This draft was prepared using the LaTeX style file belonging to the Journal of Fluid Mechanics 1

Turbulence statistics in smooth wall
oscillatory boundary layer flow

Dominic A. van der A'f, Pietro Scandura? and Tom O’Donoghue!

1School of Engineering, University of Aberdeen, Aberdeen, AB24 3UE, UK

2Department of Civil Engineering and Architecture, University of Catania, Via Santa Sofia,
64, 95123, Catania, Italy

(Received xx; revised xx; accepted xx)

Turbulence characteristics of an asymmetric oscillatory boundary layer flow are analysed
through two-component laser-Doppler measurements carried out in a large oscillatory
flow tunnel and direct numerical simulations (DNS). Five different Reynolds numbers,
Ry, in the range 846-2057 have been investigated experimentally, where Rs = tUgmaxd/V
with Ggmax the maximum oscillatory velocity in the irrotational region, ¢ the Stokes
length and v is the fluid kinematic viscosity. DNS has been carried out for the lowest
three Rs equal to 846, 1155 and 1475. Both experimental and numerical results show
that the flow statistics increase during accelerating phases of the flow and especially at
times of transition to turbulent flow. Once turbulence is fully developed, the near-wall
statistics remain almost constant until the late half cycle, with values close to those
reported for steady wall-bounded flows. The higher-order statistics reach large values
within approximately y/§ = 0.2 from the wall at phases corresponding to the onset of low
speed streak breaking, because of the intermittency of the velocity fluctuations at these
times. In particular, the flatness of the streamwise velocity fluctuations reaches values
of the order of ten, while the flatness of the wall-normal velocity fluctuations reaches
values of several hundreds. Far from the wall, at locations where the vertical gradient
of the streamwise velocity is zero, the skewness is approximately zero and the flatness
is approximately equal to 3, representative of a normal distribution. At lower elevations
the distribution of the fluctuations deviate substantially from a normal distribution, but
are found to be well described by other standard theoretical probability distributions.

1. Introduction

The oscillatory boundary layer has been the subject of several theoretical, experimental
and numerical studies because of its relevance to fluid flow phenomena of practical interest
ranging from unsteady flow in pipes to oscillatory flows in the natural environment. One
of the first experimental studies to investigate oscillatory boundary layer in detail is
that of Jonsson & Carlsen (1976), who measured velocities, but not turbulence, within
the boundary layer for high Reynolds number O(10°) sinusoidal oscillatory flows over
rough beds in a large oscillatory flow tunnel. Here the Reynolds number is Re =
Uomax@/V, where Ggmax 1S maximum free-stream horizontal oscillatory velocity, a is
amplitude of free-stream water particle excursion and v is kinematic viscosity. Hino
et al. (1976) experimentally investigated the transition to turbulence of oscillatory flow
in an oscillatory wind tunnel facility and later studied the turbulence structure of the
flow (Hino et al. 1983). Subsequent work by Sleath (1987) for sinusoidal flows with
Re ~ 3 x 10° over rough beds and by Jensen et al. (1989) for sinusoidal flows with
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7.5 x 102 < Re < 6 x 10% over smooth and rough beds, yielded measures of phase-
averaged velocities, boundary layer thickness, flow phase lead and turbulence generation
and dissipation at each phase of the flow cycle. For a smooth wall, Jensen et al. (1989)
showed that there are phases in the flow cycle when the flow is not fully turbulent, even
for Re as high as 1.6 x 105, and that a logarithmic velocity profile develops after some time
following flow reversal, which persists far into the decelerating stage of the flow following
peak free-stream velocity. More recent experimental work includes Carstensen et al.’s
(2010) flow tunnel measurements of the onset of turbulence, marked by the emergence of
turbulent spots close to a smooth wall, and the high Reynolds number (Re O(109)) studies
of van der A et al. (2011) involving asymmetric flows over rough beds and Yuan & Madsen
(2014) involving sinusoidal, skewed and asymmetric flows over smooth and rough beds.
The variations in flow shape from sinusoidal flow in the latter two studies were motivated
by the need to understand boundary layer hydrodynamics occurring under sea waves,
for which the near-bed oscillatory flow is generally skewed and asymmetric, the degree
of which depends on the non-linear transformation of the wave shape as it progresses
shoreward. While the combined effort of previous experimental work has substantially
advanced understanding of turbulence in oscillatory boundary layer flows, results to date
are limited to observations of turbulent fluctuations to second order (turbulence intensity,
TKE and Reynolds stresses), with, to the authors’ knowledge, no results thus far for
the higher-order turbulence statistics, which are important to characterise properly the
turbulent flow.

Direct numerical simulations (DNS) of turbulent oscillatory boundary layer over a
smooth wall were performed by Spalart & Baldwin (1989), who reported phase-averaged
velocity profiles and second-order turbulence statistics. The role of wall imperfections
in triggering the flow instability in an oscillatory boundary layer was examined by
Blondeaux & Vittori (1994). Numerical simulations were also performed by Vittori &
Verzicco (1998) with the focus on explaining the mechanisms involved in the transition
to turbulence. The authors showed that wall imperfections may play an important role in
triggering the flow instability. The role of wall imperfections has been further examined by
Costamagna et al. (2003) and Mazzuoli et al. (2011), who reproduced two experiments
of Carstensen et al. (2010), and most recently by Scandura (2013), who proved that
wall imperfections are crucial in triggering the appearance of the vortex tubes studied
experimentally by Carstensen et al. (2010). The effect of Reynolds number and initial
velocity condition on the transition to turbulence have been analysed by Ozdemir et al.
(2014). The tests of Jensen et al. (1989) have been reproduced numerically by Salon et al.
(2007) and by Pedocchi et al. (2011). Both found reasonably good agreement in terms
of the profiles of the turbulent statistics but a poor agreement in terms of the second
order statistics of the wall shear stress. More recently, Scandura et al. (2016) performed
DNS focused on the time development of the wall shear stress statistics for asymmetric
(i.e. acceleration-skewed) oscillatory flows over a smooth wall. They showed that peaks
in the higher-order statistics of the wall shear stress are associated with the development
of low speed streaks: the higher-order statistics are maximum at the onset of breaking of
the low-speed streaks and rapidly decrease thereafter, becoming approximately constant
when breaking has occurred across the entire flow domain. The high-order statistical
analysis performed by Scandura et al. (2016) involved the wall shear stress only. As is
the case for experimental studies, no DNS results have been reported to date for the
higher-order velocity statistics and the probability density distributions of the velocity
fluctuations.

Present knowledge of higher-order statistics for wall-bounded flows originates from
studies of steady turbulent channel flows, pipe flows and boundary layer flows. A short
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summary of key results from these works is presented here. Wei & Willmarth (1989) car-
ried out Laser Doppler Anemometry (LDA) measurements in a steady turbulent channel
flow and reported a relative intensity of the streamwise velocity fluctuations ((u/2)*/2/(u))
of approximately 0.25 in the near wall region; no results were reported for the skewness or
flatness. Alfredsson et al. (1988) made hot-wire and hot-film measurements of near-wall
velocities in an oil channel and a wind tunnel. They report a limiting value of about
0.4 for the relative intensity (u/?)'/2/(u) as the wall is approached in the case of oil
flow and about 0.1 in the case of the wind flow; the u/ skewness ((u®)/(u/?)%/2) and
flatness ((u/*)/(u?)?) asymptotically approached values of about 1 and 4.8 respectively
close to the wall. Barlow & Johnston (1985) carried out LDA measurements in a steady
turbulent boundary layer over a flat and a concave surface and found little difference
between the flow statistics close to the two types of surface. They report a u' relative
intensity of about 0.4 near the wall, decreasing to 0.12 for y* = 50. The skewness of u’
was about 1 near the wall, changing sign at y™ = 15 and reaching about -0.4 at y* = 50.
In these experiments the flatness of u’ appears to approach a value of about 5 as the
wall is approached, although the trend is not entirely clear. Near-wall measurements in a
rectangular duct by Kreplin & Eckelmann (1979) showed similar v’ statistics as Barlow &
Johnston (1985), but the skewness of the vertical velocity component showed significant
differences. Durst et al. (1995) carried out LDA measurements in a turbulent pipe flow
and reported v’ and v’ relative intensities of 0.36 and zero respectively; v’ skewness
and flatness values are 0.85 and 4.1 respectively as the wall is approached, values which
are consistent with previous measurements and with numerical simulations for turbulent
channel flows reported by Kim et al. (1987). However, Durst et al’s (1995) near-wall
v’ flatness is substantially different from that shown in Kim et al. (1987). In particular,
Durst et al. (1995), like Kreplin & Eckelmann (1979) and Barlow & Johnston (1985)
previously, showed that v’ flatness decreases as the wall is approached, while Kim et al.
(1987) showed that it increases. A decrease in v’ flatness is also reported by Karlsson &
Johansson (1986), although their values of near-wall v’ flatness are significantly higher
than those reported in the other studies.

Information of the higher-order statistics is relevant for practical modelling of sediment
transport, which is one of the motivations behind the present work. To recognize the
random nature of turbulence and the intermittency of turbulent flow structures that
transport high momentum fluid towards the bed, stochastic models for the initiation of
sediment motion have been developed, which take into account the probability density
of the bed shear stress (e.g. Hofland & Battjes 2006). Practical two-phase models, in
which the fluid phase is modelled using a turbulence-averaged approach, include the
effect of the velocity fluctuations on the particle dispersion through a stochastic model
for the velocity fluctuations. This approach has recently lead to encouraging results for
steady-flow suspended sediment (Shi & Yu 2015) and sheet flow transport (Cheng et al.
2018). However, the majority of these stochastic models assume a normal distribution of
turbulent fluctuations which, based on the previously mentioned experimental studies,
does not hold for steady flows.

Compared to steady flows, information on high-order statistics is currently lacking
for turbulent oscillatory boundary layer flows. This is likely due to the far greater
effort required in terms of measurements and simulations to achieve convergence of the
statistics. The present paper aims to address this lack of knowledge. We report on a
combined experimental-numerical study of oscillatory flows over a smooth wall, which
has yielded low- and high-order turbulence statistics, in addition to results for mean
velocity and Reynolds stress, providing a complete characterisation of the turbulent flow.
The flow velocity is asymmetric, which adds to the richness of the results (compared to
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a sinusoidal flow) because the difference in flow acceleration between the positive and
negative flow half-cycles leads to differences in half-cycle turbulence behaviour. Also,
choosing an asymmetric flow allows us to build on the previous DNS work of Scandura
et al. (2016), which focused on wall shear stress, not on the turbulent velocity statistics.
The experiments cover a wide range of Re, enabling examination of the effect of Re
on the flow and turbulence statistics. DNS is performed for the lower-Re flows, which
are numerically more achievable, and DNS results are used to explore aspects of the flow
that cannot be measured in the experiments. The flow Reynolds numbers and asymmetry
parameters for the study fall within those observed under full-scale waves in the field.

Section 2 describes the experimental facility, the instrumentation and the test condi-
tions. The DNS approach and set-up is described in Section 3. Section 4 constitutes the
main body the paper, presenting a comparison between the experimental and numerical
results and detailed analyses and discussion of the turbulence statistics. The key findings
are summarised in Section 5.

2. Experiments

2.1. Test facility

The Aberdeen Oscillatory Flow Tunnel (AOFT, figure 1) is a large laboratory facility
in which near-bed horizontal flows, equivalent in period and amplitude to the near-bed
flows beneath full-scale waves, can be generated. In tunnels of this kind the flow is driven
through a closed rectangular-section conduit. There is no free water surface in the test
section, which means that the oscillatory flow differs from that generated by surface waves
in having zero vertical orbital motion in the free-stream and being horizontally-uniform.
The AOFT is of U-tube construction with an overall length of 16 m, 10 m of which is a
glass-sided rectangular test section, 0.75m high and 0.3 m wide. Open reservoirs at either
end of the tunnel accommodate the volume of water displaced by the horizontally-driven
piston. The 1 m diameter piston is housed in a circular cylindrical section at one end of
the tunnel and is electro-hydraulically controlled within a closed-loop feedback system.
The circular piston section is linked to the rectangular test section by a 1m long change
of section.

For the present study the test section was fitted with a 7m long raised false floor
consisting of stainless steel framework with 25 mm thick PVC panels elevated to 0.25m
above the tunnel floor. At both ends ramps were fitted with 1:4 slopes from the tunnel
floor to the horizontal false bottom. A 7m long, 20mm thick acrylic smooth bed,
comprising a middle 3m long section and 2m long section on each side, was attached
to the false floor with countersunk bolts. The bolt holes in the central panel and the
joins between the panels were covered with epoxy resin to provide a smooth surface and
limit flow disturbance; the bolt holes on the two remaining panels were covered with
acrylic type. As a result of the raised floor the water depth in the tunnel test section
was 0.48 m. The z,y, z-coordinate system used throughout this paper has its origin in
the longitudinal centre of the test section, at the intersection between the bed and the
glass wall on the side where the LDA laser beams entered the test section. The x-axis
is the streamwise direction and is positive towards the open-ended riser, the y-axis is
normal to the bottom wall and is positive upwards, the z-axis is the spanwise direction
and is positive into the test section. The velocity components along the x, y and z axes
are denoted u, v and w respectively.



Turbulence statistics in oscillatory flow 5

CHANGE OF SECTION
(CIRCULAR TO RECTANGULAR)

10000
HYDRAULIC RAM

7000
| Il PISTON = MWL

- ]
1/

z | ] | ¥
i [ AR | . [N ||
177777 77777

¥ T u“

JIUC TN T

<
— LT

/

END RAMP FIXED BED  MEASUREMENT FLOW
LOGATION  STRAIGHTENER ~ ENDRAMP

FIGURE 1. The experimental facility.

2.2. Instrumentation

Velocity measurements were made with a back-scatter LDA system (Dantec Fibre-
Flow), consisting of a 112mm diameter probe, a 300mW air-cooled Ar-Ion laser and
a Dantec F60 Burst Spectrum Analyser. The probe was fitted with a 310 mm focal
length (in air) lens, resulting in an ellipsoidal measurement volume with a maximum
diameter of 47 um and a length of 530 um in the spanwise direction. The probe was
attached to a computer-controlled stepper-motor driven traverse, allowing the probe
to be positioned in the z, y and z directions with a resolution of 12.5 ym (full-step).
To check the accuracy of the traverse y-positioning, a confocal chromatic displacement
sensor (Micro-Epsilon ConfocalDT IFS2405-10, range 10 mm with sub-um resolution)
monitored the displacement of the traverse when the LDA measurement volume was
within the first 10 mm above the wall. This measurement confirmed that the traverse
positioning was accurate to within 10 pm.

The LDA system was used in two different configurations. First, the system was set-up
in 1-component mode to measure only the streamwise velocity component close to the
wall (y <0.3mm). This set-up allowed the laser beams to be oriented parallel to the
bed, thereby minimising the wall-normal coverage of the measurement volume. These
measurements were made at 60 mm from the glass sidewall (z = 60mm) to reduce the
travel distance of the laser beams through the water in order to improve the backscattered
signal and, hence, the data rates (typically ~100Hz). The seeding for these near-wall
measurements consisted of 10 pm silver-coated hollow glass spheres (specific gravity 1.6).
Velocity measurements were typically made at y = 0.1, 0.15, 0.2 and 0.3mm for a
duration of 500 flow cycles at each elevation. Below 0.1 mm accurate measurements
could not be made due to the reflections from the wall. The vertical position of the
measurement volume relative to the wall was determined by traversing the centre of the
measurement volume vertically onto a 5 pum diameter tungsten wire which was placed
at a known distance (measured by the confocal displacement sensor) parallel to the wall
(similar to the approach used by Durst et al. 1988).

For the remaining measurements the system was set up in 2-component configuration,
measuring the two velocity components at 45 degrees to the streamwise direction. In
order to measure close to the wall (0.2mm) in this configuration the probe was tilted
forward by 3 degrees which prevented the bottom two laser beams being optically blocked
by the acrylic bed. As a result the vertical velocity component was not truly wall-normal
but tilted 3 degrees from the normal. Profile measurements were made at z = 125 mm,
typically over 25 vertical points logarithmically spaced between 0.2mm and 250 mm
above the wall. In this set-up the wall was located by traversing the measurement
volume into the wall. The zero position corresponds to the position of the maximum
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back-scattered light intensity, caused by the scattering of small particles attached to
the wall surface. The measurement duration was 200 cycles for elevations close to the
wall, reducing to 100 cycles for elevations far away from the wall. Seeding particles for
these measurements consisted of 15 pm silver-coated hollow glass spheres (s.g. 1.0). These
seeding particles, like the 10 um seeding used for the very near-wall measurements, can
be expected to follow the flow faithfully since the particle Stokes number is < 1.
Synchronisation between the piston position and the LDA system was achieved by
sending a once-per-flow-cycle TTL signal to the LDA system, which allows phase-
averaging of the velocity measurements (section 2.3). In addition, the input and measured
piston displacements were recorded on the LDA system simultaneously with the velocity
measurements, allowing post-experiment confirmation of the synchronisation.

2.3. Data processing

Accounting for particle residence-time weighting (e.g. Buchhave et al. 1979) the phase-
averaged stream-wise velocity is determined as follows:

S S s (g b+ (G — 1)20) iy, 6 + (G — 1)27)
(u)(y,ot) = for 0<ot<2r (2.1)
5 3% it 6+ G — 1)2m)

where N is the number of flow cycles at a given elevation, ¢ is the phase window or phase
“bin” ot < ¢ < ot + Ar, M is the total number of samples in a given phase bin and
tt; the duration for a seeding particle to traverse the measurement volume. The size of
the phase bin is obtained from A7 = 2x/(fT) where f; is a pre-defined sampling rate,
here set to fy = 50Hz. The turbulent fluctuation is defined as v’ = u — (u), where the
phase-averaged velocity, (u), consists of a time-averaged component, %, and an oscillatory
component, 4, i.e. (u) = 4 + @. The stream-wise root-mean-square velocity fluctuations
are given by (for 0 < ot < 27):
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(2.2)
Analogous equations were applied to calculate the higher-order moments of the velocity
fluctuations (u’3) and (u/*), to obtain the statistics of the wall-normal velocity component
v and to obtain the Reynolds shear stress (u'v'). The transit-time weighting correction
accounts for temporal velocity bias in the measurements, however its effect was only
noticeable at phases of low velocity around flow reversal.

Any outliers in the data set can lead to significant errors in the higher-order statistics.
During acquisition the burst signals were monitored for their quality based on a signal-
to-noise ratio (SNR), defined as the ratio of the highest correlation peak compared to
the second highest correlation peak in a burst. A velocity measurement with SNR below
a certain threshold is rejected. For the present experiment the SNR threshold was set to
values as high as 10-14 (particularly for the near wall measurements) which meant that
the recorded velocity data were practically free of any outliers. Any remaining outliers
were removed during post-processing by rejecting velocity measurements in a certain
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Exp. cond. Rs T(s) Gomax (m/S) @omin (m/s) a(m) Asy Sk Re

1 846 7.00 0.57 -0.55 0.64 0.58 0.07 3.57x10°
2 1155 7.00 0.79 -0.75 0.87 0.60 0.07 6.67x10°
3 1475 7.00 1.00 -0.97 1.12 0.62 0.06 1.09x10°
4 1820 7.00 1.24 -1.16 1.38 0.64 0.10 1.66x10°
5 2057 7.00 1.40 -1.35 1.56 0.66 0.06 2.12x10°

TABLE 1. Experimental conditions, measured at y = 84 mm. Orbital amplitude a is determined
a = flomax /0. Reynolds number, Rs, was based on kinematic viscosity v = 1.029 x 10~%m? /s,
based on the average measured water temperature during the experiments.

phase bin that deviated more than 48 standard deviations from the median velocity in
that phase bin. This detection threshold was determined by comparing the results with
the DNS simulations, and is similar to the range of £7 standard deviations used by Durst
et al. (1995). The number of outliers removed in this way was < 0.01% of the sampled
data.

2.4. Test conditions

The piston displacement was programmed to produce an oscillatory flow in the test
section following the description of Abreu et al. (2010). Test conditions consisted of
five asymmetric oscillatory flows with a constant flow period of T = 7s, but different
Reynolds number Rs (see Table 1). Here Rs = ligmaxd/v, where tgmax is the maximum
of the oscillatory component of the free stream velocity, and ¢ is the Stokes length given
by \/2v /o, with v the kinematic viscosity and o = 27/T.

The degree of free-stream velocity skewness and asymmetry are defined as:

sh= B 23)
(7)
Asy = %i(iﬂo)s (2.4)

where subscript 0 indicates free-stream elevations and .77 is the Hilbert transform of g.

The target oscillatory flow conditions were designed to have the same degree of
asymmetry and zero skewness. However, exact reproducibility of the target flow is not
always possible in the test section. Nevertheless, table 1 shows that the differences in
the measured skewness and asymmetry are small between the five conditions, so that
for comparison purposes the flows can be distinguished solely based on Rs. Figure 2
shows the measured oscillatory component of the free-stream velocity g normalised
by the maximum velocity for all five experimental conditions. The agreement between
the different conditions is very good, confirming that Rs is the only parameter that
distinguishes the experiments from each other.

3. Direct Numerical Simulations

For the numerical simulations a Cartesian coordinate system oriented as described
in section 2.1 is adopted. The Navier-Stokes equations have been integrated numerically
in a domain of size (L, L,, L,) along the x, y and z directions respectively. In order to
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FIGURE 2. Normalised streamwise velocity measured at y = 84 mm.
Simulation Rs; Computational domain  Grid size num. resolution number of cycles
L./6 Ly/6  L.J§ ne ny n. Azt Ayt Az N
S1 846 50 35 25 200 250 240 10.8 0.34 4.5 44
S2 1155 50 40 25 200 280 240 15.7 0.44 6.5 60
S3 1475 50 45 25 256 360 320 14.7 043 5.9 29

TABLE 2. Set-up of the numerical simulations

reproduce the experimental results the flow was driven by a pressure gradient consistent
with the velocity measured in the irrotational region. More specifically, the pressure
gradient is given by pdig/d¢t, where 1o (t) denotes the experimental free-stream velocity
measured at y = 84 mm shown in figure 2. The numerical approach is based on a second
order finite difference approximation on a staggered grid. The time advancement is carried
out by means of the second order Crank-Nicolson scheme for the viscous terms and
by means of a third order Runge-Kutta scheme for the convective terms. At the wall
(y = 0) a no-slip condition is imposed for all velocity components, (u,v,w) = (0,0, 0),
and on the upper boundary of the domain (y = L,) the following free shear stress
condition is imposed (Ou/dy,v,0w/dy = 0,0,0). Finally, periodic boundary conditions
are introduced in the z- and z-directions of the domain. The sizes of the numerical grid
in the z, y and z directions are denoted n;, n, and n, respectively. The grid spacing is
uniform along the z- and z-directions, while along the y-direction the grid is prescribed
by means of a hyperbolic tangent function, resulting in a finer spacing near the wall
where large gradients exist. Further details on the numerical approach are reported in
Scandura et al. (2016). Table 2 shows the three flow conditions that have been simulated
along with the sizes of the flow domain and the numerical grid.

Sufficient size of the computational domain was checked for each flow by computing
the spatial autocorrelation function of the streamwise velocity fluctuations along the x
and z directions and ensuring that at half the width of the computational domain the
autocorrelation function decays to very small values. The adequacy of the grid resolution
was verified from the one-dimensional energy spectra E,,, FE,, and F,., computed both
along the x and z directions, which showed that the energy at high wavenumbers is at
least four orders of magnitude smaller than that at low wavenumbers. Table 2 also shows
the numerical resolution in terms of wall units based on the maximum value of the friction
velocity. Along the y-direction the mesh size Ay™ at the wall is smaller than one half
a wall unit, and is therefore sufficient to resolve the viscous sublayer. In the z-direction
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the mesh size AzT is approximately 6 wall units, and is therefore able to resolve the
low speed streaks whose spacing is approximately 100 wall units. The resolution in the
z-direction Ax™ is smaller than that in the z-direction but is still sufficient since the
turbulent structures are elongated in the streamwise direction. The ensemble averages
have been computed by performing first a spatial average over z — z planes and then
a phase average over the number of flow cycles shown in table 2. In section 4.3 the
effect of the number of wave cycles on the convergence of the higher-order statistics is
demonstrated. Further checks on the reliability of the numerical simulations are shown
in the following by comparing the experimental and numerical turbulent statistics.

4. Experimental and numerical results

4.1. Time-averaged and phase-averaged velocities

The asymmetry in the free-stream flow generates an asymmetry in turbulent intensity
between the positive and negative flow half cycles. For this reason, the time-averaged
Reynolds stress is not equal to zero. The non-zero mean Reynolds stress in the streamwise
mean momentum equation is balanced by a mean viscous stress induced by a steady
boundary layer streaming, which has a direction opposite to that of the highest free-
stream flow acceleration. While the steady boundary layer streaming is present in both
the experiment and numerical simulation, there is a significant difference between vertical
profiles of the mean velocity observed in the flow tunnel and numerically. The difference
is due to the different boundary conditions applied at the two ends of the fluid domain.
More specifically, as shown in figure 1, one end of the tunnel comprises a reservoir in
which the flow is free to oscillate up and down, while the other end is bound by the piston
which generates the oscillatory flow. Given these boundary conditions the time-averaged
flow rate through any cross-section of the facility must be zero to conserve mass. This
condition is satisfied by a return current whose flow direction is opposite to that of the
steady boundary layer streaming generated by the non-zero mean Reynolds stress, the
velocity profile of which depends on the geometry of the tunnel cross-section (Gonzalez-
Rodriguez & Madsen 2011). On the other hand, in the numerical simulations periodic
boundary conditions are applied along the streamwise direction, which do not impose
a kinematic constraint on the mean flow rate, and so no return current takes place. In
order to reproduce numerically the mean flow observed experimentally, the DNS would
need to be performed on a fluid domain delimited by the four tunnel walls, thus covering
the cross-sectional area of the test section, which would entail huge computational cost.

Since the steady boundary layer streaming is driven by the Reynolds stress, the
streaming itself does not exert a mean force on the wall (see e.g. Scandura 2007).
On the other hand, the return current that occurs in the flow tunnel is driven by a
pressure gradient, and therefore the overall flow applies a mean force on the wall in the
opposite direction to the boundary layer streaming. Figure 3(a) shows the time-averaged
streamwise velocity profiles for both the numerical simulations and the experiments (note
that DNS was only performed for the lowest three Rs). It can be observed that in the
numerical simulations the steady streaming is in the negative streamwise direction and
that the y-derivative becomes zero at y = 0, which demonstrates that the mean force
acting on the wall is zero. The experimental time-averaged velocity profiles on the other
hand exhibit a positive gradient at the wall. However, since it was not possible to measure
at distances less than 0.2 mm from the wall for the 2-component LDA configuration, this
characteristic is not apparent for all conditions in figure 3(a). Ounly for Rs = 846 can the
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velocity profile be seen to bend towards zero close to y = 0, indicating that the return
current causes a mean positive tangential stress on the wall.

In figure 3(b) the measured time-averaged Reynolds shear stresses in the flow tunnel
are shown with the corresponding numerical results. Both experiments and simulations
show that the mean Reynolds stress is negative near the wall. On the other hand, far
from the wall the experiments show a positive mean Reynolds stress while the numerical
simulations reduce to zero. This discrepancy is likely due to the gradient of the mean
velocity in the oscillatory flow tunnel, which does not vanish far from the wall because
of the return flow in the tunnel (figure 3(a)).

It might be expected that the difference in the time-averaged velocity profiles between
experiments and numerical simulations hinders further comparison between numerical
and experimental results. However, since the mean velocity is typically two orders of
magnitude lower than the oscillating component, the former has a limited effect on
the latter and on the velocity statistics. In fact, very good agreement between the
measured and numerical phase-averaged velocity profiles is obtained after the time-
averaged velocity is removed. As an example, figure 4 shows a comparison between the
velocity profiles at six phases for Ry = 846, before and after subtracting the mean flow. It
can be seen that the agreement improves significantly when the mean flow is removed from
both experiments and numerical results, especially near flow reversal when the relative
importance of the mean flow is greatest. A similarly good agreement for the oscillatory
component of the phase-averaged velocity is observed for Rs = 1155 and Rs = 1475, as
shown in figure 5. In these figures ¢/T = 0.16 and 0.83 correspond to maximum free-
stream velocity during the positive and negative half cycle respectively. Note that for
these phases the velocity profiles are not the exact mirror image of each other because
of differences in boundary layer development as a result of the flow asymmetry (van der
A et al. 2011; Scandura et al. 2016).

4.2. Wall shear stress

Using the experimental data the tangential stress applied by the fluid on the bottom
wall can be evaluated by three different approaches. The first approach requires the
determination of the velocity gradient at the wall, from which the tangential stress
is computed through the constitutive relation for a Newtonian fluid. In the present
experiments the measurement point closest to the wall falls outside the viscous sublayer.
More specifically, at the phase of the peak wall shear stress, for the lowest Rs condition the
first measurement point is located at y™ = 4.3, while for the highest Rs it is at y+ = 7.5,
where yT = yu,/v with u, = +/7/p the friction velocity. Despite that for most Rs
these dimensionless distances are large compared to the thickness of the viscous sublayer
(y* = 5), the comparisons between the experiments and numerical simulations shown
in Figure 6 that the velocity gradient method nevertheless provides reliable estimates of
the wall shear stress.

The second approach consists of applying the momentum equation in integral form to
the velocity measurements. The integration of the streamwise momentum equation from
the bottom (y = 0) up to the irrotational region (y = h), gives the following equation for
the wall shear stress:

Mo —uo)
T = p/o dy (4.1)

where ug is the free stream velocity. The third approach relies on applying the law-of-
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FIGURE 5. Oscillatory component of the phase-averaged streamwise velocity for (a) Rs = 1155
and (b) Rs = 1475 . DNS (line), experiments (dots).

the-wall to the logarithmic region of the velocity profile:

L <y“) +C (4.2)

U
Use 0.41 v

in which the constant C' is approximately equal to 5. Equation 4.2 was applied to the
logarithmic region of the velocity profiles, 30 < y* < 250, using profile slope and
profile offset as fitting parameters. Fits were only considered valid when the constant
in equation 4.2 reached values between 4 and 6. Note that applying a different upper
boundary of y* = 300 or ™ = 200 did not alter the values obtained for 1, significantly,
since the difference in vertical range generally meant applying the fit to one more or one
less measurement point, on an average of seven points. Equation 4.2 could not be applied
for Rs = 846 due to the absence of a well-defined logarithmic layer.

Figure 6 compares the wall shear stress obtained from the experimental data, using the
three approaches, with the DNS-obtained wall shear stress. A reasonably good agreement
between DNS and the velocity gradient method is generally observed, apart from early
in the accelerating phase of the positive half cycle, where the experimental shear stress
shows a hump followed by high frequency fluctuations, which is most pronounced in
figures 6(b,c). These deviation from the DNS are due to the large increase in pressure in
the tunnel during the accelerating phase of the positive half-cycle, which causes a slight
depression of the acrylic bed and outward deformation of the glass sidewalls, which in
turn affects the refraction of the laser beams and results in a displacement of the LDA
sampling volume to a higher position above the wall where velocity is larger. This results
in the apparently higher shear stresses compared to the numerical simulations. In the
negative half-cycle the differences between experiments and numerical simulations are
smaller because the flow acceleration is much weaker compared to the positive half-cycle.

Equation 4.2 can only be applied when a logarithmic layer is present, therefore the
logarithmic-fit wall shear stress is only available during certain phases of the flow. Despite
some scatter, the log law results match with the DNS and velocity gradient results, and
the agreement between the peak wall shear stresses is very good.

The momentum integral method applied to the experimental data shows reasonable
agreement with the velocity gradient method and the DNS, as seen in figures 6(a,b,c). In
order to limit the scatter in the shear stress from the numerical integration, equation (4.1)
was applied to the smoothened velocities (by only considering the first six harmonics
of the velocity), which inevitably causes some discrepancies with the other approaches
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FIGURE 6. Comparison of wall shear stress obtained by the constitutive relation (velocity
gradient), the momentum integral method (equation 4.1) and by DNS. a) Rs = 846; b)
Rs; = 1155; ¢) Rs = 1475; d) Rs; = 1820; e) Rs = 2057; f) wall shear stress asymmetry as
a function of Rs. Note that numerical simulations were carried out only for the three lowest Rs.

as higher oscillations in the shear stress are also removed. In figure 6(d) for Rs =
1820, the comparison is only between the three methods applied to the experimental
data. The agreement is fairly good apart from near ¢t/T ~ 0.3. For Rs = 2057 the
momentum integral method did not provide acceptable results, most probably because
the propagation of numerical errors was too large due to the combination of a relatively
coarse measurement resolution and very large velocity gradients.

Despite equal velocity maxima during both half cycles, it is shown for all Rs that
the peak wall shear stress in the positive direction is higher compared to the negative
direction. This results from the differences in flow acceleration between the two half
cycles, as shown previously (e.g. van der A et al. 2011; Yuan & Madsen 2014; Scandura
et al. 2016). In figure 6(f) the asymmetry in the wall shear stress, here defined as
(Tmax + Tmin) /Tmax, 18 shown as a function of Rs. The experimental results in figure 6(f)
are from the velocity gradient method, since the shear stress could be obtained for
all Ry with this method. To obtain the maxima, the shear stress time-series were first
smoothed by taking only the first 10 harmonics, which made the asymmetry ratio less
sensitive to high frequency fluctuations occurring around the maxima. The shear stress
asymmetry increases with increasing Rs and agreement between experiment and DNS is
generally good. Based on DNS alone, Scandura et al. (2016) showed for asymmetric flows
with the same Asy that there is a local minimum in (Tiax + Tmin) /Tmax 10 the region
Rs = 800 — 1100. Unfortunately the lack of experimental conditions in this region does
not allow us to confirm or otherwise the existence of this minimum.

Generally, as Reynolds number increases the peak in wall shear stress in the positive
half cycle shifts to earlier phases in the cycle. During the negative half cycle the peaks are
less distinct due to the lower acceleration, but what can be best seen is the rapid increase
in shear stress which, for example, for Rs = 846 occurs at t/T = 0.8. As demonstrated
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later, this phase corresponds to the transition to turbulent flow and is seen to occur
earlier in the cycle as Rs increases.

4.3. Second-order and higher-order turbulence statistics

In figure 7 the experimental and numerical statistics of the streamwise velocity fluctu-
ations are shown for six flow phases for Rs=1155. In these figures, and throughout the
remainder of this paper, we will use the variables R, = (u/?)'/2/|a|, S, = (u'®)/(u'?)3/?
and F, = (u/*)/(u?)? to indicate the non-dimensional intensity, skewness and flatness
of the streamwise velocity fluctuations. Similar notation applies to the statistics of the
wall-normal, v’, and spanwise, w’, velocity fluctuations. Note that in the expressions
for relative intensity, R,,, R,, and R,,, the oscillatory component of the phase-averaged
streamwise velocity @ is used in the denominator, instead of (u), since the experimen-
tal and numerical phase-averaged velocities agreed only after subtraction of the time-
averaged velocity, u (section 4.1).

Figure 7 shows good agreement between the experimental and numerical results.
Phases t/T = 0.16 and 0.83 correspond to times when low speed streaks have broken
down. At these phases the turbulence statistics close to the wall are similar to those of
steady turbulent channel flows (Scandura et al. 2016); in particular the relative intensity
at the wall is close to 0.4. Several experimental studies involving steady turbulent
boundary layers and channel flows report values close to 0.4 for the relative intensity of
the streamwise wall shear stress (Durst et al. 1995; Barlow & Johnston 1985; Alfredsson
et al. 1988). The results in figure 7 echo these findings because as y/d tends to zero the
streamwise relative intensity has the same statistics as the wall shear stress.

Figure 7 shows that in the y-direction the relative intensity is significant where the
velocity gradient is high (see figures 4, 5 for the velocity profiles), while intensity is
very low at elevations corresponding to maximum streamwise velocity, where the velocity
gradient vanishes. More specifically, at the phase of maximum free stream velocity (¢/T =
0.16), the relative intensity becomes very small at y/§ = 5, which is the elevation at which
the phase-averaged velocity is maximum. An analogous result occurs at the phase of
minimum free stream velocity (¢/7 = 0.83) in the negative half-cycle. However, because
of the flow asymmetry, the elevation at which the relative intensity is very low shifts to
a higher position compared to /T = 0.16. At phases characterised by low streamwise
velocity, such as t/T = 0.02, R,, reaches a minimum at y/d = 1 and then slightly increases
up to y/d = 10, where the velocity has a minimum. At ¢/T = 0.45, the relative intensity
tends to infinity because @ becomes zero at y/d ~ 5.

Experimental and numerical skewness of streamwise velocity fluctuations, S,, show
reasonably good agreement in figure 7. The largest discrepancies between experimental
and numerical skewness are observed at ¢/T = 0.45, again due to low data rates at this
phase because of the low streamwise velocity. Near the wall the skewness is mostly positive
during the positive half-cycle and negative in the negative half-cycle. For example, the
skewness profile at peak positive free-stream velocity (¢/7 = 0.16) is positive near the
wall, decreases to a negative peak at y/d ~ 5 and increases for higher y/d. The opposite
behaviour is observed for the negative peak of the free-stream velocity (¢/7 = 0.83), but
with the peak positive skewness occurring at higher y/§ because of the flow asymmetry.

Comparisons between experimental and numerical results for the flatness profiles of v’
are shown in the third row of figure 7. Although agreement between experimental and
numerical results is not as good as for skewness, the level of agreement is still sufficiently
good to provide mutual validation of the experimental and numerical results. Generally,
the flatness is greater than 4 at the wall but rapidly decreases with y/é to values of 2-3
outside the viscous sublayer. Considering that a normal distribution has skewness equal
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FIGURE 7. Vertical profiles of (a) streamwise turbulence intensity; (b) skewness; and (c)
flatness for Rs = 1155. Experiments (dots); DNS (lines)

to 0 and flatness equal to 3, the results show that the distribution of streamwise turbulent
velocity fluctuations is far from normal, especially close to the wall.

Before discussing the next results for Rs = 1475, we will first demonstrate the
convergence of the higher-order statistics in the DNS for this condition, which has the
highest Rs in the DNS and the shortest run duration (N = 29, c.f. table 2). Figure 8
shows, for various N, profiles of the streamwise skewness and flatness at maximum and
minimum free-stream velocity, corresponding to phases of fully-developed turbulence,
when the spatial resolution requirements are maximum. Note that because of the spatial
averaging over the horizontal x —z plane, each additional flow cycle represents an increase
of n, X n, samples used in the averaging procedure, i.e. for this Reynolds number there
are 81920 samples altogether. The close agreement between the results for N = 24
and N = 29 demonstrates that convergence is achieved in the DNS. The only slight
discrepancy occurs at the maxima in the flatness profiles at higher elevations above the
wall, which correspond to the elevations where the velocity gradient changes sign, which
may be considered as the top of the boundary layer. At all other elevations, particularly
closer to the wall, it is evident that convergence is achieved. Similar results were obtained



16 D. van der A, P. Scandura and T. O’Donoghue

(a) /T = 0.16 (b) T = 0.83
20 v 20

N=14
— — —N=20 15

—-—-—N=24
N=29
w ~
= 10 = 10 ;:D
r’d >
5 5
0 0
-2 0 2 2 4 6 2 0 2 2 4 6
S\l El S\l El

FI1GURE 8. Effect of number of flow cycles on the DNS-computed streamwise and skewness and
flatness at phases of (a) maximum free-stream velocity and (b) minimum free-stream velocity.
Rs = 1475.

for the wall-normal and spanwise velocity components, which are not shown here for
brevity.

Figure 9 shows the velocity statistics for Rs=1475, including the wall-normal and
spanwise statistics. The streamwise statistics are very similar to the results shown for
Rs=1155, but agreement between the experiments and DNS is better because of lower
scatter in the data due to higher LDA data sampling rates associated with the higher
velocities. Wall-normal relative intensity, R,, is lower than R,,, as expected for boundary
layer flows, and, in contrast to R,, R, tends to zero as y tends to zero. Early in the
positive half cycle the skewness of v, S, is positive near the wall; it then becomes
negative as the flow accelerates and remains negative until late in the half cycle. The
same behaviour is observed in the negative half cycle. The flatness of v/, F,,, is very high
close to the wall throughout the flow period, but rapidly decreases with distance from
the wall.

The statistics of the spanwise velocity fluctuations shown in figure 9 are limited to
the numerical results because spanwise velocity was not measured in the experiments.
The profiles of R, are qualitatively similar to the profiles of R,, but quantitatively
there are differences. In particular, at phases t/T° = 0.16 and 0.83 R, at the wall was
approximately 0.4, while R,, is approximately 0.25. We expect S,, to be zero because
in the spanwise direction negative fluctuations have the same probability of occurrence
as positive fluctuations. Near the wall S, is indeed generally zero, but further away it
deviates somewhat from zero, which is probably due to the finite size of the data sample.
Far from the wall the trend of the flatness of w’, F,,, is similar to F,, both qualitatively
and quantitatively. However, very close to the wall F,, is much higher than F,, which
will be further illustrated in the following.

Figure 10 presents the experimental and numerical statistics of the streamwise velocity
fluctuations at y=0.15mm, together with the statistics of wall shear stress obtained
numerically. Figure 10(a) shows good agreement between the experimental and numerical
phase-averaged velocity, except for the hump at the beginning of the cycle, which is
attributed to the pressure rise within the tunnel as explained in section 4.2. In figure 10(b)
the relative intensities are in very good agreement, with no trace of a discrepancy at
the beginning of the positive half cycle as seen in the phase-averaged velocity. This is
because the y-gradient of the relative intensity is rather small close to the wall, whereas
the gradient in @ is very large. The relative intensity of the wall shear stress fluctuations
is seen to be slightly higher than the relative intensity of u’ measured at y = 0.15mm.
The skewness and the flatness, shown in figure 10(c) and (d) respectively, show good
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FIGURE 9. Vertical profiles of streamwise, wall-normal and spanwise (a) turbulence intensity;
(b) skewness; and (c) flatness for Rs = 1475.

agreement between experiments and numerical simulations, except near flow reversal
where the discrepancy can be largely attributed to the low LDA data rates.

In section 4.2 reliable estimates of the wall shear stress were obtained from velocity
measurements at distances from the wall as large as 5v/u* (= y = 0.15mm). However,
figure 10(c,d) shows that this distance is too large to get reliable estimates of the higher-
order statistics of the wall shear stress fluctuations, since S; and F; are much larger than
S, and F,, respectively.

Figure 10(c,d) shows very large peak values in the numerical higher-order wall shear
stress statistics. The occurrence of such peaks was first observed by Scandura et al.
(2016) in their DNS results for streamwise wall shear stress. Here, for the first time, we
find experimental verification of these peaks: in figure 10(c,d) the statistics of streamwise
velocity measured at y = 0.15mm show peaks at the same phases as the peaks in the
wall shear stress.

At larger distances from the wall, where the y-gradient in velocity is less strong, the
displacement of the LDA sampling volume due to the pressure rise has much smaller
effect on the measured velocities. This can be seen in figure 11, where the statistics of
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FIGURE 11. Experimental and numerical streamwise and cross-stream velocity statistics for

Rs = 1475 at y = 3.56 mm (y/0=2.3). (a) streamwise velocity (b) relative intensity (c) skewness
(d) flatness.

the streamwise and wall-normal velocities at y = 3.56 mm are presented, showing very
good agreement between experiments and numerical simulations, both in terms of the
streamwise @ and the relative intensities, including at phases early in the flow cycle.

Figure 12 shows the time-dependent streamwise, wall-normal and spanwise velocity
statistics very near to the wall at y = 0.05 mm for Rs = 1155. Only DNS data are shown
because at positions this close to the wall experimental measurements are not available.
It can be observed that from ¢t/7T = 0.02 — 0.08 and from ¢/T = 0.60 — 0.65 both the
skewness and the flatness of all three velocity components have very large values. In
particular, the flatness of the wall-normal velocities has values that are two orders of
magnitude higher than those shown for y = 3.56 mm in figure 11.

Figure 12 also shows that there is quite a large range of t/T for which the higher-order
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FIGURE 13. Phase of inception of the low speed streaks breaking (¢1) and phase at which the
breaking process is completed (¢2) as a function of the Reynolds number Rs inferred from the
measured time-dependent velocity statistics. (a) positive half cycle; (b) negative half cycle.

statistics are approximately constant, with skewness having a value of approximately 1.1
for v’ and the flatness being approximately 5.4 for v/, 25 for v’ and 7 for w'.

Scandura et al. (2016) showed that close to the wall elongated low speed streaks develop
during the accelerating phase of the flow cycle and break into small turbulent structures
before the free stream velocity reaches its maximum value. The onset of breaking occurs
at the moment of peak skewness (flatness), /T = ¢; and ends when the skewness
(flatness) has subsequently reduced to the plateau level at t/T = ¢o. This link between
the dynamics of the near wall turbulent structures and the velocity statistics also seems
to hold for the present flows. Figure 13 presents the values of ¢; and ¢, determined
from the experimental measurements at the lowest measurement point (y = 0.1 mm); the
values are plotted as a function of Rs and separately for the positive and negative half
cycles. The values of ¢; and ¢5 for the lowest three Rs have been verified by the DNS.
During phases before ¢; the flow is close to being laminar but contains low and high
speed streaks that become stronger with time. Between ¢; and ¢o the low speed streak
breaking propagates in the fluid domain and at ¢o the flow enters the well developed
turbulence regime. One of the most apparent effects of the process of low speed streaks
breaking is the rapid increase in wall shear stress. As Reynolds number increases, ¢; and
¢- shift to earlier phases in the half cycles. This trend is in agreement with Carstensen
et al. (2010) who found the initiation of turbulent spots to happen earlier in the flow
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FIGURE 14. Time-space distribution of streamwise (a) skewness S, and (b) flatness F}, for
Rs = 1155. DNS data.

cycle with increasing Reynolds number. However, a direct comparison between phases
we obtain here and those of Carstensen et al. (2010) is not possible since their study
involved sinusoidal oscillatory motion. The gradient in the curves in figure 13 reduces
with increasing Rs, hence it is likely that even at very large Reynolds numbers there
is still a range of phases after flow reversal when the flow is not in the regime of well-
developed turbulence. Two distinct effects of the flow asymmetry are also noticeable in
the results shown in figure 13. First, in the positive half cycle ¢; and ¢ occur much
sooner after flow reversal compared to the negative half cycle. Second, for all Rs, the
phase difference ¢o — ¢ is smaller during the onshore half cycle compared to the offshore
half cycle, indicating that the break up of low speed streaks occurs more rapidly during
the positive flow cycle.

A more comprehensive view of the distribution of skewness and flatness of the velocity
fluctuations is provided by plotting these statistics in the phase-space plane, as shown
in figure 14 for Ry = 1155. To better highlight the regions where a normal distribution
can be detected, the quantity F), = F,, — 3 is shown, because a normal distribution has
flatness equal to 3.

The black lines in figure 14 represent the elevation where du/dy = 0, i.e. the elevation
where the velocity gradient changes sign, which may also be seen as a proxy for the
boundary layer thickness. It can be observed that both S, and F! have very low value
along these lines. Generally, |S,| is rather small above the du/dy = 0 line and reaches
very large values well below the line. Similar features can be observed for F, in figure
14(b). Figure 14(b) also shows that appreciable negative values of F!, occur in a small
area around y/0 = 0.3. Therefore, the flatness has mostly larger values compared to a
normal distribution. Based on these results, a normal distribution for the streamwise
velocity fluctuations may be expected in the area that extends above the du/dy = 0 line
for the half cycle, where both S, and F}, have low values.

Close to the wall the sign of S, remains unaltered during each half cycle while the sign
of F! remains unaltered during the entire flow cycle. Both S, and F), show very large
values close to the wall at the phase ¢; ~ 0.09 (see figure 13), when breaking of the low
speed streaks starts. This is in agreement with the results shown in figure 12, but in the
phase-space results shown in figure 14 it can be seen that these large values extend up
to y/6 = 0.2, corresponding approximately to the beginning of the logarithmic region.

It is not straightforward to explain why the skewness is positive or negative at every
location in the phase-space plane, but we can provide a qualitative explanation why the
skewness of u’ close to the wall is positive during the positive half cycle. For a location
y = yp close to the wall, the flow occurring during the positive half cycle at locations
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FIGURE 15. Trend of the flatness as a function of the skewness for Rs = 1155 based
on all the DNS data in the fluid domain. (a) Streamwise velocity fluctuations; solid line:
F, = 2+O.15Su+1.565'ﬁ, dashed line: F,, = 2.65—1—1.625’3; (b) wall-normal velocity fluctuations;
solid line: F,, = 2.62 — 0.885, + 4.3952, dashed line: F, = 3.13 4 2.4852.

Yy > yp is characterised by streamwise velocities that are much higher than those at
elevations y < y,,. Therefore, fluid particles from y > y,, cause a positive v’ fluctuation of
greater magnitude than the negative fluctuation caused by particles coming from y < y,.
As a result, the third order moment of u’ is greater than zero and S, > 0. The opposite
occurs during the negative half cycle.

The S, and F! distributions seen in figure 14 suggest that an interrelation exists
between the two statistics. This possibility is explored in figure 15, where F, and F,
are plotted as a function of their skewness. For the streamwise velocity most of the data
fall within a band adjacent to the parabola given by the equation F,, = 2 + 0.15S5,, +
1.5652, indicated by the continuous line in figure 15(a). The minimum flatness occurs
for S, = 0 and is approximately 2.2. For S, = 0 the flatness does not exceed values
of about 6. These values mainly occur near flow reversal when the skewness is small
but the flatness can be large. Generally, large values of flatness involve high values of
skewness. A similar behaviour is observed for the wall-normal velocity component shown
in figure 15(b) where the data mostly fall above the parabola described by the equation
F, = 2.62—0.885, +4.3952. The asymmetry in the distribution of the data with respect
to S, = 0 is due to S, being negative for most of the flow cycle as shown in figure 12(c)
for a point near the wall. The minimum value for F, is about 2.75 and occurs when S,
is approximately zero. These findings are similar to those reported by Jovanovic et al.
(1993), who analysed skewness and flatness measured from various steady flow boundary
layer experiments and found that F and S are correlated by F, = 2.65 + 1.62S52 and
F, = 3.13 + 2.4852. In figure 15(a) there is a reasonably good agreement between the
present results and Jovanovic et al. (1993), while in figure 15(b) there is agreement for
low skewness values only.

A possible explanation for the discrepancy between present results and Jovanovic et al.
(1993), besides the fact that the present result is for oscillatory flow while Jovanovic et al.
result is for steady flow, is that the high values of F), obtained from DNS very close to the
wall are very difficult to measure experimentally. For example, the LDA measurements
of Durst et al. (1995), in the near wall region of a turbulent pipe flow, show that as y™
decreases F, attains a maximum value of 5.25 at y* ~ 12 and then decreases to zero;
the LDA measurements of Karlsson & Johansson (1986) for a closed channel flow show
that as yT decreases F, attains a maximum value of about 8 and, similar to Durst et al.
(1995), decreases to zero closer to the wall. The maximum F, used by Jovanovic et al.
(1993) to determine the correlation between F, and S, shown in figure 15(b) is equal to
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8, whereas the numerical results presented here show that much higher values occur very
close to the wall.

4.4. The origin of high flatness in velocity fluctuations near the wall

Figure 12 has shown that the higher-order statistics of the velocity fluctuations close
to the wall can be very large. In particular, F, takes values of several hundred. An
explanation for why this occurs is given in the following.

Figure 16 shows the fluctuation of streamwise velocity in the plane y/d = 0.16 for
Rs = 1155, for the range of phases in which the flatness and the skewness increase
rapidly and reach very large values. For ¢/T = 0.013 there is no sign of large-scale spatial
organisation of the velocity fluctuation. Between t/T° = 0.013 — 0.063, elongated low
speed streaks emerge and grow stronger. By t/T = 0.063 streak breaking has started
in areas where high positive velocity fluctuations appear and these so-called “turbulent
spots” spread in the fluid domain with increasing flow as can be seen by ¢/T" = 0.077.

Figure 17 shows the wall-normal velocity fluctuations in the plane y/é = 0.16 for
the same phases as in figure 16. Figure 17(a) is similar to figure 16(a) in that the v’
fluctuations are essentially randomly distributed. By ¢/T = 0.052 the v" fluctuations are
organised in elongated streaks, similar to figure 16(b). However, unlike figure 16(b), the
streaks are very narrow and there are large areas where v’ is close to zero. In figure
17(c,d), low v" fluctuations still occupy most of the surface, but small isolated areas of
high v’ have appeared.

In order to illustrate quantitatively how this Qistribution of the velocity fluctuation
affects the statistics, we write the flatness of v as ¢2/¢%, where ¢ = v"? and the hat symbol
denotes an average over the x-z plane. When we czﬂculate the terms in the numerator
and denominator with reference to 17(d), we obtain ¢2 = 7.95x 1078 and ¢ = 2.32x 10~°
respectively. We note that in figure 17(d) ¢ is larger than ¢ within a small surface that is
7.37 % of the total surface. When we now set all the values outside this small portion of
the bottom boundary to zero, the result is g2 = 7.94 x 1078 and § = 2.19 x 10~°, which
are very close to the previous values. This shows that almost all the significant values of ¢
are concentrated within a small area. Consequently, ¢ is small and large fluctuations in/g
given by ¢’ = q—¢q are only present within the small area. Rememllering that q/\2 =q>+q?
and considering that the ﬂuctuationAq’ is large, it emerges that ¢2 is significantly larger
than g2, therefore the flatness F' = ¢2/g? attains large values.

The reason for the large flatness is therefore due to spatial intermittency, i.e. to localised
large velocity fluctuations separated by large areas where the velocity fluctuations are
small. The flatness can therefore be used as a measure of intermittency (Tsinober 2009).
In particular, the inverse of the flatness provides a measure of the fraction of area where
the variable is significant. The latter agrees with the earlier observation that, after the
onset of breaking of the low speed streaks, the flatness decreases, as large fluctuations
become less localised in space. It is worthwhile noting that in the present case spatial
intermittency also involves temporal intermittency. A probe positioned at a fixed location,
such as the LDA sampling volume, measures velocity fluctuations of large magnitude
during short time intervals, which are separated by long time intervals of low-magnitude
velocity fluctuations. This is one of the reasons why it is difficult for the LDA to obtain
sufficient data to properly resolve the higher-order statistics. This is less of an issue for
the DNS simulations because of the possibility to apply spatial averaging in addition to
temporal (or phase) averaging.

How the flatness is affected by the largest velocity fluctuations can be further appreci-
ated through figure 18, which shows F), and F), calculated by considering only data that
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FIGURE 16. Contour plot in gray scale of the streamwise velocity fluctuation u’ at y/é = 0.16.
Rs = 1155. (a) t/T = 0.013; (b) ¢/T = 0.052; (c) t/T = 0.063; (d) t/T = 0.077.

exceeds n times the rms of the velocity fluctuations; the calculation is done for varying n.
Figure 18(a,b) shows F,, and F, respectively at two phases; the first corresponds to the
phase of figure 17(d), when elongated low speed streaks are still present in the domain;
the second corresponds to a later phase when low speed streaks are broken in the entire
fluid domain. Figure 18(b) shows that as n increases F, at ¢/T = 0.08 undergoes only a
small percentage reduction with respect to n = 0. For example, for n = 15 the flatness
of v is about 90% of the true value. Although to a lesser extent, a similar feature is
observed for Fj, shown in figure 18(a), where for n = 5 the flatness is approximately
70% of the true value. After low speed streak breaking has occurred (¢/T" = 0.14), the
velocity fluctuations occur more uniformly in space, causing a decrease in the flatness.
Indeed, in figure 18(a) and (b) the flatness for n = 5 and n = 15 respectively is small. F,
takes a value of about 17 close to the wall, which is still relatively large, indicating that
intermittency in the wall-normal velocity is still significant very close to the wall, even
after transition to turbulence.

4.5. Probability density functions of velocity fluctuations

In the previous section the higher-order statistics of the velocity fluctuations provided
information on the shape of the probability density functions (pdf) of the velocity
fluctuations and indicated the regions of the flow field where a normal distribution is
expected. In this section, the analysis is extended by focusing directly on the pdfs. In
general, knowledge of the pdfs of the velocity fluctuations is important for the formulation
of theoretical models of incipient motion of sediments based on probabilistic approaches
and to predict diffusion processes in fluids (Wu & Yang 2004). To determine, for example,
the pdf of the streamwise velocity u, the velocity fluctuations v’ in a given x — z plane
at a given phase were determined for all flow cycles. The range between the minimum
and the maximum of «' was divided into M Au’ intervals with a variable width: they
are narrower near v’ = 0, where most data occur, and they grow in width towards the
extremes of u/, where data is more sparse. For each interval the value of the pdf was
determined from pdf = m/(M Av'), where m is the number of data samples falling in
the interval Au’. The value of M was fixed to 180 which allowed a sufficient amount
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FIGURE 18. Flatness of velocity fluctuations (a) v’ and (b) v’ for Rs = 1155 at y/§ = 0.03
computed by excluding the values of the velocity fluctuations that have lower magnitude than
n times the rms of the velocity fluctuations. The variable n is shown along the x axis.

of data in each interval, and at the same time an adequate resolution of the pdfs. The
wall-normal and spanwise pdfs were similarly determined. Figure 19 shows the pdf of «’
at sixteen phases of the flow cycle and at four different elevations. The first two elevations
are located close to the wall, where the skewness shows large y-gradients (see figure 14);
the other two elevations are located further away from the wall, where the streamwise
velocity follows a log-law profile when turbulence is well developed.

The pdfs are shown as semilog-graphs to show the large velocity fluctuations occurring
with low values of probability density. The main observations from figure 19 can be
summarised as follows.

e The pdfs show long tails close to the wall, especially in the pre-turbulent stage of
each half cycle (0 < ¢/T < 0.14 and 0.58 < t/T" < 0.76); this result is consistent with the
large flatness seen at these phases.

e During the positive (negative) half cycle the positive (negative) fluctuations decrease
significantly as y/d increases, while the negative (positive) fluctuations are approximately
constant.

e The previous point suggests that the large gradient in the statistics near y/d = 0



Turbulence statistics in oscillatory flow 25

t/T=0.01

0.83 0.89 0.95

-20 10 0 10 -20 10 0 10 -20 10 0 10 20
Iy Iy Iy
u'/u u'/u u'/u
rms rms rms
y/6=0.033 — — — y/6=0.16 YI6=132 ——-— y/6=3.13

FIGURE 19. Probability density of u’ for Rs = 1155.

(seen in figure 14) is almost exclusively due to variations in the positive (negative) velocity
fluctuations.

e Far from the wall (y/§ = 1.32 — 3.13), the pdfs show some variation with y/d prior
to the transition to turbulence (0 < t/T" < 0.14 and 0.58 < t/T < 0.76); during the
remainder of the flow cycle the pdfs do not show any y/J dependency and are therefore
very similar to each other.

Figure 20 shows the probability density function for v’ for the same elevations consid-
ered in figure 19. The main observations are as follows.

e At each phase the pdfs show sharp peaks at v’ /], = 0 because most values are close
to zero and show long tails due to the few extremely large values of v in the distribution.
This characteristic is especially noticeable close to the wall prior to the transition to
turbulence and is responsible for the large flatness at these phases previously discussed.

e With the exception of phases near flow reversal (¢/7 = 0.01, t/T = 0.64), negative
velocity fluctuations reach larger values than positive fluctuations, resulting in a slightly
negative skewness (as seen previously in figure 12).

o At large distances from the wall (y/d = 1.32 and 3.13), the dimensionless fluctuations
are limited to values less than 10; also, there are phase intervals (¢/7" =0.14-0.38; 0.70-
0.95) when the pdfs at y/d = 1.32 and 3.13 are very close to each other and very similar
to the corresponding pdfs of streamwise fluctuations.

For the spanwise velocity fluctuations, as already noted in figure 9, the pdfs (not
shown) are characterised by a vanishing skewness, but are otherwise similar to the pdfs
of v'.

From the foregoing it is clear that the pdfs generally depend on distance from the wall
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FIGURE 20. Probability density of v for Rs = 1155.

and on the flow phase. However, at a sufficient distance from the wall, and during phases
characterised by well-developed turbulence, the pdfs do not show significant differences.

For use of pdfs in the formulation of probabilistic models of, for example, sediment
transport, it is interesting to consider if probability density functions from the literature
suitably describe the pdfs of velocity fluctuations reported here. It has been noted that
the pdf of u’ is approximately described by a log-normal distribution during the majority
of the flow cycle. The equation for this distribution is reported in Scandura et al. (2016)
amongst others, where the log-normal distribution was fitted to the frequency distribution
of streamwise wall shear stress fluctuations obtained from DNS. The pdfs of v’ shown
here can be approximately described by a Pearson type IV distribution given by:

_ 1 |T(s +i€/2) vV
P = 05,08 () [H( b )]

exp {—gtanl (”/ - A)] (4.3)

where s, A, £ and b are the parameters of the distribution, I" is the gamma function,
is the beta function and ¢ is the imaginary unit. Finally, the frequency distribution of
w’ are well described by the Pearson type VII distribution, previously used by Scandura
et al. (2016) to fit the frequency distribution of spanwise wall shear stress.

Comparisons of the standard probability distributions and the distributions obtained
from the numerical simulation data are shown in figure 21 for Rs = 1155 and at ¢t/T =
0.08. This phase has been selected because the velocity fluctuations exhibit large flatness
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FIGURE 21. Comparison between the probability density computed by numerical simulation
(dashed lines) and that provided by known theoretical distributions (continuous lines). (a,b,c,d)
streamwise velocity: lognormal distribution; (e,f,g,h) wall-normal velocity: Pearson type IV
distribution;(i,j,k,1) spanwise velocity: Pearson type VII distribution. ¢/7 = 0.08, Rs = 1155.

and long tails at this phase and so the frequency distributions deviate strongly from a
normal distribution. The comparisons in figure 21 are made for four elevations from the
wall. Figures 21(a,b,c,d) show that the log-normal distribution describes the distribution
of v’ /ul,, rather well, except for large values of the fluctuation. Nevertheless, for values
of the pdf larger than 10~2 the log-normal distribution provides a good description of
the numerical data.

Figures 21(e,f,g,h) compare the probability distributions of v"/v., . obtained from the
numerical data with a Pearson Type IV distribution. The Type IV distribution describes
the data well, again with the exception of very large v'/v!_ .. Finally, figures 21(i,j,k,1)
show the comparison between the distribution w’/w/, ., and the Pearson type VII dis-
tribution. The agreement between the numerical data and the theoretical distribution is
reasonably good, both for large and small values of w’/w/, .. The fourth-order Gram-
Charlier series distribution (Johnson et al. 1994) was also tested against the numerical
data, but provided good results only for elevations far from the wall where the flatness
is not much larger than 3. This result is expected as the Gram-Charlier series is a
truncated series expansion based on the normal distribution and is therefore suitable
for distributions characterised by skewness and flatness not much larger than 0 and 3
respectively.

Figure 22 shows the time-variation of the parameters of the distribution throughout
the flow cycle for the three velocity components at the elevation closest to the wall
(y/6 = 0.03) and at an elevation further away (y/d = 1.32); both correspond to those
shown before in figure 21. The equations and corresponding parameters for the log-normal
and the Pearson type VII distributions can be found in Scandura et al. (2016) and are not
be repeated here. Closest to the wall the parameters are relatively constant throughout
the flow cycle, with exceptions at phases when the transition to turbulent flow occurs and
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around flow reversal. At y/J = 1.32 the parameters generally show more time variation
but also have larger values, while for the phases not shown at y/6 = 1.32 the normal
distribution provided a better fit to the data. This information could be of practical use
in the stochastic turbulence models outlined in the introduction to this paper. Current
models assume a normal distribution of turbulence, but based on these results, the log-
normal, Pearson type IV and Pearson type VII distributions provide better descriptions,
particularly close to the wall. As a first approximation, close to the wall, the parameters
of the distributions can be assumed constant throughout the flow cycle, and therefore
will only be a function of elevation above the wall.

The correlations between streamwise and wall-normal velocity fluctuations can be
analysed through the joint probability density functions (jpdf) of «'/ul, . and v’ /vl
shown in figures 23 and 24. The jpdf of (u/,v’) is defined as jpdf = m/(MAu Av'),
with m the number of (u’,v") pairs falling within the interval Auw’Av" and M = 180.
In these figures the values of the contour lines have been fixed according to the formula
1070-6047=2) "where n = 1,2,.. are integer numbers denoting the contour lines and I
depends on t/T and y/é and is reported in the figure caption. Figure 23 shows the jpdf
at phase ¢t/T = 0.08 for the same elevations considered in figures 19 and 20. It can be
observed that very close to the wall (figure 23a) large streamwise velocity fluctuations
are correlated with large negative wall-normal velocity fluctuations. This is consistent
with the existence of high speed streaks generated by downward motions of fast fluid.
The largest negative streamwise velocity fluctuations occur for small values of v’ /v] .,
highlighting the fact that the largest positive values of v'/v/ . do not occur in the low-
speed streaks but, as shown in figure 23(a), at locations between the low and high speed
streaks.
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FIGURE 23. Joint probability density of streamwise and wall-normal velocity fluctuations at
t/T = 0.08. At this phase the flow is dominated by elongated low speed streaks. The contour
lines are given by 10~ %60+ =2). (a) 4/§=0.033,1 = 2 (b) y/6 = 0.16, 1 = 2 (c), y/d = 1.32,1 = 2
(d) y/6 =3.13,1 = 3. Rs = 1155.

The correlation between high positive values of u'/ul,. and high negative values of
v’ /vl seen for y/§ = 0.033 become weaker at y/d = 0.16 (figure 23b). Here both positive
and negative peaks in v’ /v, . correlate with lower values of u'/ul, ., compared with
y/6 = 0.03. The largest positive values of v'/v], . are now well correlated with vanishing
fluctuations of the streamwise velocity. This result agrees with figure 11 of Scandura et al.
(2016), which showed the existence of several positive peaks in v’ occurring when o’ is
small. At larger y/d, large positive v’ /vl . becomes correlated with negative u'/ul,..

In figure 24 the jpdfs are shown for t/T = 0.14, i.e. following low speed streak
breaking. The results show a significant decrease in the dimensionless velocity fluctuations
compared to the corresponding results for ¢/7T° = 0.08 (figure 23). Both positive and
negative peaks in v’/v] . correlate with lower values of u'/ul, . compared with t/T =
0.08. In particular at y/§ = 0.16 the positive peak of v'/v. . now occurs for negative
values of v’ /ul, .. In summary, with increasing distances from the wall the positive peak
in v’ /v],,4 shifts from medium positive values of v’ /ul, . towards negative values. At the
same time the extreme negative fluctuations of v’/v] . also shift towards low values of
ul/u;‘ms'

4.6. Reynolds stresses

The Reynolds stress (u/v') can be computed as follows:
(') = / / jpdf w'v'du/dv’ (4.4)

In figure 25 the experimental and numerical Reynolds stresses are compared for Rs =
1155 and Rs = 1475. The agreement between the experimental and numerical results
is in general very good, with the exception of the near-wall measurements at phases
t/T = 0.08, where the discrepancy may be due to the displacement of the glass sidewalls
under high pressure, as explained previously. Additionally, as discussed in section 4.4, at
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FIGURE 24. Joint probability density of streamwise and wall-normal velocity fluctuations at
t/T = 0.14. At this phase breaking of the low speed streaks has already occurred. The contour
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these phases the turbulence is highly intermittent, therefore the discrepancy may be due
to the limited sample size, even when measuring for 200 flow cycles. It can be seen that
at the beginning of the flow cycle the Reynolds stress is positive and reaches a maximum
at about y/d = 5. At this phase the Reynolds stress close to the wall (y/d < 2) is very
small, but it quickly becomes negative and by ¢/T" = 0.14 it reaches a maximum at about
y/6 = 0.5. For the remaining phases the peak Reynolds stress decreases near the wall
and moves upwards. During the negative half cycle a similar process occurs, but because
of the flow asymmetry the maximum stress occurs later in the half cycle, and with lower
magnitude compared to the positive half cycle. However, because the maximum stress
occurs later in the cycle the positive Reynolds stress that carries over in the subsequent
half cycle is much larger compared to the negative Reynolds stress that gets carried
over into the negative half cycle; compare for example the profiles at ¢/T = 0.08 and
t/T = 0.51 in figure 25(a).

If the integration in equation (4.4) is carried out separately in each of the four quadrants
(Q1,Q2,Q3,Qy4) of the reference system, the contributions to the Reynolds stress from
each quadrant are obtained. Quadrants can be distinguished as gradient type or coun-
tergradient type (Wallace 2016). Gradient type means that the vertical momentum flux
p(u'v") is generated by particles that fluctuate in the y-direction and carry a streamwise
momentum larger or smaller than the local mean momentum, depending on the local
mean velocity gradient. Following this definition, when the mean velocity gradient is
positive, the fluctuation products w’v’ in gradient-type quadrants are negative; hence
gradient-type quadrants are Q2 and ()4 and countergradient-type are Q1 and Q3. The
opposite occurs if the mean velocity gradient is negative. Note that in unsteady flows the
sign of the mean velocity gradient is not constant in the y-direction, hence the type of
gradient quadrant may change in the vertical direction.

How much each quadrant contributes to the Reynolds stress is shown in figure 26 for
Rs = 1155. The rectangle on the left side of each panel shows the locations above the wall



Turbulence statistics in oscillatory flow 31
20 t/T=0.01 0.08 0.14 0.2 026 033 039 045 051 058 064 0.7 0.76  0.83 089 095
(a)

0 po e Ve ee. el o \A._.-d_.

-0 10 0 0 0 0 0o 0 0 0 0 0 0 0 0 0 1

20 ¢T=0.02 0.08 0.14 021 027 033 039 045 052 058 064 071 077 0.83 089 095

(b)

0 . . ’
4010 0 0O 0O 0O 0 O 0 O 0 ©0 0 0 0 0 I
(W) /UG e % 10°

FIGURE 25. Comparison between experimental and DNS results for Reynolds stress. (a)
Rs = 1155 (b) Rs = 1475.

where the gradient of the ensemble-averaged velocity is positive. It can be observed that
in the positive half cycle, close to the wall, gradient type quadrants are @2 and Q4 while
far from the wall gradient type quadrants are )1 and Q3. Generally, the contributions
of the gradient type quadrants dominate and the Reynolds stress is negative if gradient
type quadrants are Q2 and @4, while it is positive if gradient type quadrants are ()1 and
Q3.

It can also be observed that close to the wall Q4 provides the largest contribution to
the Reynolds stress, but at higher elevations Q2 becomes more important.

When the flow moves towards flow reversal and the turbulence decays, (u'v')qg, and
(u'v")g, become very close to each other. In the negative half-cycle Q1 and Q3 are
gradient-type close to the wall while far from the wall Q2 and Q4 are gradient-type. The
Q@3 contribution is largest very close to the wall and the @1 contribution is the largest far
from the wall. Again, the two contributions become similar as flow reversal is approached.

A budget analysis provides insights into the generation and transport mechanisms of
the Reynolds stress. For the flow under consideration the Reynolds stress budget can be
written as follows (see Pope 2000):

() 0w 9?1/ 9y op 9 (u'v')

ot (™) Oy Oy p U8m+u8y Ty Oy
ou' ov' ou ov'  Ou' o'

Y e e el 4.

V<8x8x+8y8y+8zaz> (45)

The terms on the right-hand side of equation (4.5) correspond to production, turbulent
diffusion, velocity pressure-gradient, viscous diffusion and dissipation.
Figure 27 shows the budget terms through the flow cycle for Rs = 1155. At the
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FIGURE 26. Reynolds stress and quadrant contributions to the Reynolds stress for Rs = 1155.
The rectangle on the left side of each panel denotes the locations where the gradient of the mean
velocity is positive

beginning of the flow cycle (¢/T = 0.01) all terms of equation (4.5) are very small. As
the flow accelerates (t/T = 0.08) production emerges as the largest term far from the
wall. The sign of production is opposite to that of the mean velocity gradient, therefore
in the first half cycle it is mostly negative close to the wall and slightly positive at large
y/d. Far from the wall the second most important term is the velocity pressure-gradient
term which is of opposite sign to production at all elevations and phases. Very close to
the wall (0 < y/é < 0.1), the transport of the Reynolds stress is mainly due to viscous
diffusion. In the same range of y/d turbulent diffusion is small and approximately follows
production. The similarity between production and turbulent diffusion can be justified
by realising that both terms vary as y* as y tends to zero, which results from expanding
the velocity components in a Taylor series. For Rs = 1475, the budget of the Reynolds
stress (not shown) exhibits most of the features described above, but the phases at which
the budget terms become large occur earlier in the flow half cycles compared to the
phases for Rs = 1155. For example, at ¢/T = 0.08 the magnitude of the budget terms
for Rs = 1475 are similar to those shown in figure 27 for ¢t/T = 0.14.

The flow asymmetry has clear effects on the Reynolds stress budget. In the negative
half cycle the phase at which the budget terms obtain significant values occurs later
compared to the first half cycle. On the other hand, in the negative half cycle the budget
terms remain significant until near flow reversal (t/T = 0.95), while at the end of the
positive half cycle they are very small.
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5. Conclusions

The velocity statistics of an asymmetric oscillatory flow over a smooth wall have been
analysed by means of experiments in a large oscillating flow tunnel and direct numerical
simulations. The experiments were performed for five Reynolds numbers (Rj) ranging
from 846 to 2057, while the numerical simulations were performed for Rs equal to 846,
1155 and 1475. The main results of the study are summarised in the following.

Since the experimental facility is a closed system, and the numerical simulations were
carried out for an infinitely long periodic domain, the two flows differ in terms of the
period-averaged quantities. In the numerical simulations the period-averaged streamwise
velocity (boundary layer streaming), is opposite to the streamwise direction, tends to a
constant for y/J far from the wall and its gradient vanishes at y/é = 0. The boundary
layer streaming results from the asymmetry in the oscillatory flow, which produces a
non-zero mean Reynolds stress. This negative streaming also exists in the oscillating flow
tunnel, but in this case it is balanced by a positive current driven by a negative pressure
gradient. Thus a positive mean shear stress is applied to the wall of the oscillating flow
tunnel. The experimental verification of this finding is here provided for the first time.

The agreement between experimental and numerical vertical profiles of velocity is
good, once the time-averaged velocity is subtracted. This shows that the magnitude of
the streaming is not strong enough to significantly affect the oscillatory component of
the phase-averaged velocity. This is also confirmed by the good agreement between ex-
periments and numerical simulations in terms of the periodic component of the Reynolds
stress.

Because of the asymmetry in the free stream velocity, the magnitude of the positive
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half cycle peak wall shear stress exceeds that of the negative half cycle. The experimental
and DNS results for wall shear stress are in good agreement and show that the asymmetry
coefficient for the wall shear stress, defined as (Tmax+Tmin )/ Tmax, increases with Reynolds
number.

Good agreement between experiments and numerical simulations has been observed in
terms of the lower- and higher-order statistics of the velocity fluctuations, especially for
the higher Reynolds number flow. Close to the wall the relative intensity of u’ ((v'?) /|al)
increases during the accelerating phase, attains a maximum value of about 0.48, and
subsequently decreases to a value of about 0.4, which is maintained for much of the
remainder of the half cycle. The skewness and the flatness of ' increase during the
accelerating phase and reach maximum values at the onset of breaking of low speed
streaks in the fluid domain. In both half-cycles there is excellent agreement between
experiments and numerical simulations concerning the phase at which both skewness
and flatness attain their peak values. Once maximum values have been reached, the
higher-order statistics rapidly decrease until the phase at which the flow domain is filled
with breaking low speed streaks. The phase of inception of the low speed streaks breaking,
¢1, and the phase at which the breaking is complete, ¢2, are shown to depend on the
Reynolds number. As Reynolds number increases, ¢1 and ¢ shift to earlier in each half
cycle and the time between the onset and completion of breaking (¢2 — ¢1) decreases.

The skewness of the streamwise velocity fluctuations is small at elevations above
the wall where 0 (u) /0y = 0. At the same elevations the flatness takes a value of
approximately 3. Generally, the flatness remains close to 3 and the skewness close to
zero for elevations above y/d corresponding to 0 (u) /0y = 0. Therefore, within this
range the streamwise velocity fluctuations are close to being normally distributed. Close
to the wall, both the skewness and the flatness are high, as well as their wall-normal
gradient; in particular, during transition to turbulence the flatness of the wall-normal
velocity fluctuation is of order 102. The reason for this is the spatial intermittency of
the wall-normal fluctuations, i.e. localised large velocity fluctuations are separated by
large areas where the velocity fluctuations are small. This phenomenon results in long
tails in the probability density functions, generated by extremely large values with low
probability. In the pdf of the streamwise velocity fluctuations the positive tail is much
larger than the negative tail. The positive tail reduces rapidly with y/§, resulting in a
large wall-normal gradient in the statistics. In contrast, the negative tails remain rather
constant with increasing y/d.

Comparing the probability distributions of the fluctuating velocities from DNS with
theoretical probability density functions has shown that the streamwise velocity fluctua-
tions are well described by a lognormal distribution, the wall-normal velocity fluctuations
are well described by the Pearson type IV distribution and the spanwise velocity fluctu-
ations are well described by the Pearson type VII distribution.

The joint probability density of v’ and v’ shows that, close to the wall, large negative
v’ correlate with large positive «’ while large positive v’ correlate with medium values of
u'. Moving away from the wall, these correlations shift to lower values of u’. Negative v’
occurring with positive v’ and positive v’ occurring with low or negative u’ is consistent
with the presence of streamwise vortices ejecting low speed fluid away from the wall and
high speed fluid towards the wall (Scandura et al. 2016).

Experimental and numerical vertical profiles of Reynolds stress show good agreement,
except at phases corresponding to high pressure in the tunnel which causes deformation
of the glass side-walls and affects the accuracy of the near-bed measurements where the
gradient is large.

The largest contribution to the Reynolds stress arises from the gradient-type quadrants
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at all phases. @2 and @4 provide the largest contribution in the positive half cycle, while
@1 and @3 do so in the negative half cycle. The contribution of Q4 (Q3) is largest close
to the wall and that of Q2 (Q1) is largest far from the wall. During flow deceleration,
the contributions of these two quadrants tend to become equal. The counter-gradient
quadrants provide approximately equal contributions at all phases. The Reynolds stress
budget shows that production and velocity pressure-gradient terms are the largest for
y/d > 0.1 and generally are of opposite sign throughout the boundary layer and at
all phases. For y/d < 0.1 viscous diffusion is positive and larger than the other terms,
hence it represents the main mechanisms by which large Reynolds stress occurs close
to the wall. In the same range of y/4, turbulent diffusion is positive and closely follows
production, because these terms have similar asymptotic behaviour for y/é tending to
Zero.
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