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Abstract

A graph H is an isometric subgraph of G if dH(u, v) = dG(u, v), for every pair u, v ∈ V (H).
A graph is distance preserving if it has an isometric subgraph of every possible order. A
graph is sequentially distance preserving if its vertices can be ordered such that deleting the
first i vertices results in an isometric subgraph, for all i ≥ 1. We give an equivalent condition
to sequentially distance preserving based upon simplicial orderings. Using this condition,
we prove that if a graph does not contain any induced cycles of length 5 or greater, then
it is sequentially distance preserving and thus distance preserving. Next we consider the
distance preserving property on graphs with a cut vertex. Finally, we define a family of
non-distance preserving graphs constructed from cycles.

Keywords: Chordal, Cut Vertex, Distance Preserving, Isometric Subgraph, Sequentially
Distance Preserving, Simplicial Vertex.

1. Introduction

The distance between two vertices in a graph plays an important role in many areas
of graph theory. Moreover, computing distances in graphs is integral to many real-world
applications, especially in areas such as network and optimisation theory. Computing dis-
tances between vertices in large graphs is extremely expensive, such as in social networks
with millions of vertices. It is often desirable to know the distances between vertices in
subgraphs of the original graph. However, this requires recomputing all the distances. One
solution to this problem would be to find subgraphs where the distances between all ver-
tices is equal to their distance in the original graph. Such a subgraph is called isometric.
Isometric subgraphs have been used to study network clustering, see [10, 11].

Email addresses: jason.p.smith@strath.ac.uk (Jason P Smith), Zahediem@msu.edu (Emad Zahedi)
1J.P. Smith was supported by the EPSRC Grant EP/M027147/1

Preprint submitted to Annals of Combinatorics July 2, 2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aberdeen University Research Archive

https://core.ac.uk/display/161992718?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arxiv.org/abs/1701.06404v1


In this framework all graphs are finite, non-empty, simple and connected, unless assumed
otherwise. A graph G is distance preserving, for which we use the abbreviation dp, if G has
an isometric subgraph of every possible order. The notion of distance preserving graphs is
a generalisation of distance-hereditary graphs, where a graph is distance-hereditary if every
connected induced subgraph is isometric. Distance-hereditary graphs where first introduced
by Howorka in [7] and have since been studied in various papers, see [1, 3, 6]. Distance-
hereditary graphs have many nice properties, for example they are known to be perfect
graphs, see [4, 5].

The definition of a distance-preserving graph is similar to the one for distance-hereditary
graphs, but is less restrictive. Because of this distance preserving graphs can have a more
complex structure than distance-hereditary ones. In fact, it is conjectured in [10] that almost
all graphs are distance preserving. So far few results have been proven on distance preserving
graphs, although many conjectures exist in the literature, see [8, 10, 12].

One way to show that a graph G is dp is to show that there is an ordering of the
vertices v1, . . . , vn of G, such that removing v1, . . . , vi results in an isometric subgraph, for
all i ≥ 1. If such an ordering exists we say that G is sequentially distance preserving, which
we abbreviate to sdp. Clearly an sdp graph is dp. We say a graph is k-chordal if the largest
induced cycle is of length k. It was shown in [12] that 3-chordal graphs are sdp. This is
proved by using the fact that all 3-chordal graphs have a certain type of ordering of the
vertices called a simplicial ordering. This property is generalised to k-chordal graphs in [9].
We apply this generalisation in Section 3 to show that 4-chordal graphs are sdp.

A connected graph has a cut vertex x if removing x disconnects the graph. In Section 4
we consider graphs of the form G ∪H , where G and H have exactly one common vertex x,
so x is a cut vertex. We characterise the dp property in G ∪H in terms of G and H , which
reduces the complexity of testing if such graphs are dp.

Finally, in Section 5 we study the class of non-dp graphs. It is conjectured in [10] that
almost all graphs are dp, one way to prove this is to give a full classification of the non-dp
graphs. By the results in Section 3, we know that a non-dp graph must contain a cycle of
length k > 4. We investigate how to add vertices to cycle graphs whilst maintaining the
non-dp property. To this end, a family of non-dp graphs is defined.

2. Background

In this section we recall some necessary graph theory concepts. For any definitions and
notation not given here, and a general overview of graph theory, we refer the reader to [2].
Let G be a graph with vertex set V (G) and edge set E(G). For ease of notation, we let |G|
be the number of vertices of G. A path in G is a sequence of distinct vertices v0, . . . , vk such
that vivi+1 ∈ E(G), for all i = 0, . . . , k − 1. The length of a path is k, the number of edges.
A path P is chordless if there is no edge of G between any non-consecutive pair of vertices
of P . The interior of a path P is obtained by removing the end points v0, vk from P . The
distance between two vertices u, v in G, denoted dG(u, v), is the minimum length of a path
between these vertices. If G is clear from context, we will use d(u, v), instead of dG(u, v). A
path from u to v with length dG(u, v) is called a u–v geodesic path.
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An induced subgraph H of G is called an isometric subgraph, denoted H ≤ G, if
dH(a, b) = dG(a, b), for every pair of vertices a, b ∈ V (H). We say that G is distance
preserving (dp) if there is an i-vertex isometric subgraph, for every 1 ≤ i ≤ |G|. Given a
set A ⊆ V (G), let G[A] be the graph induced on the set A and G− A := G[V (G) \ A]. We
say that G is sequentially distance preserving (sdp) if there is an ordering v1, . . . , vn of V (G)
such that deleting the first i vertices results in an isometric subgraph for all i ≥ 1.

The cycle graph Ck is the graph with vertices v1, . . . , vk and the edge set E(Ck) := {vivj :
|i− j| = 1} ∪ {v1vk}. If G contains Ck as a subgraph we say it contains a cycle of length
k or a k-cycle. A vertex v ∈ V (G) is called a cut vertex if G − {v} is not connected. The
graph Gℓ is the graph whose vertices are those of G and there is an edge between any two
vertices u, v ∈ G with dG(u, v) ≤ ℓ. The set of vertices adjacent to v ∈ V (G) is called its open
neighbourhood and is denoted NG(v). The closed neighbourhood of v is NG[v] = NG(v) ∪ v.
A clique in G is an induced subgraph that has an edge between every pair of its vertices.

3. All 4-chordal graphs are distance preserving

It was shown in [12] that 3-chordal graphs, often just called chordal graphs, are sequen-
tially distance preserving. This is shown using the well known property that all chordal
graphs have a simplicial ordering. This property is generalised to k-chordal graphs in [9],
using the notion of a k-simplicial ordering.

Definition 3.1. A vertex v of a graph G is weakly k-simplicial if NG(v) induces a clique
in (G− v)k−2. Furthermore, v is k-simplicial if it is weakly k-simplicial and for each non-
adjacent pair x, y in NG(v), every chordless x, y-path whose interior is entirely in G−NG[v]
has at most k−2 edges. A vertex ordering v1, . . . , vn of G is a (weakly) k-simplicial ordering
if vi is (weakly) k-simplicial in G[vi, . . . , vn].

We use this generalised simplicial ordering to prove the conjecture in [10] that all 4-
chordal graphs are distance preserving. In order to do this we need the main result from [9],
which we present next. Note that there is a third equivalent statement in the original
theorem which we omit here as we do not require it for our results.

Theorem 3.2. [9, Theorem 1] Consider a graph G and integer k ≥ 3. The graph G

is k-chordal if and only if G has a k-simplicial ordering.

Before proving the main result of this section we present the following lemma, which is
a generalisation of Lemma 3.1 of [12].

Lemma 3.3. Consider a graph G and vertex v ∈ V (G). The graph G − v is isometric if
and only if v is weakly 4-simplicial.

Proof. Suppose v is weakly 4-simplicial. This implies thatNG(v) induces a clique in (G−v)2,
that is, any pair x, y ∈ NG(v) have a distance of at most 2 in G− v. Consider any path P

which contains v in its interior. There must be a subpath x−v−y of P , where x, y ∈ NG(v).
Because v is 4-simplicial we know that x and y are either neighbours or have a common
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Figure 1: A non-4-chordal graph that is sdp. The vertex labels give an sdp ordering.

neighbour z 6= v. Therefore, we can either remove v or replace it with z to get a path that
is at least as short as P lying in G− v. It follows that G− v is isometric.

Suppose G − v is isometric. Consider any pair u, w ∈ NG(v), then we know that
dG(u, w) ≤ 2 which implies dG−v(u, w) ≤ 2. Therefore, NG(v) induces a clique in (G− v)2,
so v is weakly 4-simplicial.

The following proposition is an immediately result of Lemma 3.3.

Proposition 3.4. A graph is sdp if and only if it admits a weakly 4-simplicial ordering.

Proof. Lemma 3.3 implies that a vertex ordering is a weakly 4-simplicial ordering if and
only if it is an sdp ordering.

Now we have all we need to prove Conjecture 5.2 of [10]:

Theorem 3.5. Any 4-chordal graph is sdp, and thus dp.

Proof. Applying Theorem 3.2 with k = 4 shows that for any 4-chordal graph there is a
4-simplicial ordering of the vertices. Moreover, Proposition 3.4 implies this ordering is an
sdp ordering.

The graph in Figure 1 is not 4-chordal, because it contains an induced 5-cycle, so by
Theorem 3.2 the graph cannot have a 4-simplicial ordering. However, the ordering given
by the vertex labels is a weakly 4-simplicial ordering, so the graph is sdp. To see the
ordering is not 4-simplicial, note that the vertex labelled 1 is not 4-simplicial because the
path 2−3−4−5 violates the 4-simplicial condition. Theorem 3.5 implies that a graph that
is dp but not sdp cannot contain an induced 4-cycle, combining this with [12, Corollary 3.2]
gives the following corollary:

Corollary 3.6. Any dp graph that is not sdp must contain an induced cycle of length k ≥ 5.
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4. Separable graphs

A connected graph is said to be separable if it can be disconnected by removing a vertex,
which we call a cut vertex. In this section we consider the distance preserving property in
separable graphs. A separable graph can be represented in the following way:

Definition 4.1. Consider two graphs G and H, with a single common vertex x. Let G+xH

be the union of G and H.

So G +x H is a separable graph with a cut vertex x. We characterise the isometric
subgraphs of G +x H . To do this we introduce the following lemma.

Lemma 4.2. Consider a graph G +x H and two induced subgraphs H ′ ⊆ H, G′ ⊆ G,
with x ∈ V (G′) ∩ V (H ′), then:

G′ +x H
′ ≤ G+x H if and only if H ′ ≤ H and G′ ≤ G.

Proof. First we consider the forward direction. Since x is a cut vertex any geodesic path
between a pair of vertices of H ⊆ G +x H is contained in H , thus H ≤ G +x H . The
same is true when replacing G and H by G′ and H ′, respectively. Combining this with our
assumption we have:

dH′(u, v) = dG′+xH′(u, v) = dG+xH(u, v) = dH(u, v),

for every pair of vertices u, v ∈ V (H ′), so H ′ ≤ H . An analogous argument shows
that G′ ≤ G.

Now consider the backward direction. Using the fact H ≤ G +x H and the assumption
H ′ ≤ H , we have

dG′+xH′(u, v) = dH′(u, v) = dH(u, v) = dG+xH(u, v), (1)

for every pair (u, v) ∈ V (H ′)× V (H ′). An analogous argument shows that

dG′+xH′(a, b) = dG+xH(a, b), (2)

for every pair (a, b) ∈ V (G′) × V (G′). Next consider a pair (a, u) ∈ V (G′) × V (H ′). Any
geodesic path from a to u can be considered as the concatenation of an a–x geodesic path
in G′ and a x–u geodesic path in H ′. Applying Equations (1) and (2) implies that:

dG′+xH′(a, u) = dG′+xH′(a, x) + dG′+xH′(x, u)

= dG′(a, x) + dH′(x, u)

= dG(a, x) + dH(x, u)

= dG+xH(a, u).

This completes the proof.
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To state the main result of this section we use the following definition and notation,
which are taken from [8].

Definition 4.3. For a graph G and sets X, Y ⊆ V (G), let

DP(G) =
{

A ⊆ V (G) : G[A] ≤ G
}

and dp(G) =
{

|A| : A ∈ DP(G)
}

.

Also let

DPY
X(G) =

{

A ∈ DP(G) : A ∩X = ∅, A ∩ Y 6= ∅
}

and

dpY
X(G) =

{

|A| : A ∈ DPY
X(G)

}

.

For ease of notation we denote DP{v}(G) by DPv(G) and DP∅
X by DPX , and similarly for

superscripts and dp.

Define the set A +B := {a+ b : a ∈ A, b ∈ B}, where A and B are sets of integers.

Theorem 4.4. Consider a graph G+x H. Then:

dp(G+x H) =
(

dpx(G) + dpx(H) + {−1}
)

∪ dpx(G) ∪ dpx(H).

Proof. We consider two cases based upon whether A ∈ DP(G +x H) contains x. If A does
not contain x, then A is fully contained in either G or H , so dpx(G+xH) = dpx(G)∪dpx(H).
If A does contain x, then Lemma 4.2 implies A = G′ +x H

′, where G′ ≤ G, H ′ ≤ H and
both contain x. Therefore, dpx(G +x H) =

(

dpx(G) + dpx(H) + {−1}
)

where the minus 1
accounts for the common vertex x in G′ and H ′. Combining these two cases with the
formula dp(G+x H) = dpx(G+x H) ∪ dpx(G+x H) completes the proof.

Given two disjoint graphs we can connect the graphs by a path of length r, for any r > 0.

Definition 4.5. Consider two disjoint graphs G and H. Let Gx

r
—Hy be the graph obtained

by connecting x ∈ V (G) and y ∈ V (H) with a path P (x, y) of length r.

These graphs are separable, so applying a simple iteration of Theorem 4.4 gives the
following corollary:
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Corollary 4.6. Consider two disjoint graphs G and H. If r > 0 then:

dp(Gx

r
—Hy) =

(

dpx(G) + dpy(H) + {−1, . . . , r − 1}
)

∪ dpx(G) ∪ dpy(H).

5. Maintaining the non-dp property

In this section we investigate the class of non-dp graphs. It is conjectured in [10] that
almost all graphs are non-dp. So understanding this class is a logical step towards a full
classification of the class of dp graphs. The simplest non-dp graphs are the cycle graphs Ck,
for all k ≥ 5. We investigate how we can add vertices to the cycle graphs and preserve the
non-dp property. To this end we introduce the following class of graphs.

Consider the cycle Ck and a set of vertices A, with |A| = ℓ, such that A ∩ V (Ck) = ∅.
For each a ∈ A, select three consecutive vertices of Ck and join a to at least one of the
three selected vertices. Let Ck,ℓ denote the family of graphs that can be constructed in this
way. Given a graph G ∈ Ck,ℓ, let C(G) be the original cycle vertices of G and A(G) the
added vertices. Note that the addition of the vertices to the cycle graph cannot change the
distance between any pair of vertices in C(G), so Ck ≤ G.

Recall that we label the vertices of Ck as v1, . . . , vk, and let vk+1 := v1 and v0 := vk. So
there is an edge between two vertices vi and vj if and only if i = j ± 1.

Theorem 5.1. If k > 2(ℓ+ 2), then any graph in Ck,ℓ is non-dp.

Proof. Consider a graph G ∈ Ck,ℓ. If an added vertex a is connected to two cycle vertices ci−1

and ci+1, then the removal of either a or ci results in isomorphic subgraphs. Therefore, when
constructing an isometric subgraph of G, by removing a set of vertices of G, we can assume
that a is always removed before ci. Also recall that the added vertices do not alter the
distance between any of the cycle vertices. Combining these two points implies that given
a graph H ≤ G there is a geodesic path in H between any two elements of C(H) that is
entirely contained in H [C(H)]. Therefore, if H ≤ Ck,ℓ, then H [C(H)] ≤ Ck.

We show that there is no isometric subgraph of G with order ⌊k
2
⌋ + 2. Suppose for a

contradiction that such a subgraph does exist, we denote it H . We know that ℓ < k
2
− 2,

so to obtain H we must remove a set of s cycle vertices, where ⌈k
2
⌉ − 2 > s > 0. However,

this implies that C(H) has t vertices, where k > t > ⌊k
2
⌋ + 2, and it is straightforward to

see that there is no isometric subgraph of Ck with t vertices. Therefore, H is not isometric,
so G is non-dp.

Note that the converse of Theorem 5.1 is not true. For example in Figure 3, the graph G

is not dp but k = 10 6> 10 = 2(ℓ+ 2). An interesting question, which we leave open, is:

Open Problem 5.2. How can we add vertices to non-cycle non-dp graphs to get further
results on the class of non-dp graphs?

We end this paper with an interesting conjecture about distance preserving graphs.

7



G

Figure 3: A counterexample to the converse of the Theorem 5.1

Conjecture 5.3. If G is an n-vertex graph with minimum degree δ(G) ≥ n
2
, then G is dp.

Nussbaum and Esfahanian [10] have shown that δ(G) ≥ 2n
3
− 1 forces G to be dp. It is

not clear whether this bound is tight or not. If δ(G) ≥ ⌊n
2
⌋ then G has diameter at most 2.

Since the possible distances in such a graph are so limited, one might be able to find the
required isometric subgraphs.
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