scalable formulations, respectively. The spurious poles/zero pairs (known as 

Froissart doublets) for the scalable formulation, as shown in Figure 5.9, are 

accumulating on a circle centered at the origin but because they are not close to the real 

axis, one can still obtain a converged solution using scalable formulation. However, for 

the non-scalable formulation, the spurious poles/zeros that are near the real axis at 

around 0.3 could lead to convergence issue. The radius of convergence (ROC) of the 

power series for the non-scalable form in this case is approximately 0.3. 

 

Figure 5.9 The 43 bus system pole-zero plot for [55/56] Padé approximant with 

scalable form and double precision 
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Figure 5.10 The 43 bus system pole-zero plot for [55/56] Padé approximant with 

non-scalable form and 16 digits of precision 

When using 250 digits of precision to perform the HEM PF, the poles/zeros for the 

Pade approximants obtained for the scalable and non-scalable formulations are shown 

in Figure 5.11 and Figure 5.12 respectively. The spurious poles/zeros caused by 

roundoff error disappear. While the poles/zeros for the scalable form are all on or near 

the real axis, for the non-scalable from, some poles/zeros are located at a branch 

perpendicular to the real axis at around  = 2.2.  
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Figure 5.11 The 43 bus system pole-zero plot for [55/56] Padé approximant with 

scalable form and 250 digits of precision 

 

Figure 5.12 The 43 bus system pole-zero plot for [55/56] Padé approximant with 

non-scalable form and 250 digits of precision 
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5.3 Comparison of the scalable and non-scalable formulations on the 145 bus 

system 

The IEEE 145 bus system, which contains 50 generators, is one test case for 

dynamic stability analysis. Here we only focus on solving the power flow problem 

(used to establish initial conditions for the dynamic simulation) for this system using 

the scalable or non-scalable formulation. When using the non-scalable formulation with 

40 terms, HEM is able to give a convergent solution. The PBE mismatch is 5.8 × 10−6 

pu on a 100 MVA base. The error in the voltage magnitude and voltage angle compared 

with the PF solution from MATPOWER (using a convergence tolerance of 10−8) is 

8.1 × 10−8  pu and 4.9 × 10−6 degree. However, the HEM scalable form fails to 

converge because one cannot get a convergent reference state solution from the so-

called pre-reference state power flow. The pole/zero plot for the Padé approximants 

obtained for bus 10 from the pre-reference state PF is shown in Figure 5.13. The 

smallest positive-real-valued pole/zero is 0.3. Thus, one cannot obtain a converged 

solution at 𝛼 = 1 because it is beyond a branch point. The physical explanation to this 

is: The reference state represents the no load/no power solution. In that case, all 

real/reactive power can only be delivered by the slack bus. Because the shunt 

conductance of the 145 bus system is relatively large, the slack bus cannot deliver such 

a large amount of real power to buses electrically far from the slack bus and thus leads 

to voltage collapse. 
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Figure 5.13 The 145 bus system pole-zero plot for Padé approximant in the pre-

reference state power flow for scalable form
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6 HEM-BASED METHODS TO ESTIMATE THE SNBP FROM LOCAL 

MEASUREMENTS 

6.1 Local-measurement-based methods of estimating the steady-state voltage 

stability margin 

Local-measurement-based methods use local measurements (voltage and current) 

at the bus-of-interest to build a Thévenin equivalent network, i.e., a voltage source 

connected through a Thévenin impedance as shown in Figure 6.1. 

ETh
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Figure 6.1 Thévenin equivalent at the bus of interest 

From Figure 6.1, 

𝐸𝑡ℎ − 𝐼𝑖𝑍𝑡ℎ = 𝑉𝑖 (6.1) 

where 𝐸𝑡ℎ  is the Thévenin voltage, 𝑍𝑡ℎ  is the Thévenin impedance, 𝑉𝑖  is the load 

voltage and 𝐼𝑖  is the load current. The values of 𝑉𝑖  and 𝐼𝑖  can be obtained from 

measured data. The equivalent load impedance at bus 𝑖 can be calculated by (6.2), 

𝑍𝐿 =
𝑉𝑖

𝐼𝑖
 (6.2) 

Assuming that, during a short sampling interval the change of the operating 

conditions of the external system are small and can be ignored, the parameters of the 

Thévenin equivalent will remain constant during the sampling period. At least two 
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distinct measurement data points are needed to estimate the Thévenin network 

parameters. Because measurements are contaminated with noise, more data points in 

the sampling window are taken to give a more accurate estimate of the Thévenin 

equivalent parameters. Some approaches such as the least squares approach and 

Kalman Filter can be used for their estimation. If we only consider two distinct 

measurements here for simplicity, the Thévenin parameters are given by (6.3) and (6.4). 

𝑍𝑡ℎ = (𝑉1 − 𝑉2)/(𝐼2 − 𝐼1) (6.3) 

𝐸𝑡ℎ = (𝑉1𝐼2 − 𝑉2𝐼1)/(𝐼2 − 𝐼1) (6.4) 

It is well known that if the voltage source is constant and the load power factor is 

fixed, the maximum real power is delivered to the load when the magnitude of the 

Thévenin impedance matches the magnitude of the load impedance, i.e., |𝑍𝑡ℎ| = |𝑍𝐿|, 

which can be derived as follows:  

Consider the load to be represented by an equivalent impedance 𝑍𝐿 as shown in 

Figure 6.2. 
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Figure 6.2 Thévenin impedance and load impedance 

The real power delivered to the load is given by: 



 

 

82 

LLL RIP
2

  (6.5) 

The load current in the Thévenin equivalent network is given by: 
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Using (6.5) and (6.6), we get: 
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Assuming the power factor angle of the load, 𝜙, is kept fixed, the load impedance 

can be written as: 

 tanLLLLL jRRjXRZ   (6.8) 

Equation (6.7) can thus be written as: 
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The derivative of PL with respect to RL is given by (keeping in mind that 𝐸𝑡ℎ  and 

𝑍𝑡ℎ are assumed to be constant): 
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(6.10) 

When the power delivered to the load is maximum, the derivative of 𝑃𝐿 with respect 

to 𝑅𝐿 is zero. Equating the RHS of (6.10) to zero, we get: 
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 (6.11) 

Equation (6.11) can be expanded as follows: 
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 (6.12) 

Equation (6.12) can be further simplified to get the final impedance magnitude 

matching condition for a constant source connected to a fixed power factor load. 
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RRXR







22

22222 tan 

 (6.13) 

Hence, once the Thévenin equivalent parameters are obtained, assuming the power-

factor of the load remains constant, steady-state voltage collapse occurs when |𝑍𝑡ℎ| =

|𝑍𝐿|. 

Consider a simple four-bus system as shown in Figure 6.3 with the bus-of-interest 

being bus number 3. When using the scalable formulation with the embedded complex 

parameter 𝛼, the voltage is a function of 𝛼, since the 𝛼 acts as a load-scaling factor. 

When the system is at the voltage collapse point, the corresponding 𝛼 value is the load 

scaling factor at the SNBP. The parameters for this system are provided in Table 6.1.  

 

 

Figure 6.3 Four-bus system 
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Table 6.1 System parameters for the four-bus system 

Parameter name Value Parameter name Value 

𝑆2 50.0+10.0j (MVA) 𝑍23 0.01j (Ω − pu) 

𝑆3 10.0+5.0j (MVA) 𝑉0 1.0 pu 

𝑍01 0.01+0.1j (Ω − pu) 𝑀𝑉𝐴𝑏𝑎𝑠𝑒 100 MVA 

𝑍12 0.02+0.2j (Ω − pu)   

To obtain the Thévenin equivalent using this measurement-based method, distinct 

pseudo-measurements at two values of the load-scaling factor,  𝛼 , are obtained by 

solving two power-flow problems using HEM when (a) all injections are scaled by 𝛼 

and (b) all these same injections are perturbed by 1% of their respective base-case 

injections. Then the 𝑍𝐿  and 𝑍𝑡ℎ  values are calculated from these two pseudo-

measurements using (6.2) and (6.3), respectively. The magnitudes of 𝑍𝐿 and 𝑍𝑡ℎ at bus 

3 are plotted in Figure 6.4. It is seen that as the load-scaling factor increases, the |𝑍𝐿|and 

|𝑍𝑡ℎ| approach each other and are very close to each other at the SNBP (estimated at 

load-scaling factor = 5.0243, using CPF). 
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Figure 6.4 Magnitude of 𝑍𝐿 and 𝑍𝑡ℎ at bus number 3 vs. the loading scaling factor 

In the following section, this Thévenin equivalent (TE) based method will be 

extended to adapt to HEM. 

6.2 HEM-based method to estimate the SNBP using local measurements 

As demonstrated in section 6.1, the classical local-measurement-based methods of 

estimating the steady voltage stability margin are based on the concept of impedance 

matching between the Thévenin equivalent (TE) of the system and load impedance. The 

main advantage of these methods is that they only require local measurements and the 

concept is simple and relatively easy to implement. However, the assumption that the 

rest of the system does not change as load increases during a short period of time 

prevents projecting the nonlinear behavior of the loads and generation sources in the 

system over scaled loading conditions. The HE-reduction, which is essentially a 
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nonlinear variation of a linearization-based network reduction method, i.e., Ward 

reduction, can preserve the voltage from the base case up to the SNBP of the system if 

the operating conditions change along a so-called α line, which has been shown in [52], 

[53]. Therefore, building a nonlinear Thévenin-like network using HE reduction might 

have the following advantages compared to conventional TE-based methods: 

• It allows the nonlinear behavior the original system impedances and sources to 

be projected for scaled loading conditions. 

• Fitting a polynomial function for the voltage at the bus-of-interest using 

measurements in certain range (will be discussed in section 6.3) can also give 

more information about the expected voltage under different operating 

conditions. 

• It can give an accurate estimate of SNBP (assuming no discrete changes in the 

system occur, such generators going on VAr limits). 

6.2.1 Developing a Thévenin-like network using HE reduction 

Consider the four-bus system shown in Figure 6.3 as an example. The bus-of-

interest is bus number 3. To obtain the Thévenin-like network, the first step is to reduce 

the original nonlinear system to a two-bus nonlinear network that only contains the 

slack bus and the bus-of interest, i.e., bus 3 in this example, using HEM-based nonlinear 

reduction techniques [52]. The reduced network is shown in Figure 6.5. The external 

buses bus 1 and bus 2 are eliminated and the functions 𝐼0_𝑖𝑛𝑗(𝛼) and 𝐼3_𝑖𝑛𝑗(𝛼) that 
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represent the appropriate portions of the external (nonlinear) current injections from 

buses 1 and 2 are moved to the boundary buses, i.e., bus 0 and bus 3, respectively, for 

this system. The series impedance 𝑍𝑠 is a constant and is the same as the impedance 

obtained from Ward reduction. The voltage at bus 3 is given by: 

𝑉3(𝛼) = 𝑉0 + [
𝛼𝑆3

∗

𝑉3
∗(𝛼∗)

+ 𝐼3𝑖𝑛𝑗
(𝛼)] 𝑍𝑠 (6.14) 

Then to preserve the power injection at the bus-of-interest, bus 3, the current 

injection generated from HE reduction at bus 3, 𝐼3_𝑖𝑛𝑗(𝛼), should be moved. If we 

define a voltage source 𝑉𝑠(𝛼) as given below, (which is derived by doing a Thévenin-

to-Norton-to-Thévenin source conversion at the slack bus): 

𝑉𝑠(𝛼) = 𝑉0 + 𝐼3_𝑖𝑛𝑗(𝛼)𝑍𝑠 (6.15) 

Equation (6.14) now becomes: 

𝑉3(𝛼) = 𝑉𝑠(𝛼) +
𝛼𝑆3

∗

𝑉3
∗(𝛼∗)

𝑍𝑠  (6.16) 

Thus, the two-bus network according to  (6.16), as shown in Figure 6.6, is the 

Thévenin-like network consisting of a variable voltage source 𝑉𝑠(𝛼), connected to the 

bus-of-interest bus 3 through a constant impedance 𝑍𝑠. 
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Figure 6.5 HE-reduced network 

 

Figure 6.6 Thévenin-like network from the HE reduction 

Note that during the derivation, the load current and load voltage are preserved. 

Even though a part of the external current injection has been moved to the slack bus, 

the power delivered to the load bus in the reduced network is the same as that in the 

original full network. 

6.2.2 Developing the Maximum Power Transfer Theorem for the Thévenin-

like network 

It is known that for the Thévenin equivalent network, in which the voltage source 

and Thévenin impedance are assumed to be constant, the maximum power transfered 

to the load occurs when the magnitude of the load impedance is equal to the magnitude 

of the Thévenin impedance i.e. |𝑍𝑡ℎ| = |𝑍𝐿|. However, in the Thévenin-like network 

developed in section 6.2.1, the voltage source is a function of the load scaling factor α. 

Hence the assumption of a constant voltage source is no longer valid, thus the 

impedance matching condition |𝑍𝑠𝑜𝑢𝑟𝑐𝑒| = |𝑍𝐿|  is no longer true at the maximum 

power transfer point. Therefore, it is important to derive the maximum power transfer 

theorem (MPTT) that works for this nonlinear HE-reduced network. Using the same 



 

 

89 

approach as that used for linear networks, i.e., equating the derivative of the real power 

with respect to the load resistance to zero, the derivation is described below. 

The power delivered to the load in the Thévenin-like network shown in Figure 6.6, 

is given by (6.17) which is similar to (6.9), with the only difference being that the 𝐸𝑡ℎ is 

replaced by 𝑉𝑠(𝛼) which is the nonlinear voltage source in the Thévenin-like network 

and 𝑅𝑡ℎ,𝑋𝑡ℎ are replaced by 𝑅𝑠, 𝑋𝑠 which are the resistive and reactive components of 

the series impedance 𝑍𝑠. 
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(6.17) 

Assuming that the power factor angle of the load, 𝜙 , is kept fixed, the load 

impedance can be written as: 
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(6.18) 

Equation (6.17) can thus be written as: 
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(6.19) 

The derivative of 𝑃𝐿with respect to 𝑅𝐿 is given by: 
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When the power delivered to the load is maximum, the derivative of 𝑃𝐿 with respect 

to 𝑅𝐿 is zero. Equating (6.20) to zero, we get: 

    

    )tan()tan()(2)(2)()(

)tan()()()()(
)(

)(

2

222

2








LSLSLS

LSLSSL

L

S

RXRRRV

RXRRVR
R

V























 

(6.21) 

Equation (6.21) can be rearranged as follows: 

 

    

    222

2

2
2

)tan()()()(

)tan()tan()(2)(2)()(

)()(
)(

)(










LSLSS

LSLSLS

LSL

L

S

RXRRV

RXRRRV

ZZR
R

V






















 

(6.22) 

The terms of the right-hand side expression can be expanded to obtain: 
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(6.23) 

Equation (6.23) is then reduced to (6.24): 
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Equation (6.24) can be rearranged to the final maximum power transfer condition given 

by (6.25). 
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(6.25) 

The validity of the condition given by (6.25) is verified using the four-bus system 

shown in Figure 6.3. The SNBP of the system is 5.0243 and the bus-of-interest is bus 
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3. In Figure 6.7 the LHS and RHS of (6.25) for the four-bus system are plotted against 

the load-scaling factor varying up to the SNBP. It is seen that the LHS and RHS are 

numerically very close to each other at the SNBP. 

 

Figure 6.7 LHS and RHS of (6.25) at bus number 3 vs. the loading scaling factor 

6.3  Different numerical methods for estimating the SNBP from measurements 

In section 6.2.2, the maximum power transfer theorem (MPTT) was developed to 

estimate the SNBP for the nonlinear reduced network. Therefore, in this section, 

numerical experiments using noiseless pseudo-measurements to estimate the SNBP 

from the MPTT given by (6.25) will be conducted. The effects of noise in the 

measurements will be discussed in later sections.  
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6.3.1 Fit a function of 𝛼 from measurements 

Since the main process in these experiments is to build the functions of 𝛼 for each 

component in (6.25) using noiseless data, different possible approaches to fit a general 

function of 𝛼 from measurements will be first discussed in this section.  

For a given function of 𝛼 , 𝑓(𝛼), as shown in Figure 6.8, a number of pseudo-

measurements in the sample range ( for example, 60%-70% of the SNBP in this figure) 

were generated and a curve fit to the samples in this range with the goal of projecting 

the value of 𝑓(𝛼) beyond the sample range, up to the SNBP. The measurements can be 

used to fit either a polynomial or a Padé approximant to 𝑓(𝛼) . Three different 

approaches for fitting 𝑓(𝛼) , the Matlab built-in Padé fit, self-coded Padé fit and 

polynomial fit are discussed as follows: 

 

Figure 6.8 Function of 𝛼 vs. loading-scale factor 

i.   Self-coded Padé fit 

In this case, a rational function of the following form was assumed. 
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𝑓(𝛼) = ∑𝑐𝑖

𝑁

𝑖=0

𝛼𝑖 =
∑ 𝑎𝑖

𝑀
𝑖=0 𝛼𝑖

∑ 𝑏𝑖
𝑀+1
𝑖=0 𝛼𝑖

= [𝑀/𝑀 + 1]𝑓𝛼    2𝑀 + 2 = 𝑁 

(6.26) 

𝑏0 = 1 

where 𝑁 is the degree of the Maclaurin series of 𝑓(𝛼), M and M+1 are the degrees of 

the numerator and denominator polynomial of the Padé approximant, respectively. For 

a total of 𝑁𝑚𝑒𝑎𝑠𝑢𝑟𝑒 measurements sampled over the range of loading values selected 

for training, ( 𝛼𝑘, 𝑘 = 1,2, … ,𝑁𝑚𝑒𝑎𝑠𝑢𝑟𝑒) , the corresponding overdetermined set of 

equations shown in (6.27) was solved to calculate the unknown Padé approximant 

coefficients 𝛼𝑖 , and 𝑏𝑖 . Note that the Padé approximant coefficients, 𝛼𝑖  and 𝑏𝑖 , are 

written in ascending order of exponents of α. 

∑𝑎𝑖

𝑀

𝑖=0

𝛼𝑘
𝑖 − 𝑓(𝛼𝑘) (∑ 𝑏𝑖

𝑀+1

𝑖=1

𝛼𝑘
𝑖 ) = 𝑓(𝛼𝑘) (6.27) 

ii.   Matlab built-in Padé fit 

Similar to the above approach, a set of linear overdetermined equations was solved 

to directly obtain the coefficients of the Padé approximant. The only difference is that 

the coefficients, 𝛼𝑖 and 𝑏𝑖 are written in descending order of exponents of 𝛼 as given 

by (6.28). 

∑ 𝑎𝑖

0

𝑖=𝑀

𝛼𝑘
𝑖 − 𝑓(𝛼𝑘) ( ∑ 𝑏𝑖

1

𝑖=𝑀+1

𝛼𝑘
𝑖 ) = 𝑓(𝛼𝑘) (6.28) 
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Though the self-coded Padé fit and Matlab built-in Padé fit are theoretically identical, 

the subtle difference in the order of coefficients could lead to very different numerical 

performance. Thus, both of them will be tested in a subsequent section. 

iii.   Polynomial fit 

In this approach, the measurements are used to fit a polynomial to 𝑓(𝛼), i.e., to 

obtain the 𝑐𝑖  coefficients in (6.26). The set of equations used to calculate the 

coefficients is indicated in (6.29): 

∑𝑐𝑖

𝑁

𝑖=0

𝛼𝑘
𝑖 = 𝑓(𝛼𝑘) (6.29) 

6.3.2 Four numerical methods for estimating the SNBP from measurements 

As demonstrated in section 6.3.1, there are three approaches to fit the measurements 

for 𝑓(𝛼) , while fitting the measuerments for each component in (6.25) is more 

complicated. For example, for |𝑉𝑠(𝛼)|2 in (6.25), one can choose to directly fit the 

polynomial or Padé approximant to the Macluarin series for |𝑉𝑠(𝛼)|2 by squaring of the 

magnitude of the source voltage measurements or by fitting the polynomial or Padé 

approximant to 𝑉𝑠(𝛼)  from source voltage measurements and then obtain |𝑉𝑠(𝛼)|2 

calculated from the polynomial or Padé approximant of 𝑉𝑠(𝛼) evaluated at different 

loading-scale factors. Therefore, there are a number of combinations of which pseudo-

measurements are used to fit each constituent term in (6.25) and which fitting technique 

discribed in section 6.3.1 is applied.  
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Because the Padé approximant is sensitive to roundoff error in the calculations and 

because the differences in numerical performance of different methods might become 

significant when building the networks using noisy measurements, it is important to 

find the best method for estimating the SNBP based on MPTT from measured data. 

Therefore, four possible numerical methods are discussed in the following section. 

Their numerical performance was tested on the IEEE 118 bus system. Noiseless 

pseudo-measuements were generated for loadings in the range of 60%-70% of the 

maximum system load (SNBP) using MATPOWER and a power-mismatch 

convergence tolerance of 10-8 (For the Best Component method demonstrated in section 

6.3.2.2, the tested system is the modified 118 bus system and the sample range is 70%-

80% of the SNBP). In each case, 200 measurements were used to fit 61 terms of a 

polynomial or [30/30] Padé approximant to each component in (6.25). The SNBP is 

estimated based on the following two approaches: The SNBP point is taken as the 

eareliest point where either 1) the LHS and RHS values of (6.25) cross each other, or 

2) LHS and RHS values were initially converging and then began to diverge. 

6.3.2.1 Built-In/Self-Coded method 

The MPTT equation given by (6.25) consists of six different components: 𝑍𝑠 , 

𝑅𝐿(𝛼) , 𝑍𝐿(𝛼) , |𝑉𝑠(𝛼)|2 , 𝜕|𝑉𝑠(𝛼)|2 𝜕𝛼⁄  and 𝜕𝑅𝐿(𝛼) 𝜕𝛼⁄  from here on abbreviated 

𝜕|𝑉𝑠(𝛼)|2 and 𝜕𝑅𝐿(𝛼), respectively. The variable 𝑍𝑠  is the source impedance of the 

Thévenin-like network obtained from HEM/Ward network reduction and it is a constant 
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value. Thus there is no need to calculate 𝑍𝑠 from measurements. 𝑅𝐿(𝛼) is the resistive 

component of the load impedance 𝑍𝐿(𝛼) . Once 𝑍𝐿(𝛼)  is obtained, 𝑅𝐿(𝛼)  can be 

calculated by taking the real part of 𝑍𝐿(𝛼). Therefore, there are only four components 

that need attention: 𝑍𝐿(𝛼), |𝑉𝑠(𝛼)|2, 𝜕|𝑉𝑠(𝛼)|2 and 𝜕𝑅𝐿(𝛼).  

One simple approach is to directly get 𝑍𝐿(𝛼), |𝑉𝑠(𝛼)|2, 𝜕|𝑉𝑠(𝛼)|2 and 𝜕𝑅𝐿(𝛼) as 

Padé approximants from their respective measurements, though sometimes this was 

handled differently. For example, the function|𝑉𝑠(𝛼)|2 , was built by fitting a Padé 

approximant to samples of 𝑉𝑠  to yield 𝑉𝑠(𝛼) and then |𝑉𝑠(𝛼)|2  was calculated by 

evaluating the square of the magnitude of 𝑉𝑠(𝛼) . The implemention details are 

summarized in Table 6.2. Note that the measurement 𝜕|𝑉𝑠(𝛼)|2  is obtained by 

calculating the increment in |𝑉𝑠|
2 divided by the increment in loading-scale factor, i.e., 

∆|𝑉𝑠|
2/∆𝛼 . The ∆𝛼  should be small enough so that the 𝜕|𝑉𝑠|

2  measurement can 

accurately represent the derivative of |𝑉𝑠|
2 with respect to 𝛼 in the original system but 

at the same time making sure there are sufficient distance between two successive 

points to identify the voltage change. In this experiment, the ∆𝛼 is chosen to be 10-6. 

Similar approach is used to get ∂𝑅𝐿 measurements. 
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Table 6.2 Built-In/Self-Coded method 

Components Pseudo-measurements 
Algorithm for fitting 

measurements 

𝑍𝑠 Source impedance from HEM/Ward network reduction 

𝑅𝐿(𝛼) Real part of 𝑍𝐿(𝛼) 

𝑍𝐿(𝛼) 𝑍𝐿 Built-In/Self-Coded Padé-fit 𝑍𝐿 

|𝑉𝑠(𝛼)|2 𝑉𝑠 

1. Built-In/Self-Coded Padé-fit 𝑉𝑠 

2. Get |𝑉𝑠|
2 

𝜕|𝑉𝑠(𝛼)|2      𝜕|𝑉𝑠|
2    ( 

|𝑉𝑠1|2−|𝑉𝑠2|2

∆𝛼
 ) Built-In/Self-Coded Padé-fit 𝜕|𝑉𝑠|

2 

𝜕𝑅𝐿(𝛼)       𝜕𝑅𝐿      ( 
|𝑅𝐿1|2−|𝑅𝐿2|2

∆𝛼
 ) Built-In/Self-Coded Padé-fit 𝜕𝑅𝐿 

 

The LHS and RHS of MPTT equation for the IEEE 118 bus system with the bus-

of-interest being bus 44 and bus 67 are plotted against 𝛼 in Figure 6.9 and Figure 6.10 

respectively. The SNBP of the 118 bus system is 3.187, obtained using the CPF. Bus 

44 and bus 67 are one weak bus and one strong bus in the 118 bus system respectively 

(indentified by the voltage changes for load changes near the SNBP). It is seen that for 

the weak bus bus 44, both the Built-In and Self-Coded methods can give an accurate 

estimation of the SNBP, which are 3.179 and 3.181, respectively, with only 0.25% and 

0.19% errors, respectively. However, in Figure 6.10, neither Built-In nor the Self-

Coded methods  give a prediction of the SNBP for the strong bus, bus 67, regardless of 

whether we used the crossover or the divergence criterion. In other words, the Built-In 
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and Self-Coded methods work well for weak buses but can not work for strong buses 

in the system. 

 
Figure 6.9 LHS and RHS of (6.25) at weak bus number 44 vs. the loading scaling 

factor for the IEEE 118 bus system 
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Figure 6.10 LHS and RHS of (6.25) at strong bus number 67 vs. the loading 

scaling factor for the IEEE 118 bus system 

6.3.2.2 Best Component method 

In this method, for each constituent of (6.25) (𝑍𝐿(𝛼) , |𝑉𝑠(𝛼)|2 , 𝜕|𝑉𝑠(𝛼)|2  and 

𝜕𝑅𝐿(𝛼))， all of the different ways of fitting the measurements previously mentioned 

are considered. Note that the 118 bus system here is modified by adding S=1+1j MVA 

to bus 30, bus 37 and bus 38. The loading value at the SNBP for this modified 118 bus 

system is 3.172. The loading range for training data obtained as pseudo-measurements 

is 70%-80% of the SNBP. 

First of all, accurately we calculate the “true” value of those variables in the 80%-

100% loading range using a 220-digit HEM implementation to obtain the accurate 

reference values for this range. Then the predictions of these four components are 
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compared with their “true” values in the 90%-100% range. For each component, the 

representation that most accurately fit the true value was selected as the best way. The 

best algorithm for building each component is listed in Table 6.3. 

Table 6.3 Best Component method 

Components Pseudo-measurements 
Best algorithm for fitting 

measurements 

𝑍𝑠 Source impedance from HEM/Ward network reduction 

𝑅𝐿(𝛼) Real part of 𝑍𝐿(𝛼) 

𝑍𝐿(𝛼) 𝑍𝐿 Built-In Padé-fit 𝑍𝐿 

|𝑉𝑠(𝛼)|2 |𝑉𝑠|
2 Self-Coded Padé-fit 𝑉𝑠 

𝜕|𝑉𝑠(𝛼)|2      𝜕|𝑉𝑠|
2    ( 

|𝑉𝑠1|2−|𝑉𝑠2|2

∆𝛼
 ) Self-Coded Padé-fit 𝜕|𝑉𝑠|

2 

𝜕𝑅𝐿(𝛼)       𝜕𝑅𝐿      ( 
|𝑅𝐿1|2−|𝑅𝐿2|2

∆𝛼
 ) Self-Coded Padé-fit 𝜕𝑅𝐿 

Some of the simultation results examining the results of the Best Component 

method are discussed in this section. The LHS and RHS of the MPTT equation for the 

modified 118 bus system with the buses-of-interest being buses 22 and 67 are plotted 

against 𝛼 in Figure 6.11 and Figure 6.12 respectively. The curves labeled 1) “LHS-

mp220”, 2) “LHS-Built-In”, 3) “LHS-Self-Coded” and 4) “LHS-Best-Component” 

represent the LHS of MPTT value of Padé approximant 1) from network reduction 

using 220 digit precision, 2) from measurements using the Built-In method, 3) from 

measurements using the Self-Coded method and 4) from measurements using the Best 

Component method. The legend beginning with “RHS-” stands for the RHS of the 
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MPTT value of the Padé approximant. For bus 22, which is a weak bus in the system, 

the Best Component method is shown to be better than the Buit-In and the Self-Coded 

methods, but not significantly better. This slightly superior performance has also been 

seen for some other weak buses when the measurement range remains to be 70%-80%. 

However, this method does not work well for a strong bus since there is no point where 

the LHS and RHS cross each other or diverge and thus no prediction can be made as 

shown in Figure 6.12 (the yellow and purple line).  

 

Figure 6.11 LHS and RHS of (6.25) at weak bus number 22 vs. the loading scaling 

factor for the modified 118 bus system 
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Figure 6.12 LHS and RHS of (6.25) at strong bus number 67 vs. the loading 

scaling factor for the modified 118 bus system 

6.3.2.3 Polynomial Method 

The Polynomial Method generates polynomials (rather than Padé approximants) of 

all functions of α  in (6.25). To do that, each component in (6.25) needs to be 

reformulated to adapt to polynomial form. The process is described below: 

The load voltage 𝑉𝐿(𝛼) can be obtained as a Maclaurin series as given by (6.30) 

from HEM network reduction.  

        𝑉𝐿(𝛼) = 𝑉𝐿[0] + 𝑉𝐿[1]𝛼 + ⋯+ 𝑉𝐿[𝑛]𝛼𝑛 + ⋯ (6.30) 

The Maclaurin series for 𝑍𝐿(𝛼) is given by  

𝑍𝐿(𝛼) =
𝑉𝐿(𝛼) ∙ 𝑉𝐿

∗(𝛼)

𝛼𝑆∗
 

 (6.31) 

Note that if the expression for 𝑍𝐿(𝛼) on the RHS of (6.31) is expanded as a power series 
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using (6.30), one will get a term with a negative exponent of 𝛼. The expression for 

𝑅𝐿(𝛼)  will also have a term with a negative exponent of 𝛼 . To avoid the negative 

exponent, the values of the load impedance and load resistance at different values of 𝛼 

can be obtained using the value of 𝛼𝑍𝐿(𝛼)  and 𝛼𝑅𝐿(𝛼)  respectively. The 

corresponding Maclaurin series are given below: 

𝛼𝑍𝐿(𝛼) =
𝑉𝐿(𝛼) ∙ 𝑉𝐿

∗(𝛼∗)

𝑆∗
 

 (6.32) 

𝛼𝑅𝐿(𝛼) = 𝑅𝑒(𝛼𝑍𝐿(𝛼))   (6.33) 

The value of ∂𝑅𝐿(𝛼)  at different values of 𝛼  can be obtained using the value of 

∂[𝛼𝑅𝐿(𝛼)]/𝜕𝛼 as shown below: 




















































)(
)(

)(

)(
)()(

L
L

L

L
LL

R
R

R

R
RR

    (6.34) 

By multiplying the top and bottom of (6.25) on both sides by 𝛼2, one can obtain: 

𝜕|𝑉𝑠(𝛼)|2

|𝑉𝑠(𝛼)|2
 
𝛼 ∙ [𝛼𝑅𝐿(𝛼)]

𝛼 ∙ [𝛼𝜕𝑅𝐿(𝛼)]
=

|𝛼𝑍𝐿(𝛼)|2 − 𝛼2|𝑍𝑠|
2

|𝛼𝑍𝑠 + 𝛼𝑍𝐿(𝛼)|2
 

      

(6.35) 

Substitute (6.34) into the above equation, the modified MPTT equation for Polynomial 

Method is obtained, as given by (6.36). 

𝜕|𝑉𝑠(𝛼)|2

|𝑉𝑠(𝛼)|2
 

𝛼 ∙ [𝛼𝑅𝐿(𝛼)]

𝛼 ∙ 𝜕[𝛼𝑅𝐿(𝛼)] − 𝛼𝑅𝐿(𝛼)
=

|𝛼𝑍𝐿(𝛼)|2 − 𝛼2|𝑍𝑠|
2

|𝛼𝑍𝑠 + 𝛼𝑍𝐿(𝛼)|2
  (6.36) 

It can be observed that the reformulated equation given by (6.36) consists of six 

parts: ① |𝛼𝑍𝐿(𝛼)|2 − 𝛼2|𝑍𝑠|
2 , ② |𝛼𝑍𝑠 + 𝛼𝑍𝐿(𝛼)|2, ③  𝛼 ∙ [𝛼𝑅𝐿(𝛼)] ,④ 𝛼 ∙

𝜕[𝛼𝑅𝐿(𝛼)] − 𝛼𝑅𝐿(𝛼),  ⑤ |𝑉𝑠(𝛼)|2 , ⑥ 𝜕|𝑉𝑠(𝛼)|2. The next step is to figure out how 
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to get polynomials for ①-⑥ in  (6.36) from pseudo-measurements, which are shown 

below: 

①|𝛼𝑍𝐿(𝛼)|2 − 𝛼2|𝑍𝑠|
2:  

The nth degree polynomial for α𝑍𝐿(𝛼) can be caluclated from 𝛼𝑍𝐿 measurements 

over a range of loading values (𝛼𝑘, 𝑘 = 1,2, …𝑁𝑚𝑒𝑎𝑠𝑢𝑟𝑒 ) using the polynomial fit 

techinique. The polynomial expression for 𝛼𝑍𝐿(𝛼), also named as 𝑍1(𝛼), is shown in 

(6.37). 

        α𝑍𝐿(𝛼) = 𝑍1(𝛼) = 𝑍1[0] + 𝑍1[1]𝛼 + 𝑍1[2]𝛼2 + ⋯+𝑍1[𝑛]𝛼𝑛 (6.37) 

Once 𝛼𝑍𝐿(𝛼) is obtained, the |𝛼𝑍𝐿(𝛼)|2, also labeled 𝑍2(𝛼), can be calculated using 

(6.38): 

        |𝛼𝑍𝐿(𝛼)|2 = 𝑍2(𝛼) = 𝑍1(𝛼) ∙ 𝑍1
∗(𝛼∗) 

                   = 𝑍2[0] + 𝑍2[1]𝛼 + 𝑍2[2]𝛼2 + ⋯+ 𝑍2[2𝑛]𝛼2𝑛  
(6.38) 

Note that the  |𝛼𝑍𝐿(𝛼)|2  is represented as a 2n-degree polynomial instead of being 

truncated to an nth degree polynomial to avoid losing information from 𝑍1(𝛼). The 

varible 𝑍𝑠  represents the source impedance obtained by network reduction and is a 

constant. Therefore, ① is obtained by adding (6.38) with the 2nd order term 𝛼2|𝑍𝑠|
2, is 

given by (6.39). 

|𝛼𝑍𝐿(𝛼)|2 − 𝛼2|𝑍𝑠|
2 

= 𝑍2[0] + 𝑍2[1]𝛼 + (𝑍2[2] − |𝑍𝑠|
2)𝛼2 + ⋯+ 𝑍2[2𝑛]𝛼2𝑛      

(6.39) 

② |𝛼𝑍𝑠 + 𝛼𝑍𝐿(𝛼)|2: 

Similarly, the expression 𝛼𝑍𝑠 + 𝛼𝑍𝐿(𝛼) is obtained by adding (6.37) with a 1st 

order term 𝛼𝑍𝑠 as given by (6.40). 
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|𝛼𝑍𝐿(𝛼)|2 − 𝛼2|𝑍𝑠|
2 

= 𝑍2[0] + 𝑍2[1]𝛼 + (𝑍2[2] − |𝑍𝑠|
2)𝛼2 + ⋯+ 𝑍2[2𝑛]𝛼2𝑛      

(6.40) 

Then ② can be calculated using the following equation: 

        |𝛼𝑍𝑠 + 𝛼𝑍𝐿(𝛼)|2 = 𝑍3(𝛼) = [𝛼𝑍𝑠 + 𝛼𝑍𝐿(𝛼)] ∙ [𝛼𝑍𝑠 + 𝛼𝑍𝐿(𝛼)]∗ 

  = 𝑍3[0] + 𝑍3[1]𝛼 + ⋯𝑍3[2𝑛]𝛼2𝑛   
(6.41) 

③ 𝛼 ∙ [𝛼𝑅𝐿(𝛼)]: 

The polynomial for α𝑅𝐿(𝛼) is calculated by taking the real part of 𝛼𝑍𝐿(𝛼), and then 

multiply it with 𝛼. The process is shown below: 

     𝛼𝑅𝐿(𝛼) = 𝑅1(𝛼) = 𝑅𝑒(𝛼𝑍𝐿(𝛼)) 

= 𝑅1[0] + 𝑅1[1]𝛼 + ⋯𝑅1[𝑛]𝛼𝑛  

(6.42) 

     𝛼 ∙ [𝛼𝑅𝐿(𝛼)] = 𝛼𝑅1(𝛼) = 𝑅1[0]𝛼 + 𝑅1[1]𝛼2  + ⋯+𝑅1[𝑛]𝛼𝑛+1  (6.43) 

④ 𝛼 ∙ 𝜕[𝛼𝑅𝐿(𝛼)] − 𝛼𝑅𝐿(𝛼) 

The polynomial for 𝜕[𝛼𝑅𝐿(𝛼)] is obtained by taking the derivative of 𝛼𝑅𝐿(𝛼) with 

respect to 𝛼 as shown below: 

     𝜕[𝛼𝑅𝐿(𝛼)] = 𝑅2(𝛼) =
𝜕𝑅1(𝛼)

𝜕𝛼
       (6.44) 

= 𝑅2[0] + 𝑅2[1]𝛼 + ⋯𝑅2[𝑛 − 1]𝛼𝑛−1  

Then ④ is given by: 

𝛼 ∙ 𝜕[𝛼𝑅𝐿(𝛼)] − 𝛼𝑅𝐿(𝛼) =          (6.45) 

   = 𝛼 ∙ ( 𝑅2[0] + 𝑅2[1]𝛼 + ⋯𝑅2[𝑛 − 1]𝛼𝑛−1) − (𝑅1[0] + 𝑅1[1]𝛼 + ⋯𝑅1[𝑛]𝛼𝑛) 

  = −𝑅1[0] + ( 𝑅2[0] − 𝑅1[1])𝛼 + ⋯+ ( 𝑅2[𝑛 − 1] − 𝑅1[𝑛])𝛼𝑛                                 

⑤ |𝑉𝑠(𝛼)|2: 
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The nth order polynomial for 𝑉𝑠(𝛼)  is obtained from the source voltage 

measurements using the polynomial fit technique and then ⑤ is obtained by using        

(6.46). 

      |𝑉𝑠(𝛼)|2 = 𝑉𝑠(𝛼) ∙ 𝑉𝑠
∗(𝛼∗)         (6.46) 

⑥ 𝜕|𝑉𝑠(𝛼)|2: 

The term ⑥ is obtained by taking the derivative of the polynomial for ⑤ with 

respect to 𝛼. 

The MPTT results using the Polynomial Method for weak bus 44 and strong bus 67 

are plotted in Figure 6.13 and Figure 6.14 respectively. The labels “LHS-MODEL-

Polynomial” and “RHS-MODEL-Polynomial” represent the LHS and RHS values, 

respectively, of  (6.36) obtained using network reduction techniques [52]. The labels 

“LHS-Polynomial” and “RHS-Polynomial” represent the LHS and RHS values of  

(6.36), respectively, obtained by fitting measurements to a polynomial. Observe that 

the Polynomial Method can give a reasonable estimate (by using the divergence 

criterion in this case) when obtaining the power series from network reduction. 

However, when using the polynomials obtained from measurements, this method does 

not extrapolate the LHS well far away from the training data range. Therefore, use of 

the Polynomial Method is not feasible for predicting the SNBP. 
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Figure 6.13 LHS and RHS of  (6.36) at weak bus number 44 vs. the loading 

scaling factor for the IEEE 118 bus system 

 

Figure 6.14 LHS and RHS of  (6.36) at strong bus number 67 vs. the loading 

scaling factor for the IEEE 118 bus system 
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6.3.2.4 𝑍𝑡ℎ(𝛼) method 

The idea of the 𝑍𝑡ℎ(𝛼) method is similar to conventional TE-based method. The 

rest of the system is modeled as a voltage source connected through a Thévenin 

impedance as shown in Figure 6.15. Note that unlike the Thévenin-like network, in 

which the impedance 𝑍𝑠 from HE-reduction is constant, the Thévenin impedance in 

Figure 6.15 is a function of 𝛼. It can be calculated based on its definition: 

     𝑍𝑡ℎ(𝛼) = −

𝜕𝑉𝐿(𝛼)
𝜕𝛼

𝜕𝐼𝐿(𝛼)
𝜕𝛼

= −
𝜕𝑉𝐿(𝛼)

𝜕 (
𝛼𝑆∗

𝑉𝐿
∗(𝛼∗)

)

= −
𝜕𝑉𝐿(𝛼) ∙ 𝑉𝐿

∗(𝛼∗) ∙ 𝑉𝐿
∗(𝛼∗)

𝑆∗(𝑉𝐿
∗(𝛼∗) − 𝛼 ∙ 𝜕𝑉𝐿

∗(𝛼∗))
 

(6.47) 

The load impedance 𝑍𝐿(𝛼) is given by: 

     𝑍𝐿(𝛼) =
𝑉𝐿(𝛼) ∙ 𝑉𝐿

∗(𝛼∗)

𝛼𝑆∗
 (6.48) 

The potential advantage of this approach is that at the SNBP, the magnitude of the 

Thévenin impedance is equal to the magnitude of the load impedance, i.e., |𝑍𝑡ℎ(𝛼)| =

|𝑍𝐿(𝛼)| and the test for the SNBP is much simpler.  

 

Figure 6.15 Two-bus equivalent diagram for 𝑍𝑡ℎ(𝛼) method 
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Plotted in Figure 6.16 is the magnitude of 𝑍𝑡ℎ(𝛼) and 𝑍𝐿(𝛼) vs. load-scaling factor 

for the IEEE 118 bus system with bus-of-interest being bus 48, a strong bus in the 

system. It is inferred that for strong buses, 𝑍𝑡ℎ(𝛼)  method may reliably have a 

crossover while the Built-In/Self-Coded methods or Best Component method do not. 

Thus the 𝑍𝑡ℎ(𝛼) method can give a prediction of SNBP for strong buses while the Built-

In/Self-Coded methods or Best Component method do not, because the LHS and RHS 

do not cross each other or diverge. However, this method gives a non-conservative 

estimate of SNBP. (In Figure 6.16, the estimate is around 3.3 while the SNBP loading 

value for the system is 3.187.) In addtion, uses the same assumption as TE-based 

method, namely that the voltage source remains constant during the sampling period. 

Therefore, this method will not be considered in later research work in this report. But 

it might show benefits when using noisy measurements. 

 

Figure 6.16 Magnitude of 𝑍𝐿 and 𝑍𝑡ℎ at strong bus number 48 vs. the loading 

scaling factor for the IEEE 118 bus system 
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6.4 Validating the Maximum Power Transfer Theorem  

As shown in section 6.3, when different numerical methods (including network 

reduction techniques which should be accurate to within roundoff error) are applied to 

MPTT, the SNBP could be predicted with acceptable accuracy for so-called weak buses, 

but not for so-called strong buses. To prove that the problem was not with the equation, 

but the precision with which the equation was evaluated, extended precision (250 digit) 

was used in generating the constituents of (6.25) for strong buses using network 

reduction techniques. As shown in Figure 6.17, when extended precision is used for 

strong buses, the LHS and RHS of (6.25) indeed are equal at the SNBP. (The calculated 

SNBP for the (non-modified) 118 bus system using extended precision is 3.189). Note 

that there is a “blip” in the LHS curve when using double precision and it might affect 

the accuracy of SNBP estimation in some cases. This behavior will be further discussed 

in later sections. 
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(a) Double precision 

 

(b) 250 digits of precision 

Figure 6.17 LHS and RHS of (6.25) at strong bus number 67 vs. the loading 

scaling factor for the IEEE 118 bus system 
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6.5 Numerical comparison of different methods using noiseless measurements 

 In the above section, the MPTT was validated by implementing it using high 

precision and, in section 6.3, different numerical methods were investigated to estimate 

the SNBP based on the MPTT from measurements. However, it was shown that, 

regardless of the method used, when only double precision is used the method cannot 

predict the SNBP using data from strong buses. Hence, to be effective, SNBP prediction 

algorithm should be applied to PMU buses that are close to weak buses in the system. 

Also it was observed from the above numerical experiments that the Built-In, Self-

Coded and Best Component methods are promising if applied to weak buses, but their 

effectiveness is still not clear. Therefore, more extensive tests were conducted using 

these three methods with 11 weak buses on the 118 bus system in the following sections. 

6.5.1 Modified 118 bus system 

The tested 118 bus system is modified by adding S=1+1jMVA to bus 30, bus 37 

and bus 38 in order to increase the number of testable weak buses in the system. 

(Because there is no real or reactive power load at those PQ buses in the original system, 

the MPTT could not be applied to those buses.) The loading value at the SNBP for this 

modified 118 bus system is 3.172, obtained using the CPF. 

6.5.2 Finding the ten weakest buses from modal analysis 
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Arguably, the most well-known method of determining the weak buses of a system 

is modal analysis [54], which will be used here to determine the ten weakest buses of 

the modified 118 bus system. 

The modal analysis method calculates the eigenvalue and eigenvector of the 

reduced Jacobian matrix based on the relation between the incremental bus voltage 

magnitudes and their respective incremental reactive power injections. The smallest 

eigenvalue can be used to estimate the stability margin and the participation factor 

calculated from the left and right eigenvectors corresponding to the critical mode helps 

provide insight about which bus loads may have significant impact on the system 

voltage stability. The buses with relatively large participation factors in the smallest 

eigenvalue are determined to be the weak buses in the system. Since modal analysis is 

based on a linear approximation of the system model, the order of the buses from the 

weakest to the strongest might change as the operating condition changes.  

The top ten weakest buses (in decreasing order of weakness) obtained from modal 

analysis using VSAT [55] and our own MATLAB program for the modified 118 bus 

system are listed in Table 6.4 when the loading of the system is close to its SNBP. Note 

that when using VSAT to identify the weakest buses, we can only scale the system load 

up to 2.35 because VSAT can not give a converged solution beyond that. It can be 

observed that there is a one-to-one correspondence between VSAT and MATLAB 

program except for the 10th weakest bus, i.e., the strongest one among the 10 weakest 
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buses. Thus, this shows that, in this case, the order of the top ten weakest buses changes 

slightly as the loading changes. The first nine weakest buses ( identical for VSAT and 

MATLAB) and the 10th weakest buses both for VSAT and MATLAB,  totaling eleven 

buses, are selected to be tested in the following section. 

Table 6.4 Ten weakest buses for the modified 118 bus system using modal analysis 

 VSAT (loading=2.35) MATLAB (loading=3) 

Smallest 

eigenvalue 

2.947722 3.035 

No. Bus Part.Fac. Bus Part.Fac 

1 21 1 21 1 

2 22 0.80834 22 0.83712 

3 20 0.47027 20 0.46517 

4 44 0.05503 44 0.04171 

5 43 0.02785 43 0.0195 

6 45 0.01984 45 0.01658 

7 23 0.01407 23 0.01603 

8 38 0.00313 38 0.00218 

9 30 0.0006 30 0.00085 

10 37 0.00016 17 0.00012 

6.5.3 Numerical results 

Numerical tests were conducted on the Built-In, Self-Coded and Best Component 

methods for the eleven weakest buses in the modified 118 bus system with different 

ranges of noiseless pseudo-measurements. In each experiment, 200 measurements were 
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used to fit a [30/30] Padé approximant for each variable. The SNBP was predicted either 

by the crossover or divergence behavior of the LHS and RHS values of the MPTT 

equation.The numerical results are shown as follows, where “Average error” is the 

average of the absolute value of the errors: 

a. Measurements in the range of 50%-60% of the SNBP  

In this experiment, the measurements in the 50%-60% training range were used to 

fit the Padé approximant. The percent error in SNBP for the 11 weakest buses using the 

three numerical methods are listed in Table 6.5 and the absolute value of the errors is 

shown in Figure 6.18. 
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Table 6.5 Percent error in SNBP estimation for measurements in the 50%-60% 

training range for the modified 118 bus system 

Bus no. 

Numerical methods Average 

error over all 

methods 
Built-In 

Self-

Coded 

Best 

Component 

21 4.17087 6.882093 8.237705 6.430223 

22 12.16898 2.301387 2.04918 5.506515 

20 2.175284 9.174023 6.052963 5.800757 

44 -1.25158 0.29319 -0.05359 0.532787 

43 -0.02207 0.576923 0.608449 0.40248 

45 -1.8285 5.422446 5.453972 4.234973 

23 -5.64313 12.54729 13.11475 10.43506 

38 -2.60404 -0.81021 -1.50378 1.639344 

30 0.063052 5.611602 -3.97226 3.215637 

37 -0.90479 6.472257 7.796343 5.057797 

17 -2.71122 13.52459 18.63178 11.62253 

Average 

error over all 

buses 

3.04941 5.783274 6.134071 4.988918 
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Figure 6.18 Percent error in SNBP estimation for measurements in the 50%-

60% training range 

b. Measurements in the range of 60%-70% of the SNBP  

The numerical results of SNBP estimation using measurements in the 60%-70% 

training range are shown in Table 6.6 and Figure 6.19. 
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Table 6.6 Percent error in SNBP estimation for measurements in the 60%-70% 

training range for the modified 118 bus system 

Bus no. 

Numerical methods Average 

error over all 

methods 
Built-In 

Self-

Coded 

Best 

Component 

21 6.431274 4.854981 7.124842 6.137032 

22 0.189155 -0.09458 -0.15763 0.147121 

20 10.40353 8.228247 8.732661 9.12148 

44 -8.62863 0.955233 1.144388 3.576082 

43 0.797604 2.689155 2.058638 1.848466 

45 -2.60404 0.513871 0.513871 1.210593 

23 -14.029 4.287516 7.093317 8.469945 

38 0.545397 -2.60404 -2.60404 1.917823 

30 -5.42245 4.602774 3.87768 4.6343 

37 2.657629 3.225095 3.571879 3.151534 

17 2.900378 9.962169 8.417402 7.093317 

Average 

error over all 

buses 

4.964462 3.819787 4.117849 4.300699 
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Figure 6.19 Percent error in SNBP estimation for measurements in the 60%-70% 

training range 

c. Measurements in the range of 70%-80% of the SNBP  

The numerical results of the SNBP estimation using measurements in the 70%-80% 

training range are shown in Table 6.7 and Figure 6.20. 
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Table 6.7 Percent error in SNBP estimation for measurements in the 70%-80% 

training range for the modified 118 bus system 

Bus no. 

Numerical methods Average 

error over all 

methods 
Built-In 

Self-

Coded 

Best 

Component 

21 0.094578 -0.44136 -0.50441 0.346784 

22 1.481715 1.261034 0.031526 0.924758 

20 1.680328 1.806431 0.040984 1.175914 

44 -0.49496 -1.44073 -1.59836 1.178016 

43 1.081337 -0.02207 -0.24275 0.448718 

45 0.513871 0.040984 0.040984 0.198613 

23 2.909836 1.869483 1.995586 2.258302 

38 -0.36885 -0.46343 -0.58953 0.473939 

30 0.135561 -0.84174 -0.84174 0.606347 

37 0.671501 1.20744 1.302018 1.060319 

17 2.373897 1.428121 1.428121 1.74338 

Average 

error over all 

buses 

1.073312 0.983893 0.783274 0.946826 

 

 



 

 

121 

 

Figure 6.20 Percent error in SNBP estimation for measurements in the 70%-80% 

training range 

6.5.4 Conclusion 

From the above numerical results, it can be observed that the average errors in 

SNBP estimation using the three different methods are: 3%-6% for measurements in 

the 50%-60% range; 3%-5% for measurements in the 60%-70% range; about 1% for 

measurements in the 70%-80%. If simply taking the average of the average of the 

absolute values of the errors for the three methods, the approximate errors for each 

training data range are shown in Figure 6.21. It can be seen that the closer the measured 

data is to the SNBP, the smaller is the error in the SNBP estimate. 

 

0

0.5

1

1.5

2

2.5

3

3.5

bus 21 bus 22 bus 20 bus 44 bus 43 bus 45 bus 23 bus 38 bus 30 bus 37 bus 17

SN
B

P
 e

st
im

at
io

n
 e

rr
o

r%

Buit-In Self-Coded Best Component



 

 

122 

 

Figure 6.21 Percent error in SNBP estimation for different training data range 

(average the absolute value of errors) 

If we average over the 11 weakest buses (no absolute value), the Built-In method 

gives the best results as shown in Figure 6.22. Other methods may be competitive if 

more sophisticated algorithms of outlier detection are used. 

 

Figure 6.22 Percent error in SNBP estimation for different training data range 
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6.5.5 More analysis on the numerical results 

When the range of the measurement is 60%-70% of the SNBP, the numerical results 

as shown in Figure 6.19 show that the errors in SNBP estimation using the Built-In 

method for most buses are less than 7%, which is acceptable. However, the estimation 

error at bus 23 is 14.029%. (The estimated SNBP is 2.727 while the true SNBP of the 

system is 3.172), which obviously is an outlier. Hence, in order to improve the accuracy 

of our method for estimating the SNBP, we will focus on finding the cause of this outlier. 

Bus 43, for which the estimation error is only 0.797%, is also included in the following 

tests for comparison. 

If we generate the MPTT plot for bus 23 as shown in Figure 6.23 (a), it can be 

observed that the yellow line which represents the LHS of (6.25) has a spike at around 

2.727 and this point will be detected as the SNBP by the divergence criteria, which is 

incorrect. Then by analyzing each component in the LHS of (6.25) 

(∂|𝑉𝑠|
2, 𝜕𝑅𝐿(𝛼), 𝑅𝐿(𝛼) and |𝑉𝑠|

2), we find that the cause comes from ∂|𝑉𝑠|
2 as shown 

in Figure 6.24 (a). 
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(a) Bus 23 (b) Bus 43 

Figure 6.23 LHS and RHS of (6.25) at bus 23 or bus 43 vs. loading scaling factor  

 

(a) Bus 23 (b) Bus 43 

Figure 6.24 𝜕|𝑉𝑠(𝛼)|2 at bus number 23 or bus 43 vs. loading-scaling factor 

To dive further into determining the root cause of blip in Figure 6.24 (a), the poles 

and zeros of the Padé approximants of ∂|V𝑠|
2for bus 23 and bus 43 are plotted in Figure 

6.25. It can be seen that there are a number of poles/zeros accumulating on the real axis 

in the range [1.9, 2.22], which is the measured data range. Since we only focus on the 

range beyond the measured data range for estimating the SNBP, these poles/zeros will 

not affect the estimation. And the pole/zero that is located at around 3.4 should be the 

actual root of the Padé approximant obtained from measurements and will be taken as 

the estimated SNBP if using the roots method. (Using the roots method, an estimated 
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SNBP of 3.4 is significantly inaccurate, which is why the MPTT is used.) Observe that 

for bus 23, there is a pole-zero pair in the range between the boundary of the measured 

data range and the root of the Padé approximant, located at around 2.73 (also inaccurate 

if the roots method were to be used) and this pole-zero pair will affect the behavior of 

the LHS and RHS of (6.25). Therefore, when we search for the estimated SNBP 

detected by crossover or divergence behavior starting from the boundary of the 

measured data range, the estimation of the SNBP is 2.727, which is incorrect. More 

discussion on the poles and zeros of the Padé approximant obtained from measurements 

will be conducted in section 6.6, as will suggested remedies for this problem. As will 

be seen in section 6.6, this pole-zero pair for bus 23 is caused by round-off error. 

 

(a) Bus 23 (b) Bus 43 

Figure 6.25 Pole-zero plot for 𝜕|𝑉𝑠(𝛼)|2 at bus number 23 and bus 43 

6.6 Using the roots method to estimate the SNBP 

In addition to using the MPTT, one can use the roots (poles/zeros) of the voltage 

Padé approximant to estimate the SNBP using the so-called roots method. As seen in 
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section 6.5.5, the location of the poles/zeros of the Padé approximant is an effective 

way to analyze numerical issues. Hence the numerical performance of the roots method 

will be discussed in the following section. 

6.6.1 The effect of order of Padé approximant 

The pole-zero plots for different orders of [M/M+1] Padé approximants of 𝑉𝐿 at bus 

23 are plotted in Figure 6.26 using various numbers of series term (n). The range of the 

measurements used to fit the Padé approximant is 60%-70% of the SNBP, which is 

1.9032 to 2.2204 in 𝛼 values. The total number of measurements is 200. It is seen from 

Figure 6.26 (a) that when the number of terms, 𝑛 , used to calculate the Padé 

approximants is insufficient, like n=4 in this case, there is no pole/zero on the real axis 

and thus no SNBP prediction can be made using the roots method. Looking at Figure 

6.26 (b) (c) and (d),we observe that the pole/zero that is located at around 3.4 is viewed 

to be the actual root of Padé approximants of 𝑉𝐿 fitted from measurements and will be 

referred to “the meaningful” pole/zero in the rest of the work. It was observed that the 

location of the meaningful pole/zero changes slightly as n changes. However, as n 

increases, beyond a certain threshold, as seen in Figure 6.26 (c), poles/zeros occur on 

the real axis inside and just beyond the training data range, i.e., [1.9032, 2.2204]. This 

type of poles/zeros will be referred to “training range” poles/zeros. When n=20, those 

training range poles/zeros are all within the training data range and thus will not affect 

the accuracy of the SNBP estimation. When n increases to 50, as shown in Figure 6.26 
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(d), many poles/zeros accumulating on a circle centered at the origin, which will be 

referred to as “the circle” poles/zeros in the following sections. Also, observe in Figure 

6.26 (d) that there is an (approximately real-valued) near-training-range pole/zero 

located at 2.312, which is beyond the training data range and would be taken as the 

estimated SNBP from roots method, leading to inaccuracy in SNBP prediction. 

 

(a) n=4 (b) n=10 

 

(c) n=20 (d) n=50 

Figure 6.26 Pole-zero plot for different order of 𝑉𝐿 Padé approximant 

Let us define the following variables. 

• 𝑁𝑠𝑡𝑎𝑟𝑡 is the number of terms at which the Padé approximant starts to have a 

pole/zero on or near the real axis, which consequently would allow the 

prediction of the SNBP by the roots method (as seen in Figure 6.26 (b)) to be 
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reasonably accurate, 

• 𝑁𝑟𝑎𝑛𝑔𝑒 is the number of terms at which the Padé approximant starts to have 

training range poles/zeros all in the training range but these roots remain within 

the training range so they do not affect the accuracy of the SNBP estimation (as 

seen in Figure 6.26 (c)) 

• 𝑁𝑏𝑎𝑑 corresponds to the number of terms of the Padé approximant when there 

exist training range poles/zeros located beyond the training data range as more 

and more spurious poles/zeros appear, thus causing estimation errors (as seen 

in Figure 6.26 (d)).  

The general conclusion from a series of tests on the modified 118 bus system is 

that in general: 𝑁𝑠𝑡𝑎𝑟𝑡 = 7 , 𝑁𝑟𝑎𝑛𝑔𝑒 = 12  and 𝑁𝑏𝑎𝑑 = 21 . The specific SNBP 

estimation results for bus 23 are shown in Figure 6.27. 

 

Figure 6.27 The estimation of SNBP vs. number of series terms used in building 

the Padé approximant of 𝑉𝐿 using 200 measurements 
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As seen from Figure 6.27, one does not need many terms to obtain a reasonably 

accurate estimate of the SNBP and using too many terms will reduce the accuracy of 

the estimation eventually. Typically, n=12 to 20 will give a reasonably good SNBP 

estimation. 

6.6.2 The effect of number of measurements 

As demonstrated in section 6.3.1, the Padé approximant is calculated by solving a 

set of overdetermined equations. Increasing the number of measurements is expected 

to reduce round-off error. If we repeat the simulation in section 6.6.1 with 2000 

measurements, the result we obtain is: 𝑁𝑠𝑡𝑎𝑟𝑡 = 5, 𝑁𝑟𝑎𝑛𝑔𝑒 = 18 and 𝑁𝑏𝑎𝑑 = 24, which 

means we can use a wider range of n selections and still obtain a good estimate. The 

specific SNBP estimation results are shown in Figure 6.28. Notice that the SNBP 

estimate is more reliable when 2000 samples are used versus 200 samples, as shown in 

Figure 6.27. 
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Figure 6.28 The estimation of SNBP vs. number of series terms used in building 

the Padé approximant of 𝑉𝐿 using 2000 measurements 

 

6.6.3 The effect of precision 

As shown in Figure 6.27, we classify three types of poles/zeros of the Padé 

approximant by their locations: meaningful pole/zero, training range pole/zero, and 

circle pole/zero. To have a better understanding of which factors affect the locations of 

those roots, we implemented a high precision code that we used to perform the 

following tests. We recognized that spurious roots could be caused by errors in either 

the measurements or the calculation of the Padé approximant. Therefore, we 

implemented out training algorithm with different numbers of digits of precision in both 

obtaining the pseudo-measurements and fitting the Padé approximants. The simulation 

results are shown in Figure 6.29, Figure 6.30, and Figure 6.31. The number of terms 

used here is 50. 
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Figure 6.29 Pole-zero plot for 𝑉𝐿 Padé approximant for the modified 118 bus 

system (double precision measurements, double precision Padé approximant) 
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Figure 6.30 Pole-zero plot for 𝑉𝐿 Padé approximant for the modified 118 bus 

system (double precision measurements, 220 digits of precision Padé approximant) 
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Figure 6.31 Pole-zero plot for 𝑉𝐿 Padé approximant for the modified 118 bus 

system (220 digits of precision measurements, 220 digits of precision Padé 

approximant) 

By comparing Figure 6.29 and Figure 6.30, we can see that the circle poles/zeros 

disappear when using high precision to fit the Padé approximants. Therefore, the circle 

poles/zeros are in fact spurious roots due to round-off errors during the calculation of 

the Padé approximant coefficients. Note that the circle poles/zeros in Figure 6.29 seem 

to move to the training data range as shown in Figure 6.30 and the location of the 

meaningful poles/zeros does not change much when using high precision to fit the Padé 

approximants. 

By comparing Figure 6.30 and Figure 6.31, we can see that the training range 

poles/zeros disappear if both measurements and Padé approximants are calculated with 

high precision. In addition, the meaningful poles/zeros are closer to the true SNBP of 

the system (the meaningful pole/zero is located at 3.34 and 3.172 in Figure 6.30 and 

Figure 6.31 respectively). Therefore, we can conclude that the occurrence of those 

training range poles/zeros comes from measurement errors. Also, obtaining a more 

accurate estimation of the meaningful pole requires using high precision for both 

measurements as well as Padé approximants. Given that precision is limited from PMU 

measurements (maybe 3-4 accurate digits, if noise is minimal), accurately predicting 

the SNBP from measured data will require more elaborate means than the simple roots 

method. 
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In summary, in order to improve the accuracy of roots method for estimating the 

SNBP, one should focus on reducing measurement noise or eliminating spurious 

poles/zeros caused by the computation of Padé approximants. 

6.6.4 Comparison of the MPTT and the roots method 

The comparison of SNBP estimation error produced by the MPTT using the Built-

In method and the roots method was performed using the eleven weakest buses for the 

modified 118 bus system. The measurements in the 60%-70% range were used to fit 

the Padé approximant, obtained using MATPOWER with a power-mismatch 

convergence tolerance of 10-8. The numerical results are shown in Figure 6.32 where 

mp120 represents using 120 digits of precision to fit the Padé approximants. The error 

in the SNBP estimation is the average of the absolute errors for all buses shown in 

Figure 6.32. 

 

Figure 6.32 Comparison of MPTT and roots method for estimating the SNBP 
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(1) The MPTT method can give more accurate results than the roots method for 

the system test. The roots method is more sensitive to the number of terms 

and digits of precision used for the Padé approximant. 

(2) Reducing the order of Padé approximant (for example, using n=10 instead 

of n=60 in this case) helps to eliminate estimation errors with the roots 

method and with the MPTT method when using double precision. 

(3) Increasing precision can improve accuracy, which is expected. But when we 

use a small-order Padé approximant (n=10 for example), the effect of 

precision is not as significant. 

Therefore, generally, estimating the SNBP using the MPTT method with double 

precision and n=10 for the Padé approximant seems to be a prudent choice. More 

numerical experiments on a wide variety of systems is needed to confirm this 

hypothesis. 

6.7 Numerical comparison of different methods using noisy measurements 

6.7.1 Numerical results 

We inserted random noise (zero mean, standard deviation of 0.01) in a range of 

PMU voltage pseudo-measurements from the modified 118 bus system and repeated 

the same numerical tests as presented in section 6.5. The numerical results we obtained 

are shown in Table 6.8 and Figure 6.33. The average error in SNBP estimation for a 

70%-80% training range is around 15%, which is unacceptable. The poles/zeros of the 
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Padé approximant for bus 23 are plotted in Figure 6.34. It is observed that there are no 

meaningful poles/zeros in this plot because of the corruption of the measurements by 

noise; therefore, neither the MPTT method nor the roots method works and more 

research is needed in the future to develop different methods for ameliorating 

measurement error. 

 

 

 

 

 

Table 6.8 Percent error in SNBP estimation for noisy measurements in the 70%-

80% training range for the modified 118 bus system 

Bus no. 

Numerical methods Average 

error over all 

methods 
Built-In 

Self-

Coded 

Best 

Component 

21 -19.4515 -19.1362 -16.6141 18.40059 

22 -19.4515 -17.8752 -19.4515 18.92602 

20 -19.1362 17.74905 -4.6343 13.83985 

44 11.44388 -15.0378 -15.3531 13.94493 

43 -13.4615 -7.47163 -11.2547 10.7293 

45 -19.4515 -19.4515 -19.1362 19.34636 

23 -16.2989 -7.78689 -19.4515 14.5124 
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38 -17.2446 -19.4515 -19.4515 18.71585 

30 -11.57 -19.4515 6.399748 12.47373 

37 -15.6683 -18.8209 -19.4515 17.98024 

17 -10.6242 -0.8512 -15.9836 9.153005 

Average 

error over all 

buses 

15.80018 14.82575 15.19833 15.27475 

 

 

 

Figure 6.33 Percent error in SNBP estimation for noisy measurements in the 70%-

80% training range 
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Figure 6.34 Pole-zero plot for 𝑉𝐿 Padé approximant with noisy measurements 

 

6.7.2 Analytic Derivative method 

In the above tests, the components ∂|𝑉𝑠(𝛼)|2and 𝜕𝑅𝐿 in the MPTT were obtained 

by directly fitting the corresponding Padé approximant from the corresponding 

numerically calculated incremental values, i.e., the numerically calculate voltage and 

load resistance increments (i.e., subtraction of adjacent measurements), respectively. 

Even relatively small deviations in these measurements from the true values (due to 

measurement noise) will have a large effect on the value of the increment, and therefore 

on the derivative. To eliminate the use of the numerically calculated incremental values, 
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another fitting technique was developed, specifically the “Analytic Derivative” method, 

introduced next.  

In the Analytic Derivative method, rather than taking the derivative numerically by 

subtracting adjacent measurements, the Padé approximant of the needed function is first 

constructed and then the derivative of this function is performed analytically. For 

example, the Padé approximant for ∂|𝑉𝑠(𝛼)|2  is obtained by first fitting the Padé 

approximant to |𝑉𝑠(𝛼)|2  from the square of the magnitude of the source voltage 

measurements and then taking the derivative of this rational function. The approach to 

getting the Padé approximant for 𝜕𝑅𝐿 is similar. The MPTT results using the Analytic 

Derivative method for weak bus 22 in the modified 118 bus system from noiseless 

measurements is plotted in Figure 6.35 and compared with the results from the Built-In 

method. The measurement range is 60%-70% of the SNBP load, i.e.,  in the range 

1.9032<<2.2204. It is shown that the Analytic Derivative method does not perform as 

well as the Built-In method because the LHS of the MPTT for the Analytic Derivative 

method deviates from the true curve earlier than the Built-In method. Is is believed  that 

performance is inferior in case with noiseless measurements  because the process of 

taking the derivative for ∂|𝑉𝑠(𝛼)|2 and 𝜕𝑅𝐿 produces roundoff error.  
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Figure 6.35 LHS and RHS of (6.25) at weak bus number 22 vs. the loading scaling 

factor for the modified 118 bus system using noiseless measurements 

Next, we inserted random noise (zero mean, standard deviation of 10−9 and 10−6) 

into the voltage measurements and repeated the above numerical tests. The MPTT 

results using noisy measurements with a standard deviation of 10−9  and 10−6  are 

shown in Figure 6.36 and Figure 6.37, respectively. We can see that when using 

measurements with noise, the Analytic Derivative method performs better than the 

Built-In method because it avoids the use of numerically calculated incremental values. 

However, this method is still not able to estimate the SNBP with acceptable accuracy. 

More effort is needed to improve the numerical performance. 
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Figure 6.36 LHS and RHS of (6.25) at weak bus number 22 vs. the loading scaling 

factor for the modified 118 bus system using noisy measurements with standard 

deviation of 10-9 
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Figure 6.37 LHS and RHS of (6.25) at weak bus number 22 vs. the loading scaling 

factor for the modified 118 bus system using noisy measurements with standard 

deviation of 10-6 

6.7.3 Summary 

From above tests, we see that the noise in the measurements (whether injected, or 

inherent as roundoff error in the calculation of the pseudo-measurements) has a similar 

effect on poles/zeros as roundoff error (generated in the calculation of the Padé 

approximant). They lead to spurious roots in the Padé approximant and affect the 

accuracy of the non-spurious poles/zeros and the accuracy of the SNBP prediction. It 

is important to develop methods to eliminate the effect of noise, which is left as future 

work. 
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6.8 Summary 

This chapter concentrates on the application of HEM to the estimation of the SNBP 

using local-measurements. We developed a nonlinear Thévenin-like network from HE 

reduction and establish the Maximum Power Transfer Theorem for estimating the 

SNBP, which has been validated using high precision. Different numerical methods are 

investigated and the comparison of their numerical performance is conducted on a 

modified version of the IEEE 118 bus system using measurements with/without noise. 

We also looked at the poles/zeros of the Padé approximant to analyze the source of 

estimation error. We found that spurious pole/zero pairs caused by measurement error 

and roundoff error impacted accuracy. Developing different ways to minimize the 

effect of noise is necessary and is left for future work. 
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7 CONCLUSION AND FUTURE WORK 

7.1 Conclusion 

The Holomorphic Embedding Method (HEM) is theoretically guaranteed to 

converge to the operable solution provided Stahl’s conditions are satisfied. Numerically, 

however, the limitations of machine precision can affect the numerical performance, 

especially for heavily-loaded and ill-conditioned power system models. Two numerical 

examples are given in chapter 3 to show the benefits of using extended precision. 

In the HEM algorithm, there exist three places that deserve attention in terms of 

numerical convergence: the matrix equation solution, power series inversion and the 

Padé approximant calculation. In chapter 4, different levels of precision were assigned 

to these three aspects to investigate which aspect was the most critical and require 

extended precision. Numerical results showed that extended precision must be used for 

the entire algorithm to improve numerical performance. 

Investigation of the numerical properties of the scalable formulation and the non-

scalable formulation was reported in chapter 5. The two formulations show different 

numerical performance on the 43 bus system and the IEEE 145 bus system. For the 43 

bus system, the HEM with the scalable formulation is able to give a converged solution 

while the HEM with the non-scalable formulation fails to converge. On the contrary, 

for the IEEE 145 bus system, the HEM scalable form fails to converge while the HEM 
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non-scalable form does converge. Therefore, one needs to be careful to decide which 

formulation to use to solve the power flow for a power system model. 

The application of HEM to the SNBP estimation using local-measurements was 

explored in chapter 6. The Maximum Power Transfer Theorem (MPTT) was validated 

using high precision. Different numerical techniques were developed and their 

numerical performance were tested on the modified 118 bus system with/without noise. 

Numerical results show that the MPTT method works reasonably well for weak buses 

in the system. Another alternative method to estimate the SNBP, the roots method, was 

also discussed in this chapter but shown to be inferior to the performance of the MPTT. 

The noise in the measurements leads to spurious roots in the Padé approximant and 

impact the accuracy of the SNBP prediction for both the MPTT and the roots method. 

7.2 Future work 

The accuracy of the numerical results obtained in this work for estimating the SNBP 

from noisy measurements were not acceptable. The spurious roots caused by either 

measurement error or roundoff error affected the accuracy of the SNBP prediction. 

There are generally two approaches for minimizing the effect of noise that can be 

investigated in the future: 

1. Eliminating noise in the pseudo measurements by: 

• Using a Kalman Filter to reduce improve the quality of the measurements. 

2. Eliminating spurious poles caused by round-off error in the calculation of the 
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Padé approximant by:  

• Reducing the order of Padé approximant. 

• Developing more robust Padé approximant methods such as robust SVD 

method [56] and matrix pencil method. 
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