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ABSTRACT  
   

Monitoring complex diseases and their comorbidities requires accurate and convenient 

measurements of multiple biomarkers. However, many state-of-the-art bioassays not only require 

complicated and time-consuming procedures, but also measure only one biomarker at a time. 

This noncomprehensive single-biomarker monitoring, as well as the cost and complexity of these 

bioassays advocate for a simple, rapid multi-marker sensing platform suitable for point-of-care or 

self-monitoring settings. To address this need, diabetes mellitus was selected as the example 

complex disease, with dry eye disease and cardiovascular disease as the example comorbidities. 

Seven vital biomarkers from these diseases were selected to investigate the platform technology: 

lactoferrin (Lfn), immunoglobulin E (IgE), insulin, glucose, lactate, low density lipoprotein (LDL), 

and high density lipoprotein (HDL). Using electrochemical techniques such as amperometry and 

electrochemical impedance spectroscopy (EIS), various single- and dual-marker sensing 

prototypes were studied. First, by focusing on the imaginary impedance of EIS, an analytical 

algorithm for the determination of optimal frequency and signal deconvolution was first 

developed. This algorithm helped overcome the challenge of signal overlapping in EIS multi-

marker sensors, while providing a means to study the optimal frequency of a biomarker. The 

algorithm was then applied to develop various single- and dual-marker prototypes by exploring 

different kinds of molecular recognition elements (MRE) while studying the optimal frequencies of 

various biomarkers with respect to their biological properties. Throughout the exploration, 5 

single-marker biosensors (glucose, lactate, insulin, IgE, and Lfn) and one dual-marker (LDL and 

HDL) biosensor were successfully developed. With the aid of nanoparticles and the engineering 

design of experiments, the zeta potential, conductivity, and molecular weight of a biomarker were 

found to be three example factors that contribute to a biomarker’s optimal frequency. The study 

platforms used in the study did not achieve dual-enzymatic marker biosensors (glucose and 

lactate) due to signal contamination from localized accumulation of reduced electron mediators 

on self-assembled monolayer. However, amperometric biosensors for glucose and lactate with 

disposable test strips and integrated samplers were successfully developed as a back-up solution 
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to the multi-marker sensing platform. This work has resulted in twelve publications, five patents, 

and one submitted manuscripts at the time of submission.  
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CHAPTER 1 

BACKGROUND AND INTRODUCTION 

 

COMPLEX DISEASE AND COMORBIDITY 

Complex diseases are influenced by a combination of genetics, environmental factors, and 

lifestyle choices. They are often accompanied by other chronic illnesses, which are referred as 

comorbidities. Complex diseases and associated comorbidities require a personalized and multi-

staged approach to manage. The patient needs to be accurately diagnosed then prescribed the 

treatments, medications, and tools required to improve patient’s health and quality of life. Finally, 

the patients need to cooperate and have the diligence to fully execute doctors’ prescriptions. 

However, there are many unmet needs in every step. Many biomarkers used to diagnose and 

monitor metabolic state over time are often time consuming and costly to perform, and many of 

them suffer from low sensitivity and specificity. Consequently, the doctors are challenged to make 

medical decisions based on inaccurate and delayed results. Furthermore, after the prescribing of 

therapeutic treatments, the daily management of the disease and the execution of therapies can 

be very cumbersome to perform, causing a low compliance rate among the patients. There are 

also insufficient means to quickly obtain feedbacks showing the progress of the disease 

management. A rapid and accurate bioassay that provide timely results can empower both the 

clinicians and patients to achieve a more efficient healthcare system. 

 

Example Complex Disease: Diabetes Mellitus  

Diabetes mellitus (DM) is selected as the example complex disease for the scope of this 

dissertation due to its rising prevalence, high risk of complications, and accelerating medical 

costs. DM affects 347 million people worldwide and 29.1 million in the U.S.14. The number of 

people with DM is expected to triple within the United States by the year 2050, meaning 

approximately one in three adults will suffer from DM15. The average person with DM spends 
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$13,700 on their supplies and treatment yearly, which is approximately 2.3 times higher than 

standard healthcare associated costs endured by a healthy person16.  

 

DM is a chronic disease resulting from a hormonal disorder that causes either the inadequate 

production of insulin, diminished tissue responses to insulin, or both17. People with DM often 

suffer from large fluctuation of blood glucose, which can cause many complications if left 

unchecked. The two main types of DM are type 1 and type 2, with type 1 (T1D) accounting for 

approximately 10% of all DM cases14. Insulin therapy and many automated insulin administering 

technologies are very effective on T1D patients in managing their BG levels17. However, 

overdosage of insulin can cause hypoglycemia (abnormally low BG levels) and the subject can 

suffer from coma and even death if not treated immediately. Type 2 diabetes (T2D) is the majority 

(90%) of all DM cases14. It is typically characterized by insulin resistance and is more likely to be 

diagnosed later in life18. Insulin resistance is characterized by diminished responses to insulin at 

local tissues, which then prompt the pancreas to produce more insulin to maintain normal glucose 

levels. The pancreas eventually becomes unresponsive as it no longer can sustain such high 

levels of insulin production. T2D can be treated with lifestyle changes or oral medications early on 

that stimulate the secretion of insulin in the pancreas and/or the sensitivity of insulin at local 

tissues18.  

 

Example Comorbidities of Diabetes Mellitus: Cardiovascular Diseases and Dry Eye 

People with DM may suffer from many comorbidities such as cardiovascular diseases (CVD), 

retinopathy, neuropathy, stroke, obesity, and depression. According to a large clinical study 

published in 2006, 44.4% of DM patients suffer from one or more comorbidities19. Among these 

comorbidities, CVD and dry eye were selected as the example comorbidities for the scope of this 

dissertation. CVD is the leading cause of death in the U.S20 and is responsible for 30% of all 

deaths globally21. People with DM are two times more likely to have CVD compared to non-

diabetics, with CVD being the leading cause of death21. CVD is a collection of multiple heart 
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diseases that are often associated with the accumulation of plaques in the walls of the arteries. 

The accumulation of plaques narrows the arteries, and can potentially lead to blood clots, causing 

a heart attack or stroke. There are also other types of CVD such as arrhythmia, heart failures, 

and heart valve problems.  Major CVD risk factors including poor diets, tobacco use, low physical 

activity levels, obesity, and hypertension21. Fortunately, due to more effective diagnostics, 

treatments, and better lifestyle, the mortality and prevalence of CVD in U.S. have been developed 

countries, suggesting the importance of multifaceted risk factor-reducing strategies21.  

 

Dry eye disease (DED) is caused by a lack of lubrication of the ocular surface, commonly 

characterized by either reduced tear production levels (aqueous deficient dry eye) or increased 

tear evaporation (hyper-evaporative dry eye), causing great discomfort for the patient. It is one of 

the most prevalent ocular diseases among the epidemics of the 21st century22, affecting more 

than 16.4 million adults in the U.S.23. The astonishing prevalence is in part due to the widespread 

incidence of DM, a worldwide epidemic costing nearly $250 billion in the U.S. alone24, as 54.3% 

of type II diabetic patients suffer from DED25. This statistic is projected to rise with increasing life 

expectancy, rising prevalence of DM, and growing ocular strain caused by increasing technology 

dependence. 

 

Because of the reasons discussed above, DM, CVD, and DED are the example complex disease 

and comorbidities studied in this dissertation. Stemming from this combination, the next section 

discusses the selection of biomarkers that are often used to diagnosis or manage each disease. 

 
Acknowledgement: the content of this section was adapted from the author’s published 

works1,3,4,9 with permissions from all coauthors and publishers.  
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CHAPTER 1.1 

MONITORING THE RIGHT BIOMARKERS 

 

Managing complex diseases starts with accurate measurements of multiple biomarkers to 

evaluate the state of heath. According to the National Institute of Health, a biomarker can be 

described as a biological characteristic that is objectively measured and evaluated as an indicator 

of biological processes, pathogenic processes, or pharmacological responses to a therapeutic 

invention26. It allows the investigator to evaluate outcomes, known as the clinical endpoints and 

surrogate outcomes. Clinical endpoints include variables reflecting how a patient functions or how 

long he/she may live. Since clinical endpoints may be too complicated to measure, surrogate 

endpoints can be used instead. By monitoring the biomarkers of interest, therapeutic and 

pathophysiological evidences can be collected investigate surrogate endpoints that predict clinical 

benefits, safety, or harm.  

 

Monitoring multiple biomarkers have been shown to improve outcomes in many complex 

diseases, including DM27–29, CVD30, and DED31. While there is a plethora of biomarkers for DM, 

CVD, and DED, selecting the ones that are approved by Food and Drug Administration (FDA) is 

of utmost importance because of its influence in the commercialization of medical devices, as well 

as its clinical significance that has been rigorously validated. When dealing with the FDA, 

substantial equivalence to a preexisting device is vital in obtain the approval. Table 1 summarizes 

some of the common FDA approved biomarkers for DM and its comorbidity: CVD and DED.   
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 Diagnostic, 
Managing, or 

Therapeutic Uses 

Cut-off Levels FDA Approval 
Number of an 

Example Assay 

DM Biomarker 

Glycated Hemoglobin  Measurement of the 
3-month average 
plasma glucose 
concentration 

6.5% 
5.8% - 6.4% is 
indicative of pre-DM 

K153726 

Glucose Measurement of 
blood glucose levels  

Hypoglycemia: < 70 
mg/dL 
Hyperglycemia 
(fasting): > 130 
mg/dL 

P150021 

Insulin Glycemic control Hyperinsulinaemia: 
20 mU/L 

K963911 

Lactate Measurement of 
exercise intensity 

2 – 4 mM K100602 

Zinc Transporter 8 
Autoantibody 

Evaluate the 
performance of 
pancreas islet cells 

15 U/mL DEN140001 

CVD Biomarker 

Apolipoprotein B and 
Apolipoprotein A-I   

Prognostic, risk 
prediction for 
myocardial infarction 

ApoB/ApoA-I ratio > 1  K072977, K063608 

Myoglobin Detection of acute 
myocardial infarction 

200 ng/mL K080481 

Troponin I  Detection of acute 
myocardial infarction 

0.01 – 0.1 ng/mL K031739 

Troponin T  Detection of acute 
Myocardial infarction 

0.05 – 0.1 ng/mL K162895 

C-Reactive Protein Early detection of 
inflammation and 
cardiac risk factors  

Less than 1 ug/mL is 
low risk, higher than 
3 ug/mL is high risk 

K040030 

Creatine Kinase MB 
subform 

Early detection of 
acute myocardial 
infarction 

10 ng/mL K022654 

B-type natriuretic 
peptide (BNP) and N-
terminal prohormone 

of BNP 

Detection of acute 
coronary heart 
diseases, heart 
failure, ventricular 
overload 

0.25 – 2 ng/mL K021317 

Myeloperoxidase Detection of 
inflammation 

350 ng/mL K050029 

Low density- and 
high density- 
lipoprotein  

Evaluation of total 
cholesterol levels for 
heart artery health 

LDL:  100 mg/dL 
HDL: 40 mg/dL 

K041926 

Table 1: FDA approved biomarkers for monitoring DM, CVD, and DED. Adapted from 31–42. The 

bolded biomarkers are the ones studied in this dissertation. 

  



6 

 

 Diagnostic, 
Managing, or 

Therapeutic Uses 

Cut-off Levels FDA Approval 
Number of an 

Example Assay 

DED Biomarkers 

Lactoferrin (Lfn) Tear composition and 
output of lacrimal 
gland 

1.1 mg/mL K042071 

Immunoglobulin E Allergic reactions 80 ng/mL K061970 

Matrix 
Metalloproteinase 9 

Tear composition and 
output of lacrimal 
gland 

40 ng/mL K132066 

Osmolarity Reduced tear 
secretion or 
increased tear 
evaporation 

308 mOsm/L K083184 

Table 1: continued 

Table 1 encompasses a large number of FDA-approved biomarkers that should be measured 

simultaneously to monitor both the DM and its comorbidity. To build the functional prototypes of 

the multimarker sensor, the following biomarkers were selected based on their applications and 

their biological characteristics to build either the single-marker or dual-marker prototypes. The 

selected biomarkers were: glucose, insulin, lactate, LDL, HDL, Lfn, and IgE.  

 

SELECTION OF BIOMARKERS 
 

Lactoferrin and Immunoglobulin E (Lfn and IgE)   

Lfn and IgE are two biomarkers representative of DED and allergic conjunctivitis (AC). DED and 

AC are considered as the two most prevalent ocular diseases among the epidemics of the 21st 

century22. Similar to the prevalence of DED, AC, is estimated to affect 40% of the American 

population43. In 80% of all cases, AC symptoms arise prior to adolescent years, and can worsen 

with prolonged exposure to environmental irritants, which significantly impact patient’s quality of 

life44. Unfortunately, AC is often underdiagnosed and not treated until very severe45. This can be 

attributed to the wide overlap of symptoms46 such as itching, redness, and inflammation, as well 

as the lack of a reliable POC diagnostic tool. Misdiagnosis commonly leads to ineffective 

prescribed treatments, adverse or worsening conditions, and increased economic burdens placed 
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upon both patients and physicians. A tool facilitating differential diagnosis of DED and AC can be 

very helpful in alleviating the high diagnostic demand31.  

 

Lfn is a FDA approved tear dry eye biomarker that correlate well with tear composition and output 

of the lacrimal gland34,47. Specifically, Lfn is very effective in diagnosing aqueous deficient dry eye 

and Sjogren’s syndrome48. Currently, Lfn can be detected using immunodiffusion assays such as 

Lactoplate, lactoferrin test kits and enzyme-linked immunosorbent assays (ELISA)31,49. However, 

these tests are incapable of providing immediate results and are costly to perform. Similarly, to 

test for allergies, patients are subjected to a panel of immunogenic antigen species likely to 

trigger allergic responses, which can be costly to the patient and provider50. Since elevated IgE 

levels are often observed in allergic responses44, it is an additional FDA approved biomarker for 

allergic reactions51 and is recommended as the primary biomarker for AC52. Much work toward a 

quantitative IgE assay is in progress53–55, but there is currently a lack of POC diagnostic tools 

suitable for rapid, sensitive and inexpensive diagnosis of ocular conditions. A dual marker (Lfn 

and IgE) POC platform may help differentiate and evaluate the conditions of DED and AC rapidly, 

reducing the cost and time required for diagnosis. The two biomarkers are also very useful in 

laying the foundation of biosensors that utilize the antibody as the molecular recognition element 

(MRE). Under the collaboration with Advanced Tear Diagnostics, the author has successfully 

developed the said dual marker POC platform using the screen-printed carbon sensor9, as 

explained further in Chapter 3.1. The experience and knowledge gained throughout the process 

were vital in understanding the challenges and limitations of developing a dual-marker prototype 

in disposable sensor settings.    

 

Glucose  

Glucose is perhaps the most important biomarker for people with DM and is the most direct 

means to evaluate a person’s glycemic state. The normal blood glucose level can vary among 

individuals depending on their metabolisms. For healthy and non-diabetic people, the normal 
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blood glucose level should fall between 70 to 125 mg/dL with a mean of 100 mg/dL56. For DM, the 

American Diabetes Association recommended to maintain a blood glucose level within 90 – 130 

mg/dL before meals and less than 180 mg/dL after meals56. For people with DM, frequent 

glycemic fluctuation above these suggest ranges may lead to many microvascular complications.  

 

Glucose is a very small molecule with a molecular weight of 180.16 Da. Its MREs operate in a 

very different way from affinity-binding MREs such as antibodies. The MREs of glucose are 

enzymes with various types of cofactors, which can generate electrons when binding with 

glucose. Since it operates very different from antibodies, it is interesting to study its optimal 

frequency and how it differs from other affinity-binding based biomarkers’ optimal frequencies.  

Being a well-studied biomarker with many commercially available products, glucose is also ideal 

for training and learning sensor production and improvement. Patient’s noncompliance is a major 

issue in managing complex diseases. In the case of DM, one primary contributor to 

noncompliance is the pain and inconveniences of needle pricking. Therefore, developing 

noninvasive glucose sensors can be both practical and informational throughout the learning 

process. As a result, the author has developed a noninvasive tear glucose sensor with integrated 

tear capturing component that has resulted in 3 publications 6,8,10. The experience and knowledge 

obtained from developing the tear glucose sensor has enable the author to appreciate the 

electrochemical phenomenon and the design of noninvasive biosensors. 

 

Lactate 

Lactate is an important biomarker (90.08 Da molecule) often measured in clinical diagnostics57 

and in monitoring the fitness of athletes58. Lactate levels in the body indicate oxygen deficiency or 

elevated salt concentrations and can be altered due to pathophysiological conditions or intensive 

exercise59. In terms of pathophysiological conditions, elevated blood lactate concentration can 

reflect lactic acidosis caused by various factors such as toxins, shock, anemia, sepsis, and organ 

failure60. Because of these potential pathophysiological conditions, lactate is often monitored 
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closely in intensive care units and emergency rooms57. Lactate can also become elevated after 

intensive exercise, reflecting physical strain after prolonged periods of extensive anaerobic 

activity58.  

 

Besides its significance in clinical environments, monitoring lactate is particularly beneficial to 

evaluate exercise intensity in DM patients. Exercise is a common therapeutic treatment 

prescribed to DM patients due to its significant improvement in long-term glycemic 

management61. While there are other ways to measure exercise intensity such as heart rate 

monitoring, blood lactate concentrations have been recommended as a superior predictor and 

indicator of exercise performance62. Its MREs are very similar to glucose’s as they also utilize 

enzymatic reactions. Due to their similarity and clinical relevance for DM, glucose and lactate are 

ideal exemplary biomarkers to build a dual-enzymatic biomarker sensor prototype to investigate 

the mechanisms and challenges to implement enzymatic biomarkers in a multi-marker platform 

technology (Chapter 2.2). 

 

Similar to glucose, lactate also has many commercially available biosensors, making it a good 

biomarker for training and learning purposes. Since many commercial lactate sensors require the 

use of needle, monitoring blood lactate levels can have similar noncompliance issue as blood 

glucose meters described above. Owning to the success of the tear glucose sensor, the author 

has cooperated with the Tokyo University of Agriculture and Technology to develop a tear lactate 

sensor employing a genetically modified lactate oxidase7 and an integrated tear capturing 

component12. The endeavour has allowed the author to appreciate the biochemical and molecular 

aspects of a MRE.  

 

Insulin 

Monitoring blood glucose levels alone may not be sufficient in maintaining tight glycemic control, 

as normal glucose homeostasis is determined by interactions between glucose, insulin, and other 
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biomarkers reflecting the intricate metabolisms of human body. Using Medtronic recent 

groundbreaking invention of pseudo-artificial pancreas as an example, relying solely on glucose 

measurements can have multiple disadvantages. The artificial pancreas consists of an automated 

insulin pump, a continuous glucose monitor (CGM), and a complex algorithm to determine insulin 

dosage based on CGM feedback. Unfortunately, the insulin bolus calculator does not account for 

the total amount of insulin in the body, but only how much insulin has been delivered. As a result, 

there is a 40% chance of both insulin overdose and underdose63. In addition, the insulin infusion 

set can fail with a false positive rate of 0.3/day64, and the CGM’s accuracy can be affected by 

pressure-induced sensor attenuation, as well as exercising and other personal life choices65,66. 

Most importantly, commercial insulin vials were found to have large deviations from their 

advertised values67. All of these issues suggest the need for a rapid and convenience means of 

measuring insulin. Monitoring insulin and glucose simultaneously may provide a more 

comprehensive and accurate evaluation of a person’s glycemic fluctuations than glucose alone, 

diverting the risk of algorithms built solely on glucose3.  

 

Insulin is a 5700 Da molecule secreted from the pancreas to regulate blood glucose68. Due to its 

small molecular size, self-aggregation properties, and pico-molar concentrations in the body, 

measuring insulin has been a very challenging task. Using insulin as a target biomarker, not only 

does its single-marker sensor prototype solves critical needs, the combination of glucose-insulin 

dual marker prototype can serve as a crucial demonstration on how to achieve multi-marker 

detection using an affinity-based biomarker and an enzymatic biomarker (Chapter 2.3). 

 

Low-Density Lipoprotein and High-Density Lipoprotein (LDL and HDL) 

LDL and HDL (low density- and high density lipoproteins) are two vital biomarkers for the 

coronary heart disease, which accounts for more than 800,000 deaths in the U.S. and is the 

leading cause of death in all CVDs69. The National Cholesterol Education Program recommended 

the use of LDL and HDL as risk indicators for CVD30, and the LDL/HDL ratio has also been shown 
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to be an excellent predictor for the coronary heart disease70. Besides their clinical relevance, the 

two biomarkers are very similar in structure. A lipoprotein is a lipid-transferring biomolecule 

consists of a core of lipids and a shell of phospholipids and apolipoproteins. Depending on the 

ratio of the shell and the core, various sizes or density of lipoprotein can be formed. The HDL 

contains much less lipids as compared to LDL, resulting in a much smaller molecular weight of 

175 kDa as compared to LDL’s 512 kDa71. Different types of lipoproteins also have different kinds 

of apolipoproteins, which have different binding receptors. Apolipoprotein B is the primary type of 

apolipoproteins for LDL and apolipoprotein A1 for HDL, allowing them to be differentiated by 

appropriate MREs72.   

 

Since LDL and HDL are very similar in structure as compared to other affinity-based binding 

biomarker, detecting both simultaneously can be the most very challenging to build in the multi-

marker sensor platform. They also differ significantly from the enzymatic biomarkers in that the 

binding reaction does not generate electrons, further complicates their detection. Successful 

development of a LDL and HDL dual-marker prototype is therefore the hardest yet most 

rewarding dual-marker prototype, as discussed in Chapter 2.1. 

 

Summary of the selected biomarkers 

Through the 7 selected biomarkers, different biomolecular properties that are vital for the multi-

marker detection platform can be investigated, such as 1) enzymatic reaction versus affinity 

binding, 2) large distribution of molecular weight, and 3) structural disparity (Table 2). The single-

marker and dual-marker sensor prototypes developed for the selected 7 biomarkers not only can 

lay a solid foundation for developing the multi-marker sensor platform, but also meet practical 

clinical needs. 
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Biomarkers 
Molecular 

Weight (Da) 

Molecular 
Recognition 
Elements 

Target Analyte’s Structure 

Glucose 180 Enzyme 

 

Insulin 5700 Antibody 

 
 
 
 

 
 
 

Reference: PDB file 3I40 from 73 
 

Lactate 90 Enzyme 

 

Low density 
lipoprotein 

175,000 Antibody 

 

High density 
lipoprotein 

512,000 Antibody 

 

Table 2: Summary of the selected biomarkers. 

This Photo by Unknown Author is 
licensed under CC BY-ND 

This Photo by Unknown Author is 
licensed under CC BY-ND 

This Photo by Unknown Author is 
licensed under CC BY-SA 

This Photo by Unknown Author is 
licensed under CC BY-SA 

https://health-innovations.org/2014/11/20/new-superior-measurement-technique-of-hdl-cholesterol-function-provides-cardiovascular-risk/
https://creativecommons.org/licenses/by-nd/4.0/
https://health-innovations.org/2014/11/20/new-superior-measurement-technique-of-hdl-cholesterol-function-provides-cardiovascular-risk/
https://creativecommons.org/licenses/by-nd/4.0/
https://en.wikipedia.org/wiki/Blood_sugar_regulation
https://creativecommons.org/licenses/by-sa/3.0/
https://commons.wikimedia.org/wiki/File:Lactate-3D-balls.png
https://creativecommons.org/licenses/by-sa/3.0/
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Biomarkers 
Molecular 

Weight (Da) 

Molecular 
Recognition 
Elements 

Target Analyte’s Structure 

Lactoferrin 80,000 Antibody 

 

Immunoglobulin E 200,000 Antibody 

 
Reference: PDB file 5MOI from 74 
 

Table 2: continued. 
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CHAPTER 1.2 

MODALAITIES OF BIOSENSORS 

 

To diagnosis and monitor complex diseases, biosensors can be developed in many ways to 

measure the biomarkers of interest. Depending on the intended applications, biosensors can be 

built to suit lab setting, point-of-care, and at-home use. Each application comes with different 

requirements of performance and cost. In general, the lab setting biosensors are often most 

accurate and novel, as new assays can be developed and tested against the state-of-the-art 

instruments for validation. After years of development and improvement, a lab-grade biosensor 

may successfully be translated into a point-of-care biosensor, which is performed by trained 

professionals or patients using meters and procedures that are much cheaper than the state-of-

the-art instruments but are still too expensive and complicated for ordinary people. After a 

biosensor is fully matured in robustness, accuracy, simplicity, and manufacturing, it can be 

performed by untrained, ordinary people and becomes suitable for at-home use. To accurately 

diagnosis and manage complex diseases as well as raising health awareness, the need for rapid 

biosensors suitable for POC and at-home usage cannot be overstated.   

 

Generally, a biosensor consists of two major components: a biologically derived recognition 

element, and a transducer. The recognition element may be in various forms such as enzymes or 

antibodies; and is responsible for capturing the target analytes. The transducer component is 

responsible for converting the binding reaction to measurable signals. Among many transducer 

modalities, mechanical, optical and electrochemical approaches are most commonly used. 

Depending on how the recognition element works, these modalities are often coupled with 

sample/analyte preparation methods to achieve labelled or label-free detection of target analytes. 

Besides enzymatic reactions, most biorecognition events do not generate significant amounts of 

measurable signal. Labelled approaches are often therefore regarded as the gold standard 

because the signal enhancement from labels permits accurate detection of target analyte. 
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Common labels include fluorescence, nanoparticles, enzymes, and electron mediators. However, 

to achieve biosensors that are suitable for point-of-care or at-home use, label-free detection is 

much preferred over labelled approach because of the reduced complexity and sample handling. 

The following sections describe each modality and discuss its ability to achieve label-free 

detection and/or approaches to achieve multi-marker detection.  

 

OPTICAL 

Optical biosensors remain the most heavily used type of biosensor, achieving more than 93,200 

publications in the medical field in the past 15 years. Labeled methods, such as ELISA utilize a 

fluorescent dye, or optical beacon to detect a target molecule, offering phenomenal sensitivity, 

but increasing complexity. It is capable of achieving multi-marker detection by employing multi-

sensor arrays and sample labeling 75–78. Each ELISA well can contain multiple sub-wells with 

immobilized MREs for the biomarkers of interest. Upon target capturing, secondary antibodies 

with fluorescent or chemiluminescence can be added. Tertiary antibodies or cascade reactions 

can be used to enhance target signal at the cost of increasing complexity. Instruments that are 

capable of running multiple ELISA plates at once can also be considered as a way for multi-

marker detection. However, although the well-performing microarray sandwich assays have large 

dynamic ranges, reproducibility and complexity can be challenging in clinical practices. The 

cross-reactivity of the detection antibody (i.e. labels) can severely impede the multiplexing 

accuracy of the sandwich assays. In addition, an ELISA reader is quite expensive, and the 

procedures are too complicated for it to serve as a point-of-care or for patient use. 

Label-free optical methods in contrast offer many benefits such as lower cost, and ease of use as 

well as reduced human error that may be introduced during the extensive labeling procedure, but 

it is much susceptible to noise. Currently, several label-free optical methods exist to measure 

biomarker concentrations, including surface plasmon resonance (SPR), surface enhanced 

Raman spectroscopy, and optical waveguide79.  
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Surface plasma resonance (SPR) is a label-free, real-time method having various designs such 

as prism coupling, waveguide coupling, optical fiber coupling, and long/short range surface 

resonance. The phenomenon was originally observed in 1907 by Dr. Jonnathan Zenneck80. In 

principle, a laser light source is passed through a prism, contacting the sensor substrate. The 

reflected beam reflects off the surface at a specific angle, known as the resonance angle, which 

provides information about the refractive indices of the system. In biosensor applications, when 

target analyte binds to the sensor surface that has been functionalized with complementary 

MREs (ligands, antibodies, aptamers, nucleic acids, etc.), it creates a difference in refractive 

indices, which alters the propagation of the electromagnetic wave. The addition or removal of the 

analytes changes the angle at which light is reflected, which can be correlated to the amount of 

biomolecule present and provide real-time information on the analyte-ligand binding kinetics. 

Prism coupling SPR, the most commonly used platform, operates according to the following 

equation:  

𝛽𝑠𝑝 =
2𝜋

𝜆
𝑛𝑝 sin(𝜃) 

where 𝜆 is the incident wavelength,  𝑛𝑝 is the prism refractive index, 𝜃 is the incident angle and 

𝛽𝑠𝑝 is the propagation constant of the square wave prism. SPR is often coupled with an array of 

biosensors to achieve multiplexing capabilities81,82.  

 

Another equally popular optical technique is the surface enhanced Raman spectroscopy (SERS). 

SERS functions through the inelastic scattering of monochromatic light, which can be measured 

in comparison to the input to determine a molecule’s energy signature. The metallic surface 

utilized in SERS is intentionally roughened using various nanostructures, allowing it to overcome 

the otherwise low sensitivity of traditional Raman spectroscopy83. It can be used to achieve multi-

marker detection by paring the target with various fluorescent dyes or molecular beacons. It’s 

multi-marker detection utility has been demonstrated in the detection of both the proteomic 

biomarkers84 and enzymatic biomarkers85 with high sensitivity as long as the fluorescent dyes are 

accurately paired. However, in addition to expensive instrumentations, laborious labeling process 
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are also required and permanent damage to the protein structure can occur. It is possible to 

achieve label-free, multi-marker detection using SERS after attaching the proteins onto the 

metallic surface. By achieving different surface structures through nanopatterning (i.e. 

nanovoids), the functionalized metallic surface permits only the selected antibodies to bind. 86 

Different antibody-antigen biorecognition will yield different Raman intensity peaks, which could 

be compared against controls to achieve multi-marker detection. However, current fabrication of 

nanovoids is still very complicated, which limits its ability to be mass-manufactured. 

 

Optical waveguide biosensors utilize the principle of total internal reflection, which occurs when 

the incident light hits the surface at an angle greater than the critical angle. To achieve this, 

typically the core material where the incident light passes through (i.e. glass or optical fiber) must 

have much greater index of refraction than the surrounding material (i.e. clad materials). While 

the incident light propagates through the core material, since not all of the electromagnetic energy 

is reflected back, an evanescent wave will form outside of the clad materials. Label-free optical 

waveguide biosensors can be achieved by immobilizing the molecular recognition elements onto 

the clad materials, and observe the change in evanescent field87, as its intensity decreases 

proportionally with the distance from the interface.   

 

In general, there are various optical techniques capable of achieving sensitive, multi-marker POC 

biosensors. However, maintaining high reproducibility can be challenging due to the cross-

reactivity of the detection antibody and variability in the testing medium. Optical techniques also 

often require expensive instruments, limiting its use in point-of-care diagnostics. It is also 

susceptible to temperature and pH fluctuations. However, due to its phenomenal sensitivity and 

accuracy when all the parameters are perfectly controlled (especially the labelled method such as 

ELISA), it remains as the gold standard method suitable for validating the performance of other 

biosensing modalities.  
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MECHANICAL 

Mechanical biosensors transduce a biological binding event into a measurable, physical quantity 

such as force, displacement, and oscillation. The use of mechanical biosensors has grown in 

parallel to the progress of micro- and nanomachining and the growing capabilities in 

semiconductor fabrication. Improvements in manufacturing have permitted highly sensitive 

detection limits, achieving pico-Newton level resolution which dictate many biological 

interactions88.  

 

The most common architecture for label-free mechanical-based sensors relies on a 

microcantilever. Generally, cantilevers are designed through micromachining of a small “diving 

board” shaped device composed of a semiconductor material such as silicon. The surface is then 

functionalized with a recognition agent which is exposed to the analyte sample. Binding events 

induce deflection of the cantilever, or in the case of dynamic sensors, yield alterations in the 

resonant frequency oscillation patterns. These fluctuations of the homeostatic rhythm are 

proportional to the amount and rate of analyte binding88–90.  

 

The system is then converted to some stimulus, whether it be optical, electrical, or mechanical, 

this stimulus will be altered according to the change in concentration of target analyte. 

Resonance frequency may be one of the most widely used methods in cantilever and sensor 

design. This comes from the theory that when a cantilever interacts with some molecule, the 

natural resonant frequency will change in direct proportion to the amount of binding, and rate of 

binding which occur on the surface89. The modulation of the resonant frequency can be described 

by the following equation:  

Δ𝑓 =
1

2
𝑓𝑛 (

Δ𝑘

𝑘
−  

Δ𝑚

𝑚𝑛

) 

where Δ𝑚 is the change in mass from analyte binding relative to the initial mass 𝑚𝑛, Δ𝑘 the 

change in spring constant 𝑘, which results in a change in the resonate frequency 𝑓𝑛 89,91–94.  
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Quartz crystal microbalance (QCM), an additional mechanically-based system, measures the 

shear oscillations caused by analyte binding to the substrate, which alters the frequency of the 

quartz crystal resonator. A thin gold layer is applied to the wafer substrate and functionalized with 

various molecular recognition elements. Following covalent immobilization, continuous analyte 

flow yields deposition onto the substrate and a direct change in the resonant frequency95.  

 

Although highly sensitive, the practicality of mechanical biosensors constitutes a severe 

drawback. Sensor drift can limit the realistically achievable detection limits, especially when 

operating these systems under non-vacuum conditions, in the presence of complex solutions. 

Additionally, multiplexing capabilities requires assembly of an array of individually functionalized, 

closely packed sensors, and requires complex electrical deconvolution88.  

 

ELECTROCHEMICAL 

Electrochemical approaches convert the analyte binding into measurable electrical signals by 

utilizing electron mediators96. It is most successful in biomarkers using enzymatic reactions, as 

the generated electrons can be easily measured as electrical signals. In biorecognition events 

without measurable signals, electroactive labels (enzymatic labels, electron mediators, 

nanomaterials) can be used to increase sensitivity with the tradeoff of increased complexity and 

cost. Similar to the optical approaches, analyte labeling77 and multi-sensor array75,76 are often 

used to achieve multi-marker detection, but there are also a few electrochemical techniques that 

are capable of label-free multi-marker detection. The following section describes common 

electrochemical techniques suitable for rapid biosensors, with highlights in label-free and multi-

marker detection when applicable.  

 

Amperometric approaches measure the resulting current produced by either the oxidation or 

reduction of a biological analyte in the presence of an applied potential. It is preferred for its 

simplicity and ease of manufacture, making it highly desirable in POC applications. Amperometric 
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detection techniques are commonly used in enzymatic reactions, such as glucose monitoring 

devices, in which the reaction between the analyte and enzyme generates electrons. For affinity 

binding based reactions such as antibody and antigen binding, enzymatic or electron-carrying 

labels can be used. A select few amperometric techniques are described here, highlighting the 

differences among the signal inputs. For a comprehensive review please see the work of A. Bard 

and L. Faulkner97.  

 

Cyclic voltammetry (CV) is one of the most fundamental amperometric techniques, and provides 

information regarding the redox potential of the reaction. The electrochemical cell commonly 

contains an electron mediator, which continuously undergoes voltage induced redox reactions, 

facilitating electron transfer to the electrode. In CV, a voltage sweep is performed between two 

defined voltages at a fixed rate while the corresponding current is recorded. The linear sweep 

between the predetermined voltages is defined by a scan rate (V/s). Upon the completion of one 

linear sweep, the reverse scan is performed, forming a sawtooth, cyclical pattern96. The resulting 

voltammogram is a plot of current vs. voltage. The voltage is measured between the working and 

reference electrodes while the current is measured between the working and counter electrodes. 

The measured current (i) follows the Randles-Sevick equation below97: 

𝑖𝑝 = 0.4463 𝑛𝐹𝐴𝐶 (
𝑛𝐹𝑣𝐷

𝑅𝑇
)

1
2
 

where ip the maximum current, n is the number of electrons transferred in the redox event, F the 

Faraday constant, A the surface area of the electrode, D the diffusion coefficient, C the 

concentration, v the scan rate, R the gas constant, and T the temperature.  

As the voltage is swept from positive to negative the electroactive species undergoes oxidation 

and reduction. Upon total reduction and oxidation of the species at the surface of the electrode, 

the current will peak at opposite polarity97. Through the exploration of both the forward and 

reverse reactions, information regarding the reversibility of the reaction and surface 

electrochemistry of the entire electrochemical cell is generated. The identified oxidation and 
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reduction voltages are commonly exploited in other amperometric techniques, serving as 

potential DC offset voltages for time-dependent electrochemical reactions and are often preferred 

for the desirable signal-to-noise ratios98–101. The formal potential (average of the oxidation and 

reduction voltages) is often exploited in impedimetric techniques. 

 

The sensitivity of amperometric techniques is one of the shortcomings. To increase signal 

amplification, the conjugation of conductive nanomaterials and enzymatic labels (i.e. peroxidase) 

can be utilized. Not only does this combination supply electrons to the system through the 

enzymatic reaction, but also provides a conductive infrastructure for enhanced electron 

transport102. The CV results demonstrated wider detection limits on the nanomodified platform as 

compared to the bare platform. Although impractical by industrial standards for POC diagnostics, 

where the target analytes are often too low for CV without invoking complicated labeling and 

manufacturing procedures, the technique is still the standard for characterization of the 

electrochemical cell and the basis of electrochemistry97. 

 

Chronoamperometry is another amperometric technique which uses a potentiostat to supply 

specific voltages to the cell in a strategic manner, and records the resulting current as a function 

of time103,104. Many different types of step waveforms exist and are further discussed by Bard and 

Faulkner97. The applied voltages are unique to the system because they can either be excitatory 

or inhibitory. Certain potentials will not elicit an electrochemical response by the species in 

solution, deemed electroinactive. These regions do not facilitate charge transfer at the interface of 

the electrode and the solution, producing no faradic current. However, upon the introduction of a 

strong voltage, electrons will flow between the electrode and the species, generating a current 

response. The transfer of electrons, and thus the generated current is proportional to the flux of 

species within the cell. The continued supply of voltage will cause a vast accumulation of reduced 

species at the surface of the electrode, termed the depletion zone, and the current response will 

decay97. Therefore, the rate of mass transfer of the species to the electrode is the limiting factor in 
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the current response. Upon the removal of the reducing potential, the species will oxidize, 

generating a current response of opposite polarity, until the eventual saturation state and 

relaxation of the response. Because of this phenomenon, selection of bias voltage is extremely 

important in any electrochemical techniques, as the current generated from non-target 

electroactive species (noise) should be minimized. 

 

Chronoamperometry provides real-time, sensitive information of the electrochemical system. The 

versatility of applied input potentials make it desirable for the detection of many electrochemical 

analytes in DM and its comorbidities. Enzymatic biomarkers such as glucose and lactate are both 

ideal candidates for amperometric detection because their high concentrations in the body, 

allowing robust and label-free detections. Using this amperometric technique, the author has 

successfully developed a tear glucose6,10, a saliva glucose2, and a tear lactate biosensor7,12 for 

noninvasive monitoring. Unfortunately, since amperometric techniques rely on enzymatic 

reactions or electron facilitating labels, it has limited utility in achieving label-free detection in 

affinity-based reactions, such as the antibody and antigen. 

 

In contrast to amperometric techniques, potentiometric techniques measure the charge 

accumulation under the influence of a stable potentials96,105. Within the electrochemical cell, the 

reference electrode is maintained at a precise voltage, while the ionic content of the solution 

yields differences in the potential measured at the working electrode. Through assessment of the 

reported voltages, the composition of the solution in question can be determined. Electrode 

configurations containing ion selective membranes have been essential to the utilization of this 

technique in biosensing applications.  

 

Potentiometric sensing gained popularity with the introduction of ion selective electrodes in the 

1980s, and currently remain the largest, most widely used subset of potentiometric sensors in the 

field[36]. These sensor archetypes employ ion selective membranes, which effectively facilitate 
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the transport of selected ions across a conductive membrane. This creates an interface between 

the bulk solution and the active electrode, separating two solutions of varying ionic activity. The 

restrictive permeability of the membrane enables charge separation within the system and is 

ultimately responsible for signal generation, and reported selectivity106,107.  

 

Although biomarkers are most commonly proteins, ions such as Ca2+ can provide physicians with 

insight into the efficacy of cardiac muscle contraction and is crucial for many signal transduction 

pathways and enzymatic reactions108. Therefore, assessment of Ca2+ content in biological fluids 

can be extremely valuable. The development of ion-selective electrodes for clinical applications 

remain under development109. However, advancements toward POC applications have been 

limited to DNA hybridization biosensors for diagnostic use110,111. Improved sensor qualities such 

as low detection limits, increased sensitivity and selectivity remain within the scope of many 

research efforts. However, device miniaturization, broadened applicability to clinically relevant 

ions and reduced electrode variability are a few of the concerns hindering the progress of ion 

selective membrane sensors106,107. 

 

Field effect transistors (FETs) encompass one class of potentiometric sensing devices, highly 

desired due to the ease of small scale fabrication, rapid detection capabilities, low power 

consumption and on-chip integration106,112. The electrode configuration consists of a source and 

drain electrode, maintained at a stable bias and connected by a third electrode, termed gate 

electrode, which varies the supplied electric field potential. Additionally, the gate is coupled to a 

dielectric material, which undergoes changes in conductive properties with modulation of the 

electric field. This affects the current flow between the drain and source electrodes, resulting in 

signal production112.  

 

The desirable performance characteristics of FETs has led to an exploration of biosensing 

applications and a subset of FETs, termed BioFETs113. The most applicable platform for 
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biomarker detection applications is the enzyme field effect transistor (EnFET). It can also be used 

in DNA- and cell-based models106,113. With similar operating principles as a standard FET, the 

primary difference is the substitution of the gate electrode for a biochemically sensitive surface, 

which remains in contact with the biological sample. Several studies utilize the deposition of an 

enzyme-functionalized dielectric layer, containing receptors to the analyte of interest. Upon 

binding and capture of the target analyte, the enzymatic reaction results in the consumption or 

production of ionic species, which can be detected by ion selective electrodes, and ultimately 

correlated back to concentration of the analyte113.  

 

Various research efforts have explored the potential of antibody-based detection of CVD 

biomarkers using FETs. The conductive channel connecting the two electrodes, consisting of 

silicon nanowires is functionalized with the recognition antibody. Upon binding of charged 

analytes, a change in the conductance is transduced into a detection signal. The platform was 

utilized in the detection of cTnI and has produced detection limits (~2 ng/mL) comparable to that 

of the clinical gold standard114. 

 

The rapid, label-free nature of potentiometric devices make them highly desirable in a POC 

setting114,115. However, current challenges associated with surface patterning, reproducibility and 

non-linearities have prevented successful commercialization of FET devices as diagnostic 

tools96,113,116,117. Furthermore, the large antibody structures used to detect biomolecules extend 

several nanometers from the nanostructure, producing ion screening effects and ultimately 

reducing sensitivity118,119. 

 

Impedimetric biosensors contrast significantly with the previously discussed electrochemical 

techniques. Unlike amperometric and conductometric modalities, which employ a rather 

disruptive input to drive the system away from equilibrium and quantify the relaxation response, 

impedimetric techniques are much less intrusive to the system, permitting investigation of the 
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steady-state response following a small perturbation97. Commonly, a sinusoidal potential is 

applied to the electrochemical cell, and the resulting impedance, or obstruction to electron flow, 

due to molecular interactions and diffusion kinetics is measured120. This phenomenon yields 

desirable sensor performance characteristics such as increased sensitivity, precision and long-

term stability, which have undoubtedly led to the exploration of immunosensor applications, 

encompassing medical, environmental and bacterial sensing.  

 

The most representative impedimetric technique is the electrochemical impedance spectroscopy 

(EIS). It delivers, a sinusoidal voltage input encompassing a wide frequency spectrum at a pre-

defined DC offset voltage (i.e. formal potential as discussed previously) and amplitude, while 

measuring the resulting current through the cell. The electrochemical reaction (binding, 

enzymatic, hybridization etc.) occurring at the working electrode influences the conductivity of the 

cell, generating a quantitative change in the input signal96. This is commonly seen as a change 

magnitude or phase shift to the sinusoidal signal input. In the case of affinity-based binding, the 

signal generation is the obstruction of electron flow to the sensor surface due to steric hindrance 

or electrostatic interactions generated from the binding between antibody and antigen121. The 

hindrance of current flow can be modeled by resistive and capacitive elements, which together 

yield a frequency-dependent response, termed impedance (Z). In simple terms, EIS measures 

the obstruction to current flow through the electrochemical systems, allowing it to achieve label-

free detection.  

 

EIS offers great sensitivity (down to femto-molar) and rapid testing capabilities (< 1 minute). In 

conjunction with its label-free nature and wide spanning POC applications, it has many 

competitive advantages. EIS has been applied to multiple testing mediums, with various detection 

targets including DNA, proteins and whole cells, and successfully demonstrated feasibility in 

achieving relevant detection limits122–127. Advancements in sensor array development and 

deconvolution algorithms also permit simultaneous detection of two biomarkers enabling 
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enhanced specificity and assessment of potential comorbidities128. However, the technique is not 

without imperfections. The practicality and feasibility of EIS into clinical practice remain some of 

the greatest challenges. Variation resulting from surface functionalization methodologies, as well 

as the difficulty associated with large scale manufacturing remain a concern for many industrial 

entities 129. However, current work is being pursued to simplify the immobilization process and 

meet the industrial requirements without sacrificing the sensitivity nor dynamic range of the 

sensor9. In general, as elucidated herein, the advantages of electrochemical techniques make 

them great competitors for next generation clinical assays. Their performance capabilities in 

conjunction with low production costs and POC feasibility greatly surpass current SOTA 

diagnostic tools. 

 

Summary 

Among various detection modalities, EIS is most suitable for rapid, label-free POC diagnostics. 

Using EIS and the selected biomarkers, the author attempted to develop various single- and dual-

marker biosensor prototypes to be incorporated in the multi-marker sensing platform, as 

discussed in the following chapter. 

 

Acknowledgement: The content of this chapter is adapted from author’s published manuscripts1–9 

and submitted manuscripts10–13 with all coauthors’ consents and all publishers’ permissions.  
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CHAPTER 2 

MULTI-MARKER DETECTION  

FUNDAMENTAL OF ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY 

 

The key to enable electrochemical impedance spectroscopy’s (EIS) potential of label-free 

multimarker detection is the concept of optimal frequency. Although many researchers have 

acknowledged its existence, it is still a relatively new concept130–133. In general, the optimal 

frequency is the frequency at which a biomarker can be quantified sensitively and accurately. 

Besides the potential of multimarker detection, it is also more advantageous than traditional EIS 

approaches in that the sensitivity, specificity, and assay time can all be improved. In addition to 

multi-marker detection, optimal frequency is also very useful in quality control. Using insulin as an 

example, after establishing its optimal frequency using a controlled EIS sensor, the same sensor 

can be used by customers to evaluate the concentration of insulin in a commercially off the shelf 

vial (see section 2.3 for more details). By surveying the literature, the following section discusses 

a few methods to determine the optimal frequency of a biomarker.  

 

Prior to the discussion of algorithms, it is important to discuss the fundamentals of EIS. EIS 

follows the Ohm’s Law in the form of: 

𝑍(𝑗𝜔) =
𝑈(𝑗𝜔)

𝐼(𝑗𝜔)
                                                 Equation 1 

where Z is the complex impedance, 𝜔 the angular frequency (which is equivalent to 2𝜋𝑓 where f 

is the input frequency), U the input signal, and I the current response. EIS works by supplying a 

small sinusoidal wave to the electrochemical cell, and then converts the sinusoidal current 

responses and phase shifts into complex impedance. The input signal can be expressed as: 

𝑈(𝑗𝜔) = 𝑈𝑏 + 𝑈0 ∗ sin (ωt)                                     Equation 2 

where 𝑈𝑏 represents the biased voltage (which is typically the formal potential), 𝑈0 the voltage 

amplitude, and t the time. The current response can be expressed as:  

𝐼(𝑗𝜔) = 𝐼𝑏 + 𝐼0 ∗ sin (𝜔𝑡 + ∅)                                      Equation 3 
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where Ib represents the current response, I0 the current amplitude and ∅ the phase change. 

Substituting Equation 2 and 3 into Equation 1, Equation 1 can be rewritten as: 

𝑍(𝑗𝜔) = 𝑍𝑏 + 𝑍0 ∗
sin(𝜔𝑡)

sin(𝜔𝑡+∅) 
                                        Equation 4 

where Zb is the baseline resistance, and Z0 the amplitude. In other words, EIS measures the 

signal difference between the input and the output in terms of magnitude and phase.  

 

Figure 1: Randle’s Circuit  

As a whole, the system is a combination of multiple reactions of varying kinetics, each of which 

can be compared to the behavior of electrical circuit components, and modeled by resistive or 

capacitive elements120. The most commonly used equivalent circuit to model EIS data is the 

Randles circuit (Figure 1), consisting of an overall solution resistance in series with the parallel 

combination of a charge transfer resistance, capacitive double layer and Warburg diffusion 

element120,121,134,135. Each element in the system attributes some degree of obstruction to current 

flow through the system, thus influencing the output signal. The simplest electrochemical 

equivalent circuit component is the purely resistive approximation of the solution resistance (Rs). 

The presence of electroactive analytes in solution contribute a degree of resistivity or conductivity 

to current flow through the cell. Large, non-polarizable molecules are intrinsically resistive by 

nature. This behavior can be modeled by a frequency-independent resistance, termed solution 

resistance, and is influenced by the ionic content of the solution, as well as the geometry of the 

conducting cell97. Correspondingly, the Warburg impedance (W) is also descriptive of bulk 

solution properties, and is perhaps the most established and empirically validated circuit modeling 

component in electrochemistry136. The Warburg impedance component stems from the diffusion-
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based transport of the electroactive analyte to the electrode surface. This is commonly dependent 

upon the respective analyte diffusivity, concentration gradient within the cell, and separation 

between the bulk solution and near field 120,136. 

 

Two additional elements, charge transfer resistance (Ret) and double layer capacitance (Cdl) , are 

also included in a Randles circuit model, and are preferentially used as descriptors of 

immunosensors stemming from the impedance spectroscopy technique and molecular 

interactions. Charge transfer resistance permits investigation into the kinetics of the reaction 

occurring at the electrode-solution interface. As the name suggests, the movement of electrons 

between phases introduces a resistive element to the circuit. In the context of immunosensors 

this can be best described in relation to the molecular interactions occurring at the electrode 

surface. Upon analyte binding, high molecular weight complexes are formed, which act as 

barriers to the redox-mediated flow of electrons through the system. Supplementing the molecular 

binding phenomenon, regions of charge separation exist within the cell, analogous to a capacitor 

in an electrical circuit. The analytes in solution contain charged groups. Upon specific binding to 

the antibody receptor site, an accumulation of charge is observed at a specified distance from the 

electrode surface. The separation of charge, and thus equivalent capacitance is dictated by the 

dielectric layer, or the immobilization chemistry used to functionalize the sensor surface. In order 

to maximize capacitance and therefore sensitivity, the dielectric should be uniform, free of 

impurities, and exist across a short distance120. Unfortunately, perfect dielectric layers are 

improbable due to the inhomogeneity of electrode surfaces and permeation of ions and water 

molecules through the layer. Therefore, constant phase elements are often used instead of Cdl to 

represent the imperfect parallel plate capacitors135.  
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NOVEL ALGORITHM FOR OPTIMAL FREQUENCY 

 

OVERVIEW OF OPTIMAL FREQUENCY 

Although equivalent circuit modeling gives a system-wide evaluation, the impedance responses 

at individual frequencies are not analyzed. Therefore, equivalent circuit modeling does not lead to 

the identification of an optimal frequency. To identify the optimal frequency, two components of 

the impedance responses at individual frequencies can be utilized: complex impedance and 

phase angle.  

𝑍′ = |𝑍|𝑐𝑜𝑠(∅)                                                   Equation 5 

𝑍" = |𝑍|𝑠𝑖𝑛(∅)                                                   Equation 6 

where Z’ is the real impedance, Z” the imaginary impedance, ∅ the phase angle, and Z the 

complex impedance. Since each impedance spectrum (Z’, Z”, Z, and ∅) can be utilized to derive 

the optimal frequency, the overwhelming amount of data prompted various ways of analysis 

algorithms. In the following section, the author discusses a few common computing algorithms 

and their associated impedance components found in the literature. 

 

Maximum Response 

The simplest algorithm to calculate the optimal frequency is to observe the frequency at which the 

signal change is largest. In this approach, complex impedance is often used as the source of 

signal131,137–142, but phase angle can also be used as well143. This approach has been the most 

heavily used and published since the emergence of the optimal frequency phenomenon. 

Generally, following immobilization of the target analyte’s molecular recognition element, the 

optimal frequency can be determined by depositing a gradient of target analytes onto the sensor 

and identifying the frequency at which the highest percent change in impedance occurs. 

Additional criteria such as the shortest response time among frequency candidates can be 

applied, but generally follow the same principle141,142. The optimal frequencies identified with this 

algorithm can shift drastically depending upon the testing conditions employed, suggesting that 
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the optimal frequency is representative of an equilibrium of an electrochemical system instead of 

the specific biomarker. Although permitting accurate detection of target analytes in various media, 

programing a POC diagnostic tool with a specific frequency (i.e. the optimal frequency) may yield 

inaccurate results due to consistencies among patient samples. This is largely a result of solution-

dependent changes in electrochemical properties. When the testing solutions are altered, the 

electrochemical properties are also altered, leading to changes in descriptive parameters such as 

the charge transfer resistance or solution resistance, and consequently the optimal frequency. 

When using this algorithm, the derived optimal frequency represents the combination of signal 

generated from the target-MRE binding reactions and the background noise resulting from the 

surrounding medium composition. However, because of the simplicity and straightforward nature 

of this algorithm, it is suitable for investigational and characterization purposes.  

 

 

Maximum Correlation 

Another commonly used algorithm determines the optimal frequency through the maximum 

correlation, which is typically represented by R-square (RSQ) values132,144. RSQ value is one of 

the many parameters in a linear model obtained by fitting the dependent variable to the 

independent variable. It is a measure of goodness-of-fit between the model and the dependent 

variable. In EIS, by fitting the empirical impedance values to the known analyte concentration 

across the frequency spectrum, a linear model described by slope and RSQ parameters is 

obtained at each discrete frequency. In the maximum correlation algorithm, the optimal frequency 

is the frequency at which the RSQ value is highest. It also often relies on the complex impedance 

as the source of signal132,144.  

 

Although a high RSQ value is generally desirable because it indicates sufficient agreement 

between the predicted model and the real data, it has limitations. A linear model with high RSQ 

value can be biased, and therefore a residual plot is often required to validate the model. Another 
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limitation is that, in EIS, it is possible that a range of frequencies all exhibit high RSQ values ( > 

0.95), making it hard to identify a single candidate to serve as the optimal frequency of the 

biomarker. Relying only on high RSQ values, alone can also have false positives, such as a flat-

line response where the RSQ is high but the slope is significantly small. These scenarios indicate 

minimal detectable signal change between analyte concentrations, which can be masked by the 

error associated with measurement.  

 

Transfer Functions 

Another category of algorithms is the transfer functions that take both the response and 

correlation into considerations. Generally, there is a tradeoff between the slope and RSQ values, 

as the frequency with highest RSQ is often not the frequency with the highest slope. To 

determine the optimal frequency, transfer functions can be adapted to permit complex desigh of 

algorithms for determining the optimal frequency130,145. The transfer function can also be used on 

the impedimetric responses to convert them into different parameters. For example, by employing 

the following transfer functions defined by Equations 7-9, the impedance values can be converted 

to.  

𝐶 =
1

𝑗𝜔𝑍
                                                          Equation 7 

𝑌 = 𝑗𝜔𝐶                                                         Equation 8 

𝑀 = 𝜔𝑍                                                          Equation 9 

where 𝜔 the angular frequency, C the capacitance, Y the admittance, and M the modulus. 

Optimal frequencies can also be calculated by finding the frequency at which the capacitance, 

admittance, or the modulus is largest with sufficiently high RSQ146. A summary of algorithms and 

the EIS components used to determine the optimal frequency is summarized in Table 3.    

 frequency. The number inside each cell represents the reference number.  

Table 3: Summary of EIS algorithms and the EIS components used to determine the optimal   

 Max. Response  Max. Correlation Transfer Function 

Complex Impedance 131,137–142 132,144 130,145 

Phase Angle 143  146 

Real Impedance   146 

Imaginary Impedance 13 (author’s work) 9 (author’s work) 1 (author’s work) 
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THE IMAGINARY IMPEDANCE ALGORITHM 

Depending on the algorithm used, the electrochemical signals may consist of large full width half 

maximums (FWHM), causing severe signal overlays at each biomarker’s optimal frequency, and 

thus prevents the execution of multi-marker detection. One example can be found in the complex 

impedance algorithm. When plotting the slope and RSQ values against the frequency spectrum, 

complex impedance algorithm often yields highest response at low frequencies (Figure 2). While 

this is not an issue for single biomarker detection, the abundance of signal from one biomarker’s 

 
Figure 2: Differences Between Complex and Imaginary Impedance Algorithms. Schematic 

representation of 2 biomarker’s impedance signals and the predicted signal when co-

immobilized on the same sensor. Each biomarker’s optimal frequency is determined by 

sensitivity and RSQ using A) complex impedance and B) imaginary impedance.  The black 

circle represents the optimal frequency of biomarker 1 and white circle the optimal frequency 

of biomarker 2 in each approach. Notice that in Figure 1A, due to signal overlapping, the 

optimal frequencies of both markers are not distinguishable when co-immobilized. Reprint with 

permission from reference 1.  
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optimal frequency can overlap with the signal from another biomarker’s optimal frequency, posing 

a great challenge for multi-marker detection. 

 

On the other hand, the imaginary impedance algorithm offers an additional parameter for the 

determination of optimal frequency: peak location, which is also known as the cutoff frequency. In 

contrast to complex impedance, imaginary impedance peaks at a specific frequency, forming a 

parabolic shape when plotted across frequencies. By correlating the imaginary impedance to 

target concentration, the optimal frequency of a biomarker can be identified (Figure 3). Typically 

the highest slope will accompany with a very high RSQ (Figure 3B), making the identification of 

optimal frequency much simpler. A more detailed investigation of optimal frequency using the 

imaginary impedance algorithm can be found in chapter 3. 

 

 

The Comprehensiveness of the Imaginary Impedance Algorithm 

One may argue that the imaginary impedance algorithm is only a snap shot of the 

electrochemical system and can potentially miss vital data, causing inaccuracies in the 

 
Figure 3: Typical Imaginary Impedance Responses. A) the overlay of imaginary impedance 

and the shifting of cut-off frequencies and B) the optimal frequency at 57.44 Hz where the 

slope peaks with very high RSQ.  
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measurement. In reality, the imaginary impedance can be considered as a more filtered signal 

that still represents the entire system. It can be seen from Equation 6 that the imaginary 

impedance is derived from both phase angle and complex impedance, which represent the whole 

system. Similarly, as seen in Equation 5, real impedance is also derived from the whole system. 

However, as shown in Figure 4, the signal pattern of real impedance is like that of complex 

impedance as they both resemble the response of a low-pass filter, suggesting a potential signal 

overlap if the optimal frequency is at the lower frequency range. Although phase angle is similar 

to the imaginary impedance in that they both have a distinct peak, its FWHM is higher than that of 

imaginary impedance, increasing the risk of signal overlap if the two optimal frequencies are 

close to each other. Therefore, the imaginary impedance algorithm not only preserves the vital 

information from the system, it also has the lowest risk in signal overlap, and is thus selected as 

the basis for determining the optimal frequency.  

  

Figure 4: The four main impedance components of EIS.  
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THE SIGNAL DECONVOLUTION ALGORITHM 

To decouple the signal generated from two biomarkers co-immobilized onto the same sensor 

surface, a unique decoupling algorithm is applied and described below. All impedance values are 

imaginary impedance.  

Generally, the calibration curve at each frequency is typically expressed in the form of: 

𝑦(𝑓) =  𝑚(𝑓) ∗ 𝑥 +  𝑏(𝑓)                                           Equation 10 

where y is the imaginary impedance, m is the slope, x is the target concentration, f is the 

frequency, and b is the intercept.  

 

The term b(f) can be interpreted as a baseline adjustment value, which can vary in different 

sensor configurations and surface topography’s. The slope, 𝑚(𝑓), can be considered as the main 

signal generated from the binding of target molecules to their MREs including the association and 

dissociation rates.  Using this concept, it can be argued that the dual marker co-immobilized data 

has three components: the resulting imaginary impedance (𝑦(𝑓)), the impedance signal (slope) 

resulted from the 2 biomarkers (𝑚(𝑓) ∗ 𝑥), and the baseline adjustment impedance (𝑏(𝑓)), 

described as:  

𝑦1,2(𝑓) = 𝑚1,2(𝑓) ∗ 𝑥1,2 + 𝑏1,2(𝑓)                                   Equation 11 

where 1 denotes biomarker 1 and 2 biomarker 2. If the pattern of 𝑏(𝑓) in the co-immobilized 

setup can be modeled, then the impedance values caused by b can be subtracted from the 

overall co-immobilized impedance values. The remaining impedance values across all 

frequencies are then the decoupled impedance values resulted from the binding of 2 biomarker 

molecules to their corresponding antibodies. Depending on the concentration of antibodies, 

weighting multipliers may be considered. 

 

XLfit, an Microsoft Excel add-on for parabolic fitting, was used to model the parabolic curves that 

were generated from plotting imaginary impedance (𝑦(𝑓)) against frequencies and slopes (𝑚(𝑓)) 

against frequencies. The parabolic fitting was performed on both purified biomarker 1 and 
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biomarker 2 to model their electrochemical responses (𝑚1(𝑓) and 𝑚2(𝑓)). The projected 

impedance values (𝑦′1(𝑓) and 𝑦′2(𝑓)) without the adjustment values (𝑏1(𝑓) and 𝑏2(𝑓)) were then 

obtained by multiplying the parabolic fitting of biomarker 1 and biomarker 2’s slopes (𝑚1(𝑓) and 

𝑚2(𝑓)) with their target concentrations (𝑥1 and 𝑥2). The projected impedance values of biomarker 

1 and biomarker 2 (𝑦′1(𝑓) and 𝑦′2(𝑓)) were then added together to project the impedance values 

of co-immobilized biomarker 1 and biomarker 2 (𝑦′1,2(𝑓)) without the adjustment values (𝑏1,2(𝑓)). 

The adjustment values (𝑏1,2(𝑓)) were then obtained by subtracting the predicted co-immobilized 

impedance values (𝑦′1,2(𝑓)) from the actual co-immobilized impedance values (𝑦1,2(𝑓)). After 

modeling the adjustment values (𝑏1,2(𝑓)), the projected adjustment values (𝑏′1,2(𝑓)) at each 

frequency can be obtained. Lastly, by subtracting the projected adjustment values (𝑏′1,2(𝑓)) from 

the actual co-immobilized impedance values (𝑦1,2(𝑓)), the decoupled impedance values resulted 

from only the binding of biomarker 1 and biomarker 2could be obtained. A new calibration curves 

for each biomarker where then obtained to detect biomarker 1 and biomarker 2 separately, as 

demonstrated in the detection of LDL and HDL discussed later. See International Patent #: 

PCT/US/2018/023375 and U.S. Patent Application # 62/473,894 for more details.  

 

Summary 

Overcoming signal overlaps when two biomarkers have similar optimal frequencies is a top 

priority in succeeding multi-marker detections. In this chapter, a novel algorithm of determining a 

biomarker’s native optimal frequency is reported. A signal deconvolution algorithm is also 

reported to overcome signal overlapping. Without the imaginary impedance algorithm, the 

overlapping signal could be too much to deconvolute. By applying this algorithm, the following 

chapters will discuss its utility in achieving single marker and multimarker detections that are 

otherwise challenging to perform. 
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CHAPTER 2.1 

A DUAL-MARKER PROTOTYPE: TWO ANTIBODIES 

 

INTRODUCTION 

Although hypothesized previously, a physical prototype demonstrating EIS’s utility in multi-marker 

detection has yet been developed. As described in previous chapter, imaginary impedance (Z”) 

algorithm has the potential to overcome signal overlapping, allowing the detection of multiple 

biomarkers simultaneously on a single electrode. However, to achieve the multimarker detection, 

one must recognize the distinct differences between the affinity-based binding and the enzymatic 

reaction in EIS. Figure 5 shows the electron flows in the enzymatic reaction and the affinity-

binding reactions. In the enzymatic reactions, analytes are oxidized, and consequently the 

electrons are generated. The electron mediators then carry the electrons to the electrode, 

generating an observable signal. When all the electron mediators or the substrates in the system 

are consumed, the electron facilitation stops, and the signal is lost. This is especially evident in 

continuous glucose meters, where wound healing process can eventually cover the glucose 

sensor to a point that oxygen, the primary electron receptor in first generation glucose sensors, is 

no longer permeable from blood onto the sensor8. On the contrary, affinity based binding does 

not generate electron flow. Instead, the antibody-antigen complex serves as an obstruction to the 

electron flow. Although enzymatic or other electroactive labels can be added to the analytes to 

create a signal when binding occurs, it defeats the purpose of developing a label-free 

electrochemical sensor. One interesting alternative worthy of mentioning is a molecular 

engineering approach by adding an electron mediator probe onto a MRE that undergoes drastic 

conformational change when binding occurs, such as a tentacle probe147. This way, after MRE-

target binding, the electron mediator probe can change location relative to the sensor surface, 

generating a differential electrochemical signal.  
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Figure 5: Electron flows between an enzymatic reaction and an affinity-binding reaction. A and B 

represents the oxidized and reduced form of an electron mediator. In the enzymatic reaction (left), 

a signal is generated from the oxidation of product to byproduct. In the antibody-binding reaction, 

the signal comes from the blockage of electrons with regard to antibody-antigen binding. 

 

To detect a “signal” after the antibody-antigen complexes are formed in a label-free manner, the 

concept of formal potential is adopted. The formal potential is the average between the oxidation 

voltage and the reduction voltage (Figure 6). At the formal potential, the electron mediators are 

constantly converted back and forth, facilitating the electrons like a quiet engine. This way, 

electron blockage (thus termed impedance) with respect to antibody-antigen complexes can be 

measured, providing a label-free method to measure target analytes.  
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Figure 6: Determining the formal potential with cyclic voltammetry 

To develop functional prototypes of the multimarker sensor, 3 dual-marker prototypes were 

developed. Each prototype was designed to investigate a combination of the detection 

mechanisms: antibody + antibody (A+A), enzyme + enzyme (E+E), and antibody + enzyme 

(A+E). The selection of biomarkers was discussed in Chapter 1. For the A+A prototype, two 

example biomarkers that utilize the antibody-antigen binding mechanism were investigated: low-

density lipoprotein (LDL) and high-density lipoprotein. The two biomarkers not only have strong 

clinical value as described in Chapter 2.1, but also have biological characteristics suitable for 

multi-marker investigation. The MRE of both biomarkers are similar: IgG monoclonal antibody, 

which permits a similar baseline. The LDL and HDL antigens differ drastically in size (175kDa and 

512 kDa, respectively), allowing them to be differentiated. In this chapter, we investigate the 

feasibility of detecting 2 antibody-based biomarkers while developing a dual-marker biosensor for 

monitoring 2 key biomarkers of CVD, a major comorbidity of DM.  

 

METHODS 

A standard sensor preparation protocol utilizing the gold-disc electrodes (GDE) and the self-

assembled monolayer was used in this study. For more details, please refer to the Appendix B.  



42 

 

To characterize the individual biomarker’s signal, 50 ug/mL of either LDL or HDL antibodies were 

immobilize on the GDEs via covalent binding between primary amines of the antibody and 

carboxylic groups of the self-assembled monolayer. Single-marker sensors were first built using 

50 ug/mL of respective antibodies. To build the dual-marker sensor, 50 ug/mL of LDL and HDL 

antibodies were co-immobilized onto the GDEs. All sensors were brought to room temperature 

prior to testing. A Serial dilution made in PBS was used to prepare purified LDL and HDL samples 

from 50 – 0 mg/dL. For LDL and HDL co-immobilization testing, the two markers were well mixed 

at a 1:1 ratio in a similar manner and the mixture has the concentration of 0-10 mg/dL for each 

biomarker. Antibody concentrations were still kept at 50 ug/mL in co-immobilization setting. EIS 

was performed to measure each sample’s impedance at each sensor’s formal potential from 1 Hz 

to 100 kHz at 12 points per decade in the presence of 100 mM potassium ferricyanide (see 

Appendix D for details). The imaginary impedance algorithm described previously was used to 

determine the optimal frequency. The signal deconvolution algorithm described previously was 

used to deconvolute the coimmobilized signal. All electrochemical circuit modeling was done via 

ZSimpWin (Echem Software, USA). EIS data was fit against potential electrochemical equivalent 

circuit models and evaluated using a Chi-square analysis and mean percent standard deviation 

(see Appendix F for details). The procedure was repeated to obtain the best fitting 

electrochemical equivalent circuit for purified LDL, purified HDL, and co-immobilized LDL and 

HDL. 

 

RESULTS 

Electrochemical Verification of Self-Assembly Monolayer and Target Binding 

For quality control, AC impedance measurement was performed 3 times throughout the sensor 

preparation process: after polishing the bare electrodes, after MHDA, and after blocking. As 

shown in Figure 7a, a clean electrode showed only a Warburg tail, suggesting that the system is 

dominated by diffusion. Damaged or warped GDE’s will have much higher impedance after 

polishing. As shown in figure 7b and 7c, the impedance will increase drastically after successful 
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MHDA binding and decrease after successful immobilization of MREs. When targets were 

introduced to the sensors, the impedance increased significantly from the blank, suggesting 

successful binding. The specificity of binding and surface coverage were evaluated in previous 

work148. Notice that the bare electrode impedance values are a hundred times smaller than the 

impedance values when binding occurs, suggesting that the cables have negligible effects on the 

measurements. 

 

Electrochemical Characterization of Purified LDL and HDL 

The EIS responses of LDL and HDL in imaginary impedance (Figure 8a and 8b) exhibit distinct 

peaks at various frequencies, resembling a bandpass filter-like shape. In contrast, the complex 

impedance (Figure 8c and 8d) does not exhibit the distinct peaks and resembles a shape like a 

low-pass filter. The optimal frequency was calculated by choosing the frequency with highest 

slope and satisfactory RSQ (>0.85). Using the imaginary impedance approach, the optimal 

frequencies of LDL and HDL were found to be at 81.38 Hz and 5.49 Hz, respectively (Figure 8a 

and 8b). Using the complex impedance approach, the optimal frequency of HDL could be found 

at 1.18 Hz. However, the optimal frequency for LDL could range from 1.18 Hz to 37.56 Hz as the 

tradeoffs between slope and RSQ are difficult to evaluate. Using the imaginary impedance 

approach, the calibration curve at each biomarker’s optimal frequency was attained by graphing 

the concentration versus output imaginary impedance and fitted to a regression line. The 

 
Figure 7: Nyquist plots for LDL and HDL sensors. a) Bare gold disk electrode. b) 16-MHDA 

(solid line), blank (thick dashed line) and 10 mg/dL HDL (light dashed line). c) 16-MHDA (solid 

line), blank (thick dashed line) and 10 mg/dL HDL. Reprinted with permission from reference 

1. © Elsevier.  
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calibration curve for LDL at an optimal frequency of 81.48 Hz is described as y = -106.7 ln(x) – 

2881.5 (Figure 8e, black curve) with an RSQ of 0.92. The calibration curve for HDL at an optimal 

frequency of 5.49 Hz is described as y = -238.16x – 783.11 with an RSQ of 0.97 (Figure 4e, grey 

curve). The dynamic ranges for LDL and HDL sensors are 35.78 mg/dL – 211.22 mg/dL and 

42.43 mg/dL – 172.65 mg/dL, respectively, with both encompassing the clinically relevant range 

of 100 - 190 mg/dL and 40-60 mg/dL, respectively 149. Note that LDL was found to have a 

logarithmic fit while HDL a linear fit. The association and disassociation rate constants for LDL 

are 342 nM-1.min-1 and 27 min-1, respectively, and HDL 90 nM-1.min-1 and 3 min-1, respectively 71.  
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Figure 8: Electrochemical characterization of LDL (black) and HDL (grey) in purified solution. 

The imaginary impedance slope is overlaid with RSQ (dashed line) across the frequency 

sweep for: (a) purified LDL and (b) purified HDL. The complex impedance slope is overlaid 

with RSQ across the frequency sweep for: (c) purified LDL and (d) purified HDL. Using the 

imaginary impedance approach, (e) shows the overlay of the LDL (black) and the HDL (grey) 

calibration curves at each marker’s optimal frequency over the concentration range tested (0-

50 mg/dL for both). The inset is a zoomed-in view of the HDL slope from 0 to 0.1 mg/dL. 

Reprinted with permission from reference 1. © Elsevier. 
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Detection of LDL and HDL in Co-immobilized Setup 

The co-immobilized impedance signal of LDL and HDL shows a similar bandpass filter shaped 

peak at 31.5 Hz with a strong correlation. Knowing that the peaks in purified LDL and HDL are 

81.38 Hz and 5.49 Hz, respectively (Figure 8a and 8b), the summation of the two signals when 

co-immobilized can theoretically yield a single peak that is within the two frequencies (Figure 9a). 

Note that the RSQ value of 1 with little to no slope at frequencies above 10 kHz shows the lack of 

signal above 10 kHz.  Once the signal was decoupled using the algorithm described above, two 

peaks became apparent (Figure 9b). The decoupled HDL peak shifted slightly from 5.74 Hz to 

3.74 Hz with a slope of 199.4 ohm/(mg/dL), and correlation of 0.99. The decoupled LDL peak 

shifted from 81.38 Hz in purified to 175.8 Hz with a slope of 57.15 ohm/(mg/dL) and a correlation 

of 0.88. The slopes were then used to generate new calibration curves that can back-calculate 

the LDL and HDL concentrations. The results were then plotted against the reference 

concentrations (Figures 9c, 9d) for verification. The lower limit of detection for the multi-marker 

sensor is 1 mg/dL but upper limit of detection still requires further optimization. Note that Figure 

9c and 9d’s scale bars have been adjusted to show only the linear range of the decoupled signal. 
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Electrochemical Equivalent Circuits 

The electrochemical equivalent circuits for LDL and HDL were both found to be the 𝑅(𝑄𝑅) circuit, 

which can be considered a modified Randle’s circuit (𝑅𝑠(𝑄[𝑅𝑐𝑡𝑊]) (Figure 10). This modeling is 

consistent with the theory that electrical properties of proteins can be considered as a resistance-

capacitance parallel circuit 150,151. The CPE represents an imperfect double layer capacitor 

 
Figure 9. Co-immobilization of HDL and LDL. (a) raw data plotting the slope (solid line) and 

RSQ (dashed line) across frequency sweep, with a unique peak at 31.5 Hz; (b) The decoupled 

signal using the described algorithm. The two peaks occur at 3.74 Hz and 175.8 Hz, with each 

representing the optimal frequency of HDL and LDL, respectively. The RSQ also peaks at 

these frequency locations; (c) The comparison of the predicted HDL values using the 

calibration curve, versus the actual input values. (d) The comparison of the predicted LDL 

values using the calibration curve, versus the actual values. Reprinted with permission from 

reference 1. © Elsevier. 
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consisting of the electrode, the SAM, MREs, and bound target molecules. The impedance of CPE 

(𝑍𝐶𝑃𝐸) is described as: 

𝑍𝐶𝑃𝐸 =
1

𝑄(𝑗𝜔)𝑛                                              Equation 12 

where 𝑗 = (−1)
1

2, 𝜔 = 2𝜋𝑓 with 𝑓 being the frequency of the applied AC potential, and 𝑛 

representing a fractional value between 0 to 1, with 0 describing a pure resistor and 1 an ideal 

double layer capacitor 152. The values of individual components in LDL’s equivalent circuit are: 

Rs=239 ohms, Q=1.66E-7 Ssecn/cm2, n=0.87, Rc=21701 ohms. The values for HDL’s equivalent 

circuits are: Rs=211 ohms, Q=6.69E-7 Ssecn/cm2, n=0.8, Rc=30015 ohms.  

The equivalent circuit model of co-immobilized LDL and HDL was found to be a combination of 

individual LDL and HDL equivalent circuits: 𝑅(𝑄𝑅)(𝑄𝑅). While it is possible to model the co-

immobilized LDL and HDL with the same 𝑅(𝑄𝑅) circuit, the chi-square and mean % stdev of 

𝑅(𝑄𝑅)(𝑄𝑅) circuit (4.97E-04 and 2.01%, respectively) are much smaller than that of 𝑅(𝑄𝑅) circuit 

(1.49E-03 and 3.85%, respectively) , suggesting a much better fit. The values for co-

immobilization’s equivalent circuits are: Rs =101 ohms, Q1=1.73E-4 Ssecn/cm2, n1=0.6, Rc1=7966 

ohms, Q2=2.07E-7 4 Ssecn/cm2, n1=0.8, Rc2=9673 ohms. 

 
Figure 10: Electrochemical equivalent circuits for purified LDL (A), HDL (B), and co-

immobilized LDL and HDL (C). (𝑅𝑠) = solution resistance; (𝑅𝑐) = a combined resistance of 

charge transfer resistance (𝑅𝑐𝑡) and Warburg impedance (W); (Q) = constant phase element 

(CPE). Reprinted with permission from reference 1. © Elsevier. 



49 

 

 DISCUSSION 

The Use of Imaginary Impedance in Biomarker Detection. 

The greatest challenge of measuring two biomarkers using a single co-immobilized sensor is the 

large amount of signal aliasing. As seen in Figure 8c and 8d, using the complex impedance 

approach can pose a great challenge for signal decoupling and back-calculation of target 

concentrations when applied in multi-marker detection settings. However, with the distinct peaks 

and higher RSQ values obtained using the imaginary impedance approach, individual signals are 

easily distinguished. The peak also makes determining optimal frequency much easier than in the 

complex impedance approach. Similar to how many researchers correlated target concentration 

with electron transfer resistance and omitted solution resistance, using just the imaginary 

impedance allows researchers to focus on the capacitive signal resulted from the conformational 

changes of target-MRE binding. By using the decoupling algorithm, it is possible to detect two 

biomarker simultaneously on the same sensor. Based on these unique characteristics, the 

imaginary impedance approach better suits the characterization of multi-marker detection, while 

the complex impedance approach is more specific to single-marker detection. 

  

Potential Connection between Optimal Frequency and Biomarkers’ Properties 

LDL is approximately 22 nm to 27.5 nm in diameter 153 and HDL 7.3 – 13 nm 154. Given that, it is 

interesting to note that LDL was detected at a higher frequency (81.38 Hz) and HDL at a lower 

frequency (5.49 Hz) in purified solution (Figure 8a and 8b), suggesting a potential relationship 

between optimal frequency and molecular size. Targets with various sizes can bind to their MREs 

to form size varying complexes, affecting the capacitance of the IPPC and consequently the 

optimal frequencies. The association and disassociation rates of HDL (342 nM-1.min-1 and 27 min-

1) are also much higher than that of LDL (90 nM-1.min-1 and 3 min-1), suggestion potential 

connection to optimal frequencies as well.  
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This phenomenon helps explain the shift in frequencies after co-immobilizing the two biomarkers. 

After co-immobilization the optimal frequencies of LDL and HDL (5.48 Hz and 81.38 Hz, 

respectively) shifted to 3.74 Hz and 175.8 Hz, respectively. Note that the CHI660C is only 

capable of measuring 12 frequencies per decade and 81.38 Hz is 4 data points away from 175.8 

Hz, suggesting a higher resolution might be desirable for future investigation. Parameters that 

may have influenced the shift in optimal frequencies are steric hindrance, molecular diffusion 

rates, as well as orientation and shape of the MRE-target complex. Other factors such as binding 

kinetics; the association and dissociation rates; the physical changes that occur during binding; 

and whether the mechanism is 1 step or multistep process can all have impacts as well. These 

factors can affect the electron transfer rate and the capacitance of the IPPC despite the 

immobilization of the two markers’ antibodies at a 1-to-1 ratio. Future experiments will be 

conducted to evaluate the effect of each factor on optimal frequency and develop a more robust 

model in estimating the optimal frequencies. While it appears that both biomarkers can be 

detected simultaneously on the same sensor, optimization experiments such as altering the ratio 

of LDL and HDL antibody concentrations, EDC/NHS concentrations, and 16-MHDA concentration 

should also be performed to mature the platform for testing in complex solutions.  

 

CONCLUSION 

While EIS has been previously reported to have the theoretical capability of multi-marker 

detection on a single sensor, one of the major roadblocks to a successful multi-marker sensor 

has been the signal overlapping and decoupling. Here we report the first step toward multi-marker 

detection by detecting LDL and HDL simultaneously on GDEs. We report a novel signal analyzing 

approach using just imaginary impedance, a signal decoupling algorithm, and discuss factors that 

may affect optimal frequencies. This is the first demonstration that EIS has the potential for multi-

marker detection in a label-free manner. This work does not discuss the MRE orientation, 

biomarker’s physical structure, binding mechanisms, and many other factors that may affect 

optimal frequency in great depth. No optimization and interference testing have been performed 
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on the multi-marker sensor. These alterations and affects will be one of the future points of 

research to aid in designing a model for the determination of an optimal frequency. 
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CHAPTER 2.2 

A DUAL-MARKER PROTOTYPE: TWO ENZYMES 

INTRODUCTION 

After demonstrating EIS’s multimarker potential with a dual-marker prototype using 2 antibodies, 

this chapter investigates a dual-marker prototype using 2 enzymes. As discussed previously, 

since enzymatic reactions are very different from affinity binding reactions, investigating a dual-

marker prototype using enzymatic biomarkers is very important. To develop this prototype, 

glucose and lactate were selected as the 2 example biomarkers, see Chapter 1.1 for more 

details. Glucose is the most important biomarker for glycemic control and many glucose meters 

are currently commercially available. Lactate on the other hand, is also a vital biomarker for 

glycemic control from a therapeutic perspective. DM patients are often encouraged to exercise, 

but without knowing the lactate levels in the body, achieving sufficient exercise intensity for 

therapeutic purposes can be challenging. As discussed in greater detail in Chapter 1.2, the 

commercially available glucose meters and lactate meters often utilize the amperometric 

technique. In the amperometric technique, with the presence of an electron acceptor, a bias 

voltage is supplied to help facilitate the electrons generated from the oxidation of reactants. Since 

the reaction generates current, detection of target analytes is more robust comparing to the label-

free affinity binding reactions. In a hindsight, using EIS to detect glucose and lactate does not 

necessarily hold competitive advantages besides academic novelty. Both biomarkers are 

comparably more concentrated in human body than many proteomic biomarkers, and 

amperometric techniques provide sufficient sensitivity and accuracy to achieve clinical utility. 

However, it is suspected that the optimal frequencies of enzymatic biomarkers may have different 

characteristics compared to affinity-binding biomarkers. For this reason, in addition to their high 

concentrations, glucose and lactate are ideal enzymatic biomarkers for the investigation of 

optimal frequencies and dual-marker biosensors. The author has successfully developed novel 

tear glucose and tear lactate biosensors using amperometric techniques, which can be added 

toward the multi-marker platform as a backup.  
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Although an enzymatic reaction generates electrical signal, detecting two enzymatic biomarkers 

using EIS is not necessarily an easy task, as distinguishing the electrons generated by one 

biomarker from the other can be challenging in a label-free setting. Fortunately, the concept of 

optimal frequency applies to enzymatic biomarkers as well. Using the complex impedance, the 

optimal frequency of glucose was previously demonstrated by Adamson et al144. While the 

optimal frequency of lactate has never been published, Gamero et al have developed an EIS 

based lactate sensor using the charge transfer resistance obtained from equivalent circuit 

modeling155. In this chapter, after identifying the optimal frequencies of glucose and lactate, the 

two biomarkers were co-immobilized onto the same working electrode to investigate the feasibility 

of a dual-enzymatic-marker biosensor. 

 

METHODS 

A standard sensor preparation protocol utilizing the gold-disc electrodes (GDE) and the self-

assembled monolayer was used to prepare the sensors (see Appendix B). For the immobilization 

of molecular recognition elements, the concentrations of lactate dehydrogenase and glucose 

oxidase were 9.4 mg/mL and 10 mg/mL, respectively. Final lactate and glucose samples were 

made in PBS and tested according to their respective physiological levels. The lactate 

concentrations tested were 0, 2.2 mM, 4.4 mM, 8.8 mM, 15 mM, and 30 mM. Each lactate 

concentration was accompanied with 30 mM of NAD cofactor as the electron acceptor. The 

glucose concentrations tested were 0, 8 mg/dL, 25 mg/dL, 60 mg/dL and 100 mg/dL (which is 

equivalent to 0, 0.006, 0.55, 1.5, 3.3, and 5.5 mM). For co-immobilization, the same 

concentrations of glucose oxidase and lactate dehydrogenase were immobilized on the GDEs. 

When testing the dual-marker sensors, the lactate concentrations were held at 1, 8, and 30 mM 

while the glucose concentration varied from 0 – 100 mg/dL at the same intervals described 

above. All samples were tested in 100 mM potassium ferricyanide as detailed in Appendix D. The 

imaginary impedance algorithm described previously was used to obtain the optimal frequencies 
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of lactate and glucose. The sensors underwent the same quality control steps described in 

Appendix C (data not shown). For modeling the dual-marker prototype’s response, an Excel 

addon called XL-STAT was used to model the individual biomarker’s response and deconvolute 

the co-immobilized signal as described previously. Lower limits of detection (LLD) were 

calculated using the 3.3 * standard deviation / slope. 

 

Physical adsorption of 10 mg/mL of glucose oxidase on screen printed carbon electrodes was 

performed as described in Appendix A. Briefly, 10 µL of 10mg/mL of glucose oxidase was 

pipetted onto the sensing well of Zensor. The sensors were dried at 25⁰C in the incubator and 

then subjected to chemical vapor generated by 1 mL 25% glutaraldehyde. The glutaraldehyde 

crosslinks the primary amines of adsorbed proteins, holding them together on the surface of the 

electrode. Blocking of unreacted aldehyde groups was performed with 10 mM TRIS-HCL. The 

sensors were then stored in PBS and used immediately.  

 

RESULTS AND DISCUSSIONS 

Using the methods described above and the imaginary impedance algorithm, the optimal 

frequencies of lactate and glucose were found to be 97.66 Hz and 31.5 Hz, respectively (Figure 

11). The optimal frequency of glucose was found to be smaller than lactate. Perhaps one possible 

reason is the molecular weight (glucose is 180.156 g/mol and lactate 89.07 g/mol). It is interesting 

to note that, in the enzymatic biomarkers, a larger molecular weight yielded higher optimal 

frequency, whereas in the affinity-binding biomarkers investigated in previous chapter 

(LDL&HDL), a biomarker with larger molecular weight yielded lower optimal frequency. The effect 

of molecular weight on the optimal frequency is discussed further in Chapter 3.2.  
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Figure 11: Electrochemical responses of lactate and glucose. Overlay of slope and RSQ values 

for A) lactate and B) glucose. Based on the imaginary impedance algorithm, the optimal 

frequency for lactate was found to be 97.66 Hz and glucose 31.5 Hz  

 

Figure 12 shows the calibration curves of lactate and glucose at their respective optimal 

frequencies (97.66 Hz and 31.5 Hz, respectively). The concentrations tested for lactate were 0, 

2.2 mM, 4.4 mM, 8.8 mM, 15 mM, and 30 mM and glucose 0, 0.06, 0.55, 1.5, 3.3, 5.5 mM (0, 1, 

8, 25, 60, 100 mg/dL), respectively, both meeting the normal physiological levels156,157. Note that 

although glucose levels can be as high as 27.7 mM (500 mg/dL) in extreme hyperglycemia cases, 

a heavier emphasis is placed in hypoglycemia due to its clinical significance, as hospital 

admission rates for hypoglycemia exceeded those for hyperglycemia158. Therefore, the glucose 

concentration tested was between the 0 – 100 mg/dL. The LLDs of lactate and glucose were 

calculated to be 3.38 mM and 0.29 mM (6.23 mg/dL), respectively. While both are within the 

physiological values, the LLDs are similar to the amperometric approaches in author’s other 

works10,12.  
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Figure 12: Calibration curves of A) lactate at 97.66 Hz and B) glucose at 31.5 Hz. Both lactate 

and glucose had N = 4 repetitions at each concentration. Error bars were calculated as 1 

standard deviations.  

 
As seen in Figure 12, the slope response for glucose was much higher than lactate. The larger 

response is not believed to be due to concentration difference, as the blank response of glucose 

is already higher than the response of 15 mM of lactate. One possible explanation is the 

difference in molecular weight. The molecular weights of lactate dehydrogenase and glucose 

oxidase are 115 kDa and 160 kDa, respectively. Glucose is also larger than lactate (180.156 

g/mol and 89.07 g/mol, respectively). Therefore, the larger impedance from glucose sensors can 

be attributed to a larger obstruction of electrons from the immobilized glucose oxidase and the 

diffusion of glucose.  

 

Considering the Ohm’s Law and how the enzymatic reaction generates electrons, an increase in 

the current should result in a decrease in resistance. But in Figure 12, an opposite trend was 

observed: an increase in glucose or lactate concentration leads to an increase in impedance. This 

can be explained by EIS being a near-field technique and the presence of self-assembled 

monolayer. When glucose or lactate was oxidized, electrons were generated and were facilitated 

by the redox mediator, potassium ferricyanide. When a ferricyanide ([Fe(CN)6]3-) received an 

electron, it reduced to ferrocyanide ([Fe(CN)6]4-). The presence of SAM prevented the 

ferrocyanide from diffusing to the surface of electrode rapidly to pass off the electrons, causing a 
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local accumulation of ferrocyanide on the surface of SAM where the enzyme is immobilized. 

Since the reduced ferrocyanide is unable to take on more electrons, it became a barrier to 

impede the flow of electron, causing an increase in the impedance. Therefore, the impedance 

increased with an increase in glucose or lactate concentrations. The trend can be reverted when 

SAM is not present. Using the physical adsorption protocol described in Appendix A to immobilize 

the same amount of glucose oxidase on the screen-printed carbon electrodes, an increase in 

glucose concentration caused a decrease in impedance (Figure 13), suggesting the local 

accumulation of reduced ferrocyanide on SAM is indeed a reason for this phenomenon. Since 

glucose and lactate are not conductive, analyte accumulation near the surface of SAM can be 

impeding the electrons as well159.  

 
Figure 13: Calibration curve of glucose sensors prepared by physical adsorption at 31.5 Hz. Error 

bars were calculated as 1 standard deviation. 

 

The EIS response of biosensors prepared by coimmobilizing glucose oxidase and lactate 

dehydrogenase can be found in Figure 14. Recall that the optimal frequency of lactate was found 

at 97.66 Hz and glucose 31.5 Hz. As seen in Figure 14, the imaginary impedance peaks at near 

100 Hz for all senarios, which is similar to the lactate’s optimal frequency. However, as seen in 

Figure 14 A-C, low RSQ values at glucose’s optimal frequency (31.5 Hz) indicated poor 
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correlation of impedance to glucose concentrations. One possible reason is the ubiquitous 

accumulation of ferrocyanide on SAM, which impedes the flow of electron onto sensor surface. 

As ferricyanide receives the electrons generated from enzymatic reactions from both biomarkers, 

they are reduced to ferrocyanide, which severely contaminates the signal in each biomarker’s 

optimalf requency. From Figure 14D, high RSQ values at lactate’s optimal frequency (97.66 Hz) 

suggested that lactate can still be detected in the presence of glucose. However, as described 

above, due to the accumulation of ferrocyanide on SAM, the correlation may not be lactate 

specific.  

 

Figure 14: Coimmobilization of Lactate and Glucose. A) Glucose gradient in the presence of 1 

mM lactate. B) Glucose gradient in the presence of 8 mM lactate. C) Glucose gradient in the 

presence of 30 mM lactate. D) Lactate gradient in the presence of 0.06 mM, E) 3.3 mM, and F) 5 

5.5. mM glucose.  

An experiment demonstrating how the change in concentrations of ferricyanide and ferrocyanide 

affects EIS impedance was performed by Yuka Ito and Dr. Koji Sode at the Tokyo University of 

Agriculture Technology (Appendix G, with permission). As ferricyanide is reduced to ferrocyanide, 

an trace amount of ferrocyanide (i.e. 1 mM) and an decrease in ferricyanide concentration can 
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cause a large increase in impedance. A potential solution is to avoid the use of SAM in identifying 

the opitmal frequency of enzymatic biomarker. For example, the physical adsorption of MREs 

described in Appendix A can be adapted, see Chapter 3.1 for more details.  

  

In an attempt to deconvolute the signal, the signal deconvolution algorithm described previously 

was implemented (Figure 15). However, the signal deconvolution failed to return two distinct 

peaks like the previous work1 and no correlation could be drawn to either biomarker. One 

potential reason can be the accumulation of ferrocyanide on SAM as well, which contaminates 

the signals by blocking the flow of electrons on a system level.  

 

Figure 15: EIS deconvoluted response of coimmobilized glucose and lactate.  

   

CONCLUSION 

Although EIS can detect individual enzymatic biomarker accurately, the increase in impedance is 

not due to the formation of biological complexes such as antibody-antigen, but the change in the 

ratio of ferricyanide and ferrocyanide. Therefore, detecting a glucose-lactate dual-marker sensor 
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using SAM was unsuccessful. To accurately detect the enzymatic biomarker’s optimal frequency, 

an immobilization technique not involving the use of SAM (which is electronically insulating) may 

be more suitable for enzymatic biomarkers. As an alternative, amperometric sensors for glucose 

and lactate in author’s previous work2,6–8,10,12 can be integrated together to achieve the duo-

marker detection. 
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CHAPTER 2.3 

A DUAL-MARKER PROTOTYPE: ONE ANTIBODY AND ONE ENZYME 

INTRODUCTION 

Continuing the effort of developing EIS multimarker sensors with dual-marker prototypes, this 

chapter investigates a dual-marker prototype with the combination of an antibody and an enzyme. 

To develop this prototype, insulin and glucose were selected as the 2 example biomarkers. As 

discussed in Chapter 1.1, insulin and glucose are 2 vital biomarkers for glycemic control. Insulin 

is particularly challenging to develop due to its small molecular size, low physiological 

concentrations, and self-aggregating property. In addition, recently, a study revealed a drastic 

difference between the actual and advertised insulin activities in commercial insulin vials67. 

Therefore, besides its clinical benefits, an insulin sensor can also serve as a rapid tool for quality 

control. For these reasons, since an EIS glucose sensor was already developed in previous 

chapter, this chapter focuses on the development of an insulin POC sensor. As discovered from 

the previous chapter, optimal frequency in enzymatic biosensors has unresolved challenges in 

mulitmarker detection. The coimmobilization of insulin antibody and glucose oxidase was thus not 

performed in this work. Instead, a model projecting the electrochemical response of insulin-

glucose dual-marker sensor is investigated.  

 

METHODS 

A standard sensor preparation protocol utilizing the GDE and the self-assembled monolayer was 

used to prepare the insulin sensor (Appendix B). For the immobilization of molecular recognition 

elements, the concentration of insulin monoclonal antibody and glucose oxidase was 23.4 mg/mL 

and 10 mg/mL, respectively. For more details, please refer to the Appendix B. Final insulin and 

glucose samples were made in PBS and tested according to their respective physiological levels 

from 0 𝜌𝑀 to 1500 𝜌𝑀 and 0 – 5.5 mM (0 - 100 mg/dL), respectively. The imaginary impedance 

algorithm described previously was used to obtain the optimal frequencies of insulin and glucose. 

For modeling the dual-marker prototype’s response, an Excel addon called XL-STAT was used to 
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model the individual biomarker’s response and summed the two together to predict the co-

immobilized response. All circuit modeling was performed with ZSimpWin software. 

 

RESULTS 

Using the methods described above, the optimal frequencies of insulin and glucose were found to 

be 810.5 Hz and 31.5 Hz, respectively (Figure 16). It is also expected that glucose generates a 

much larger signal than insulin, as its concentration was much higher than insulin.   

Figure 16: Electrochemical Responses of A) insulin and B) glucose. Based on the imaginary 

impedance algorithm, the optimal frequency for insulin was found to be 810.5 Hz and glucose 

31.5 Hz  

 

Figure 17 shows the calibration curves of insulin and glucose at their respective optimal 

frequencies (810.5 Hz and 31.5 Hz, respectively). The concentrations tested for insulin were 0, 

50, 100, 200, 250, 500, 750,1000, 1500 𝜌𝑀  and glucose 0, 0.06, 0.55, 1.5, 3.3, 5.5 mM (1, 8, 25, 

60, 100 mg/dL), respectively, both meeting the normal physiological levels 157,160. Using the 

standard 3.3. * standard deviation / slope, the lower limits of detection (LLD) of insulin and 

glucose were calculated to be 2.64 𝜌𝑀 and 0.29 mM (6.23 mg/dL), respectively.  
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Figure 17: Calibration curves of A) insulin at 810.5 Hz and B) glucose at 31.5 Hz. Each insulin 

concentration was replicated 7 times and glucose 4 times at each concentration. Error bars were 

calculated as 1 standard deviations.  

 

Using ZsimpWin, the ideal circuit model that best describes the electrochemical system of insulin 

sensor can be obtained (Figure 18). The solution resistance and the electron transfer resistance 

were both modeled as resistors and were labeled as Rsol and Ret, respectively. The pseudo-

capacitor is modeled as Q and represents the piece of the system that can be correlated to the 

molecular recognition element being used1.  

Figure 18: Electrochemical circuit modeling of the insulin sensor. Rsol is the resistance due to 

solution, Ret is the electron transfer resistance. Q is used to represent the constant phase 

element (CPE) or the imperfect capacitor of the system. Reprinted with permission from reference 

5. © Diabetes Technology Society 
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Figure 19 shows the correlation between charge transfer resistance and target insulin 

concentrations derived from equivalent circuit modeling, a standard method of analyzing EIS 

data161. Using this approach, the LLD was found to be 14.46 𝜌𝑀.  

 

Figure 19: Insulin calibration curve relating the calculated charge transfer resistance against the 

change in concentration of insulin in 𝜌𝑀. Reprinted with permission from reference 5. © Diabetes 

Technology Society 

 

Using XL-STAT, the predicted glucose and insulin co-immobilized signal is shown in Figure 20. 

Two distinct peaks at 31.5 Hz and 810.5 Hz were observed, each representing the optimal 

frequency of glucose and insulin, respectively.  

 

Figure 20: Modeled co-immobilization signal of insulin and glucose. The two distinct peaks at 31.5 

Hz and 810.5 Hz represent the optimal frequency of glucose and insulin, respectively.   
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DISCUSSION 

The use of imaginary impedance successfully allowed the detection of insulin at its physiological 

level. Once the calibration curve was identified, a hand-held device could be programmed and 

upon running EIS on an unknown sample, the calibration curve would convert an imaginary 

impedance reading into an insulin concentration. The LLD was found to be 2.64 𝜌𝑀 and dynamic 

range from 50 𝑝𝑀 to 1500 𝑝M, which met clinical needs. From a clinical standard detection of 

insulin, ELISA can accurately detect labeled insulin at 1.39 𝜌𝑀 162, which is slightly higher than 

the insulin sensor prototype. However, with some more optimizations on parameters such as 

antibody concentration and sensor reproducibility, the LLD may be improved. Even more so, 

techniques such as ELISA or high-performance liquid chromatography have labeling steps and 

many associated techniques that can be performed only in laboratories. EIS on the other hand, is 

a label free technique, and the sensor prototype can be translated into screen printed sensors, 

allowing the possibility of POC with portable device and disposable test strips similar to the setup 

of self-monitoring of blood glucose126,163.  

 

We have shown that the EIS method of using imaginary impedance can very well detect insulin in 

the physiological range. Future studies will look into replicating the trials with much smaller 

concentration interval sizes such as 1 pM, which is equivalent to a gold standard ELISA to 

distinguish between even the smallest changes in concentration. Interference and clinical 

samples will also be tested to evaluate robustness and optimize further toward a POC device. 

This will lay a solid foundation for the multi-marker platform sensor to truly enhance a person’s 

glycemic control. Lastly, unlike other publications on insulin detection there was no modification to 

the insulin solution via pH122,143.  

 

The FDA requires all glucose meters to be within 20% variance from standards164. Currently, the 

replicated results show that across all sample concentrations the %RSDs ranges from 5% to 

26%, suggesting there are still room for improvements. Although batch analysis has helped 
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eliminate some of the variance between GDEs, polishing and reusing GDEs is a significant 

source of variance as surface roughness of gold can affect SAM formation165, affecting the 

capacitance of imperfect parallel plate capacitor explained in later section. Transition to screen 

printed sensors will reduce the variance of surface roughness under consistent manufacturing 

procedures and rigorous QC. 

 

Circuit Analysis 

Generally, EIS is analyzed with equivalent circuit modeling. Typically, the best-fit circuit for a 

semi-circle looking Nyquist plot is the Randles circuit, which models the electrochemical 

interactions as a resistance-capacitor circuit in parallel.  The electron transfer resistance can be 

used to derive a calibration curve linking back to input concentration162,166. However, recently 

some researchers have demonstrated the use of a modified Randles circuit that implements a 

constant phase element (CPE) to model the capacitance1,160,167. CPE is commonly referred to as 

either a leaky or imperfect parallel plate capacitor (IPPC). The bottom plate is the surface of 

electrode and the top plate is the top of the SAM with MREs immobilized owing to SAM’s 

insulating property168. The MREs different shape, orientation and size alter the smoothness of 

SAM in various ways, constituting the IPPC. As binding occurs, the target-MRE complex further 

alters the capacitance of the IPPC, affecting the electron transferring properties and impedance 

signals, which is evident in Figure 6. This model gives a better description of the actual system 

when compared to the ideal Randles. Since imaginary impedance correlates to capacitance161, 

we used imaginary impedance to correlate target concentration to reflect the impedance signal 

generated from changes in CPE, which we believe to have less noise than using the complex 

impedance approach and omits the trouble of circuit modeling. Owing to this nature, it’s no 

surprise that the LLD in imaginary impedance (2.64 𝜌𝑀) is lower than that of the charge transfer 

resistance approach (14.46 𝜌𝑀).    
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Dual-Marker Detection 

In terms of dual-marker detection, this insulin and glucose combination benefits from the large 

separation between the two biomarkers’ optimal frequencies. Two biomarkers with distinct 

optimal frequencies are much easier to detect simultaneously. Based on the modeled co-

immobilization response, a signal deconvolution may be unnecessary to detect insulin and 

glucose simultaneously. Although it is probable to measure insulin and glucose simultaneously by 

monitoring the signal from each biomarker’s optimal frequency, actual co-immobilization is 

required to validate this claim. The accumulation of ferrocyanide on SAM from glucose’s 

enzymatic reaction discussed in previous chapter is another challenge to overcome first. As a 

backup, the author’s published work on the amperometric glucose sensor2,6,8,10 can be employed 

in conjunction with an EIS insulin sensor to achieve dual-marker detection. The proposed 

endeavor will be continued in a $1.5 million grant awarded by the Leona M. and Harry B. 

Helmsley Charitable Trust, which was mostly written by the author. The work in this chapter can 

be translated to a screen-printed sensor platform to develop the disposable insulin test strip 

suitable for rapid insulin testing.  

   

CONCLUSION 

We have shown that the EIS method of using imaginary impedance can very well detect insulin in 

the physiological range. Future studies will look into replicating the trials with much smaller 

concentration interval sizes such as 1 pM, which is equivalent to a gold standard ELISA to 

distinguish between even the smallest changes in concentration. Interference and clinical 

samples will also be tested to evaluate robustness and optimize further toward a POC device. 

The drastic difference in optimal frequencies between insulin and glucose suggests the likelihood 

of developing the EIS dual-marker sensor. Although it is pitiful that such co-immobilization was 

not accomplished in this work, the successful development of a rapid, label-free insulin sensor 

alone has a great impact in future glycemic management. The proposed insulin glucose dual-

marker sensor will be continued in the author’s $1.5 million grant award from the Leona M. and 
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Harry B. Helmsley Charitable Trust. Should the EIS approach of developing an insulin and 

glucose dual-marker sensor become unsuccessful, an EIS insulin sensor with an amperometric 

glucose sensor still holds great novelty and practicality.   
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CHAPTER 3 

FACTORS AFFECTING THE OPTIMAL FREQUENCY 

CHAPTER 3.1 

DIRECT MEASUREMENT OF A BIOMARKER’S NATIVE OPTIMAL FREQUENCY 

 

INTRODUCTION 

From Chapter 2.1, it appears that the optimal frequency (OF) allows simultaneous detection of 

two affinity-binding biomarkers (i.e. LDL and HDL), and has the potential to detect single affinity-

binding biomarkers that are at pM concentrations (Chapter 2.3). Like many others, the OF has 

been advocated as an additional means of specificity to supplement the antibody-antigen 

reaction, while also reducing the assay time and hardware requirements for the measuring 

system142,144,146,163,169–172. However, many previous studies, including the author’s own work, have 

studied the OFs of various proteomic biomarkers using self-assembled monolayers (SAMs) to 

supply the needed functional groups for immobilization142,144,146,163,169–172. The SAMs are long, 

electrically insulating spacers that are meant to increase sensor’s sensitivity by altering the 

baseline capacitance and resistance of the electrochemical cell. Consequently, whether each 

biomarker still possess its native OF without the use SAM remains to be investigated. To study a 

biomarker’s native OF, it is necessary to construct an experimental platform without potential 

interference from complex immobilization reactions.  

 

To construct the experimental platform with the intention of developing a practical immunosensor 

for point-of-care (POC) applications, a simple yet reliable method of sensor fabrication is needed. 

Site-directed (oriented) immobilization is typically preferred over randomized immobilization due 

to its increased sensitivity and consistency173. However, oriented immobilization often requires 

complicated labeling procedures from antibody pretreatment to immobilization. Physical 

adsorption is generally the simplest immobilization technique, but it is often accompanied by a 

reduction in sensitivity174. Fortunately, the EIS measurement technique has demonstrated femto-
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molar level sensitivity175. The combination of physical adsorption and EIS not only permits the 

study of a biomarker’s native optimal frequency, but may also overcome the sensitivity 

disadvantages of physical adsorption-mediated immobilization. 

 

To achieve these goals, two biomarkers are selected for investigation: lactoferrin (Lfn) and 

immunoglobulin E52 (IgE). As discussed in Chapter 1.1, the IgE and Lfn analytes are two vastly 

different proteins. However, the commonalities amongst their MREs (both 150 kDa monoclonal 

IgG) permit a similar baseline for investigation. While suitable for investigating the native OF of a 

biomarker, Lfn and IgE also have strong clinical applications in ocular diseases such as disease 

DED and AC due to their common misdiagnosis (see Chapter 1.1 for more details). A POC 

biosensor facilitating the differential diagnosis of DED and AC remains  in high demand31. To 

achieve this goal, under the generous funding from the Advanced Tear Diagnostics, LLC, the 

author not only developed an investigational platform for monitoring the native OF of two 

proteomic biomarkers, Lfn and IgE, but also integrated the tear sampler developed in previous 

works6,10,12 to achieve a prototype for POC diagnostics. 

 

This work aims to provide novel knowledge by investigating: i. the existence of a biomarker’s 

native OF via direct measurement of biomolecules ii. the potential to overcome the limitations in 

physical adsorption-based immobilization with EIS. Physical adsorption is achieved through 

glutaraldehyde (GA) mediated crosslinking of MREs on screen printed carbon electrodes 

(SPCEs). The resulting stability and performance of the sensor in complex media are also 

evaluated. After building the testing platform, an integrated, disposable tear Lfn and IgE POC test 

strip prototype was accomplished 
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METHODS 

Chemicals and Biologicals 

All chemical reagents were purchased from Sigma-Aldrich, MO, unless otherwise stated. The 

antibodies utilized in the detection of IgE and Lfn were: mouse monoclonal IgG (Scripps 

Laboratories, CA) and human monoclonal IgG (Fitzgerald, MA), respectively. The IgE antigen 

supply was obtained from purified myeloma cells courtesy of Scripps Laboratories, CA (lot 

#2131302) and recombinant human Lfn was obtained from Agennix, TX (lot #803001/803001A). 

All solutions were prepared in phosphate buffer saline (PBS, pH 7.4) unless stated otherwise. 

 

Preparation of Lactoferrin and IgE Sensor Platforms 

Screen Printed Carbon Electrodes Setup (SPCE-alpha) 

The SPCE-alpha was designed for investigating the native OF of a biomarker. This platform was 

built on a commercially available disposable SPCE, Zensor (CH Instruments, TX), containing 

graphite working and counter electrodes and a silver/silver chloride reference electrode. The 

detailed protocol can be found in Appendix B but is included here for clarity.  A schematic of the 

sensor preparation protocol is illustrated in Figure 21. First, 1 µg of the respective antibody in 

PBS was deposited onto the working electrode and dried in a Thermocenter at 24 °C for 25 

minutes. Once dry, the sensors were exposed to GA vapor generated from 1 mL of 25% GA in a 

parafilm-sealed vessel on an orbital shaker for 1 hour at 80 rpm176. This process permits covalent 

crosslinking of the deposited antibodies. The sensors were again dried at 24 °C for 25 minutes, 

allowing the cross-linked antibodies to adsorb onto the graphite working electrode. Blocking of 

unreacted aldehyde groups from GA-crosslinking was achieved by submerging the sensing well 

in 1 mM Trizma® and hydrochloric acid (TRIS-HCl) solution (pH 7.4) for 25 minutes177. Sensors 

were rinsed in PBS followed by DI and again dried at 24 °C. The sensors were either i. 

immediately subject to electrochemical testing or, ii. stored at 4 °C for future stability evaluation. 

 

Screen Printed Carbon Electrode with Integrated Tear Sampling Component (SPCE-beta) 
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To expand on the application potential of SPCE-alpha, a tear sampling component (TSC)-

integrated form, SPCE-beta, was adopted. Whatman 41 ashless filter paper (Lot# 9585790) used 

in Schirmer’s test strips178 and an adhesive layer (3M 467MP/200MP, Grainger, AZ) were utilized 

to construct the TSC. Detailed laser cutting protocols can be found in Appendix E. The filter paper 

and the adhesive layer were cut into their respective shapes using a Universal Laser PLS 4.75 

laser cutter. To construct the SPCE-beta, 30 µL of 10 mM potassium ferricyanide (III) was dried 

onto the sensing well of the pre-fabricated SPCE-alpha at 24 °C for 45 minutes. To mount the 

TSC, the adhesive layer was carefully placed around the sensing well to prevent any contact with 

the counter, reference or working electrodes. The filter paper was then attached to the sensor 

with the adhesive tape. Completed sensors were stored dry at room temperature prior to testing. 

A schematic of the fabrication process is shown in Figure 21.  

 

Electrochemical Evaluation 

All sensors were connected to an electrochemical CHI 660C analyzer (CH Instrument, TX) using 

a soldered gold-plated edge connector (Digikey, MN). Cyclic voltammetry (CV) was first 

 
Figure 21. Sensor fabrication schematics using SPCE and TSC. Step 1 – 3 denotes the 

fabrication process of SPCE-alpha prototype while 4-5 show the additional manufacturing 

steps required to assemble the SPCE-beta prototype. Reprinted with permission from 

reference 9. © American Chemical Society. 
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conducted to determine the formal potentials (input voltage for EIS) of SPCE-alpha and SPCE-

beta. CV was performed by sweeping from -0.6 V to 0.6 V. EIS was then used as the primary 

means of evaluation. To conduct EIS, a sinusoidal input voltage with a 5 mV amplitude spanning 

a range of frequencies from 100 kHz to 1 Hz with a resolution of 12 points per decade was used.  

 

SPCE-alpha 

Electrochemical Testing of SPCE-alpha 

To conduct CV, 50 µL of 10 mM potassium ferricyanide (III) was added to the SPCE-alpha 

sensing well. After obtaining the formal potential, all SPCE-alpha EIS measurements were 

performed by incubating 5 µL of a known antigen concentration for 60 seconds on the working 

electrode surface. Next, 45 µL of 10 mM potassium ferricyanide solution was added before 

initiating the EIS scan. A range of antigen concentrations were tested to cover the desired 

calibration range for the analyte in question. The clinical cutoffs for Lfn and IgE are 1.1 mg/mL 80 

ng/mL, respectively31,33. Empirical testing was performed on the following antigen ranges: 0 – 0.2 

mg/mL and 0 – 160 ng/mL for Lfn and IgE, respectively. To reduce potential discomfort on dry 

eye subjects, a 0.5 µL sample volume on the final Lfn sensor was proposed. To accommodate 

this, the calibration range was intentionally lowered by a factor of 10 to mimic the total mass of 

Lfn in a 0.5 µL sample. No adjustments were made for IgE as the sample volume for the final IgE 

sensor is expected to remain 5 µL. All quantitative data is reported as an average signal obtained 

from 3 - 5 replicates. 

 

Specificity Testing of SPCE-alpha 

Specificity was demonstrated by exposing the anti-Lfn-modified sensors to IgE antigen and vice 

versa. In these experiments the concentrations of Lfn and IgE were 0.15 mg/mL and 200 ng/mL, 

respectively, to represent their higher physiological ranges31,33.  
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Stability Testing of SPCE-alpha 

After storing the sensors at 4 °C for 7 days, the sensors were electrochemically tested against 0 – 

0.2 mg/mL and 0 – 160 ng/mL Lfn and IgE, respectively to evaluate sensor performance.  

 

Complex Medium Testing of SPCE-alpha 

To assess the sensor’s performance in a complex medium resembling human tears, a simulated 

tear recipe containing salts and large proteins was adopted179. The simulated tear fluid is made 

by mixing 2.68 mg/mL lysozyme, 6.5 mg/dL D-glucose, 1.34 gamma globulin, 6.5 mg/mL sodium 

chloride, 2.68 mg/mL bovine serum albumin, 0.08 mg/mL calcium chloride dihydrate in deionized 

water (pH 7.4). The solution was used to prepare the antigen concentration gradients immediately 

prior to testing. The sensors were tested against 0 – 0.2 mg/mL and 0 – 160 ng/mL Lfn and IgE, 

respectively.  

 

SPCE-beta 

Electrochemical Testing of SPCE-beta 

On average, the SPCE-beta collects 15 µL of fluid with 6% relative standard deviation (RSD) 

(data not shown) in 20 seconds. Functional prototypes of TSCs capable of collecting 0.5 µL 

samples were also investigated, but due to the surface area of the sensing well, a 15 µL volume 

was the smallest feasible sample volume to avoid shorting. To collect the sample, the TSC of the 

SPCE-beta was submerged into an excess of antigen solution for 60 seconds to ensure adequate 

rewetting of the dried reagents and to permit analyte diffusion through the porous filter paper. An 

additional 60-second incubation was observed to permit analyte binding to the respective MRE 

absorbed to the working electrode surface. EIS testing began at t=120 seconds. The sensors 

were tested against 0 – 0.2 mg/mL and 0 – 160 ng/mL Lfn and IgE, respectively. 
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Specificity Testing of SPCE-beta 

The specificity was validated on the SPCE-alpha and no significant differences were expected 

with the addition of the TSC.  

 

Complex Medium Testing of SPCE-beta 

The functionality in complex medium was validated on the SPCE-alpha and no significant 

differences were expected with the addition of the TSC.  

 

Determination of A Biomarker’s Native OF 

To determine the native OF of a biomarker, a modified algorithm using the imaginary impedance 

(Z”) response was employed129,169. The Z” values were correlated to target antigen concentrations 

across the entire frequency spectrum resulting in quantitative descriptors of the calibration line at 

each discrete frequency, such as slope and R-squared values (RSQ). Unlike other works that 

advocate the existence of an OF142,144,146,163,169–172, the native OF is defined as the single 

frequency at which the RSQ is highest and sufficient slope is displayed. The significance of an 

OF is described further in the discussion.  

 

Analysis of Sensor Performance 

For reproducibility, the error bars are expressed as one standard error, calculated by σ/√𝑛, where 

σ is the standard deviation of all replicates performed at that concentration, and √𝑛 is the square 

root of the total number of replicates. The limit of quantification (LOQ), is expressed as the lowest 

amount of analyte in a sample that can be quantitatively determined with suitable precision and 

accuracy (generally +/- 20% RSD)180. 
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RESULTS AND DISCUSSION 

Investigation of Optimal Frequencies Using SPCE-alpha 

Electrochemical Response of Purified IgE and Lfn  

 

Figure 22 below displays the Z” plotted as a function of frequency over a range of antigen 

concentrations. Figure 22a and 22b show that the Z” trend increases with concentration for both 

biomarkers. Figures 22c and 22d depict the slope and RSQ response parameters across the 

frequency sweep. The native OFs for Lfn and IgE have been determined to be 57.44 Hz and 

371.1 Hz, respectively. The calibration least-squares best fit lines in figures 1e and 1f are 

reflective of the sensor response at the native OF129.  From figure 22a – 22d, it is evident that the 

overall impedance patterns are significantly different between the two biomarkers, confirming that 

the existence of a native OF is biomolecule-dependent (discussed later). Assuming the existence 

of a native resonant frequency describing the binding kinetics between a biomarker and its MRE, 

it is possible to constructively reinforce the reaction by delivering an input of the same frequency. 

Therefore, the impedance response of a biomarker at its native OF will be most precise (highest 

RSQ) as compared to other destructive frequencies.  
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Specificity 

The sensor response when subjected to nontarget proteins across the frequency spectrum is 

shown by the interrupted lines in Figures 22a and 22b. The specific response at each biomarker’s 

 
Figure 22: Imaginary impedance (Z”) response of Lfn (A) and IgE (B) on the SPCE-alpha 

platform. Slope and RSQ overlays to determine native OFs of Lfn (C) and IgE (D). Purified 

calibration curves at each biomarker’s optimal frequency Lfn (E) and IgE (F). The linear 

response across the physiological range of each analyte, can be described by the equations 

shown in E and F. Each concentration was replicated 5 times. Reprinted with permission from 

reference 9. © American Chemical Society. 
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native OF is shown by the nontarget bars of Figures 23a and 23b. The Lfn sensor platform was 

exposed to high concentrations of IgE (200 ng/mL) and vice versa (0.15 mg/mL Lfn). The signals 

generated from nontarget analytes suggest that the functionalized sensor is specific to the target 

at each biomarker’s native OF. Additionally, it should be noted that the Lfn protein is present at 

1000X the concentration of IgE. The minimal resulting signal suggests that the sensors are 

specific to their target analytes, with limited binding to undesired species. Although the signals 

from IgE’s high and low concentrations (Figure 23B) are similar to blank, T-tests show that 

statistical difference (P value < 0.05) exists among all data points in Figure 22F except the 120 

ng/mL and 160 ng/mL combination. Further optimization of the surface chemistry is required to 

achieve clinical utility with this sensor. However, the current platform is sufficient for exploring the 

theory of native OF.  

 

Stability Testing 

Given the simple yet crude immobilization approach, stability testing was performed to investigate 

the retainment of biological activity and functionality of the MREs after a specified duration. The 

calibration lines generated at the native OFs after one week of storage at 4°C are shown in 

Figures 24a and 24b. In comparison to the purified responses, both sensors exhibit increased 

 
Figure 23: Specificity Testing of Lfn and IgE SPCE-Alpha. Assessment of the dynamic range 

of sensor responses across the physiological range for Lfn (A) and IgE (B), respectively. The 

signal magnitude generated by purified solutions containing the nontarget analyte is also 

shown. Each condition was replicated 5 times. Reprinted with permission from reference 9. © 

American Chemical Society. 
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baseline impedance following storage. This can be explained by the concept of antibody 

permeation into the pores of the graphite working electrode creating a stronger barrier to electron 

flow. The increasing impedance magnitude has masked signal at the lowest antigen 

concentrations, increasing the LOQ, effectively decreasing sensitivity to low biomarker 

concentrations. This can be overcome by further optimization of the GA incubation conditions to 

adjust the degree of MRE crosslinking. Overall, the biological activity is retained after one week 

as supported by the performance similarity to purified responses.   

 

Complex Medium 

To evaluate the ability to detect in complex samples, analyte testing in simulated tear fluid was 

performed using the SPCE-alpha platform. The sensor responses, depicted in Figure 25, validate 

the functionality of the platform in the presence of electroactive species and large proteins such 

as bovine serum albumin, lysozymes, and immunoglobulins. The calibration lines shown in 

Figures 25a and 25b were constructed at each biomarker’s native OF. The calculated LOQs for 

Lfn and IgE sensors are 0.05 mg/mL and 40 ng/mL, respectively, satisfying the clinically relevant 

cut-off of 1.1 mg/mL and 80 ng/mL, respectively31,33. The reported Lfn sensor detection limit is 

comparable to other work181, however, superior IgE assays surpass the current capabilities of the 

simplistic, investigational platform described within54. Although the slopes vary in comparison to 

 
Figure 24: Stability Testing of the Lfn and IgE SPCE-Alpha. The SPCE-alpha responses in 

both purified (immediately tested) and one-week storage are shown for Lfn (A) and IgE (B), 

respectively. Each concentration was replicated 3 times. Reprinted with permission from 

reference 9. © American Chemical Society. 
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purified samples, the correlations obtained at the native OFs suggest the clinical utility of this 

platform, and the imaginary impedance algorithm. 

Notably, an increase in baseline impedance is present as compared to purified sample 

responses. This phenomenon can be attributed to the presence of electroactive species and large 

proteins causing an obstruction to electron flow through the system. Additionally, molecules such 

as BSA, have been previously incorporated into electrochemical applications for their effective 

blocking capabilities182. The non-specific adsorption of BSA to unabsorbed bare electrode and 

immobilized antibody is likely to raise the baseline impedance suggesting the need for additional 

calibration in complex medium prior to sample testing.  

 

The results from Figures 22-25 also validate the potential of EIS to overcome the well-known 

weaknesses of physical adsorption-based immobilization. The GA-mediated physical adsorption 

is a well-studied immobilization technique achieved through primary amine cross-linking, which 

typically results in loss of antibody activity because of randomized orientation. Unlike other works 

that utilize GA crosslinking with SAMs183,184, the proposed approach directly immobilizes the 

antibody complex onto the carbon sensor surface. The reduction in antibody activity from physical 

adsorption seems to be compensated by the sensitivity of EIS at the native OF, as demonstrated 

 
Figure 25: Complex Medium Testing of the Lfn and IgE SPCE-Alpha. The SPCE-alpha 

responses in both purified and complex solutions are shown for Lfn (A) and IgE (B). Each 

concentration was replicated 5 times. Reprinted with permission from reference 9. © American 

Chemical Society. 
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by the retainment of high slope and RSQ values. This combination has demonstrated success by 

achieving clinically relevant detection and shows potential in developing a much faster and 

simpler immobilization protocol to facilitate mass industrial fabrication.  

 

Robustness of Biomarker’s Native OF 

To investigate the robustness of a biomarker’s native OF, the overlay of slope and RSQ values, 

under various testing conditions (purified buffer, simulated tears, and one week of storage) are 

presented in Figure 26. The results suggest that although the overall slope values vary with 

testing conditions, the native OFs remain consistent (vertical lines) as reflected by the RSQ 

values. This discovery suggests that the determination of native OF should not rely on the 

response alone, as the OF determined from these methods represent the entire electrochemical 

 
Figure 26: Robustness of the Native OF. Shows the robustness of native OFs in two mediums 

of varying electroactive properties (PBS and simulated tears) and after one week of storage 

using the SPCE-alpha platform. The optimal frequencies of Lfn (A,C) and IgE (B,D) remain 

57.44 Hz and 371 Hz, respectively based on RSQ values (shown by vertical lines). Reprinted 

with permission from reference 9. © American Chemical Society 2018. 
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cell, which can change depending on the testing medium and other sensor conditions. The native 

OF should also not be the frequency at which the slope is significantly low. Although previously 

hypothesized, this is the first report that provides supporting evidence of the existence of a 

biomarker-specific OF170. The authors acknowledge the potential ambiguity of the RSQ-based 

algorithm when multiple frequencies exhibit very high RSQ values (i.e. 0.99). Further studies at 

the molecular level are needed to investigate the resonant frequency of a protein, and assess its 

comparison to the native OF discovered with EIS.  

 

Nevertheless, IgE and Lfn can still be accurately detected in complex medium at each 

biomarker’s native OF. By obtaining the response at a biomarker’s native OF, the assay time and 

hardware requirements for the measuring system can be reduced. 

 

Factors that May Affect a Biomarker’s Native OF 

OF measurements obtained across different immobilization methods are compared in Table 4. 

Previously, Lin et al used SAM-coated gold sensors to immobilize low-density lipoprotein (LDL) 

and high-density lipoprotein (HDL) antibodies. The algorithm used by Lin et al to identify the 

corresponding OF was maximum slope and RSQ greater than 0.95. The resulting OFs for LDL 

and HDL have been previously identified as 81.38 and 5.49 Hz, respectively. In comparing the 

LDL and HDL results with this work, it is interesting to note that biomarkers with larger combined 

molecular weight (antibody-antigen complex) exhibit higher OFs, irrespective of sensor substrate 

materials and immobilization chemistries. It is also interesting to note that, despite similar 

combined molecular weights of HDL and IgE antibody-antigen complexes, the reported OFs are 

hundreds of Hz apart (5.49 Hz and 371.1 Hz, respectively). Although molecular weight is unlikely 

the only factor affecting the native OF of a biomarker, the difference in OFs between HDL and IgE 

suggests that SAMs can influence the determination of a biomarker’s native OF.  
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On the other hand, the association and dissociation constants do not hold the same correlation 

across both platforms. Immobilization strategies and chemistries interact with the antibodies on a 

molecular level. Randomized immobilization, such as the GA crosslinking method, can affect the 

kinetics of antigen binding sites, altering the association and dissociation constants to a greater 

extent than site-directed immobilization techniques185. 71,186 

 

 

 

  Lin et al  This Work 

Immobilization Chemistry 
SAM with EDC/NHS 
coupling 

GA-mediated physical 
adsorption 

Biomarkers LDL HDL IgE Lfn 

Optimal Frequency (Hz) 81.38 [1] 5.49 [1] 371.1 57.44 

Target Size (kDa) 512 [70] 175 [70] 190 [a] 80 [185] 

Antibody Size (kDa) 150 150 150 [a] 150 

Combined Target-Antibody 
Size (kDa) 

662 325 340 230 

Association Constant (M-1) 1.3x1010 [70] 2.9x1010 [70] 3.0x1010 [a]  3.3x108 [185]  

Dissociation Constant (M) 7.7x10-11 3.5x10-11 3.3x10-11 [a] 3.0x10-9 [185] 

Table 4: Comparison of the OFs of low density lipoprotein (LDL), high density lipoprotein 

(HDL), IgE, and Lfn with respect to their antigen size, antibody size, association constant, and 

dissociation constant. Reprinted with permission from reference 9. © American Chemical 

Society. a: obtained from manufacturer specification sheet 
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Transforming the Testing Platform to a POC Sensor Prototype (SPCE-beta) 

Electrochemical Evaluation 

After verifying the specificity and stability of the sensor using SPCE-alpha platforms, the TSC was 

integrated to form the SPCE-beta, a large-scale prototype for the proposed POC application. 

Figure 27 shows the projected antigen concentrations by each respective calibration line for the 

SPCE-alpha and beta platforms, at each biomarker’s native OF. The response of SPCE-beta is 

similar to that of SPCE-alpha, suggesting its capability in predicting analyte concentrations.   

 

Significance of the Integrated Sensor 

The integration of TSCs onto a disposable sensor platform is a major improvement to the field of 

ocular diagnostics. Typically, the collection of tear samples is done using either glass capillary 

tubes or Schirmer’s test strips. By utilizing the same material as a Schirmer’s test strip, the safety 

and substantial equivalency of the TSC for FDA approval is well-supported. A hand-held meter 

that secures the test strip during sample collection and performs EIS is currently under 

development. 

 

 
Figure 27: Calibration Curves of the IgE and Lfn Sensor Prototypes. Linear regression 

comparing the platform projected response to the theoretical analyte concentration for both 

biomarkers Lfn (A) and IgE (B). The error bars represent one standard error. Each 

concentration was replicated 5 times. Reprinted with permission from reference 9. © American 

Chemical Society. 
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Schirmer’s test strip applications have been thought to cause eye irritation and reflex tearing, 

causing changes in tear composition and protein concentrations 187. However, a recent study 

found that the total amount of protein collected from Schirmer’s strip is no different from those 

utilizing capillary tubes 188, suggesting no ocular stress was inflicted. This is perhaps due to more 

sophisticated manufacturing developments in recent years resulting in enhanced biocompatibility 

of the paper188.  

 

In light of these discoveries, the TSC prototype requires less than 20 seconds to collect 15 µL of 

sample.  The envisioned final Lfn integrated sensor design will collect 0.5 µL of sample in less 

than a second, while the final IgE sensor will collect 5 µL in 10 seconds (data not shown). The 

required ocular contact time is decreased from the standard 60 second collection time to 1-10 

seconds, promising little to no risk of ocular irritation or discomfort. 

 

We have also considered the potential for sample evaporation when a low (< 1 µL) volume is 

taken.  Based on preliminary data, we estimate minimal evaporation (< 7%) after 60 seconds. 

The amount of evaporation is thus not believed to affect EIS results. 

 

User or patient acceptance of the tear sampling technique is another important consideration in 

POC ocular diagnostics since stress and irritation can cause variations in concentrations of 

analytes, thereby increasing result variation189. In this regard, Schirmer’s test strips are less risky, 

as capillary tube methods require well-trained personnel and potentially longer contact with the 

eye. According to one survey, almost all subjects were more apprehensive about rigid glass 

capillary tubes as compared to flexible filter paper188. In addition, samples collected using 

Schirmer’s test strips demonstrated increased reproducibility as compared to those gathered 

using capillary tubes190,191. After miniaturization, we expect the proposed sensors with integrated 

TSCs to cause minimal stress and irritation, yielding high patient acceptance. 
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The proposed integrated sensor can also be translated to other diseases whose biomarkers are 

present in tears. Hagan et al reported that tear fluid contains many analytes related to diseases in 

areas as diverse as endocrinology, oncology, the central nervous system and others192. Tear fluid 

is easily accessible in comparison to blood and requires no sample preparation unlike serum or 

tissue samples. We believe that the proposed integrated sensor, once optimized and 

miniaturized, will be able to rapidly obtain an accurate biomarker concentration without the 

inconvenience associated with needle pricking and expensive, complicated test kits. This POC 

sensor platform is an economical means of screening, diagnosing, and managing many diseases.  

 

 

CONCLUSIONS 

We have acquired deeper insight into the existence of a biomarker’s native OF by directly 

measuring the Z” responses of two example biomarkers using a physical adsorption 

functionalization method. We confirmed the robustness of a biomarker’s native OF in various 

testing conditions including complex medium, suggesting its utility as an additional means of 

detecting specific biomarkers. We found that the OFs may be dependent on the combined 

molecular weight of the MRE-target complex, and this relationship is upheld across two sensor 

preparation methods. We have also demonstrated that a sensitive technique, like EIS, can 

overcome the limitations of simplistic adsorption-based immobilization methods and achieve 

clinically relevant cutoff values. The transformation of the investigative platform into a practical 

POC sensor prototype through the novel integration of Schirmer’s strip as a TSC, permitting a 

convenient, quantitative, and rapid sensor for two biomarkers commonly used in differentiating 

DED from ocular allergy, is also shown. The proposed GA-mediated immobilization may benefit 

from further optimization to make it an attractive technology for clinical use. Future efforts of this 

work are focused on the optimization and miniaturization of the system for manufacturing 

purposes and diversifying the range of biomarkers and diseases to which this technology can be 

adapted. 
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CHAPTER 3.2 

THE EFFECT OF ZETA POTENTIAL, CONDUCTIVITY, AND MOLECULAR WEIGHT ON A 

BIOMARKER’S OPTIMAL FREQUENCY 

 

INTRODUCTION 

In the previous chapter, through the development of various multi-marker sensor prototypes, the 

identification of a biomarker’s optimal frequency has enabled EIS to detect two proteomic 

biomarkers simultaneously1. The optimal frequency has also provided a rapid and sensitive 

means to detect target analytes5,9. It was also However, although the idea of optimal frequency is 

well accepted130–133,146, signal overlapping may prohibit the detection of multiple biomarkers if 

their optimal frequencies are too close together144,145,163,193,194. To overcome this, La Belle et al 

reported that nanoparticles conjugated to a biomarker’s MRE can be used to tune its optimal 

frequency without affecting its biological activity166,170,195. Another alternative to signal overlapping 

is the use of imaginary impedance (Z”) based algorithm for optimal frequency determination, 

which was used to measure two biomarkers simultaneously on a single working electrode without 

the use of nanomaterials1. However, as shown in the dual-enzymatic biomarker setup, signal 

decoupling with Z” impedance is not a remedy for all signal overlapping issues. Nevertheless, the 

Z” algorithm and the use of nanoparticles would be an interesting combination to explore for more 

options to separate the signal and achieve the multi-marker sensor. 

 

In addition, since there is little understanding about the origin of a biomarker’s optimal frequency, 

the engineering’s Design of Experiment principle can be implemented to begin investigating 

potential factors that contribute to a biomarker’s optimal frequency. Herein, we investigated three 

example factors: zeta potential, conductivity, and molecular weight. The zeta potential provides 

an estimation of a target molecule’s surface charge with respect to the surrounding medium196. 

The conductivity measures the molecule’s ability to conduct electrical current. The molecular 

weight measures how large or dense the molecules are. All three factors can potentially alter the 
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electrochemical properties of the target MRE-target complex and consequently the optimal 

frequencies. Using the Z” algorithm, we employed a dual approach to observe the changes in 

optimal frequency with respect to these three factors. The first approach was the biomarker 

setup, in which three distinct example biomarkers’ optimal frequencies were investigated. The 

second approach was the nanoparticle setup, in which five types of nanoparticles were 

individually conjugated to an example biomarker’s MRE to shift its optimal frequency as inspired 

by LaBelle et al’s work166,170,195. Since the nanoparticles have very different properties compared 

to biomolecules, they are ideal candidates to expand the high and low levels of the three 

exemplary factors. Finally, analysis of variance (ANOVA) was used to conclude which factors are 

significantly affecting the optimal frequencies. This study also allowed the expansion of 

nanoparticle rosters for tuning the optimal frequency in addition to LaBelle et al’s work166,170,195. 

The three exemplary factors could serve as a crucial explanation to the origin of a biomarker’s 

optimal frequency and lay a solid foundation for further works. This work could be used to 

substantiate the design metrics of customizing a multi-marker detection platform toward various 

complex diseases. The knowledge can also be translated to expand the applications of EIS, such 

as the nondestructive quality assessments of biosensors and pharmaceutical drugs.    

 

METHODS 

Materials 

All chemical reagents were purchased from Sigma (St Louis, MO) unless stated otherwise. The 

10-mM phosphate buffer (PBS) tablets were purchased from Calbiochem (Gibbstown, NJ). The 

potassium hexacyanoferrate (III) was purchased from EMD Chemicals (Billerica, MA), and N-

hydroxysulfosuccinimide sodium salt (NHS) from Toronto Research Chemicals (Toronto, Ontario, 

Canada). The streptavidin coated gold nanoparticles (AuNPs) and streptavidin coated magnetic 

nanoparticles (MagNP) were purchased from Nanocs (New York, NY). The streptavidin coated 

zinc sulfide/cadmium selenide quantum dots (Qdots) were purchased from Invitrogen (Waltham, 

MA). The biotinylated IL-12 antibody was purchased from Thermo Fisher (Waltham, MA). The 
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mouse monoclonal antibody specific to immunoglobulin E (IgE) and IgE antigen were obtained 

from Scripps Laboratories (San Diego, CA).  The human monoclonal antibody for human 

lactoferrin was obtained from Fitzgerald (Acton, MA).  The recombinant human lactoferrin was 

obtained from Agennix (Houston, TX).  

 

Sensor Preparation 

Sensors Used in The Biomarker Setup 

The electrochemical cell was made of a gold disc working electrode (GDE), a silver/silver chloride 

reference electrode, and a platinum (Pt) counter electrode. All electrodes were purchased from 

CH Instruments (Austin, TX). The electrochemical cell could hold 100 µL with 2 mm being the 

diameter of a GDE. All sensor fabrication steps were performed at room temperature and in 7.4 

pH. The GDE preparation protocol described in Appendix X was adapted. After the activation of 

carboxylic groups of the SAM, 10 mg/mL of glucose oxidase, 50 ug/mL of IgE antibody, or 50 

ug/mL of lactoferrin antibody were immobilized onto the GDEs. After rinsing with PBS, 1% 

ethanolamine was used to block the unreacted SAM. The sensors were used immediately. Each 

biomarker’s antibody concentration was previously optimized to detect the target at its 

physiological range. 

 

Sensors Used in The Nanoparticle Setup 

The sensors used in the nanoparticle setup were prepared in a similar manner described above 

until the activation of SAM. After activating the carboxylic groups, 50 µg/mL of biotinylated IL-12 

antibody prepared in 10 mM PBS at pH 7.4 was incubated with the GDEs for 1 hour. After 

antibody immobilization, 3.89E+11 particles/mL of various streptavidin coated nanomaterials 

were incubated for 1 hour, followed by a 30-minute incubation with 1% ethanolamine to block the 

unreacted SAM. The streptavidin coated nanomaterials used were 5 nm AuNP, 10 nm AuNP, 20 

nm AuNP, 25 nm MagNP, and 20 nm QDot. The sensors were used immediately. All 

nanomaterials’ concentrations were kept at the same concentration (3.89E+11 particles/mL) to 
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expand on Demirok et al and LaBelle et al’s preliminary work on shifting the optimal 

frequency166,170,195. A schematic of all sensor setups can be found in Figure 28.  

 

Electrochemical Measurements 

All electrochemical measurements were performed at room temperature using a CHI660C 

Electrochemical Analyzer from CH Instrument. The cyclic voltammetry from -1.0V to 1.0V was 

performed to determine the formal potential of each GDE in 100 µL of 100 mM potassium 

ferricyanide. All EIS measurements were performed at each GDE’s formal potential with 5 mV 

amplitude sweeping from 100,000 Hz to 1 Hz in a resolution of 12 points per decade. The testing 

solution for each EIS measurement was made of 50 µL of sample and 50 µL of 200 mM 

potassium ferricyanide. All measurements were performed at pH 7.4 and replicated 3 times using 

3 separate GDEs.  

 

 

 

 
Figure 28: Sensor setup for the investigation of optimal frequency. Schematic presentation of 

sensor preparation methods for the biomarker setup and the nanoparticle setup, as well as 

the biomarkers tested, and the nanoparticles utilized. The zoom-in represents the boundary 

condition of the local system and its hydrodynamic radius. 
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Biomarker Setup: Measuring the Optimal Frequencies of Various Example Biomarkers 

To measure the optimal frequency of each biomarker, the sensors immobilized with each 

biomarker’s MREs were tested against their respective targets. The tested concentrations of 

glucose, lactoferrin, and IgE were 0 – 100 mg/dL, 0 – 2.5 mg/mL, and 0 – 1 mg/mL, respectively. 

All biomarkers’ concentrations were tested at their physiological ranges33,48,197. The glucose 

concentrations are intentionally expressed in mg/dL because of its wide clinical practice. The 

biomarkers were selected based on their drastic differences in molecular weight.   

 

Nanoparticle Setup: Measuring the Optimal Frequencies of Various Nanoparticle-Antibody 

Conjugations 

To validate successful conjugations, after conjugating the IL-12 antibodies with various 

nanoparticles, a “blank EIS” was performed using PBS without the presence of IL-12 antigens, 

and the results were compared to an unconjugated control. To evaluate the subsequent optimal 

frequency of each nanoparticle-antibody conjugation, 0 – 5000 pg/mL gradient of IL-12 antigen 

was added to the sensors and tested electrochemically. The IL-12 concentration covers its 

physiological levels198. 

 

Determination of Optimal Frequency 

The optimal frequency was determined by the frequency at which maximum slope occurs after 

correlating the Z” values against target biomolecule’s concentrations. This method is selected to 

allow the use of cutoff frequency for modeling and data analysis.  

 

Characterization of Nanomaterials and Biomolecules 

The molecular weight of each nanomaterial was calculated based on manufacturers’ 

specifications. The molecular weight of each biomarker’s antigens was obtained from 

manufacturers. A Delsa Nano C from Beckman Coulter (Brea, CA) was used to measure the zeta 

potential and conductivity of the nanoparticles and biomolecules. One mL of each sample was 
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brought to room temperature prior to measurements. To achieve stable measurements of zeta 

potential that are independent from concentrations, all nanomaterials were kept above 1E-4 %w/v 

as suggested by previous works199,200. The glucose, lactoferrin, and IgE were all tested at 1 

mg/mL. All measurements were repeated 10 times per the instrument’s built-in protocol and were 

performed at pH 7.4. The zeta potential and conductivities were calculated using the built-in 

software of Delsa Nano C.  

 

Modeling of Optimal Frequencies  

An Excel Add-on called XLSTAT was used to perform the ANOVA for modeling the zeta potential, 

conductivity, and molecular weight against the optimal frequency.  

 

RESULTS AND DISCUSSIONS 

Studying the Optimal Frequencies Using the Biomarker Setup 

The electrochemical responses and optimal frequencies of the example biomarkers are 

presented in Figure 29. The Z” values were dependent on the concentrations of each biomarker’s 

analyte as demonstrated in Figure 29A – 29C. Figure 29D and 29E shows the optimal 

frequencies of individual biomarkers after correlating the Z” values with corresponding antigens’ 

concentration gradients. The optimal frequencies enabled the detection of these distinctly 

different biomarkers at their physiological ranges. The optimal frequencies for IgE, lactoferrin, and 

glucose are 371.1 Hz, 175.8 Hz, and 37.6 Hz, respectively. It appeared that larger biomarkers 

(IgE > lactoferrin > glucose) have higher optimal frequency as discovered previously1, which will 

be further elaborated in later sections.  

  



94 

 

 

Studying the Optimal Frequencies Using the Nanoparticle Setup 

Confirming the Conjugation of Nanoparticles 

The Z” responses of the antibody-nanoparticle complexes in a solution containing only PBS and 

the potassium ferricyanide are shown in Figure 30. The result suggests that successful 

conjugation of nanoparticles changed the capacitance and resistance of the electrochemical cell, 

causing a system-wide effect that can be observed in: 1) the shift in the cutoff frequency (fc, the 

frequency at which -Z” is maximum, summarized in Table 5); 2) either sharper or broader Z” 

concave across the frequency spectrum; and 3) different magnitudes of Z”. 

  

 

Figure 29: Determination of example biomarkers’ optimal frequencies. A) Overlay of Z” 

response on glucose sensors with varying glucose concentrations. B) Overlay of Z” response 

of lactoferrin sensors with varying lactoferrin concentrations. C) Overlay of Z” response of IgE 

sensors with varying lactoferrin concentrations. D) Overlay of slopes. E) Comparison of 

optimal frequencies of example biomarkers. 
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Nanoparticle-Antibody Conjugation Without IL-12 Antigen: 

Cutoff Frequency (Hz) 

With IL-12 Antigen: 

Optimal Frequency (Hz) 

Control 37.56 14.36 

5 nm AuNP 253.9 69.75 

10 nm AuNP 69.75 21.23 

20 nm AuNP 14.36 3.09 

25 nm MagNP 81.38 81.38 

20 nm Qdot 371.1 214.8 

Table 5: Summary of the cutoff frequencies and the optimal frequencies of each nanoparticle 

conjugates. 

 

Characterization of the Nanoparticle-Antibody Complexes  

Following the successful conjugation of nanoparticles, the optimal frequencies of various 

nanoparticle-antibody complexes were characterized. Using the 20 nm AuNP conjugation as an 

example, Figure 31A shows an example Z” response of the 20 nm AuNP conjugation after 

 
Figure 30: EIS responses of various types of nanoparticle conjugations to the IL-12 antibody.  
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introducing a concentration gradient of IL-12 antigen (0 – 5000 pg/mL). The Z” response 

increased proportionally with IL-12 antigen concentrations, but the cut-off frequencies decreased 

gradually. The full results can be found in supplementary information. For each type of 

nanoparticle-antibody conjugation, after correlating the Z” values at each frequency to the IL-12 

antigen concentrations, the resulting slopes are shown in Figure 31B. The optimal frequency of 

each type of antibody-nanoparticle conjugation is shown in Figure 31C. The cut-off frequencies 

from Figure 30 and the optimal frequencies from Figure 31C are summarized in Table 5 for 

comparison.  

  

Figure 31: EIS responses of various nanomaterials in the presence of IL-12 antigen. A) 

Exemplary Z” overlay of the IL-12 antibody conjugated with 20 nm AuNP showing the change 

in Z” and the shift in cut-off frequencies when exposed to 0 – 5000 ng/mL gradient of IL-12 

antigen.  The Z” at each frequency was correlated to IL-12 antigen to obtain slopes. B) 

Overlay of slopes of each type of nanoparticle-antibody conjugations after correlating the Z” 

values to the IL-12 antigen concentrations. The inset represents the zoom-in for 5 nm AuNP, 

20 nm Qdots, and 25 nm MagNP. C) Comparison of optimal frequency after conjugating the 

IL-12 antibody with various types of nanoparticles.  
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Figure 31B suggests that the slope from MagNP conjugation is reversed compared to other 

nanomaterials. Generally, the Z” values are negative because of the complex number j, as shown 

in the equation below. 

 

𝑍(𝑗𝜔) = 𝑍𝑟(𝜔) + 𝑗𝑍𝑖(𝜔)                                          Equation 13 

 

The binding of IL-12 to the antibody is expected to restrict the flow of electrons, resulting in an 

increase in Z” (more negative) and a negative slope. The increase in Z” values are typically 

proportional to the increase in IL-12 concentration. The only exception was MagNP, which had a 

positive Z” slope and a poor R-square (RSQ) value at the optimal frequency, suggesting that the 

Z” values did not correlate with IL-12 antigen concentrations (see Figures 32 and 33). The result 

was unexpected because the MagNPs have been widely used in the development of biosensors, 

as they enhance electron transfer and increase the shelf-life of electrodes201,202. Besides the 

potential of forming large agglomerates due to magnetic dipole-dipole interactions between 

particles203, another possible explanation is the competitive reaction. At the formal potential, the 

potassium ferricyanide is converted back and forth between its oxidized (ferricyanide) and 

reduced (ferrocyanide) states to constantly facilitate electron flows in the electrochemical cell. 

Iron oxide can exchange electrons between the Fe centers, going back and forth from FeII to FeIII 

based on the potential applied204. The MagNPs of iron oxide are also known for enhancing spin-

spin T2 relaxation time by dephasing the spins of water protons nearby205. Therefore, there may 

be competition of electrons between the ferron ions in the iron oxide of MagNP and that in the 

potassium ferricyanide. Subsequently, the presence of electron competitions may affect the 

electron flow and the charge distribution around the immobilized MagNP-antibody complex, 

preventing the change in Z” from correlating with IL-12 binding.   
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Despite reducing the slope drastically, the Qdots seem to have tuned the optimal frequency 

furthest from the control when compared to the other nanoparticles. Due to its two-metal layer 

design (zinc sulfide shell and cadmium selenide core), the Qdots may be represented as a double 

layer capacitor and cause a charge bias on the surface of the nanoparticle-antibody complex. The 

capacitive effect may explain why Qdots had the greatest impact on the optimal frequency 

compared to other homogeneous nanoparticles, as further elaborated later.   

 

 
Figure 32: Overlay of imaginary impedance (Z”) responses of biotinylated IL-12 antibody that 

are conjugated with A) no nanoparticles (NP), B) 5 nm gold NP, C) 10 nm gold NP, D) 20 nm 

gold NP, E) 25 nm magnetic NP, and F) 20 nm quantum dots before applying a gradient (0-

5000 pg/mL) of IL-12 antigens.  
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Judging from the shift of optimal frequencies in the antibody-NP complexes of 5 nm AuNP, 10 nm 

AuNP, and 20 nm AuNP when compared to the control, the Z” algorithm confirmed Demirok et 

al’s work in that the size of AuNPs have an inversely proportional effect on tuning the optimal 

frequency195. However, as evident in Figure 31C, the relationship was nonlinear when involving 

magnetic and quantum nanoparticles, suggesting additional factors should be examined. 

 

Measuring Zeta Potential, Conductivity, and Molecular Weight  

The values of zeta potential, conductivity, and molecular weight for each nanoparticle and 

biomarker’s analyte can be found in Table 6. Their individual correlations with the optimal 

frequency can be found in Figure 34. The result in Figure 34A suggests that although the 

 
Figure 33: Overlay of slope and R-square (RSQ) values of biotinylated IL-12 antibody that are 

conjugated with A) no nanoparticles (NP), B) 5 nm gold NP, C) 10 nm gold NP, D) 20 nm gold 

NP, E) 25 nm magnetic NP, and F) 20 nm quantum dots after correlating the Z” values with IL-

12 concentrations. 
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conductivity seems to be affecting the optimal frequency, because of its parabolic relationship, 

there may be interactions among the 3 exemplary factors. The result in Figure 34B suggests that 

the zeta potential is positively correlated with the optimal frequency, meaning that when the zeta 

potential increases (less negative), the optimal frequency increases. The result in Figure 34C 

suggests that the molecular weight is negatively correlated with the optimal frequency. As the 

molecular weight decreases, the optimal frequency increases. Note that the values from glucose 

were consistently found to be outliers. This could be attributed to the enzymatic reaction between 

glucose and glucose oxidase. Besides glucose, all other MRE-target reactions were either 

through the covalent binding between biotin and streptavidin, or the affinity-based binding 

between the antibody and antigen. The enzymatic reaction of glucose is not only different in the 

nature of MRE-target interaction, but also generates electrons, which could significantly alter the 

flux of electrons in the electrochemical system, causing an undesirable contamination for this 

modeling. In a hindsight, although glucose was able to provide the smallest molecular weight for 

this design of experiment, the result suggested that since the enzymatic reactions followed a 

different mechanism, a separate design of experiment using only the enzymatic-based 

biomarkers would be more appropriate to study their optimal frequencies. The zeta potential,  
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conductivity, and molecular weight values of glucose were thus removed from the subsequent 

ANOVA study but were kept in Figure 34 as references. 

  

 

Figure 34: The effect of conductivity, zeta, and molecular weight on the optimal frequency. A) 

the parabolic relationship between the conductivity and the optimal frequency, B) the positive 

correlation between the zeta potential and optimal frequency, and C) the negative correlation 

between the molecular weight and the optimal frequency. The red dots represent data points 

from glucose. 
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Table 6: Summary of each nanoparticle and biomarker analyte’s zeta, conductivity, molecular 

weight, and optimal frequency.  

 

Using ANOVA to Determine the Factors and Interactions that Contribute to the Optimal 

Frequency 

Finally, ANOVA was used to examine which factors and interactions among the zeta potential, 

conductivity, and molecular weight were significantly affecting the optimal frequency. A complete 

table summarizing the details of ANOVA can be found in Table 7. All factors and interactions 

were found to be statistically significant (P value < 0.05). The regression analysis yielded a model 

that predicts the optimal frequency: 

 

Material 
Zeta Potential 
(mV) 

Conductivity 
(µS) 

Molecular Weight 
(Da) 

Optimal 
Frequency 
(Hz) 

5 nm AuNP -19.84 840.00 761,494 69.75 

10 nm AuNP -17.09 122.00 6,091,951 21.23 

20 nm AuNP -32.34 360.10 48,735,608 3.09 

25 nm MagNP -13.31 811.93 25,816,692 81.38 

20 nm Qdot -0.185 65.00 2,182,003 214.8 

Glucose -11.31 24955.07 160 37.60 

Lactoferrin -7.93 12599.85 80,000 175.80 

IgE -3.29 15660.57 200,000 371.10 
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𝐿𝑁(𝐹𝑜) = 6.26 − 8.15𝐸−5𝜎 + 0.11𝜁 − 4.14𝐸−7𝑚 − 4.07𝐸−6𝜎𝜁 + 3.64𝐸−10𝜎𝑚 − 7.62𝐸−9𝜁𝑚       

                                                                                                                                        Equation 14 

 

where LN(Fo) is the natural log of optimal frequency, 𝜎 the conductivity, 𝜁 the zeta potential, and 

m the molecular weight. The model is statistically significant (P value < 0.0001) and unbiased, as 

supported by the randomized pattern in the residual plot (Figure 35A) and good linearity (R2 = 

0.99, Figure 35B).  

  

 

Figure 35: Modeling of optimal frequency. Linear regression results showing: A) residual plots 

with random pattern and B) the modeled response compared to the experimental data. Dotted 

grey lines represent 95% confidence interval.  
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Table 7: Summary of the ANOVA results 

 

An Unbiased Means for Studying the Optimal Frequency 

The optimal frequency differs from the cutoff frequency in that it is the frequency at which the 

biomarker can be quantified sensitively and accurately (Figure 29D and Figure 31B). Some 

researchers interpreted it as a native optimal frequency between the antibody and the antigen 

(and thus independent from nonspecific binding or biofouling)138,166, while others interpreted it 

merely as a single-frequency that reflects system-wide changes130–133.  Although the idea of 

optimal frequency is well advocated, there is no universally agreed method to determine a 

biomarker’s optimal frequency. The scope of this manuscript is not to establish the optimal 

method for determining the optimal frequency, but to provide an unbiased means to study the 

factors that can affect the optimal frequency. The Z” algorithm used in this work is beneficial in 

Analysis of Variance 

Source 
Degree of 
Freedom 

Sum of 
Squares 

Mean Squares F Value P Value 

Model 6 49.174 8.196 561.447 < 0.0001 

Conductivity 1 0.594 0.594 40.689 < 0.0001 

Zeta 1 6.195 6.195 424.387 < 0.0001 

Molecular 
Weight 

1 2.752 2.752 188.552 < 0.0001 

Conductivity X 
Zeta 

1 0.110 0.110 7.557 0.016 

Conductivity X 
Molecular 

Weight 
1 3.240 3.240 221.955 < 0.0001 

Zeta 
X 

Molecular 
Weight 

1 1.941 1.941 132.989 < 0.0001 

Error 14 0.204 0.015 N/A N/A 
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providing a visual presentation as the cut-off frequency is easily observable. Although the cut-off 

frequency is slightly different from the optimal frequency in that the cut-off frequency is 

concentration dependent, it is a well-understood concept describing the electrochemical system 

and is in close resemblance to the optimal frequency regardless of the algorithm used, making it 

an unbiased model for explaining the factors that contribute to the optimal frequency. Binding of 

antigens gradients will change the local accumulation of charges around the antibody-antigen 

complex, causing a shift in the cut-off frequency observed in Figure 29A – 29C, and Figure 31A. 

The cut-off frequency (fc) can be modeled as: 

 

𝑓𝑐 =
1

𝑅𝐶2𝜋
                                                       Equation 15 

 

where R is resistance and C the capacitance. The equation can be used to explain the changes 

of optimal frequencies discovered in both the biomarker and nanoparticle setups with respect to 

zeta potential, molecular weight, and conductivity, as the binding of nanomaterials and target 

analytes to the antibody is expected to change the complex’s overall resistance and the 

capacitance. The inset of Figure 28 can be used as the boundary condition for the following 

discussions. 

 

Factors that Significantly Affect the Optimal Frequency 

The values of zeta potential and conductivity of nanoparticles and biomarker analytes were 

measured in a free-flowing model, which was different from the immobilized model used herein. 

This was partly because measuring these values after the immobilization would be technically 

challenging. However, by keeping the control factors as consistent as experimentally possible, 

such as the concentration of immobilized antibodies, molecular weight of the MREs (all MREs 

utilized in this study were between 150 kDa to 160 kDa), and the concentration of the 

nanoparticles, the changes in optimal frequencies could be attributed from mainly the binding of 

antigens and/or the nanoparticle conjugations. Besides being popular biocompatible materials in 
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many biomedical applications, the nanoparticles also have very different characteristics. They’re 

expected to vary the antibody-antigen complex’s zeta, conductivity, and molecular weight 

drastically, allowing us to study which factors significantly contribute to the optimal frequency. 

From the results in Figure 34 and 35, zeta potential, conductivity, and molecular weight are all 

factors that can significantly impact the optimal frequency, suggesting that the local charge 

accumulation and distribution around the antibody-antigen complex can be responsible for a 

biomarker’s optimal frequency. In the following sections we discuss each parameter individually 

with respect to Equation 15. 

 

Zeta Potential 

Zeta potential is generally defined as the electrostatic potential at the interfacial double layer 

between the particles and the surrounding mediums. It is often measured to estimate the stability 

of the nanoparticles, as nanoparticles with high zeta potential tend to repulse instead of 

coagulating206. It can also be extended to provide a simple estimation of a molecule’s surface 

charge. The large error bars on the zeta potentials could be attributed to the coating of 

streptavidin, a 55 kDa protein. According to manufacturer information, due to the polydispersity of 

size (around 15%~20% coefficient of variation), the number of streptavidin on the nanoparticles 

are also expected to vary. The presence of streptavidin extended the double layer and 

consequently affected the zeta potential, so variance in the number of streptavidin could cause 

variance in the zeta potential. The excitation wavelength of the dynamic light scattering 

instrument (Delsa Nano C) was also very close to the emission maximum of Qdots (655 nm), 

potentially causing an underestimation of its zeta potential. Nevertheless, as shown in Figure 

34B, a P value of < 0.0001 suggested that zeta potential can significantly affect the optimal 

frequency. In general, higher negative charge on the surface of particles might restrict the flow of 

electrons and thus increase the charge transfer resistance, therefore corresponding to the lower 

optimal frequency recorded207 according to Equation 15 and the trend observed in Figure 34B. 
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Molecular weight 

According to Figure 34C, an increase in the molecular weight of a molecule results in a decrease 

in the optimal frequency. The increase in molecular weight may cause steric hindrance and close 

packing limitations near the electrode surface. As the electron flows through the antibody-antigen 

or nanoparticle-antibody-antigen complexes are obstructed. A larger molecular weight can be 

attributed to the size and/or density of the molecule. Assuming both the antigen-antibody and the 

nanoparticles-antibody-antigen complexes (referred to as antibody complex herein) are spheres 

with a hydrodynamic radius of r (Figure 28), their resistance and capacitance can be modeled as: 

𝑅 = 𝜌
2𝜋𝑟

𝜋𝑟2 = 𝜌
2

𝑟
                                                  Equation 16 

 

𝐶 =
2𝜋𝜀0𝜀𝑟

1+
𝑑

𝑟

         Equation 17. Adopted from Chaki et al208 

where  𝜌 is the resistivity, 𝜀0 the dielectric constant of the sphere, 𝜀𝑟 the permittivity of the 

medium, and d the distance between the antibody-antigen complex and the surface of the 

electrode. According to Equation 16 and 17, when the molecular weight changes, the change in 

size and/or density can be reflected in r and d, resulting in a change in the resistance and 

capacitance.  

 

However, changing the molecular weight can also affect the 𝜌 and 𝜀0 of the antibody complex due 

to the alternating current applied in the EIS and a change in the close packing factor209–211, 

affecting the resistance and capacitance of the antibody complex. Since r and d are in the 

denominator and 𝜌 and 𝜀0  the numerator, altering the molecular weight will have trade-off effects 

depending on the magnitudes of these factors. Judging from Equation 15 and the trend in Figure 

34C, an increase in the molecular weight suggests an overall increase in the resistance and the 

capacitance, meaning that the growths in 𝜌 and 𝜀0are more dominant than that of r and d. In other 

words, an increase in the molecular weight would affect the electron flows inside the antibody 
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complex, increase both its resistance and the capacitance, and thus lower the cutoff frequency 

and consequently the optimal frequency according to Equation 15. 

 

Increasing the molecular weight can also lead to a larger surface area for charge accumulation, 

affecting the zeta potential around the particles and consequently the antibody complex. 

Therefore, there is a significant interaction between the zeta potential and molecular weight 

according to Table 7.    

 

Conductivity 

According to Figure 34A, conductivity is also a factor that significantly affects the optimal 

frequency. The conductivity measures how the electrons flow through a material and is the 

reciprocal of resistivity. Using the similar boundary conditions above, the conductivity of the 

antigen and the nanoparticles can also affect the conductivity of the overall complex. 

Subsequently, the flow of electrons through the complex to the electrode is affected. Therefore, 

conductivity of the overall system can affect the resistance in the equivalent circuit, consequently 

affecting the optimal frequency.  

 

In addition, according to Figure 34A and Table 7, the significant interaction between the 

conductivity and zeta can also affect the optimal frequency. Since zeta potential is an estimation 

of the surface charge between the molecule and the surrounding medium, the repulsion among 

molecules can affect the electron flow through the antibody complex as well. Therefore, the 

interaction between conductivity and zeta can affect the resistance and capacitance of the 

antibody complex, and consequently the optimal frequency.  

 

Lastly, the significant interaction between the conductivity and molecular weight can also affect 

the optimal frequency. The conductivity of the antibody complex can be modeled as: 

𝜎 = 𝜎0𝑒−𝐸𝑎/𝑅𝑇     Equation 18, obtained from Brust et al212 



109 

 

𝐸𝑎 =
𝑒2

8𝜋𝜀0𝜀𝑟
(

1

𝑟
−

1

𝑟+𝑑
) Equation 19, derived from Brust et al212 

where 𝜎0 is the conductivity constant, 𝐸𝑎 the activation energy, R the universal gas constant, T 

the temperature, and e the charge of an electron. As described above, since a change in the 

molecular weight may also affect 𝜌, 𝜀0, r, and d, the conductivity of the entire antibody complex is 

also expected to change, affecting the resistance and consequently the optimal frequency.  

 

Limitation of the Work 

This work did not investigate other potential factors that could impact the optimal frequency, such 

as pH, temperature, protein integrity, medium, molecule orientation, and many others. The three 

factors studied in this work was assumed to be the three strongest candidates based on literature 

search and available resources. Further studies are required to gain deeper understanding on the 

origin of optimal frequencies and what exactly they are.  

 

Applications of Optimal Frequencies 

There are various applications for leveraging the optimal frequency. First, it shortens the 

hardware requirement and assay time to detect target analytes without sacrificing specificity. This 

is especially attractive when detecting molecules at very low physiological concentration such as 

insulin, which resides as low as 50 pM in the body5, making it possible to develop point-of-care 

biosensors for biomarkers which are otherwise very costly and time-consuming to measure. 

Second, it offers a means to measure various analytes simultaneously on a single electrode, 

which helps improve the specificity and sensitivity of many assays with improved cost-

efficiencies1. Furthermore, by understanding the factors that contribute to the optimal frequency, it 

can be used in many applications from interrogating the different interfaces and membranes213 to 

the aggregation of biomolecules, providing a rapid and nondestructive means for quality control. 

A great example application would be the quality control in commercialized insulin vials, which 

was found to be as low as 40.2 U/mL versus the advertised 95 U/mL67.   
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CONCLUSION 

In conclusion, we have demonstrated the effect of zeta potential, conductivity, and molecular 

weight on a biomarker’s optimal frequency through the studies containing five types of 

nanoparticles and three biomarkers. The ability to model and predict a biomarkers optimal 

frequency would serve great use in the design of next generation sensors. However, we have not 

yet fully understood and validate the concept of optimal frequency. First, different binding 

mechanisms that generates electrical signal or conformational changes should be explored as 

they can significantly alter the resistance and capacitance of the electrochemical system and 

consequently the optimal frequencies. Second, different space groups and lattice structures can 

be explored to better understand how structure orientations and stacking can affect the optimal 

frequency. By understanding what constitutes the optimal frequency of a biomarker, it can 

emerge as an additional means of rapid characterization of biomolecules with countless 

applications. 
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CHAPTER 4 

SUMMARY AND FUTURE WORK 

Monitoring complex diseases and their comorbidities requires accurate and convenient 

measurements of multiple biomarkers. However, many state-of-the-art bioassays not only require 

complicated and time-consuming procedures, but also measure only one biomarker at a time.  To 

achieve the label free, multi-marker electrochemical sensing platform for the management of 

complex diseases and their comorbidities, seven biomarkers representing DM, CVD, and DED 

were investigated. An imaginary impedance-based algorithm for the determination of optimal 

frequency and signal deconvolution was first developed to enable EIS multi-marker detection and 

the study of biomarkers’ optimal frequencies. It was found that, by monitoring the imaginary 

impedance response at the biomarker’s optimal frequency, sensitive single-marker detection 

(glucose, lactate, insulin, lactoferrin, and immunoglobulin E) can be achieved. The Mayo Clinic 

sponsored EIS insulin sensor was especially a major development as it not only has the potential 

to improve glycemic control, but can also serve as a rapid, nondestructive quality control of 

commercial insulin vials. The Advanced Tears Diagnostic sponsored lactoferrin and 

immunoglobulin E biosensors also provided a practical means for point-of-care dry eye 

diagnostic. Besides the academic research of investigating factors that contribute to the optimal 

frequencies, the sponsorship from hospital and industry has transformed these single-marker 

biosensors into practical experiences in designing for manufacturing, business presentations, and 

design of experiments. 

 

The imaginary impedance algorithm has also overcome the signal overlapping in the multi-marker 

detection, resulting in the development of a dual-proteomic marker (low-density lipoprotein and 

high density lipoprotein) sensor. The dual-enzymatic marker (glucose and lactate) sensor was not 

successful due to the local accumulation of reduced redox mediator on the self-assembled 

monolayer (SAM). SAM is a long, electrically insulating spacer intended to provide the chemical 

group for protein immobilization. It works fine in proteomic biomarkers, but for enzymatic 
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biomarkers that generate electrons as enzymatic reaction occurs, the electron insulating 

character of SAM was found to limit the electron transport of redox mediator, causing a local 

accumulation of reduced redox mediator on SAM, and thus contaminated the impedance signal 

generated from enzymatic reactions. Study platforms not involving the use of SAM may be 

warranted to accurately study the optimal frequencies of enzymatic biomarkers. 

 

Throughout the exploration, three exemplary factors were found to contribute to the optimal 

frequency of a biomarker: zeta potential, conductivity, and molecular weight. Amperometric, 

disposable test strips integrated with samplers were also developed for lactate and glucose as a 

backup to the multi-marker platform. This work has resulted in a national award (U.S. Metrohm 

Young Chemist Award), a $1.5 million grant from the Leona M. and Harry B. Helmsley Charitable 

Trust, 9 publications, 4 patents, and 4 submitted manuscripts. However, despite these successes, 

complex medium in many developed biosensors (except lactoferrin and Immunoglobulin E 

biosensors) have not been tested. The LDL-HDL dual-marker sensor has also not been tested in 

complex medium either. These biosensors should be tested in blood to validate its clinical utility.  

 

The author plans to continue the investigation of proteomic and enzymatic biomarkers’ optimal 

frequency in the grant award from the Helmsley Trust by developing the dual insulin-glucose 

sensor. In this endeavor, not only an animal study will be performed to validate the developed EIS 

insulin and glucose sensors, it has the opportunity to mature and commercialize the EIS 

multimarker technology. 
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APPENDIX A 

PHYSICAL ADSORPTION BASED FABRICATION OF BIOSENSORS WITH 

GLUTARALDEHYDE CROSSLINKING 
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The protocol was originally built to investigate the native optimal frequency of a biomarker. It was 

built on a commercially available disposable SPCE, Zensor (CH Instruments, TX), containing 

graphite working and counter electrodes and a silver/silver chloride reference electrode. The 

protocol will work on all graphite-based sensors. A schematic of the sensor preparation protocol 

is illustrated above. First, a desired amount of the respective antibody (1 µg total is a good start) 

in PBS was deposited onto the working electrode and dried in an oven at 24 °C for 25 minutes. 

Once dry, the sensors were exposed to glutaraldehyde fumes generated from 1 mL of 25% GA in 

a parafilm-sealed vessel on an orbital shaker for 1 hour at 80 rpm. The sensors were again dried 

at 24 °C for 25 minutes, allowing the cross-linked antibodies to adsorb onto the graphite working 

electrode. Blocking of unreacted aldehyde groups from GA-crosslinking was achieved by 

submerging the sensing well in 1 mM Trizma® and hydrochloric acid (TRIS-HCl) solution (pH 7.4) 

for 25 minutes177. Sensors were rinsed in PBS followed by deionized water and dried at 24 °C. 

The sensors were either i. immediately subject to electrochemical testing or, ii. stored at 4 °C for 

future testing. 

 

Chemicals and Biologicals 

All chemical reagents could be purchased from Sigma-Aldrich, MO. The glutaraldehyde stock 

came in 25% w/w in DI and is light- and air-sensitive 

 
  



130 

 

APPENDIX B 

COVALENT BINDING BASED SENSOR FABRICATION USING PRIMARY AMINES 
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The sensors consist of GDEs, silver/silver chloride reference electrodes, and platinum counter 

electrodes (CH Instrument, USA). The gold surface thickness of a GDE is approximately 2.5 mm. 

GDEs were polished with 100 figure-eight motions on Buehler felt pads using 3.0, 1.0, and 0.05 

µm grit alumina oxide in distilled water (DI) followed by sonication in DI for 15 min. After 

sonication, the formal potential was obtained by performing cyclic voltammetry from -1.0 V to 1.0 

V in a solution of 100 mM potassium ferricyanide prepared in pH 7.4 phosphate buffer saline 

(PBS). EIS was then performed using the formal potential and a 5 mV AC sine wave sweeping 

from 1 Hz to 100 kHz to measure the bare impedance of GDEs, which helps determine GDEs’ 

surface topography.  After rinsing the GDEs with DI, 1 mM of 16-mercaptohexadecanoic acid (16-

MHDA) in ethanol was incubated onto the GDEs for 1 hr to form a self-assembly monolayer 

(SAM), allowing the thiol group of SAM to bind onto gold. Post-MHDA impedance was measured 

at the formal potential of each GDE for quality control.  The carboxylate groups on the tail end of 

16-MHDA were then activated by incubating the sensor with 40 mM 1-ethyl-3-(3-

dimethylaminopropyl) carbodiimide (EDC) and 20 mM sulfo-derivative of N-hydroxysuccinimide 

(NHS) for 1 hr. After washing the sensor with DI, 100 µL of the desired concentration of molecular 

recognition elements prepared in pH 7.4 PBS could be immobilized onto the sensor at room 

temperature for 1 hr. The sensors were then washed with PBS following the immobilization and 

the remaining reactive sites were blocked with 1% ethanolamine for 30 min. After rinsing the 

sensors with PBS, they were stored at 4̊⁰C until further use. 

The reagents and solvents, 16-MHDA, EDC, NHS, and potassium ferricyanide were all 

obtained from Sigma-Aldrich, USA. PBS was purchased from VWR International, USA.  

Schematic of sensor fabrication and setup. Reprinted with permission from reference 1 
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APPENDIX C 

QUALITY CONTROL 
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First Level: 

After rinsing the bare electrodes, measure the impedance of each electrode by submerging the 

electrodes in 100 mM potassium ferricyanide. The submersion of electrode helps eliminate the 

variance generated from pipetting and thus give a true estimation of the fundamental variance of 

the sensor. Calculate the %RSD and average impedance in all spectrums (Z, Z”, Z, and phase).  

 

Second Level: 

After coating the sensor with functional chemicals, measure the impedance of each electrode by 

either submerging the electrode in 100 mM potassium ferricyanide, or pipetting the 100 mM 

potassium ferricyanide onto the working electrode. The sensing well should be well-covered to 

minimize pipetting errors. Calculate the %RSD and average impedance in all spectrums (Z, Z”, Z, 

and phase). For GDEs, select the sensors that give smallest %RSD. If using Z” algorithm, in 

addition to the smallest %RSD, select the sensors that have the same cutoff frequency. Proceed 

with immobilization of molecular recognition elements with these screened sensors. 

 

Third Level: 

After the fabrication of sensor completes, measure the impedance of each electrode in a 50:50 

mixture containing 100 mM ferricyanide and a blank solution (buffer solution with no target 

analytes). Measure the impedance and calculate %RSD and average impedance in all 

impedance spectrums.  

 

Ideally, sensors should not surpass 20% RSD.  
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APPENDIX D 

SAMPLE PREPARTION AND TESTING PROTOCOL 
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All analyte samples were freshly prepared prior to testing. For affinity binding-based biomarkers, 

all analyte samples were prepared 15 minutes prior to testing. For enzymatic biomarker, glucose 

was prepared a day in advance to allow stabilization. Lactate was prepared 15 minutes prior to 

testing. All diluted samples were stored either in an ice box or a cooler until tested.   

 

To test the analytes, prepare the analytes 2X more concentrated than the intended concentration. 

Add 50 µL of sample to 50 µL of 200 mM potassium ferricyanide to reach the intended analyte 

concentration and 100 mM potassium.  

 

For co-immobilized testing, prepare the analytes 4X more concentrated than the intended 

concentration. Add 25 µL of sample A to 25 µL of sample B and 50 µL of 200 mM potassium 

ferricyanide to reach the intended anlyte concentration and 100 mM potassium.  

 

Special attention is required when diluting the lactoferrin proteins. It is very unstable, and the 

stock solution contains StabilZyme. After diluting to the desired concentration, use the sample 

within 5 minutes.  

.  
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APPENDIX E 

LASER CUTTING PROTOCOL 
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– Laser cutter initiation 

– Turn on the air compressor 

– Turn on the input power button on the laser cutter 

– Adjust air to 50% 

– Use the white stud to adjust the Z axis of laser to 0.075 inch 

– Transferring CAD file to laser cutter 

– Open the CAD file using Corel 

– Click “Print” -> PLS 4.75 

– Make sure the printed files use “red hairline” for each job 

– Laser cut the filter papers  

– Make sure to use Whatman 41 grade filter paper. 

– Adjust the laser setting to cut as much pieces out of a filter paper stack 

•  70% power, 50% speed, PPI 500 

• 5 filter paper stack per cut area. Populate 6 devices per cut area. Cut 1 cut 

area at once and harvest. Adjust X&Y coordinates when appropriate 

– Laser cut the 3M adhesive tape 

– Place a layer of 3M tape onto a paper board to serve as the sacrificial layer 

– Place a 2nd layer of 3M tape onto the 1st layer 

– Adjust the laser setting to cut only the top layer through 

• 0.062 thick mat board 

• Red laser, 10% power, 18% speed, PPI 500, air flow 75% 

– Reduce power or increase speed to get a clean cut on 1st layer. If 

you see burn mark it means it’s cutting the paper board already. 
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APPENDIX F 

ELECTROCHEMICAL CIRCUIT MODELING PROTOCOL 
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Start ZsimpWin using Fairchild’s account (make sure the registration key file is inside the 

installation folder) 

Click ok, you should get 

First you might want to compare models, so you will batch process the blank to the concentration 

gradient high. Click batch (third button on left top-see below for picture of button) 
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The batch window will appear: 

 
In the left pane, find the files you want to examine (files must be already be saved to your 

computer, flashdrive, etc.), once you got them in the middle pane where it says “Readme.txt” you 

can click on them (clicking the file will highlight it), then hit “Enter” on the keyboard or click the “>” 

button there in the middle to load the files. The files will appear in the right pane when they are 

added (see below). 
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 Now you need to “Add” models (upper middle button- highlighted above). You can only add one 

model at a time, so you will have the click the “Add” button in the upper middle (highlighted 

above) to add all four models.  You are looking for four basic models: the Randles, the Warburg, 

the Warburg with CPE and A CPE without a Warburg.  They have a crazy way of delineating 

them, if I click on the R(CR) on the pop down menu library (see below): 
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I get the Randles R(CR) model, click “ok”. *ALTERNATIVELY, you can type in R(CR) into the 

drop down field to select the Randles model. The model is added when the model is listed in the 

top part of the right pane, see below: 

 

  

Pop down menu library: Select a 
model 
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 Repeat these steps to add the other three relevant models: 
 
Warburg R(C(RW)) 
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CPE without a Warburg R(QR) 

 
Warburg with CPE R(Q(RW)) 
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To verify all the models and files you want to run are included, see below: 
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Now you have verified these models and files are added, you need to click “Check All” this will 

apply these models to all your data (the check marks on the right of the window will appear when 

you do this), then click “ok” at the bottom of the window. You will be prompted to save the batch: 

Save this somewhere you will be able to find again later in case you need to look at the final 

results again. If you are running the demo version, you may get an error that says something 

along the lines of: you cannot create this file, click “ok” to these errors. The models will still run, 

but YOU CANNOT SAVE, so take screen shots, etc. when you get the results. 

 

The results will take a little time to run, should be less than 5 mins. You will see a “Please Wait” 

window in the upper left portion of your screen while the center Zsimpwin window will be loading 

data, fitting models. 

 

When it is done, a new window will appear prompting you to save, make sure it is where you want 

it then click “ok”. 
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Then another new window will appear: 

 
This is the result of the analysis, check “Include skipped jobs” (lower middle check box) and then 

click “View All” and another new window will appear:  

Scroll down toward the bottom until you see: 

 

Standard deviations of data points, in % of |Z|. 

       1       2       3       4 

  -------------------------------- 

   26.60   26.20   25.99    9.33    R(CR) 

   16.37   11.08    2.42    8.96    R(C(RW)) 

   17.42    5.68   17.74    3.01    R(QR) 

    5.97    5.07    2.39    3.02    R(Q(RW)) 

  -------------------------------- 

 

 

 

➔ Data files 

➔ Stdev’s for R(CR) model for each file 

1   2 3 4 
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***These numbers can be copied and pasted. 

This data tells you the best fit for each of the data files selected: lower %= better fit. 

Close all the windows except Zsimpwin:  

Now, you will open each .txt original data file (can only open one file at a time) by selecting the 

open folder icon below: 

 

Then model using the best fitting model for that file (refer again to your stdev’s table if necessary) 

by selecting: 
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And select the best fitting model for that file as before. 

You will be prompted to save, do so in a place you will find later. If you are in the demo version, 

you cannot save. 

 

In the demo version, a new window will appear with the model parameters: 
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These parameters can be adjusted if desired, but the software is capable of optimizing a fit (these 

numbers are the computer generated optimum fit). Click “ok” if you do not want to change the 

parameters. The simulation will run again, if you did not change the parameters click no when 

prompted to save. 

 

In the regular software: 

If you were able to save files in the non-demo version, you can select the copy paste button 

highlighted below to copy the results to the clipboard: 
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You will get a copied version of the results that look like below that you can paste into WORD 

04/21/2011, 7:40:34 AM 

...\par\032111_circle_0pt001ppmATZ_site3_2, R(C(RW)).par 

 

  1                             = detect the sign of Zim          

  1                             = modulus weighting factor    

1.000                        = sample area in square cm  

R(C(RW)) 

2.920e-02          2     = chi squared, # of items  

 

index   fixed    parameter      start               end        rel. std. error (%)  

-------  ------  ----------     --------            -----      ------------  

    1       0          R           36.28          36.27          7.797  

    2       0          C        5.321E-7        5.32E-7        2.517E5  

    3       0          R          0.1236         0.1257        1.53E12  

    4       0          W        8.342E-7       8.345E-7          21.38  

------------------------------------------------------------------------------------- 

Measurement errors in impedance data = < 17.09 pct.         

*in Warburg w/o CPE model: index1= Rs, index 2= Cdl, index 3= Ret, index 4=Warburg 

*In Warburg w/ CPE model: index1= Rs, index 2= Q-Yo, index 3= Q-n, index 4= Ret 

 

 

Analyzing ZsimpWin Output: 

To see how well all these models fit your data, which is best (measured by % error and χ2 –low 

numbers is great fit).  

 

*Note: The Q’s are the nonlinear capacitance, Q = Yo^n power 
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Optional, but strongly encouraged: 

Place the end data (highlighted in yellow for the full software version and boxed in orange in the 

demo version outputs above) into an EXCEL file and plot versus LOG(concentration) and see if 

what it looks like next to your impedance plots.  If you have a capacitive system, typically the 

plots are reverse, increasing CAP vs conc as opposed to decreasing Z vs conc. 
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APPENDIX G 

CHANGE IN FERRI/FERRO CONCENTRATIONS ON SAM 
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The purpose of this experiment is to supplement the hypothesis that, when enzymatic reaction 

occurs on a GDE coated with an electron insulating self-assembled monolayer (SAM), the 

change in impedance maybe associated with potassium ferricyanide being reduced to potassium 

ferrocyanide. The electron insulating feature of SAM limits the electron transport of ferrocyanide, 

making it unable to drop its electrons and get oxidized back to ferricyanide. Because of that, the 

accumulation of ferrocyanide on SAM is causing an increase in impedance that’s proportional to 

glucose concentration.  

 

The sensor was prepared using GDEs described in Appendix B using 2 mg/mL of FAD-GDH. 

Three concentrations of potassium- ferricyanide and ferrocyanide were prepared: 5, 10, 50 mM. 

The biased potential used was 0.14V, which was the formal potential of potassium ferricyanide. 

The amplitude was set to 5 mV and frequency was swept from 1 to 100,000 Hz.  

 

 The figure above showed the change in impedance with respect to the change in redox 

mediators. As potassium ferricyanide’s concentration decreases, the impedance increases.  
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In a typical setting, a gradient of glucose solutions prepared in 100 mM potassium ferricyanide 

would be tested. As the enzyme converts glucose to its byproducts, the generated electrons are 

facilitated by the ferricyanide through reduction and oxidation. However, when the electron-

insulating SAM is present, the electrons cannot be passed onto the sensor at the same rate as 

electron generation (which is dependent on the glucose concentration). Consequently, more 

ferricyanide receives the electron, get reduced to ferrocyanide, and then accumulate on the SAM 

as more glucose is converted. This can be viewed as a decrease in the concentration of 

ferricyanide and an increase concentration in the ferrocyanide. From the figure above, one can 

see that, both the decrease in the concentration of ferricyanide and a small concentration of 

ferrocyanide will have large impedance. This phenomenon can be used to explain the 

contradicting result of increasing EIS glucose sensors prepared by SAM discussed in Chapter 

2.2.  


