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Abstract
Further study of the cyclization reactions of (S)-t-BuOCH2CONHCH(CH2OH)CONHN = Ar, derived from (l)-serine, has 
found that reaction with MeI/K2CO3 in Me2CO produces (Z)-(S)-4-(tert-butylcarbonylamino)-2-(benzylidene)-5-oxopyra-
zolidin-2-ium-1-ide, 3. We now wish to report the crystal structure of the 2-methoxybenzylidene derivative, 3a. While the 
pyrazolyl ring in 3a exhibits an envelope shape, with the flap at C5, the displacement of C5 from the best plane through the 
ring, however, is only 0.053(5) Å. The dihedral angle between the phenyl and pyrazolyl rings is 12.14(16)°. The pyrazolyl 
ring has a betaine character with opposite charges on N1 and N2 atoms. The supramolecular arrangement is created from 
one classical N–H···O and weaker C–H···X (X = O, N) intermolecular hydrogen bonds, each of which generate chains of 
molecules. Combinations of the (i) C19–H19A···O1 and C11–H11···O2 hydrogen bonds generates sheets of molecules in 
the ab plane, containing R4

4(40) rings, (ii) C18–H18B···O1 and C11–H11···O2 hydrogen bonds produce a two molecule 
wide column, containing R3

3(26) rings, propagated in the ac plane and (iii) C19–H19A···O1 and C15–H15A···N2 hydrogen 
bonds generate a different two molecule wide column, containing R3

3(26) rings, propagated in the ab plane. The compound 
crystallises in the orthorhombic space group, P212121, with a = 6.5906(5) Å, b = 10.9121(10) Å, c = 22.2080(17) Å, and Z = 4.
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Graphical Abstract
The supramolecular array of the betaine compound, (Z)-(4S)-4-(tert-butyloxycarbonylamino)-3-oxo-1-(2-
methoxybenzylidene)-pyrazolidinium inner salt, 3a, is created from one classical N–H···O and weaker C–H···X (X = O, N) 
intermolecular hydrogen bonds.

Keywords  Azomethine imines · Cyclization reactions · Serine derivative · Hydrogen bonds

Introduction

Azomethine imines, R–N+–N−R = CHR/, are 1,3-dipoles of 
the aza-allyl type. Much use has been made in organic syn-
theses of their cycloaddition reactions, in particular [3 + 2] 
additions [1–3]. While many are transient intermediates 
and are used in situ, others have been found to be stable 
and isolatable. Cyclic derivatives with additional carbonyl 
substituents are more stable, due to increased conjugation. 
Further stabilization may arise from the presence of a ben-
zylidene derivative.

Various preparations of azomethine imide derivatives 
have been reported with more accessible routes involving 
reactions of pyrazolidin-3-ones with substituted benzalde-
hydes or using substituted acylhydrazines, RCONHNHR as 
precursors [4–7].

In studies of the cyclisation reactions of alkyl (S)-2-
[2-(benzylidene)hydrazine]-1-(hydroxymethyl)-2-oxocar-
bamates, 1, prepared from L-serine, 2 [8], see Scheme 1, 
we have found that their treatment with mesityl chloride 
and triethylamine generates chiral azomethine imines 
derivatives (Z)-(4S)-4-(alkyloxycarbonylamino)-3-oxo-
1-(benzylidene)-pyrazolidinium inner salts, 3, see 
Scheme 1. We now wish to report the structure determi-
nation of (Z)-(4S)-4-(tert-butyloxycarbonylamino)-3-oxo-
1-(2-methoxybenzylidene)-pyrazolidinium inner salt, 

also named (Z)-(S)-4-(tert-butylcarbonylamino)-2-(2-
methoxybenzylidene)-5-oxopyrazolidin-2-ium-1-ide, (3a: 
R = tert-Bu, X = 2-MeO) The chirality of the compounds is 
derived from that of the (l)-serine precursor. The kinetic 
resolutions of 5-oxopyrazolidin-2-ium-1-ides using copper 
catalysts has been carried out [9].

The stability of compound 3a is considered to be due, 
partially at least, to the presence of the 2-methoxybenzylide-
nyl substituent and its near planarity with the core of the 
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Scheme  1   Reagents and conditions: (i) MeOH, SOCl2, rt; (ii) 
PhCH2Cl, NaHCO3, H2O, rt or (ButOC)2O, Et3N, THF, rt; (iii) N2H4.
H2O (80%), EtOH, rt; (iv) EtOH, XC6H4CHO, reflux, (v) MeSO2Cl, 
Et3N, CH2Cl2
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oxo-1-(benzylidene)-pyrazolidinium unit, which allows a 
very extensive conjugation to be set up, see Fig. 1.

The crystal structure of 3a is compared to the reported 
structures of of other 3-oxo-1-pyrazolidinium inner salts.

General

Melting points were determined on a Buchi apparatus and 
are uncorrected. Infrared spectra were recorded on a Thermo 
Nicolet Nexus 670 spectrometer in potassium bromide discs. 
Mass spectra (ESI assay in solution of ammonium chloride) 
were recorded on a Micromass ZQ Waters mass spectrom-
eter. Microanalysis data were obtained using a Perkin–Elmer 
240 analyser, using a Perkin–Elmer AD-4 balance. NMR 
spectra were recorded on a Bruker Avance 500 spectrometer 
at room temperature. TLC was carried out on plates coated 
with silica gel, using ultraviolet light or ninhydrine (0.2% 
p/v in ethanol) to develop the plates.

Formation of 3a

tert-Butyl (S)-2-[2-(methoxybenzylidene)hydrazine]-
1-(hydroxymethyl)-2-oxocarbamate, (1a: R = tert-Bu, 
X = 2-MeO) was prepared as previously reported [8]. A 
reaction mixture of 1a (0.30 g, 0.9 mmol), methanesulfonyl 
chloride (0.1 mL, 1.35 mmol) and Et3N (3.7 mL, 27 mmol) 
in dichloromethane (10 mL) was stirred at room temperature 
for 24 h. To the reaction mixture was added water (10 mL), 
the organic phase was collected and successively washed 
with aqueous hydrochloric acid (10%v/v, 2 × 20 mL) and 
water (2 × 20  mL), and dried over sodium sulfate. The 
residue, after rotary evaporation, was column chromato-
graphed. The desired compound 3a was obtained in 80% 
yield, 230 mg, mp 165-6 °C.

1H NMR (500 MHz, DMSO-d6) δ (ppm): 8.97 (1H, 
d; J = 7.8 Hz, NHCH), 7.76 (1H. s, N = CH), 7.52 (1H, t, 

J = 7.8 Hz, H3), 7.29 (1H, d, J = 7.8 Hz; H5), 7.16 (1H, d, 
J = 7.8 Hz, H2), 7.10 (1H, t, J = 7.8 Hz, H4), 4.81 (1H, m, 
CH), 4.40–4.25 (2H, m, CH2), 3.90 (3H, s, CH3), 1.39 (9H, 
s, (CH3)3C).

13C NMR (125  MHz, DMSO-d6) δ (ppm): 182.4 
(COCH), 158.5 (C1), 155.8 (COO), 133.8 (N = CH), 131.8 
(C3 or C5), 127.7 (C3 or C5), 121.0 (C4), 118.4 (C6), 111.8 
(C2), 78.8 ((CH3)3C−), 62.4 (CH); 56.5 (CH3), 50.2 (CH2), 
28.6 ((CH3)3C−).

ir (cm−1; KBr): 1705 (COCH), 1662 (COO).
ms/esi: [M + Na]: 342.
Calcd. for C16H21N3O4: C: 60.18; H: 6.62; N: 13.15. 

Found: C: 60.31; H: 6.68; N: 13.03.

Crystal Structure Determination

Intensity data were obtained at 120(2) K with Mo-Kα radia-
tion by means of a Bruker-Nonius Roper CCD on kappa-
goniostat by the National Crystallographic Service, UK, 
based at the University of Southampton. Data collection was 
carried out under the control of the program COLLECT [10] 
and data reduction and unit cell refinement were achieved 
with the COLLECT [10] and DENZO [11] programs. Cor-
rection for absorption was achieved in each case by a semi-
empirical method based upon the variation of equivalent 
reflections with the program SADABS 2007/2 [12]. The 
program MERCURY [13] was used in the preparation of 
the Figures. The structures were solved by direct methods 
using SHELXS-97 [14] and fully refined by means of the 
program SHELXL-97 [14]. The refinement was carried out 
as a 2-component inversion twin. The programs, SHELXL97 
[14] and PLATON [15], were used in the calculation of 
molecular geometry. All hydrogen atoms were placed in 
calculated positions. Crystal data and structure refinement 
details are listed in Table 1.

Results and Discussion

As found for various acylhydrazone derivatives [16, 17], 
compound (1a: R = tert-Bu, X = 2-MeO) in solution is a 
mixture of (E)/(Z) isomers about the C=N bond, as shown 
by the doubling of certain NMR signals. In contrast, the 
1H and 13C NMR spectra of 3a indicated a single isomer 
in solution: considering the results of the X-ray structure 
determination, see below, this is shown to be the (Z)-isomer. 
As the formation of the five-membered ring does not involve 
reaction at the chiral cente in 1, the stereochemistry is main-
tained in the product 3a. The role of MeSO2Cl is to form a 
more effective leaving group on reaction with the hydroxyl 
group.

Fig. 1   Canonical forms for a (2-methoxybenzylidene)-pyrazolidinium 
inner salt
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Crystal Structure of 3a

The crystals of 3a used in the structure determination were 
grown by slow evaporation of a solution in methanol at room 
temperature. The betaine compound crystallizes in the chiral 
orthorhombic space group P212121, with one molecule in the 
asymmetric unit. Figure 2a shows the numbering scheme 
and the atom arrangements, with a (S)-configuration at C4 
and a (Z) arrangement about the exocyclic C=N bond. There 
are four weak intramolecular hydrogen bonds in five as listed 
in Table 1.

As indicated by the Puckering parameters [18], 
[Q(2) = 0.083(4) Å and Φ(2) = 147(3)°], the pyrazolyl ring 
exhibits a slight envelope shape, with the flap at C5. The dis-
placement of C5 from the best plane through the ring, how-
ever, is only 0.053(5) Å, which for all intents and purposes 

indicates a very near planar ring. Sush a light deviation from 
planarity has been reported for other 5-oxopyrazolidin-
2-ium-1-ides [19–22] The dihedral angle between the phenyl 
group and the complete oxopyrazolidinyl ring is 12.14(16)°: 
dihedral angle between the phenyl group and the N–N–C=O 
fragment of the oxopyrazolidinyl moiety moiety involved in 
the conjugation is just a little smaller at 10.82(16)°. A view 
of the conformation of 3a, looking along the edge of the 
combined phenyl and pyrazolyl rings, is shown in Fig. 2b. 
There are four intramolecular hydrogen bonds in 3a: two of 
which, C17–H17A···O1 and C18–H18B···O1, involve the 
tert-butyloxycarbonylamino substiuent and the other two, 
C6–H6···O4 and C18–H18C···N2, involve the 2-anisyl sub-
stiuent and the oxopyrazolidinyl ring. The latter two must 
be influential in keeping the dihedral angle small between 
the two components, thereby possibly aiding conconjugation 
between the two fragments.

The pyrazolyl ring has a betaine character with oppo-
site charges on N1 and N2 atoms. The bond lengths and 
angles in the betaine ring are within the regions found for 
related compounds [4–6, 18–21]. The C7–C12 bond length, 
1.429(6) Å, is noticeably longer than the other C–C bond 
lengths, 1.377(6)–1.399(6) Å, in the phenyl ring, which indi-
cates a degree of bond fixation arising.

The PLATON analysis [15] indicated that the supramo-
lecular arrangement is created from one classical N–H···O 
and weaker C–H···X (X = O, N) intermolecular hydrogen 
bonds [23], see Table  2 for symmetry operations. The 
strongest intermolecular interaction, the N3–H3···O2 hydro-
gen bond, generates zig-zag chains, C(5) [24], of molecules 
formed in the direction of the a axis, as illustrated in Fig. 3a. 
These chains are augmented by C3=O2···π(pyrazole) 
interactions. The four weaker intermolecular hydrogen 
bonds individually generate chains of molecules [23]: the 
C19–H19···O1 and the C15–H15A···N2 hydrogen bonds 
generate C(6) and C(8) chains, respectively, in the direction 
of the a axis, and the C11–H11···O2 and C18–H18B···O1 
hydrogen bonds form C(9) and C(6) chains, respectively, in 
the direction of the b axis. Combinations of pairs of these 
individual hydrogen bonds create more elaborate structural 
sub-sets. Thus combinations (i) of the C19–H19A···O1 and 
C11–H11···O2 hydrogen bonds generate sheets of molecules 
in the ab plane, containing R4

4(40) rings [24], as illustrated 
in Fig. 3b, (ii) of the C18–H18C···O1 and C11–H11···O2 
hydrogen bonds produce a two molecule wide column, 
containing R3

3(26) rings, propagated in the ac plane, see 
Fig. 3c, and (iii) of the C19–H19A···O1 and C15–H15A···N2 
hydrogen bonds generate another two molecule wide col-
umn, containing R3

3(26) rings, propagated in the ab plane, 
see Fig. 3d. Overall, a 3-dimensional arrangement is formed.

Table 1   Crystal data and structure refinement for 3a 

Empirical formula C16H21N3O4

Formula weight 319.4
Temperature (K) 120(2)
Wavelength (Å) 0.71073
Crystal system, space group Orthorhombic, P212121

Unit cell dimensions (Å)
 a 6.5906(5)
 b 10.9121(10)
 c 22.2080(17)

Volume (Å3) 1597.1(2)
Z 4
Density (calculated) (Mg/m3) 1.328
Absorption coefficient (mm−1) 0.097
F(000) 680
Crystal size (mm) 0.36 × 0.04 × 0.03
Theta range for data collection (°) 3.22–27.57
Index ranges − 8 ≤ h ≤ 8,

− 4 ≤ k ≤ 14,
− 8 ≤ l ≤ 28

Reflections collected 28,434
Independent reflections 3688

[R(int) = 0.133]
Reflections observed (> 2sigma) 2490
Data completeness 1.00
Absorption correction Semi-empirical from equivalents
Max. and min. transmission 0.7455 and 0.4497
Refinement method Full-matrix least-squares on F2
Data/restraints/parameters 3688/0/212
Goodness-of-fit on F2 1.07
Final R indices [I > 2sigma(I)] R1 = 0.077, wR2 = 0.134
R indices (all data) R1 = 0.126, wR2 = 0.149
Absolute structure parameter 0.00
Largest diff. peak and hole (e/Å3) 0.223 and − 0.243
CCDC No. 1426424
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Comparison of the structures

In Table 3, selected data are provided for a number of 
5-oxopyrazolidin-2-ium-1-ide derivatives, 12 of which con-
tained an arylidene sbstituent [4, 6, 19, 21, 25–29]. Featured 
are the C3 = O and N+=CC5,C6 bond distances, which are 
taken as indicators of the conjugation of the N+–N− bond 
with the carbonyl group of the 5-oxopyrazolidin-2-ium-1-ide 
derivative and the R5, R6CH = fragment, respectively: the 
values of the two bond lengths ranges for all 13 compounds 

are narrow being 1.226(2) to 1.242(11) (C–O) and 1.289(3) 
to 1.324(12) Å (C–N). No clear cut pattern w.r.t. to substitu-
ent effects emerges from these data regarding the interplanar 
angle between the aryl unit at R5 and the 5-oxopyrazolidin-
2-yl ring in compounds 3a, 4–15. It is argued that the smaller 
this angle the greater possibilitythere will be for conjugation 
between the two fragments. It is apparent that the smallest 
angles are found for compounds having both electron releas-
ing substituents in the benzylidene moiety and the absence 
of steric hindrance, arising from R1 and R2 substituents. 

Fig. 2   a Atom numbering scheme and atom connectivity for 3a. Probability ellipsoids are drawn at the 50% level, b view of the molecular con-
formation, looking along the edge of the phenyl and pyrazolyl rings

Table 2   Geometric parameters (Å, °) for intra- and intermolecular interactions

Symmetry codes: i = 1/2 + x, 3/2-y,-z; ii = x, − 1 + y, z; iii = − 1/2 + x, 1/2-y,-z; iv = x, 1/2 + y, 1/2-z; v = 1 + x, y, z
a Cg1 is the centroid of the pyrazolyl ring

Intramolecular hydrogen bonds

D–H···A D–H H···A D···A D–H···A

C6–H6···O4 0.95 2.20 2.631(5) 107
C8–H8···N2 0.95 2.38 2.987(5) 122
C17–H17A···O1 0.98 2.47 3.039(6) 116
C18–H18C···O1 0.98 2.40 2.947(6) 115

Intermolecular hydrogen bond

D–H···A D–H H···A D···A D–H···A

N3–H3···O2i 0.80 2.12 2.913(4) 173
C11–H11···O2ii 0.95 2.52 3.453(5) 166
C15–H15A···N2iii 0.98 2.60 3.503(6) 153
C18–H18B···O1iv 0.98 2.59 3.407(6) 141
C19–H19A···O1v 0.98 2.51 3.440(6) 158

Y–X···π interactionsa

Y–X···Cga X···Cg Xperp γ Y–X···Cg Y···Cg

C3 = O2···Cg1i 3.367(3) 3.144 20.94 129.0(2) 4.258(5)
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Thus compound 5, with a 4-methoxyphenyl substituent and 
only hydrogens at R1 and R2, has a zero interplanar angle, 
while compounds 9 and 10, each with 2,6-dichloroben-
zylidene substituents and alkyl groups at R1 and /or R2 have 
large interplanar angles > 58°. Interestingly the presence of 
polynuclear aryl groups such as pyren-1-yl in 12, anthracen-
9-yl in 13 and 2-hydroxynaphenylen-1-yl in 4, result in large 
interplanar angles, even in the absence of bulky substituents. 
In other cases, the lack of steric hindrance, even wth poorly 
electron releasing aryl substituents, e.g. 4-chlorophenyl in 
compounds 7 and 8, can result in small interplanar angles, 
but on the contrary, a strong electronwithdrawing group, 
such as the 4-nitrophenyl group in 11, even in the absence 
of steric effects, produces a significant interplanar angle of 
19.4°.

Other Cyclization Reactions of 1

In earlier articles [8, 30], we have reported on the formation 
of 2-oxo-1,3-oxazolidine 4-carbohydrazide derivatives from 
cyclization reactions of (1: PhCH2 or But), see Scheme 2. 
Thus, reaction of 1 with NaH lead to the formation of 2-oxo-
1,3-oxazolidine 4-carbohydrazide derivatives, 16 [8], while 
treatment with the weaker base, potassium carbonate, in 
the presence of methyl iodide, only the more reactive com-
pounds 1 underwent cyclizations to N-methylated 2-oxo-
1,3-oxazolidine 4-carbohydrazide derivatives, 17 [30, 31]. 
The tert-butyl esters, proved to be generally less susceptible 
to cyclizations and just provided the methylated products, 
alkyl N-[(E)-1-(2-benzylidene-1-methylhydrazinyl)-3-
hydroxy-1-oxopropan-2-yl]carbamates, 18, [30, 32]. The 

Fig. 3   a A part of a chain, C(5), of molecules generated from 
N3–H3···O2 intermolecular hydrogen bonds, augmented by C3–
O2···π(pyrazole) interactions, b a sheet of molecules, with a network 
of rings, R4

4(40), obtained from C19–H19A···O1 and C11–H11···O2 
intermolecular hydrogen bonds, c part of a two-molecule wide col-
umn of molecules, containing R3

3(26) rings, generated from C18–

H18B···O1 and C11–H11···O2 intermolecular hydrogen bonds, d 
part of another two-molecular wide column, also containing rings, 
obtained from C19–H19A···O1 and C15–H15A···N2 intermolecular 
hydrogen bonds. Table 2 contains the symmetry operations. Intermo-
lecular interactions are drawn as thin dashed lines
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presence of the basic reaction media leads to racemisations 
in some cases.

Conclusions

The crystal structure determination of the title com-
pound revealed similiarities with published structures of 
related compounds. A small interplanar angle between 
the 2-methoxyphenyl and the pyrazolidinyl ring allows 
extensive conjugation in the molecule. Compounds, (S)-
ROCH2CONHCH(CH2OH)CONHN = Ar are versatile 
precursors of different cyclized products, such as (Z)-(S)-
4-(tert-butylcarbonylamino)-2-(benzylidene)-5-oxopyra-

Table 3   Selected geometric parameters for 5-oxopyrazolidin-2-ium-1-ides (Å, °) 

Substituents (non-hydrogen) C3=O N+=C(C5,C6) N–N Interplanar angle aryl 
and oxopyrazolyl 
rings

Intramolecular hydrogen 
bonds involving aryl group 
and oxopyrazolyl moiety

References

4 R5 = 2-HO-naphthalen-1-yl; 
R2 = Ph

1.226(2) 1.2972(19) 1.3784(17) 42.22(7) O–H(hydroxy)···N2 [25]

3a R5 = 2-MeOC6H4, 
R3 = t-BuOC(O)NH

1.240(6) 1.296(5) 1.369(5) 12.1(2) C–H(aryl)···O(OMe) and 
C–H(aryl)···N2

This study

5 R5 = 4-MeOC6H4 1.2297(5) 1.2890(6) 1.3677(6) 0.00 C–H(aryl)···N2 [26]
6 R5 = Ph, R1 = i-Pr, 

R4 = PhCH2OC(O)NH
1.243 1.297 1.379 5.12 C–H(aryl)···N2 [19]

7 R5 = 4-ClC6H4, R1 = R2 = Me. 1.224(3) 1.296(3) 1.357(3) 1.64 C–H(aryl)···N2 [20]
8 R5 = 4-ClC6H4, 

R3 = 4-MeOC6H4

1.226(4) 1.295(4) 1.362(3) 4.83(17) C–H(aryl)···N2 [5]

9 R5 = 2.6-Cl2C6H3, 
R1 = R2 = Me

1.234 1.292 1.361 58.13 No C–H(aryl)···N2 [6]

10 R5 = 2,6-Cl2C6H3, R1 = i-Pr, 
R4 = PhCH2OC(O)NH

1.231(3) 1.297(3) 1.361(3) 62.40(12) No C–H(aryl)···N2 [19]

11 R5 = 4-O2NC6H4 1.232(3) 1.301(3) 1.356(2) 19.4 C–H(aryl)···N2 [27]
12 R5 = pyren-1-yl 1.229(11)

1.242(11)
1.325(12)
1.280(11)

1.342(9)
1.361(9)

29.6
23.7

C–H(aryl)···N2 [21]

13 R5 = anthracen-9-yl 1.241(8) 1.288(7) 1.361(6) 65.4 C–H(aryl)···N2 [28]
14 R5 = furan-2-yl, R6 = Me

R1, R3 = –C(CH2CH2)(CH2)C-
1.2378(14) 1.3097(15) 1.3757(14) 10.05(7) C–H(aryl)···N2 [4]

15 R5 = R6 = Me, 
R2 = 3-O2NC6H4, 
R3 = PhCH2OC(O)NH

1.2303(19) 1.291(2) 1.384(2) – – [29]
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Scheme 2   Reagents : (i) NaH, THF; (ii) MeI, K2CO3, Me2CO, 50 °C, 
24–48 h
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zolidin-2-ium-1-ides as well as 2-oxo-1,3-oxazolidine 
4-carbohydrazides, N-methylated 2-oxo-1,3-oxazolidine 
4-carbohydrazides derivatives and alkyl N-[(E)-1-(2-ben-
zylidene-1-methylhydrazinyl)-3-hydroxy-1-oxopropan-
2-yl]carbamates.

Supplementary Material

Full details of the crystal structure determination in cif 
format are available in the online version, at doi: (to be 
inserted), and have also been deposited with the Cambridge 
Crystallographic Data Centre with deposition number 
1426424. Copies can be obtained free of charge on writ-
ten application to CCDC, 12 Union Road, Cambridge, CB2 
1EZ, UK (fax: +44 1223 336033); on request by e-mail to 
deposit@ccdc.cam.ac.uk or by access to http://www.ccdc.
cam.ac.uk.
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