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Head and neck cancers (HNC) represent a heterogeneous cluster of aggressive

malignancies that account for 3% of all cancer cases in the UK. HNC is increasing

in frequency particularly in the developing world, which is related to changes in risk

factors. Unfortunately, themortality rate is high, which is chiefly attributed to late diagnosis

at stages where traditional treatments fail. Cancer immunotherapy has achieved great

successes in anti-tumor therapy. Checkpoint inhibitor (CI) antibodies enhance anti-tumor

activity by blocking inhibitory receptors to drive tumor-specific T and NK cell effector

responses. Since their introduction in 2011, CI antibodies have been approved for many

cancer types including HNC. Here, we examine the development of CI therapies and

look forward to future developments for treatment of HNC with CI therapies.
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INTRODUCTION

The notion of boosting anti-tumor immunity as a means of treating cancer has been escalated
by the recent unveiling of exciting new immunotherapies including the checkpoint inhibitor
(CI) antibodies (1). CI antibodies selectively activate adaptive immunity to locate and obliterate
tumors anywhere in the body and can also generate an enduring disease remission (2). The recent
approval of six CI antibody therapies for treating a range of cancers (3–8) heralds a golden age
of immunotherapy, with the promise of further novel, better immune-boosting technologies and
combination treatment strategies to come (9). But there are also caveats such as poor patient
response frequency, the potential for serious immune related side effects and generally a lack
of biomarkers which can guide the use of these therapies (10). In this review, we reflect on the
developing prospects for CI therapy to treat head and neck cancers (HNC).

HEAD AND NECK CANCERS

Head and neck cancers, of which the majority are squamous cell carcinomas (HNSCC), represent
a collection of neoplasms that are difficult to treat and whose incidence in the UK and worldwide
has increased by around 30% since 1990. In 2015, 12,000 individuals were diagnosed with HNC in
the UK [CRUK, oral cancer statistics, 2018], representing 3% of all cancers. Annually, there is an
estimated 600,000 cases worldwide, which affect the oral cavity, oropharyngeal, hypopharyngeal,
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and laryngeal tissues (11, 12). Increased incidence is associated
with known risk factors including high use of both tobacco and
alcohol. In certain parts of the world, in particular South East
Asia, the incidence of HNC is much higher and is reported
as high as 30% of all cancers in India, with the major risk
factor being betel quid (pan) chewing in all its forms, which
almost invariably includes tobacco (smokeless tobacco) (11, 12).
Many cases of HNC are also associated with infection by human
papillomavirus (HPV) strains 16 and 18, well established high-
risk viral types in other malignancies, most notably cervical
cancer (13). Patients with HPV+ tumors, however, have a better
outcome in terms of both survival and reduced risk of recurrence
compared with HNC in which no virus can be detected (13). This
latter observation may reflect a greater intrinsic immunogenicity
associated with HPV infection and this perception is supported
by immune profiling studies that find increased effector T cell
infiltrates in HPV+ compared with HPV− tumors (14).

The current treatment standard of care for HNSCC is
to treat recurring or metastatic tumors with cetuximab, an
anti-epidermal growth factor receptor antibody, together with
platinum based cis- or carboplatin chemotherapy plus 5-
flurouracil and methotrexate, which is further supported where
appropriate by surgery and radiotherapy (15), and in some
instances augmented by the taxanes, docetaxel and paclitaxel.

In 2016, two anti-PD-1 checkpoint inhibitor monoclonal
antibodies (mAbs), pembrolizumab and nivolumab provided
new options for cisplatin resistant recurring or metastatic
HNSCC following accelerated FDA approval based on
encouraging clinical trial data (16, 17) and precedence of
response efficacy in large phase III clinical trials of melanoma
and non-small cell lung cancer in which both antibodies had
already demonstrated significant improvements in patient
outcomes compared to current standard of care therapy
(4, 5, 18, 19). This has led to further clinical trials for HNSCC
with larger patient cohorts primarily with the aim of comparing
anti-PD-1 antibodies alone or together with current platinum-
based therapies and cetuximab. Currently, there are more than
90 clinical trials involving established CI inhibitor therapies and
HNSCC.

IMMUNE CHECKPOINTS

The immune system is a decision-making entity which, when
not required remains quiescent but vigilant for the emergence
of a new pathogenic challenge. Once that challenge arrives, the
immune system ramps up immune processes shaped to deal
specifically with each new pathogenic threat, powerful enough
to clear the pathogen, but which may also carry some risk
of bystander damage to host cells and tissues. After pathogen
clearance, the immune system also needs to return to its
former quiescent state to avoid any further damage. Immune
checkpoints, primarily receptors on immune cells, regulate both
immune response intensity to prevent host tissue damage, and
also resolve the immune response after pathogen clearance (20).
Interactions between checkpoint receptors and their ligands can
be restricted to immune cell subsets but can also take place

between immune and non-immune cells (21). Environmental
cues within an inflammatory lesion up-regulate expression of
receptors on non-hematopoietic and non-lymphoidal cells such
as epithelia that then engage with immune effector cells to
suppress and eventually quell their activity (22, 23).

There are several immune checkpoint receptors, all of which
have individual expression patterns on a variety of immune
cells and, therefore, contribute to immunoregulation at different
levels. Perhaps the best known andmost fundamental checkpoint
receptor is CTLA-4 (CD152) (24), which plays a role both in
the priming of naïve T cells and also control of effector T
cell response intensity (25–27). Other checkpoints include PD-
1 (CD279) (28, 29), ICOS (CD278) (30), 4-1BB (CD137) (31),
OX40 (CD134) (32), LAG-3 (CD223) (33), TIM-3 (34), TIGIT
(35), VISTA (36), BTLA (CD272) (37), and GITR (38), which
display a hierarchy of expression on different cell types and
therefore exert a more selective control over interactions both
between immune cell subsets and between immune and non-
immune cells (39). Analyses of immunogenic HNSCC, suggest
that in many individuals the tumors appear “primed” to make
potent anti-tumor effector T cell responses and can therefore
be considered suitable for CI therapy. There is an urgent
need, therefore, to develop genetic and histological response
biomarkers that efficiently identify and stratify responsive patient
cohorts to one or more of these CI therapies, together with other
therapies designed to increase tumor immunogenicity (40, 41).

CHECKPOINT INHIBITOR ANTIBODIES

Checkpoint inhibitor (CI) antibodies target immune cell
checkpoint receptors to selectively activate antigen-specific anti-
tumor T cell responses. In 2013, CI therapies together with
CAR-T cell immunotherapy were considered to be the most
important scientific breakthrough of the year by Science (42).
The efficacy of CI therapies has been ground-breaking in the
treatment of melanoma, non-small cell lung cancer (NSCLC)
and other cancers, including HNSCC, offering clear advances
over other established chemo- and immunotherapies in terms
of patient response frequency, as well as efficacy and durability
of response. In general, tumor immunogenicity is considered to
be the most important factor in determining whether or not a
particular type of cancer will respond to CI therapy (43), but this
has not prevented CI therapies from being tested in most types of
cancer in ongoing clinical trials and it will be some time before it
becomes apparent which cancers are most responsive to this type
of CI immunotherapy.

The six CI antibodies with FDA approval so far have
specificities for CTLA-4 (ipilimumab), PD-1 (pembrolizumab,
nivolumab) and PD-L1 (atezolizumab, durvalumab, and
avelumab) checkpoint receptors. Collectively, they have been
approved for advanced melanoma, non-small cell lung cancer,
renal cell carcinoma, urothelial and bladder cancer, HNSCC,
metastatic Merkel cell carcinoma, refractory classical Hodgkin
lymphoma and gastric cancer (Figures 1–3). Another CTLA-4
antibody, tremelimumab, is in advanced stages of clinical trials,
while cemiplimab an anti-PD-1 IgG4 antibody is likely to be
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FIGURE 1 | Time line of FDA approvals for ipilimumab (July 2018).

FIGURE 2 | Time line of FDA approvals for the anti-PD-1 antibodies pembrolizumab and nivolumab (July 2018).

FDA approved soon for the treatment of advanced cutaneous
squamous cell carcinoma. Many more CI therapies are under
development (44), and by 2025, the checkpoint inhibitor market
is expected to exceed $40 billion worldwide.

CTLA-4

The first checkpoint inhibitor antibody, ipilimumab, was
approved by the FDA in 2011 for the treatment of metastatic
melanoma (3) based on a phase III clinical trial in which
the antibody significantly extended melanoma patient survival
compared with standard of care therapy. The CTLA-4 (CD152)

target of ipilimumab is an inhibitory regulator of T cell
costimulation (45, 46), modulating the priming and activation of
naïve T cells, as well as the intensity and potency of both CD4+

T helper and CD8+ cytotoxic effector T cell responses. CTLA-
4 is an inhibitory counterpart to the stimulatory CD28 receptor
on T cells, which is an essential component of antigen-specific
naïve T cell costimulation during initial priming by dendritic
cells (DC). Like CD28, CTLA-4 on T cells interacts with the
B7.1/B7.2 (CD80/CD86) ligands on DC, but with higher affinity
to out-compete its costimulatory partner and thus to inhibit T cell
activation (47). As a CI therapy, therefore, antibody blockade of
CTLA-4 functions at a fundamental level to restore effective DC
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FIGURE 3 | Time line of FDA approvals for anti-PD-L1 antibodies Atezolizumab, Avelumab, and Durvalumab (July 2018).

priming of naïve T cells, inducing full activation and expansion
of nascent effector T cell populations against tumor neoantigens
(48).

The non-redundant function of CTLA-4 in regulating
immune cell homeostasis was demonstrated by CTLA-4
knockout mice, which die soon after birth from massive
lymphocytic infiltration of tissues and organs (49, 50). Healthy
homeostasis in thesemice could be restored, however, by infusion
of recombinant soluble CTLA4-Ig (51) or by generating chimeric
mice in which CTLA-4+ T cells are able to regulate CTLA-4− T
cells to prevent their unregulated expansion (52, 53). In humans,
analyses of heterozygous CTLA-4 gene haploinsufficiencies, or
reduced expression of CTLA-4 caused by mutation in the LRBA
gene (encoding the lipopolysaccharide-responsive and beige-
like anchor protein), which is thought to regulate CTLA-4
protein turnover (54), have also revealed complex pathological
phenotypes that correspond to unregulated T cell responses,
including Treg dysfunction, effector T cell hyper-proliferation,
non-lymphoid organ infiltration and autoantibody production
(55, 56). Patients with these pathologies also respond well to
abatacept, the human recombinant soluble CTLA4-Ig. These
observations demonstrate that CTLA-4 can be used by immune
cells to extrinsically regulate effector T cell populations. CTLA-
4 is constitutively expressed in higher amounts on regulatory T
cells (Treg) and is essential for their immunoregulatory function
(57), although how these cells utilize CTLA-4 to control effector
T cell populations still needs to be fully elucidated (58).

The therapeutic potential of CTLA-4 antibody blockade was
first demonstrated in murine cancer models of melanoma,
mammary and prostate cancer (59–61). In the B16-BL6 and
B16-F10 murine models of solid and metastatic melanoma,
in particular, anti-CTLA-4 antibody blockade of T cells alone
was not effective in eliminating tumors, and their potential for
driving anti-tumor immunity was revealed only after treatment
of the mice with a granulocyte/macrophage colony-stimulating
factor (GM-CSF)-expressing tumor cell vaccine, which enhanced
dendritic cell activity and also enhanced the generation of B16
melanoma-specific T cells (60). This increase in immunogenicity

provided the antigen required by tumor specific effector T cells,
allowing complete dissolution of the tumors. These experiments
in mice shaped the future therapeutic strategy for CI blockade
in humans and it also highlighted the requirement for tumor
immunogenicity as an essential requirement for successful
treatment. These early experiments in CI therapy highlighted
the importance of the mechanisms and environmental cues that
drive the release and display of tumor associated and tumor
specific neoantigens (62).

Ipilimumab was approved by the FDA in 2011 for use
in metastatic melanoma refractory to conventional treatments,
in which patients receiving ipilimumab with or without the
melanoma-derived gp100 tumor-associated antigenic peptide co-
vaccine demonstrated increased overall survival of 10 months
compared with 6.4 months in patients receiving the vaccine
alone (3). An interesting and important feature of ipilimumab
CI therapy is that it can induce an enduring remission
from melanoma disease in approximately 22% of metastatic
melanoma patients receiving the therapy (2). Despite this success,
ipilimumab has little beneficial effect for most patients receiving
it and it can also provoke very severe immune related adverse
events, including dermatitis, colitis, hypophysitis, and other
inflammatory events (3). Further, there is currently no reliable
biomarker with which to stratify patients by identifying those
responsive to the therapy. Ipilimumab is generally administered
four times over a period of approximately 3 months at a dose of 3
or 10 mg/kg body weight.

Despite the ground-breaking success of ipilimumab as the
first CI therapy, there is still some controversy of how it is able
to “release the brakes” of the immune system to drive anti-
tumor immunity. Although the simple hypothesis is that CTLA-
4 blockade generally inhibits CTLA-4 engagement with its B7
ligands, thereby allowing CD28 costimulation and full T cell
activation to take place, there is some evidence that other factors
may also be at play. Currently, the best accepted hypothesis is that
anti-CTLA-4 antibodies mediate at least some of their immune
boosting effects by engaging with activating Fc gamma receptors
(FcγR) by binding to CTLA-4 on Treg to induce macrophage
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mediated depletion of the Treg through antibody-dependent cell-
mediated cytotoxicity (ADCC) within the tumor environment or
at the infusion site (63). This depletion would therefore allow
reactivation of tumor infiltrating lymphocytes (TIL) to drive
productive anti-tumor immunity. Other groups have provided
evidence that anti-CTLA-4 antibodies can directly engage with
CTLA-4+ tumor cells to drive ADCC (64, 65), but this is unlikely
to fully explain the profound anti-tumor effects of CTLA-4 based
CI therapy.

No CTLA-4 based CI therapy has been approved for the
treatment of HNSCC but there are several clinical trials underway
involving either ipilimumab or tremelimumab. Almost all of
these are clinical trials involving combinations of anti-CTLA-4
mAbs either with other CI therapies, or current standard of care
HNSCC therapies such as cisplatin and cetuximab.

PD-1/PD-L1

Programmed death-1 (PD-1) is a checkpoint receptor primarily
expressed by T cells that plays a crucial role in regulating and
resolving adaptive effector T cell immune responses (28). PD-
1 binds two ligands PD-L1 (CD274, B7-H1) (66) and PD-L2
(CD273, B7-DC) (67). PD-L1, has a very broad distribution on
normal tissues and PD-1: PD-L1 interactions between immune
and non-immune cells within inflammatory milieus are thought
to maintain peripheral tolerance by suppressing effector T cell
responses (68, 69). Induction of signaling through the PD-
1 receptor suppresses IL-2 production in T cells and renders
them less antigen-responsive (70). This anergic “exhaustion”
phenotype is reversible by selective blockade of either PD-1 or
PD-L1 (71). PD-L2 expression is less abundant and restricted
mainly to professional antigen presenting cells but induces
similar effects in T cells (72).

The therapeutic benefits of CTLA-4 antibody blockade were
identified in murine tumor models, but the potential for
PD-1 or PD-L1 blockade as a novel CI therapy arose from
observational studies in humans. Soon after initial identification
of PD-L1, analysis of renal cell carcinoma (RCC) patient
survival outcomes following nephrectomy identified that patients
with high expression levels of PD-L1 on either RCC tumor
cells, RCC tumor infiltrating lymphocytes, or both, were at
significantly increased risk of death from aggressive tumor
progression (73). This important observation, together with
extensive analyses of PD-L1 on tumor cell lines (67) and tumors
including HNSCC (74), raised the notion of a novel immune
evasion mechanism through which cancer cells nullify anti-
tumor effector T cell responses by engaging PD-1 and inducing
the exhaustion phenotype (75). These latter observations in
HNSCC were further qualified by more recent studies in
which analysis by PCR and immunohistochemistry of 41
esophagectomy tumors identified elevated levels of PD-L1 to
be associated with a poor prognosis particularly in advanced
tumors (76), while another study, however, did not find a clear
correlation between tumor cell expression of PD-L1 and poor
prognosis, but did identify elevated expression of PD-L1 on
infiltrating immune cells, including T cells, macrophages and

dendritic cells, to correlate significantly with increased overall
survival (77). In addition, increased abundance of CD3+ and
CD8+ T cell infiltrates also associated with prolonged survival
outcomes (77).

With regard to HPV+ tumors, the PD-1:PD-L1 nexus may
be especially relevant given that the effector T cell exhaustion
phenotype, induced by engagement of PD-1 with PD-L1,
is often associated with viral infection (70), and is likely
a critical element in the induction of an artificial immune
privileged microenvironment (78). HPV+ oropharyngeal tumors
are associated with increased levels of T cell infiltrates and
following conventional therapy overall survival and reoccurrence
are both improved compared with HPV− tumors (77, 79)
suggesting that they are in effect primed for an anti-tumor
response because of the anti-viral response. However, although
HPV positive status signals a better outcome for HNSCC, recent
studies investigating HPV integration into the host genome
suggest that HPV integration into key gene sites including
the PD-L1 gene may be a critical marker for patient outcome
with reduced survival in patients with integration positive HPV
tumors (13).

These studies have led to the rapid development of both anti-
PD-1 and anti-PD-L1 checkpoint inhibitor therapies to block
the PD-1: PD-L1 axis, which have since demonstrated significant
improvements in patient outcomes in clinical trials for a range of
cancers including HNC over the last five years.

Antibodies specific for the PD-1 receptor were the first CI
therapies to be introduced after ipilimumab, initially for the
treatment of melanoma, and have had much greater success
than ipilimumab clinically and commercially. In 2017, sales of
KeytrudaTM (pembrolizumab) and OpdivoTM (nivolumab) were
reported as $3.8 billion and $4.95 billion respectively with
worldwide growth in sales from 2016 to 2017 of 171 and 31%
respectively. Because CI therapies, including the PD-1 antibodies,
target the immune system rather than the tumor, CI antibodies
can theoretically be used to treat many forms of cancer and this
notion has been successfully translated into the clinic with regard
to anti-PD-1.

Unlike the view of anti-CTLA-4 antibodies in which binding
FcγR may indirectly contribute to their therapeutic effects, anti-
PD-1 mAbs are mechanistically straightforward and function
simply by blocking engagement of PD-1 with its ligands PD-L1
and PD-L2. Indeed, engagement of FcγR was detrimental to their
therapeutic potency (80) and thus most anti-PD-1 antibodies
are of the IgG4 antibody subclass, which has weak binding
associations with FcγR.

So far, the anti-PD-1 antibodies have been FDA approved for
the treatment of advanced melanoma, non-small cell lung cancer,
renal cell carcinoma, classical Hodgkin’s lymphoma, urothelial
cancer, gastric cancer and head and neck cancer (Figure 2).
Throughout clinical trials, anti-PD-1 antibodies demonstrated
an increase in response frequency in patients compared with
current standard of care and were accompanied by lower risk and
frequency of serious immune related adverse events compared
with ipilimumab (81). Both pembrolizumab and nivolumab
were first approved for use by the FDA after being granted
an accelerated approval protocol in 2014 for the treatment of
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unresectable metastatic melanoma in patients carrying the V600
BRAF mutation (5, 82).

ANTI-PD-1 THERAPY IN HNSCC

Pembrolizumab, a humanized IgG4 antibody was approved
on August 5th, 2016 under the FDA’s accelerated approval
programme, based on data from the KEYNOTE-012 phase
1b clinical trial, which assessed the therapeutic effects of
pembrolizumab in patients with HNSCC, triple negative breast
cancer, gastric cancer and urothelial cancer (16). HNSCC patients
whose disease had progressed following platinum-based therapy
received pembrolizumab at either 10 mg/kg body weight every
2 weeks (n = 53) or a fixed dose of 200mg every 3 weeks (n =

121) until disease progression or the development of intolerable
toxicity (16). Patients received treatment for a maximum of 24
months. The overall response rate in the combined HNSCC
patient cohorts was 16 with 5% of those achieving a complete
response. The duration of response in 82% of the responsive
patients lasted more than 6 months. Pembrolizumab has also
shown clinically significant activity in patients with both HPV+

orHPV− tumors (83). Among the immune related adverse events
associated with therapy were pneumonitis, colitis, hepatitis,
adrenal insufficiency, diabetes mellitus, and skin toxicities (16).
Despite these promising results, however, pembrolizumab failed
to meet its pre-specified primary endpoint of overall survival in
the larger phase III KEYNOTE-040 clinical trial, which compared
treatment with pembrolizumab at a fixed dose of 200mg
every 3 weeks with cetuximab, methotrexate (ESMO 2017 Press
Release). Another phase III KEYNOTE trial (KEYNOTE-048,
NCT02358031) is currently underway in which pembrolizumab
alone (fixed 200mg dose in 3 weekly cycles for up to 24 months),
or pembrolizumab (fixed 200mg dose) together with a platinum-
based therapy plus 5-fluorouracil and compared with cetuximab
combined with a platinum-based therapy and 5-flurouracil. The
primary completion date for this trial is 31st December 2018. In
addition, more than 50 clinical trials involving pembrolizumab in
HNSCC are underway, most of which are focussed on therapies
that combine radiotherapy or platinum-based therapies with
pembrolizumab.

Nivolumab, a fully human IgG4 was also FDA approved
in 2016 following completion of the CheckMate-141 open-
label, phase III clinical trial in which 361 HNSCC patients
with recurrent squamous-cell carcinoma of the head and
neck whose disease had progressed within 6 months after
platinum-based chemotherapy, were treated with nivolumab
or standard therapy alone (17). Patients received nivolumab
at a dose of 3 mg/kg every 2 weeks with the end point of
overall survival as the critical marker of improvement over
the standard of care therapy. Patients receiving nivolumab
were compared at a 2:1 ratio with patients receiving post-
platinum standard of care therapies including methotrexate,
docetaxel and cetuximab (17). Patients receiving nivolumab
had an overall survival median of 7.5 months [95% confidence
interval [CI], 5.5 to 9.1] in the nivolumab group compared
with 5.1 months (95% CI, 4.0 to 6.0) in the standard-therapy

group (17). PD-L1 expression levels were examined in 72%
of the 361 patients in the clinical study and 57.1% of those
had PD-L1 expression levels of ≥ 1%. Individuals with PD-
L1 levels ≥ 1% responded better to nivolumab compared with
the patient cohort in which PD-L1 was less than 1% (17).
Patients specifically with oropharyngeal HNSCC also responded
better to nivolumab independent of their HPV status. This
study also revealed that quality of life measures in patients
receiving nivolumab remained stable or improved slightly,
whereas patients receiving standard therapy suffered significant
deterioration at 15 weeks after commencement of therapy
(17). Toxicities included pneumonitis, dermatitis, and endocrine
dysfunction, although serious adverse events were significantly
lower in the nivolumab compared with standard care study
arm (17). As for pembrolizumab, nivolumab is currently the
subject of several further clinical trials, primarily in which it
is paired with other treatment options including anti-CTLA-4
ipilimumab (84).

ANTI-PD-L1 ANTIBODIES

The most recently FDA approved CI antibodies are three anti-
PD-L1 antibodies—atezolizumab, avelumab and durvalumab;
approved for urothelial/bladder cancer (6–8), non-small cell lung
cancer (atezolizumab, durvalumab) and Merkel cell carcinoma
(avelumab). All of these therapies rely on expression of PD-L1
on the target tumor, allowing both patient stratification through
increased response frequency based on tumor expression levels
of PD-L1.

Atezolizumab, a humanized IgG1 antibody engineered to
reduce any potential for ADCC or CDC, was the first anti-PD-L1
antibody to be approved for use in advanced urothelial carcinoma
patients whose disease had worsened after a platinum-based
therapy (6). Bladder tumors have relatively high expression levels
of PD-L1 compared with other tumors identifying this type of
cancer as a suitable target for anti-PD-L1 antibodies (85). Patients
in this phase II clinical trial were segregated according to tumor-
infiltrating immune cell and tumor levels of PD-L1 expression
by immunohistochemistry using the Ventana SP142 assay (6).
Immune cell (IC) PD-L1 status was grouped into IC0 (<1%), IC1
(≥1% but <5%) and IC2/3 (≥5%). Over 26% of patients with
PD-L1 positive tumor TIL experienced an anti-tumor response
compared with 9.5% negative for PD-L1 supporting need for
PD-L1 screening.

Avelumab, a fully human IgG1 antibody with retained
potential to induce ADCC, was first approved for the treatment of
Merkel cell carcinoma (MCC) (7), an aggressive cancer associated
with polyomavirus infection with poor prognosis, ineffective
chemotherapeutic options and low survival compared with other
skin cancers. Avelumab therapy increased significantly overall
survival, progression-free survival and durability of response
compared with chemotherapy (7). The efficacy of avelumab
was independent of PD-L1 tumor expression or polyomavirus
infection (7).

Durvalumab, a fully human IgG1 engineered to reduce ADCC
or CDC, was first approved for the treatment of urothelial
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carcinoma followed by approval for stage III unresectable NSCLC
(8, 86).

For HNSCC, all three anti-PD-L1 antibodies are currently in
clinical trials and in nearly all cases they are being combined with
other experimental or established therapies.

COMBINATION THERAPY

Although all of the current six CI therapies can be used as
single agent therapeutics, the emphasis now is on identifying
combinations of CI therapy or CI therapy with other traditional
therapies that will increase both anti-tumor efficacy and
patient response frequency. Since 2015, many combination
therapies have increased patient responses compared with
single CI therapies alone. In metastatic melanoma, combination
of nivolumab and ipilimumab (87) were significantly more
effective in generating productive shrinkage of tumors in a
higher frequency of patients than either of the CI therapeutics
alone. For HNSCC, there are >100 clinical trials registered
and most of those are combination therapies (Figures 4, 5).
The predominant partner therapy for anti-PD-1 and PD-
L1 antibody therapies is radiotherapy in either stereotactic
body or intensity modulated forms, which is often further
supported by established chemotherapy. Radiotherapy seems
a particularly good partner for CI therapies, because it can
expose tumor-associated neoantigens that in turn can induce the
nascent effector T cell responses that develop under cover of
checkpoint blockade (88, 89). With regard to surgery followed by
radiotherapy and standard chemotherapy, there is an interesting
dichotomy of how checkpoint inhibitors have been combined in
current clinical trials. While one strategy is to administer either
anti-PD-1 (pembrolizumab) or PD-L1 (durvalumab) antibodies
in the weeks prior to resection, another strategy is to administer
these checkpoint inhibitors just after surgery. Presumably, the
strategy of administration prior to surgery is based on the
notion that pre-treatment will prime an anti-tumor immunity
to enable the immune system to clear any residual tumor cells
missed during the surgical procedure. Anti-PD-L1 antibody,
durvalumab, is notable for its entry into several HNSCC clinical
trials together with tremelimumab, the anti-CTLA-4 mAb (see
Figure 5).

Anti-PD-1 and PD-L1 antibodies are also in clinical trials
in combination with a wide range of experimental treatments
that can be broadly divided into therapies that either target and
activate host immunity or target and impair tumor survival.
Inhibitors that target the enzyme indoleamine 2,3 dioxygenase
(IDO) (90, 91), which is used by regulatory immune cells to
deplete tryptophan availability to effector T cells, are particularly
notable in these experimental combination therapies. In a similar
vein, Toll-like receptor agonists, receptive to nucleic acids are
also well-represented. Recent evidence suggests the endoplasmic
reticulum associated DNA sensor stimulator of interferon genes
(STING) to be a key player in a pathway to sense cytosolic
nucleic acids (92, 93) and reverse tumor immunosuppression
(94). DC activation through the STING pathway can promote
tumor rejection after conventional cancer therapies such as

FIGURE 4 | Anti-PD-1 antibodies pembrolizumab and nivolumab currently in

clinical trials as monotherapy or combined with radiotherapy, chemotherapy,

cetuximab, ipilimumab (anti-CTLA-4), surgery, or novel immune activating or

tumor suppressive therapies as of July 2018. Circle size reflects relative

number of times each type of therapy has been combined with anti-PD-1

therapy.

FIGURE 5 | Anti-PD-L1 antibodies atezolizumab, avelumab and durvalumab

currently in clinical trials as monotherapy or combined with radiotherapy,

chemotherapy, cetuximab, tremelimumab (anti-CTLA-4), surgery, or novel

immune activating or tumor suppressive therapies as of July 2018. Circle size

reflects relative number of times each type of therapy has been combined with

anti-PD-L1 therapy.

radiation therapy (95). In preclinical studies, STING agonists
have been shown to be effective alone or in combination with
PD-1/PD-L1 blockade, particularly with established tumors that
are refractory to checkpoint blockade alone (96, 97). Signalling
cascade inhibitors, e.g., PI3K inhibitors (98, 99) or novel tumor
associated peptides are examples of therapies that target tumor
cells (100).
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CI therapies in combination with other immune activating
therapies offer the potential to increase response rates for a
range of cancers including HNSCC, but there will also be intense
focus on immune related adverse events, especially with regard
to both bystander damage of otherwise healthy tissues and to
local peritumoral tissues. This will be particularly important for
HNSCC given the delicacy of many of the structures within
and surrounding the oral cavity and oropharynx. Analysis of
safety in patients with renal cell carcinoma that received different
combination doses of nivolumab and ipilimumab indicated that
the frequency of treatment related adverse effects were ubiquitous
but manageable (101). Very few of the adverse events, however,
were specific to the tumor site and were typically general, e.g.,
diarrhea and pyrexia (101).

OTHER CI THERAPIES

CTLA-4 and PD-1 are not the only immunoregulatory receptors
associated with anti-tumor T cell immunity. There are several
more checkpoint proteins under investigation, which may
have direct therapeutic use or might be used to improve
patient stratification and prognosis. These can be divided into
two categories—immunosuppressive and immunostimulatory
receptors with examples of the former being Lag-3, Tim3, TIGIT,
BTLA and VISTA, and of the latter 4-1BB (CD137), OX40
(CD134), ICOS, and CD40. The expression of these receptors
on tumor cells, myeloid, and lymphoid immune cells is variable
and tumor dependent, and it is likely that some of them will find
future therapeutic value as CI therapies (9).

MODIFYING CURRENT CI THERAPIES

The development of novel CI therapies over the next few years
will continue to be an important focus and a critical aspect
for future improvement is to fully elucidate how checkpoint
inhibitor therapies are functioning at a molecular level. As a
corollary to improving CI therapies, identifying mechanisms that
will also condition T cells to respond consistently and effectively
following CI therapy is also paramount. Much of this work
involves identifying next generation vaccines or mechanisms to
shape effector T cell phenotypes with potent anti-tumor activity.
Both of these strategies will lead to higher patient response
frequencies, better safety and hopefully an enduring immunity
in most patients.

A generally less studied aspect of CI receptors is that of
the functional effects that their soluble counterparts may have
on therapeutic outcomes. These alternate receptor isoforms are
either actively secreted by the cell or in some cases cleaved off
the cell surface to exert their effects (102–105). Both CTLA-4 and
PD-1 have soluble counterparts that are produced by alternative
splicing of each gene during translation and are therefore under
transcriptional control of the cell that expresses them. Soluble
CTLA-4 (sCTLA-4) is produced from the omission of exon 3,
encoding the transmembrane domain during alternative splicing
of the CTLA-4 gene (46). In addition, a frame shift during
splicing of exon 2 to 3 gives rise to a unique C terminal amino

acid sequence that replaces the cytoplasmic domain of the CTLA-
4 receptor. The soluble isoform of PD-1 (sPD-1) is also produced
by omission of exon 3 during alternative splicing. These soluble
isoforms may be useful as response biomarkers for patients
receiving CI therapy but may also impinge upon the therapy
itself.

Soluble CTLA-4 is produced by Treg, but also resting T cells,
monocytes, B cells and is capable of binding B7.1, B7.2 and B7-
H2 (ICOS-L) on APC (106). This secretable isoform can also be
produced by some non-immune cells such as pituitary cells (107).
Analysis of several autoimmune diseases originally identified
high serum levels of sCTLA-4 compared with healthy donors
raising the notion that this isoform actively contributes in some
way to immune regulation. Indeed, selective antibody blockade
of sCTLA-4 enhanced antigen-specific T cell responses in vitro
significantly increasing cell proliferation and effector cytokine
production compared with isotype or anti-CTLA-4 antibodies.
Further, in the diffuse B16F10 murine model of metastatic
melanoma, selective blockade had reduced the number of tumor
lesions comparably with conventional anti-CTLA-4 antibody
treatment (106).

The CTLA-4 receptor exists on cell surfaces as a dimer
but the dimerizing cysteine residue at position 122 of the
receptor isoform is lost during alternative splicing, which
has led to the assumption that sCTLA-4 is secreted as a
monomer and therefore has less potency that its dimeric
cell-bound counterpart. However, another cysteine is present
in the C terminal unique amino acid sequence of sCTLA-4
raising the possibility that sCTLA-4 may be as functionally
relevant as the receptor isoform in terms of immune
regulation.

Does sCTLA-4, therefore, have any effect on current anti-
CTLA-4 based CI therapy? A recent retrospective study
of melanoma patient responses to ipilimumab CI therapy
demonstrated that patients with relatively high serum levels
of sCTLA-4 were more likely to respond to ipilimumab
treatment compared to individuals with low or absent serum
levels (108). Indeed, selective antibody blockade of sCTLA-4
enhanced antigen-specific T cell responses in vitro significantly
increasing cell proliferation and effector cytokine production
compared with isotype or anti-CTLA-4 antibodies (109). These
studies suggest that measuring sCTLA-4 serum levels may be
a useful biomarker to stratify patients most likely to respond
to therapy and even hint that sCTLA-4 may form a target
for therapy. Indeed, analyses of CTLA-4 and sCTLA-4 in
cancer cells lines suggest that some tumors may use either
or both isoforms as part of a previously overlooked immune
evasion strategy (110). Several cancer cell lines and tumor
sections have been identified to express CTLA-4 with some
evidence that some may also be able to produce sCTLA-4 to
suppress effector T cell responses (64). In a seminal analysis
of primary melanoma cell lines, Laurent et al. identified some
cell lines to express and secrete sCTLA-4 (110). Relatively
high levels of sCTLA-4 could also be detected in the sera
and pleural effusions of mesothelioma patients, suggesting that
it may be contributing to some aspect of immune regulation
(111). One hypothesis is that tumor cells or induced Treg
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secrete sCTLA-4 within the local tumor milieu to suppress
effector anti-tumor T cell responses. Even if sCTLA-4 has
no functional activity at all, anti-CTLA-4 antibodies will
bind sCTLA-4, which over time could reduce the amount of
antibody available to target the receptor isoform. Although
there is evidence of exosome production of PD-L1 as an
immunosuppressive mechanism in HNSCC (112), the role that
soluble isoforms of CI receptors play in HNSCC is still largely
unexplored.

CONCLUSIONS

Checkpoint inhibitor antibodies for the treatment of HNSCC
have demonstrated clear benefits in terms of patients’ survival
and durability of response but can also induce serious immune

related adverse events coupled with an inability to consistently
and accurately identify patients likely to respond to this type of
therapy. The focus now must be on understanding the genetic
signatures most likely to be associated with a productive response
to CI therapy, while augmenting current therapies to improve
their reliability. Soluble isoforms of CI receptors must also be
factored to account for any immunoregulatory role or impact on
current therapy that they might have.
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