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ABSTRACT 

Synthetic biology is an emerging field which melds genetics, molecular biology, 

network theory, and mathematical systems to understand, build, and predict gene network 

behavior.  As an engineering discipline, developing a mathematical understanding of the 

genetic circuits being studied is of fundamental importance.  In this dissertation, 

mathematical concepts for understanding, predicting, and controlling gene transcriptional 

networks are presented and applied to two synthetic gene network contexts.  First, this 

engineering approach is used to improve the function of the guide ribonucleic acid 

(gRNA)-targeted, dCas9-regulated transcriptional cascades through analysis and targeted 

modification of the RNA transcript. In so doing, a fluorescent guide RNA (fgRNA) is 

developed to more clearly observe gRNA dynamics and aid design.  It is shown that 

through careful optimization, RNA Polymerase II (Pol II) driven gRNA transcripts can be 

strong enough to exhibit measurable cascading behavior, previously only shown in RNA 

Polymerase III (Pol III) circuits. Second, inherent gene expression noise is used to 

achieve precise fractional differentiation of a population.  Mathematical methods are 

employed to predict and understand the observed behavior, and metrics for analyzing and 

quantifying similar differentiation kinetics are presented.  Through careful mathematical 

analysis and simulation, coupled with experimental data, two methods for achieving ratio 

control are presented, with the optimal schema for any application being dependent on 

the noisiness of the system under study.  Together, these studies push the boundaries of 

gene network control, with potential applications in stem cell differentiation, 

therapeutics, and bio-production. 
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1 INTRODUCTION 

 

1.1 SYNTHETIC BIOLOGY 

Biology is a complex topic, nearly infinitely so.  Ignoring the complexity that comes with 

multicellularity, even the simplest cells are powerful computational organisms, capable of 

synthesizing information from myriad self and environmental inputs to make basic 

decisions: to move (1), to divide (2, 3), to absorb nutrients (3–5), to adsorb to the 

environment (6–9), and much more (10, 11).  When multicellularity is considered, the 

variety of observed behaviors expands to even more possibilities: differentiation into one 

of many diverse tissue types (12–17), intricate intracellular communication (18–20), or 

partaking in large-scale actions – such as contracting a muscle – that utilize the combined 

effort of thousands or millions of cells (21–23). 

Much of what we know about how biological systems make decisions is based on 

what has come to be known as the “Central Dogma” of biology: deoxyribonucleic acid 

(DNA) is transcribed into ribonucleic acid (RNA) which is in turn translated into proteins 

which carry out specific functions throughout the cell (24).  While this is, of course, an 

incredibly simplified version of what goes on in the cell which ignores some concepts 

that might be considered fundamental – epigenetics and DNA silencing, for example (25–

27) – it has, nonetheless, been a powerful framework for conceptualizing a vast swathe of 

cellular behavior and holds true for all known organisms.  While the Central Dogma is 

presented as a linear progression from stored data (DNA) to coded message (RNA) to 

signal effect (protein), it is in fact, quite frequently, a circular process (28–32).  The 

primary function of a large class of proteins, known as transcription factors, is the 
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regulation of DNA transcription, increasing or decreasing that rate at which specific 

genes (segments which code for a protein) are transcribed into RNA (33, 33, 34). 

These regulatory interactions are still far from well understood.  Partly, this is 

because the genetic engineering field is relatively young, so technology, techniques, and 

best practices for exploring intercellular processes are still in need of refinement.  

Possibly more confounding, however, is the vast interconnectivity present in natural 

biological systems (35–37).  It may come as no surprise that this is the case, as cells have 

evolved to made decisions by synthesizing information from a wide range of sources.  

For understanding the fundamentals of gene regulation; however, this interconnectivity 

can be a strong barrier to understanding, as induced changes to a natural system may have 

many and far-reaching unintended off-target effects (38, 39). 

It is here that the field of synthetic biology shines (40).  Due to the universality (to 

our knowledge) of the DNA code and the Central Dogma, it is possible to transplant 

genes from one organism into another to which they are non-native (41, 42).  In this new 

host, most of the regulatory interconnectivity is stripped away, allowing researchers to 

study gene regulation in a less confounded form.  Multiple genes can be inserted into a 

new host organism in this way, with engineered interactions between them based on gene 

and promoter selection, meaning that gene networks can be designed and built from the 

ground-up (43–46).  This bottom-up approach to genetics serves as a strong compliment 

to the top-down approach which has been the foundation of most biological science until 

relatively recently.  Synthetic biology, in taking an engineering approach to constructing 

gene networks, opens a new set of questions to be answered and allows biological 

engineers to employ a build-to-understand methodology (41). 
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In addressing biological phenomena from an engineering perspective, synthetic 

biology employs the most powerful tool in the engineering toolbox – math – with the 

intent of transitioning from a qualitative, descriptive understanding of biological 

processes to a quantitative, predictive one (47).  To do so, a solid grasp of the underlying 

biology and of mathematical methods by which to understand the biology are required.  

There are unique challenges associated with biological systems that differentiate it from 

many other engineering fields.  Primary among these are the ideas of stochasticity and 

decision making (48, 49).  While both concepts are present in other engineering fields, 

they are at the forefront of biological engineering and warrant special consideration. 

Stochasticity refers to the randomness inherent to biological processes (50).  The 

intracellular environment is packed with all manner of proteins, molecules, and atoms 

jostling around semi-randomly, following roughly Brownian kinetics (51).  Nearly every 

aspect of cellular action is dependent on these random interactions.  While randomness 

can be considered in deterministic terms when viewed on a large enough scale, the scale 

at which cells operate often makes this mass-action assumption inappropriate.  Therefore, 

it is up to biological engineers to understand the role that stochasticity plays in intra- and 

inter-cellular interactions (52–54). 

Relatedly, the concept of decision making arises frequently when discussing 

cellular systems (49, 50).  While this topic also arises in other engineering fields, such as 

computer or software engineering, the biological mechanisms and inherent stochasticity 

makes conceptualization more difficult (55).  Unlike computers which work with a 

discrete, binary system to perform logic operations, biology is – often frustratingly – 

analog (56, 57).  Therefore, in addition to the question of whether a cellular system can 
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perform an operation, this introduces the idea of the robustness of that decision-making 

behavior (58–61). 

Together, these challenges provide a unique landscape for biological engineering 

and synthetic biology to occupy.  In addition to attempts to understand fundamental 

biological interaction from a ground-up perspective, unique challenges of stochasticity 

and decision robustness must be simultaneously engaged.  In this dissertation, I attempt 

to do just that. 

 

1.2 IN THIS DISSERTATION 

Chapter 2, “Control of Synthetic Gene Networks and its Applications,” delves into the 

relationship between biology and mathematics.  One of the underlying assumptions of 

synthetic biology is that biological processes can be engineered in a controllable way. 

Here we discuss this assumption as it relates to synthetic gene regulatory networks 

(GRNs). I first cover the theoretical basis of GRN control, then address three major areas 

in which control has been leveraged: engineering and analysis of network stability, 

temporal dynamics, and spatial aspects. These areas lay a strong foundation for further 

expansion of control in synthetic GRNs and pave the way for future work synthesizing 

these disparate concepts. 

Chapter 3, “Modeling Gene Networks to Understand Multistability,” covers some 

more specific ways that mathematics can be leveraged to understand biology.  Stem cells 

are unique in their ability to differentiate into diverse phenotypes capable of displaying 

radically different, yet stable gene expression profiles.  Understanding this multistable 

behavior is key to rationally influencing stem cell differentiation for both research and 
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therapeutic purposes.  To this end, mathematical paradigms have been adopted to 

simulate and explain the dynamics of complex gene networks.  In this chapter, I introduce 

strategies for building deterministic and stochastic mathematical models of gene 

expression and demonstrate how analysis of these models can benefit our understanding 

of complex observed behaviors. Developing a mathematical understanding of biological 

processes is of utmost importance in understanding and controlling cellular behavior. 

Chapter 4, “Fluorescent Guide RNAs Facilitate Development of Layered Pol II 

Driven CRISPR Circuits,” presents original research on utilizing the clustered regularly 

interspaced short palindromic repeat (CRISPR) system for building gene networks.  

Efficient CRISPR guide RNA (gRNA) expression from RNA Polymerase II (Pol II) 

promoters will aid in construction of complex CRISPR-based synthetic gene networks. 

Yet, we require tools to properly visualize gRNA directly to quantitatively study the 

corresponding network behavior. To address this need, I employed a fluorescent gRNA 

(fgRNA) to visualize synthetic CRISPR network dynamics without affecting gRNA 

functionality.  I show that studying gRNA dynamics directly enables circuit modification 

and improvement of network function in Pol II-driven CRISPR circuits.  This approach 

generates information necessary for optimizing the overall function of these networks and 

provides insight into the hurdles remaining in Pol II-regulated gRNA expression. 

Chapter 5, “Intracellular Noise Level Determines Ratio Control Strategy, Speed, 

and Accuracy,” presents original research on inducing cellular populations to partially 

differentiate into reliable fractions.  Robust and precise ratio control of heterogeneous 

phenotypes within an isogenic population is a common phenomenon, especially in the 

development and differentiation of large number of cells such as bacteria, sensory 
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receptors, and blood cells. However, the mechanisms of such ratio control are poorly 

understood. Here, I employ experimental and mathematical techniques to understand the 

combined effects of signal induction and gene expression stochasticity on phenotypic 

multimodality.  I identify two methods for generating phenotypic ratios from an initially 

homogenous population, suitable roughly to high-noise and low-noise intracellular 

environments, and I show that both can be used to generate precise fractional 

differentiation.  In noisy gene expression contexts, such as those found in bacteria, 

induction within the circuit’s bistable region is enough to cause noise-induced bimodality 

within a feasible timeframe.  However, in less noisy contexts, such as tightly controlled 

eukaryotic systems, spontaneous state transitions are rare and hence bimodality needs to 

be induced with a controlled pulse of induction that falls outside the bistable region.  

Finally, I show that noise levels and system response time impose limitations on both 

ratio control methods, and I develop a framework for determining the best method for a 

given parameter set. 

Chapter 6, “The Future of Synthetic Biology,” explores issues that are still 

outstanding in the synthetic biology field and offers paths forward for further research. 
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2 CONTROL OF SYNTHETIC GENE NETWORKS AND ITS APPLICATIONS 

 

This chapter was prepared in collaboration with Ri-Qi Su, Ph.D. and Xiao Wang, Ph.D. 

for publication in Quantitative Biology (47). 

 

2.1 INTRODUCTION 

Synthetic biology, since its flourishing in the early 2000s, has undergone rapid 

advancement. The is due in a large part to the promise that the field holds for such 

diverse applications as bioenergy (62–64), personalized medicine and therapeutics (65), 

bioremediation (66, 67), and biopharmaceuticals (68). Paired with advancements in DNA 

synthesis (69–71) and sequencing (72), the field has grown exponentially in the last 15 

years. This growth has seen the development of new tools, such as the implementation of 

the Cas9 protein for gene editing and transcriptional regulation (73–75), to further plumb 

the depths of our biological understanding and the applications thereof. In particular, 

advancements in synthetic biology have allowed the study of gene regulatory networks 

(GRNs) in a simplified setting amenable for precise experimental controls (76, 77). 

Using a build-to-understand, bottom-up approach (41, 78, 79), synthetic biologists 

can strip away much of the complexity of highly interconnected natural biological 

systems while studying gene regulation within an in vivo (78, 79) or in vitro system (80, 

81). Synthetic networks which function orthogonally to natural networks give researchers 

more control over their behavior and avoid the confounding effects of the many unknown 

genetic interactions endemic to natural systems (18, 51). These functional synthetic 

networks have been used to demonstrate many fundamental biological processes such as 
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multiple stabilities (79, 82, 83), complex temporal behavior (43, 77, 78, 84), and rich 

spatial patterning (85–87). Many of these small functional networks, often referred to as 

motifs, utilize positive or negative feedback topologies. For example, bistable GRNs can 

be constructed either through the use of two mutually inhibitory components (79) or with 

self-activating components (83). From these small functional networks, great efforts have 

been made to build up, combining multiple motifs into larger and more complex 

networks (44, 45, 88, 89). In addition to realizing immediate applications for complex 

synthetic networks, engineered circuits also shed additional light on the underlying 

mechanisms of biological regulation and control (51, 82). For example, by constructing a 

symmetrical circuit expressing two different fluorescent proteins, Elowitz et al 

demonstrated the existence of intrinsic and extrinsic stochasticity within a cell (51). 

While Wu et al illustrated impacts of such stochasticity on cell fate determination using a 

synthetic toggle switch in yeast (82).  

Control of GRNs has been a constant research focus and is of paramount 

importance to continued advancement in synthetic biology. In its most abstract sense, 

GRN control refers to methods by which researchers can engineer, modulate, and predict 

robust network behavior. In a physical sense, this entails proper selection of internal and 

external factors which influence network behavior. Internal factors function as a closed 

feedback control loop within the cell and include the selection of cell type, GRN 

topology and motifs, and specific components comprising the GRN: promoters driving 

individual gene’s expression (69, 84), transcription factors modulating expression of 

downstream genes (77, 79), localization signals or synthetic protein domains affecting 

protein interactions (18, 85, 86), etc. Once put into the cell, many of these components do 
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not leave researchers with a direct means of interaction. External factors form an open 

control loop and are therefore easier to control throughout the course of an experiment. 

These include factors such as growth media composition (69, 82, 90), ambient 

temperature (77, 91, 92), light exposure and wavelength (93, 94), magnetic fields (91, 

95), or small molecule inducers which either bind surface receptors or permeate the cell 

to cause changes in protein behavior (18, 69, 77, 79). A crucial third component in GRN 

control is the theoretical framework that describes the predictability of the system and 

allows synthetic biologists to compose networks toward a desired outcome, rationally 

select components to achieve that outcome, and predict the parameters under which that 

desired outcome is attainable (41, 96, 97). 

In the following sections, we first examine in close detail the theoretical basis of 

GRN control. We then use this framework to inform discussion on three aspects of GRN 

behavior: multi-stability, temporal dynamics, and spatial relations. Each of these areas is 

further explored with discussion of how the intrinsic and extrinsic biological control 

factors relate to the theoretical framework, problems faced in realizing these behaviors, 

and examples and applications of the 

behavior to broader aims. 

 

2.2 THEORIES AND COMPUTATION OF CONTROL 

The mathematical foundation of control theory has been well developed for both linear 

and nonlinear dynamical systems (98, 99). Its application to many biological fields, 

especially systems biology, has produced progress in both designing experiments and 

understanding results (100, 101). In synthetic biology, with its bottom-up design mindset, 
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the functional motifs are well isolated from the cellular environment and thus provide 

better test platforms for control theories in biology. However, there are several challenges 

remaining in mathematically modeling and predicting gene network functions: genetic 

networks are often highly nonlinear, cellular environments and internal kinetics are 

stochastic, and natural genetic networks can have high dimensionality with unknown 

interconnectivity between genes. 

Several approaches have been taken in addressing GRN nonlinearity.  Ordinary 

differential equations (ODEs) are frequently used to model deterministic systems with the 

aim of obtaining a sketch of the underlying interactions and the effect of varying 

parameters within these systems (79, 82). The regulation of gene expression has often 

been described in the form of nonlinear Hill equations (102). Many theoretical 

approaches for analyzing nonlinear GRNs (96, 103, 104) have borrowed from the large 

amount of work that has been developed around linear control theory (98, 99, 105). These 

approaches have been adapted into several network simplification methodologies. By 

linearizing nonlinear Hill functions around an equilibrium point, Shin et al studied the 

transfer function for simple GRNs and reproduced experimental results in continuous 

models (96). Liu et al proposed a linear control theory for large networked systems (103) 

and used it to analyze minimum control inputs in metabolic networks (104). 

However, most of these theoretical approaches still cannot be directly applied to 

model and predict complex behaviors of GRNs, and an ad hoc model based on ODEs is 

still required for each specific system. After developing a system of ODEs to describe a 

GRN, bifurcation analysis is often employed to investigate how the network's 
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deterministic behaviors change with system parameters. This can reveal parameter 

regions of multistability and phase transitions (18, 82, 105, 106), as it is shown in Figure 

2-1A. This is important for investigating networks which can have multiple states, such 

as toggle switches which can switch states in response to environmental stimuli (43, 79), 

and it can also be applied to oscillatory systems (77). This in silico method can be paired 

with hysteresis analysis, an experimental design which is used to probe dynamical 

systems without knowing their detailed dynamical form or parameters (79, 107, 108). 

Hysteresis analysis involves performing experiments to investigate the parameter space 

and its effect on system stability. It is often paired iteratively with bifurcation analysis to 

further develop the model to more accurately describe the system in question (79). Figure 

2-1A demonstrates how the bistable region can be identified by hysteresis analysis 

without knowing exact system parameters. 

Figure 2-1 Gene network multistability analysis 

(A) Bifurcation diagram of the toggle switch controlled by the concentration of ATc (43) and 

illustration of hysteresis analysis. The blue lines represent the SSSs under a range of ATc 

concentrations, while the red line represents the unstable steady states. The black crosses are the 

predicted SSSs for the cell which is first grown in media lacking ATc then transferred to media with 

variable ATc concentrations, while the red circles represent SSSs for cells initially grown in high ATc 

concentrations (250 ng/ml). By performing hysteresis analysis, the bistable region can be identified 

without knowing the system parameters, denoted as the area between the two dash lines. (B) Temporal 

trajectories simulated using Gillespie algorithm for experiments in (82). The black trajectories were 

initiated directly on the separatrix, while the red and green ones were not. The inserted panel shows the 

resultant histogram for trajectories which began on the separatrix and subsequently differentiated into 

two populations. (C) A pseudo potential landscape for systems with four SSSs, as shown in (41). SSSs 

are represented by local minima within the parameter space, while the stability of any given state is 

represented by the depth of the energy well relative to its neighbors. 
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ODEs and other deterministic methods have been invaluable in many GRN 

analysis applications; however, the strict determinism of these equations limits their 

application to cellular behaviors influenced by stochasticity (52). Stochastic simulation 

tools, including the stochastic differential equation (SDE), cellular automata (CA), 

potential landscape (59), and Gillespie algorithm (GA) (109) are used to simulate and 

study inherently noisy processes within the cell (41, 51, 59). Deterministic models fail in 

situations in which there are several potential outcomes from a common set of parameters 

and initial conditions, such as the stochastic differentiation from an undetermined state to 

one of two SSSs shown in Figure 2-1B. When the trajectories are initiated from the 

separatrix dividing the two states' energy wells (82), they differentiate into one or the 

other population as a result of gene expression noise. The resulting distribution can be 

predicted using Gillespie algorithm. When the system's gene expression is perturbed by 

external stimuli, the overall expression distribution amongst various attractor basins can 

be quantified using SDEs or GA. Furthermore, the pseudo potential landscape can be 

portrayed from the stationary distribution, which provides better characterization of 

system stabilities and state regulation behaviors for the GRN (41, 82), as shown in Figure 

2-1C. The positions together with the stabilities of all SSSs of a system can be illustrated 

by the pseudo landscape. PDEs and GA can describe the stochastic interactions between 

different cells and simulate how the cell population is distributed in space (59, 87, 110). 

In their study of synthetic ecosystems, Song et al modeled the spatio-temporal dynamics 

of two synthetic Escherichia coli populations using PDEs (111, 112). On an intracellular 

level, GA (or the related Monte Carlo simulation) is often used to simulate stochastic 

fluctuations in transcriptional regulator numbers (60, 82). These types of simulations can 
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be used to determine likelihood of state transitions under varying amounts of noise (106) 

or to thoroughly analyze the GRNs potential landscape under a single noise condition 

(59). 

Though synthetic networks are, thus far, limited in size, understanding the 

regulation of cell differentiation and state transitions within a natural system requires 

computational tools capable of dealing with large dimensionality (35). On one hand, 

researchers have tried to abstract the large scale GRNs into different motifs with varying 

functions (113).  They then tried to understand the relationship between the motifs' 

structure and cellular behavior (78, 79, 114). On the other hand, PDEs and CA have also 

been applied to model gene expression distribution over time of high dimensional 

systems. For example, Wang et al proposed a pseudo potential landscape based on the 

equilibrium distribution in state space of gene expression levels, and solved the 

equilibrium distribution using a PDE model (59). CA models have been utilized to 

simulate complex stochastic interactions between cells. These are used frequently in 

tumor modeling, where individual cell behavior within a group is highly dependent on its 

immediate neighbors and environment rather than relatively simple chemical gradients 

(115). The primary drawback of CA models is that they tend to consume large 

computational resources (87).  

Studying control problems in GRNs will generally require the application of 

multiple theoretical tools at the same time. One prominent example which has important 

ramifications in many areas is how to control transitions between different stable steady 

states (SSSs) in gene expression space. This is important in an area like cancer research, 

since cancer is frequently characterized as cells which have fallen into an unhealthy but 
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stable gene expression state (116). With better control strategies, it may be possible to 

transition these genes’ expression back to a healthy state via a novel route: a different 

tactic from what current therapies provide. To this end, Wang et al used bifurcation 

analysis to identify possible transitions paths between different SSSs in multistable 

GRNs, and then suggested to model the GRNs as a network of attractors to reduce its 

dimensionality. Based on hysteresis analysis, they proposed transient and sequential 

control signals to navigate the state transition from an arbitrary cancer attractor to a 

health attractor (41). Separately, work has been done on minimizing the effects of failed 

nodes within a larger network and on determining the best methods to limit large-scale 

cascading effects if single nodes display anomalous behavior (117). Finally, ongoing 

progress has been made in developing frameworks for understanding and controlling 

genetic regulation and metabolic flux in complex biological networks (104). 

 

2.3 MULTISTABILITY OF GRNS 

Multistable systems can hold two or more stable gene expression profiles, SSS, with the 

same set of parameters. This ubiquitous property of natural systems allows isogenic 

populations to express a range of behaviors in response to their needs and environment 

(118). In single-celled organisms, this division of labor can lead to increased population 

fitness. In bacteria, for example, often a sub-population can enter a competent state in 

which the uptake of foreign DNA is increased, allowing the bacteria to increase genetic 

diversity (119). Similarly, some bacteria within a population may enter a state called 

persistence, in which the cell becomes dormant (11). If a catastrophic event, such as 

contact with an antibiotic, wipes out the colony, these persistent cells can remain 
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unaffected, thereby ensuring the colony’s survival (120). In multi-cellular organisms, the 

role of multistability is primarily to allow the development of a multitude of tissues from 

a single stem state (36). 

Topologically, there are two general ways for a system to achieve multiple SSSs: 

mutual inhibition and autoactivation. In a mutually inhibitive GRN, the gene or genes 

associated with one state actively repress the expression of those associated with one or 

more competing genes and vice versa (79, 121), as seen in Figure 2-2A. Synthetic mutual 

inhibition circuits have been demonstrated in multiple organisms (79, 82, 122), and 

examples of similar topologies are rife in nature (118). A system can also express 

multistable behavior through autoactivation (123). As illustrated in Figure 2-2B, a single 

gene can keep itself activated if its expression has passed a certain threshold; below this 

Figure 2-2 Common gene network motifs 

(A) Schematic diagram and simplified schematic for the mutual inhibition toggle (79). (B) Another 

bistable circuit of autoactivation (121). (C) Schematic diagram for two representative logic gates, the 

XOR and AND gates reviewed by Singh et al (122). 
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threshold, however, the gene remains inactive (124). Self-activating motifs like this tend 

to be noisy on their own, but they can also play a stabilizing role to the expression of 

mutual inhibition GRNs (90). From these basic underpinnings, several control problems 

have come to define the study of multistability. 

First, researchers have sought to better understand and control the proportionality 

of differentiation into various SSSs. Wu et al, studied the effect of both internal and 

external factors on differentiation into one of two states in a synthetic yeast network (82). 

Using a novel design strategy, researchers positioned the cells’ expression near the 

separatrix dividing the energy wells of mutually inhibitive red-expressing or green-

expressing states. The stochastic process of gene expression then caused the cells to 

gravitate towards either the red or the green state. By changing the promoters driving the 

antagonizing repressors, and by changing inducer concentrations to alter the efficiency of 

those repressors, the percentage of cells falling into each state can be tuned. Both 

methods of controlling cell fate determination show how changing the underlying energy 

landscape of a multistable system can affect the behavior of the system itself. Ishimatsu 

et al built on this foundation, using gene overexpression to force a bistable network into 

temporary monostability (90). By tuning overexpression, the single steady state could be 

adjusted in state-space, and this adjusted location became the new initial point from 

which the cells would differentiate upon cessation of overexpression. By placing the cell 

expression near the system’s separatrix, a tuning of the population fraction in each state 

was observed, similar to that demonstrated by Wu et al (82). 

This leads to a second area of study: how to control the transitions between states 

in multistable systems. Bifurcation analysis is a commonly employed method for 
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investigating the parameter space in which a system can maintain multistability. On 

either side of the multistable region there is a bifurcation point: a parameter value at 

which one of the SSSs disappears or emerges. Using transient chemical or thermal 

induction, Gardner et al showed that bistable networks could be switched between states 

by temporarily forcing them out of the bistable region (79). Ellis et al further 

demonstrated that the transition time between states could be both predicted 

mathematically and tuned through selection of different promoters from a synthetic 

library in order to temporally control the flocculation of yeast (43). Unlike purely 

stochastic cell fate determination process used to tune population percentages, these 

experiments showed that full populations’ expression could be controlled essentially 

deterministically with a high degree of accuracy, accounting for both expression levels 

and transition times. 

Related to both of these areas of study is the control of a system's multistable 

region itself. Multistability generally occurs only within a small range of parameter and 

induction values. To engineer robust networks, expansion of multistable regions is 

crucial. This is partially determined by the network topology and relies on proper 

selection of network components. Using a library of synthetic promoters, it has been 

shown that the same topology can yield bistable regions responding to low, mid, or high 

levels of induction (82). Additionally, the regulatory proteins used have a profound effect 

on hysteresis behaviors. In an autoactivation network, Wu et al demonstrated that 

different pairs of activator and chemical inducers produced different bistable regions 

(18). Interestingly, it was also demonstrated that pairing poorly interacting 
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inducer/activator pairs – due to quorum sensing (QS) crosstalk in this instance – yielded 

an expanded toolbox of parts with a range of bistable regions to choose from. 

As the physical construction of multistable networks has expanded, so too has the 

investigation of the theoretical underpinnings of stability. A large amount of in silico 

work has been dedicated to understanding the topological basis of multistability. For 

example, Yao et al identified a minimal circuit to generate bistability from a simplified 

Rb-E2F network which regulates the initiation of DNA replication (125). Faucon et al 

looked for instances of possible ways in which a three-gene network could exhibit 

multistability (106).  Additional work has been done to demonstrate the role that small 

motifs play in enhancing network stability (126). 

Studies such as this focus on both how to attain multistability as well as on 

quantifying how stable the discovered multistable states are. Quantification of the 

stability of an energy well is still an evolving field, and stochastic simulations are often 

applied to determine how likely a cell is to jump out of a given SSS due to inherent noise.  

Finally, there are also stationary synthetic circuits that are not multistable but 

have multiple outputs and can be used to control and integrate environmental and cellular 

signals. By layering multiple feedback systems, researchers have created digital logic 

gates, as reviewed in (88, 89, 127). Researchers have demonstrated the ability to engineer 

AND, OR, NOR, XOR, NOT, and NAND gates in multiple organisms (127–130).  Two 

examples of such logic gates are shown in Figure 2-2C. However, with increasing 

complexity comes increasing design constraints. Synthesis of two or more inputs can 

require engineering of new synthetic promoters capable of interacting with multiple 

proteins, and layered circuits require that upstream gene expression be clear enough that 
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the signal translates into downstream expression. Regulator crosstalk can become a 

problem, as more parts are added to a circuit. Wu et al designed an orthogonal AND gate 

in Escherichia coli and studied the effects of regulators' crosstalk in autoactivated 

quorum sensing circuits (18). The effect of integrating multiple module layers can be 

even more unpredictable, so additional design principles from engineering of digital 

control systems, such as timescale separation, have been introduced to overcome these 

obstacles. Mishra et al designed a genetic device called the 'load driver' to mitigate the 

interference between different genetic modules in Saccharomyces cerevisiae (131, 132). 

 

2.4 TEMPORAL DYNAMICS OF GRNS 

While gene network stability is important for developmental processes, cell 

differentiation, and population fitness, dynamic temporal behavior is equally relevant to 

sustained biological processes. For instance, many cellular processes are informed by the 

oscillatory dynamics of the cell cycle (133) or by the daily circadian rhythm (134). 

Additionally, certain sensory inputs are subject to the phenomenon of adaptation, in 

which a stimulatory signal has a reduced effect if introduced repeatedly within a short 

period (135). Relatedly, a large amount of intercellular signaling is due to temporal bursts 

of activity, as seen in neuronal spiking (136) and the subsequent release of regulatory 

neurotransmitters (137). To be able to engineer biological processes effectively, 

researchers need to be able to control the time scales together with the stabilities of these 

types of behaviors by utilizing internal and external control methods. 

Oscillators were some of the earliest dynamic synthetic GRNs (78). Most 

instances of oscillation have been shown to arise from two primary topologies: a three-
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node negative feedback loop known as the represillator (78, 84) and a two-node network 

comprised of one autoactivator and one repressor (77) (see Figure 2-3A and B).  In both 

topologies, the oscillator relies on two kinetic elements: negative feedback and a delay 

which grants enough time for one gene to turn on before being turned off by an 

antagonizing gene. To this end, control of oscillatory GRNs relies on tuning the negative 

feedback loop and/or the regulation duration, thus selection of GRN components and 

external regulators which alter degradation, production, and regulation kinetics play an 

important role in producing the desired oscillatory behavior. Much research has been 

done to modulate the frequency, stability, and synchronization of oscillations within a 

large population (77, 78, 84, 138). 

Figure 2-3 Oscillatory gene networks 

(A) Simplified illustration and schematic diagram of the represillator from (78) and (84). The three 

nodes A, B and C jointly form a negative feedback loop. (B) Simplified illustration and schematic 

diagram of the two-node oscillatory network (77) with autoactivation on node A. The negative feedback 

strength can be controlled by the concentration of IPTG which regulates the repression strength from 

node B to A. 
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The negative feedback is the most critical component for generating oscillations.  

Since the kinetics associated with feedback loops can be described by nonlinear ODE 

functions, possible approaches to control the oscillatory behavior can be analyzed and 

predicted using bifurcation analysis across a range of parameters. Changes in parameters 

can be caused by altering production efficiency of network genes, regulation strength 

between genes, concentration of inducers, and environmental conditions. As with 

multistability, bifurcation analysis can be utilized in conjunction with oscillatory network 

models to determine parameter ranges at which one is likely to observe oscillation, and it 

can give insight into the range and frequency of the expected fluctuations (139, 140). For 

examples, Stricker et al introduced autoactivation into the negative feedback circuit 

which enhanced the production activities in node A (See Figure 2-3B). Also, by changing 

the concentration of IPTG, which inhibited the repression of node A by node B, the 

regulation of negative feedback was be modulated, allowing further control of the 

oscillatory periods. It was also shown that the oscillatory period decreased when the 

temperature was increased due to a decrease in cell doubling time (77). Additionally, 

together with the frequency, the amplitude of oscillations can also be controlled with 

relative plasmid dosage changes in mammalian cells (138). The negative feedback loop 

can be extended to intercellular processes with the help of QS genes, which produce 

diffusible signaling molecules, and further achieve synchronization within a population.  

This sort of synchronization behavior has been modeled synthetically in bacteria (77), 

and it is a first step toward engineering large scale oscillation synchronization, an 

important aspect of multicellular life.  
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Time delay within the feedback loop is another critical element that generates 

oscillatory behavior in GRNs. A sufficiently long delay has been numerically 

demonstrated to be one of the required conditions to generate oscillations from a single 

autoinhibitory gene (141). The time delay in the feedback loop arises from finite 

interactions and production time in stochastic gene expression and can be highly noisy, so 

the effect of delays needs to be analyzed via stochastic simulation tools. There are many 

ways to extend or shorten the delay to further control the period and robustness of 

oscillation. In their pioneering work of synthetic oscillatory GRNs, Elowitz et al 

synthesized three cascading repressors into a represillator (78) and extended the delay 

duration by introduction of additional cascading processes. Genomic structure can also 

affect the delay; Swinburne et al engineered oscillatory GRNs in animal cells and found 

that longer introns, which require longer production time, can increase the transcriptional 

delays, thus generating longer expression pulses (142). The delay duration will also affect 

the stability of resulting oscillations. Potvin et al reduced the delay in the original 

represillator by choosing low copy plasmids and thereby generated more stable 

oscillations while maintaining a minimal topology (84). 

Another biologically relevant temporal behavior is that of spiking. This can be 

seen in neural signaling or in the response to certain sensory inputs, in which an external 

stimulus causes a short burst of activity before the system returns to a resting state. 

Adaptation is a dynamic behavior in which an extracellular signal causes the temporary 

excitation of a GRN which eventually returns to its basal level despite the signal’s 

continuation (114). Ma et al exhaustively identified all possible three node GRNs 

topologies that can generate adaptation signals, and they found that the precision and 
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sensitivity of adaptation can be independently modulated by tuning the system's 

parameters. Unlike oscillations, adaptation does not rely on a bifurcation for the desired 

behavior to appear; rather, it is a result of temporary perturbation of an otherwise stable 

network. Alternatively, spiking signals of neural systems exist in networks which operate 

close to a bifurcation point, so small environmental cues can push the cell into a region of 

either random or periodic spiking, depending on the network topology (143).  

 

2.5 SPATIAL ASPECTS OF GRNS 

In addition to the multistability and temporal aspects of GRNs, another active area of 

synthetic biology research is the exploration of the spatial properties of complex 

networks. Organization of individual cells into population wide patterns is a common 

behavior found throughout nature (85, 144) and biomedical applications (86, 145). There 

are many open questions in controlling GRN regulated spatial patterns. In lower 

organisms, there have been two primary foci in exploring GRN spatial properties: pattern 

formation and population density control (144). Besides their biological significance, 

synthetic GRNs in bacteria also serve as platforms to study how the cells communicate 

with each other and respond to the environmental signals. In higher organisms, the 

primary thrust in studying spatial patterning has been to better understand tissue and 

organ development (145). Understanding how this emergent behavior can be engineered 

and controlled can lead to a better understanding of developmental processes, cellular 

signaling and signal processing paradigms, and construction of complex behavior from 

simple components. 
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Typically, synthetic GRN directed pattern formation requires three basic 

functional modules: a mechanism to send signals, a way to receive extracellular signals, 

and cellular actions responding to signals. Since spatial distribution and patterning is a 

population-wide phenomenon, intercellular signaling is required. It has been 

demonstrated by using QS genetic components (144) that bacterial populations can be 

engineered to form patterns in response to extracellular concentrations of acyl-

homoserine lactones (AHLs), a class of signaling molecules used by QS (85). Once 

received, the signal is then processed into a stable output phenotype or behavior, typically 

through a negative feedback topology. When the signal is being processed by the 

synthetic GRNs the cells can respond by utilizing one or more mechanisms of cell 

movement (86), proliferation, and/or death (146, 147) in order to form the intended 

patterns. 

The control schemes used in cell-cell communication involve how the specific 

intercellular regulator molecules are added to the system (external addition or internally 

produced by the GRN) (85). By controlling the local concentrations AHL, Basu et al used 

programmed synthetic GRNs to form different pattern shapes. They employed co-

cultures of engineered sender and receiver cells. The sender cells were designed to 

synthesize AHL under user defined gradients, while the receiver cells were engineered to 

operate similar to a bandpass filter. By placing sender cells in different configurations, 

through their fluorescent outputs the engineered cells jointly expressed different shapes 

such as a bullseye, ellipse, heart, and clover.  Important control variables within the 

network topology and genetic components used are also widely studied. There are 
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currently two types of underlying GRNs that can sense environmental signals. One type 

of GRNs senses morphogen gradients and expresses weaker with increasing 

distance from the region of highest concentration (85). Conversely, Payne et al 

developed a novel pattern formation schedule in E. Coli equipped with intracellular 

autoactivation and intercellular negative feedback motifs (87). By employing this 

mechanism, the pattern scale could self-organize into intended patterns without reliance 

on a morphogen gradient. The pattern could also be controlled by biological processes. 

Payne et al discussed that the metabolic burden caused by the activated synthetic circuit 

could actually enhance the pattern robustness (87). Liu et al demonstrated control of the 

mobility of cells and further achieved periodic striped patterns (86). They synthesized a 

LuxR/LuxI module to synthesize and excrete AHL when the cell density was high, which 

in turn further activated expression of LuxR. Additionally, the LuxR-AHL complex 

drove the expression of lambda repressor and further regulated CheZ expression, so as to 

reduce the mobility of the E. Coli.  

A similar application of pattern formation is to control population density. When 

bacteria are used for bioproduction applications, it may be beneficial to halt cellular 

growth in order to force the population to focus on producing the molecule of interest 

(148). While pattern formation work has primarily taken place in bacteria plated in a dish, 

density control work seeks to understand and control the requirements for adjusting 

growth behavior in liquid culture. Similar topologies have been employed: cells were 

modified with LuxR/LuxI QS together with CcdA/CcdB toxin/antitoxin systems to study 

population density and individual fitness (148). QS can also be controlled by changing 

the specific QS regulators employed, taking into account any crosstalk which might occur 
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between QS components.  Wu et al demonstrated the important role that crosstalk 

between signaling molecules and transcriptional regulators (signal crosstalk) or between 

regulators and promoters (promoter crosstalk), as well as the overall expression intensity 

of QS components as determined by each component’s promoter, can play in a synthetic 

system (18). They also found that such regulation and crosstalk may induce novel host-

circuit interaction in the QS system of LuxR/LuxI and LasR/LasI and can be engineered 

to generate varying population dynamics. 

 

2.6 CONCLUSION 

Control of GRNs in synthetic biology is a quickly expanding field covering all types of 

network behavior.  Here we have provided examples of pioneering work on four key 

aspects of GRN control: its theoretical basis, stability analysis, temporal dynamics, and 

spatial distributions.  Each aspect holds promise on its own and can be expanded into 

more complex, robust, and diverse applications.  Beyond this, however, synthesis of these 

aspects of GRN control also promises powerful new tools for understanding and 

interacting with developmental processes, which innately possess multistable, temporal, 

and spatial properties. 
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3 MODELING GENE NETWORKS TO UNDERSTAND MULTISTABILITY 

 

This chapter was prepared in collaboration with Xiao Wang, Ph.D. and has been 

submitted to Spring Publishing for inclusion as a chapter in upcoming instructional book. 

 

3.1 INTRODUCTION 

Multistability is a mathematical property describing a system capable of having two or 

more mutually exclusive states. These dynamical states could provide stem cells a 

portfolio of decision options that allow cells carrying a homogenous genetic code to 

express phenotypic variety (50). Through differential expression of genes in response to 

environmental factors, cells lock into various expression patterns, upregulating some 

genes while downregulating others.  Network topology shapes the ways that these genes’ 

expression influences one another, either reinforcing or inhibiting each other or 

themselves.  These gene interactions, usually in the form of transcriptional regulation, 

can be modeled mathematically, and the information gained from the models can be used 

to more thoroughly understand the behaviors and limits of the network (41, 47).  The 

utility of modeling for understanding complex gene networks has been demonstrated in a 

variety of contexts: understanding the link between external stimuli and gene expression 

(43), exploration of gene topologies capable of specific behavior (106, 114), and 

development of a functional multistable synthetic gene networks (79, 82, 149). 

In this chapter, we cover the basics of constructing mathematical models using ordinary 

differential equations (ODEs), discuss ways to adapt them to simulate noisy biological 

environments, and discuss implementation for two common applications. 
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3.2 MATERIALS 

The work we discuss is purely in silico and requires a personal computer, preferably one 

with a fast processor, and a programming environment. We prefer MATLAB because of 

its usability and host of built-in functions.  MATLAB also can be used with the 

MATCONT addon, which adds additional analysis options for solving systems of ODEs.  

With a knowledgeable user, however, any programming environment with continuation 

software can be appropriate.  Additionally, for some computationally intensive processes, 

access to a distributed computing center is necessary.  This will require some knowledge 

of parallelization that is beyond the scope of this chapter. 

 

3.3 METHODS 

3.3.1 Applications 

Before getting into details on how to build and run gene network models, we will discuss 

two main applications of mathematical modeling to stem cell behavior.  While these are 

obviously not the only contexts in which modeling can be leveraged, in some ways they 

are fundamental for understanding stem cell behavior.  The defining feature of stem cells 

are their ability to differentiate into various lineages which hold a diverse range of protein 

expression patterns, so we will focus here on two applications centered on understanding 

multistability. 

In the first, the topology of the network is known, and it is a matter of exploring 

the range of parameters and conditions under which the system behaves in a desired 

manner.  This will be referred to as parameterizing a network.  A detailed example of this 
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type of network analysis can be found in the work of Wu, et al (82).  In the case of stem 

cells, this means exploring the conditions under which the network exhibits multistability 

and/or will preferentially differentiate to one state over another.  In the second 

application, the topology itself is unknown or not fully known, so one must interrogate a 

set of potential networks to discover those that could exhibit multistability. We refer to 

this as exploring network topologies.  One can look at the work of Faucon, et al. for a 

good example of this type of analysis (106).  There is a lot of commonality in the 

methods employed in both applications, so we will look at both simultaneously. 

As an important note before beginning, biological networks are highly 

interconnected and complex systems, making them difficult to study directly due to the 

great number of confounding factors.  Because of this, simplification methods are often 

used to reduce network complexity.  Please see Section 3.4.1 (Reducing network 

complexity) for a more thorough discussion of this topic. 

 

3.3.2 Formulating a system of ODEs 

Gene network models typically begin as a system of ordinary differential equations 

(ODEs), each equation describing a single sub-cellular population: a specific protein, 

mRNA, metabolite, etc.  While each individual member of these populations may exhibit 

unique, semi-random behavior, the population at large will behave relatively 

deterministically.  Because of this, equations have been developed to represent the 

aggregate behavior of molecular populations.  Two very important and inter-related 
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equations in this respect are the Michaelis-Menten equation which describes enzymatic 

activity (150), and the Hill equation which captures the non-linear behavior of multi-

protein binding dynamics (151).  We do not cover derivations of these equations here, but 

both are worth being familiar with, as they are the most common formulations used 

extensively in the biomolecular modeling literature (43, 78, 79, 82, 106, 114).  With that 

in mind and being cognizant of the need for simplification discussed in Section 3.4.1 

(Reducing network complexity), we will now explore how to formulate ODE models. 

In a system of ODEs, several equations are constructed, each representing the 

fundamental populations that are being studied.  Figure 3-1 shows several gene 

topologies and the related equations that describe their behavior.  One may notice that 

Network diagrams and potential equations to describe them.  Arrow links indicate 

activation, while barred links indicate repression. (A) Mutual inhibition toggle switch. 

(B) Incoherent feed-forward loop. (C) FCT with auto-activation and full mutual 

inhibition. 

 

Figure 3-1 Gene network ODE formulation 
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nearly all equations will have 2 parts: a production term and a degradation term.  In a 

transcriptional regulation pathway, interacting nodes will either activate or repress the 

production of themselves or another population.  Both interactions have basic forms, 

based on Hill equation kinetics: 

𝑑𝑥

𝑑𝑡
= 𝑎 ∗

𝑦𝑛

𝑘𝑛+𝑦𝑛
 eqn (3-1) 

𝑑𝑥

𝑑𝑡
= 𝑎 ∗

𝑘𝑛

𝑘𝑛+𝑦𝑛
 eqn (3-2) 

Here, the change in our population (x) has a maximum expression rate (a) which 

is modified by the abundance of activators or repressors (y).  In activation (eqn. 3-1), the 

production rate of x asymptotically approaches a as y increases.  In repression (eqn. 3-2), 

production of x asymptotically falls from a to 0 with increasing y.  A rate constant (k), 

sometimes referred to as the “half-max” value, serves as a sort of center point that helps 

determine the scale of y needed to influence x’s expression.  Finally, the Hill coefficient 

(n) determines the linearity of x’s response to y, which the steady-state expression of x vs. 

y becoming increasingly sigmoidal as n increases.  A third type of production term – 

constitutive production – may be included in some circumstances: 

𝑑𝑥

𝑑𝑡
= 𝑎 eqn (3-3) 

However, unless there is some sort of dynamic interaction with other nodes in the 

network, once degradation is factored in (see below), constitutively expressed 

components will end up expressing at a steady state.  Therefore, this steady state 

expression can be substituted for the ODE, lowering the number of equations that must 

be solved and reducing the computational requirements for running the system of ODEs.  

Frequently, a constant production term like this will be used in conjunction with a 
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repression term (eqn. 3-2) to represent leaky repression.  In this case, the node produces a 

small amount of product even when fully repressed. 

Populations will also degrade with time, and there are two primary forms of that 

as well: constant and enzymatic.  Typically, constant degradation is sufficient, but 

networks which produce many transcripts may see those transcripts competing for 

degradation machinery, in which case the enzymatic model may be more appropriate.  

𝑑𝑥

𝑑𝑡
= −𝑑 ∗ 𝑥 eqn (3-4) 

𝑑𝑥

𝑑𝑡
= −𝑑 ∗

𝑥

𝑥+𝑧
 eqn (3-5) 

In the case of constant degradation, the degradation rate (d) is simply a fraction of 

the amount of x present in the system.  In the enzymatic case, however, the total number 

other things (typically proteins) being degraded in the system (z) imposes an upper limit 

on the rate at which y can be degraded. 

 

3.3.3 Alternate Equation Forms 

From these basic forms, equations can be expanded as needed to integrate relevant 

information into the model.  Leaky repressible promoters, for example, may include a 

low level of constitutive expression and a repression production term (82).  An activator 

that works only in the presence of a drug may be modified by a term to indicate the 

fraction of functional activator at various dosages of drug (43).  As a guideline, however, 

it is best to construct the simplest model that still captures the behavior or interactions 

that you care about.  Simple models can always be expanded. 
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This becomes slightly less 

straight-forward once one has multiple 

regulators affecting the same gene.  If a 

gene is both activated and repressed, it 

may not be obvious whether to combine 

the production terms additively or to 

make some sort of hybrid equation.  

Figure 3-2 shows two formulations of the 

same network.  In practice, the differences in outputs between various formulations of the 

same network are often insignificant.  Because modeling is an abstraction of the 

incredibly complex observed cellular behavior, there is no single accepted “correct” way 

to model a gene network.  For parameterization purposes, provided that the ODEs 

produce the experimentally observed behavior, they are likely okay.  In the case of 

network exploration, it is often a good idea to experiment with alternate equation 

formulations on a subset of your networks, to ensure that the observed behavior is not 

simply an artifact of the model’s form. 

 

3.3.4 ODE Formulation for Network Exploration 

For parameterization of a network, once the equation form is determined, model creation 

is finished.  However, for exploring network topologies, additional steps are required.  

Because of the combinatorial nature of this type of work, automation is a necessity.  First, 

you need to generate a list of all possible networks within the bounds of whatever 

constraints you’ve imposed on the system.  In the case of Faucon, et al, for example, the 

Figure 3-2 Alternate ODE construction 

The ODE describing y’s expression be constructed 

in several different ways.  The combined effects of 

repression by x and autoactivation could be 

modeled as either the sum of 2 production terms 

(top) or as a single term comprising both processes 

(bottom). 
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constraint used was 

fully connected triads 

(FCTs) (106).  To 

decrease downstream 

computation, you 

should identify 

networks which are 

rotations or 

projections of one 

another.  These 

networks will behave 

identically, so there is no need to solve more than one of them.  Once redundant networks 

have been eliminated, you will be left with a set of all unique networks for further 

analysis. 

To generate all possible networks, first formulate a generic form of your system 

of ODEs.  For a system of fully connected triads, this might be that shown in Figure 3-

3A.  The parameters a1-3, b1-3, c1-3, and d1-3 will not affect the form of the equations, but 

the functions f1-3, g1-3, and h1-3 will differ depending on whether they are activating (eqn. 

3-1) or repression (eqn. 3-2).  If we assume that all nodes must activate or repress (they 

can’t not interact), the system can be represented by a 3x3 connection matrix (Figure 3-

3B).  Once this is realized, it is a trivial matter to automate the generation all possible 

matrixes.  This approach can be modified easily to fit any topology with any number of 

interactions. 

Figure 3-3 Network topology exploration 

There are several stages to exploring network topologies. (A) A general 

form of the ODEs that can describe all possible networks is formulated.  

In the diagram, the circular ends of the regulatory links indicate that they 

could be either activating or repressing. (B) For a specific network, a 

connection matrix is made.  A value of 0 indicates repression, while a 1 is 

activation. (C) Permutation matrixes are used to eliminate redundant 

networks.  Here, all permutation matrices (P1-5) for the FCT topology are 

shown, with the identity matrix (I) for reference. 
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Examining the network in Figure 3-3B, one can see that if the activation from x to 

z were switched to be from x to y, we are left with a network which functions identically 

to the original, with only the names of the nodes changed. To eliminate this sort of 

redundancy, one can utilize linear algebra transformations to check for equivalence.  In 

the fully connected triads example, this involves generating a set of permutation matrices 

that account for all possible row and column switching (Figure 3-3C).  Two connection 

matrices (M1 and M2) are considered equivalent to one another if they satisfy the equation 

M1 = Pi*M2*Pi’ (i = 1, 2, 3, 4, 5), where i represents the permutation matrices.  If 

matrices are found to be equivalent, one can safely be dropped to reduce downstream 

computation.  It is worth noting explicitly that, while the algorithm for generating all 

possible systems of ODEs is relatively straightforward when moving into higher order 

and non-symmetrical networks, this is not necessarily the case for permutation matrix 

generation and matrix elimination.  Additionally, if nodes are intended to represent 

specific genes, rather than generic transcriptions factors, network elimination of this type 

may be entirely inappropriate.  In short, when working with more complex networks, 

thorough knowledge of linear algebra is required to determine an appropriate method for 

eliminating redundancy. 

 

3.3.5 Deterministic analysis 

ODEs return purely deterministic outputs; given the same initial conditions (ICs) and 

parameters, the output will be the same every time the equations are run.  Depending on 

the context, a model can be used in several ways.  First, it may be used to fit experimental 

data, providing additional information on the underlying regulatory framework.  This 
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may be performed separately from or in 

conjunction with bifurcation analysis, which 

reveals multistable behaviors inherent in stem-

like cell types.  This technique identifies ranges 

of parameters under which the system exhibits 

hysteresis: it can hold more than one steady state 

expression level.  The specific state the system 

holds is determined by the ICs provided. 

 

3.3.6 Bifurcation analysis 

At its most basic, bifurcation analysis traces 

steady states in parameter space.  The system of 

ODEs is run to steady state expression, then one 

or more parameters are altered slightly, and the new steady state behavior is compared to 

the previous levels.  This is done iteratively, allowing the steady states to be determined 

for a range of parameter values.  In addition to identifying stable steady states, bifurcation 

analysis uncovers unstable states (which divide the space between stable attractors), a 

host of unique bifurcation points (specific values at which behavior changes), and more 

exotic behaviors (like oscillations).  To perform bifurcation analysis, a continuation 

toolbox, like MATCONT is required. 

An important factor in running a bifurcation analysis is to set a wide enough range 

on the parameter under observation.  Figure 3-4A shows the hysteresis curve of the 

simple mutual inhibition switch from Figure 3-1A, made using the information from 

Figure 3-4 Bifurcation analysis 

Bifurcation analysis can reveal regions of 

multistability within parameter space. (A) 

S-shaped hysteresis curve with bifurcation 

points indicated with circles.  These are the 

parameter values at which the system 

undergoes a state change. (B) For more 

complex bifurcation analyses, a wide range 

of ICs should be chosen to avoid missing 

relevant information.  Here, the topmost 

SSS could be missed entirely if a very 

large IC is not tested. 
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bifurcation analysis.  This “S” shape is common, indicative of a region of multistability.  

Within this parameter range, the system can settle into either a high- or low-expressing 

state, depending on the ICs.  In setting the range of parameters to search for this 

multistable behavior, it is necessary to set it wide enough to at least include both 

bifurcation points.  Because the location of these points is not usually known prior to 

analysis, setting the limits beyond what you might consider a physiologically relevant 

range is suggested.  This may include the use of negative parameter values which, while 

not even physiologically attainable, may be necessary for uncovering bifurcation points 

and thereby tracing a complete hysteresis curve. 

In addition to parameter range selection, in more complex systems it is good 

practice to perform bifurcation analyses from a variety of initial conditions.  Because this 

technique essentially traces a single steady state as it changes with a given parameter, it 

cannot reveal additional steady states if they are discontinuous with the state being traced.  

As an example of this, see the hypothetical hysteresis plot in Figure 3-4B.  For relatively 

simple networks, this may be done empirically; however, as network complexity grows, 

more computationally rigorous methods may be required.  These are covered in Section 

3.3.8 (Network topology exploration).  

 

3.3.7 Parameter fitting 

If experimental data on a specific network is available, it can be used to determine which 

parameter values best fit the data.  For this to be effective, a range of data points, either 

distributed in time (a time course) or across parameter space (a dose response curve) is 

needed.  Using a nonlinear curve fitting algorithm, such as MATLAB’s lsqcurvefit, the 
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model is run with initially random parameter set and compared to the experimental data, 

generating a measurement of error from the observed values.  The parameters are then 

iteratively altered, and the model rerun, improving the fit and thereby reducing error with 

each iteration, until it arrives at a local minimum of error.  This algorithm is very 

powerful, but there are several ways its implementation can break down, which we will 

discuss. 

One of the first decisions that must be made is which parameters to analyze.  

Running an algorithm like this on a large system of ODEs or one with many parameters 

can be computationally expensive and time consuming.  It is therefore often beneficial to 

fix any parameters whose values can be determined with reasonable certainty.  Protein 

degradation times, for example, are often closely linked to cell division and can, in many 

contexts, be approximated using the cellular doubling time.  One must simply solve for 

the exponential decay constant (λ) in the exponential decay function N(t) = N0e
-λt.  Here 

were know the doubling time (t), and it is assumed that N(t) is ½ of N0, as the actual 

protein decay rate is minor in comparison to the dilution rate due to cell division.  

Similarly, some parameter values, such as maximum production rates, may be deducible 

from experimental data.  In a simple repressor defined by eqns. (3-2) and (3-4), for 

example, if the degradation rate is deduced as discussed above, in the absence of a 

repressor: a = d * x.  If data are available giving a value for x under these conditions, a 

can be set with some confidence.  Finally, parameters may be able to be inferred from 

prior work. 

Once any parameters which can be inferred have been fixed, then the task at hand 

is setting bounds on those which remain unknown.  If these bounds are set too narrowly, 
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one risks excluding the best fit for the system.  However, if the bounds are set too wide, 

the best fit may be missed as the algorithm converges to local minima far from the global 

best fit.  Developing an empirical understanding of your system of ODEs is necessary for 

choosing proper bounds.  This comes in part from understanding prior literature on 

similar cellular processes.  Hill coefficients (n) in equations (3-1) and (3-2) are typically 

<10, as high degrees of nonlinearity tend to make processes unstable.  Relatedly, 

repression or activation coefficients (k) from equations (3-1) and (3-2) are sometimes 

referred to as “half-max values” because they are related to the amount of activator or 

repressor required to transition expression to half its maximum value.  A range of 

potential values may be deduced if additional information is known about the system.  

Once a good initial guess is determined, setting bounds around this guess is trivial.  If the 

analysis is run and one or more parameter values consistently converge to the bounds that 

you have chosen, this is a good indicator that your bounds should be expanded. 

Once all parameters have been set or bounded, the algorithm is run hundreds of 

times.  On each run, bounded parameters’ initial values are chosen randomly, and the 

algorithm finds a set of parameters whose error converges to a local minimum.  Unlike 

discussed in the previous section on bifurcation analysis, ODE ICs should remain fixed 

across all of these runs, corresponding to whatever ICs were used to generate the 

underlying data against which the model is being fit.  Each run will result in a set of 

parameters and corresponding error.  These can be ranked from lowest to highest error, 

and a subset of those with the lowest error can be further analyzed to glean additional 

information on levels and interrelations between different parameters within the network. 
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If any confusion remains on the difference between random initial conditions and 

initial parameters, see Section 3.4.2 (Random initial conditions, parameters, and 

stochasticity). 

 

 

 

3.3.8 Network topology exploration 

If you are exploring network topologies for multistable behavior, a more computationally 

expensive approach is required.  For this application, access to a distributed computing 

cluster is necessary.  As discussed previously, you must first generate a minimal set of all 

possible networks that fit your predetermined criteria.  Then, each network must be 

evaluated with a range of parameters and ICs to determine if it exhibits multistable 

behavior, and if so, how many unique states it can hold.  Like in the previous section, this 

application explores a range of values for several parameters; however, in this case, 

preset values are applied in combination with a set of preset ICs across the full range of 

all possible networks.  There is no randomness here. 

This type of analysis is, by definition, not based on data; rather, it is a more 

theoretical exploration of topology behaviors.  As such, prior discussion of setting 

accurate parameter bounds and selecting physiologically relevant values is less relevant 

here than when parameterizing a known network.  Here it is more important that 

parameter values make sense relative to one another, with the assumption that findings 

would scale to an actual biological system.  This altered focus typically leads researchers 

to select easy to work with ranges for parameters, often utilizing powers of 10, such as 
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(0.1, 0.3, 1, 3, 10).  Due to the highly combinatorial nature of network topology 

exploration, only a few values can be chosen for each set of parameters, and one should 

attempt to fix as many parameters as possible to reduce complexity.  Faucon et al, for 

example, reduced their fully connected triad system to 9 parameters, 3 with 3 levels and 6 

with 5 levels, but this still left 33 * 65 = 421,875 parameter sets to check for every IC of 

every possible network (106). 

Similar to how parameter space was divided, initial condition space must also be 

divided.  The range of ICs must be large enough to encompass all possible expression 

levels and subdivided enough to have a high likelihood of finding all stable steady states.  

The form of Hill equations makes finding their maximum expression easy: it is simply 

the value of a in equations (3-1) and (3-2).  Maximum steady state expression is therefore 

the sum of all production terms divided by the degradation term.  Once this is known for 

each variable, the range of [0 max] can be subdivided into segments covering the whole 

of IC space.  The number of segments will vary depending on the system being analyzed 

but should generally be much more than the total number of theoretical roots on the right-

hand side of the ODE, which is numerically equivalent to the steady states of the ODE.  

The goal is to have enough coverage of IC space so that it is likely that at least one IC 

will converge to each stable steady state (SSS).  Around 10 segments per variable is a 

good starting value, which can be adjusted depending on the system being analyzed. 

Finally, for each network, for each parameter set, for each IC, right hand side of 

the system of ODEs can be solved numerically.  In MATLAB, there are several built-in 

algorithms, such as fsolve, for solving nonlinear equations like the ones we have 

constructed.  After solving for all ICs within one parameter set of a given network, 
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unique roots can be consolidated for further analysis.  Unique roots can be entered into 

the Jacobian matrix and the eigen values calculated.  Solutions with all negative eigen 

values are SSS. 

 

3.3.9 Stochastic analysis 

While deterministic analysis is useful for identifying SSS and predicting average 

population behavior (in many circumstances), it does not recapitulate expression variance 

inherent in cellular systems.  Some processes, like stability switching or random 

differentiation from a neutral state, cannot be exhibited by a simple ODE model.  To 

explore these sorts of behavior, the model must be modified to introduce stochasticity to 

the genes’ expression.  This is frequently done in one of two ways: converting the system 

of ODEs to a Gillespie algorithm (152) or converting the ODEs into stochastic 

differential equations (SDEs) with a method like the Langevin equation (153). 

In both implementations covered here, the level of noise is correlated with the size 

of the associated population.  A population with a SSS level of 100 will exhibit much 

more relative variability than one with a SSS level of 10,000.  For this reason, it may be 

necessary to rescale parameters to approximate a physiologically relevant level of gene 

expression variation.  Many common data acquisition methods, such as flow cytometry 

and qPCR, give outputs which are correlated with, but not identical to, the size of 

intracellular protein or RNA populations.  Fitting parameters to this data may give 

upscaled parameter values which may subsequently underestimate the role of noise on 

expression.  Therefore, it may be helpful to modify your equations’ production terms 

with a rescaling factor which allows you to easily up- or downscale the simulation 
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without changing its qualitative behavior.  This can be achieved by multiplying a and k 

terms in equations (3-1) and (3-2) by a constant value.  Adjusting the SSS value to be 

around 100 is a good starting point for achieving a reasonable amount of expression 

noise.  Of course, this level can be adjusted either to explore the effects of noise or to 

simulate data in which the noisiness is known. 

 

3.3.10 Gillespie algorithms 

The Gillespie algorithm breaks the simulation down into discrete events in which the 

populations being modeled experience some change: production or degradation of 

individual proteins or molecules, typically.  Each event is assigned a probability based on 

its associated rate, relative to the rates of all other events in the network.  As simulation 

time progresses, events occur one after another with variable time between each, 

dependent on the current state of the system.  The benefit of this approach is that it is 

fairly accurately simulates what is actually happening in the intracellular environment by 

converting all populations to discrete values.  However, this algorithm tends to be 

relatively slow, particularly when running larger gene networks.  Methods to improve 

simulation time have been developed (such as tau-leap methods), but these introduce 

approximations which may affect the accuracy of the simulation (152).  Here we will 

cover the basics of constructing a Gillespie algorithm, but know that there are many ways 

that this framework can be modified for different applications. 

The algorithm is a simple 4 step process: initialization, random step, update, 

iterate.  Initialization involves defining the system and setting ICs.  Then, it will take 

random sized steps through time, at each step selecting a single event to occur.  These 
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random events will be used to update the state 

of the network.  The new state will then be 

used to generate a new random step and 

further update the network state, iterating 

between taking random steps and updating the 

network state.  At each step, rates of change 

are calculated, and two random numbers are 

generated to determine which event happens 

and at what time, making this a relatively 

computationally intense process. 

It is easy to convert a system of ODEs 

into a Gillespie algorithm.  Each equation 

must be split into the component parts which 

cause a single change (event) to a 

population.  In a simple transcriptional 

repressor network like that shown in Figure 

3-5A, the unique events which can occur are: 

production of protein x, degradation of 

protein x, production of protein y, and degradation of protein y.  The rates at which these 

events occur – and by extension the probabilities that they will happen at each time point 

– are obtained directly from deconstructing the ODEs into their production and 

degradation terms (Figure 3-5B). 

Figure 3-5 The Gillespie algorithm 

Implementation of the Gillespie algorithm. (A) 

The ODE system can be deconstructed into 

production and degradation terms. (B) Discrete 

events (E1-4), with related rates (R1-4), and 

probabilities (P1-4) are defined.  At each 

iteration of the algorithm, rates and 

probabilities are recalculated from the system’s 

current state. (C) Random numbers (K1 and 

K2) are used to determine which event happens 

and the time since the previous event (τ). (D) 

Sample output of several iterations of the 

algorithm.  Notice that at each τ only one 

variable changes, and only every by ±1. 



45 

 

Based on their rates relative to one another, each event can be assigned a 

probability.  An event’s probability of occurring is Pi = (Ri / λ), where Ri is the rate of the 

individual event, and λ is the sum of all events’ rates: λ = ΣR1-n.  When calculated for all 

events, ΣP1-n = 1.  At each iteration of the algorithm, a random number, K1, chosen from 

the uniform distribution [0, 1] can be used to randomly select a single event to occur.  

The timing between events, usually referred to as τ, is governed by the exponential 

function: τ = (1 / λ) * ln(1 / K2), where λ is the sum of the rates of all events, as above, 

and K2 is a random number from the uniform distribution [0, 1].  Figure 3-5C shows a 

visualization of how the random numbers, K1 and K2, are used to generate each time step, 

and Figure 3-5D shows a sample output of the mutual inhibition toggle. 

Production and degradation of intracellular populations is not the only thing that 

can be modeled with a Gillespie algorithm.  Protein multimerization, for example, could 

be described as a series of discrete steps from monomers to dimers to tetramers, with 

reversals of each of these interactions and degradation events.  For more complex 

interactions, it should be noted that a single event might see multiple populations 

changing in relation to one another.  For example, in a dimerization event, 2 monomers 

are lost and 1 dimer is gained. 

 

3.3.11 Langevin equations 

A similar outcome can be obtained by modifying the ODEs into chemical Langevin 

equations, which introduces some randomness with each step forward in time in the ODE 

solver.  Relative to the Gillespie algorithm, the use of a chemical Langevin equation is 

much faster to run; however, the mathematical derivation is much more complex and not 



46 

 

as easy to grasp intuitively.  To avoid abuse while implementing this method, a thorough 

investigation of primary literature is suggested (153).  For our purposes, at each iteration 

of the ODE, all chemical species are updated with the formula: 

𝑁(𝑡 + 𝛥𝑡) = 𝑁(𝑡) + 𝛥𝑡𝐴(𝑁(𝑡)) + 𝛼 ∗ 𝑆√𝛥𝑡(𝐹(𝑁(𝑡)) + 𝐵(𝑁(𝑡)))𝑧(𝑡) eqn (6) 

The terms before α are standard for ODE solvers, but α and everything that 

follows have been added to introduce noise. Here, N(t) is the abundance of the 

population, A is the righthand side of the ODE, and F and B are the forward (production) 

and backward (degradation) reaction terms in each equation.  α is a scalar term for tuning 

the level of noise.  z(t) and S are the standard Normal variables and stochiometric matrix, 

respectively, of the biochemical reactions.  For a fuller description of these terms, as well 

as software tools to implement chemical Langevin equations, see work by Adalsteinsson, 

McMillen, and Elston (153). 

 

3.3.12 Stochastic analysis 

With stochasticity integrated into the model, the methods for exploring the network to its 

fullest extent are expanded.  As this is a relatively small field of research, however, there 

are few definitive methods for exploring stochasticity in biochemical models.  Because 

stochastic simulations have noise, each run of the simulation will be different from every 

other run.  For this reason, analysis of stochastic simulations can be time consuming, as 

the model must be run enough times to generate a characteristic picture of the effect that 

noise is having on expression.  To account for low probability behavior, this can mean 

running the simulation tens, hundreds, or thousands of times. 
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Stochastic simulation can be used to explore the pull that different SSS exert on 

the system.  While bifurcation analysis of an ODE model can separate state space into 

different attractor regions, stochastic simulations can quantify how likely those regions 

are to maintain stability in the face of noise.  Faucon, et al, used an approach like this 

quantify the strength of different attractor states and measure the mean time to transition 

between states under variable noise conditions (106).  As one example, they show that, 

increasing noise can cause some attractor nodes to transition from highly stable to nearly 

incapable of holding steady expression.  Additionally, because expression noise can 

cause networks to transition between different SSS expression profiles, stochastic 

simulations can reveal preferred transition paths between SSS attractors.  As 

computational power increases, allowing modeling of ever more complex networks, 

stochastic analysis of this sort can help reveal the mechanisms underlying complex 

differentiation pathways. 

 

3.4 NOTES 

3.4.1 Reducing network complexity 

Mathematical modeling of complex cellular behavior is still a relatively new discipline, 

limited by both our computational power and understanding of the network topologies 

underlying observed cellular behavior.  For this reason, we often use abstracted or 

synthetic networks as stand-ins for the actual networks which regulate stem cells.  For 

example, instead of trying to model and understand the full mechanism underlying 

pluripotency, the network of dozens of interconnected genes is frequently condensed 

down to its most basic form: the Oct4, Sox2, Nanog triad (106).  This sort of abstraction 
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can reduce the system to one that is simple enough to study and understand, while 

simultaneously being accurate enough to still represent the underlying regulatory 

complexities.  Inevitably, some of the details are lost, and if one is not careful you may 

end up eliminating the expected behavior from your model.  Nonetheless, it is common 

practice to reduce networks to as few moving parts as possible. 

Alternatively, researchers can build gene networks from the ground up to 

decouple the behavior of interest from the rest of the cellular regulatory machinery.  In 

these synthetic networks, fundamental interactions between genetic components can be 

more accurately observed and simulated via modeling, since they have been separated 

from many of the confounding factors which make natural networks so difficult to study.  

This is one of the fundamental differences between synthetic biology and more traditional 

disciplines attempting to apply mathematical methods to biology. 

In addition to how the system is built and/or conceptualized, when one begins 

building models, it quickly becomes apparent that the model could be as complex as you 

could possibly make it.  For a common process like transcription/translation, there are 

endless steps that could be added to the model: transcription factor interactions with the 

DNA, polymerase recognition of the promoter, assembly of the polymerase complex, 

transcriptional starting and pausing, incomplete transcription, termination dynamics, 

RNA capping and polyadenylation, nuclear export, transport through the cytoplasm to the 

ribosome, tRNA recruitment, and on and on.  The list could be expanded nearly 

infinitely.  Running mathematical models can be computationally expensive, and biology 

is endlessly complicated.  If too many details are included, model run times can 
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skyrocket, slowing down analysis considerably.  It is therefore necessary to reduce model 

complexity while maintaining the fundamental behavior that you are trying to simulate. 

 

3.4.2 Random initial conditions, parameters, and stochasticity 

To ensure that there is no confusion, we would like to talk briefly about the different 

types of randomness employed in this work.  Random initial conditions refers to 

randomizing the starting values of the variables (each equation in the system of ODEs 

represents one variable).  This may be used in some network exploration algorithms, but 

in most cases ICs are defined rationally based on experimental constraints or to cover all 

of potential IC space.  Alternatively, parameters are all non-variable terms in the ODE.  

These can be randomized for curve fitting algorithms, which will then iteratively adjust 

the parameter values to arrive at a local best fit for a model against a set of experimental 

data.  Finally, stochasticity refers to randomness in gene expression, introduced into the 

model either by converting it to a discreet Gillespie algorithm or through implementation 

of the Langevin equation.  In both the Gillespie and Langevin cases, parameter values 

initial conditions remain fixed, but the changes in variables’ expression as the simulation 

runs are subject to some randomness. 
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4 FLUORESCENT GUIDE RNAS FACILITATE DEVELOPMENT OF LAYERED 

POL II DRIVEN CRISPR CIRCUITS 

 

This chapter was prepared in collaboration with Samira Kiani, M.D. and Xiao Wang, 

Ph.D. and is under consideration for publication. 

 

4.1 INTRODUCTION 

Clustered regularly-interspersed short palindromic repeats (CRISPR) technology has 

become a prime candidate for synthetic transcriptional regulation and creation of 

complex genetic networks due to its programmablity, ease of design, and modularity (56, 

154, 155). Originally a bacterial immune system, engineered CRISPR is composed of 

two parts: the protein Cas9 and a guide RNA (gRNA). The catalytically dead Cas9s 

(dCas9) have been used for transcriptional repression or activation in various organisms 

(45, 56, 156).  Because dCas9 can be directed to nearly any region of DNA by changing 

the sequence of the gRNA, this technology allows for rapid construction of large libraries 

of activators and repressors which can act orthogonally to one another.  Simple design 

and implementation allows dCas9-based circuits to fill the need for large libraries of 

components for network construction. 

Expression of gRNA from RNA Polymerase type II (Pol II) based promoters, 

enables generation of layered CRISPR-based genetic networks in which gRNAs act both 

as input and outputs of the circuits (74, 157). Such circuits will have tremendous value 

for step-wise or sequential modification of cell-fate or function in cases such as stem cell 

differentiation or tissue regenerative therapies. Through various RNA editing methods 
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which release gRNAs from primary RNA transcripts, the expression from Pol II 

promoters and composability problem of CRISPR-based components can be addressed 

(158–160).  However, mRNA production rates from Pol II promoters tend to be much 

lower than from Pol III promoters, which could lead to overall low efficiency or even 

nonfunctional Pol II driven circuits in mammalian cells (74, 161). There remains a need 

for methods to more accurately test, quantify, and optimize these systems by directly 

analyzing gRNA levels and assessing their impacts on circuit functionality.   

gRNA levels in CRISPR circuits have previously been measured indirectly 

through evaluation of circuit output or a fluorescent protein co-expressed with gRNA (74, 

157). Development of RNA binding fluorescent probes (162), fluorescent protein binding 

RNA aptamers (163), and fluorophore-binding RNA aptamers (164, 165) have recently 

allowed for visualization of RNA and gRNA.  It has been shown that modification of the 

gRNA transcript can be accomplished without destroying gRNA function, allowing 

insertion of fluorophore-binding RNA aptamers such as Spinach or Broccolli (164–168).  

Although these methods demonstrated feasibility to visualize gRNAs, their application 

for studying CRISPR-based synthetic gene circuits has not been explored. 

Here we set out to address the need for more predictable and reliable Pol II driven 

CRISPR circuits by employing a gRNA modified to include the green fluorescent 

aptamer Broccoli (165). We demonstrate this strategy can be used to analyze and model 

circuit behavior.  Using gRNA constructs expressed from Pol II promoters, we show that 
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the visualization and analysis of circuit components can be leveraged to improve the 

function of a layered CRISPR-based circuit composed of only Pol II driven gRNAs. 

 

4.2 RESULTS 

4.2.1 Engineering a Fluorescent Guide RNA 

To facilitate construction of diverse CRISPR based circuits, we first developed a 

fluorescing gRNA construct (fgRNA) without interfering with its downstream 

functionality.  Towards this goal, various constructs were placed in a repressor circuit 

(Figure 4-1A), in which the infrared fluorescent protein (iRFP) gene was repressed by 

gRNA complexed with dCas9 fused to blue fluorescence protein (dCas9-EBFP). Previous 

studies suggest three candidate locations in a gRNA structure for additional sequences 

which do not disrupt guide function: the tetraloop, the second loop, and the 3’ end (163) 

Figure 4-1 Fluorescent guide RNA construction 

Fluorescent guide RNAs are visible without loss of function. (a) Diagram of the repressor circuit used 

to test Pol III driven fgRNAs.  The circuit was tested with and without the inclusion of the fgRNA 

component to calculate fold change in fgRNA and iRFP expression.  (b) Guide RNA diagram showing 

locations into which the broccoli aptamer was inserted into the gRNA scaffold.  DFHBI-1T binds to the 

broccoli aptamer and fluoresces green when excited.  (c) Scatter plot of flow cytometry data showing 

cell size (front scatter; FSC), granularity (side scatter; SSC), and transfection level (EBFP) with the 

population gated via GMM clustering shown in red.  Contour plots of the gated population are shown 

on the faces.  (d) A representative repression experiment showing expression of fgRNA and iRFP.  The 

scatterplot shows fluorescence levels in the absence (red) or presence (green) of fgRNA.  Fluorescence 

channels are displayed independently as histograms on the axes, in the absence (light) or presence 

(dark) of fgRNA.  Median values are indicated with dashed lines.  To calculate fold change, medians of 

the repressed sample were divided by the medians of the unrepressed sample.  (e) Fold changes of three 

fgRNA variants compared to a non-fluorescent gRNA control.  Each bar is the mean of 4 flow 

cytometry replicates’ medians ± SD. 
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(Figure 4-1B).  The broccoli sequence (165) with a short hairpinning linker was inserted 

into each of these locations (see Table 4-1 for sequences). 

Circuits were transfected into HEK293FT cells and assessed via flow cytometry 

after 72hrs.  We first employed a 3 dimensional (3D) gating scheme, utilizing a gaussian 

mixed model (GMM; see Online Methods for full description), to identify cells of interest 

using three channels: front scatter (FSC), side scatter (SSC), and blue fluorescence 

(EBFP, representing dCas9-EBFP).  This allowed us to accurately separate cells from 

debris and choose a subset of cells which were both well-transfected (high blue) and of 

moderate size (Figure 4-1C). Selecting cells of moderate size allowed us to reduce 

population variability which might influence the analysis, as cell size is highly correlated 

with protein production (169).  We then calculated median green and infrared fluorescent 

intensity in each circuit to analyze the fold change of both fgRNA and iRFP, a metric 

which we employ throughout this research (Figure 4-1D-E). 

Flow cytometry-based analysis reveals that repression of iRFP is strong across all 

three fgRNAs, with no significant difference between their effectiveness (Figure 4-1E).  

Broccoli fluorescence is strongest in fgRNA1 (tetraloop broccoli), with decreasing 

brightness in fgRNAs 2 (second loop broccoli) and 3 (3’ tail broccoli).  Due to its 

superior brightness, fgRNA1 is used in all further experiments, and all fgRNAs 

referenced hereafter are fgRNA1. 

 

4.2.2 Circuit Optimization Improves Network Function 

To characterize impacts of component abundances on circuit performances, we then 

generated dose response curves for each of the components within the circuit: fgRNA,  
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 Name Sequence 

f
g
R
N
A
s
 

fgRNA1 

NNNNNNNNNNNNNNNNNNNNGTTTGAGAGCTAGCGCAGACGGTCGGGTCCAGATATTCGTATCTG

TCGAGTAGAGTGTGGGCTGCGCTAGCAAGTTCAAATAAGGCTAGTCCGTTATCAACTTGAAAAAG

TGGCACCGAGTCGGTGC 

fgRNA2 

NNNNNNNNNNNNNNNNNNNNGTTTGAGAGCTAGAAATAGCAAGTTCAAATAAGGCTAGTCCGTTA

TCAACTTGCGCAGACGGTCGGGTCCAGATATTCGTATCTGTCGAGTAGAGTGTGGGCTGCGCAAG

TGGCACCGAGTCGGTGC 

fgRNA3 

NNNNNNNNNNNNNNNNNNNNGTTTGAGAGCTAGAAATAGCAAGTTCAAATAAGGCTAGTCCGTTA

TCAACTTGAAAAAGTGGCACCGAGTCGGTGCGCGCAGACGGTCGGGTCCAGATATTCGTATCTGT

CGAGTAGAGTGTGGGCTGCGC 

  
ORANGE: Target sequence 

GREEN: Broccoli 

E
d
i
t
i
n
g
 
M
o
t
i
f
s
 RGR 

GAGGTACTGATGAGTCCGTGAGGACGAAACGAGTAAGCTCGTCNNNNNNNNNNGGCCGGCATGGT

CCCAGCCTCCTCGCTGGCGCCGGCTGGGCAACATGCTTCGGCATGGCGAATGGGAC 

CGC 

ATGTTCACCTATCTACTACCCGTTCACTGCCGTATAGGCAGNNNNNNNNNNGTTCACTGCCGTAT

AGGCAGATGCCCGGAGATTATGTAGG 

TGT 

AACAAAGCACCAGTGGTCTAGTGGTAGAATAGTACCCTGCCACGGTACAGACCCGGGTTCGATTC

CCGGCTGGTGCANNNNNNNNNNAACAAAGCACCAGTGGTCTAGTGGTAGAATAGTACCCTGCCAC

GGTACAGACCCGGGTTCGATTCCCGGCTGGTGCA 

  

ORANGE: fgRNA sequence 

LIGHT BLUE: Editing sequence (separated from fgRNA after 

cleavage) 

DARK BLUE: Editing sequence (connected to fgRNA after cleavage) 

P
r
o
m
o
t
e
r
s
 

U6 

AAGGTCGGGCAGGAAGAGGGCCTATTTCCCATGATTCCTTCATATTTGCATATACGATACAAGGC

TGTTAGAGAGATAATTAGAATTAATTTGACTGTAAACACAAAGATATTAGTACAAAATACGTGAC

GTAGAAAGTAATAATTTCTTGGGTAGTTTGCAGTTTTAAAATTATGTTTTAAAATGGACTATCAT

ATGCTTACCGTAACTTGAAAGTATTTCGATTTCTTGGCTTTATATATCTTGTGGAAAGGACGAAA

CACCG 

TRE 

CGAGTTTACTCCCTATCAGTGATAGAGAACGTATGTCGAGTTTACTCCCTATCAGTGATAGAGAA

CGATGTCGAGTTTACTCCCTATCAGTGATAGAGAACGTATGTCGAGTTTACTCCCTATCAGTGAT

AGAGAACGTATGTCGAGTTTACTCCCTATCAGTGATAGAGAACGTATGTCGAGTTTATCCCTATC

AGTGATAGAGAACGTATGTCGAGTTTACTCCCTATCAGTGATAGAGAACGTATGTCGAGGTAGGC

GTGTACGGTGGGAGGCCTATATAAGCAGAGCTCGTTTAGTGAACCGTCAGATCG 

CRPa 

CAGATCTCATGTGATTACGCCAAGCTACGGGCGGAGTACTGTCCTCCGAGCGGAGTACTGTCCTC

CGAGCGGAGTACTGTCCTCCGAGCGGAGTACTGTCCTCCGAGCGGAGTTCTGTCCTCCGAGCGGA

GACTCTAGAGAATTCTAGGCGTGTACGGTGGGAGGCCTATATAATACCTCATCAGGAACATGTTG

GTCGTTTAGTGAACCGTCAGATCGCC 

CRPb 

CATGTGATTACGCCAAGCTACGGGCGGAGTACTGTCCTCCGAGCGGAGTACTGTCCTCCGAGCGG

AGTACTGTCCTCCGAGCGGAGTACTGTCCTCCGAGCGGAGTTCTGTCCTCCGAGCGGAGACTCTA

GAGAATTCTAGGCGTGTACGGTGGGAGGCCTATATAATATAGAACCGATCCTCCCATTGGTCGTT

TAGTGAACCGTCAGATCGCCTATAGAACCGATCCTCCCAT 

  

BLUE: Operator Sites (rtTA or Gal4-VP16) 

RED: TATA Box 

ORANGE: gRNA Binding Site 

T
e
r
m
i
n
a
t
o
r
s
 

SUP4 TTTTTTTGTTTTTTATGTCT 

SV40 

AACTTGTTTATTGCAGCTTATAATGGTTACAAATAAAGCAATAGCATCACAAATTTCACAAATAA

AGCATTTTTTTCACTGCATTCTAGTTGTGGTTTGTCCAAACTCATCAATGTATCTTATCATGTCT

G 

mPA 

CTAGTAATAAAGGATCCTTTATCTTCATTGGATCCGTGTGTTGGTTTTTTGTGTGCGGCCCGTCT

AGACC 

 

Table 4-1 Synthetic DNA components 

DNA components used in fgRNA plasmid construction, organized by component type: fgRNA, editing 

motifs, promoters, terminators.  In each section, nucleotides are color-coded to indicate important 

functional regions. 
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dCas9, iRFP, the Gal4-VP16 

regulator, as well as the total 

amount of DNA used in the 

transfection protocol (Figure 4-2A 

and Figure 4-3). As expected, both 

Gal4-VP16 and iRFP display 

decreasing repressibility, showing 

larger fold changes at lower 

concentrations.  More precisely, 

when titrating the iRFP plasmid, 

fold change drops from nearly 60x 

to <10x as concentration increases 

Figure 4-2 Pol III fgRNA expression 

fgRNAs expressed from Pol III a promoter have a 

predictable response. (a) Normalized dose response curves 

of iRFP plasmid (blue), while unrepressed by fgRNA 

(solid line, diamonds) and while repressed (dashed line, 

circles).  Curves were fit with an exponential function and 

divided to determine total fold change (red), indicating 

that a lower amount of plasmid leads to greater differential 

expression.  (b) Flow cytometry time course (points) and 

model fitting (lines) of the U6-fgRNA repressor circuit.  

fgRNA (green) and iRFP (red) expression are tracked 

while fgRNA is either expressed (solid lines, diamonds) or 

absent (dashed lines, circles).  Data in all panels are the 

mean of 4 flow cytometry replicates’ medians ± SD. 

Figure 4-3 Pol III repressor optimization 

Optimization of circuit components for U6-driven repression (a) Normalized dose response curve 

showing iRFP expression with increasing dCas9-BFP concentration, experimental data (circles) and 

exponential fit (line). (b) iRFP response to increasing concentrations of regulator plasmid.  

Experimental data of repressed (blue circles) and unrepressed (blue diamonds) were used to generate 

fits of repressed (blue dashed line) and unrepressed (blue solid line) iRFP expression.  This was then 

used to calculate fold change (red line). (c) Dose response curve showing fgRNA (green) and iRFP 

(red) expression with increasing concentration of fgRNA plasmid. Exponential fits (lines) are 

generated from experimental data (circles).  All concentrations are the amount of plasmid per 24-well 

plate well in a total of 600ng DNA.  Data are the mean of 4 flow cytometry replicates’ medians ± SD. 
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(Figure 4-2A).  Both fgRNA and dCas9-EBFP 

responses saturate around 20 mM (Figure 4-3). 

Based on the dose response experiments, plasmid 

concentrations were adjusted to minimal levels 

(Figure 4-4, Table 4-2).  This resulted in circuits 

with much greater iRFP dynamic range despite 

utilizing smaller amounts of fgRNA repressor, 

while also decreasing the metabolic loads on the 

cells. 

We then analyzed the expression of the 

optimized circuit over time to quantify the 

underlying behavior of synthetic CRISPR-based repressors in mammalian cells (Figure 4-

2B).  Paired with these experiments, we developed a system of ordinary differential 

equations (ODEs) to model the network behavior (see Online Methods for model details 

Figure 4-4 Transfection DNA optimization 

Optimization of relevant transfection 

factors Normalized dose response curve 

showing fgRNA (green) and iRFP (red) 

expression of a minimal circuit with 

increasing amounts of total DNA per 

transfection.  Data are the mean of 4 flow 

cytometry replicates’ medians ± SD. 

 Initial Screening Time Course 

Two-

Tier 

 U6 TRE U6 TRE Cascade 

dCas9-EBFP 75 75 80 80 80 

Regulator 50 50 5 5 5 

Csy4 ~ 5 ~ 5 5 

iRFP 20 20 5 5 5 

fgRNA(a) 100 100 20 80 160 

fgRNA(b) ~ ~ ~ ~ 80 

Empty Plasmid to 600ng to 300ng to 400ng 

Table 4-2 Transfection masses 

Masses of plasmids used in transfections. “Initial Screening” plasmid masses were used for 

experiments shown in Figure 4-1 and optimization experiments in Figures 4-2A, 4-3C, 4-7, 4-8, 4-9, 4-

12, and 4-13.  For optimization experiments, the shown values were used except for the plasmid which 

was being optimized, which correspondeds to the values on the x-axis.  “Time Course” plasmid masses 

were used for experiments shown in Figure 4-2B and Figure 4-7D. “Two-Tier Cascade” plasmid 

masses were used for experiments shown in Figure 4-14. 
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and derivation).  The model consists of three 

ODEs representing overall plasmid levels, fgRNA, 

and iRFP abundances.  Using these three 

equations, we demonstrate the relationship 

between fgRNA expression and iRFP regulation 

and scanned possible parameters governing this 

relationship (Figure 4-5 & 4-6).  Analysis of fitted 

parameters indeed verified a few intuitions.  For 

example, plasmid degradation (pDeg) and fgRNA 

degradation (fDeg) are inversely correlated (Figure 

4-6), indicating a strict requirement for fgRNA 

abundance given specific dynamics. Therefore, decrease of one parameter (pDeg) needs 

to be compensated by the increase of the other (fDeg). Alternately, positive correlations, 

such as those between iRFP production (rMax) and iRFP degradation (rDeg) illustrate a 

need for a ratio between certain paired parameters. Moreover, the analysis reveals that 

fgRNA production (fMax) has a narrow distribution, suggesting it as the most critical 

property to tune to achieve desired dynamic behaviors. Finally, this analysis also shows 

that the non-linearity coefficient (b) is very close to 1. This lack of nonlinearity indicats 

weak cooperativity between fgRNA, Cas9, and DNA. This has ramifications for building 

circuits that demand nonlinearity for its function, such as noise reduction or multistability 

(18, 82, 149, 170). 

 

 

Figure 4-5 Pol III model rank fitting 

Pol III time course rank fitting of model 

outputs generated on the Pol III 

repressor time course.  500 fits were 

ranked by their total error (residual 

norm) and the 50 (red) and 250 (blue) 

with the lowest error were selected for 

further analysis. 
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4.2.3 Analysis of CRISPR circuits carrying Pol II driven fgRNAs 

We next utilized inferred information on engineered fgRNA dynamics to develop Pol II 

driven fgRNA  production (Figure 4-7A).  We evaluated three previously published RNA 

editing techniques to enable gRNA expression from Pol II promoters.  The ribozyme-

guide-ribozyme motif (RGR) is an fgRNA flanked by self-cleaving RNA sequences – a 

Hammerhead (HH) ribozyme on the 5’ end and herpes delta virus (HDV) ribozyme on 

the 3’ end – that excise the fgRNA shortly after transcription (158).  The fgRNAs flanked 

by Csy4 editing sites (CGC) require exogenous expression of the Csy4 protein, which 

recognizes and cleaves a 20 nt hairpinning RNA sequencing inserted up- and downstream 

of the fgRNA (159).  Because Csy4 cleaves on the 3’ end of the hairpin, this method 

Figure 4-6 Pol III parameter fitting 

Pol III time course parameter analysis of the lowest error fittings selected in Figure 4-5.  On the 

diagonal, histogram distributions of each individual parameter are show.  Scatter plots of each 

parameter against the others are shown in the other panels. 
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leaves one of the hairpins attached 

to the tail of the fgRNA transcript.  

The fgRNA flanked by functional 

tRNA sequences (TGT) utilizes 

endogenous tRNA editing proteins 

RNase P and RNase Z to cut 

around tRNA sequences placed up- 

and downstream of the fgRNA, 

leaving a 1 nt addition to the 5’ end 

of the fgRNA and 6 nt on the 3’ 

end (160). 

The circuits used to test 

these three techniques are 

designed to utilize tetracycline 

response element (TRE), a well 

characterized and widly used 

inducible Pol II promoter, for 

fgRNA expression (Figure 4-7B, 

only CGC method is shown for 

illustration).  The TRE promoter has previously been shown to be a strong promoter for 

protein and gRNA expression in synthetic circuits (73, 74, 171). It requires the inclusion 

of a reverse tetracycline trans-activator (rtTA) protein which, when in the presence of 

doxycycline (Dox), activates expression of the fgRNA-containing transcript. 

Figure 4-7 Pol II fgRNA expression 

Pol II expression of fgRNAs show predictable dynamics. 

(a) Schematics for the 3 editing techniques employed in 

this work: self-cleaving with the hammerhead (HH) and 

herpes delta virus (HDV) ribozymes (RGR), targeting and 

cleavage of 20bp hairpins by the exogenous Csy4 protein 

(CGC), and excision of the guide by endogenous tRNA 

cleaving proteins RNase P and RNase Z (TGT).  (b) 

Diagram of the doxycycline-inducible repressor circuit 

where the fgRNA is driven by a Pol II promoter.  In this 

instance, Csy4 is shown editing the fgRNA transcript, 

though this component can be replaced with any of the 

editing methods shown in (a).  (c) Fold change of the three 

editing methods when the fgRNA transcript is expressed 

from a Pol II (TRE) promoter.  When expressed from a Pol 

II promoter, only the CGC construct shows repressive 

activity.  (d) Flow cytometry time course (points) and 

model fitting (lines) of TRE-CGC repressor circuit.  

fgRNA (green) and iRFP (red) expression are tracked while 

fgRNA is either induced with dox (solid lines, diamonds) 

or without dox (dashed lines, circles).  Data in all panels 

are the mean of 4 flow cytometry replicates’ medians ± SD. 
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First, each of the three editing methods was 

tested using a Pol III (U6) promoter. It can be seen 

in Figure 4-8 that all three editing methods had no 

significant effects on transcriptional efficiency.  Pol 

II (TRE) promoter driven versions were then tested 

to characterize their Pol II expression and 

inducibility.  Figure 4-7C shows that Pol II 

expression of CGC was both visible and caused 

downstream repression.  RGR showed little 

expression, while TGT lacked inducibility, 

expressing at a high level regardless of Dox 

concentration. Therefore, CGC editing was used 

for further parameterization experiments. 

With the transition to Pol II expression, dose response curves were generated to 

optimize the concentrations of Dox, CGC, and Csy4 components (Figure 4-9) for 

maximal repression.  CGC effectiveness was shown to begin saturating around 75 mM.  

It was also observed that Csy4 is a very efficient editor, reaching peak effectiveness at 

1.5-2 mM. Dox was most effective at a relatively high concentration (2 µg/mL); 

however, increasing induction too far beyond this point resulted in cell sickness and 

network dysfunction.  These experiments led us to select component concentrations 

yielding stronger output dynamic range (Table 4-2). 

We then ran a time course to observe the direct relation between fgRNA and iRFP 

expression, fitting the results to our ODE model (Figure 4-7D) and quantifying the 

Figure 4-8 Editing method comparison 

Editing sequence effect on Pol III 

expression When pol III transcripts are 

modified to include editing sequences, 

expression and downstream 

repressiveness is affected.  RGR shows 

a decrease in both brightness and 

repression, while only CGC repression 

is affected.  TGT editing does not 

appear to have any effect on pol III 

expression or gRNA repression.  Data 

are the mean of 4 flow cytometry 

replicates’ medians ± SD. 
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underlying parameters determining observed behaviors (Figure 4-10 & 4-11).  For this 

application, the ODE model was expanded to include a fourth equation representing the 

mRNA transcript produced by the Pol II promoter.  This transcript is then edited into the 

functional fgRNA which binds dCas9 and inhibits iRFP production (see Online Methods 

for details).  Fit values of parameters shared 

between the Pol II and Pol III circuits – pDeg, 

fDeg, rMin, rMax, repression coefficient (rK), 

rDeg, b – are similar between experiments, 

verifying the model’s applicability to both 

scenarios.  Examing parameters for both models 

allows a quantitative comparison of the 

promoters used, revealing that the production rate 

(mMax) from TRE is roughly 10-100x weaker 

than that of U6 (fMax).  We also observed that 

Figure 4-9 Pol II repressor optimization 

Optimization of circuit components for TRE-driven repression (a) Inducible pol II circuit fgRNA 

(green) and iRFP (red) response to increasing concentrations of doxycycline. (b) Repressed iRFP 

expression (red) with increasing concentrations of Csy4 plasmid per well, experimental data (circles) 

and exponential fit (line). (c) Dose response of fgRNA (green) and iRFP expression (red) in a 

doxycycline-induced CGC repressor circuit, with increasing amounts of CGC plasmid.  Experimental 

data (circles) were used to calculate fits (lines).  Data are the mean of 4 flow cytometry replicates’ 

medians ± SD. 

Figure 4-10 Pol II model rank fitting 

Pol II time course rank fitting Rank 

fitting of model outputs generated on the 

Pol II repressor time course.  500 fits 

were ranked by their total error (residual 

norm) and the 30 (red) and 150 (blue) 

with the lowest error were selected for 

further analysis. 
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the degradation rate of mRNA (mDeg) was almost 100-fold higher than fgRNA 

degradation (fDeg).  In fact, the mRNA degradation rate was similar to the rate of editing 

into gRNA (mEdi), indicating that mRNAs are divided relatively equally between editing 

and export/degradation and become stabilized once edited into gRNA, possible through 

complexing with dCas9. Taken together, model and guided experiments provide detailed 

and quantitative characteristics of Cas9 based gene expression regulation dynamics, 

which are otherwise hard to acquire. 

 

 

 

Figure 4-11 Pol II parameter analysis 

Pol II time course parameter analysis of the lowest error fittings selected in Figure 4-10.  On the 

diagonal, histogram distributions of each individual parameter are show.  Scatter plots of each 

parameter against the others are shown in the other panels. 
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4.2.4 Fluorescent Guides Drive Layered Pol II only CRISPR Circuits 

Cascades are a common motif in natural regulatory systems which have been shown to 

act as noise filters and as memory devices in synthetic networks (44, 172, 173).  The use 

of fgRNAs in CRISPR-based circuits allows observation of previously hidden nodes 

whose activity could only be inferred from network inputs and outputs.  This improved 

resolution allows us to more accurately characterize the network’s behavior and to 

troubleshoot more effectively. CRISPR-based layered circuits enable us to leverage the 

power of CRISPR and combine it with logic-based design methods for sequential gene 

editing or epigenetic modulation, which will aid in more sophisticated and controllable 

therapies.  However, synthetic layered Pol II CRISPR circuits previously failed to show 

functionality, so we set out to devise strategies to improve them (74). 

Network analysis revealed that increasing mRNA production or decreasing 

mRNA degradation were potential targets for improving network response.  Therefore, 

we constructed and screened a number of fgRNA constructs modified to affect these 

areas (Figure 4-12 & 4-13). First, large portions of non-translated RNA are often found 

on the 5’ end of mRNA transcripts (5’ UTR), and it is believed that it plays a regulatory 

role. It has been shown that the length of the 5’ UTR can control the expression level 

from Pol II and may decrease nucleosome occupancy at the +1  position (174). Therefore, 

we sought to unravel whether modified UTR length could influence gRNA expression 

from a Pol II promoter. For this we inserted an additional random 20 nt sequence within 

the 5’ end of the gRNA transcript, immediately after the transcriptional start and 

compared the efficiency with the original design. Second, the mRNA Poly-A tail is 

strongly associated with nuclear export (175–177). Therefore, we hypothesized that 
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interfering with this component might lead to a larger fraction of mRNA transcripts being 

retained in the nucleus. A similar approach has been employed to optimize the efficiency 

of shRNA expression from Pol II promoters (178). So, we incorporated a truncated 

minimal poly-A terminator (mPA) to provide a smaller poly-A tail to the transcript and 

compared the efficiency with transcripts harboring the original Pol II terminator. 

Additionally, introns have been shown to increase mRNA accumulation when compared 

to similar transcripts which lack introns (179, 180). Along this line, a random, intronic 

100bp sequence was added into the middle of the fgRNA sequence.   Next, we made 

several new designs to improve localization to the nucleus.  An RNA sequence shown to 

impart nuclear localization in long non-coding RNAs (lncRNA) was added to either the 

5’ or 3’ end of the mRNA transcript (181).  Because this sequence has been shown to 

Figure 4-12 Modified fgRNA transcripts 

Transcript modifications to improve fgRNA expression (a) Diagrams of various 

modifications employed to increase circuit functionality: 20bp spacer between 

transcritional start and fgRNA (20bp), mini-poly A terminator (mPA), intronic 100bp 

sequence in the fgRNA (i100bp), multiplexing three transcripts (3x), inclusion of an RNA 

nuclear localization tag on the 5’, 3’ or both ends (5’NLS, 3’NLS, 5’/3’NLS). (b) Fold 

change analysis of modified RGR or CGC constructs, showing fgRNA (green) and iRFP 

(red) expression. Data are the mean of 4 flow cytometry replicates’ medians ± SD. 
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reliably localize lncRNAs to the 

nucleus, it was hypothesized that it 

could have a similar effect on the 

fgRNA-containing mRNAs. 

Finally, gRNAs were multiplexed, 

placing between 2 and 8 copies of 

the same fgRNA plus editing 

sequences one after another in the 

transcript, each separated by a 

short linker sequence.  We 

hypothesized, this strategy would increase gRNA expression relative to the multiplex 

number per mRNA transcript. 

Applied to both RGR and CGC constructs, the results of this screening are shown 

in Figures 4-12 and 4-13.  While the CGC transcript was relatively functional to begin 

with, additional modifications had little effect.  Conversely, initial screening of the RGR 

construct revealed that both expression and repression were minimal, but modification of 

the transcript resulted in a much more functional construct.  The modifications yielding 

the greatest effect were addition of the mPA terminator, as well as multiplexing several 

copies of the fgRNA into a single transcript.  Sequential addition of guides increased 

performance up to 4 or 5 guides, at which point continued multiplexing did not 

appreciably increase expression.  Other modifications – changing spacing between 

promoter and transcript, increasing availability using intronic sequences, and inclusion of 

Figure 4-13 Multiplexed fgRNA transcripts 

Fold change analysis of progressive multiplexing (1x 

through 8x) of an unmodified RGR construct, showing 

fgRNA (green) and iRFP (red) expression. Data are the 

mean of 4 flow cytometry replicates’ medians ± SD. 
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lncRNA nuclear localization 

sequences – resulted in little 

improvement.  As such, further 

efforts focused exclusively on 

multiplexing and terminator 

modification. 

Next, we sought to determine 

whether these improved Pol II driven 

designs were capable of generating a 

functional two-layer, strictly Pol II 

gRNA transcriptional cascade. We 

transfected HEK293FT cells with the 

cascade circuit (Figure 4-14A), with 

and without Dox induction, and 

measured with flow cytometry 72 

hours post-transfection.  An 

unmodified, non-fluorescent CGC construct repressed iRFP expression and was itself 

subsequently repressed by a Dox-responsive modified fgRNA RGR or CGC.  To 

circumvent the lack of non-linearity, twice as much fgRNA, relative to the middle-node 

repressor, was added to more efficiently de-repress iRFP. Combinations of 3x 

multiplexing and the mPA terminator were then used for the Dox-responsive input node 

(Figure 4-14B).  These yielded a moderately functional cascade that was not achievable 

in previous work using a similar circuit topology (74).  As with the screening, modified 

Figure 4-14 Pol II repressor cascade 

Targeted fgRNA modification improves function. (a) 

Diagram of the inducible, Pol II-driven two-tier 

repressor cascade.  Csy4 is shown editing the gRNA 

transcripts in both positions into functional guides.  In 

some experiments, the inducible first node was 

replaced with an RGR construct.  Induction of the 

circuit with dox should increase fgRNA and iRFP 

expression.  (b) Fold changes of the two-tier cascade 

with various fgRNA constructs in the first position.  By 

modifying the fgRNA transcript via multiplexing (3x) 

or alterations to the terminator tail (mPA), fgRNA and 

iRFP expression are improved using RGR constucts.  

Data are the mean of 4 flow cytometry replicates’ 

medians ± SD. 
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CGC transcripts functioned similarly to unmodified CGCs, while modified RGRs showed 

marked improvement over the unmodified RGR, with iRFP fold change reaching a level 

similar to CGC with even greater fgRNA brightness.  These results demonstrate that 

network improvements can be made via targeted re-engineering of circuit components 

directed by detailed analysis of network behavior.  And, even in the absence of 

cooperativity, components can be adjusted to function strongly enough to exhibit 

cascading behavior.  Furthermore, the RGR results show that such modications can be 

used to transform a circuit from non-functional to functional. 

 

4.3 DISCUSSION 

The ability to directly measure gRNA expression enables precise identification of single 

cell dynamical behaviors of CRISPR-based circuits, enabling informed optimization 

decisions to improve circuit functionality.  We employed the fgRNA technology to 

interrogate the dynamics and function of otherwise hidden nodes within CRISPR-

mediated synthetic gene circuits.  Initial validation of fgRNA constructs shows that the 

placement of the fluorescent broccoli aptamer within the gRNA transcript has little effect 

on the function of the gRNA guided repression. The location of the insert only impacts 

overall fgRNA brightness. It was found that insertion of the aptamer into the gRNA 

tetraloop produces the highest fluorescence. We hypothesize that insertion into the 

second loop or tail may result in aptamer misfolding or prevent dye binding.  

Additionally, inclusion at the tail may be hindered by premature transcriptional 

termination, resulting in a functional gRNA with an incomplete aptamer. This 

observation may indicate design constraints for other gRNA-aptamer systems. 
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gRNA regulated by RNA Pol II promoters provides an attractive platform to 

generate libraries of composable CRISPR-based gene networks, and thereby enable 

scaling to more sophisticated circuits.  To identify the optimum strategy for gRNA 

expression from Pol II promoters, we compared three different RNA editing strategies 

RGR, CGC, and TGT.  The CGC-based strategy is shown to be more efficient than the 

other two in our experiments. Furthermore, while TGT editing resulted in no loss of 

function from a Pol III promoter, when used in a Pol II context, it exhibited a lack of 

inducibility.  This is likely because tRNAs themselves may act as promoters (182).  As 

tRNAs have been proposed as a means of efficiently multiplexing gRNAs in a single 

transcript, this is an important consideration for future studies. 

As with Pol III, dynamics of the Pol II driven repressor were evaluated 

mathematically, yielding several intriguing findings.  First, though the editing sequences 

may interfere somewhat with transcription, CGC editing itself is highly efficient. Second, 

we confirmed mathematically that Pol II expression is 10-100x lower than Pol III 

expression.  While some of this could be the result of the flanking editing sequences, it 

also suggests that the Pol II promoters simply produce fewer transcripts than Pol III 

promoters.  This is likely because mRNA transcripts can be upregulated during the 

translation stage in normally functioning Pol II expression systems (161). Third, we show 

that while parameters shared between Pol II and Pol III circuits – pDeg, fDeg, rMin, 

rMax, rK, b – are centered around the same values as expected, the Pol II model exhibits 

increased variability around this center, suggesting that Pol II driven gRNAs may be less 

well-regulated – in terms of production, degradation, and repression effectiveness – than 

their Pol III counterparts.  This may be due to variability introduced by editing, as that is 
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the primary point of difference between the networks; however, why this would be true 

mechanistically is unclear. Alternatively, this may be a mathematical artefact due to the 

more noticeable role of stochasticity within smaller populations. Smaller changes in 

output, like those seen in the Pol II network, may have more combinations of parameters 

that still fall within a physiologically relevant range, whereas the larger changes of the 

Pol III network, tend to group more clearly. If increased variability were to remain after 

further improving gRNA expression, identifying the source of this variability and ways to 

control it will be an interesting and necessary route for future experimentation.  Finally, 

our analysis and experiments demonstrate a critical property of CRISPR circuits: dCas9 

regulation lacks cooperativity, resulting in a linear relationship between the amount of 

gRNA-complexed dCas9 and the response of the circuit.  Nonlinearity is an essential 

component of multistable networks and is crucial for noise reduction and maintaining 

signal fidelity in larger networks.  Engineering cooperativity is still a challenge in 

CRISPR circuit construction and might be accomplished through dimerization of the 

Cas9 protein or through inclusion of RNA aptamers which allow gRNAs to recruit 

additional gRNAs. 

With a mathematical understanding of the dynamics underlying the fgRNA 

repressor network, we identified areas – gRNA production and degradation – that we 

could alter to improve system function to produce a functional transcriptional cascade 

using only Pol II driven components.  We focused on improving gRNA availability by 

increasing gRNA production through multimerization and reducing gRNA nuclear export 

through terminator selection.  As we demonstrate, lower Pol II production can be offset 

through multiplexing several identical gRNAs into the same transcript, though this 
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method runs into limits from transcriptional falloff and plasmid instability due to highly 

repetitive sequences.  Additionally, alterations to the terminator impart increased fgRNA 

brightness and downstream repression. Through these alterations, we were able to 

transform the previously non-functional Pol II driven RGR-based CRISPR repressors into 

one capable of driving downstream derepression in a repressor cascade.  Circuit 

component concentration optimization alone was enough to produce a functional CGC 

cascade.  Thus, we succeeded in developing two editing methods that could produce 

functional Pol II gRNA transcriptional repression cascades, which was not previously 

achieved (74).  While CGC requires coexpression of the Csy4 protein for editing, 

improved RGR efficiency provides an all-in-one system that works equally well and 

gives researchers additional flexibility to overcome experimental constraints.  Many viral 

delivery methods, for example, impose a limit on the amount of DNA which can be 

packaged, so inclusion of an additional protein reduces the available space for 

therapeutics (183).  With a process as complex as transcription, we are left with myriad 

angles for potential innovation in this area, such as the inclusion of enhancer sequences 

within the promoters, optimized RNA Pol II promoter sequences, optimized 

transcriptional start sites, or improved nuclear localization sequences.  We used a 

mathematical approach to direct circuit modification, but the dissimilar response of RGR 

and CGC to similar modifications indicates that quantification and standardization of 

DNA sequence selection and assembly methods remains an area of importance for 

synthetic biology.    There is still enough variability between research groups and 

experimental methods that approaches which yielded negative results in our hands cannot 
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be rejected outright. Universal standardization of methods for similar studies will aid in 

better characterization of these networks. 

Constructing reliable and predictable gene networks is a nontrivial undertaking.  

The recent prominence of CRISPR technology promises to improve the process by 

offering easier generation of unique, orthogonal components and by allowing easier 

engineering of interactivity between network parts.  With the transition to RNA-based 

transcriptional regulation; however, additional areas require further exploration.  Here, 

we present a tool for visualization of gRNA dynamics within cells and demonstrate how 

its proper implementation can allow for improved modeling, prediction, and functionality 

of CRISPR-based gene circuits. 

 

4.4 METHODS 

Cell Culture and Transfection 

All experiments were performed in HEK293-rtTA3 cells (cell line generation detailed by 

Kiani, et al (74)), a strain of HEK293FT cells with genomically integrated constitutively 

active rtTA activator.  Cells were maintained in DMEM (Corning Life Sciences) 

supplemented with 10% FBS (Sigma Aldrich), 1% non-essential amino acids (NEAA; 

Gibco), 1% L-glutamine–streptomycin–penicillin mix (Gibco), and 1% GlutaMax 

(Gibco).  Transfections were performed using Polyethylenimine (PEI) as a transfection 

reagent (Polysciences, Inc.).  Cells were seeded in 24-well plates the day before so that 

they were at ~80% confluence at the time of transfection.  Masses of various plasmids 

used in each set of experiments are shown in Table S2. After DNA mixes were made, the 

volume was brought to 25 µL by adding DMEM (no supplements) then combined with 
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an additional 25 µL DMEM (no supplements) with PEI equivalent to a 3:1 DNA:PEI 

ratio.  This was vortexed twice for 1 second each and allowed to stand at room 

temperature for 30 minutes.  While the DNA mixes sat, media was changed (DMEM with 

supplements above), and if necessary Dox was added to the wells as an inducer.  All Dox 

inductions were performed at a concentration of 2 µg/mL.  After 30 minutes, 50 µL of the 

DNA mixture was added to each well with micropipette, dipping the tip into the well’s 

media and slowly ejecting while swirling inward, careful not to scrape the bottom of the 

well.  Media and inducers were changed daily until analysis. 

 

Plasmids 

Plasmids were constructed using golden gate cloning methods, with pieces either copied 

from existing plasmids via PCR or de novo synthesis.  All DNA components were 

purchased through Integrated DNA Technologies (IDT).  The CRP-iRFP reporter 

plasmid was assembled using gateway cloning, combining the promoter and protein 

coding region in a gateway destination vector backbone.  The Csy4 plasmid, PGK1p-

Csy4-pA (Construct 2), was a gift from Timothy Lu (Addgene plasmid # 55196) (157).  

The dCas9-EBFP plasmid, pHR-SFFV-dCas9-BFP, was a gift from Stanley Qi & 

Jonathan Weissman (Addgene plasmid # 46910) (184). 

 

Flow Cytometry 

Prior to flow cytometry, wells were trypsinized with 100 µL 1x trypsin (Gibco) then 

inactivated with 200 µL Hanks Balanced Salt Solution (HBSS; Corning Life Sciences) 

without Calcium or Magnesium but supplemented with 2% FBS.  These were transferred 
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to a 96-well plate and pelleted at 300g for 2 minutes at 4°C.  The supernatant was 

aspirated, and cells were resuspended in 200 µL Phosphate Buffered Saline (PBS; 

Corning Life Sciences) with 4% FBS and 40 mM DFHBI-1T (Lucerna), as recommended 

in prior literature(165).  Flow Cytometry was performed either daily (for time courses) or 

72 hrs post-transfection, using a FACSCelesta flow cytometer (Becton Dickson) with 

HTS attachment.  The cytometer was configured with Violet (405nm), Blue (488nm), and 

Red (640nm) lasers, used for excitation of EBFP (450/40 filter), Broccoli/DFHBI-1T 

(530/30 filter), and iRFP (780/60 filter), respectively.  Samples were collected at 1.5 µL/s 

to a total of 200,000 events. 

 

Data Analysis 

Data were analyzed using MATLAB (MathWorks, Inc.).  Gates were generated against a 

test data set using a Gaussian Mixed Model (GMM), then applied to all experimental 

data.  The GMM used 6 clusters with 20 replicates, selecting the highest log likelihood.  

Channels used for gate generation were Front Scatter (FSC-A), Side Scatter (SSC-A), and 

EBFP (BV421-A) which was our transfection marker.  Because the EBFP values were 

log distributed, we used a Log10 tranform of the actual values to fit the GMM.  This 

same transformation was also performed on all experimental data before clustering, then 

reversed to maintain the original values.  Once gated, the median green (BB515-A) and 

infrared (APC-Cy7-A) fluorescence of all cells with expression >0 was calculated.  Fold 

change of these fluorescences were calculated by dividing the expression with the 

addition of gRNA/Dox by the expression beforehand. 
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Modeling 

Ordinary Differential Equation (ODE) models were solved and analyzed using MATLAB 

run on a personal computer.  We designed a system of ordinary differential equations 

(ODEs) to describe the expression of important components in the system.  For the U6 

driven fgRNA repressor, we began with equations for fgRNA (F, eqn 4-1) and iRFP (R, 

eqn 4-2), following standard forms for production / degradation and hill function 

repression. 

𝑑𝐹

𝑑𝑡
= 𝑝𝑜𝑙3 ∗ 𝑓𝑀𝑎𝑥 − 𝐹 ∗ 𝑓𝐷𝑒𝑔 eqn (4-1) 

𝑑𝑅

𝑑𝑡
= 𝑟𝑒𝑔 ∗ 𝑖𝑟𝑓𝑝 ∗ (𝑟𝑀𝑖𝑛 +

𝑟𝑀𝑎𝑥

1+(𝑟𝐾∗𝑐𝑎𝑠∗𝐹)𝑏
) − 𝑅 ∗ 𝑟𝐷𝑒𝑔 eqn (4-2) 

Due to the transient nature of the transfection protocol used, we added another 

equation to describe plasmid dilution with each subsequent cell division (P, eqn 4-3), 

which was then integrated into the F and R equations (eqns 4-4 and 4-5).  These 

equations were used for fitting the Pol III experimental data. 

𝑑𝑃

𝑑𝑡
= −𝑝𝐷𝑒𝑔 ∗ 𝑃 eqn (4-3) 

𝑑𝐹

𝑑𝑡
= (𝑃 ∗ 𝑝𝑜𝑙3) ∗ 𝑓𝑀𝑎𝑥 − 𝐹 ∗ 𝑓𝐷𝑒𝑔 eqn (4-4) 

𝑑𝑅

𝑑𝑡
= (𝑃 ∗ 𝑟𝑒𝑔) ∗ (𝑃 ∗ 𝑖𝑟𝑓𝑝) ∗ (𝑟𝑀𝑖𝑛 +

𝑟𝑀𝑎𝑥

1+(𝑟𝐾∗(𝑃∗𝑐𝑎𝑠)∗𝐹)𝑏
) − 𝑅 ∗ 𝑟𝐷𝑒𝑔 eqn (4-5) 

To account for both Pol II as well as Pol III RNA production, a fourth equation 

was added representing mRNA expression (M, eqn 4-6).  This equation included an 

editing term, which converts some portion of M into F, requiring modification of the 

equation of F to account for this change (eqn 4-7).  The modified equations used for 

fitting the Pol II data were: 
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𝑑𝑀

𝑑𝑡
= (𝑃 ∗ 𝑝𝑜𝑙2) ∗ (𝑚𝑀𝑖𝑛 + 𝑑𝑜𝑥 ∗ (𝑃 ∗ 𝑟𝑒𝑔) ∗ 𝑚𝑀𝑎𝑥) − 𝑀 ∗ 𝑚𝐸𝑑𝑖 − 𝑀 ∗

𝑚𝐷𝑒𝑔 eqn (4-6) 

𝑑𝐹

𝑑𝑡
= (𝑃 ∗ 𝑝𝑜𝑙3) ∗ 𝑓𝑀𝑎𝑥 +𝑀 ∗ 𝑚𝐸𝑑𝑖 − 𝐹 ∗ 𝑓𝐷𝑒𝑔 eqn (4-7) 

Model fitting was performed in MATLAB software using a least-squares curve-

fitting algorithm (lsqcurvefit).  The fitting was first performed on the Pol III data using 

equations 4-3, 4-4, and 4-5 to fit the following parameters: pDeg, fMax, fDeg, rMin, 

rMax, rK, b, and rDeg.  The algorithm was run 500 times with randomly selected initial 

conditions within physiologically relevant bounds (determined empirically).  The fitting 

rank and squared error (resnorm) are shown in Figure 4-5.  Because there was no clear 

region of noticeably superior fit, we selected the 250 best fits, as well as a smaller sub-

population of the 50 best fits, for further analysis.  Figure 4-6 shows these fit parameters’ 

distributions as histograms and as scatter plots against one another. 

When expanding to the 4-equation Pol II model (eqns. 4-3, 4-6, 4-7, and 4-5) the 

same fitting algorithm was used on the 11 relevant parameters parameters: pDeg, mMin, 

mMax, mDeg, mEdi, fDeg, rMin, rMax, rK, b, and rDeg.  Again, fittings were ranked by 

resnorm (Figure 4-10) and plotted against one another (Figure 4-11). 
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5 INTRACELLULAR NOISE LEVEL DETERMINES RATIO CONTROL 

STRATEGY, SPEED, AND ACCURACY 

 

This chapter was prepared in collaboration with Xiao-Jun Tian, Ph.D. and Xiao Wang, 

Ph.D. and is under consideration for publication. 

 

5.1 INTRODUCTION 

Ratio control of differentiation within isogenic populations is a ubiquitous but poorly 

understood phenomenon. From single celled microbes to higher organisms, many 

processes require mixed populations to carry out complex functions, like bacterial 

persistence (11, 120), bacterial competence (30, 119), nasal and ocular receptor 

development (185–187), differentiation of blood and vascular cells (12), immune 

response (188), and stem cell maintenance and differentiation (189). Several general 

explanations for how this phenotypic diversity arises have been proposed, such as 

stochastic fluctuations within gene regulatory networks (48, 190), asymmetrical 

sequestering of regulatory proteins during cell division (191), and differential response to 

spatial gradients of extracellular soluble factors (192).  While each of these methods 

could theoretically generate a mixture of differentiated cells within a population, research 

has frequently focused on the types of cells yielded, rather than the quantitative control of 

their ratios. These processes are often tightly controlled in terms of ratio accuracy and 

attainment speed to avoid overspecialization or to ensure normal development (193, 194).  

Developing a unified understanding of the mechanisms and relevant factors to achieve 

and maintain precise ratio control will have widespread benefits in areas such as 
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countering bacterial immunity (27), treating diseases in which ratio control is disrupted, 

as is the case in some platelet disorders (195) or mastocytosis (196), or in developing 

improved protocols for stem cell differentiation (197, 198). 

As with many biological systems, the highly interconnected nature of the 

underlying genetic regulatory circuitry makes it difficult to study phenotypic ratio control 

without encountering myriad confounding variables.  Synthetic biology, by cutting 

through to the basics of transcriptional regulation in isolated and orthogonal circuits, 

offers an attractive route for exploring mechanisms underlying ratio tuning.  Studying 

fundamental genetic motifs in isolation has yielded a greater understanding of key 

cellular behaviors, such as multistability, oscillation, and adaptation (77, 79, 82, 135).  

Multistable networks, specifically, are highly relevant for cellular differentiation 

processes and have wide applicability in a diverse range of contexts, from developmental 

biology (199), to targeted therapeutics (200), and cell-environment interactions (201).  

Synthetic toggle switches have been implemented repeatedly in multiple organisms, 

demonstrating the feasibility of studying differentiation with minimal, synthetic circuits 

(79, 82, 202, 203).  Further exploration of bistable circuits can reveal how sub-population 

ratios can be controlled and manipulated, the limits of various control schema, and best 

practices for controlling state transitions on the single-cell and population levels. For 

example, recent work has studied how circuit component selection effects the network’s 

hysteretic region (82) and how inclusion of additional circuit components can be used to 

adjust population ratios (90). 

Here, we present methods for reliably tuning multimodal populations’ ratios 

without the need for additional network components.  First, using E. coli, we show that 
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positioning of a population with noisy intracellular expression dynamics within the 

bistable region can be enough to achieve fractional differentiation.  Then, using the less 

noisy expression dynamics of S. cerevisiae, we demonstrate that temporary deviations 

from the bistable region can direct robust ratio differentiation in a low-noise system.  By 

precisely modulating the stimulus strength and duration for which the network is moved 

towards the other state, we achieve reliable ratio tuning.  From these findings, we develop 

a mathematical framework through which we can fully understand the roles of stimulus 

dosage, stimulus duration, and noise in driving fractional state switching of cellular 

populations. Gene expression noise acts as a global regulator of ratio tuning speed and 

accuracy, with noise level positively correlated with speed but negatively correlated with 

accuracy.  Low noise systems become candidates for pulsed induction ratio tuning, in 

which an inverse correlation between stimulus dose and duration is observed, translating 

into a tradeoff between the speed to attaining a chosen ratio and ratio accuracy.   

 

5.2 RESULTS 

5.2.1 Noise-induced ratio control in bacteria 

To investigate mechanisms of ratio control in bacteria, we first use the well-established 

bistable toggle switch circuit (204). The topology is that of mutual inhibition (Figure 5-
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1a) in which TetR and LacI repress 

one another while LacI is co-

expressed with green fluorescent 

protein (GFP). TetR activity can be 

modulated with the addition of the 

small molecule anhydrotetracycline 

(ATc), which inhibits TetR activity 

and hence alleviates its inhibition 

on the expression of LacI.  When 

grown in the absence of induction, 

the system favors the TetR 

dominant, low GFP state. A 

hysteresis curve was generated as 

a function of ATc concentration 

(Figure 5-1b) to probe the cells 

state distribution in and out of its 

bistable region. Fitted with a 

deterministic model, it is 

indicated that the left bifurcation 

point is less than 0 ng/mL ATc 

while the right bifurcation point 

to be around 2 ng/mL ATc. 

Within the bistable region 

Figure 5-1 Noise induced ratio control 

Gene expression noise in E. coli induces fractional 

differentiation within the bistable region. (a) Diagram of the 

mutual inhibition toggle switch.  (b) In E. coli, this toggle 

switch exhibits hysteresis from 0 to roughly 2 ng/mL ATc.  

Within this range, cells can stably hold either the low GFP 

or high GFP states.  The plot shows mean of 3 replicates’ 

medians ± SD, overlaid with model-predicted hysteresis 

curve. (c) Flow cytometry histograms of initially GFP-off 

populations show that as ATc dose increase, gene expression 

noise causes an increasing fraction of cells to spontaneously 

turn on. Dashed lines indicate an empirical threshold 

between OFF and ON cells. Three replicates are shown on 

each plot with corresponding dosage and the total percentage 

of ON cells noted.  Data of 10000 cells are collected for 

each experiment. (d) Energy potentials computed for 

different ATc dosages within the hysteretic region show the 

relative stability of the two steady states.  At 1 ng/mL cells 

transition at similar rates between wells (arrows), but as ATc 

dosage increases, the potential well for the low state 

becomes shallower, allowing cells to more easily transition 

to the high GFP state (represented by thicker arrow head). 

Potential wells are generated from a stochastic simulation fit 

to the hysteresis curve data. (e) Stochastic model predicted 

ON percentage (blue line) fit experimental results (red 

square) accurately. Experimental ON percentage is 

computed as the mean ON percentage of three replicates. 
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bimodal behavior was observed, 

with a portion of cells in the high 

GFP state while some in low GFP 

state (Figure 5-1c). This bimodality 

is believed to be caused by noise 

driven spontaneous state transitions 

(60, 119, 205). 

To quantitatively understand 

the relationships between noise and 

resulting bimodality of phenotypes, 

we developed a stochastic model to 

explore the energy landscape 

underlying this bistability. It is 

shown that as ATc concentration 

increases the depth of the left (low GFP) potential well decreases (Figure 5-1d; Figure 5-

2). This essentially lowers the barrier of state transition from low GFP to high GFP, 

predicting higher ATc induction would result in a larger percentage of cells in high GFP 

state. Experiments indeed confirmed model predictions (Figure 5-1c, Figure 5-3a). This 

fraction changed little between measurements at 5 and 8 hours, suggesting it is stable.  

Furthermore, it is shown that our model can predict such ratio control with high 

quantitative accuracy (Figure 5-1e, Figure 5-3b-c), showing that high-GFP cell ratios 

increase monotonically but nonlinearly as ATc induction increase. Such a gradual and 

Figure 5-2 Simulation of noisy kinetics 

Simulations with different levels of ATc show random 

state switching, with the time spent in each state 

indicating the relative depths of each state’s energy well. 

(A) At 1 ng/mL ATc, cells transition relatively freely 

between the GFP-on and GFP-off states. (B) At 2 ng/mL, 

cells preferentially transition to the GFP-on state; 

however, gene expression noise is large enough to 

occasionally cause them to transition back to the GFP-off 

state. 
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steady increase of ON cell percentage as a function of induction doses could enable a 

precise ratio control for the whole bacteria population. 

This finding of tunable ratio control by adjusting induction strength within the 

bistable region suggests one possible ratio control strategy for systems that require 

precise fractional, but uncoordinated, control of population differentiation.  Bacteria, for 

example, often keep a subset of the colony in a dormant persister state to ensure survival 

in the case of unexpected environmental shifts or antibiotics (11, 120).  Stochastic 

switching provides a simple mechanism for entering and exiting this state.  Similar 

behavior is seen in the bacterial motility and adhesion decisions (206, 207), or in 

switching to a mutable, competent state (193).  In these cases, the overall ratio remains 

relatively fixed; though, individual cell’s states are not. However, this strategy demands 

relatively high intracellular noise, which is common in plasmid-based bacterial systems 

Figure 5-3 Noise within the hysteretic region 

Noise induces bimodality within the hysteretic region. (a) Histograms of ATc doses within the 

hysteretic region show that as time progresses, cells spontaneously switch states due to intracellular 

noise. (b) Model results showing typical simulation results at 1.5 ng/mL ATc.  By the end of the 8 hr 

simulation, roughly half of the simulated cells have transitioned to the GFP-on state. (c) Heat map of 

simulation results for 500 cells at range of ATc concentrations from 0 to 2 ng/mL, showing GFP 

expression after 8 hours of simulation.  At higher ATc concentrations, cells show greater average GFP 

expression. 
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(208), so that individual cells could spontaneously transition between states within 

reasonable amount of time. 

 

5.2.2 Pulsed induction ratio control in yeast 

Spontaneous and random back and forth switching between states is certainly not suitable 

for processes requiring irreversible cell fate determination, such as development and cell 

differentiation. In these contexts, intracellular noise would need to be low enough to 

avoid stochastic state switching. To identify possible ratio control strategies in such low-

noise environment,  we transitioned experimentally to a less-noisy system: the 

chromosomally integrated mutual inhibition toggle in S. cerevisiae (82).  This circuit has 

Figure 5-4 Pulsed induction ratio control 

In S. cerevisiae, gene expression noise is lower, requiring temporary deviation from the bistable region 

to induce multimodality. (a) The hysteresis curve of the yeast toggle switch shows strong stability.  The 

plot shows mean of 3 flow cytometry replicates’ medians ± SD, overlaid with model-predicted 

hysteresis curve.  (b) Yeast were exposed to pulses of ATc with varying dose and duration.  Before the 

pulse (Phase I), all cells resided in the low-GFP state without any induction, corresponding to a single-

welled potential landscape.  The induction pulse (Phase 2) changes the underlying landscape to a single 

well in the high-GFP state, and cells begin to transition from low to high GFP state.  Before all cells 

transition, induction is reduced to 8 ng/mL (Phase 3), at which there are two deep potential wells, low 

GFP and high GFP.  Partially transitioned cells either transition fully or return to their initial low-GFP 

state. (c) Four flow cytometry experiments with four replicates each after pulse induction are shown 

with the total percentage of cells to the right of the dashed line. Inducer pulses for controlled durations 

allow for a wide range of ratios, with multiple paths to the same endpoint.  Pulses of either 25 ng/mL 

or 30 ng/mL ATc for 4 or 8 hours achieve a range of final ratios, with the 25x8 and 30x4 pulses 

producing nearly identical outcomes. 
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the same topology as that shown in Figure 5-1a, exhibits hysteretic behavior (Figure 5-

4a), and favors the TetR-dominant, low-GFP state under no induction.  However, 

differences in promoters, copy number, and transcription-translation processes between 

E. coli and yeast serve to reduce intracellular noise and shift the bistable region up to 

roughly 3-14 ng/mL ATc.  Unlike in E. coli, the bulk of the bistable range was 

impervious to the effects of intracellular noise, resulting in a single peak homogeneous 

expression profile even when the system is operating within the bistable region (82).  

Instead, to induce bimodality, we hypothesized that internal variability could be utilized 

by temporarily forcing the cells outside of the bistable region favoring another state. Then 

the population would begin to transition to the other state. However, natural stochasticity 

would cause some cells to transition faster than others.  When the population was 

returned to the bistable region prior to full-population transition, some fraction of the 

cells would finish their transition while the rest would return to their original state. Figure 

5-4b schematically illustrates this process and how the various stimulus levels adjust the 

underlying potential landscape to induce bimodality.  This diagram also shows the two 

variables which determine population response: dose, which measures the magnitude of 

the induction pulse, and duration, the length of time for which the dose is applied.  Using 

this method, the population achieved a specific phenotypic ratio and individual cells only 

transition state once, which is distinct from E. coli.  

Systematic temporal induction experiments were then designed and carried out to 

test our hypothesis.  Using doses of 20, 25, 30, 35, and 40 ng/mL ATc, with pulse 

durations between 2 and 24 hours, we comprehensively explored the range of ratios 

yielded by various dose/duration pairs (Figure 5-5).  As seen in Figure 5-4c, there exists 
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an inverse relationship between dose and duration, with increases in either variable 

causing a larger fraction of the population to transition to the high GFP state. Therefore, 

similar fractional responses can be obtained through multiple induction routes. For 

example, as demonstrated in the middle two panels of Figure 5-4c, 8 hours of 25 ng/ml 

induction and 4 hours of 30 ng/ml both produced about 59% of ON cells.  Therefore, this 

pulsed induction method is experimentally verified to be able to produce tightly 

controlled yeast population ratios. 

To further understand the tradeoff between dose and duration, we developed a 

system of stochastic differential equations (SDEs) to help interpret experimental results.  

The model fit of the experimental data (Figure 5-6a) provides insight into the range of 

Figure 5-5 Low-noise pulsed-induction experiment 

A sample experiment in yeast, showing 25 ng/mL pulses of ATc for between 2 and 8 hours.  At the 12-

hour mark, the population is still settling into a stable on/off ratio.  By 24 hours, population ratio is 

fixed, as evidenced by the minimal differences between 24 and 36 hours.  Plots show overlays of 5 

replicates, with the total percentage from all replicates to the right of the dotted line indicated. 
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doses and durations appropriate 

for producing specific ratios.  

For example, with a 20 ng/mL 

ATc induction, it took between 

18 and 24 hours to have greater 

than 70% of the cells to 

transition to the high GFP state, 

whereas a 40 ng/mL induction 

produced the same transition 

with a 4-hour pulse.  Generally, 

we observe that larger doses 

produce fast switching 

dynamics, and smaller doses 

required progressively longer 

durations to produce similar 

switch percentages.  As 

evidenced by the very long 

durations for the 20 ng/mL dose, induction pulses near the bifurcation point could require 

durations of a day or more to cause a majority of cells to transition to high GFP.  Using 

experimentally validated model and parameters, more simulation data were analyzed to 

determine the robustness of the system to temporal perturbation of the pulse length.  For 

this, we looked at the difference in time required to cause 30% and 70% of the population 

to transition, termed tuning range (TR= T70 – T30). Figure 5-6b shows that while lower 

Figure 5-6 Simulations predict ratio control 

Mathematical modeling reveals the relationship between dose 

and duration needed for precise ratio control. (a) 

Experimental data (circles) were used to fit the stochastic 

model (lines) for multiple dose-duration pairs, showing strong 

agreement between the model and experimental results.  

Experimental data are the mean of 4 or 5 replicates’ medians 

± SD. (b) Further simulations show induction duration needed 

for a specific ratio increases exponentially as dose decreases 

until near the bifurcation point at roughly 14 ng/mL. 

Additionally, the tuning range between when a small portion 

of the population has switched states (teal) to when a large 

fraction has transitioned (red) is large at low doses but shrinks 

with increasing doses. 
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doses require longer durations to achieve a desired 

ratio (higher vertical positions of colored bars 

towards the left), these doses also have a bigger 

TR (longer vertical span of colored bars), 

suggesting ratio tuning in this region is more 

robust against temporal variation of induction 

pulses.  For example, a 25 ng/mL dose generates 

30% high GFP with a 4-hour pulse and 70% with 

a 7-hour pulse, resulting in a TR of 3 hours.  For 

20 ng/ml induction, T30 and T70 both increase to 8 

and 13 hours, respectively, resulting in an overall 

larger TR of 5 hours, indicating that there is more 

room for pulse-length error if a specific ratio 

within this range is desired. Conversely, larger 

doses, due to their fast switching dynamics, leave 

little room for error if a specific ratio is desired, 

with T30 and T70 being nearly the same. Results 

for on-off transitions show a similar relationship 

between induction dose and required duration 

(Figure 5-7), and E. coli exhibit similar switching 

behavior as well (Figure 5-8).   

 

Figure 5-7 On-Off transition dynamics 

Yeast exhibit similar state-transition 

dynamics with low ATc dosages 

causing on-to-off switching.  Durations 

are longer, as at the initial stages of 

transitions, LacI must be outcompeted 

solely by TetR leakage, whereas in the 

off-to-on case TetR is effectively 

inactivated by ATc allowing immediate 

full-strength production of LacI. 

Figure 5-8 Pulsed induction in a noisy system 

E.coli experience similar off-to-on 

transition dynamics to yeast.  The ATc 

range for achieving tunable ratios is 

lower due to the location of the bistable 

region, and intracellular noise makes 

ratio attainment noisier overall. 
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5.2.3 The effect of gene expression noise on ratio tuning approaches 

To develop a complete understanding of the relationship between noise and ratio control 

strategies across the noise spectrum, we employed an in silico approach that allows us to 

adjust the noisiness of gene expression while holding other system parameters constant. 

The model has been shown to be able to recapitulate experimental results accurately 

under various conditions and therefore serves as an appropriate tool to conduct thorough 

in silico explorations so that we can meaningfully compare ratio control outcomes 

between high and low noise scenarios. 

To investigate the effect of noise on system responsiveness to induction, 

simulations like those shown in Figure 5-1 were carried out in low and high noise 

settings.  Figure 5-9a shows that increasing noise reduces the time required for a 

population to transition to a new steady state ratio.  The orange line indicates the steady 

state percentage of the population which will transition to the high-GFP state at a given 

ATc concentration.  All distributions between 0 and 100% are represented with the 

circuit’s bistable region, with the ATc concentrations resulting in 30% and 70% on cells 

(grey region) defining a region of broad tunability.  The steady state is strictly 0 or 100% 

to the left or right of the bistable region, respectively.  Because the time required to reach 

a steady state approaches infinity in the absence of noise, we measured the time needed 

for the population to reach half of the steady state (Thalfmax).  In the low noise setting 

(light blue line), Thalfmax is very long within the bistable region, with times of 20 hours or 

more for steady state ratios below 80%.  This is consistent with our previous studies in 

yeast (82).  In the high noise setting (dark blue line), Thalfmax is universally reduced, with 

the largest value being 15 hours when transitioning to 50% high-GFP.  Beyond the 
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bistable region, noise plays a 

less prominent role, with the 

high and low noise conditions 

resulting in very similar 

transition times.  These results 

indicate that constant induction 

within the bistable region is 

only a suitable ratio control 

strategy for systems with high 

enough noise to induce 

frequent and spontaneous state 

transitions. 

Because of the long 

transition times in the low 

noise setting, the ratio control 

strategy for these cells 

becomes transient induction 

outside the bistable region. To 

compare the impacts of noise 

from multiple perspectives, we 

developed criteria by which to 

measure system responsiveness.  Stimulus responsivity (SR = 1/T30) is a measure of the 

speed of transitions in response to a stimulus, higher SR value means faster ratio control. 

Figure 5-9 Transition speed and accuracy trade-off 

Gene expression noise determines appropriate method for 

achieving predictable ratio control. (a) The orange line 

indicates the steady state population level average expression 

of the system, with the gray region bounded by constant 

induction dosage needed for 30% and 70% high GFP.  Blue 

lines indicate Thalfmax for low noise (light blue) and high 

noise (dark blue) environments. High gene expression noise 

reduces the time required for the population to transition from 

off to the steady state determined by inducer concentration. 

The hysteresis curve (black) is included for visual reference.  

(b) Network transition speed (SR, red, left y-axis) and 

robustness (TR, purple, right y-axis) of ratio control for a range 

of induction dosages.  Relative to the low noise setting (light 

lines), high intracellular noise (dark lines) increases SR, 

leading to faster ratio control.  TR is slightly reduced with 

increased noise, though this effect is less prominent.  Both 

effects are larger at lower ATc concentrations. These curves 

divide the induction space into 5 regions.  Regions A, C, and E 

are unsuitable for generating controlled ratios because cells do 

not transition (A), transition too slowly (C), or lack robust ratio 

control (E).  Precise ratios can be attained in region B if noise 

is high enough to increase SR to an acceptable level.  Region D 

is suitable for ratio control if both SR and TR are large enough, 

determined empirically.  Here, region D meets the criteria SR > 

10-0.9 and TR > 3 in the low noise setting. 
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Along with TR, both metrics can be calculated for pulsed inductions as used in Figure 5-

4. 

Both TR and SR were computed for simulations of pulsed inductions for various 

inducer concentrations in both low and high noise conditions. As can be seen in Figure 5-

9b, while the system’s responsiveness (SR, red lines) increases asymptotically as the dose 

increases, tolerance to error (TR, purple lines) decreases.  For a low dose of 15 ng/mL, 

SR increases from 10-1 at low noise (light lines) to 10-0.9 with high noise (dark lines), 

whereas TR decreases from 35 to 28 hours.  At 20 ng/mL, SR increases from 10-0.95 to 10-

0.85 while TR sees little change with increasing noise.  This is consistent with the findings 

from Figure 5-9a, which showed that differences in response time due to noise were most 

apparent within the bistable region.  Generally, noise causes a noticeable increase in SR 

at doses below 35 ng/mL, but differences in TR are only notable below 20 ng/mL.  The 

reason for this is shown in Figure 5-10, which indicates that increasing noise shifts the 

dose/duration curve left, decreasing SR, but only mildly increases the curve’s slope, 

which determines TR. 

These data divide the system’s induction range into 5 broad categories, labeled A-

E.  Regions A, C, and E are not ideal for either method of ratio control, but regions B and 

D (shaded gray) may be appropriate under certain conditions.  Region A is unsuitable for 

ratio control because there is neither enough noise nor induction strength to cause a 

substantial fraction of the population to turn on.  The boundaries of region B are fixed 

mathematically by the system’s parameters and indicate the range of constant induction 

which may result in a broad range of precisely tuned ratios. However, as discussed, large 

enough expression noise is required to attain these ratios within a reasonably short time 
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frame.  Regions C-E cover induction levels only appropriate for pulsed induction, 

because constant induction at these levels will eventually cause most cells to turn on.  

The borders separating these three regions are determined by experimental constraints on 

SR and TR: the region’s left edge set by SR, and its right edge set by TR.   In region C, 

the system is highly tunable but responds so slowly as to not be viable.  In region E, the 

response time is fast, but tuning accuracy is lost.  Region D finds a compromise between 

Figure 5-10 Pulsed induction simulations 

Noise effects on pulse-induced ratio tuning, for 20 ng/mL ATc pulses with pulses 

ending every hour from 1 to 48 hours.  T30 and T70 are the times at which the 

dose results in 30% or 70% of the population transitioning to the high GFP state, 

respectively. (a) In a low-noise system (Ω = 10), cells maintain the fate their 

chosen fate after the induction pulse has finished. (b) Under mid-noise conditions 

(Ω = 2), cells begin transitioning to the steady state of the post-pulse conditions, 

8 ng/mL ATc. (c) In a high noise system (Ω = 1), post-pulse transitioning is very 

apparent. 
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SR and TR constraints and is therefore appropriate for pulsed induction ratio control.  

Here, the constraints of SR > 10-0.9 and TR > 3 hours provide a good inducer range that 

balances speed and accuracy for the low noise condition. 

Finally, region B also plays an important role in pulsed induction contexts.  As 

seen in the mid- and high-noise simulations in Figure 5-10, once the pulse is finished, 

noise will cause the system to continue transitioning to the ratio defined by the final 

induction level.  While the low-noise condition essentially “locks” in the chosen cell fate, 

higher noise levels increase the speed at which the population converges to the constant 

induction steady state.  While many natural systems have built in mechanisms to “lock” 

in cell fate (209), in the absence of such mechanisms the final induction level chosen 

after a pulse is important for fulfilling that role. 

 

5.3 DISCUSSION 

In this work, we have used the mutual inhibition toggle switch – a synthetic version of a 

common genetic memory motif – to explore the temporal aspects of differentiation.  

Extracellular factors can drive a fraction of a population to switch phenotype and these 

factors interplay with intracellular noise to regulate population response.  In the case of E. 

coli, with noisy gene expression dynamics, applying constant induction within the 

bistable region was enough to elicit state-switching.  With the less noisy kinetics 

observed in S. cerevisiae, on the other hand, cells retained their steady state behavior 

unless temporarily forced out of the bistable region with a pulse of induction.  Through 

both methods, it was demonstrated that control of population ratios could be achieved 

with a high degree of precision. 
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In the case of transiently introduced pulses of extracellular factors, we show that 

there exists an inverse relationship between the strength of the stimulus and duration for 

which it is administered.  A target ratio can be achieved reliably either with a strong pulse 

for a short duration or vice versa.  Under this framework, the only limitation for 

achieving precise ratio control is the temporal resolution imposed by the physical 

constraints in removing cells from the forcing stimulus.  We also observed a tradeoff 

between system response speed and tuning robustness, quantified in the concepts of SR 

and TR.  Lower pulse doses tended to be more robust to temporal variation in pulse 

length but required long durations to reach a desired ratio, while the opposite was true for 

high doses.  Furthermore, gene expression noise acts as a global regulator of state 

switching.  Increasing noise reduces transition times for both constant and pulsed 

inductions, increasing speed but resulting in a small reduction in tuning accuracy.  

Through this mechanism, noise levels determine whether constant induction will cause 

transitions within a reasonable time and determine the final dose at which pulsed 

induction should be set.  Intracellular noise, therefore, is integral for the choice of ratio 

control strategy as well as for the chosen strategy’s implementation. 

In addition to the specific network studied, we also introduce a framework by 

which to analyze complex cellular behaviors involving a temporal component.  Timing of 

cellular processes is becoming an increasingly important area of study (210, 211), and 

analogies can be drawn to applied fields of study.  Though significantly more complex, 

the methods for deriving specific phenotypes from pluripotent progenitors are similar to 

the method we employ here (197, 198).  Pluripotent cells are grown in a cocktail of 

growth factors for specific periods of time, sometimes sequentially, to force 
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differentiation down a desired path.  While this work has been biologically and 

empirically driven in the past, we suggest that a mathematical approach may yield further 

insight into directed differentiation methods. 

Additionally, while we demonstrate that noise plays an important role in shaping 

network behavior, practical ways to adjust noise in biological system is poorly 

understood.  Noise can be tuned with ease in computational models (106, 212), but 

modification of noise in a real biological system is less common (213–215).  Much useful 

information about how genetic networks respond to naturally stochastic expression could 

be gleaned by exploring all facets of this topic: the role of intrinsic vs. extrinsic noise, 

gene copy number vs. transcriptional or translational stochasticity, as well as the overall 

noise level from these various sources.  Along with these dynamical concerns, network 

motifs – such as auto-activation (149) – may be used to shape the system response by 

altering noise profiles. 

Through this work we have shown the importance in considering the temporal 

evolution and expression noise of a system when analyzing its differentiation dynamics.  

We developed and leveraged a mathematical understanding of the bistable toggle switch 

to achieve robust control of fractional differentiation ratios.  Further work along these 

lines could have wide-ranging applications in countering bacterial persistence, 

developmental or stem cell biology, therapeutics, and provide guidance for de novo gene 

network synthesis. 
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5.4 MATERIALS AND METHODS 

Plasmids and Cell Strains 

E. coli experiments were performed with K12 MG1655 (American Type Culture 

Collection, ATCC, #700926) modified with (∆LacI ∆AraC) deletions.  The toggle switch 

plasmid, pKDL, was provided generously as a gift from James Collins (204).  All yeast 

experiments were performed in YPH500 cells (Stratagene).  The genomically integrated 

toggle system was developed previously by our group in collaboration with James Collins 

(82). 

 

Flow Cytometry and Data Analysis 

All cell measurements were taken with a Becton Dickinson (BD) Accuri C6 flow 

cytometer.  Front scatter (FSC-A) and side scatter (SSC-A) were used to gate cellular 

populations.  Only a vary course gating was used which removed debris smaller than the 

cell size but maintained the full range of population size variation.  Samples were run on 

high flow rate to 10,000 captured events.  The FL-1 channel (488 nm excitation; 530±15 

nm filter) was used to measure GFP fluorescence.  Data were analyzed using MATLAB 

(Mathworks, Inc.) run on a personal computer. 

 

E. coli Experiments 

E. coli were maintained in Luria Broth (LB) media with kanamycin (Sigma Aldrich).  

During experiments, cultures were diluted and inducers were refreshed hourly to avoid 

overgrowth.  For hysteresis experiments, initially on and initially off cells were 

inoculated into media containing varying ATc concentrations, and GFP expression was 
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measured at 2, 5, and 8 hours.  For pulsed induction experiments, initially off cells were 

given a dose of ATc, and a portion of the culture was diluted down to 0.125 ng/mL ATc 

(within the noise-resistant portion of the bistable region) every 30 minutes for 3 hours, 

with final measurements at 6 hours. 

The pKDL toggle switch was transformed into the E. coli using a transformation 

kit (Zymo Research) and selected for by plating on Luria Broth (LB) agar (Sigma 

Aldrich) plates with added kanamycin (Sigma Aldrich).  Cells were picked the day prior 

to performing experiments and cultured in 5mL LB medium (Sigma Aldrich) with 

kanamycin (Sigma Aldrich).  The following day, cell density was measured with flow 

cytometry and diluted to 50 cells/µL in fresh LB media with kanamycin.  The cells were 

rediluted every hour to avoid overgrowth and monitor healthy growth.  For hysteresis 

experiments, after 2 hours, cells were rediluted into medium with anhydrotetracycline 

(ATc; Sigma Aldrich) forcing them to the initial off (ATc = 0; the cells favored the off 

state after overnight growth) or initial on (ATc = 20 ng/mL) states.  These were 

maintained with hourly dilutions for 3 hours, then rediluted in medium containing 

variable ATc levels (0, 0.5, 1, 2, 4, 8, 12, 20 ng/mL).  When diluting from a high ATc 

concentration to a lower one, medium volumes of different concentrations were mixed to 

avoid the potential shock of centrifugation and washing.  For example, to go from 20 

ng/mL to 4 ng/mL ATc, 1 part of the original culture was added to 4 parts at 0 ng/mL, 

yielding a final concentration of 4 ng/mL.  To dilute from initial on to 0 ng/mL, cells 

were centrifuged and washed with fresh LB before redilution.  These cultures were 

maintained with hourly redilutions, and portions of the culture were run on flow 

cytometry at 2, 5, and 8 hours.  For dose/duration experiments, cells were again forced to 
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their initial state for 3 hours, then rediluted with medium containing the desired dose of 

ATc.  Every 30 minutes, a portion of the culture was run on flow cytometry and another 

portion was rediluted to within the toggle’s bistable range (0.125 ng/mL) using a similar 

fractional volume method of increasing or decreasing the concentration.  The longest 

pulse given was 4 hours, and all cultures were maintained with hourly dilutions.  All 

cultures were tested via flow cytometry 4 hours after the beginning of the pulse and again 

1 hour later to unsure that the population had reached steady state expression. 

 

S. cerevisiae Experiments 

Yeast were grown in 2% glucose YPD (Sigma Aldrich) ensure healthy growth, then 

transferred to yeast medium containing 2% Galactose (Sigma Aldrich) and 1% Raffinose 

(Sigma Aldrich).  During experiments, cultures were diluted every 6 or 12 hours to avoid 

overgrowth.    For hysteresis experiments, initially on and initially off cells were 

inoculated into media containing varying ATc concentrations, and GFP expression was 

measured at 24 hours.  For pulsed induction experiments, initially off cells were given a 

dose of ATc, and a portion of the culture was diluted down to 8 ng/mL ATc (within the 

noise-resistant portion of the bistable region) for pulses between 2 and 24 hours, with 

final measurements at 36 hours. 

A single copy of the toggle switch was integrated into the yeast genome as 

described in previous work (82).  Confirmed clones were streaked onto 2% glucose YPD 

agar plates (Sigma Aldrich).  Colonies were picked from these plates 42 hours prior to the 

start of the experiment and grown in 5 mL YPD medium.  After 8 hours, cultures were 

monitored by flow cytometry and rediluted to 1500 cells/mL in fresh YPD and allowed to 
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grow overnight.  After 12 hours, cells were measured again and rediluted to 5000 

cells/mL into yeast medium with 2% galactose (Sigma Aldrich) and 1% raffinose (Sigma 

Aldrich) with appropriate ATc to induce the initial off (0 ng/mL ATc) or initial on (50 

ng/mL) states.  These were measured and rediluted again 12 hours later and allowed to 

grow overnight before beginning the experiment.  For hysteresis experiments, initial off 

and initial on cells were diluted into varying concentrations of ATc (0, 0.5, 1, 2, 4, 8, 14, 

20, 30, 40, 50 ng/mL).  Cells were diluted to 5000 cells/mL every 12 hours and measured 

via flow cytometry at 24 and 48 hours.  For dose/duration experiments, cultures were 

induced with ATc and at the end of each duration a portion of the culture was measured 

with flow cytometry and a portion was diluted down to an ATc concentration within the 

toggle’s bistable range (8 ng/mL).  Cells were measured and rediluted every 12 hours 

after the start of the initial dose, with the final measure being at least 12 hours after the 

end of the initial dose, to ensure that cells had reached steady state expression. 

 

Modeling 

We used the model proposed in previous work (82). The ODEs are: 

[𝐿]′ =  ∙ { 𝑐𝑟𝑙 + 1.0

 1.0+[ (
[𝑇]

𝑘𝑡
)∙ (1.0 +𝐴𝑇𝑐

𝑘𝑎𝑡𝑐
∗
𝑘𝑡
[𝑇]
)
−𝑚

]
𝑛𝑡 ∙  (𝑐𝑖𝑙 − 𝑐𝑟𝑙) −  𝑑𝑒𝑙𝑡𝑎 ∙ [𝐿]} eqn. (5-1) 

[𝑇]′ =   ∙ {𝑐𝑟𝑡 + 1.0

 1.0+ (
[𝐿]

𝑘𝑙
)
𝑛𝑙 ∙  (𝑐𝑖𝑡 − 𝑐𝑟𝑡) −  𝑑𝑒𝑙𝑡𝑎 ∙ [𝑇]} eqn. (5-2) 

Where [L] and [T] are the concentration of LacI and TetR.  LacI is coexpressed with 

GFP, and thus it was used interchangeably. 𝑐𝑟𝑙 and 𝑐𝑖𝑙 are the production rate of LacI 

when the promoter is repressed or induced respectively, while 𝑐𝑟𝑡 and 𝑐𝑖𝑡 are the 
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production rate of TetR 

when the promoter is 

repressed or induced 

respectively.  𝑘𝑡 

represents the active 

TetR concentration 

needed to make this 

probability 50%, and 𝑛𝑡 

describes the nonlinearity of this inhibition. 𝑘𝑙 represents the LacI concentration needed 

to make the promoter bound by LacI 50% of the time, and 𝑛𝑙 describes the nonlinearity 

of this inhibition. m is the Hill coefficient of the Hill function, which is used to describe 

the relationship between the active ratio of repressor TetR and the ATc inducer 

concentration.  Here  is the timescale of the system. The detail of the model construction 

can be found in (82). 

For the stochastic simulation, the concentration of each molecular is converted to 

its number, i.e., x = [x] ⋅ Ω, where Ω is a system size factor. Table 5-1 lists all the 

reactions involved.  τ-leap-based stochastic Gillespie algorithm is used for the stochastic 

simulation. The noise level is set by Ω, which is set to 1 for E. coil system and 10 for S. 

cerevisiae.  The bifurcation diagrams are generated with Oscill8 

(http://oscill8.sourceforge.net/). 

We searched the parameter space with a customized Metropolis algorithm to fit 

various experimental data, including the hysteresis curve (Fig. 5-1b, 5-4a), the fraction of 

(Fig. 5-1e, 5-6a). It is noted that the parameter set for E. coli and Yeast are not same since 

Reaction Description Propensity function 

→LacI Production rate of LacI     𝑃𝑙 ∙ 𝛺 

LacI→ Degradation rate of LacI     ∗ delta  

→TetR Production rate of TetR     𝑃𝑡 ∙  𝛺 

TetR → Degradation rate of TetR     ∗ delta   

𝑃𝑙 =  ∙

{
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Table 5-1 Stochastic transition processes and the corresponding 

transition rates 
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we found different hysteresis curves in the two 

systems. It is an irreversible bistable switch in E. 

coli (Fig. 5-1b), while it is a reversible bistable 

switch in S. cerevisiae (Fig. 5-4a).  The fitted 

parameters can be found in Table 5-2. In Fig. 5-9, 

we used the parameters for S. cerevisiae under 

different noise levels to study the general 

strategies to achieve predictable ratio control. 

  

 E.coli S. cerevisiae 

Timescale 1100 900 

crl 0.001 0.001 

crt  0.001 0.001 

cil 0.08 0.08 

cit 0.08 0.08 

delta 0.002 0.002 

m 3 3 

nt 1.5 1.5 

nl 3.5 3.5 

kt 15 15 

kl 19 20 

katc 3.5   25 

Ω 1   10 
Table 5-2 Parameters of the model 
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6 CONCLUSION 

 

6.1 DISCUSSION 

The field of synthetic biology is moving toward a quantitative understanding of 

biological systems, one in which biological networks can be engineered from the ground 

up to perform desired tasks.  In this work, I have detailed my (and my collaborators’) 

steps toward realizing this goal.  After presenting generally on the mathematical methods 

which can be employed to understand complex networks, I presented two bodies of 

original research. 

In our CRISPR work, we introduce a new tool, the fgRNA, for visualizing the 

dynamics of RNA components of genetic networks.  While we utilized them in the 

context of CRISPR transcriptional regulation, similar approaches could be used to model 

and predict the dynamics of a range of cellular RNA components.  In addition to adding a 

new tool to the synthetic biology toolbox, we demonstrate several important findings.  

First, we show the power of circuit optimization in obtaining strong on/off ratios from 

genetic circuits.  Particularly in human cell work, it is common to see an “add more 

plasmid to get better results” approach to transfection optimization.  While this may work 

for simple up- or down-regulation, our results clearly demonstrate that as the network 

becomes more complex, even mildly so, this mentality does not hold up.  Second, we 

demonstrated several ways that RNA Pol II transcripts could be modified and edited to 

improve their functionality for CRISPR applications.  Lower transcription rates and 

limitations imposed by editing sequences make this a non-trivial problem, but we 

managed to improve efficiency enough that we could see information transmission 
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through a two-node, fully Pol II, CRISPR repressor cascade.  Third, our modeling 

methods, thanks to the visibility of the guide RNA, reveal underlying parameters and 

trends of the component parts of the networks in use.  This allowed us to quantify the 

difference in expression between Pol II and Pol III promoters, accounting for mRNA 

editing efficiency, accurately and easily.  It also allows us some insight into the role of 

mRNA export in the editing process, suggesting further routes of research to improve Pol 

II gRNA expression.  Lastly, it also let us confirm what was suspected about dCas9 as a 

transcriptional regulator: it lacks nonlinearity.  Despite the obvious benefits of dCas9 as a 

regulator chassis, confirmation of this drawback reinforces the fact that there is still much 

work to be done before it can be implemented in all theorized regulatory applications. 

In our ratio control work, we developed experimental and mathematical methods 

for understanding and predicting population level differentiation events.  While much 

work has been done, particularly in stem cell related areas, on factors which determine 

differentiation, there is relatively little on the process of differentiation itself or the 

mathematical underpinnings thereof.  Here’s we integrate temporal information to better 

understand the differentiation process and utilize that information to control the fraction 

of a population which undergoes a differentiation event.  Doing this required use of 

exclusively stochastic modeling techniques, as the process we studied was uniquely 

reliant on gene expression noise.  We show that populations can be made to fractionally 

differentiate with a high degree of accuracy, and we develop metrics by which one can 

choose between two revealed mechanisms for achieving precise ratio control.  While still 

a first step, a similar approach may eventually be used to better understand natural 
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differentiation pathways, possibly for control of stem cell differentiation in laboratory 

settings or for therapeutic purposes. 

 

6.2 FUTURE DIRECTIONS 

There are a multitude of questions in biological engineering that remain unanswered, and 

myriad directions in which future research could unfold.  Here, I will cover some of those 

which stand out to me as most pressing or interesting topics for further pursuit. 

On the biological side of synthetic biology, there remains a need for genetic part 

diversification and standardization.  Whereas mechanical engineers may have their 

choice from thousands of similar but unique components – screws, girders, pipes, etc. – 

to fit to any specific application, bioengineers are still working with a handful of reliable 

genes, promoters, and terminators.  The lack of components makes building larger 

circuits unfeasible due to the inevitable crosstalk between reused parts, and limits the 

tuneability of circuits, as many components operate at only a single “strength.”  

Additional research into promoter design to allow researchers to build them from the 

ground up, taking into account such factors as regulatory operator domains, repressed, 

unrepressed and activated transcriptional rates, and insulation from neighboring genes’ 

transcription, is of increasing importance.  Relatedly, a gene’s transcription is heavily 

influenced by the epigenetic landscape surrounding it.  Building a greater understanding 

of the many processes which determine epigenetic state will aid in ultimately engineering 

reliable transcriptional regulatory networks. 

There are similar concerns for transcription factors, with a lack of targetability to 

promoters and an overall lack of designability.  There are less than a dozen well 
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characterized repressors and about the same number of activator domains.  Zinc fingers 

and TALENs have be developed specifically to overcome this dearth of functional 

proteins; however, design difficulty and protein size have been limiting factors for 

adopting these methods more widely (216, 217).  Utilization of Cas9 or dCas9 as a 

transcriptional regulator overcomes the difficulty of design issues, but introduces 

wrinkles of its own, as I demonstrated in the work here.  While Cas9 is a protein, the 

gRNA that directs it is not, and must therefore either being expressed from a Pol III 

promoter – which lacks many of the qualities we would like in a promoter – or must be 

editing from a Pol II promoter’s transcript – which is inefficient for gRNA production.  

Additionally, Cas9 lacks the cooperativity observed in many natural regulatory proteins, 

which allows regulation to respond sigmoidally to increasing regulator concentrations 

and is necessary for signal propagation through larger networks.  Until these issues are 

resolved, Cas9 will only be appropriate for smaller circuits, despite its clear benefits for 

designability and orthogonality. 

In addition to concerns about lacking components is a wider reproducibility 

concern for biological circuit construction techniques.  The genetic code, while only 

consisting of 4 bases, is incredibly complex and still poorly understood.  Particularly in 

non-coding regions of DNA, the effect of specific base changes is unknown, and we are 

likely still far from being able to design specific functional structures – like promoters or 

insulators – from first principles.  For this reason, there is still much variation in results 

between groups who are ostensibly studying the same phenomena.  We demonstrate this 

in our CRISPR work while working with Csy4 editing: for unknown reasons the 

sequence was resistant to any of the changes that we implemented, despite the 
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modifications having a noticeable effect on RGR transcripts.  Thankfully, plasmid 

repositories, such as Addgene, have made gaining access to specific genes and sequences 

more convenient than ever, but the need still remains for a better understanding of how 

DNA sequences affects expression dynamics. 

Mathematically speaking, standardization in modeling methods would aid in 

reproducibility and applicability of the insights gained from modeling.  Currently, 

because the forms of models vary so much between applications, transference of 

parameter values between applications.  There has been some work with universalizing 

experimental results, such as applying standardization to flow cytometry results, which is 

an important start (218, 219).  The variability in modeling methods, various ways to 

simplify models, and different applications of models makes their standardization a non-

trivial task.  If the models themselves cannot be standardized, it may be worthwhile 

develop a conversion method so that parameters can still be transferred from one method 

or formulation to another.  As things stand, aside from general correlations, and 

qualitative behavioral information, little can be taken away from a vast number of 

models, and it is very difficult to build a model from a prior model’s foundation.  

Researchers essentially start over from scratch when approaching a circuit, even if that 

circuit has been studied extensively before.  Standardization of modeling methods would 

alleviate this issue and help in standardization of the biological components themselves, 

as all parts’ behavior could be quantified via a known metric. 

In many ways, all of these potential future directions for research come back to 

single unifying goal: transforming biology from an exploratory science to an actionable 

engineering discipline.  Synthetic biology is often touted as engineering, but the reality is 
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that it is still dependent on more trial and error than is desirable for a true engineering 

discipline.  While this is understandable for a field which has essentially come into being 

in the last 20 years, it is important to not delude ourselves into believing that our field is 

more quantitative, predictable, or predictive than it truly is.  Only by engaging with its 

shortcomings can we make the field into the engineering disciple that we know it can be. 
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