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Abstract

The timely estimation of short- and long-term volcanic hazard relies on the availability of

detailed 3D geophysical images of volcanic structures. High-resolution seismic models of the

absorbing uppermost conduit systems and highly-heterogeneous shallowest volcanic layers,

while particularly challenging to obtain, provide important data to locate feasible eruptive

centers and forecast flank collapses and lava ascending paths. Here, we model the volcanic

structures of Mt. Etna (Sicily, Italy) and its outskirts using the Horizontal to Vertical Spec-

tral Ratio method, generally applied to industrial and engineering settings. The integration

of this technique with Web-based Geographic Information System improves precision dur-

ing the acquisition phase. It also integrates geological and geophysical visualization of 3D

surface and subsurface structures in a queryable environment representing their exact three-

dimensional geographic position, enhancing interpretation. The results show high-resolution

3D images of the shallowest volcanic and feeding systems, which complement (1) deeper seis-

mic tomography imaging and (2) the results of recent remote sensing imaging. The study

recovers a vertical structure that divides the pre-existing volcanic complexes of Ellittico and

Cuvigghiuni. This could be interpreted as a transitional phase between the two systems. A

comparison with recent remote sensing and geological results, however, shows that anoma-

lies are generally related to volcano-tectonic structures active during the last 17 years. We

infer that seismic noise measurements from miniaturized instruments, when combined with

remote sensing techniques, represent an important resource to monitor volcanoes in unrest,
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reducing the risk of loss of human lives and instrumentation.

Keywords: Etna, Seismic Imaging, Volcano Imaging, Instrumental developments,

GIS-based system, HVSR

1. Introduction1

Mt. Etna volcano (Sicily, Italy) is the highest volcano of the Eurasian plate (3343m a.s.l.)2

and one of the most active in the world. Due to its persistent eruptive activity throughout3

the last century and its proximity to highly urbanized areas, it is highly hazardous and thus4

well monitored. Understanding its dynamics and imaging its shallow subsurface structures5

is considered a crucial step to be taken in order to develop an effective eruption-forecasting6

model and devise efficient responses to unexpected changes in its volcanological behaviour7

[Del Negro et al., 2013]. Geophysical measurements and derived tomographic models con-8

tribute to the assessment of the physical state, shape, and dimension of feeding systems9

in volcanoes. Seismic ray-dependent travel-time and attenuation tomography generate 3D10

images of the inner structures of a volcano, and are increasingly becoming a standard imag-11

ing and monitoring tool [Lees and Lindley, 1994; De Gori et al., 1999; Patanè et al., 2006a;12

De Siena et al., 2010; Koulakov et al., 2010; Koulakov, 2013]. At Mt. Etna, the first regional-13

scale travel-time and high-frequency attenuation imaging dates back to 1980 [Sharp et al.,14

1980]. This was followed by local travel-time 3D velocity studies focused on imaging depths15

down to 20 km under the central portion of the volcano [Hirn et al., 1991; Cardaci et al.,16

1993; De Luca et al., 1997]. Seismic images have steadily improved resolution on structures17

in the shallow part of the Earth [Patanè et al., 2002, 2003; De Gori et al., 1999; Patanè et al.,18

2006a; Alparone et al., 2012], in an attempt to monitor magma intrusions with time-resolved19

models [Patanè et al., 2006a]. As of today, however, imaging of the volcanic cone is limited20

above 1 km a.s.l, with a resolution of 1 km [Alparone et al., 2012].21
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It is challenging to obtain high-resolution seismic images of a volcanic edifice. Seismic22

methods based on coherent-wave propagation are affected by site effects, highly-reflective23

topography, and complex 3D propagation effects. These corrupt both seismic phases and24

amplitudes, which are better described by stochastic models and resonance [Neuberg and25

Pointer, 2000; Wegler, 2003; De Siena et al., 2014, 2016]. A full 3D imaging of these Earth26

layers is hindered by the lack of a dense seismic network, with node spacing of the order of27

e. g. 250 m [Kiser et al., 2016]; this lack is due to the elevated economic costs, installation28

difficulty, high level of risk for operators when installing standard seismic stations, and29

has been used as a valid argument for the development of alternative geophysical imaging30

techniques in volcanoes [Carbone et al., 2014].31

In this study, we try to close the gap between deep travel-time tomography imaging, sur-32

face geomorphology information, and shallow feeding systems modelling, using the Horizon-33

tal to Vertical Spectral Ratio (HVSR) method integrated with the Geographic Information34

System (GIS). The HVSR technique uses seismic ambient noise data recorded at a single35

station and has been developed in the framework of civil engineering to study resonance fre-36

quencies of buildings [Nakamura, 1989; Parolai et al., 2002]. The method has already been37

used in Earth subsurface imaging, with applications spanning from the characterization of38

thermal basins [Galgaro et al., 2014] to the study of lateral heterogeneity in small alluvial39

valleys [Chávez-Garćıa and Kang, 2014]. Surface waves (the main constituents of ambient40

noise) can reveal novel information about the structure of the volcanic edifice [Neuberg and41

Pointer, 2000]. The method may thus represent the right complement to passive tomo-42

graphic imaging, providing shallow geological information. Still, in volcanoes, the HVSR43

is generally used to measure seismic site effects only [Mora et al., 2001]. Almendros et al.44

[2004] improve the HVSR method and apply it at Teide volcano. The authors estimate a45

time-dependent HVSR and create vibration frequencies maps across the summit area of the46

volcano. Merging their HVSR results with different methodologies and geological constraints47

they achieve an adequate interpretation of the shallow subsurface volcanic structures.48

Remote sensing is an important alternative to seismic imaging when investigating the49

shallowest volcanic crust. Using DInSAR and GPS data to study ground deformation, it50
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was possible to locate in space and time the position of the dike that produced the 200851

eruption of Mt. Etna [Currenti et al., 2011]. Using GIS in combination with the HVSR52

method opens a path (1) to see beyond the shape and dimensions of the structures, for an53

improved correlation with geomorphological information; (2) to locate anomalies in space54

exactly and perform query to measure relevant quantities like volume, size, and extension55

of the anomalies [Barreca et al., 2013]; (3) to precisely overlap any kind of map (thermal,56

tectonic, geological, tomographic, etc.), constraining the interpretation of the seismological57

results [De Siena et al., 2016]. Mount Etna is one of the most studied volcanoes in the58

world, thus the perfect laboratory to test new methods to image the uppermost part of59

volcanic cones, with the aim of better predicting future shallow magma ascending path.60

The experiment of joint seismic and GIS data acquisition as well as the feasible automation61

of data collection and analysis via the development of smaller instrumentation [Middlemiss62

et al., 2016] will then represent a feasible resource for hazard assessment solution during63

volcanic crises.64

2. Geological and structural background65

Mount Etna volcano is considered a relatively young volcano with a developing process66

started about 500 ka ago, in the Quaternary. The volcano is divided into 4 supersynthems67

and 8 synthems, according to the isotopic datation of De Beni et al. [2011]. The actual68

shape of the volcano is the result of the last synthem (“Il Piano synthem”), begun around69

10.4 ka ago. It has an extension of 47 km from North to South and 38 km from East to70

West and an area of about 1200 km2.71

The volcano is located at the boundary between the Calabro−Peloritan Arc (North)72

and the Hyblean foreland (South) [Branca et al., 2004; Lentini, 1982; Gillot et al., 1994].73

On the eastern shore of Etna (and Sicily) there is the “Malta−Hyblean escarpment”, an74

important system of faults that extends uninterrupted from Malta to the Aeolian Islands75

passing through the Hyblean area (Fig. 1).76

The Maltese−Hyblean−Aeolian faults system is considered the main discontinuity be-77

tween the African plate (West) and the Ionian oceanic microplate (East) [Gvirtzman and78
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Figure 1: Geological-structural sketch of eastern Sicily from Patanè et al. [2006b]. The legend in the lower left

panels marks with (1) the main tectonic lines and (2) the main faults. The Etnean area and its topography

are highlighted using contour lines.

Nur, 1999] as well as the major contributor to the volcano feeding system through an as-79

thenospheric window [Lanzafame and Bousquet, 1997]. The western sector, named by Patanè80

et al. [2006b] “Domain a” (Fig. 2), is characterized by faults and fractures with a prevalent81

NE-SW direction. The intersection of “Domain a”, comprising NE-SW-oriented structures,82

and “Domain b” (Fig. 2), comprising NW-SE-oriented structures, creates discontinuities83

that are considered the main cause of magma uprising to the main craters [Patanè et al.,84

2006b].85

3. Instruments and Data86

In this study, we combine geophysical techniques with information and communication87

technologies (ICT) and remote sensing. Seismic data were recorded by a single seismic88

5



Figure 2: Structural framework of Mount Etna from Patanè et al. [2006b]. Domain “a” is characterized by

structures with a prevalent NE-SW orientation. In the domain “b” the NW-SE and NNW-SSE structures

are predominant. The two areas are separated by a white dotted line. The red rectangle outlines our study

area.

station, which was moved in space in order to apply the HVSR technique. As ICT and89

remote sensing, we used a GIS environment, a tablet PC, and a GPS antenna. The first90

phase of the study has been the creation of the workspace inside the GIS environment. In91

the second phase, we acquired field data. Finally, data have been elaborated in a joint92

geophysics and GIS environment.93

3.1. GIS and WEBGIS94

The setup of a workspace implementing a reliable coordinate system and including all95

available data from literature is a fundamental step to develop an accurate field work [Barreca96

et al., 2013]. We chose an area of 10.5 km2 located between 14.98 and 15.00 longitude E and97

6



Figure 3: Digital Elevation Model of Mt. Etna as basemap. The main craters are indicated (VOR, Voragine;

BN, Bocca Nuova; NEC, NE Crater; SEC, SE Crater; NSEC, New SE Crater).

37.71 and 37.75 latitude N, spanning altitudes between 2281 m and 3265 m a.s.l. (Fig. 3).98

The area was subsequently subdivided into 22 W-E oriented lines and 9 S-N oriented99

lines, with nodes spaced 250 m, giving an array of 21 rows and 8 columns. The intersections100

of these lines form 198 points. 37 of these points were cut off, due either to their proximity101

to the craters or to the time restrictions during acquisition, thus performed at a total of 161102

points (Fig. 4).103

To allow us to be more accurate on reaching the measurement points we104

created, for each point, 3 buffer circles at 5, 10 and 15 meters, respectively. Two basemaps105

were added to the workspace as final step of the set up: a digital elevation model (DEM) of106

Mount Etna and a topographic map with a scale 1:10000 [Bisson et al., 2016]. The workspace107

was then uploaded to a server in order to obtain a WebGIS, which is a combination of the108

WEB standards with geographic information system [Fu and Sun, 2010]. Hence, we were109

able to use this online map operating on a portable device (tablet PC) and carry it to every110

measurement point. Due to the risk of losing connectivity, the map was also downloaded111

into the tablet local storage.112
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Figure 4: Digital Elevation Model of Mt. Etna as basemap. The 22 W-E arrays (red) and 9 S-N arrays

(blue) are imposed on the topography.

3.2. Seismic data collection experiment113

To reach the 161 points created during the setup phase we used a tablet PC with a CPU114

Quad-core 1.4 GHz Cortex-A9, 2GB of RAM, and an internal GPS. This was supported by115

an external GPS antenna equipped with a chipset SiRF Star III, a 20 channels receiver, able116

to process signals from all the visible satellites GPS and WAAS, a frequency of 1575,42 MHz117

and a TTFF (Time to First Fix) lower than 1 second. We were able to see in real time our118

position in the field thanks to the connection to the WebGIS and/or the map available on119

the tablet PC. With respect to the set of measurement points, we obtained a precision of:120

• 66% in positioning inside the buffer radius of 5 meters;121

• 84% in positioning inside the buffer radius of 10 meters;122

• 91% in positioning inside the buffer radius of 15 meters.123

This means that just 9% of the measurements were located outside the buffer radius of 15124

meters (Fig. 5).125
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Figure 5: The example area shows the buffer radius of 5 meters (in green), 10 meters (in orange) and 15

meters (in red). The red dots indicate the acquisition points.

The seismic instrument, a compact seismometer (24 bit digital) equipped with 3 accelero-126

metric channels and 3 velocimetric channels with adaptable dynamic range, was suitable for127

seismic ambient noise recordings (up to 1.5 mm/s) due to its high sensitivity and a frequency128

operating range between 0.1 and 1024 Hz on all channels. It was located at each of the 161129

measurement points. The positioning on the ground was done considering several factors:130

– Coupling with the soil, we used the ash of the volcano to smooth the impedance131

contrast;132

– Setting horizontally with the spirit level;133

– Orienting to the North.134

The acquisition duration at each of the 161 points was 20 minutes with a 128 Hz sampling135

rate, meaning that signals are investigated up to a frequency of 64 Hz, i.e., half of the136

sampling rate of the discrete signal processing system. The period of acquisition is May137

11- June 11 2014. The volcanic tremor in this period can be considered stationary, with a138
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variation of 13.7% in amplitude and 2.6% in frequency (G. Di Grazia, INGV-Osservatorio139

Etneo, personal communication).140

4. Methods and Data Processing141

The Horizontal to Vertical Spectral Ratio (HVSR) technique, applied first by Nogoshi142

and Igarashi [1970, 1971] and also known as “Nakamura’s method” [Nakamura, 1989], states143

that the ratio between the horizontal and vertical spectral amplitudes of the natural mi-144

crotremors (volcanic noise in this case) eliminates the seismometer transfer-function and145

gives the amplification produced by a surface layer at the recorded site. Even if, as of today,146

there are several studies that have applied the method to different scopes, one of the main147

hypothesis regarding the subsurface (geology) is that the fundamental frequency is linked to148

the depth and seismic velocity of a layer topping a relevant acoustic impedance contrast [La-149

chetl and Bard, 1994]. The fundamental resonance frequency F0 for a continuous stratified150

layer is given by the equation:151

F0 = Vs/4H

where Vs is the shear wave velocity and “4H” is 4 times the depth of the contrast. Lermo152

and Chávez-Garćıa [1994] and Dravinski et al. [1996] state that the method is valid in the153

assumption that microtremors are composed by surface (Rayleigh) waves, which propagate154

inside a surface layer over an infinite half-space. Nevertheless, data-driven studies generally155

agree that the HVSR mainly reveal the fundamental (resonant) frequency of the shallow156

structure beneath the investigation site [Field and Jacob, 1995; Lachet et al., 1996; Seekins157

et al., 1996; Coutel and Mora, 1998].158

The extension of the method to a stratified multi-layered system was given by Konno and159

Ohmachi [1998]. Since then, the method has been considered reliable when the structures160

beneath the investigation site can be approximated by a 1-D model. Nevertheless, a recent161

study of lateral heterogeneity in small alluvial valleys made by Chávez-Garćıa and Kang162

[2014] proves that the method reasonably shows the natural vibration frequency of complex163

2D structures, at least when there is a high impedance contrast between a sedimentary layer164
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Figure 6: Sample of H/V ratios as a function of frequency. The red and black solid lines indicate the H/V

mean value and standard deviation, respectively.

and a bedrock. The method has already been applied to a volcanic environment (Arenal165

volcano, Costa Rica) by Mora et al. [2001]. These authors show that reliable HVSRs can166

be obtained from different types of volcanic media, with lateral heterogeneity in the shallow167

structures producing large variations along the array. The main result is that local amplifica-168

tions observed in the spectral bands, corresponding to different peaks in the spectral ratios,169

are related to shallow geological structures. In their interpretation, the lack of pronounced170

discontinuity between a shallow soft depositional layer and a deep competent materials is171

marked by very low amplitudes. Galgaro et al. [2014] demonstrate that the HVSR peak172

broadness can be related to thermal properties. In addition, low seismic frequencies (3173

Hz) highlight shallow structures in a volcanic environment such as deposited debris flows174

[De Siena et al., 2016], at least when using alternative stochastic (coda) waves. With the175

HVSR, just a few minutes of acquisition of seismo-volcanic noise are sufficient to stabilize176

results. Information achievable from the resonant frequencies is then precisely linked to177

location with the implementation of the GIS approach, thus increasing spatial correlation178

between the measurements and local geology.179

In the acquisition of the relative H/V spectral ratios (Fig. 6) from volcanic noise ampli-180

tudes we took into account the position of the 161 data points as well as the difficulties and181

restrictions of Nakamura’s method. We use the standard inversion method that assumes a182

velocity-depth function, to compute the resonant frequency F0 [Ibs-von Seht and Wohlen-183

berg, 1999; Amorosi et al., 2008]. This function is calculated using an average shear-wave184
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velocity of 1250 m/s at the base of the volcanic edifice, derived from Alparone et al. [2012]185

and assuming a velocity of 450 m/s in the shallowest layers. This last value is obtained186

by the seismic refraction experiment of Cassinis et al. [1969]. Differently from geotechnical187

applications (e.g Amorosi et al. [2008]) our objective is to compare H/V functions with vol-188

canological maps, not to obtain the exact stratigraphy at each point. Hence, we perform a189

high-resolution spatial analysis based on point interpolation with an approach similar to the190

one devised and tested by Almendros et al. [2004]. At each measurement point laying on191

the lines created during the set up of the GIS workspace we obtain the related “ratiograms”.192

These HVSR functions are shown as a 2-dimensional contour plot versus frequency and time193

(See Supplementary Fig. 1) and were created to check for the presence of transient signals,194

which invalidate the assumption of noise stationarity. After removal of these transients we195

interpolate the ratiograms on the same line in space. The resulting HVSRs functions are196

displayed in a 2-dimensional contour plot versus depth (displayed in meters above sea level)197

and distance (in meters - Fig. S2).198

We obtain 31 vertical cross-sections, 9 S-N oriented with a length span between 2750m199

and 5250m (Fig. S3 and S4), and 22 with a W-E orientation (Figs. S5, S6, S7, S8 and200

S9), with a minimum length of 975 m and a maximum length of 2135 m. The depth spans201

between 1400 m and 3200 m a.s.l. while resolution is approximately 200 m. The H/V ratios202

are highlighted using contour lines in a range between 1 an 4.5.203

Doing a spline interpolation between the points obtained from the intersection of a hor-204

izontal plane and the H/V ratio contour lines of the vertical cross-section, we additionally205

obtain 9 horizontal cross-sections in a depth span between 1600 m and 3200 m a.s.l. (exclud-206

ing 1400 m a.s.l. where we had a limited number of intersection points). The gap between207

layers is 200 m. From the contour lines of the horizontal cross-section we extrapolated208

several polygons for the different value of the H/V ratio. To correlate the distribution of209

these horizontal cross-sections with the volcano-tectonic setting we took into consideration:210

(1) the main alignment of the polygons and (2) the main angle direction outlined by the211

segments constituting the polygons. From the HVSR contour line map we select polygons212

defined by the first closed loop to avoid any misinterpretation due the spatial interpolation;213

12



Figure 7: A: Map view of the polygons with H/V ratio equal and higher than 3.5. B: Distribution of the

vectors lines obtained from the polygons’ main angle. The eruptive fissures, pyroclastic cones and caldera

rim are obtained from the “Volcano-Tectonic Map of Etna Volcano” [Azzaro et al., 2012]. The green boxes

indicate the three main clusters discussed in the text.

this value describes polygons corresponding a value equal and higher than 3.5 (Fig. 7A). The214

main angle direction of the polygons was calculated using the GIS tool “CalculatePolygon-215

MainAngle”. This calculates the dominant angles, i.e., the orientations of segments forming216

the input polygon features that are measured most frequently. We then plot the segments217

as yellow oriented vectors on the volcano-tectonic map of Etna made by Azzaro et al. [2012],218

including the eruptive fissures, the pyroclastic cones, and the caldera rim (Fig. 7B). Keep-219

ing into consideration the sum of the length of the vectors with the same orientation we220

observe: (1) absolute vector maxima along the N-S direction; (2) two relative maxima along221

the NE-SW and E-W directions. The NW-SE trend is the least represented.222

After importing the polygons delineated by the contour line with H/V ratio equal and223

higher than 3.5 in the 3D GIS environment, we gave them a vertical extrusion of 200 m,224

filling the gap between layers. Fig. 8 shows a 3D image of the real geographic position of225

the recognized structures from a pitch angle of 30◦ (Fig. 8).226
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Figure 8: 3D view from a pitch angle of 30◦ of the recognized clusters. The green arrow on the upper left

corner shows the North. The extruded polygons have a thickness of 200 m. The colour legend is (from

bottom to top): black, red, orange, yellow, green, blue, indigo, violet and black and indicate depths from

1600 m to 3200 m. a.s.l..The green boxes indicate the three main clusters discussed in the text.

5. Results and Discussions227

The results reveal three main anomalies: two are located South of the caldera rim (Fig.228

7A2-3) while the third is inside it (Fig. 7A1). Vectors orientations South of the old caldera229

rim of the Ellittico volcano follow the N-S and NE-SW trends (Fig. 7B2-3), differing from230

those inside the caldera (Fig. 7B1). These trends are related to fractures with the same231

orientation, considered as preferential way for the magma uprise [Acocella and Neri, 2003].232

The same orientations are drawn on the INGV tectonic map of Azzaro et al. [2012] by233

pyroclastic cones and eruptive fissures. A similar spatial correlation is visible between all234

the fissures post 1900 described by Neri et al. [2011] and both the polygon map (Fig. 9A)235

and the vectors map (Fig. 9B).236

Inside the rim, vectors mainly highlight the W-E and NW-SE trends, showing clear237

correlation with eruptive fissures directions on the north-western and eastern sides of the238

volcano (Valle Del Bove - Fig. 10).239
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Figure 9: Correlation between the eruptive fissure post 1900 and (A) the polygon map and (B) the vectors

lines obtained from the polygons’ main angle.The green boxes indicate the three main clusters

discussed in the text.

The southernmost and northernmost high-H/V structures could be associated with pre-240

existing volcanic centres. They are in reasonable spatial correlation with a cooled pathway241

of magma (i.e. a system of dikes) at Cuvigghiuni [Branca et al., 2004] (box number 3 in242

Figs. 7,8 and 9) and in the Stratovolcano Supersynthem (i.e. the centers of the Ellittico243

and Mongibello [Branca et al., 2011a]) inside the Ellittico caldera (box number 1 in Figs.244

7,8 and 9). Referring to the cross-section of the Geological Map of Etna [Branca et al.,245

2011b], the recognized structures intersect the Zappini, Concazze and Il Piano Synthems.246

The central anomaly (box number 2 in Figs. 7,8 and 9), however, does not correspond247

to any known pre-existing structures. Considering that the Cuvigghiuni center (South) is248

dated between 79.6±4.2 ka and 65.3±4.4 ka ago and the Stratovolcano centers (North)249

are dated between 56.6±15.4 ka and 15 ka ago [De Beni et al., 2011] the central connecting250

structure could be an intermediate volcanic center not dated yet, and with no evidence251

on topography (Fig. 8-2). The high-H/V structures, however, are also in strong spatial252

correlation with the results of recent studies carried out using remote sensing analysis (Fig.253
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Figure 10: Detail of the vectors orientation inside the Ellittico caldera rim.

11) and discussed in the following sections.254

5.1. Monte Frumento Supino and Montagnola Clusters255

The structures comprised in the southern and intermediate clusters are located between256

1600 m a.s.l. and 2800 m a.s.l.. The anomalies retrieved between depths of 1600 m and 1800257

m a.s.l. have the same orientation of the eruptive fissures and follow the eruptive vents in258

the southern part of the study area (see detail in Fig. 12). Using seismic and geodetic data,259

Acocella and Neri [2003] highlight the dike that produced both the 2001 eruption at Piano260

del Lago and the deformation beneath Montagnola, producing uplift along a N-S trend.261

Resonant anomalies between 2000 m and 2400 m a.s.l. (thus comprising the depth range of262

the dike) show a similar N-S trend, (D1, Fig. 13), generally bordering the inferred location263

of the dike. Due to their spatial relation with eruptive fissures, we infer that the solidified264

dike acts as a quasi-vertical barrier for seismic noise, constraining the anomaly under areas265

of higher fracturing and temperature.266

The correspondence between the recognized structures and the elements of the volcano-267

tectonic map is even more evident for the intermediate cluster (Fig. 13). The resonant268

structures between 2600 m and 2800 m a.s.l. are mainly located beneath both Monte269
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Figure 11: Comparison between the recognized structures and previous studies.In detail, the eruptive vents

were described by Acocella and Neri [2003]; Behncke and Neri [2003]. dikes: D1 - [Acocella and Neri, 2003],

D2 and D3 - [Aloisi et al., 2009], D4 - [Bonforte et al., 2013], D5 - [Bonforte and Guglielmino, 2015]. A1

marks the deformation area highlighted by [Acocella and Neri, 2003] while A2 is the Hypocenter location

described by [Saccorotti et al., 2007].

Frumento Supino and the eruptive vents opened at about 2790 m elevation during the270

17 July-8 August 2001 eruption [Behncke and Neri, 2003]. The anomalies could also shape271

the dike’s intrusion that generated the October 26 2002 eruption in the same area [Aloisi272

et al., 2003].273

5.2. Crater Cluster274

The resonant structures in the northern cluster, inside the crater, confirm the existence of275

a system of dikes in the area close to the SE craters (SEC) and the New SE Crater (NSEC),276

where our model shows resonant structures between 2400 m and 3200 m a.s.l.. This system277

formed the eruptive fissures and the vents 1, 2 and 7 described by Acocella and Neri [2003]278

during the 2001 eruption, which coincide with the F1, F2 and F3 vents described by Behncke279

and Neri [2003] (Fig. 14). The above-mentioned structures also depict the intrusion that280

caused the eruptive fissures delineated by Bonaccorso et al. [2011] and Bonforte et al. [2013]281
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Figure 12: Comparison between the recognized structures at depth of 1600 m and 1800 m a.s.l. and the

elements of the volcano-tectonic map in the southern part of the study area.

during the 2008-2009 eruption and Bonforte and Guglielmino [2015] during the 2014 eruption282

(Fig. 14). Considering their orientation, from 2600 m a.s.l. to the surface, the283

model confirm (1) the hypothesis of the influence of flank spreading on the284

summit crater area, considering the angles N-S oriented between SE and NE285

craters, and (2) the role of the upper NE Rift in radial magma intrusion (from286

NEC), considering the NE-SW angle orientation at North of the NEC (Fig. 10287

and 14) [Bonforte et al., 2007]. Finally, in the area of Voragine (VOR) and Bocca288

Nuova (BN), both parts of the central crater, the model reconstructs the body that causes289

the seismicity analyzed by Saccorotti et al. [2007] (Fig. 14).290

We conclude that our results reconstruct the shallowest feeding systems of Etna. In the291

supplementary materials we provide a dynamic 3D visualization of the model to help in292

the understanding of the spatial correlation of the model with the above-discussed volcano-293

tectonic structures.294
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Figure 13: Comparison between the recognized structures in the central and southern clusters and previous

studies. The eruptive vents were described by Acocella and Neri [2003]; Behncke and Neri [2003] while the

dike D1 and the deformation area A1 were described by Acocella and Neri [2003].

6. Conclusion295

A joint seismic and GIS experiment targeting the resonant structures located between296

1600 and 3200 m a.s.l. at Mt. Etna volcano is carried out using a dense seismic network with297

a node spacing of 250 m and using the Horizontal-to-Vertical-Spectral-Ratio method. The298

GIS environment provides spatial interpolation between ratiograms, allows a more reliable299

interpretation of the results by the creation of 2D and 3D models of structures with high300

H/V ratios, and precisely connects the results in space with remote sensing studies and301

geological knowledge. This new methodology increases the level of detail on subsurface302

shallow structures with a simple and fast analysis. The results confirm previous structural303

models of the volcano and present important correlations with its recent eruptive and magma304

dynamics.305

Both the methodology and the technology applied have proved to be suitable to (1)306

the reconstruction of cooled volumes interested by magmatic intrusions in the shallowest307

portion of the volcano and (2) the understanding of the volcano past and recent dynam-308
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Figure 14: Comparison between the recognized structures in the northern cluster and previous studies.The

eruptive vents were described by Acocella and Neri [2003]; Behncke and Neri [2003]. Regarding the dike:

D1: [Acocella and Neri, 2003], D2 and D3: [Aloisi et al., 2009], D4: [Bonforte et al., 2013], D5: [Bonforte

and Guglielmino, 2015]. The A1 indicates the deformation area highlighted from [Acocella and Neri, 2003]

while the A2 is the area where hypocenters are located by Saccorotti et al. [2007].

ics. Repeating the survey in a different time period is a necessary step to (1) confirm the309

validity of the method; (2) test the method as a dynamic marker of the behaviour of the310

feeding systems before and after an eruption; (3) develop the platform into a quasi-real time311

analysis visualization tool for resonating, intrusive, erupting structures. Recent technologi-312

cal advancements in sensor miniaturization are crucial to implement the platform, reducing313

risks for operators as well as instrumentation costs.314
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Domenico Patanè, Pasquale De Gori, Claudio Chiarabba, and Alessandro Bonaccorso. Magma ascent and

the pressurization of Mount Etna’s volcanic system. Science, 299(5615):2061–2063, 2003.
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