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Abstract 19 

Abiotic processes involving the reactive ammonia-oxidation intermediates nitric oxide (NO) or 20 

hydroxylamine (NH2OH) for N2O production have been indicated recently. The latter process would 21 

require the availability of substantial amounts of free NH2OH for chemical reactions during ammonia 22 

(NH3) oxidation, but little is known about extracellular NH2OH formation by the different clades of 23 

ammonia-oxidizing microbes. Here we determined extracellular NH2OH concentrations in culture 24 

media of several ammonia-oxidizing bacteria (AOB) and archaea (AOA), as well as one complete 25 

ammonia oxidizer (comammox) enrichment (Ca. Nitrospira inopinata) during incubation under 26 

standard cultivation conditions. NH2OH was measurable in the incubation media of Nitrosomonas 27 

europaea, Nitrosospira multiformis, Nitrososphaera gargensis, and Ca. Nitrosotenuis uzonensis, but 28 

not in media of the other tested AOB and AOA. NH2OH was also formed by the comammox 29 

enrichment during NH3 oxidation. This enrichment exhibited the largest NH2OH:final product ratio 30 

(1.92%), followed by N. multiformis (0.56%) and N. gargensis (0.46%). The maximum proportions of 31 

NH4
+ converted to N2O via extracellular NH2OH during incubation, estimated on the basis of NH2OH 32 

abiotic conversion rates, were 0.12%, 0.08% and 0.14% for AOB, AOA and Ca. Nitrospira inopinata, 33 

respectively, and were consistent with published NH4
+
:N2O conversion ratios for AOB and AOA. 34 

 35 

Key words: hydroxylamine; greenhouse gas; biotic-abiotic; N2O formation mechanism; ammonia 36 

oxidizer; reactive N, comammox 37 
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 41 

1. Introduction 42 

Nitrous oxide (N2O) is an important greenhouse gas and is currently the third largest contributor to 43 

global warming, after carbon dioxide (CO2) and methane (CH4). N2O also has deleterious effects in the 44 

stratosphere, where it is split photolytically and catalyzes the destruction of atmospheric ozone 
1
. In 45 

the past two centuries, the atmospheric N2O concentration has increased by about 20% from pre-46 

industrial levels of 270 ppbv to the current level of 324 ppbv 2. In addition to denitrification and 47 

dissimilatory nitrate reduction to ammonia, aerobic ammonia (NH3) oxidation contributes significantly 48 

to N2O production in soil 3. Traditionally, two different biochemical routes are proposed for N2O 49 

production during NH3 oxidation in AOB. The first is the oxidation of hydroxylamine (NH2OH) to 50 

nitric oxide (NO) by hydroxylamine dehydrogenase (HAO) and subsequent reduction to N2O 51 

catalyzed by NO reductase 4. The second pathway is the so-called nitrifier-denitrification, by which 52 

nitrite (NO2
-) is reduced to NO and N2O by nitrite reductase (NIR) and NO reductase (NOR), 53 

respectively 
4-6

. However, recent studies revealed two other routes for the N2O production from the 54 

AOB N. europaea under anaerobic conditions. One is the direct oxidation of NH2OH to N2O by the 55 

enzyme cytochrome (cyt) P460 7, and  nitrification intermediate NO 8. Nitrifier-denitrification has 56 

been suggested to play a crucial role in N2O formation at low O2 and low pH 
9
, whereas pathways 57 

related to biological or chemical reactions of ammonia oxidation intermediates (NH2OH, nitroxyl 58 

(HNO), NO) and/or its product (NO2
-) may be more important for N2O production at high ammonium 59 

(NH4
+
) levels and sufficient O2 supply 

10
. However, not all AOB share the same route for N2O 60 

production. N. communis, for example, has no homologues of genes encoding a canonical copper-61 

containing NirK 
11

. Thus, it is unlikely to be able to conduct canonical nitrifier-denitrification, even 62 

though low production of N2O has been detected in a N. communis culture 
12

. Most studies on AOB 63 
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N2O production pathways have focused on N. europaea ATCC 19718 
4, 5, 13

, and different biochemical 64 

routes responsible for N2O production in other AOB cannot be excluded. 65 

In recent years, ammonia oxidation-related N2O production by several AOA strains has been reported 66 

14-16
 and AOA abundance exceeds that of AOB by several orders of magnitude in some ecosystems 

17, 
67 

18. However, the mechanism(s) of N2O production by AOA appear to differ from that of AOB, as 68 

AOA lack genes encoding a canonical HAO and NOR, which are involved in N2O production by AOB 69 

19-21
. Recent research showed that the soil AOA Nitrososphaera viennensis is indeed not able to 70 

generate N2O through nitrifier-denitrification 15. Instead, for this organism hybrid N2O formation from 71 

NH4
+ and NO2

- was demonstrated in 15N-labeling experiments 15, indicating a N2O production pathway 72 

from NO2
-
 and an intermediate of ammonia oxidation, e.g. NH2OH or NO.  Recently, it was confirmed 73 

that N2O formation by this AOA under anoxic conditions results from the abiotic reaction of NO with 74 

medium or cellular components 22. However, the mechanism of N2O production by AOA under oxic 75 

conditions remains unclear. Furthermore, complete bacterial nitrifiers (comammox) of the genus 76 

Nitrospira that perform ammonia oxidation via NO2
- to nitrate (NO3

-) have recently been enriched 23, 24, 77 

but nothing is yet known about N2O production by these microorganisms. 78 

Hydroxylamine has long been known as an important intermediate of chemolithoautotrophic AOB 
25

 79 

and was reported to be an intermediate of the marine AOA Nitrosopumilus maritimus 26. Surprisingly,  80 

genes homologous to those encoding HAO in AOB have not been found in AOA genomes 
20, 21

, 81 

indicating that AOA either encode a novel enzyme for NH2OH oxidation or form during NH3 82 

oxidation an initial oxidation product other than NH2OH, e.g. HNO 21. Recent research showed that 83 

NO2
-
 can be formed after addition of NH2OH in N. viennensis, leading to the proposal of a novel 84 

enzymatic mechanism for the production of NO2
-
 involving NH2OH and NO in AOA 

22
. 85 

Hydroxylamine may play a crucial role in N2O production from soils under oxic conditions 27-30, as 86 

indicated by the close relationship between NH2OH concentration and N2O formation observed in 87 

forest soil 29, 30. Further support for this hypothesis comes from the intramolecular distribution of 15N 88 

within the linear, asymmetric NNO molecule, the so-called 15N site preference (SP) 31, which is 89 

distinctly different between N2O produced via denitrification and nitrification 
32

. In pure cultures of 90 
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different nitrifiers and denitrifiers, Sutka et al. 
33

 found SP values near 0‰ for N2O formed by NO2
-
 91 

and NO3
- reduction (via classical denitrification and nitrifier denitrification), while SP values were 92 

30.8–35.6‰ for N2O produced during aerobic NH3 and NH2OH oxidation, which is similar to SP 93 

values reported by Heil et al. 
34

 for N2O produced by chemical reactions of NH2OH with Fe
3+

, Cu
2+

 94 

and NO2
-. Santoro et al. 16 also reported an SP value of ~30‰ for N2O produced by an enrichment 95 

culture of a marine AOA, although soil AOA showed different SP values with a range of 13-30‰ 14. 96 

Recently, Soler-Jofra et al. 
35

 observed a significant contribution of the abiotic reaction between 97 

NH2OH and NO2
- to N2O formation in a full-scale nitrification reactor. All these findings indicate that 98 

chemical reactions involving NH2OH may play an important role in N2O production during 99 

chemolithoautotrophic NH3 oxidation. However, this would require the availability of free NH2OH, 100 

either in the growth medium or, potentially, in the periplasm, for abiotic N2O formation through 101 

chemical reactions with substances such as NO2
-
, MnO2 and Fe

3+
. Quantitative data on extracellular 102 

NH2OH production by AOB, AOA and comammox are therefore urgently required in order to better 103 

estimate the importance of coupled biotic–abiotic N2O production during microbial NH3 oxidation.  104 

In this study, we aimed to answer several important questions regarding N2O formation by ammonia 105 

oxidizing microbes: (1) What are the extracellular concentrations of NH2OH during NH3 oxidation by 106 

different ammonia oxidizers? (2) If these concentrations are significant, what is the NH2OH:final 107 

product ratio for AOB, AOA, and comammox? (3) Can we estimate the contribution of extracellular 108 

NH2OH to abiotic N2O production during NH3 oxidation? (4) What is the role of NO2
-
 in stabilizing 109 

NH2OH and in abiotic conversion of NH2OH to N2O? To address these questions, temporal changes in 110 

NH2OH concentration were determined during incubation of pure and enriched cultures of 111 

chemolithoautotrophic AOB, AOA and comammox (obtained from soil and aquatic environments) at 112 

two NH4
+ concentrations, 2 mM and 0.5 mM. These experiments were complemented by measurement 113 

of abiotic NH2OH decay rates and abiotic N2O production involving NH2OH in different media and at 114 

different incubation temperatures and NO2
- concentrations. These analyses were performed to 115 

calculate extracellular NH2OH production ratios on a final product basis, to quantify the coupled 116 

biotic–abiotic NH4
+
–NH2OH–N2O conversion rate of AOB, AOA and comammox, and to explore the 117 

role of NO2
- in the abiotic NH4

+–NH2OH–N2O conversion. We hypothesize that the coupled biotic–118 
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abiotic N2O production is an important mechanism of N2O production during NH4
+
 oxidation, at least 119 

in some ammonia oxidizers. 120 

 121 

2. Materials and methods 122 

2.1 Strains and cultivation 123 

This study involved four AOB (Nitrosomonas europaea ATCC 19718, Nitrosospira multiformis 124 

ATCC 25196, Nitrosomonas nitrosa Nm90, Nitrosomonas communis Nm2), three AOA 125 

(Nitrososphaera gargensis, Nitrososphaera viennensis and Ca. Nitrosotalea sp. Nd2), one AOA 126 

enrichment (Ca. Nitrosotenuis uzonensis) and one comammox enrichment (Ca. Nitrospira inopinata). 127 

N. europaea, N. multiformis, N. communis, N. viennensis and Ca. N. sp. Nd2 were isolated from soil 
6, 

128 

20, 36, 37; N. nitrosa Nm90 was isolated from industrial sewage 36; N. gargensis and Ca. N. uzonensis 129 

were isolated from thermal springs 38, 39; Ca. N. inopinata was enriched from a hot water outflow of a 130 

deep oil exploration well 
23

. 131 

N. europaea and N. multiformis were maintained at 30°C in modified Skinner and Walker (S&W) 132 

medium 
40

, containing 0.2 g KH2PO4, 0.04 g CaCl2·2 H2O, 0.04 g MgSO4·7 H2O, 1 ml FeNaEDTA 133 

(7.5 mM), 1 ml phenol red (0.05%) as pH indicator, 10 ml l
-1

 HEPES buffer (1 M HEPES, 0.6 M 134 

NaOH) and 4 mM (NH4)2SO4 L
-1. The pH was regularly adjusted to 7.7 by addition of sterilized 5% 135 

(w/v) Na2CO3. The acidophilic AOA Ca. N. sp. Nd2 and the AOA N. viennensis were maintained in 136 

freshwater medium at 35 and 37°C, respectively, according to Tourna et al. 
20

. The pH for the Ca. N. 137 

sp. Nd2 was adjusted to 5.0-5.3 by HCl and the NH4
+ concentration was kept at 0.5 mM by routinely 138 

adding NH4Cl stock solution. The pH for N. viennensis was adjusted to 7.5 by addition of 10 ml l
-1

 139 

HEPES buffer (1 M HEPES, 0.6 M NaOH). N. viennensis was supplied with 1 mM NH4Cl and 0.1 140 

mM pyruvate. The AOB N. nitrosa and N. communis, the AOA N. gargensis, and the enrichments 141 

containing Ca. N. uzonensis and Ca. N. inopinata were maintained at 37, 28, 46, 46 and 37°C, 142 

respectively, in AOA medium modified from Lebedeva et al. 38 containing (L-1) 75 mg KCl, 50 mg 143 

KH2PO4, 584 mg NaCl, 50 mg MgSO4 · 7 H2O, 1 ml of trace element solution (AOA-TES), 1 ml of 144 
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selenium-tungsten solution (SWS), 4 g CaCO3 (mostly undissolved, acting as a solid buffer reservoir 145 

and growth surface) and 5 ml of NH4Cl (from an autoclaved 0.2 M stock solution). For a detailed 146 

description of the composition of TES and SWS please refer to Widdel 41.  147 

2.2 Incubation experiments 148 

Metabolically active cultures were concentrated and washed twice using fresh medium without NH4
+ 149 

by centrifugation (Table S1), and resuspended in fresh medium containing 0.5 or 2 mM NH4
+. Note 150 

that the added NH4
+
 concentrations were not optimal for all strains tested, but use of the same 151 

concentrations for all strains maximized comparability of the chemical factors contributing to N2O 152 

formation in the various growth media. Ca. N. sp. Nd2 was incubated with 0.5 mM NH4
+ only, as this 153 

culture grew extremely slowly and is inhibited by high nitrous acid concentration formed under acidic 154 

conditions. Cultures were incubated under different conditions and for different periods depending on 155 

their different growth characteristics (Table S1). All treatments were carried out with 4-6 replicates. 156 

Only N. communis (90 rpm, New Brunswick™ Innova® 42 Shaker) and N. nitrosa (90 rpm, GFL 157 

3019 shaker) cultures were shaken during incubation. Before each sampling, bottles of all cultures 158 

were mixed by shaking by hand. Samples (3 ml) for chemical and protein analyses were taken at 0, 2, 159 

5, 8 and 13 h on the first day, and thereafter every 12 or 24 h, and transferred to 2-ml and 1.5-ml 160 

autoclaved Eppendorf tubes, respectively. The tubes were centrifuged immediately at 8000 g (4°C) for 161 

10 min, and 1.2 ml of supernatant was transferred to two 1.5 ml Eppendorf tubes containing 75 µl 480 162 

mM (for 2 mM NH4
+
 treatment) or 160 mM (for 0.5 mM NH4

+
 treatment) sulfanilamide in 0.8 M HCl 163 

for quantification of NH2OH (see below). Another 0.2 ml supernatant was transferred to a 1.5-ml 164 

Eppendorf tube for NH4
+
 and NO2

-
 analyses (see below) and the remaining liquid and pellet were 165 

frozen at -20°C for protein quantification (see below). To prevent any potential effect of phenol red on 166 

NH2OH analysis, N. europaea and N. multiformis were grown in parallel in media buffered with 167 

HEPES without and with phenol red to facilitate maintenance of pH between pH 7.5 and 8 by addition 168 

of sterilized 5% (w/v) Na2CO3. Ca. N. sp. Nd2 cultures were not buffered and pH was determined 169 

daily by pH measurement of 2-ml samples. For cultures buffered with CaCO3, pH was stable at ~8.2 170 

throughout the incubation period.  171 
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2.3 Determination of abiotic NH2OH decay rates under ambient air conditions 172 

Abiotic NH2OH decay was quantified in S&W (with HEPES buffer) and modified AOA (with CaCO3 173 

buffer) media used in this study at the respective growth temperatures. The freshwater medium for Ca. 174 

N. sp. Nd2 and N. viennensis was not tested for abiotic NH2OH decay since no extracellular NH2OH 175 

was observed during NH3 oxidation by these cultures. Well-aerated medium (40 ml) was added to 176 

120-ml glass serum bottles followed by different amounts (4, 8, 20 and 40 µl) of 5 mM NH2OH to 177 

reach final concentrations of 0.5, 1, 2.5 and 5 µM, respectively. Subsequently, 1.6 ml 50 mM NO2
-
 178 

was added to give a final concentration of 2 mM to simulate abiotic NH2OH decay in the presence of 179 

NO2
-. Bottles were then capped with aluminum foil and incubated at 30, 37 and 46°C. Samples (1.2 ml) 180 

were taken after 0, 1, 2, 5 and 8 h and transferred to 1.5-ml Eppendorf tubes containing 75 µl 480 mM 181 

(for 2 mM NO2
- treatment) or 160 mM (for the treatment without NO2

- addition) sulfanilamide in 0.8 182 

M HCl. Samples were frozen at -20°C until quantification of NH2OH (see below).   183 

2.4 Chemical assays 184 

Hydroxylamine concentration was determined according to the method of Liu et al. 30. Briefly, 1.2 ml 185 

of sample, thawed at room temperature, was transferred to a 22-ml glass vial and 4.8 ml deionized 186 

water was added, yielding a pH of ~2. Then, 0.6 ml of 25 mM FeCl3 was added to the vial, which was 187 

immediately closed gas-tight with a crimping tool. Control vials contained sample and water only to 188 

assess N2O in the headspace and dissolved in the sample. The vials were shaken for 3 h at 200 rpm and 189 

then transferred to an autosampler for N2O analysis by a gas chromatograph (GC) with an electron 190 

capture detector (ECD) as described in Liu et al. 30. NH2OH calibration in the range 0–1 µM was 191 

performed before each measurement. Since N2O background increased by about 10 ppb in the control 192 

vials for the culture samples of N. communis and N. nitrosa during NH2OH determination, NH2OH 193 

concentrations <0.06 µM were defined as not detectable. NO2
- and NH4

+ concentrations were 194 

determined colorimetrically in 96-well plates using sulfanilamide and N-(1-naphthyl)ethylenediamine 195 

dihydrochloride for NO2
- 42, and the indophenol method described by Kandeler and Gerber 43 for NH4

+. 196 

Protein concentration was determined with the Pierce BCA protein assay kit (Thermo Fisher 197 

Scientific). 198 
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2.5 Calculation of the NH2OH:final product ratio  199 

Total extracellular NH2OH concentrations by AOB, AOA and comammox during consumption of 200 

available NH4
+ was evaluated as the NH2OH:final product ratios (final product was NO3

- in the case of 201 

comammox and NO2
-
 in all other cases), taking into account the abiotic decay rate of the very reactive 202 

NH2OH, which followed first-order reaction kinetics: 203 

C = C0 e
-kt    (1) 204 

where C is the NH2OH concentration (µM) at decay time t (h), C0 is the initial NH2OH concentration 205 

(µM) and k is the first-order rate constant. 206 

The NH2OH:final product ratio was calculated as: 207 

r = 
���������∑ �	

��
�
	��� ·
���
�·���
���
� ����

�   (2) 208 

where r (dimensionless) is the NH2OH:final product ratio between t1 and t2, Ct1 and Ct2 (µM) are the 209 

measured NH2OH concentrations at t1 and t2, respectively, Ci (µM) is the interpolated NH2OH 210 

concentration between times t1 and t2 (t2 - t1 = 1 hour), Ct1
’
 and Ct2

’ (µM) are the NO2
- or (for 211 

comammox) NO3
- concentrations at t1 and t2, and k is the average value of the measured kinetic 212 

constant for abiotic NH2OH decay in the range of 0.5–2.5 (for HEPES buffered medium) or 0.5–5 (for 213 

CaCO3 buffered medium) µM initial NH2OH concentrations. Note that the presence of NO2
- in the 214 

medium would also decrease k. As k was determined in the absence or presence of 2 mM NO2
-
, loss of 215 

NH2OH was calculated using an average value of k determined at 0 or 2 mM NO2
-
 when NO2

-
 216 

concentration in the medium was <1 mM or >1 mM, respectively. As NO2
- concentration increased 217 

gradually with time, this definition of k would have led to overestimation or underestimation of 218 

NH2OH when NO2
-
 concentration was <1 mM or >1 mM, respectively. However, the total 219 

NH2OH:final product ratio was very likely underestimated since higher NH2OH concentration was 220 

detected during late growth when NO2
-
 concentration was mostly >1 mM. For the comammox, NO2

-
 221 

concentration was low (<0.033 mM) at all time points and had negligible effect on calculation of 222 

NH2OH:final product ratio.   223 
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2.6 Calculation of the fraction of NH4
+
 converted to N2O during incubation 224 

The fraction of NH4
+
 converted to N2O through incubation was calculated by determining the overall 225 

abiotic N2O product ratios (ri in equation 3) at different NH2OH and NO2
- concentrations for different 226 

media and incubation temperatures. For this, 1.2 ml of HEPES and CaCO3 medium, respectively, was 227 

added to 22-ml glass vials, followed by 0, 12 and 24 µl of 100 mM NO2
- and 12, 24 and 60 µl of 50 228 

µM NH2OH. The final NO2
- concentrations were 0, 1 and 2 mM and final NH2OH concentrations were 229 

0.5, 1 and 2.5 µM. Vials were then incubated for 24 h at 30, 37 and 46°C according to the cultivation 230 

conditions of the respective microorganisms and headspace gas was analyzed for N2O by GC. The 231 

fraction of NH4
+ converted to N2O over the whole NH3 oxidation process (R) was then calculated as 232 

follows: 233 

R =  
∑ �	·
�
	�� �	
�

   (3) 234 

where Ci is the concentration of NH2OH during the ith and (i+1)th sampling, ri is the theoretical abiotic 235 

N2O production ratio determined as described in section 2.6, and C is the concentration of NH4
+
 236 

consumed during incubation. Note that ri was strongly dependent on NO2
- concentration. Abiotic N2O 237 

production within a certain time period when NO2
- concentration was <1 mM, 1–1.5 mM and >1.5 238 

mM was calculated using ri values for NO2
-
 concentrations of 0, 1 and 2 mM, respectively. As ri 239 

increased with increasing NO2
- concentration, this definition of ri may have led to underestimation or 240 

overestimation of abiotic N2O production when NO2
- concentration was < or >1.5 mM, respectively. 241 

2.7 Data analyses 242 

Abiotic NH2OH decay was fitted to first-order reaction equations by the R software package (version 243 

3.1.0). The coefficients of determination (R2) were larger than 0.99. Paired t-tests (R, version 3.1.0) 244 

were used to identify significant differences in NH2OH concentrations between two time points during 245 

culture incubation. 246 

 247 

 248 
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3. Results and discussion 249 

3.1 Extracellular NH2OH from autotrophic ammonia oxidizers 250 

The NH2OH concentration in the medium during NH3 oxidation differed significantly among AOB 251 

cultures (Fig. 1) and was highest for N. multiformis on initial NH4
+
 concentrations of 0.5 and 2 mM. 252 

NH2OH release was also observed for N. europaea, albeit at lower concentrations than for N. 253 

multiformis. No NH2OH was detectable for N. nitrosa Nm90 or N. communis at both tested NH4
+ 254 

concentrations. Initial increases in NH2OH concentration in cultures of N. multiformis and N. 255 

europaea were associated with increases in NO2
- concentration, but eventually reached a plateau or 256 

decreased before NO2
- concentration reached a maximum. The largest measured NH2OH 257 

concentrations in the medium were 2.2 and 0.78 µM, from N. multiformis and N. europaea, 258 

respectively, during incubation with 2 mM NH4
+.  259 

Several studies have determined NH2OH concentrations in the medium during NH3 oxidation by pure 260 

cultures of the AOB N. europaea. Stüven et al. 
44

 observed 0.2–1.7 µM NH2OH during NH3 oxidation 261 

(10 mM) and Yu and Chandran 13 reported 0.2–3.2 µM NH2OH during growth of N. europaea 19718 262 

on 20 mM NH4
+
. These findings are consistent with the NH2OH concentrations detected for N. 263 

europaea in our study, where NH2OH concentrations were about three orders of magnitude smaller 264 

than those of the produced NO2
-, although they did not specify whether they measured NH2OH in 265 

supernatant (as in our study) or in untreated cultures. In our experiments, N. multiformis NH2OH 266 

concentrations were even larger than for N. europaea. The exact reason for this phenomenon remains 267 

unclear. One possible explanation is that N. multiformis biomass consumed NH4
+ faster (for the 0.5 268 

mM NH4
+
 treatment) than N. europaea, and faster NH3 oxidation might have led to higher NH2OH 269 

release. However, the N. communis biomass in the batch experiments showed no detectable NH2OH 270 

release into the medium even though it had the highest NH3 oxidation rates. Although N. communis 271 

prefers higher concentrations of NH4
+
 (10–50 mM) 

45
, the absence of NH2OH could be due to 272 

complete consumption by HAO and conversion to NO2
-, assuming that HAO activity in N. communis 273 

is larger than in other AOB. Moreover, N. communis is unable to tolerate >100 µM NH2OH in contrast 274 

to tolerance of 250 µM NH2OH by N. europaea and N. multiformis 
12

, which may relate to the absence 275 
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of NH2OH in the medium of N. communis, although the exact mechanism for the low tolerance of 276 

NH2OH by N. communis is still not clear. NH3 oxidation by N. nitrosa Nm90 was lower than by the 277 

other tested AOB strains, possibly explaining the lack of detectable NH2OH release.  278 

Among the three AOA pure cultures, NH2OH release was detected from the thermal spring isolate N. 279 

gargensis growing on 2 mM initial NH4
+, but not on 0.5 mM NH4

+ (Fig. 2). The pattern of NH2OH 280 

release by N. gargensis differed from that of AOB, with a small but rather constant increase in NH2OH 281 

during incubation on 2 mM NH4
+
, resulting in a final NH2OH concentration of 0.33 µM in the medium 282 

after 58 hours. In contrast, NH3 oxidation by the soil AOA N. viennensis and Ca. N. sp. Nd2 was not 283 

associated with detectable NH2OH release (Fig. 2). The NO2
- production rate by the AOA enrichment 284 

N. uzonensis (~0.3 mM NO2
-
 produced within 104 hours) was similar at the two initial NH4

+
 285 

concentrations, but more NH2OH (0.34 µM) was observed at the end of the incubation at 2 than 0.5 286 

mM NH4
+ initial concentration.  287 

No published AOA genome contains an obvious homologue of the HAO of AOB, or of cytochromes 288 

c554 and cm552 that are considered critical for energy conversion 21, initially casting some doubt on 289 

the role of NH2OH as an intermediate in NO2
-
 formation by AOA 

21
. However, Vajrala et al. 

26
 290 

reported the production of NH2OH in the marine AOA N. maritimus during NH3 oxidation. 291 

Furthermore, Kozlowski et al. 22 showed that the addition of NH2OH to a culture of N. viennensis 292 

resulted in respiration and NO2
- 

formation and thus the most current model of AOA physiology 293 

postulates a yet undiscovered novel hydroxylamine-converting enzyme 
21

. The data from the N. 294 

uzonensis enrichment culture, that does not contain any known AOB 38, confirms the N. gargensis data 295 

in showing that some AOA release NH2OH. Also, in a preliminary experiment, N. gargensis could 296 

convert NH2OH to NO2
- biotically, especially at lower NH2OH levels (Experiment S1, Fig. S1). 297 

Stieglmeier et al. 15 observed aerobic N2O production by N. viennensis and attributed this to hybrid 298 

formation of N2O via an N-nitrosating reaction. Kozlowski et al. 
22

 later reported that N2O formation 299 

from N. viennensis could be attributed to abiotic reactions between NO and medium substances during 300 

growth, especially under anoxic conditions. It is tempting to speculate that the aerobic hybrid 301 

formation of N2O in N. viennensis could also stem from the well-known chemical reaction between 302 
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NH2OH and NO2
-
. However, we failed to observe NH2OH in the medium of N. viennensis, which 303 

could reflect (i) lack of NH2OH release by this culture (indicating that the coupling between AMO and 304 

the archaeal NH2OH-converting enzyme is more efficient than in some AOB) or (ii) rapid chemical 305 

NH2OH conversion in the medium (which could mask small amounts of released NH2OH), as the 306 

medium response of N. viennensis was different from that of N. gargensis in terms of the nitrogenous 307 

gas production from abiotic NH2OH decay (Experiment S2, Fig. S2). Also for Ca. N. sp. Nd2, NH2OH 308 

was not detectable, possibly due to low NH3 oxidation rates.  309 

The comammox organism Ca. N. inopinata oxidized NH4
+ to NO3

- (Fig. 3). After 48 h of incubation, 310 

Ca. N. inopinata produced 0.46 mM NO3
- with 2 mM initial NH4

+ concentration, while it produced 311 

0.27 mM NO3
-
 when fed with 0.5 mM NH4

+
. Release of the NH2OH into the medium by Ca. N. 312 

inopinata was similar for both NH4
+ levels, but unlike the other cultures, increasing mainly at the 313 

beginning of the incubation, decreasing and then increasing again in parallel with increasing NO3
- 314 

concentration to reach 0.43 µM at the end of the incubation period. This decreasing and increasing 315 

trend was significant (P < 0.025) for the culture growing on 2 mM NH4
+ initial concentration. 316 

Consistent with the detection of NH2OH, previous genomic analysis had shown that Ca. N. inopinata 317 

encodes a predicted octaheme cytochrome c protein resembling the HAO of AOB, cytochromes c554 318 

and cm552, and an AMO that is relatively closely related to the AMO of the betaproteobacterial AOB 319 

23
. Ca. N. inopinata lacks canonical NO reductases but encodes enzymes for dissimilatory nitrate 320 

reduction to ammonia 
46

. Whether the latter enzymes are also expressed and active under aerobic 321 

conditions and might contribute to N2O formation has not yet been investigated.  322 

 323 

3.2 NH2OH abiotic decay and NH2OH:final product ratios during NH3 oxidation 324 

To better understand the presence of extracellular NH2OH during ammonia oxidation of the tested 325 

organisms, a series of NH2OH abiotic decay and formation experiments were conducted with different 326 

media, incubation temperatures and NO2
- concentrations (Fig. 4). All three factors, i.e., medium type, 327 

temperature and NO2
- concentration, had strong effects on the rate of abiotic NH2OH decay. The decay 328 
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rate was faster in CaCO3 than in HEPES-buffered media: 0.5 to 2.5 µM NH2OH decayed abiotically at 329 

30°C within ~8 h and ~30 h in the CaCO3 and HEPES-buffered media, respectively. Consequently, the 330 

first-order rate constants for abiotic NH2OH decay were much higher in the CaCO3 than in the 331 

HEPES-buffered media, with an average value approximately fourfold larger in the former (0.71 vs. 332 

0.16) (Table S2). Temperature increased the rate of abiotic NH2OH decay (with a single exception, see 333 

Table S2). The decay time at 46°C (~4 h) was half that at 30°C (~8 h) for the CaCO3 medium, and the 334 

average first-order rate constant was ~80% greater at 46°C (1.31) than at 30°C (0.71). Nitrite, however, 335 

unexpectedly inhibited abiotic NH2OH decay in both media tested (Figure 4, Table S2), although NO2
- 336 

is known to oxidize NH2OH to N2O, albeit preferentially at low pH (e.g., Heil et al., 2014 34). This 337 

stabilizing effect of NO2
-
 was particularly pronounced at higher temperatures for the CaCO3 medium, 338 

where the first-order rate constant decreased by 52% for 2 mM NO2
- at 46°C compared to the absence 339 

of NO2
-
. To exclude the possibility of abiotic conversion of NO2

-
 to NH2OH by components of the 340 

medium, an additional test was conducted using the more active CaCO3-buffered medium (compared 341 

to the HEPES-buffered medium) at the highest culture incubation temperature, but no abiotic 342 

conversion of NO2
-
 to NH2OH occurred (Experiment S3). An additional 

15
N-NO2

-
 experiment showed 343 

that NO2
-
 did not interfere with the NH2OH analysis (Experiment S4, Table S3). Under alkaline 344 

conditions, one product of NH2OH abiotic decay is NO2
- 47, which has been also observed in abiotic 345 

NH2OH decay experiments in CaCO3-buffered medium in this study (Experiment S5, Fig. S3). In 346 

addition to NO2
-
 and N2O, nitrogen dioxide (NO2), but almost no NO, was observed during the abiotic 347 

NH2OH decay (Fig. S2). The presence of NO2 may explain the observation of abiotic NH2OH-to-NO2
- 348 

conversion as NO2 is highly reactive and can hydrolyze to nitric acid (HNO2) and nitrous acid (HNO3) 349 

in aqueous solution. Consequently, NO2
-
, N2O and NO2 comprised approximately 18.5%, 9.8% and 350 

32.1%, respectively, of the abiotically decayed NH2OH in the CaCO3-buffered medium (Fig. S2, S3). 351 

Therefore, a possible reason for the inhibitory effect of NO2
-
 on the abiotic NH2OH decay could be 352 

that the presence of NO2
- slowed down the transformation of NH2OH to NO2

- by inhibiting the 353 

disproportionation of NO2, one of the primary decay products of NH2OH, to HNO3 and HNO2.  354 

The effect of temperature on abiotic NH2OH decay was as expected, as NH2OH is extremely unstable 355 

and reactive, especially at higher temperatures 47. The exact reason for the difference of abiotic 356 
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NH2OH decay between the two media (HEPES- and CaCO3-buffered) is not obvious. The media differ 357 

mainly in terms of pH, the composition and concentrations of the trace metals and the buffer (HEPES 358 

vs. CaCO3). Both pH and redox active trace metals are known to have a strong effect on abiotic 359 

NH2OH decay. Acidic pH stabilizes NH2OH in the absence of redox active trace metals, while trace 360 

metals such as Cu2+, Fe3+ and Mn4+ can stimulate NH2OH decomposition 47. Therefore, higher pH and 361 

the presence of trace metals could lead to greater abiotic NH2OH decay in the CaCO3-buffered 362 

medium than in HEPES-buffered medium.  363 

First-order kinetic rate constants and Equation 2 were used to estimate both instantaneous and total 364 

NH2OH:final product ratios during NH3 oxidation by those cultures producing relatively high NH2OH 365 

concentrations, i.e. N. europaea, N. multiformis, N. gargensis and Ca. N. inopinata (Fig. S4 and Table 366 

1). For the three pure cultures (N. europaea, N. multiformis and N. gargensis), instantaneous 367 

NH2OH:final product ratios were in the range 0.1 to 0.6% during early phases of the incubation 368 

experiments, but several-fold higher as the substrate NH4
+
 was nearly consumed, e.g., as high as about 369 

4% for N. multiformis (Fig. S4). For the comammox organism Ca. N. inopinata, instantaneous 370 

NH2OH:final product ratios were in the range 0.1 to 2.6% and 0.9 to 5.7% at 0.5 and 2 mM initial 371 

NH4
+
 concentration, respectively, also with higher values at the end of incubation (Fig. S4). Generally, 372 

Ca. N. inopinata had the largest total NH2OH:final product ratio of all cultures tested, with ratios of 373 

0.63% and 1.92% after incubation for 60 h at 0.5 and 2 mM initial NH4
+
 concentration, respectively 374 

(Table 1). In contrast, N. gargensis had a total NH2OH:NO2
-
 ratio of 0.46% at 2 mM initial NH4

+
 375 

concentration after 60 h, whereas N. multiformis and N. europaea had total NH2OH:final product 376 

ratios of 0.34–0.56% and 0.24–0.33%, respectively, depending on the initial NH4
+
 concentration. 377 

3.3 Estimating the fraction of NH4
+ converted to N2O during NH3 oxidation under ambient air 378 

conditions 379 

For an informed estimate of the fraction of NH4
+
 that was converted to N2O by the different ammonia 380 

oxidizers under ambient air conditions over the whole incubation period, it is essential to consider 381 

abiotic N2O production from different NH2OH concentrations, at different incubation temperatures, 382 

and at different concentrations of NO2
-
. In the environment, additional factors such as organic matter 383 
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content, pH and content of suitable oxidants like MnO2 and Fe
3+

 will also affect the chemical N2O 384 

conversion ratio from NH2OH 27, 29. The abiotic N2O:NH2OH conversion ratio was 12–14% for the 385 

HEPES-buffered medium at 30°C in the absence of NO2
-, and between 18% and 37% for the same 386 

medium with 1 and 2 mM NO2
-
, respectively (Table 2). The ratio in CaCO3-buffered medium at 30°C 387 

was larger, with values of 15–28%, 32.2–46.9%, and 37.6–48.9% at 0, 1 and 2 mM NO2
-, respectively, 388 

for the NH2OH concentration range from 0.5 to 2.5 µM. The contribution of NO2
- to N2O production 389 

involving NH2OH was even larger at higher temperature, e.g. 46°C (Table 2). The stimulated 390 

conversion of NH2OH to N2O by NO2
- was likely caused by the hybrid reaction of NO2

- and NH2OH. 391 

However, another mechanism could be inhibition of NH2OH conversion to NO2/NO2
- by NO2

-, thereby 392 

channeling NH2OH to N2O indirectly via other mechanisms.  393 

The total fraction of NH4
+ converted to N2O through extracellular NH2OH and substances in the 394 

medium over the whole incubation period was then calculated according to Equation 3 (Table 3). The 395 

total fraction of NH4
+
 converted to N2O by this mechanism was 0.05% and 0.12% for N. multiformis 396 

incubated at 0.5 and 2 mM initial NH4
+, respectively, which is consistent with that emitted as N2O 397 

(0.05–0.1%) during aerobic incubation of a Nitrosospira strain 
6, 48

. The fraction of NH4
+
 converted to 398 

N2O by N. europaea was lower than that of N. multiformis, but still consistent with that converted to 399 

N2O by N. europaea reported by other studies, e.g., 0.05-1.95% 49 and 0.05-0.15% 50. Dundee and 400 

Hopkins 
51

 also reported that N. multiformis produced more N2O than N. europaea at greater dissolved 401 

O2 concentrations, while N. europaea produced much more N2O during nitrifier-denitrification than N. 402 

multiformis, which is consistent with our finding that the fraction of NH4
+ converted to N2O was larger 403 

for N. multiformis than for N. europaea under ambient air conditions. 404 

The AOA N. viennensis and N. maritimus are reported to be incapable of canonical nitrifier-405 

denitrification at reduced O2 concentration, but produce N2O via hybrid formation, as revealed by 15N-406 

labeling 
15

. In the present study, potential abiotic N2O production was approximately 0.08% of the 407 

total substrate turnover during aerobic NH3 oxidation by AOA. Albeit this value was found only in N. 408 

gargensis, it was close to the values reported for N. viennensis (0.09%) and N. maritimus (0.05%) by 409 

Stieglmeier et al. 
15

. The calculated fraction of NH4
+
 to be converted to N2O by the comammox 410 

Page 16 of 28

ACS Paragon Plus Environment

Environmental Science & Technology



17 

 

organism Ca. N. inopinata was even higher (in the range of 0.06–0.14%), but no measured data on 411 

N2O emissions from comammox organisms are yet available for comparison. 412 

In summary, we show that extracellular NH2OH is formed in growth media during aerobic NH3 413 

oxidation in batch incubations by AOB, AOA and comammox cultures, but with large differences 414 

between the different organisms and incubation conditions. The calculated fraction of NH4
+ converted 415 

to N2O by abiotic reactions between extracellular NH2OH and substances in the growth medium 416 

during aerobic NH3 oxidation, was in the range of values reported previously for the conversion of 417 

substrate to N2O for various AOB and AOA. The presence of NO2
- in the medium not only offers a 418 

reactant for hybrid N2O formation from NH2OH, but also delays overall NH2OH abiotic decay, further 419 

stimulating the conversion of NH2OH to N2O. In view of the new results presented here and in recent 420 

studies  15, 22, 52-54, it is tempting to speculate that at least for some strains extracellular NH2OH might 421 

contribute to aerobic ammonia-oxidizer-associated N2O formation. In others, e.g. N. viennensis, no 422 

extracellular NH2OH was observed during NH3 oxidation but aerobic N2O production has been 423 

reported 15, indicating a different mechanism, e.g. the abiotic reactions between intracellular NH2OH 424 

and periplasmic substances. 425 

 426 

Acknowledgements 427 

The authors wish to thank Holger Wissel for his assistance with 
15

N isotope analysis, Franz Leistner 428 

for his assistance in gas chromatography and Kerim Dimitri Kits for helpful discussions. We would 429 

like to thank Andreas Pommerening-Röser (University of Hamburg, Germany) for providing us with 430 

AOB strains. SL was supported by the Chinese Scholarship Council (scholarship no. 201206760007). 431 

MW and PH were supported by an ERC Advanced Grant (NITRICARE, 294343). LH is funded 432 

through the Nitrous Oxide Research Alliance (NORA), a Marie Skłodowska-Curie ITN and research 433 

project under the EU's seventh framework program (FP7).  434 

 435 

  436 

Page 17 of 28

ACS Paragon Plus Environment

Environmental Science & Technology



18 

 

Supporting Information 437 

Centrifugation and incubation conditions for the ammonia-oxidizing strains tested; first-order rate 438 

constant (k) of abiotic NH2OH decay in different media at different NH2OH (0.5, 1, 2.5 and 5 µM) and 439 

NO2
-
 (0 and 2 mM) concentrations;  biotic (N. gargensis) and abiotic conversion of NH2OH (30 or 80 440 

µM) to NO2
-; N2O and NOx emissions from CaCO3-buffered medium (A) and fresh water medium 441 

(FWM) (B) after addition of 0.08 mM NH2OH; test for the abiotic conversion of NO2
- to NH2OH in 442 

the growth medium; 
15

N-NO2
-
 labeling experiment to quantify the effect of NO2

-
 on the NH2OH assay;  443 

abiotic conversion of NH2OH to NO2
- in CaCO3 medium at different NH2OH concentrations (0.03, 444 

0.08 and 0.2 mM) and two temperatures (37 and 46°C); NH2OH:final product ratios (%) during 445 

incubation at two different initial NH4
+
 concentrations (0.5 mM, square; 2 mM, circle) for four 446 

different cultures of ammonia-oxidizers.   447 

Page 18 of 28

ACS Paragon Plus Environment

Environmental Science & Technology



19 

 

References 448 

(1) IPCC, Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to 449 

the Fifth Assessment Report of the Intergovernmental Panel on Climate Change In Stocker, T. F., D. 450 

Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley, Ed. 451 

Cambridge University Press: Cambridge, United Kingdom and New York, USA, 2013; p 1552. 452 

(2) WMO, WMO Greenhouse gas bulletin: the state of greenhouse gases in the atmosphere 453 

based on observations through 2009. See http://www.wmo.int/gaw/ 2010. 454 

(3) Huang, T.; Gao, B.; Hu, X.-K.; Lu, X.; Well, R.; Christie, P.; Bakken, L. R.; Ju, X.-T., Ammonia-455 

oxidation as an engine to generate nitrous oxide in an intensively managed calcareous Fluvo-aquic 456 

soil. Sci. Rep. 2014, 4, 3950. 457 

(4) Ritchie, G.; Nicholas, D., Identification of the sources of nitrous oxide produced by oxidative 458 

and reductive processes in Nitrosomonas europaea. Biochem. J. 1972, 126, (5), 1181-1191. 459 

(5) Poth, M.; Focht, D. D., 
15

N kinetic analysis of N2O production by Nitrosomonas europaea: an 460 

examination of nitrifier denitrification. Appl. Environ. Microb. 1985, 49, (5), 1134-1141. 461 

(6) Shaw, L. J.; Nicol, G. W.; Smith, Z.; Fear, J.; Prosser, J. I.; Baggs, E. M., Nitrosospira spp. can 462 

produce nitrous oxide via a nitrifier denitrification pathway. Environ. Microbiol. 2006, 8, (2), 214-222. 463 

(7) Caranto, J. D.; Vilbert, A. C.; Lancaster, K. M., Nitrosomonas europaea cytochrome P460 is a 464 

direct link between nitrification and nitrous oxide emission. Proc. Natl. Acad. Sci. U. S. A. 2016, 113, 465 

14704-14709. 466 

(8) Caranto, J. D.; Lancaster, K. M., Nitric oxide is an obligate bacterial nitrification intermediate 467 

produced by hydroxylamine oxidoreductase. Proc. Natl. Acad. Sci. U. S. A. 2017, 114, (31), 8217-8222. 468 

(9) Wrage, N.; Velthof, G.; Van Beusichem, M.; Oenema, O., Role of nitrifier denitrification in the 469 

production of nitrous oxide. Soil Biol. Biochem. 2001, 33, (12), 1723-1732. 470 

(10) Wunderlin, P.; Mohn, J.; Joss, A.; Emmenegger, L.; Siegrist, H., Mechanisms of N2O production 471 

in biological wastewater treatment under nitrifying and denitrifying conditions. Water Res. 2012, 46, 472 

(4), 1027-1037. 473 

(11) Kozlowski, J. A.; Kits, K. D.; Stein, L. Y., Genome sequence of Nitrosomonas communis strain 474 

Nm2, a mesophilic ammonia-oxidizing bacterium isolated from mediterranean soil. Genome Announc. 475 

2016, 4, (1), e01541-15. 476 

(12) Kozlowski, J. A.; Kits, K. D.; Stein, L. Y., Comparison of nitrogen oxide metabolism among 477 

diverse ammonia-oxidizing bacteria. Front. Microbiol. 2016, 7. 478 

(13) Yu, R.; Chandran, K., Strategies of Nitrosomonas europaea 19718 to counter low dissolved 479 

oxygen and high nitrite concentrations. BMC Microbiol. 2010, 10, (1), 1-11. 480 

(14) Jung, M.-Y.; Well, R.; Min, D.; Giesemann, A.; Park, S.-J.; Kim, J.-G.; Kim, S.-J.; Rhee, S.-K., 481 

Isotopic signatures of N2O produced by ammonia-oxidizing archaea from soils. ISME J. 2014, 8, (5), 482 

1115-1125. 483 

(15) Stieglmeier, M.; Mooshammer, M.; Kitzler, B.; Wanek, W.; Zechmeister-Boltenstern, S.; 484 

Richter, A.; Schleper, C., Aerobic nitrous oxide production through N-nitrosating hybrid formation in 485 

ammonia-oxidizing archaea. ISME J. 2014, 8, (5), 1135-1146. 486 

(16) Santoro, A. E.; Buchwald, C.; McIlvin, M. R.; Casciotti, K. L., Isotopic Signature of N2O 487 

Produced by Marine Ammonia-Oxidizing Archaea. Science 2011, 333, (6047), 1282-1285. 488 

(17) He, J. z.; Shen, J. p.; Zhang, L. m.; Zhu, Y. g.; Zheng, Y. m.; Xu, M. g.; Di, H., Quantitative 489 

analyses of the abundance and composition of ammonia‐oxidizing bacteria and ammonia‐490 

oxidizing archaea of a Chinese upland red soil under long‐term fertilization practices. Environ. 491 

Microbiol. 2007, 9, (9), 2364-2374. 492 

(18) Leininger, S.; Urich, T.; Schloter, M.; Schwark, L.; Qi, J.; Nicol, G.; Prosser, J.; Schuster, S.; 493 

Schleper, C., Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature 2006, 442, 494 

(7104), 806-809. 495 

(19) Spang, A.; Poehlein, A.; Offre, P.; Zumbrägel, S.; Haider, S.; Rychlik, N.; Nowka, B.; Schmeisser, 496 

C.; Lebedeva, E. V.; Rattei, T.; Böhm, C.; Schmid, M.; Galushko, A.; Hatzenpichler, R.; Weinmaier, T.; 497 

Daniel, R.; Schleper, C.; Spieck, E.; Streit, W.; Wagner, M., The genome of the ammonia-oxidizing 498 

Page 19 of 28

ACS Paragon Plus Environment

Environmental Science & Technology



20 

 

Candidatus Nitrososphaera gargensis: insights into metabolic versatility and environmental 499 

adaptations. Environ. Microbiol. 2012, 14, (12), 3122-3145. 500 

(20) Tourna, M.; Stieglmeier, M.; Spang, A.; Könneke, M.; Schintlmeister, A.; Urich, T.; Engel, M.; 501 

Schloter, M.; Wagner, M.; Richter, A.; Schleper, C., Nitrososphaera viennensis, an ammonia oxidizing 502 

archaeon from soil. Proc. Natl. Acad. Sci. U. S. A. 2011, 108, (20), 8420-8425. 503 

(21) Walker, C.; De La Torre, J.; Klotz, M.; Urakawa, H.; Pinel, N.; Arp, D.; Brochier-Armanet, C.; 504 

Chain, P.; Chan, P.; Gollabgir, A., Nitrosopumilus maritimus genome reveals unique mechanisms for 505 

nitrification and autotrophy in globally distributed marine crenarchaea. Proc. Natl. Acad. Sci. U. S. A. 506 

2010, 107, (19), 8818-8823. 507 

(22) Kozlowski, J. A.; Stieglmeier, M.; Schleper, C.; Klotz, M. G.; Stein, L. Y., Pathways and key 508 

intermediates required for obligate aerobic ammonia-dependent chemolithotrophy in bacteria and 509 

Thaumarchaeota. ISME J. 2016, 10, (8), 1836-1845. 510 

(23) Daims, H.; Lebedeva, E. V.; Pjevac, P.; Han, P.; Herbold, C.; Albertsen, M.; Jehmlich, N.; 511 

Palatinszky, M.; Vierheilig, J.; Bulaev, A., Complete nitrification by Nitrospira bacteria. Nature 2015, 512 

528, (7583), 504-509. 513 

(24) van Kessel, M. A.; Speth, D. R.; Albertsen, M.; Nielsen, P. H.; den Camp, H. J. O.; Kartal, B.; 514 

Jetten, M. S.; Lücker, S., Complete nitrification by a single microorganism. Nature 2015, 528, (7583), 515 

555-559. 516 

(25) Lees, H., Hydroxylamine as an intermediate in nitrification. Nature 1952, 169, 156-157. 517 

(26) Vajrala, N.; Martens-Habbena, W.; Sayavedra-Soto, L. A.; Schauer, A.; Bottomley, P. J.; Stahl, 518 

D. A.; Arp, D. J., Hydroxylamine as an intermediate in ammonia oxidation by globally abundant 519 

marine archaea. Proc. Natl. Acad. Sci. U. S. A. 2013, 110, (3), 1006-1011. 520 

(27) Bremner, J. M., Sources of nitrous oxide in soils. Nutr. Cycl. Agroecosys 1997, 49, (1), 7-16. 521 

(28) Heil, J.; Liu, S.; Vereecken, H.; Brüggemann, N., Abiotic nitrous oxide production from 522 

hydroxylamine in soils and their dependence on soil properties. Soil Biol. Biochem. 2015, 84, 107-115. 523 

(29) Liu, S.; Herbst, M.; Bol, R.; Gottselig, N.; Pütz, T.; Weymann, D.; Wiekenkamp, I.; Vereecken, 524 

H.; Brüggemann, N., The contribution of hydroxylamine content to spatial variability of N2O 525 

formation in soil of a Norway spruce forest. Geochim. Cosmochim. Ac 2016, 178, 76-86. 526 

(30) Liu, S.; Vereecken, H.; Brüggemann, N., A highly sensitive method for the determination of 527 

hydroxylamine in soils. Geoderma 2014, 232, 117-122. 528 

(31) Toyoda, S.; Yoshida, N., Determination of nitrogen isotopomers of nitrous oxide on a 529 

modified isotope ratio mass spectrometer. Anal. Chem. 1999, 71, (20), 4711-4718. 530 

(32) Ostrom, N. E.; Ostrom, P. H., The isotopomers of nitrous oxide: analytical considerations and 531 

application to resolution of microbial production pathways. In Handbook of Environmental Isotope 532 

Geochemistry, Advances in Isotope Geochemistry, Baskaran, M., Ed. Springer Berlin Heidelberg: 2011; 533 

pp 453-476. 534 

(33) Sutka, R. L.; Ostrom, N.; Ostrom, P.; Breznak, J.; Gandhi, H.; Pitt, A.; Li, F., Distinguishing 535 

nitrous oxide production from nitrification and denitrification on the basis of isotopomer abundances. 536 

Appl. Environ. Microb. 2006, 72, (1), 638-644. 537 

(34) Heil, J.; Wolf, B.; Brüggemann, N.; Emmenegger, L.; Tuzson, B.; Vereecken, H.; Mohn, J., Site-538 

specific 
15

N isotopic signatures of abiotically produced N2O. Geochim. Cosmochim. Ac 2014, 139, 72-539 

82. 540 

(35) Soler-Jofra, A.; Stevens, B.; Hoekstra, M.; Picioreanu, C.; Sorokin, D.; van Loosdrecht, M. C. M.; 541 

Pérez, J., Importance of abiotic hydroxylamine conversion on nitrous oxide emissions during 542 

nitritation of reject water. Chem. Eng. J. 2016, 287, 720-726. 543 

(36) Koops, H. P.; Böttcher, B.; Möller, U. C.; Pommerening-Röser, A.; Stehr, G., Classification of 544 

eight new species of ammonia-oxidizing bacteria: Nitrosomonas communis sp. nov., Nitrosomonas 545 

ureae sp. nov., Nitrosomonas aestuarii sp. nov., Nitrosomonas marina sp. nov., Nitrosomonas nitrosa 546 

sp. nov., Nitrosomonas eutropha sp. nov., Nitrosomonas oligotropha sp. nov. and Nitrosomonas 547 

halophila sp. nov. Microbiology 1991, 137, (7), 1689-1699. 548 

Page 20 of 28

ACS Paragon Plus Environment

Environmental Science & Technology



21 

 

(37) Lehtovirta-Morley, L. E.; Ge, C.; Ross, J.; Yao, H.; Nicol, G. W.; Prosser, J. I., Characterisation of 549 

terrestrial acidophilic archaeal ammonia oxidisers and their inhibition and stimulation by organic 550 

compounds. Fems Microbiol. Ecol. 2014, 89, (3), 542-552. 551 

(38) Lebedeva, E. V.; Hatzenpichler, R.; Pelletier, E.; Schuster, N.; Hauzmayer, S.; Bulaev, A.; 552 

Grigor’eva, N. V.; Galushko, A.; Schmid, M.; Palatinszky, M., Enrichment and genome sequence of the 553 

group I. 1a ammonia-oxidizing Archaeon “Ca. Nitrosotenuis uzonensis” representing a clade globally 554 

distributed in thermal habitats. PLoS One 2013, 8, (11), e80835. 555 

(39) Palatinszky, M.; Herbold, C.; Jehmlich, N.; Pogoda, M.; Han, P.; von Bergen, M.; Lagkouvardos, 556 

I.; Karst, S. M.; Galushko, A.; Koch, H.; Berry, D.; Daims, H.; Wagner, M., Cyanate as an energy source 557 

for nitrifiers. Nature 2015, 524, (7563), 105-108. 558 

(40) Skinner, F. A.; Walker, N., Growth of Nitrosomonas europaea in batch and continuous culture. 559 

Archiv für Mikrobiologie 1961, 38, (4), 339-349. 560 

(41) Widdel, F., Anaerober Abbau von Fettsäuren und Benzoesäure durch neu isolierte Arten 561 

Sulfat-reduzierender Bakterien. Dissertation, Universität Göttingen 1980, 1-443. 562 

(42) Strickland, J. D.; Parsons, T. R., A practical handbook of seawater analysis. 2nd ed.; Fisheries 563 

Research Board of Canada: Ottawa, 1972. 564 

(43) Kandeler, E.; Gerber, H., Short-term assay of soil urease activity using colorimetric 565 

determination of ammonium. Biol. Fertil. Soils 1988, 6, (1), 68-72. 566 

(44) Stüven, R.; Vollmer, M.; Bock, E., The impact of organic matter on nitric oxide formation by 567 

Nitrosomonas europaea. Arch. Microbiol. 1992, 158, (6), 439-443. 568 

(45) Prosser, J. I.; Head, I. M.; Stein, L. Y., The Family Nitrosomonadaceae. In The Prokaryotes: 569 

Alphaproteobacteria and Betaproteobacteria, Rosenberg, E.; DeLong, E. F.; Lory, S.; Stackebrandt, E.; 570 

Thompson, F., Eds. Springer Berlin Heidelberg: Berlin, Heidelberg, 2014; pp 901-918. 571 

(46) Kits, K. D.; Sedlacek, C. J.; Lebedeva, E. V.; Han, P.; Bulaev, A.; Pjevac, P.; Daebeler, A.; 572 

Romano, S.; Albertsen, M.; Stein, L. Y.; Daims, H.; Wagner, M., Kinetic analysis of a complete nitrifier 573 

reveals an oligotrophic lifestyle. Nature 2017, 549, (7671), 269-272. 574 

(47) Butler, J. H.; Gordon, L. I., An improved gas chromatographic method for the measurement of 575 

hydroxylamine in marine and fresh waters. Mar. Chem. 1986, 19, (3), 229-243. 576 

(48) Jiang, Q.; Bakken, L. R., Nitrous oxide production and methane oxidation by different 577 

ammonia-oxidizing bacteria. Appl. Environ. Microb. 1999, 65, (6), 2679-2684. 578 

(49) Remde, A.; Conrad, R., Production of nitric oxide in Nitrosomonas europaea by reduction of 579 

nitrite. Arch. Microbiol. 1990, 154, (2), 187-191. 580 

(50) Hynes, R. K.; Knowles, R., Production of nitrous oxide by Nitrosomonas europaea: effects of 581 

acetylene, pH, and oxygen. Can. J. Microbiol. 1984, 30, (11), 1397-1404. 582 

(51) Dundee, L.; Hopkins, D. W., Different sensitivities to oxygen of nitrous oxide production by 583 

Nitrosomonas europaea and Nitrosolobus multiformis. Soil Biol. Biochem. 2001, 33, (11), 1563-1565. 584 

(52) Heil, J.; Vereecken, H.; Brüggemann, N., A review of chemical reactions of nitrification 585 

intermediates and their role in nitrogen cycling and nitrogen trace gas formation in soil. Eur. J. Soil Sci. 586 

2016, 67, (1), 23-39. 587 

(53) Terada, A.; Sugawara, S.; Hojo, K.; Takeuchi, Y.; Riya, S.; Harper, W. F.; Yamamoto, T.; Kuroiwa, 588 

M.; Isobe, K.; Katsuyama, C.; Suwa, Y.; Koba, K.; Hosomi, M., Hybrid Nitrous Oxide Production from a 589 

Partial Nitrifying Bioreactor: Hydroxylamine Interactions with Nitrite. Environ. Sci. Technol. 2017, 51, 590 

(5), 2748-2756. 591 

(54) Liu, S.; Berns, A. E.; Vereecken, H.; Wu, D.; Brüggemann, N., Interactive effects of MnO2, 592 

organic matter and pH on abiotic formation of N2O from hydroxylamine in artificial soil mixtures. Sci. 593 

Rep. 2017, 7, 39590. 594 

 595 
  596 

Page 21 of 28

ACS Paragon Plus Environment

Environmental Science & Technology



22 

 

Tables 597 

Table 1 Total NH2OH:final product (NO2
-
 or NO3

-
) ratios after incubation for 58 h for different 598 

ammonia oxidizers. § For Ca. N. inopinata (a comammox organism), NO3
- is the final product of NH3 599 

oxidation. 
# 
The NH2OH concentration here is the total extracellular NH2OH including the calculated 600 

concentration of NH2OH that was abiotically converted during incubation. 601 

Cultures Initial NH4
+ 

concentration 

(mM) 

Final NO2
- or NO3

-

§
 concentration 

(µM) 

NH2OH# 

concentration 

(µM) 

NH2OH:final 

product ratio (%) 

N. multiformis 0.5 516 1.8 0.34 

2 1955 11.0 0.56 

N. europaea 0.5 537 1.8 0.33 

2 1930 4.7 0.24 

N. gargensis 2 1860 7.1 0.46 

Ca. N. inopinata 0.5 280 1.8 0.63 

2 490 9.4 1.92 

 602 

 603 

 604 

Table 2 Fraction (%) of N2O abiotically produced from the added NH2OH in the different media at 605 

various levels of NH2OH (0.5, 1 and 2.5 µM) and NO2
-
 (0, 1 and 2 mM). 606 

 0 mM NO2
- 1 mM NO2

- 2 mM NO2
- 

NH2OH (µM) 0.5 1 2.5 0.5 1 2.5 0.5 1 2.5 

HEPES (30°C) 14.1 13.7 12.0 29.3 20.0 18.4 36.6 33.1 23.4 

CaCO3 (30°C) 15.0 20.9 28.0 33.2 32.2 46.9 45.0 37.6 48.9 

CaCO3 (37°C) 6.7 5.6 6.7 36.2 31.0 43.7    

CaCO3 (46°C) 6.3 4.6 12.5 29.5 22.4 36.1 38.8 46.0 57.1 

 607 

 608 

 609 

 610 
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Table 3 Estimated fraction of NH4
+
 converted to N2O from the abiotic reactions between the 611 

biologically produced extracellular NH2OH and substances in the medium for different ammonia 612 

oxidizers. 613 

Cultures Initial NH4
+
 

concentration 

(µM) 

Estimated fraction 
of NH4

+ 

converted to N2O 

(%) 

N. multiformis 500 0.05 

2000 0.12 

N. europaea 500 0.05 

2000 0.07 

N. gargensis 2000 0.08 

Ca. N. inopinata 500 0.06 

2000 0.14 

  614 

Page 23 of 28

ACS Paragon Plus Environment

Environmental Science & Technology



24 

 

Figure captions 615 

 616 

Figure 1 Dynamics of NH4
+ (red squares), NO2

- (yellow circles), NH2OH (blue triangles) and total N 617 

(sum of NO2
-
 and NH4

+
, black diamonds) concentrations during incubation of four ammonia-oxidizing 618 

bacteria. NH4
+, NO2

- and total N are plotted using the left y-axis, while NH2OH is plotted using the 619 

right y-axis. Please note that the left y-axes and the x-axes, respectively, are not always scaled 620 

identically to improve data presentation. The values are presented as mean ± standard error (SE).  621 

 622 

Figure 2 Dynamics of NH4
+ (red squares), NO2

- (yellow circles), NH2OH (blue triangles) and total N 623 

(sum of NO2
-
 and NH4

+
, black diamonds) concentrations in the batch experiments with four ammonia-624 

oxidizing archaea. NH4
+, NO2

- and total N are plotted using the left y-axis, while NH2OH is plotted 625 

using the right y-axis. Please note that the left y-axes and the x-axes, respectively, are not always 626 

scaled identically to improve data presentation. The values are present as mean ± standard error (SE).  627 

 628 

Figure 3 Dynamics of NH4
+
 (red squares), NO3

-
 (yellow circles), NH2OH (blue triangles) and total N 629 

(sum of NO3
-
 and NH4

+
, black diamonds) concentrations during the incubation of the comammox 630 

organism Ca.  N. inopinata. NH4
+, NO3

- and total N are plotted using the left y-axis, while NH2OH is 631 

plotted using the right y-axis. The values are present as mean ± standard error (SE).  632 

 633 

Figure 4 Abiotic decay of NH2OH in the absence (open symbols) or presence (closed symbols) of 2 634 

mM NO2
-
 in HEPES-buffered and CaCO3-buffered media at different incubation temperatures. The 635 

NH2OH concentrations were 0.5 (square), 1 (circle), 2.5 (triangle), and 5 (diamond) µM. Mean values 636 

of three replicates are presented. The relative standard deviation (RSD) of all data is smaller than 10%. 637 

Please note that the x-axes are not always scaled identically to improve data presentation. 638 

 639 

  640 
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Figures 641 

 642 

Figure 1  643 
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