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The androgen receptor is a transcription factor that plays a key role in the development 

of prostate cancer and its interactions with general transcription regulators are therefore 

of potential therapeutic interest. The mechanistic basis of these interactions is poorly 

understood due to the intrinsically disordered nature of the transactivation domain of the 

androgen receptor and the generally transient nature of the protein-protein interactions 

that trigger transcription. Here we identify a motif of the transactivation domain that 

contributes to transcriptional activity by recruiting the C-terminal domain of subunit 1 of 

the general transcription regulator TFIIF. These findings provide new molecular insights 

into the regulation of androgen receptor function and suggest new strategies for treating 

prostate cancer.  
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Highlights 

- A short motif in transactivation unit 5 recruits the transcription machinery to the AR 

- The motif is intrinsically disordered but folds into a helix upon binding 

- Phosphorylation of Ser 424 enhances the interaction and is essential for transcription  

- The interaction is a potential therapeutic target for castration-resistant prostate cancer 
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Graphical abstract 
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Introduction 

The activation of transcription relies on interactions between specific transcription factors and 

general transcription regulators that can mediated by transcriptional co-activators (Fuda et al., 

2009). It is important to characterize these interactions because their inhibition by small 

molecules or other biological tools offers opportunities for therapeutic intervention in many 

disease areas, including oncology (Darnell, 2002). Since they involve intrinsically disordered 

transactivation domains the associated complexes are however transient, marginally stable and 

challenging to study (Wright and Dyson, 2015). 

One case where inhibiting these interactions is appealing is castration resistant prostate cancer 

(CRPC). This condition is suffered by prostate cancer patients that are refractory to hormone 

therapy, which is based on preventing the activation of the androgen receptor (AR). The 

mechanisms that allow cell proliferation under these conditions are not yet fully characterized 

but it is becoming clear that they include expression of constitutively active AR isoforms lacking 

the ligand binding domain (Miyamoto et al., 2015; Robinson et al., 2015).  

The complexes formed by the transactivation domain of AR (Lavery and McEwan, 2008a) and 

general transcription regulators are targets to interfere with CRPC (Sadar, 2011) because 

inhibiting their formation can lead to a decrease in AR transcriptional activity and in the 

proliferation of prostate cancer cells. Here we report the structural basis for the interaction of the 

transactivation domain of AR and the C-terminal domain of subunit 1 of the general transcription 

regulator TFIIF (RAP74-CTD), which involves the partial folding upon binding of a ca 10-residue 

motif in this receptor and contributes to the initiation of transcription (Choudhry et al., 2006; 

McEwan and Gustafsson, 1997).  

 

https://paperpile.com/c/bGcYFR/vP7LQ
https://paperpile.com/c/bGcYFR/vP7LQ
https://paperpile.com/c/bGcYFR/O31DH
https://paperpile.com/c/bGcYFR/fN75x
https://paperpile.com/c/bGcYFR/TzZqF+RWB1o
https://paperpile.com/c/bGcYFR/C0uKZ
https://paperpile.com/c/bGcYFR/T6SEr
https://paperpile.com/c/bGcYFR/mURAy+j25Ay
https://paperpile.com/c/bGcYFR/mURAy+j25Ay
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Results  

A motif in transcriptional activation unit 5 of AR adopts a helical conformation to recruit RAP74-

CTD  

To identify the regions of the AR involved in recruiting RAP74-CTD we used solution nuclear 

magnetic resonance (NMR). NMR is appropriate for characterizing protein-protein interactions 

involving intrinsically disordered proteins because it provides residue-specific information in the 

absence of the long-range order required for crystallization (Dyson and Wright, 2004). In 

addition, it is well-suited for the characterization of weak protein-protein interactions, which can 

occur when one of the partners is intrinsically disordered (Wright and Dyson, 2009).  

We used a construct of the AR transactivation domain (AF1*, AR residues 142-448, Fig. 1a) that 

contains two known functional subdomains, transcriptional activation units 1 and 5 (Tau-1 and 

5) (Callewaert et al., 2006; De Mol et al., 2016). AF1* is intrinsically disordered with regions of 

helical propensity within the structurally independent Tau-1 and Tau-5 subdomains (De Mol et 

al., 2016). We measured 2D 1H,15N-HSQC NMR spectra of AF-1* in the presence and in the 

absence of RAP74-CTD (RAP74 residues 450-517) (Lavery and McEwan, 2008a) and observed 

chemical shift perturbations in a region of Tau-5 with the sequence 

431SSWHTLFTAEEGQLYG446 (Fig. 1b). To confirm that the interaction does not involve residues 

in Tau-1 we repeated the experiments with a shorter AR construct (Tau-5*, AR residues 330-

448) and obtained an equivalent result (Fig. S1a). 

In order to estimate the stability of the complex we performed a titration of Tau-5* with RAP74-

CTD at 278 K (Fig. 1c) and found that the affinity between these two proteins was in the mM 

range (KD = 1749 ± 60, Fig. S1b). This is in agreement with the notion that the protein-protein 

interactions that activate transcription are weak due to their multivalent and transient nature 

(Melcher, 2000; Pollock and Gilman, 1997; Uesugi et al., 1997). To investigate whether binding 

https://paperpile.com/c/bGcYFR/hjc05
https://paperpile.com/c/bGcYFR/6clY2
https://paperpile.com/c/bGcYFR/Z0Si9+NlgtD
https://paperpile.com/c/bGcYFR/NlgtD
https://paperpile.com/c/bGcYFR/NlgtD
https://paperpile.com/c/bGcYFR/C0uKZ
https://paperpile.com/c/bGcYFR/G7LBT+jqSN6+F9I9l
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of RAP74-CTD induces a conformational change in Tau-5 we compared the 13Cα chemical 

shifts of Tau-5* in the presence and in the absence of its binding partner (RAP74-CTD*, see 

STAR Methods) by using 3D HNCA NMR experiments (Fig. 1d). We observed increases in 13Cα 

chemical shift in several residues of the motif, in agreement with the induction of a helical 

conformation (Neal et al., 2003), which were particularly large (ca. 0.5 ppm) for residues S432 

to T438, that define two turns of an α-helix (Fig. 1e). 

To identify the binding site of AR on the surface of RAP74-CTD we performed 1H,15N-HSQC 

experiments using RAP74-CTD (Nguyen et al., 2003a) and a synthetic peptide spanning the 

interaction motif of AR with sequence Ac-426SAAASSSWHTLFTAEEGQLYG446-NH2. We 

observed chemical shift perturbations in helices H2 and H3 (Fig. 2a,b), which  define the binding 

groove for two intrinsically disordered motifs of FCP1 that fold into an α-helix upon binding (Fig. 

2c) (Kamada et al., 2001, 2003; Nguyen et al., 2003a, 2003b; Yang et al., 2009). FCP1 is a 

nuclear phosphatase that dephosphorylates the C-terminal domain of RNA polymerase II and is 

recruited by RAP74-CTD at the termination of transcription (Archambault et al., 1997). 

An analysis of the sequences of the disordered motifs of FCP1 (Fig. 2d) and their conservation 

across different species shows that the RAP74-CTD groove can accommodate different 

interaction motifs when they fulfill a set of requirements summarized in two consensus 

sequences (centFCP1 and cterFCP1) (Abbott et al., 2005; Yang et al., 2009). This emphasizes 

that the interaction with RAP74 relies both on electrostatic interactions involving acidic residues 

at the N-terminus and at the center of the interacting motif and on hydrophobic interactions 

involving hydrophobic residues at relative positions i/i+3/i+4, which are buried in the interface 

(Fig. 2c) (Kamada et al., 2001, 2003; Nguyen et al., 2003a, 2003b; Yang et al., 2009). 

The motif that we had identified in the Tau-5 sub-domain of AR partially fulfills the requirements 

summarized in centFCP1 and cterFCP1 (Fig. 2d). It possesses hydrophobic residues in 

https://paperpile.com/c/bGcYFR/nmYdK
https://paperpile.com/c/bGcYFR/GYaD7
https://paperpile.com/c/bGcYFR/YFlxE+BUMcM+GYaD7+bbU3c+rXgC7
https://paperpile.com/c/bGcYFR/7Wqgo
https://paperpile.com/c/bGcYFR/YQLYH+rXgC7
https://paperpile.com/c/bGcYFR/YFlxE+BUMcM+GYaD7+bbU3c+rXgC7
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positions i/i+3/i+4 (W433, L436 and F437) that can interact with the groove defined by helices 

H2 and H3 of RAP74 as well as two acidic side chains (E440 and E441) that can interact with 

the basic residues that surround the binding site (K471, K475 and K510, Fig. 2c and 1c). To 

confirm the relevance of these residues for binding to RAP74-CTD we measured the chemical 

shift perturbations caused by two peptides, one with the three hydrophobic residues of the motif 

at positions i/i+3/i+4 mutated to Ala (AHTAA, Ac-426SAAASSSAHTAATAEEGQLYG446-NH2) and 

another one with the two acidic residues mutated to Lys (KK, Ac-

426SAAASSSWHTLFTAKKGQLYG446-NH2). In both cases we observed no chemical shift 

perturbations, confirming that these two features of the sequence of the AR motif are key for 

complex formation with RAP74-CTD (Figs. S2a and b). 

Helical propensity and phosphorylation state determine the stability of the complex 

The interaction between specific transcription factors and general transcription regulators can 

be enhanced by the binding of transcriptional co-activators (Fuxreiter et al., 2008) and by post-

translational modifications (Gioeli and Paschal, 2012). The binding of transcriptional co-

activators can induce secondary structures in transactivation domains that facilitate their 

interaction with the basal transcription machinery by decreasing the entropic cost of folding 

upon binding (Lavery and McEwan, 2008a). Post-translational modifications can either stabilize 

the structural changes induced by binding (Bah et al., 2015) or directly stabilize the relevant 

complex (Bah and Forman-Kay, 2016). We used NMR to measure the affinity between RAP74-

CTD and chemically modified peptides spanning the AR interaction motif. This experimental set-

up allowed us to mimic the site-specific phosphorylations that occur during AR activation as well 

as, by hydrocarbon stapling (Schafmeister et al., 2000), the helical secondary structure caused 

for example by co-activator binding.  

https://paperpile.com/c/bGcYFR/mXX99
https://paperpile.com/c/bGcYFR/v9LmL
https://paperpile.com/c/bGcYFR/C0uKZ
https://paperpile.com/c/bGcYFR/ugzaz
https://paperpile.com/c/bGcYFR/5gCFG
https://paperpile.com/c/bGcYFR/Yz2hR


9 

The regions at the N-terminus of the FCP1 motifs are rich in acidic side chains. However, the 

equivalent region in AR, which binds to RAP74-CTD with lower affinity, is instead rich in Ser 

residues (421GSGSPSAAASSS432, Fig. 2d). We hypothesized that phosphorylation of this region 

contributes to stabilizing the transient complex that it forms with RAP74-CTD. An analysis of the 

known phosphosites of AR revealed that S424 becomes phosphorylated upon AR activation 

(Gioeli and Paschal, 2012). To determine whether this phosphorylation increases the stability of 

the transient complex we measured the affinity for RAP74-CTD of a peptide phosphorylated on 

this position (pS424, Fig. 3a,b,c). The results indicated that phosphorylation of Ser 424 

increased the affinity of the peptide from KD = 1749 ± 60  to KD = 702 ± 8 μM. 

As shown in Figure 2d an additional difference between the FCP1 and AR motifs is the helical 

propensity of the sequences. Whereas the central and C-terminal motifs of FCP1 have some 

helical propensity according to the predictor Agadir (Muñoz and Serrano, 1994)  (15 and 38%) 

the AR motif has not (<1 %), in agreement with our characterization of the structural properties 

of the NTD of AR (De Mol et al., 2016). Given that binding to the groove defined by helices H2 

and H3 of RAP74-CTD involves the adoption of a helical conformation by the intrinsically 

disordered motif (Figs. 1d and e, 2c and 1c) we hypothesized that the low helical propensity of 

the AR motif contributes to its low affinity for RAP74-CTD. 

To determine the effect of increasing the helicity we used hydrocarbon stapled peptides (Hel 

and pS424Hel, Fig. 3a) where residues Thr 435 and Ala 439, which are in the face of the helix 

opposite the hydrophobic residues that interact with RAP74 (Fig. 3d), were replaced by (S)-2-

(4'-pentenyl)alanine and stapled by olefin metathesis (Schafmeister et al., 2000). A comparison 

of the secondary structure of the WT and Hel peptides by circular dichroism (CD) (Fig. 3e) 

confirmed that stapling indeed increased the helical propensity of the AR motif. We analyzed the 

chemical shift perturbations caused in RAP74-CTD by Hel and pS424Hel, a stapled peptide 

including also the phosphorylation at S424, and confirmed that both peptides interacted with 

https://paperpile.com/c/bGcYFR/v9LmL
https://paperpile.com/c/bGcYFR/athmZ
https://paperpile.com/c/bGcYFR/NlgtD
https://paperpile.com/c/bGcYFR/Yz2hR
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higher affinity compared to their non-stapled counterparts (KD = 125 ± 3 μM for Hel and KD = 

105 ± 2 μM, for pS424Hel, Fig. 3a,b,c). These results confirm that phosphorylation facilitates 

binding of the AR motif to RAP74 and that processes that increase helical propensity can 

potentially enhance AR transcriptional activity.  

The interaction can be observed in cells and contributes to AR transcriptional activity 

Although it is well-established that TFIIF and the RAP74-CTD domain in particular interact with 

the AF1 domain of AR in vitro (Kumar et al., 2004; Lavery and McEwan, 2008b; McEwan and 

Gustafsson, 1997; Reid et al., 2002) there is little evidence that the interaction occurs in cells. 

To investigate this we initially used biochemical techniques such as co-immunoprecipitation, but 

failed to detect robust interaction presumably due to its transient nature. We next used the 

proximity ligation assay (PLA) (Söderberg et al., 2006), an immunofluorescence-based 

technique that allows the detection of proteins in close proximity inside cells.  

For these studies, we tagged full length AR and RAP74-CTD with Flag and Myc, respectively, 

transfected them in HEK293T cells, which do not express AR (see STAR Methods and SI), and 

treated the cells with dihydrotestosterone (DHT) to cause the translocation of the receptor to the 

nucleus. The results indicated that the two proteins interact, as expected, mainly in this 

organelle (Figs. 3f and S3). To validate that the interaction observed in cells takes place via the 

identified AR motif (AR 423-448), we carried out equivalent experiments by using a mutant of 

AR with residues 423 to 448 removed (ARΔ423-448). In agreement with the results obtained in 

vitro, we observed a reduction of the interaction between ARΔ423-448 and RAP74 in cells of ca 

50%, indicating that the AR motif identified in this work indeed contributes to the stability of the 

transient complex formed with TFIIF (Fig. 3f, S3b,c and d). We also investigated whether, in line 

with the results obtained in vitro, the phosphorylation of Ser 424 (Fig. 3a) regulates the 

interaction with RAP74-CTD in cells by using an AR with Ser 424 mutated to Ala (S424A). The 

https://paperpile.com/c/bGcYFR/mURAy+MVrly+EEXIA+XzUNv
https://paperpile.com/c/bGcYFR/mURAy+MVrly+EEXIA+XzUNv
https://paperpile.com/c/bGcYFR/WvxnF
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results of the PLA quantification confirmed the importance of this phosphorylation for the 

interaction (Fig. 3f, S3b,c and d). Importantly, control immunofluorescence experiments showed 

that mutants ARΔ423-448 and S424A translocate to the nucleus upon activation by DHT (Fig. 

S3a).  

Finally, to further assess the functional relevance of the interaction between AR and RAP74-

CTD via the motif identified in this work we measured the transcriptional activity of WT AR and 

the mutants ARΔ423-448 and S424A in HEK293T cells by means of a gene reporter assay (see 

STAR Methods). The results showed that deleting the motif or removing the phosphorylation 

site at position 424 clearly lowered the transcriptional activity of AR by ca 30 % (Fig. 3g). 

Discussion 

The interactions between transactivation domains of specific transcription factors and 

transcriptional co-activators or general transcription regulators are amongst the best 

characterized examples of complexes involving intrinsically disordered proteins (Brzovic et al., 

2011; Di Lello et al., 2006; Feng et al., 2009; Uesugi et al., 1997). Key features of these, which 

are present in the interaction studied in this work, include the induction of secondary structure in 

the transactivation domain upon interaction, their relatively weak nature and the important role 

played by post-translational modifications in their regulation (Fuxreiter et al., 2008).  

The interaction between AR and the C-terminal domain of subunit 1 of TFIIF is mediated by 

hydrophobic interactions between residues at positions i/i+3/i+4 of the AR motif and a 

hydrophobic cleft on the surface of RAP74-CTD, with an important contribution of electrostatic 

interactions between acidic residues in the former and basic ones in the latter. This relative 

position of hydrophobic residues in the AR motif is common in transactivation domains (Brzovic 

et al., 2011; Di Lello et al., 2006; Feng et al., 2009; Uesugi et al., 1997), indicating that there 

could be a generic mechanism by which these domains recruit their binding partners at the 

https://paperpile.com/c/bGcYFR/G7LBT+MMpx4+U24bj+z4o5n
https://paperpile.com/c/bGcYFR/G7LBT+MMpx4+U24bj+z4o5n
https://paperpile.com/c/bGcYFR/mXX99
https://paperpile.com/c/bGcYFR/G7LBT+MMpx4+U24bj+z4o5n
https://paperpile.com/c/bGcYFR/G7LBT+MMpx4+U24bj+z4o5n
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initiation of transcription and highlighting the general importance of regulatory mechanisms to 

provide binding specificity. We provide evidence both in vitro and in cells that the 

phosphorylation of Ser 424 is important for the interaction between AR and RAP74-CTD and for 

AR transcriptional activity, illustrating how post-translational modifications can enhance the 

affinity and the specificity of intrinsically disordered proteins for their binding partners (Stein and 

Aloy, 2008). 

Our results indicate that AR and FCP1 interact with the same groove in the structure of RAP74-

CTD via similar motifs. The interaction between AR and RAP74-CTD is, as we have shown, 

important for transcription initiation whereas that between the latter and FCP1 is important for 

transcription termination (Archambault et al. 1997). The role of FCP1 in termination, which is 

carried out by its phosphatase domain, is to dephosphorylate the C-terminal tail of RNA 

polymerase II, causing it to dissociate from the DNA and therefore allowing it to become 

involved in a subsequent round of transcription. We conclude that RAP74-CTD, which is a 

particularly dynamic part of the transcription machinery and is tethered to it via a very flexible 

linker (Sainsbury et al. 2015), uses a single binding mechanism to interact with different 

intrinsically disordered motifs in different stages of transcription.  

Our work indicates that the motif 431SSWHTLFTAEEGQLYG446 is important for the formation of 

the transient complex in cells but that its interaction with RAP74-CTD in vitro is rather weak, 

even after phosphorylation of Ser 424, unless a helical conformation is induced. Several 

mechanisms to induce a helical conformation in the motif can operate in cells, including an 

allosteric mechanism coupling the DNA-binding and transactivation domains upon DNA binding 

(Brodie and McEwan, 2005; Watson et al., 2013), a change in the conformation of the motif or 

the whole Tau-5 sub-domain after co-activator binding (Fuxreiter et al., 2008) or the effect of 

extrinsic factors that cannot be easily accounted for by in vitro studies. It is in fact possible that 

https://paperpile.com/c/bGcYFR/QLrHJ
https://paperpile.com/c/bGcYFR/QLrHJ
https://paperpile.com/c/bGcYFR/7Wqgo
https://paperpile.com/c/bGcYFR/EKrP
https://paperpile.com/c/bGcYFR/81iSy+i4CJG
https://paperpile.com/c/bGcYFR/mXX99
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several of these mechanisms operate simultaneously as they would provide an efficient means 

of regulating transcriptional activity (Hilser and Thompson, 2011; Wu and Fuxreiter, 2016).  

The relevance of Tau-5, the sub-domain of the AR NTD where the 

431SSWHTLFTAEEGQLYG446 motif is found, for transcriptional activity in cells depends on the 

cell line used for the experiments and on the concentration of androgens to which the cells are 

exposed. Tau-5 inhibits transcriptional activity in prostate cancer cell lines expressing AR in the 

presence of physiological concentrations of androgens (Dehm et al., 2007). By contrast it 

stimulates transcriptional activity in cell lines that do not express AR (Jenster et al. 1995) and, 

most importantly, in CRPC cell lines expressing AR in the absence androgens or in their 

presence at castrate levels, where residues 433 to 437, at the core of the motif identified in this 

work, can act as independent transactivation domain (Dehm et al., 2007). 

From a translational medicine point of view our results and those available in the literature 

indicate therefore that the motif that recruits RAP74-CTD can contribute to transcription 

activation by AR and, therefore, that the complex that it forms with this subunit of TFIIF is a 

potential therapeutic target for CRPC, although we cannot exclude the possibility that other 

interactions contribute to its function in transcription activation (Cato et al., 2017; He et al., 2000; 

Li et al., 2014). In summary, although protein-protein interactions involving intrinsically 

disordered proteins represent challenging targets for drug discovery our work indicates that 

inhibitors of the recruitment of RAP74-CTD by AR, which could be either small molecules or 

peptides, could lead to new treatments for prostate cancer and, especially, CRPC (Yap et al., 

2016).  
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Figure legends 

Figure 1: Identification of a 16-residue motif of AR that recruits RAP74 by adopting a helical 

structure a) Domain structure of AR indicating the regions that form the transactivation (NTD), 

DNA binding (DBD) and ligand binding (LBD) domains, as well as the polyGln tract (pQ) and the 

various partially folded motifs of the NTD (in grey) defined as those with locally high transverse 

15N relaxation rate (De Mol et al., 2016). b) Plot of the chemical shift perturbations (CSP) 

caused by 500 μM RAP74-CTD on the resonances of 50 μM AF-1* (residues 142-448) as a 

function of residue number (CSP=√𝛥𝛿(𝐻)2 + (𝛥𝛿(𝑁)/5)2 ) with an indication of the partially 

folded motifs (in grey)  c) Changes in the resonances corresponding to four residues of Tau-5* 

(residues 330-448) at 50 μM titrated with 50 (orange), 150 (green), 250 (yellow), 375 (blue),  

500 (pink), 710 (purple) and 950 (red) μM RAP74-CTD. d) Plot of the changes in 13Cα chemical 

shift (Δ13Cα) caused by 500 μM RAP74-CTD* on the resonances of 100 μM Tau-5*. e) Detail of 

the CSP and the Δ13Cα values obtained for specific residues in the interaction motif of AR, with 

an indication of the positions used for hydrocarbon stapling (see below and Fig. 3d). See also 

Fig. S1. 

 

Figure 2: AR binds to the same groove of RAP74 as FCP1 a) Plot of the chemical shift 

perturbations (CSP) caused by a peptide spanning the sequence of the AR motif (Ac-

426SAAASSSWHTLFTAEEGQLYG446-NH2) on the resonances of RAP74-CTD as a function of 

residue number with an indication, with a horizontal dashed line, of the threshold used for 

preparing panel b. b) Solution structure of apo RAP74 (Nguyen et al., 2003a) (PDB code 1NHA) 

indicating, in red, the residues whose resonances are most affected by binding of the AR motif 

(CSP > 0.04 ppm). c) Structure of the complex formed by RAP74 and the central motif of FCP1 

(Yang et al., 2009) with an indication of the residues that are key for the interaction and of the 
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main electrostatic interactions in purple (PDB code 2K7L). d) Alignment of the sequences of the 

FCP1 and AR motifs interacting with RAP74 indicating acidic residues (in red), the hydrophobic 

residues (in green), the phosphosites identified so far (with the symbol P), and the helical 

propensity predicted by Agadir (Muñoz and Serrano, 1994). The residues that are underlined in 

panel d correspond to those represented as sticks in panel c. See also Fig. S2. 
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Figure 3: Determinants of the interaction between AR and RAP74 a) Sequences of peptides 

derived from the AR motif that recruits TFIIF, indicating affinities for RAP74-CTD (KD). In Hel 

and pS424Hel X represents the amino acid (S)-2-(4'-pentenyl)alanine and a continuous line 

links the residues stapled. b) and c) Regions of the 1H,15N HSQC NMR spectrum of RAP-CTD 

illustrating the chemical shift perturbations caused by the peptides listed in panel a. d) Helical 

wheel representation of the hydrophobic residues of the AR motif that recruits TFIIF with an 

illustration of the residues replaced by (S)-2-(4'-pentenyl)alanine and used for i,i+4 stapling. e) 

CD spectrum of 50 μM solutions of the peptides WT and Hel. f and g) The effect of deleting the 

AR motif (Δ423-448) and mutating Ser 424 to Ala (S424A) was assessed in HEK293T cells 

treated with 1 nM DHT by PLA, to measure the interaction between AR and RAP74-CTD. EV 

stands for empty vector and DAPI, that stands for 2-(4-amidinophenyl)-1H -indole-6-

carboxamidine, indicates the position of nuclei. (f) and by a reporter assay to measure AR 

transcriptional activity (g). See also Fig. S3. 
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STAR Methods 

Protein expression and purification 

RAP74-CTD* was obtained as previously reported (Lavery and McEwan, 2008b) and the 

synthetic DNA coding for RAP74-CTD (residues 450-517, corresponding to the globular part of 

the C-terminal domain of TFIIF) was obtained from GeneArt and cloned into pDEST-HisMBP 

vector (Addgene) following standard Gateway cloning protocols. These constructs were 

expressed in E. coli strain Rosetta and cells were grown at 37°C in LB medium for the 

production of non-isotopically labeled samples. For single (15N) or double (15N,13C) isotopic 

labeling, cells were grown in minimal MOPS medium containing 15NH4Cl or 15NH4Cl and 13C-

glucose, respectively as nitrogen and carbon sources. Protein expression was induced with 1 

mM IPTG at OD600nm 0.7. After 3 hours cells were harvested by centrifugation and resuspended 

in lysis buffer (50 mM Tris-HCl pH 8.0, 1 M NaCl, 10 mM imidazole). The soluble fraction was 

loaded onto a Ni2+ affinity chromatography column (GE) and eluted in lysis buffer with an 

imidazole gradient. The eluted RAP74-CTD protein was pooled, concentrated and dialyzed for 

16 hours against 50 mM Tris-HCl pH 8.0, 200 mM NaCl. After dialysis, EDTA was added to a 

final concentration of 0.5 mM and the protein was incubated with TEV protease for 16 hours at 4 

°C. The HisMBP moiety and the uncleaved material were removed by reverse Ni2+ 

chromatography, which was followed by cationic exchange and size exclusion chromatography 

steps. AF-1* and Tau-5* were produced following procedures previously reported (De Mol et al., 

2016). 

Peptides 

The synthesis of the peptides used in this work was performed by GenScript (pS424, Hel) or by 

ICTS NANBIOSIS, more specifically by the synthesis of peptides unit (U3) of the CIBER in 

bioengineering, biomaterials and nanomedicine (CIBERBBN) at the Barcelona science park 

https://paperpile.com/c/bGcYFR/XzUNv
https://paperpile.com/c/bGcYFR/NlgtD
https://paperpile.com/c/bGcYFR/NlgtD
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(peptides WT, AHTAA, KK, Hel, pS424Hel). The lyophilized peptides were dissolved in 

deionized water or directly in 20 mM sodium phosphate, 0.01% (w/v) NaN3 and the pH of the 

resulting solution was adjusted by addition of concentrated NaOH. The concentration of these 

solutions was determined by amino acid analysis. The CD spectra of 50 μM solutions of 

peptides WT and Hel in 20 mM sodium phosphate pH 7.4, were measured in a JASCO 

spectropolarimeter at 293 K by using a 1 mm path length quartz cuvette.  

NMR 

NMR spectra were recorded on 600 and 800 MHz Bruker Avance spectrometers equipped with 

cryoprobes. Backbone assignments for RAP74-CTD were obtained using three-dimensional 

HNCO, HN(CA)CO, HNCA, HN(CO)CA, CBCANH and CBCA(CO)NH spectra acquired on a 0.5 

mM 15N,13C-double labeled sample. Chemical shifts were referenced by using 3-(trimethylsilyl)-

1-propanesulfonic acid sodium salt (DSS) as internal reference. 1H,15N-HSQC spectra of the 

15N-labeled AF-1* and Tau-5* fragments in the presence of increasing amounts of unlabeled 

RAP74-CTD were obtained at 278 K in 20 mM sodium phosphate (pH 7.4), 1 mM TCEP, 10% 

D2O, and 30 μM DSS. To study the interaction of RAP74-CTD with peptides, 1H,15N-HSQC 

spectra were acquired at 298 K with samples containing uniformly 15N-labeled RAP74-CTD (50 

μM) and the indicated amount of peptide dissolved in 20 mM sodium phosphate, 0.01% (w/v) 

NaN3, 30 μM DSS, 10% D2O at pH 7.4. 

Fitting of the NMR data to obtain the values of KD 

The changes in 1H and 15N chemical shift (Δδi) caused by the interaction between RAP74-CTD 

and Tau-5* as well as those caused by synthetic peptides in RAP74-CTD were globally fit to the 

following isotherm by using MATLAB or GraphPad Prism to obtain the value of KD, where C is 

the concentration of titrand, n is the ratio between the concentration of titrant and that of titrand 

and Δδi
sat is the difference in chemical shift, for nucleus i, between the free and bound titrand.  
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𝛥𝛿𝑖 = 0.5 ∗ 𝛥𝛿𝑖
𝑠𝑎𝑡 ∗ (1 + 𝐾𝐷/𝐶 + 𝑛 − √(1 + 𝑛 + 𝐾𝐷/𝐶)2 − 4𝑛 )  

Cell culture and transfection 

Human Embryonic Kidney 293T cells (HEK293T cells) were maintained in DMEM containing 4.5 

g/L D-glucose, pyruvate and L-glutamine (Life Technologies) supplemented with 10% Charcoal-

stripped FBS (Life Technologies), 100 𝜇g·ml-1 of penicillin and 100𝜇g·ml-1 of streptomycin. Cells 

were cultured in a humidified atmosphere containing 5% CO2 at 37°C. Transient transfection of 

HEK293T cells was performed with polyethylenimine (PEI, Polysciences) at a ratio of 1 µg DNA 

to 3 µl PEI. 

Plasmids 

pEGFP-C1-AR, a gift from Michael Mancini (Addgene plasmid # 28235) (Stenoien et al., 1999), 

was subcloned into Bgl II/Sal I sites of a pCMV5-FLAG vector. The ARΔ423-448 and S424A 

mutants were generated by site-directed mutagenesis. The pCMV5-Myc-RAP74 c-terminal 

domain (Myc-RAP74-CTD) vector was purchased from GeneArt and cloned into a pDEST-Myc 

vector and encompasses RAP74 residues 450-517. 

Western Blot analyses  

Flag-AR wild type and mutants were ectopically expressed together with Myc-RAP74-CTD in 

HEK293T cells. After 48 hours, cells were lysed in hypotonic protein lysis buffer, containing 0.5 

% NP-40, 10 mM Tris-HCl pH8, 60 mM KCl, 1 mM EDTA and complete protease inhibitors 

(Roche). DMSO or 1nM DHT (Sigma) were administered to the medium and the cells treated for 

24h. Total cellular lysate was fractionated in mini-Protean TGX 4-20% acrylamide gel (Biorad) 

and blotted onto a nitrocellulose membrane (Amersham). Protein levels were assessed by 

means of the following antibodies: anti-𝛽-actin-HRP (Abcam: ab8224) and anti-Androgen 

https://paperpile.com/c/bGcYFR/ZPQg5
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Receptor (N-20) (Santa Cruz: sc-816), rabbit-anti-flag (Sigma: F7425), mouse-anti-Myc (Abcam: 

ab32).  

Proximity Ligation Assay (PLA) 

HEK293T cells were grown on 12 mm-diameter coverslips (Thermo Scientific) in 6-well plates 

and transfected with 0,5 µg of each plasmid following a ratio of 1 µg DNA to 3 µl PEI for 48 

hours. When mentioned, transfected cells were then incubated with 1 nM DHT for an additional 

24 hours. Cells were fixed in PBS containing 4% Paraformaldehyde (EMS) for 10 minutes, 

subsequently washed in PBS and permeabilized with methanol for 5 minutes. Slides were 

blocked in PBS containing 0.1% Tween and 2% Bovine Serum Albumin (Sigma), and incubated 

with the following antibodies: rabbit-anti-Flag (Sigma:F7425) and mouse-anti-Myc (Abcam: 

ab32). Cells were subsequently incubated with Duolink II PLA probes (Olink Biosciences) and 

stained according to manufacturer's protocol. Cells were analyzed with a 63× objective lens on 

a Leica SP5 or SPE confocal microscopes. Spot count (foci) was used to assess differences 

between groups and treatments using a general linear model, including image batch of each 

experimental observation group as random effect. 

Localization studies 

HEK293T cells were grown on 12 mm-diameter coverslips and fixed in PBS containing 4% 

paraformaldehyde, and permeabilized in methanol. Cells were stained with the indicated Flag -

specific antibody in PBS containing 0.1% Tween, 2% BSA. Subsequently, cells were washed in 

PBS containing 0.1% Tween and incubated with goat anti-rabbit Alexa-Fluor 568 secondary 

antibody (Invitrogen: A11036). After washing with PBS, cells were treated for 5 minutes with 5 

mg/ml DAPI and mounted in Prolong Gold antifade (Thermo Fisher Scientific). Cells were 

analyzed with a 63× objective on a Leica SP5 or SPE confocal microscopes. 
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Transcriptional activity assay 

To assess AR-mediated transcriptional activity on the Prostate Specific Antigen (PSA) promoter, 

HEK293T cells were co-transfected with pCMV5-flag-AR WT or mutants, pTK-Renilla and PSA 

(6.1)-Luc plasmids, and 48 hours later were treated with 1 nM DHT for 24 hours. Samples were 

assayed for luciferase activity using the Dual-Luciferase Reporter Assay System (Promega) 

according to manufacturer's instructions. pTK-Renilla was used for normalization of luciferase 

expression. The PSA (6.1)–Luc plasmid was kindly provided by Prof. Hsieh (University of 

Southwestern Medical Center, Dallas, TX). A general linear model was used to compare 

differences in log transformed PSA-Luc vs Renilla ratio between groups of interest using 

experiment batch, total cell count and replicate as covariates. 
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Figure 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



29 

Figure 2 
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Figure 3 


