

FEMS Microbiology Ecology

http://mc.manuscriptcentral.com/fems

Ammonia oxidisers in a non-nitrifying Brazilian savanna soil

Journal:	FEMS Microbiology Ecology
Manuscript ID	FEMSEC-17-06-0304.R1
Manuscript Type:	Research article
Date Submitted by the Author:	n/a
Complete List of Authors:	Catao, Elisa; University of Brasilia, Cell biology Thion, Cecile; Ecole Centrale de Lyon, Laboratoire Ampere Kruger, Ricardo; Universidade de Brasilia, Cell biology Prosser, Jim; University of Aberdeen, Institute of Biological and Environmental Sciences
Keywords:	ammonia oxidisers, low nitrification, Brazilian savanna, inhibition, pH, soil moisture

338x190mm (300 x 300 DPI)

4 5		
6 7	1	Ammonia oxidisers in a non-nitrifying Brazilian savanna soil Style Definition: Normal: Font: Times New Roman, 12 pt, Line spacing: Double
8 9	2	
10 11	3	Elisa C P Catão ^{1,2} , Cécile Thion ^{2,3} , R.H. Krüger ¹ & James I Prosser ²
12 13	4	¹ Cellular Biology Department, Instituto Central de Ciencias Sul, Universidade de Brasilia
14 15	5	(UnB), 700910-900 Brasilia, DF, Brazil
16 17	6	² Institute of Biological and Environmental Sciences, University of Aberdeen, Cruickshank
18 19	7	Building, St. Machar Drive, Aberdeen AB24 3UU, UK
20	8	³ Laboratoire Ampère, UMR CNRS 5005, École Centrale de Lyon, 34 avenue Guy de
22	9	Collongue, 69130 Ecully, France
23 24 25	10	
25 26	11	Corresponding author:
27 28 29	12	Elisa Catão
30 31 32	13	Max-Planck Institute for Biogeochemistry
33 34	14	Department for Biogeochemical Processes
35 36 27	15	Hans-Knöll Straße 10
37 38 39	16	07745 Jena, Germany
40 41 42	17	E-mail: <u>elisaccp@gmail.com</u>
42	18	Phone: +49 3641 576106
44 45 46	19	Fax: +49 3641 577110
47 48	20	
49 50		
51 52		
53 54		
55 56		
57 58		1
50 59		
60		

21	Abstract
22	Low nitrification rates in Brazilian savanna (Cerrado) soils have puzzled researchers for
23	decades. Potential mechanisms include biological inhibitors, low pH, low microbial
24	abundance and low soil moisture content, which hinders microbial activity, including
25	ammonia oxidation. Two approaches were used to evaluate these potential mechanisms, (i)
26	manipulation of soil moisture and pH in microcosms containing Cerrado soil and (ii)
27	assessment of nitrification inhibition in slurries containing mixtures of Cerrado soil and an
28	actively nitrifying agricultural soil. Despite high ammonium concentration in Cerrado soil
29	microcosms, little NO3 ⁻ accumulation was observed with increasing moisture or pH, but in
30	some Cerrado soil slurries, AOA amoA transcripts were detected after 14 days. In mixed soil
31	slurries, the final NO_3^- concentration was comparative <u>reflected</u> to the initial proportions of
32	agricultural and Cerrado soils in the mixture, providing no evidence of nitrification inhibitors
33	in Cerrado soil. AOA community denaturing gradient gel electrophoresis profiles were was
34	similar in the mixed and nitrifying soils. These results suggest that nitrification in Cerrado
35	soils is not constrained by water availability, ammonium availability, low pH, or biological
36	inhibitors and alternative potential explanations for low nitrification levels are discussed.
37	The microbial community in Cerrado soil might be adapted to N retention_possibly through
38	higher N immobilisation in organic matter rather than N loss through nitrification.
39	Keywords: ammonia oxidisers, low nitrification, Brazilian savanna, inhibition, pH, soil
40	moisture
41	

42 Introduction

43	Autotrophic nitrification, the sequential oxidation of ammonia to nitrite and nitrate, is a major
44	cause of N loss in terrestrial environments. In agricultural systems, nitrification is the main
45	pathway of N transformation, and up to 95% of total N is present as NO ₃ ⁻ transformed
46	through nitrification, potentially leading to nitrate (NO3) leaching and emission of nitric
47	oxide (NO) and nitrous oxide (N ₂ O) by nitrifiers and denitrifiers (Subbarao et al., 2012).
48	Inhibitors of nitrification can decrease nitrogen losses from these systems (Subbarao et al.,
49	2006). These inhibitors target the first step in nitrification, ammonia oxidation, which is
50	carried out by both bacterial and archaeal ammonia oxidisers. Some natural systems have
51	lower nitrification rates and higher nitrogen fertiliser use efficiency than managed systems
52	(Ste-Marie & Paré, 1999). For example, in soils of the tropical savanna biome in Central
53	Brazil, also called the Cerrado, NO3 ⁻ concentration is low or undetectable (Nardoto &
54	Bustamante, 2003), the NH_4^+ : NO_3^- ratio is high and the abundance of nitrifiers is low (Catão
55	et al., 2016). These ecosystems may therefore provide a model for greater and more
56	sustainable crop productivity and decreased demand for nitrogen fertilisers.
57	There are several several some potential explanations based on biological and
58	physicochemical factors leadingfor to for low rates of nitrification in Cerrado soils, based on
59	biological and physicochemical factors. Plants may decrease nitrification by competing for
60	NH_4^+ -N and by increasing the C:N ratio through increased carbon supply, thereby promoting
61	immobilisation, while some plants produce nitrification inhibitors in plant litter and root
62	exudates (Subbarao et al., 2006). These inhibitors target ammonia oxidation and can benefit
63	plants by reducing competition for ammonium (Subbarao et al., 2006, Subbarao et al., 2015).
64	The specific reasons for the low nitrification rates in the Cerrado biome are unclear, but Both
65	ammonia-oxidising archaea (AOA) and ammonia-oxidising bacteria (AOB) are both-present
66	in these soils (Catão et al., 2016) but - However, the relatively high ammonium concentration

Formatted: Subscript
Formatted: Superscript

67	in Cerrado soil $[(3 - 22 \ \mu g \ N \ g^{-1} \ soil, (Nardoto & Bustamante, 2003)]; 5 - 49 \ \mu g \ N \ g^{-1} \ soil;$	
68	(Catão et al., 2016)]) suggests that ammonia oxidisers are not limited by ammonia	
69	concentration and low rates of nitrification in Cerrado soils may be better explained by	
70	production of biological nitrification inhibitors.	
71	Low nitrification rates in acidic soils have been described for many years (De Boer &	
72	Kowalchuk, 2001). Inhibition of ammonia oxidation in low pH soil was traditionally	
73	considered to be due to the low availability of ammonia, through ionisation to $\mathrm{NH_4^+}$, but may	
74	be alleviated by growth in soil aggregates or on surfaces (De Boer et al., 1991, Allison &	
75	Prosser, 1993), urease activity (De Boer et al., 1989, Burton & Prosser, 2001), or growth of	
76	acidophilic archaeal ammonia oxidisers (Gubry-Rangin et al., 2011, Lehtovirta-Morley et al.,	
77	2011). Meta-analysis of net nitrification rates in a wide range of soils (Booth et al., 2005)	
78	suggests that pH limitation may not be widespread, but increases increased nitrification	
79	following amendment of Cerrado soil with calcium carbonate (Rosolem et al., 2003) provides	
80	evidence for pH limitation in soil.	
81	Low water availability decreases nitrification (Placella & Firestone, 2013, Thion &	
82	Prosser, 2014) by increasing osmotic stress and reducing mobility of ammonia within the	
83	soil. In the The rainfall-seasonalllity dry in the Cerrado biome, and the reported increases in	
84	N ₂ O production and 10 fold higher NO emissions increase after following rainfall or addition	
85	of artificial rainwater (Pinto et al., 2002, Pinto et al., 2006) provideing evidence for limitation	
86	of nitrification during dry seasons in this biome.	
87	The specific reasons for the low nitrification rates in the Cerrado biome are unclear,	
88	but ammonia oxidising arehaea (AOA) and ammonia oxidising bacteria (AOB) are both	
89	present in these soils (Catão et al., 2016). Limited nitrification is alleviated by agriculture due	Formatted: F Roman, 12 pt
90	to fertilisation, liming, tillage or plant community change. Considering the extensive	Formatted: F Roman, 12 pt
91	conversion of Cerrado soils to agricultural production (Marris, 2005, Catão et al., 2016), it is	

Formatted: Font: (Default) Times New Roman, 12 pt Formatted: Font: (Default) Times New

FEMS Microbiology Ecology

2
3
4
5
6
7
1
8
9
10
11
12
12
13
14
15
16
17
18
10
10
20
21
22
23
24
27
20
26
27
28
29
20
30
31
32
33
34
25
30
36
37
38
39
40
Λ1
41
42
43
44
45
46
- 1 0 47
4/
48
49
50
51
52
52
23
54
55
56
57
50
00
59
60

92	relevantimportant to understand adaptation of natural ecosystems adaptation to limit N loss.	
93	The aim of this study was to test three hypotheses which regarding are potential mechanisms	
94	underlying for the low nitrification rates: presence of biological nitrification inhibitors, low	
95	water availability and low pH. The presence of plant-derived nitrification inhibitors was	
96	tested by analysing (i) the growth of AOB and AOA in the presence of aqueous extract from	
97	Cerrado soil and (ii) the effect of Cerrado soil on ammonia oxidation by a nitrifying soil	
98	(Craibstone) in soil slurries. The effects of low water availability and low pH on nitrification	
99	were tested by manipulating Cerrado soil water content and pH in microcosms.	
100		
101		
102	Materials and methods	
103	Soil sampling	
104	Cerrado soil was sampled from an undisturbed shrubland (Campo sujo), with some sparse	Formatted: Font: (Default) Times New Roman
105	shrubs over a continuous grass layer (Eiten, 1972) described previously (Catão et al., 2016),	
106	where graminoids can account for around 45% of total aboveground biomass, leading to a	
106 107	where graminoids can account for around 45% of total aboveground biomass, leading to a contribution of 46% of relative abundance of fine roots (Castro & Kauffman, 1998). Campo	
106 107 108	where graminoids can account for around 45% of total aboveground biomass, leading to a contribution of 46% of relative abundance of fine roots (Castro & Kauffman, 1998). Campo sujo is dominated by plants from the families Asteraceae, Leguminosae, and Poaceae (Tannus	
106 107 108 109	 where graminoids can account for around 45% of total aboveground biomass, leading to a contribution of 46% of relative abundance of fine roots (Castro & Kauffman, 1998). Campo sujo is dominated by plants from the families Asteraceae, Leguminosae, and Poaceae (Tannus & Assis, 2004). The average monthly precipitation and temperature, measured at the nearest 	
106 107 108 109 110	 where graminoids can account for around 45% of total aboveground biomass, leading to a contribution of 46% of relative abundance of fine roots (Castro & Kauffman, 1998). Campo sujo is dominated by plants from the families Asteraceae, Leguminosae, and Poaceae (Tannus & Assis, 2004). The average monthly precipitation and temperature, measured at the nearest meteorological centre in 2014 (~30 km from the farm; Pirenopolis – GO, Station 83376, 	
106 107 108 109 110 111	 where graminoids can account for around 45% of total aboveground biomass, leading to a contribution of 46% of relative abundance of fine roots (Castro & Kauffman, 1998). Campo sujo is dominated by plants from the families Asteraceae, Leguminosae, and Poaceae (Tannus & Assis, 2004). The average monthly precipitation and temperature, measured at the nearest meteorological centre in 2014 (~30 km from the farm; Pirenopolis – GO, Station 83376, 15°50'60"S 48°57'36"W), were 143 mm (range 0 - 317 mm) and 23.4°C (range 21°C - 	
 106 107 108 109 110 111 112 	 where graminoids can account for around 45% of total aboveground biomass, leading to a contribution of 46% of relative abundance of fine roots (Castro & Kauffman, 1998). Campo sujo is dominated by plants from the families Asteraceae, Leguminosae, and Poaceae (Tannus & Assis, 2004). The average monthly precipitation and temperature, measured at the nearest meteorological centre in 2014 (~30 km from the farm; Pirenopolis – GO, Station 83376, 15°50'60"S 48°57'36"W), were 143 mm (range 0 - 317 mm) and 23.4°C (range 21°C - 25.6°C), respectively. Triplicate soil samples were obtained from the upper 10 cm of soil, 	
 106 107 108 109 110 111 112 113 	 where graminoids can account for around 45% of total aboveground biomass, leading to a contribution of 46% of relative abundance of fine roots (Castro & Kauffman, 1998). Campo sujo is dominated by plants from the families Asteraceae, Leguminosae, and Poaceae (Tannus & Assis, 2004)_The average monthly precipitation and temperature, measured at the nearest meteorological centre in 2014 (~30 km from the farm; Pirenopolis – GO, Station 83376, 15°50'60"S 48°57'36"W), were 143 mm (range 0 - 317 mm) and 23.4°C (range 21°C - 25.6°C), respectively. Triplicate soil samples were obtained from the upper 10 cm of soil, pooled before sieving (2-mm mesh size) and then stored at 4°C. The climate in the Cerrado 	
 106 107 108 109 110 111 112 113 114 	 where graminoids can account for around 45% of total aboveground biomass, leading to a contribution of 46% of relative abundance of fine roots (Castro & Kauffman, 1998). Campo sujo is dominated by plants from the families Asteraceae, Leguminosae, and Poaceae (Tannus & Assis, 2004). The average monthly precipitation and temperature, measured at the nearest meteorological centre in 2014 (~30 km from the farm; Pirenopolis – GO, Station 83376, 15°50'60"S 48°57'36"W), were 143 mm (range 0 - 317 mm) and 23.4°C (range 21°C - 25.6°C), respectively. Triplicate soil samples were obtained from the upper 10 cm of soil, pooled before sieving (2-mm mesh size) and then stored at 4°C. The climate in the Cerrado biome is tropical (Köppen Aw), and samples were collected at the beginning of the dry 	
 106 107 108 109 110 111 112 113 114 115 	 where graminoids can account for around 45% of total aboveground biomass, leading to a contribution of 46% of relative abundance of fine roots (Castro & Kauffman, 1998). Campo sujo is dominated by plants from the families Asteraceae, Leguminosae, and Poaceae (Tannus & Assis, 2004)_The average monthly precipitation and temperature, measured at the nearest meteorological centre in 2014 (~30 km from the farm; Pirenopolis – GO, Station 83376, 15°50'60"S 48°57'36"W), were 143 mm (range 0 - 317 mm) and 23.4°C (range 21°C - 25.6°C), respectively. Triplicate soil samples were obtained from the upper 10 cm of soil, pooled before sieving (2-mm mesh size) and then stored at 4°C. The climate in the Cerrado biome is tropical (Köppen Aw), and samples were collected at the beginning of the dry season (May 2014). Campo sujo and Cerrado <i>gensu stricto</i> are usually found on oxisols, with 	Formatted: Font: Italic
 106 107 108 109 110 111 112 113 114 115 116 	 where graminoids can account for around 45% of total aboveground biomass, leading to a contribution of 46% of relative abundance of fine roots (Castro & Kauffman, 1998). Campo sujo is dominated by plants from the families Asteraceae, Leguminosae, and Poaceae (Tannus & Assis, 2004)_The average monthly precipitation and temperature, measured at the nearest meteorological centre in 2014 (~30 km from the farm; Pirenopolis – GO, Station 83376, 15°50'60"S 48°57'36"W), were 143 mm (range 0 - 317 mm) and 23.4°C (range 21°C - 25.6°C), respectively. Triplicate soil samples were obtained from the upper 10 cm of soil, pooled before sieving (2-mm mesh size) and then stored at 4°C. The climate in the Cerrado biome is tropical (Köppen Aw), and samples were collected at the beginning of the dry season (May 2014). Campo sujo and Cerrado <i>sensu stricto</i> are usually found on oxisols, with _ low nutrient content, low pH, and high content of aluminium (Reatto <i>et al.</i>, 1998)_The soil, 	Formatted: Font: Italic
 106 107 108 109 110 111 112 113 114 115 116 	where graminoids can account for around 45% of total aboveground biomass, leading to a contribution of 46% of relative abundance of fine roots (Castro & Kauffman, 1998). Campo sujo is dominated by plants from the families Asteraceae, Leguminosae, and Poaceae (Tannus & Assis, 2004)_The average monthly precipitation and temperature, measured at the nearest meteorological centre in 2014 (~30 km from the farm; Pirenopolis – GO, Station 83376, 15°50'60"S 48°57'36"W), were 143 mm (range 0 - 317 mm) and 23.4°C (range 21°C - 25.6°C), respectively. Triplicate soil samples were obtained from the upper 10 cm of soil, pooled before sieving (2-mm mesh size) and then stored at 4°C. The climate in the Cerrado biome is tropical (Köppen Aw), and samples were collected at the beginning of the dry season (May 2014). Campo sujo and Cerrado <i>gensu stricto</i> are usually found on oxisols, with _ low nutrient content, low pH, and high content of aluminium (Reatto <i>et al.</i> , 1998)_The soil,	Formatted: Font: Italic
 106 107 108 109 110 111 112 113 114 115 116 	where graminoids can account for around 45% of total aboveground biomass, leading to a contribution of 46% of relative abundance of fine roots (Castro & Kauffman, 1998). Campo sujo is dominated by plants from the families Asteraceae, Leguminosae, and Poaceae (Tannus & Assis, 2004)_The average monthly precipitation and temperature, measured at the nearest meteorological centre in 2014 (~30 km from the farm; Pirenopolis – GO, Station 83376, 15°50'60"S 48°57'36"W), were 143 mm (range 0 - 317 mm) and 23.4°C (range 21°C - 25.6°C), respectively. Triplicate soil samples were obtained from the upper 10 cm of soil, pooled before sieving (2-mm mesh size) and then stored at 4°C. The climate in the Cerrado biome is tropical (Köppen Aw), and samples were collected at the beginning of the dry season (May 2014). Campo sujo and Cerrado <i>gensu stricto</i> are usually found on oxisols, with low nutrient content, low pH, and high content of aluminium (Reatto <i>et al.</i> , 1998)_The soil,	Formatted: Font: Italic

1
1
2
3
1
4
5
6
7
1
8
9
10
10
11
12
10
13
14
15
16
10
17
18
10
19
20
21
22
22
23
24
25
25
26
27
20
28
29
30
24
31
32
33
24
34
35
36
27
37
38
39
40
40
41
42
13
40
44
45
16
40
41
48
40
50
51
52
52
53
54
55
55
56
57
58
50
59

117	which was well aerated and well drained, is classified as sandy loam with 20.8% clay and had
118	an initial pH of 5.6 (±0.04). Physicochemical parameters from the eCampo sujo sample were
119	previously described (Catão et al., 2016): organic matter content was 42.6 (± 2.4) g kg ⁻¹
120	cation exchange capacity 6 (\pm 0.6) cmol _c dm ⁻³ , available phosphorus 1.8 (\pm 0.13) mg dm ⁻³
121	aluminium 1.2 (\pm 0.12) cmol ₀ dm ⁻³ and Fe 165.4 (\pm 41.04) mg dm ⁻³ Craibstone soil, used in
122	this study as a reference nitrifying soil, was sampled from an experimental agricultural field
123	(Scottish Agricultural College, Craibstone, Scotland, Grid reference NJ872104) and
124	maintained at pH 5.5 since 1961.
125	
126	
127	Cultivation of ammonia oxidisers with soil extracts
128	Aqueous extracts of Craibstone and Campo sujo soils were prepared by blending 20 g soil in
129	2 volumes of sterile distilled water for 40 s, rotating in 50-mL sterile tubes for 1 h,
130	centrifuging (3,000×g for 15 min) and sterilising by progressive filtration through filters with
131	10-mm, 5-mm, 0.45- μ m and 0.22- μ m pore size. NH ₄ ⁺ and NO ₃ ⁻ concentrations in the filtrates
132	were below the level of detection (data not shown).
133	Pure cultures of AOA (Candidatus Nitrosocosmicus franklandus_(Lehtovirta-Morley
134	et al., 2016)) and AOB (Nitrosospira briensis, #128, Nitrosospira tenuis, #NV-12,
135	Nitrosospira multiformis - NCIMB11849, ATCC25196 and Nitrosomonas europaea -
136	NCIMB11850, ATCC25978) were cultivated in inorganic growth medium in the dark
137	without shaking. <i>Candidatus</i> Nitrosocosmicus franklandus (Lehtovirta-Morley <i>et al.</i> , 2016)
138	was cultivated at 40°C in medium described previously (Lehtovirta-Morley et al., 2011) but
139	modified by the addition of 1 mL L ⁻¹ vitamin solution (Widdel & Bak, 1992), 1 mL L ⁻¹
140	selenite-tungstate solution (Widdel & Bak, 1992) and 2 mM NH ₄ Cl. The pH was maintained
141	at ~7.5 by the addition of 10 mL L^{-1} 1 M HEPES buffer. The AOB were grown in Skinner
	6

Formatted: Font: (Default) Times New Roman
Field Code Changed
Formatted: Font: (Default) Times New Roman
Formatted: Font: (Default) Times New Roman, Superscript
Formatted: Font: (Default) Times New Roman, Superscript
Formatted: Font: (Default) Times New Roman
Formatted: Not Highlight
Formatted: Font: (Default) Times New Roman
Formatted: Font: (Default) Times New Roman, Superscript
Formatted: Font: (Default) Times New Roman
Formatted: Font: (Default) Times New Roman, Subscript
Formatted: Font: (Default) Times New Roman
Formatted: Font: (Default) Times New Roman, Superscript
Formatted: Font: (Default) Times New Roman
Formatted: Font: (Default) Times New Roman, Superscript
Formatted: Font: (Default) Times New Roman

Formatted: Font: Not Italic
Formatted: Font: (Default) Times New Roman, Font color: Auto
Formatted: Font: (Default) Times New Roman, Font color: Auto
Formatted: Font: (Default) Times New Roman, Font color: Auto
Formatted: Font: Not Italic
Formatted: Font: (Default) Times New Roman, Font color: Auto

4 5		
6 7 8 9 10 11 12 13 14 15 16 17 18 9 20 21 22	142	and Walker medium (Skinner & Walker, 1961) and incubated at 30°C. Triplicate cultures
	143	were prepared in 30-mL Universal tubes by adding 5 mL of the appropriate medium,
	144	previously inoculated with exponentially growing cells (1 mL inoculum per 100 mL $2\times$
	145	concentrated medium), to a 5-mL volume of sterile distilled water, Craibstone or Campo sujo
	146	soil aqueous extract, or allylthiourea (100 μ M final concentration), an ammonia oxidiser
	147	inhibitor. The cultures were grown without agitation, and growth was monitored for 26 days
	148	(AOA) and 13 days (AOB) by measuring nitrite accumulation (Shinn, 1941). The maximum
	149	specific growth rate was estimated as the slope of semi-logarithmic plots of nitrite
	150	concentration versus time.
23 24	151	
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42	152	Soil incubation in slurries
	153	Soil slurries were established in 250-mL sterile Erlenmeyer flasks containing 20 g soil and
	154	100 mL sterile distilled water, stirred at 100 rpm and maintained at 30°C in the dark.
	155	Individual flasks contained Campo sujo soil, Craibstone soil or mixtures of Campo sujo and
	156	Craibstone soils in 1:1 or 4:1 ratios. Before incubation and 1, 7, 14, and 21 days after
	157	incubation, soil slurry aliquots (8 mL) were centrifuged at $3,000 \times g$ for 15 min. After
	158	immediate measurement of pH in 2 mL of supernatant, the remaining supernatant (6 mL) was
	159	stored at -20°C for quantification of inorganic N (see below). The soil pellet was frozen in
	160	liquid nitrogen and stored at -80°C for nucleic acidmolecular analysis.
43 44	161	
45 46	162	Soil incubation in microcosms
47 48	163	Cerrado-Campo sujo soil was incubated in sealed microcosms consisting of 140-mL sterile
48 49 50 51	164	serum glass bottles containing 10 g soil. The soil had an initial water content of 24.9 ± 0.03 g
	165	H ₂ 0 <u>100</u> g ⁻¹ dry soil, corresponding to a matric potential of -0.15 \pm 0.01 MPa. Microcosms
52 53	166	were incubated for 4 days in the dark at 30°C (acclimation period) and then divided into two
54 55		
56 57		7
58 59		

167	groups. The 'dried soil' group was left to air dry, reaching a moisture content of 8.66 g $\mathrm{H}_2\mathrm{0}$
168	<u>100 g</u> ⁻¹ dry soil (-6.34 \pm 2.98 MPa matric potential). In the 'moist soil' group, the moisture
169	content was adjusted to 37.9 ± 0.3 g H ₂ 0 <u>100 g</u> ⁻¹ dry soil by adding sterile distilled water. Soil
170	in half of the dried soil microcosms was rewetted to 39.6 ± 1.92 g H ₂ 0 $\underline{100}$ g ⁻¹ dry soil (-0.11
171	\pm 0.02 MPa) ('Water Pulse' treatment), and the soil in the remaining dried soil microcosms
172	was kept dry ('Dry' treatment). Finally, the pH of soil in half of the moist soil microcosms
173	was increased to 6.34 ± 0.09 with CaCO ₃ ('pH treatment'). The pH of soil in the remaining
174	microcosms ('Dry', 'Water Pulse' and 'Moist' treatments) was 5.21 ± 0.02 , which was
175	slightly lower than the initial value of the sampled soil and was not adjusted. The four
176	treatments were performed in triplicate, with or without the addition of the ammonia
177	oxidation inhibitor acetylene (0.01% of headspace volume). The soil microcosms were
178	incubated in the dark at 30°C, and aerobic conditions were maintained by removing the seals
179	for 5 - 10 minutes twice weekly. The 'Moist' and 'Water Pulse' microcosms were watered
180	weekly to maintain moisture content. The microcosms were sampled destructively after 6 h
181	and 1, 3, 7, 14, and 21 days, with additional sampling after 28 days for the pH treatment). For
182	each microcosm, half of the soil was used for chemical analysis and the remainder was stored
183	at -80°C for molecular analysis.
184	

185 Soil physicochemical analyses

186Water matric potential was measured using a WP4C Dewpoint PotentiaMeter (Decagon,187Pullman, UK) and pH was determined in water. Soil NH_4^+ and NO_x ($NO_2^- + NO_3^-$)188concentrations were determined colorimetrically by flow injection analysis (FIA star 5010189Analyser, Foss Tecator AB, Höganäs, Sweden) (Allen, 1989) after extraction from 2 g wet190soil in 10 mL KCl (1 M), for the microcosm soil, or directly from slurry supernatant. Because191 NO_2^- concentration was below the level of detection, NO_x is expressed as $\mu g NO_3^-$ -N g⁻¹ dry

FEMS Microbiology Ecology

soil (ppm). Nitrification inhibition was assessed as the decrease in nitrate concentration as <u>a</u>
percentage of that of Craibstone soil at each time point.

195 Molecular analysis

Nucleic acids were extracted from 0.5 g soil as previously described (Nicol *et al.*, 2005),
suspended in diethylpyrocarbonate-treated water and immediately stored at -80°C. An aliquot
was treated with DNase and the RNA was reverse transcribed, as described previously
(Tourna, 2008). The nucleic acid not used for cDNA generation was considered DNA only
and its concentration was estimated using a NanoDrop 1000 Spectrophotometer (Thermo

201 Scientific, Loughborough, UK).

Archaeal and bacterial amoA genes, which encode subunit A of ammonia monooxygenase, were quantified in a MasterCycler thermal cycler (Eppendorf, Hamburg, Germany) using standard curves, as described previously (Catão et al., 2016). PCR amplification was carried out using primers crenamo23f and crenamo616r for archaeal amoA genes (Tourna, 2008) and amoA1F and amoA2R for bacterial amoA genes (Rotthauwe et al., 1997). Each 20- μ L reaction contained 1× QuantiFast PCR Master Mix (for AOA) or QuantiTect Master Mix (for AOB) (Qiagen, Crawley, UK), 0.4 µM of each primer for AOA *amoA* or 0.6 μ M of each primer for AOB *amoA*, 2 μ g μ L⁻¹ BSA (Promega), and 2 μ L DNA (or cDNA). Archaeal *amoA* genes and transcripts were amplified using the following cycling conditions: 15 min at 95°C, followed by 40 cycles of 15 s at 94°C and 90 s at 60°C. Bacterial amoA genes and transcripts were amplified using the following cycling conditions: 15 min at 95°C, followed by 45 cycles of 1 min at 94°C, 1 min at 55°C, and 1 min at 72°C. To exclude fluorescence contamination of potential primer-dimers, SYBR Green fluorescence was measured after 5 s at 80°C or after 8 s at 83°C, for AOA and AOB, respectively. Melting curves between 65°C and 95°C were analysed for each run. AOB amoA transcripts were

- - Formatted: Indent: First line: 0.49

below the detection limit (5 copies μL⁻¹). Efficiency of amplification and r² for DNA were,
respectively, 0.92 and 0.998 for archaeal *amoA* and 104.6 and 0.993 for bacterial *amoA*.
AOA community composition in soil slurries was assessed before and after incubation
for 21 days by denaturing gradient gel electrophoresis (DGGE) of archaeal *amoA* gene using
the primers described above in a linear gradient of 15% - 55% denaturant, as described
previously (Nicol *et al.*, 2005).

224 Statistical analysis

All analyses were conducted using R version (3.2.2). The effect of aqueous soil extracts on pure AOA and AOB cultures was analysed by testing differences in specific growth rate between treatments by one-way analysis of variance. Differences between nitrification rate in soil slurries were evaluated using a repeated-measures linear mixed model (package *nlme*) (Pinheiro et al., 2015). Each slurry was considered a subject with random effect to analyse the effect of treatment (Campo sujo soil, Craibstone soil, or soil mixture), time, and their interaction on inorganic N concentration and *amoA* gene (and transcript) abundance. The NO_3 concentration in the Campo sujo slurries was below the limit of detection; therefore, these samples were excluded from the analysis. Gene abundance data were log-transformed to achieve a normal distribution. When the interaction between independent variables was not significant, it was removed to analyse the effect of time or treatment independently over concentration of soil NH4⁺ and NO_x. Two-way analysis of variance, with treatment and time as independent factors, was performed to evaluate differences in mineralisation and NO_3^{-1} in the soil microcosms.

240 Results

241 Effects of soil extracts on ammonia oxidiser cultures

FEMS Microbiology Ecology

1	
2	
3 ⊿	
5	
6	242
7	242
o 9	243
10 11	244
12	245
14	246
15 16	247
17	248
19 20 21	249
22 23	250
24 25	251
26 27	252
28 29	253
30 31	254
32	255
33 34	256
36	257
37 38 20	258
40	259
41 42	260
43 44	261
45 46	262
47 48	263
49 50	264
51 52	265
53 54	
55	
อง 57	
58	
59	
υu	

2	To assess the presence of nitrification inhibitors in the soil, pure cultures of four AOB and	
3	one AOA were grown in liquid batch culture in medium containing aqueous soil extracts,	
4	water (negative control) or allylthiourea (positive control). Extracts from Campo sujo and	
5	Craibstone soils had no significant effect on the growth of any of the ammonia-oxidising	
6	strains tested (Figs. 1 and S1). Allylthiourea completely inhibited all AOB cultures tested, but	
7	did not inhibit the growth of the AOA Candidatus N. franklandus (Figs. 1 and S1).	
8		
9	Effects of Campo sujo soil on nitrification in Craibstone soil	
50	Soil slurries containing Campo sujo soil, Craibstone soil, or a mixture of the two soils (at	
51	ratios of 1:1 and 4:1) were incubated for up to 21 days. In all slurries, pH increased (0.4 in the	
52	grasslandCampo sujo soil, 0.8 in Craibstone samplessoil, but only 0.1 and 0.2 for the 1:1 and	
3	4:1 mixed samples, respectively) after the first day of incubation but did not change	
54	significantly thereafter. Net NH_4^+ accumulation concentration after 21 days ranged from 0.62	
5	(±0.02) to 1.76 (±0.39) ppm (mg L_{-1}^{-1} soil solution) for Craibstone soil and 0.87 (±0.02) to	Formatted: Superscript
6	2.20 (±0.02) ppm <u>(mg L⁻¹ soil solution)</u> for Campo sujo soil (Fig. 2). Initial NH_4^+	
57	concentration was higher in the mixed soil slurries than in controls, but the mixed slurries	
8	accumulated less $\mathrm{NH_4}^+$ over the incubation period. The greatest increase in $\mathrm{NH_4}^+$	
59	concentration after 21 days was observed in Craibstone soil (2.9-fold).	
50	NO_3^- concentration also increased in all soil slurries during incubation (p <0.0001, Fig.	
51	2B), except in those containing Campo sujo only, in which NO ₃ ⁻ was below the detection	
52	limit. In the mixed soil slurries, NO ₃ ⁻ production was equivalent to or higher than the 50%	
53	and 20% expected for the 1:1 and 4:1 ratios of Campo sujo soil and Craibstone soil,	
54	respectively (Fig. 2C), providing no evidence for inhibition of Craibstone soil nitrification by	
5	Campo sujo soil.	

4 5		
6 7	266	Ammonia oxidiser amoA gene abundance in the soil slurries did not change
8 9	267	significantly during the incubation period, even when significant NO3 ⁻ accumulation was
10 11	268	observed (Fig. 3). AOA amoA abundance in the Campo sujo-only slurries was approximately
12 13	269	three orders of magnitude lower than that of Craibstone-only slurries (Fig. 3A). AOA amoA
14 15	270	abundance in mixed soil slurries was lower than that of Craibstone-only slurries until day 14,
16 17	271	after which differences were not significant ($p=0.132$). AOB <i>amoA</i> gene abundance in the
18 19	272	Campo sujo-only slurries was also approximately three orders of magnitude lower than that
20	273	of Craibstone-only slurries, and even significantly different ($p=0.024$) at day 21, when
22	274	Campo sujo-only AOB abundance was no longer significantly different from the those in the
23 24 25	275	mixed samples (Fig. 3B).
25 26	276	The AOB <i>amoA</i> gene abundance was lower than AOA <i>amoA</i> gene abundance in all
27	277	slurries at each time point. The AOA: AOB amoA gene ratio did not change significantly in
29 30	278	the Campo sujo-only slurries but increased in the Craibstone-only and mixed soil slurries
31 32	279	(Fig. 3C). In all slurries, AOB <i>amoA</i> transcripts were below the level of detection (5 μ L ⁻¹).
33 34	280	The AOA <i>amoA</i> transcripts were detected in all slurries containing Craibstone soil throughout
35 36	281	incubation but were detected in the Campo sujo-only slurries only at day 21 (Fig. 3D).
37 38	282	Before incubation, DGGE profiles of <i>amoA</i> genes amplified from Craibstone soil
39 40	283	contained more bands (potential OTUs) than profiles of Campo sujo soil (Fig. S2) and did not
41 42	284	change significantly after incubation for 21 days. DGGE profiles of the AOA amoA genes in
43 44	285	the 1:1 mixed slurry were similar to those of Craibstone soil, possibly masking the
45 46	286	observation of the less abundant <i>amoA</i> genes from the Campo sujo soil (Fig. S2).
47 48	287	
49 50	288	Effects of soil pH and moisture content
51 52	289	The effects of pH and moisture content on nitrification in Campo sujo soil were investigated

in soil microcosms. <u>Net Mmineralisation</u> was determined as the increase in concentration of

2	
3	
4	
5	
6	201
7	291
8	292
9	
10	293
11 12	
12	294
14	205
15	295
16	296
17	270
18	297
19	
20	298
21	••••
22 23	299
23 24	300
25	500
26	301
27	
28	302
29	
30	303
31	304
32	504
33 24	305
35	
36	306
37	207
38	307
39	308
40	500
41	309
42	
43 11	310
45	211
46	311
47	312
48	012
49	313
50	
51	314
52	215
53 57	513
55	
56	
57	
58	
59	

1

1	Discussion
	in those without added acetylene (Fig. S3).
	21 days, the NO_3^- -N concentration was lower in the acetylene-treated moist microcosms than
	acetylene, except for NO ₃ ⁻ -N concentrations in the 'Moist' microcosms. After incubation for
	=0.14). No significant differences were observed between samples incubated with or without
	of the treatments (Fig. S3), and no significant difference was observed between treatments (p
	increased artificially with CaCO ₃ . Nitrate concentration did not increase significantly in any
	Pulse', 'Moist' and 'Dry' treatments and at 6.3 for the 'pH' treatment, in which pH was
	did not change significantly with time in the microcosms and remained at 5.2 for the 'Water
	wetting, in contrast to the expected 'Birch' effect (Birch, 1964) (Fig. S3). In addition, soil pH
	processes were not significant (Fig. S3). Mineralisation in the dry soil did not increase after
	inorganic N (NH ₄ ⁺ -N + NO ₃ ⁻ -N) during incubation, assuming that other nitrogen cycle

304 305 Nitrification is frequently undetectable in undisturbed Cerrado ecosystems, although 306 management and conversion to agricultural production increases nitrate production (Catão et 307 al., 2016). Previous studies suggest low abundance of AOA and AOB in Campo sujo soil 308 (Catão et al., 2016), which is also characterised by sparse shrubs over a continuous grass 309 layer. The aim of this work was to determine whether the lack of nitrification and low 310 abundance of ammonia oxidisers in this ecosystem were due to low pH, low soil moisture, 311 NH₄⁺ limitation or biological inhibition of ammonia oxidation. 312 Certain plants release biological nitrification inhibitors that suppress ammonia 313 oxidation in soils (Subbarao et al., 2015). For example, compounds produced by Brachiaria 314 (Subbarao et al., 2009) and Sorghum (Zakir et al., 2008) inhibited a recombinant N. europaea 315 strain, possibly by blocking ammonia monooxygenase and hydroxylamine oxidoreductase 13

(Subbarao *et al.*, 2008). Production of biological nitrification inhibitors can be promoted by exposure to high NH_4^+ : NO_3^- ratios (Subbarao *et al.*, 2015), such as those found in Campo sujo soil (Catão et al., 2016). However, aqueous extracts of Campo sujo soil did not inhibit growth of cultures of four AOB and one AOA, all of which were isolated from neutral to alkaline soils. Allylthiourea, used as a positive control, prevented growth of the AOB cultures but not the AOA culture, which is consistent with other studies reporting a greater tolerance of AOA to allylthiourea (Hatzenpichler & Lebedeva, 2008, Stempfhuber et al., 2015). This result demonstrates the need to test potential inhibitors against both AOA and AOB, rather than *N. europaea* only. Cultivation-based studies were based performed only usingon aqueous soil extracts and a small number of cultivated strains and potential inhibition was therefore assessed more directly by mixing Campo sujo soil with Craibstone soil, a strongly nitrifying soil with similar pH, in soil slurries (Nicol et al., 2008, Zhang et al., 2010). The soil slurries also provided no evidence of nitrification inhibitors in Campo sujo soil. Nitrate accumulation in mixtures of Craibstone soil and Campo sujo soil was lower than that of Craibstone soil only, but this difference was less than or equal to that predicted by the lower volume of Craibstone soil in the slurry, suggesting that nitrification was not inhibited by the Campo sujo soil. Similarly, the addition of Campo sujo soil to Craibstone soil had no apparent effect on AOA and AOB amoA gene abundances. Archaeal amoA genes were more abundant than those of bacteria in the soils, and bacterial *amoA* gene expression was not detected, as reported by previous studies of Craibstone soils (Zhang et al., 2010). Neither AOA nor AOB amoA abundance changed significantly during incubation of any of the slurries containing Craibstone soil, despite evidence of nitrate production. However, the AOA: AOB amoA gene ratio increased, suggesting greater growth or lower death rates of AOA, but there was no evidence for growth of AOB or AOA in the Campo sujo soil. DGGE analysis-profiles of the

5		
6 7	341	Campo sujo soil contained detected few fewer archaeal amoA gene bands in the Campo sujo
8 9	342	soil comparedthan to those of that of Craibstone soil, providing a further evidence indication
10 11	343	of the low abundance and activity of ammonia oxidisers in Campo sujo soil. Although AOA
12 13	344	amoA transcripts in Campo sujo-only slurries increased after incubation for 21 days, this
14 15	345	increased gene expression did not appear to lead to a detectable level of nitrate. Nitrate
16 17	346	reduction during denitrification was considered negligible due to previous experiments
18 19	347	showing low NO emissions and undetectable N ₂ O in Cerrado soils (Pinto et al., 2002).
20 21	348	In the absence of evidence for BNI, microcosm studies were performed to determine
22	349	whether the low nitrification rates in Campo sujo soil were due to low pH or low soil
23 24 25	350	moisture content. Gas measurements in Cerrado soil after a-rainfall (natural or simulated) led
26	351	to an increase in NO emissions (Pinto et al., 2002), which agrees may result from with the
27	352	Birch effect (Birch, 1964) of increased organic matter availability after rewetting (Fierer &
29 30	353	Schimel, 2003). Soil pH is an important determinant of microbial diversity (Lauber et al.,
31 32	354	2009, Fierer et al., 2012) and influences soil ammonia oxidiser abundance and activity (de
33 34	355	Boer and Kowalchuk, Nicol et al. 2008), with higher transcriptional activity of Archaea than
35 36	356	Bacteria as pH decreases (Nicol et al., 2008). In our experiment, higher soil pH increased
37 38	357	organic nitrogen mineralisation rate but did not lead to detectable nitrate production in
39 40	358	Campo sujo soil after incubation for 28 days. Mineralisation was also lower in moist soil than
41 42	359	in other treatments, and the increase in moisture did not lead to detectable nitrate production
43 44	360	(see supplementary Fig. S3). Even though it can be argued that NO_3^- can be denitrified at
45 46	361	higher soil moisture, low or undetectable NO and N2O emission in field measurements over
47 48	362	the seasons (Cruvinel et al., 2011) and no consistent NO ₃ ⁻ increase after one day or after 3
49	363	weeks of incubation, suggested limitation of nitrification by other factors.
51 52	364	The low nitrification and low ammonia oxidiser abundance of Campo sujo soil, in
53 54	365	both microcosms and slurries, were not due to NH_4^+ limitation. The NH_4^+ concentration of
54 55		
56 57		15
58 59		
60		

366	Campo sujo soil slurries was even higher than that of Craibstone soil slurries at the beginning
367	of the experiment. Jack pine forest soils showed similar results of high accumulated
368	concentrations of ammonium without detectable nitrate (Ste-Marie & Paré, 1999). None of
369	the treatments in this study increased nitrification in Campo sujo soil and this soil did not
370	inhibit nitrification in Craibstone soil or pure cultures of AOA or AOB. Similarly, in the jack
371	pine forest soil, nitrification was not stimulated by increased pH or ammonium amendment
372	but was stimulated by the addition of nitrifying soil from a forest floor (Ste-Marie & Paré,
373	1999). In this study, both AOA and AOB were detected in Campo sujo soil, but at low levels
374	that are unlikely to lead to detectable nitrate production. Consequently, these soils have much
375	greater capacity to retain N as NH_4^+ through ion exchange, with minimal NO_3^- leaching.
376	Furthermore, NO pulses observed after rainfall are not due to nitrifier activity. However,
377	experiments performed either for longer than 3 weeks or with rhizosphere soil might detect
378	differences in nitrifier inhibition/stimulation and, despite the small effect of pH and H_2O on
379	the Brazilian savanna soil nitrification rate, archaeal ammonia oxidisers started to show
380	activity in slurries after 21 days of incubation. Taken together, our results show that low
381	nitrification rates and ammonia oxidiser abundance in Campo sujo soil are not due to low
382	moisture content, low pH or the presence of ammonia oxidiser inhibitors.
383	The data presented here suggest that the NO pulses observed after rainfall are not due
384	to nitrifier activity. However, experiments performed either for longer than 3 weeks or with
385	rhizosphere soil might detect differences in nitrifiers inhibition/stimulation. Nevertheless.
386	and, despite the small effect of pH and H ₂ O on the Brazilian savanna soil nitrification rate.
	2 I

archaeal ammonia oxidisers started to show activity in slurries after 21 days of incubation. Most likely, nutrients stoichiometry (Mooshammer *et al.*, 2014) plays an important role on the microbial activity of those soils, as N and P co-limitation affects decomposition rates in Cerrado soils (Kozovits *et al.*, 2007, Jacobson *et al.*, 2011).

FEMS Microbiology Ecology

1	
2	
3	
4 5	
6	
7	391
8 9	392
10 11	393
12 13	394
14 15	395
16 17	396
18	397
20	398
21	399
23 24	400
25 26	401
27 28	402
29 30	403
31 32	404
33 34	405
35 36	406
37 38	407
39 40	408
41 42	409
43 44	410
45 46	411
47 48	412
49 50	413
51 52	414
52 53	415
54 55	
56	
57	
58	
59 60	
00	

Although low nitrate concentrations are unlikely to be due to denitrification, nitrate		
assimilation and dissimilatory nitrate reduction may reduce nitrate produced by nitrifiers.		
However, the high ammonium concentrations, low AOA and AOB abundances, and lack of		
evidence for ammonia oxidiser activity and growth suggest inhibition or limitation of		
ammonia oxidiser growth and activity. This study was performed using soil associated with		
one type of vegetation sampled at the beginning of the dry season. Production of BNI may		
vary seasonally and with vegetation, but low nitrification rates are found in soils sampled		
throughout the year (Nardoto & Bustamante, 2003) and ammonium and nitrate concentrations	Field (
are high and low (2.5 (±0.5) μ g N-NH ₄ ⁺ g ⁻¹ dry soil and 0.072 (±0.01) μ g N-NO ₃ ⁻ g ⁻¹ dry		
soil), respectively, regardless of vegetation type (Catão et al., in preparation). Inhibition of		
ammonia oxidiser cultures was performed with water extracts from soil and it is possible that		
ammonia oxidisers were inhibited by water insoluble BNI. Other features of Cerrado soils		
may also be important. There is evidence for co-limitation of microbial decomposition in		
these soils by N and P (Kozovits et al., 2007, Jacobson et al., 2011) and ammonia oxidisers	Forma	
may have been limited by P and other nutrients, although mixing with Craibstone soil would	Field	
be expected to relieve this limitation. Cerrado soils are deficient in P (Goedert, 1983), and the	Forma	
values observed for the Campo sujo are similar to the upper layer of other Cerrado soils	Forma	
(Parron et al., 2011), where soil P sorption capacity is often related to Fe and Al contents	Italic Forma	
(Goedert, 1983). The soils investigated in this study also contain relative high Fe	Forma	
concentrations (165.4 \pm 41.01 mg dm ⁻³), which have been associated with reduction in net		
nitrification and AOA and AOB <i>amoA</i> gene abundance in subtropical acid soils (Jiang et al.,	Field (
2015). Although these possibilities suggest future experimental studies, the reasons for low	Forma (U.K.)	
nitrification rates and low ammonia oxidiser abundances in Cerrado soil remain unclear and	Forma Italic, F	
this study provided no evidence for ammonia limitation, pH or inhibition by water extractable		
indicitors		

Field Code Changed

Formatted: Default Paragraph Font, Font: Not Italic Field Code Changed Formatted: Default Paragraph Font Formatted: Default Paragraph Font Formatted: Default Paragraph Font Formatted: Default Paragraph Font, Font: Not Italic Formatted: Default Paragraph Font Formatted: Default Paragraph Font

-1	Field Code Changed	
	Formatted: Default Paragraph Font, English (U.K.)	
Ì	Formatted: Default Paragraph Font, Font: Not Italic, English (U.K.)	
	Formatted: Default Paragraph Font, English (U.K.)	

1			
2			
3 4			
5			
6 7	416	•	Formatted: Indent: First line: 0", Line
8	417	Acknowledgements	spacing: 1.5 lines
9 10 11	418	The authors would like to thank Professor Paul Hallett (University of Aberdeen) for advice	
12 12	419	and helpful discussions on soil physics and soil matric potential; Fabiano Bielefeld Nardoto,	
13 14 15	420	owner of the Tabapuã dos Pireneus farm, for allowing soil sampling; and the Scottish	
15 16	421	Agricultural College Craibstone Estate (Aberdeen, UK) for access to the Woodlands Field pH	
17	422	plots. This work was supported by grants from the National Council of Technological and	
19 20	423	Scientific Development (CNPq); Brazilian Federal Agency for Support and Evaluation of	
21 22	424	Graduate Education (CAPES) to E. Catão; Foundation for Research Support of Distrito	
23 24	425	Federal (FAP-DF); and funding of the European Comission's FP7 programme, EU-project	
25 26	426	Ecological Function and Biodiversity Indicators in European Soils 'EcoFINDERS', no.	
27 28	427	264465.	
29 30	428		
31 32	429	Conflict of Interest	
33 34	430	The authors have no conflict of interest to declare.	
35 36	431		
37 38			
39 40			
41			
42 43			
44			
45 46			
40 47			
48			
49			
วบ 51			
52			
53			
54			
55 56			
57		18	
58			
59			
60			

432 References

7

- Allison SM & Prosser JI (1993) Ammonia oxidation at low pH by attached populations of nitrifying bacteria. Soil Biology and Biochemistry 25: 935-941.
- 435
 Hint and Soil 24: 333-339.
 Burth MS State In MS
- 437 Booth MS, Stark JM & Rastetter E (2005) Controls on nitrogen cycling in terrestrial 438 ecosystems: A synthetic analysis of literature data. *Ecological Monographs* **75**: 139-157.
- Horos Solution and Solution of the solution of th
- 441 Castro E & Kauffman BJ (1998) Ecosystem structure in the Brazilian Cerrado: a vegetation
 442 gradient of aboveground biomass, root mass and consumption by fire. *Journal of Tropical*443 *Ecology* 14: 263–283.
- 19 444 Catão ECP, Lopes FAC, Rubini MR, Nardoto GB, Prosser JI & Krüger RH (2016) Short20 445 term impact of soybean management on ammonia oxidizers in a Brazilian savanna under
 21 446 restoration as revealed by coupling different techniques. *Biology and Fertility of Soils* 52:
 22 447 401-412.
- 448 Cruvinel ÊBF, Bustamante MMC, Kozovits ARK & Zepp RG (2011) Soil emissions of NO,
 449 N2O and CO2 from croplands in the savanna region of central Brazil. Agriculture,
 450 Ecosystems & Environment 144: 29-40.
- 26451De Boer W, Duyts H & Laanbroek HJ (1989) Urea stimulated autotrophic nitrification in27452suspensions of fertilized, acid heath soil. Soil Biology and Biochemistry 21: 349-354.
- 453 De Boer W & Kowalchuk GA (2001) Nitrification in acid soils: micro-organisms and
 454 mechanisms. *Soil Biology and Biochemistry* 33: 853-866.
- 30 455 De Boer W, Klein Gunnewiek PJA, Veenhuis M, Bock E & Laanbroek HJ (1991)
 31 456 Nitrification at low pH by aggregated chemolithotrophic bacteria. *Applied and Environmental*32 457 *Microbiology* 57: 3600-3604.
- 458 Eiten G (1972) The cerrado vegetation of Brazil. *Botanical Review* 38: 201-341.
- 459
 459
 460
 460
 460
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
 461
- 462
 463
 463
 464
 464
 464
 465
 465
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
 464
- 41 467
 42 468
 43 469
 44 470
 45 Gubry-Rangin C, Hai B, Quince C, Engel M, Thomson BC, James P, Schloter M, Griffiths RI, Prosser JI & Nicol GW (2011) Niche specialization of terrestrial archaeal ammonia oxidizers. *Proceedings of the National Academy of Sciences of the United States of America* 108: 21206-21211.
- 45 471 Hatzenpichler R & Lebedeva EV (2008) A moderately thermophilic ammonia-oxidizing
 46 472 crenarchaeote from a hot spring. *Proceedings of the National Academy of Sciences* 105: 2134-2139.
- 48 474 Jacobson T, da Bustamante M & Kozovits A (2011) Diversity of shrub tree layer, leaf litter
 49 475 decomposition and N release in a Brazilian Cerrado under N, P and N plus P additions.
 50 476 *Environmental pollution* 159: 2236-2242.
- 51 477 Jiang X, Xin X, Li S, Zhou J, Zhu T, Müller C, Cai Z & Wright AL (2015) Effects of Fe
 52 478 oxide on N transformations in subtropical acid soils. *Scientific Reports* 5: 1-8.
 53
- 54
- 55 56
- 56 57
- 58
- 59
- 60

Formatted: Do not check spelling or grammar

Kozovits AR, Bustamante MMC, Garofalo CR, Bucci S, Franco AC, Goldstein G & Meinzer FC (2007) Nutrient resorption and patterns of litter production and decomposition in a Neotropical Savanna. Functional Ecology 21: 1034-1043. Lauber CL, Hamady M, Knight R & Fierer N (2009) Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Applied and Environmental Microbiology 75: 5111-5120. Lehtovirta-Morley LE, Stoecker K, Vilcinskas A, Prosser JI & Nicol GW (2011) Cultivation of an obligate acidophilic ammonia oxidizer from a nitrifying acid soil. Proceedings of the National Academy of Sciences 108: 15892-15897. Lehtovirta-Morley LE, Ross J, Hink L, Weber EB, Gubry-Rangin C, Thion C, Prosser JI & Nicol GW (2016) Isolation of 'Candidatus Nitrosocosmicus franklandus', a novel ureolytic soil archaeal ammonia oxidiser with tolerance to high ammonia concentration. FEMS microbiology ecology 92: 1-10. Marris E (2005) The forgotten ecosystem. Nature 437: 944-945. Mooshammer M, Wanek W, Zechmeister-Boltenstern S & Richter A (2014) Stoichiometric imbalances between terrestrial decompsoer communities and their resources: mechanisms and implications of microbial adaptations to their resources. Frontiers in Microbiology 5: 1-10. Nardoto GB & Bustamante MMC (2003) Effects of fire on soil nitrogen dynamics and microbial biomass in savannas of Central Brazil. Pesquisa Agropecuária Brasileira 38: 955-962. Nicol GW, Tscherko D, Embley MT & Prosser JI (2005) Primary succession of soil Crenarchaeota across a receding glacier foreland. Environmental Microbiology 7: 337-347. Nicol GW, Leininger S, Schleper C & Prosser JI (2008) The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing archaea and bacteria. Environmental microbiology 10: 2966-2978. Parron LM, Bustamante MMC & Markewitz D (2011) Fluxes of nitrogen and phosphorus in a gallery forest in the cerrado of central brazil. Biogeochemistry 105: 89-104. Pinheiro J, Bates D, DebRoy S, Sarkar D & Team RC (2015) nlme: Linear and Nonlinear Mixed Effects Models. p.^pp. Pinto AS, Bustamante MMC, Kisselle K, Burke R, Zepp R, Viana LT & Varella RFM, M. (2002) Soil emissions of N 2 O, NO, and CO 2 in Brazilian Savannas: Effects of vegetation type, seasonality, and prescribed fires. Journal of Geophysical Research 107: 1-9. Pinto AS, Bustamante MMC, da Silva MRSS, Kisselle KW, Brossard M, Kruger R, Zepp RG & Burke RA (2006) Effects of Different Treatments of Pasture Restoration on Soil Trace Gas Emissions in the Cerrados of Central Brazil. Earth Interactions 10: 1-26. Placella SA & Firestone MK (2013) Transcriptional response of nitrifying communities to wetting of dry soil. Applied Environmental Microbiology 79: 3294-3302. Reatto A, Correia JR & Spera ST (1998) Solos do bioma Cerrado: aspectos pedológicos. Cerrado: ambiente e flora, (Sano SM & Almeida SP, eds.), p.^pp. 47-86. Embrapa-CPAC, Planaltina. Rosolem C, Foloni J & Oliveira R (2003) Nitrogen dynamics in soil as affected by liming and nitrogen fertilization, with straw on the soil surface. Pesquisa Agropecuária Brasileira 38: 301-309. Rotthauwe JH, Witzel KP & Liesack W (1997) The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Applied Environmental Microbiology 63: 4704-4712. Shinn MB (1941) Colorimetric Method for Determination of Nitrate. Industrial and Engineering Chemistry Analytical Edition 13: 33-35.

528 Skinner FA & Walker N (1961) Growth of Nitrosomonas europaea in batch and continuous 529 culture. *Archives of microbiology* **38**: 339-349.

S29 culture. Archives of microbiology 38: 339-349.
Ste-Marie C & Paré D (1999) Soil, pH and N availability effects on net nitrification in the forest floors of a range of boreal forest stands. Soil Biology and Biochemistry 31: 1579-1589.

532 Stempfhuber B, Engel M, Fischer D, Neskovic-Prit G, Wubet T, Schöning I, Gubry-Rangin
533 C, Kublik S, Schloter-Hai B & Rattei T (2015) pH as a Driver for Ammonia-Oxidizing
534 Archaea in Forest Soils. *Microbial ecology* 69: 879-883.

- 13 535
 14 536
 15 536
 15 537
 16 Subbarao GV, Ito O & Sahrawat KL (2006) Scope and strategies for regulation of nitrification in agricultural systems—challenges and opportunities. *Critical Reviews in Plant Sciences* 25: 303-335.
- Subbarao GV, Nakahara K, Ishikawa T, Yoshihashi T, Ito O, Ono H, Ohnishi-Kameyama M,
 Yoshida M, Kawano N & Berry WL (2008) Free fatty acids from the pasture grass Brachiaria
 humidicola and one of their methyl esters as inhibitors of nitrification. *Plant and Soil* 313:
 89-99.
- 542 Subbarao GV, Yoshihashi T, Worthington M, Nakahara K, Ando Y, Sahrawat KL, Rao IM,
 543 Lata J-CC, Kishii M & Braun H-J, J. (2015) Suppression of soil nitrification by plants. *Plant*544 science 233: 155-164.
- 545 Subbarao GV, Sahrawat KL, Nakahara K, *et al.* (2012) Biological Nitrification Inhibition—A
 546 Novel Strategy to Regulate Nitrification in Agricultural Systems. *Advances in Agronomy*,
 547 Vol. 114 (Sparks D, ed.) p.^pp. 249-302. Academic Press, Burlington.
- 548 Subbarao GV, Nakahara K, Hurtado MP, et al. (2009) Evidence for biological nitrification
 549 inhibition in Brachiaria pastures. *Proceedings of the National Academy of Sciences of the*550 United States of America 106: 17302-17307.
- Tannus JLS & Assis MA (2004) Composição de espécies vasculares de campo sujo e campo
 úmido em área de cerrado, Itirapina SP, Brasil. *Revista Brasileira de Botanica* 27: 489-506.
 Thion C & Prosser JI (2014) Differential response of nonadapted ammonia-oxidising archaea
 and bacteria to drying-rewetting stress. *FEMS Microbiology Ecology* 90: 380-389.
- and bacteria to drying-rewetting stress. *FEMS Microbiology Ecology* 90: 380-389.
 555 Tourna MF, T. E.; Nicol, G. W.; Prosser, J. I. (2008) Growth, activity and temperature responses of ammonia-oxidizing archaea and bacteria in soil microcosms. *Environmental microbiology* 10: 1357-1364.
- 558
 558
 558
 560
 560
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
 561
- 562 Jakir HA, Subbarao GV, Pearse SJ, *et al.* (2008) Detection, isolation and characterization of
 a root-exuded compound, methyl 3-(4-hydroxyphenyl) propionate, responsible for biological
 nitrification inhibition by sorghum (Sorghum bicolor). New Phytologist 180: 442-451.
 Thang, L, MM, Offra, PR, Ha, L, ZZ, Varhamma, DT, Nicol, GW, & Proser, II. (2010)
 - 565 Zhang L-MM, Offre PR, He J-ZZ, Verhamme DT, Nicol GW & Prosser JI (2010)
 566 Autotrophic ammonia oxidation by soil thaumarchaea. *Proceedings of the National Academy*567 of Sciences of the United States of America 107: 17240-17245.

43

7

3	1	Ammonia oxidisers in a non-nitrifying Brazilian savanna soil
4 5 6	2	
7 8	3	Elisa C P Catão ^{1,2} , Cécile Thion ^{2,3} , R.H. Krüger ¹ & James I Prosser ²
9 10	4	¹ Cellular Biology Department, Instituto Central de Ciencias Sul, Universidade de Brasilia
11 12	5	(UnB), 700910-900 Brasilia, DF, Brazil
13 14 15	6	² Institute of Biological and Environmental Sciences, University of Aberdeen, Cruickshank
16 17	7	Building, St. Machar Drive, Aberdeen AB24 3UU, UK
18 19	8	³ Laboratoire Ampère, UMR CNRS 5005, École Centrale de Lyon, 34 avenue Guy de
20 21	9	Collongue, 69130 Ecully, France
22 23 24	10	
24 25 26	11	Corresponding author:
27 28	12	Elisa Catão
29 30 31	13	Max-Planck Institute for Biogeochemistry
32 33 34	14	Department for Biogeochemical Processes
35 36 37	15	Hans-Knöll Straße 10
38 39 40	16	07745 Jena, Germany
41 42 43	17	E-mail: <u>elisaccp@gmail.com</u>
44 45 46	18	Phone: +49 3641 576106
47 48 49	19	Fax: +49 3641 577110
50 51 52 53 54	20	

21 Abstract

Low nitrification rates in Brazilian savanna (Cerrado) soils have puzzled researchers for decades. Potential mechanisms include biological inhibitors, low pH, low microbial abundance and low soil moisture content, which hinders microbial activity, including ammonia oxidation. Two approaches were used to evaluate these potential mechanisms, (i) manipulation of soil moisture and pH in microcosms containing Cerrado soil and (ii) assessment of nitrification inhibition in slurries containing mixtures of Cerrado soil and an actively nitrifying agricultural soil. Despite high ammonium concentration in Cerrado soil microcosms, little NO₃⁻ accumulation was observed with increasing moisture or pH, but in some Cerrado soil slurries, AOA amoA transcripts were detected after 14 days. In mixed soil slurries, the final NO₃⁻ concentration reflected the initial proportions of agricultural and Cerrado soils in the mixture, providing no evidence of nitrification inhibitors in Cerrado soil. AOA community denaturing gradient gel electrophoresis profiles were similar in the mixed and nitrifying soils. These results suggest that nitrification in Cerrado soils is not constrained by water availability, ammonium availability, low pH, or biological inhibitors and alternative potential explanations for low nitrification levels are discussed. Keywords: ammonia oxidisers, low nitrification, Brazilian savanna, inhibition, pH, soil moisture

40	Autotrophic nitrification, the sequential oxidation of ammonia to nitrite and nitrate, is a major
41	cause of N loss in terrestrial environments. In agricultural systems, nitrification is the main
42	pathway of N transformation, and up to 95% of total N is present as NO ₃ ⁻ potentially leading
43	to leaching and emission of nitric oxide (NO) and nitrous oxide (N ₂ O) by nitrifiers and
44	denitrifiers (Subbarao et al., 2012). Inhibitors of nitrification can decrease nitrogen losses
45	from these systems (Subbarao et al., 2006). These inhibitors target the first step in
46	nitrification, ammonia oxidation, which is carried out by both bacterial and archaeal ammonia
47	oxidisers. Some natural systems have lower nitrification rates and higher nitrogen fertiliser
48	use efficiency than managed systems (Ste-Marie & Paré, 1999). For example, in soils of the
49	tropical savanna biome in Central Brazil, also called Cerrado, NO ₃ ⁻ concentration is low or
50	undetectable (Nardoto & Bustamante, 2003), the NH_4^+ : NO_3^- ratio is high and the abundance
51	of nitrifiers is low (Catão et al., 2016). These ecosystems may therefore provide a model for
52	greater and more sustainable crop productivity and decreased demand for nitrogen fertilisers.
53	There are several potential explanations for low rates of nitrification in Cerrado soils,
54	based on biological and physicochemical factors. Plants may decrease nitrification by
55	competing for NH_4^+ -N and by increasing the C:N ratio through increased carbon supply,
56	thereby promoting immobilisation, while some plants produce nitrification inhibitors in plant
57	litter and root exudates (Subbarao et al., 2006). These inhibitors target ammonia oxidation
58	and can benefit plants by reducing competition for ammonium (Subbarao et al., 2006,
59	Subbarao et al., 2015). Both ammonia-oxidising archaea (AOA) and ammonia-oxidising
60	bacteria (AOB) are present in these soils (Catão et al., 2016) but the relatively high
61	ammonium concentration in Cerrado soil $[3 - 22 \ \mu g \ N \ g^{-1}$ soil, (Nardoto & Bustamante,
62	2003); 5 – 49 μ g N g ⁻¹ soil (Catão <i>et al.</i> , 2016)] suggests that ammonia oxidisers are not

2		
3		
1		
4		
5		
6		
- -		
7		
Q		
2		
9		
1	n	
2	2	
1	1	
1	2	
	2	
1	3	
1	4	
1	5	
I	0	
1	6	
1	7	
!	1	
1	8	
1	a	
-	5	
2	0	
2	1	
<u>م</u>	-	
2	2	
2	3	
~	2	
2	4	
2	5	
2	~	
2	6	
2	7	
~		
2	8	
2	9	
ົ	$\overline{\mathbf{n}}$	
S	U	
3	1	
2	\mathbf{c}	
5	2	
3	3	
ຊ	Λ	
2	-	
3	5	
ર	6	
2	2	
3	7	
ર	R	
2	2	
3	9	
4	0	
T A	2	
4	1	
4	2	
,	2	
4	J	
4	4	
1	F	
4	0	
4	6	
۵	7	
7	' ~	
4	8	
Δ	q	
-T -	2	
5	U	
5	1	
-	-	
5	2	
5	3	
-	~	
ວ	4	
5	5	
F	ē	
C	О	
5	7	
Ē	o	
ა	0	
5	9	
ĥ	ĥ	
ι)	J	

63 limited by ammonia concentration and low rates of nitrification in Cerrado soils may be
64 better explained by production of biological nitrification inhibitors.

65 Low nitrification rates in acidic soils have been described for many years (De Boer & 66 Kowalchuk, 2001). Inhibition of ammonia oxidation in low pH soil was traditionally considered to be due to the low availability of ammonia, through ionisation to NH_4^+ , but may 67 68 be alleviated by growth in soil aggregates or on surfaces (De Boer *et al.*, 1991, Allison & 69 Prosser, 1993), urease activity (De Boer et al., 1989, Burton & Prosser, 2001), or growth of 70 acidophilic archaeal ammonia oxidisers (Gubry-Rangin et al., 2011, Lehtovirta-Morley et al., 71 2011). Meta-analysis of net nitrification rates in a wide range of soils (Booth et al., 2005) 72 suggests that pH limitation may not be widespread, but increased nitrification following 73 amendment of Cerrado soil with calcium carbonate (Rosolem et al., 2003) provides evidence 74 for pH limitation in soil.

Low water availability decreases nitrification (Placella & Firestone, 2013, Thion & Prosser, 2014) by increasing osmotic stress and reducing mobility of ammonia within the soil. In the seasonally dry Cerrado biome, N₂O and NO emissions increase after rainfall or addition of artificial rainwater (Pinto *et al.*, 2002, Pinto *et al.*, 2006) providing evidence for limitation of nitrification during dry seasons.

80 Limited nitrification is alleviated by agriculture due to fertilisation, liming, tillage or 81 plant community change. Considering the extensive conversion of Cerrado soils to 82 agricultural production (Marris, 2005, Catão et al., 2016), it is important to understand 83 adaptation of natural ecosystems to limit N loss. The aim of this study was to test three hypotheses regarding potential mechanisms for the low nitrification rates: presence of 84 85 biological nitrification inhibitors, low water availability and low pH. The presence of plant-86 derived nitrification inhibitors was tested by analysing (i) the growth of AOB and AOA in the 87 presence of aqueous extract from Cerrado soil and (ii) the effect of Cerrado soil on ammonia

FEMS Microbiology Ecology

88	oxidation by a nitrifying soil (Craibstone) in soil slurries. The effects of low water
89	availability and low pH on nitrification were tested by manipulating Cerrado soil water
90	content and pH in microcosms.
91	Materials and methods
92	Soil sampling
93	Cerrado soil was sampled from an undisturbed shrubland (Campo sujo), with some sparse
94	shrubs over a continuous grass layer (Eiten, 1972), where graminoids can account for around
95	45% of total aboveground biomass, leading to a contribution of 46% of relative abundance of
96	fine roots (Castro & Kauffman, 1998). Campo sujo is dominated by plants from the families
97	Asteraceae, Leguminosae, and Poaceae (Tannus & Assis, 2004). The average monthly
98	precipitation and temperature, measured at the nearest meteorological centre in 2014 (~30 km
99	from the farm; Pirenopolis – GO, Station 83376, 15°50'60"S 48°57'36"W), were 143 mm
100	(range 0 - 317 mm) and 23.4°C (range 21°C - 25.6°C), respectively. Triplicate soil samples
101	were obtained from the upper 10 cm of soil, pooled before sieving (2-mm mesh size) and
102	then stored at 4°C. The climate in the Cerrado biome is tropical (Köppen Aw), and samples
103	were collected at the beginning of the dry season (May 2014). Campo sujo and Cerrado sensu
104	stricto are usually found on oxisols, with low nutrient content, low pH, and high content of
105	aluminium (Reatto et al., 1998). The soil, which was well aerated and well drained, is
106	classified as sandy loam with 20.8% clay and had an initial pH of 5.6 (± 0.04).
107	Physicochemical parameters from the Campo sujo sample were previously described (Catão
108	et al., 2016): organic matter content was 42.6 (\pm 2.4) g kg ⁻¹ , cation exchange capacity 6 (\pm
109	0.6) cmol _c dm ⁻³ , available phosphorus 1.8 (\pm 0.13) mg dm ⁻³ , aluminium 1.2 (\pm 0.12) cmol _c
110	dm ⁻³ and Fe 165.4 (\pm 41.0) mg dm ⁻³ . Craibstone soil, used in this study as a reference
111	nitrifying soil, was sampled from an experimental agricultural field (Scottish Agricultural

3	112	College, Craibstone, Scotland, Grid reference NJ872104) and maintained at pH 5.5 since
5 6	113	1961.
7 8	114	
9 10	115	Cultivation of ammonia oxidisers with soil extracts
11 12 13	116	Aqueous extracts of Craibstone and Campo sujo soils were prepared by blending 20 g soil in
14 15	117	2 volumes of sterile distilled water for 40 s, rotating in 50-mL sterile tubes for 1 h,
16 17	118	centrifuging (3,000×g for 15 min) and sterilising by progressive filtration through filters with
18 19	119	10-mm, 5-mm, 0.45- μ m and 0.22- μ m pore size. NH ₄ ⁺ and NO ₃ ⁻ concentrations in the filtrates
20 21 22	120	were below the level of detection (data not shown).
23 24	121	Pure cultures of AOA (Candidatus Nitrosocosmicus franklandus (Lehtovirta-Morley
25 26	122	et al., 2016)) and AOB (Nitrosospira briensis #128, Nitrosospira tenuis #NV-12,
27 28	123	Nitrosospira multiformis - NCIMB11849, ATCC25196 and Nitrosomonas europaea -
29 30	124	NCIMB11850, ATCC25978) were cultivated in inorganic growth medium in the dark
31 32 33	125	without shaking. Candidatus Nitrosocosmicus franklandus (Lehtovirta-Morley et al., 2016)
34 35	126	was cultivated at 40°C in medium described previously (Lehtovirta-Morley et al., 2011) but
36 37	127	modified by the addition of 1 mL L^{-1} vitamin solution (Widdel & Bak, 1992), 1 mL L^{-1}
38 39	128	selenite-tungstate solution (Widdel & Bak, 1992) and 2 mM NH ₄ Cl. The pH was maintained
40 41	129	at ~7.5 by the addition of 10 mL L^{-1} 1 M HEPES buffer. The AOB were grown in Skinner
42 43 44	130	and Walker medium (Skinner & Walker, 1961) and incubated at 30°C. Triplicate cultures
45 46	131	were prepared in 30-mL Universal tubes by adding 5 mL of the appropriate medium,
47 48	132	previously inoculated with exponentially growing cells (1 mL inoculum per 100 mL $2\times$
49 50	133	concentrated medium), to a 5-mL volume of sterile distilled water, Craibstone or Campo sujo
51 52	134	soil aqueous extract, or allylthiourea (100 μ M final concentration), an ammonia oxidiser
53 54 55	135	inhibitor. The cultures were grown without agitation, and growth was monitored for 26 days
55 56 57 58 59 60	136	(AOA) and 13 days (AOB) by measuring nitrite accumulation (Shinn, 1941). The maximum

1 2

FEMS Microbiology Ecology

2	
3	
4	
5	
6	
7	
8	
ğ	
10	
10	
10	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
20	
20	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
15	
40	
40	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

specific growth rate was estimated as the slope of semi-logarithmic plots of nitriteconcentration versus time.

139

140 Soil incubation in slurries

141 Soil slurries were established in 250-mL sterile Erlenmeyer flasks containing 20 g soil and

142 100 mL sterile distilled water, stirred at 100 rpm and maintained at 30°C in the dark.

143 Individual flasks contained Campo sujo soil, Craibstone soil or mixtures of Campo sujo and

144 Craibstone soils in 1:1 or 4:1 ratios. Before incubation and 1, 7, 14, and 21 days after

145 incubation, soil slurry aliquots (8 mL) were centrifuged at $3,000 \times g$ for 15 min. After

146 immediate measurement of pH in 2 mL of supernatant, the remaining supernatant (6 mL) was

147 stored at -20°C for quantification of inorganic N (see below). The soil pellet was frozen in

148 liquid nitrogen and stored at -80°C for molecular analysis.

149

150 Soil incubation in microcosms

151 Campo sujo soil was incubated in sealed microcosms consisting of 140-mL sterile serum 152 glass bottles containing 10 g soil. The soil had an initial water content of 24.9 ± 0.03 g H₂0 100 g⁻¹ dry soil, corresponding to a matric potential of -0.15 ± 0.01 MPa. Microcosms were 153 154 incubated for 4 days in the dark at 30°C (acclimation period) and then divided into two 155 groups. The 'dried soil' group was left to air dry, reaching a moisture content of 8.66 g H_{20} 100 g^{-1} dry soil (-6.34 ± 2.98 MPa matric potential). In the 'moist soil' group, the moisture 156 content was adjusted to 37.9 ± 0.3 g H₂0 100 g⁻¹ dry soil by adding sterile distilled water. Soil 157 in half of the dried soil microcosms was rewetted to 39.6 ± 1.92 g H₂0 100 g⁻¹ dry soil (-0.11 158 159 ± 0.02 MPa) ('Water Pulse' treatment), and the soil in the remaining dried soil microcosms 160 was kept dry ('Dry' treatment). Finally, the pH of soil in half of the moist soil microcosms 161 was increased to 6.34 ± 0.09 with CaCO₃ ('pH treatment'). The pH of soil in the remaining

2	
3	
4	
5	
6	
7	
γ Q	
0	
9	
10	
11	
12	
13	
14	
15	
10	
10	
17	
18	
19	
20	
21	
22	
22	
23	
24	
25	
26	
27	
28	
20	
23	
30	
31	
32	
33	
34	
35	
36	
20	
31	
38	
39	
40	
41	
42	
42	
11	
44	
45	
46	
47	
48	
49	
50	
50	
51	
52	
53	
54	
55	
56	
57	
51	
50	
59	
60	

162 microcosms ('Dry', 'Water Pulse' and 'Moist' treatments) was 5.21 ± 0.02 , which was 163 slightly lower than the initial value of the sampled soil and was not adjusted. The four 164 treatments were performed in triplicate, with or without the addition of the ammonia 165 oxidation inhibitor acetylene (0.01% of headspace volume). The soil microcosms were 166 incubated in the dark at 30°C, and aerobic conditions were maintained by removing the seals 167 for 5 - 10 minutes twice weekly. The 'Moist' and 'Water Pulse' microcosms were watered 168 weekly to maintain moisture content. The microcosms were sampled destructively after 6 h 169 and 1, 3, 7, 14, and 21 days, with additional sampling after 28 days for the pH treatment). For 170 each microcosm, half of the soil was used for chemical analysis and the remainder was stored 171 at -80°C for molecular analysis. 172

173 Soil physicochemical analyses

174 Water matric potential was measured using a WP4C Dewpoint PotentiaMeter (Decagon,

175 Pullman, UK) and pH was determined in water. Soil NH_4^+ and NO_x ($NO_2^- + NO_3^-$)

176 concentrations were determined colorimetrically by flow injection analysis (FIA star 5010

177 Analyser, Foss Tecator AB, Höganäs, Sweden) (Allen, 1989) after extraction from 2 g wet

178 soil in 10 mL KCl (1 M), for the microcosm soil, or directly from slurry supernatant. Because

179 NO_2^- concentration was below the level of detection, NO_x is expressed as $\mu g NO_3^-$ -N g⁻¹ dry

180 soil (ppm). Nitrification inhibition was assessed as the decrease in nitrate concentration as a

- 181 percentage of that of Craibstone soil at each time point.
- 182

183 Molecular analysis

184 Nucleic acids were extracted from 0.5 g soil as previously described (Nicol *et al.*, 2005),

185 suspended in diethylpyrocarbonate-treated water and immediately stored at -80°C. An aliquot

186 was treated with DNase and the RNA was reverse transcribed, as described previously

Page 31 of 50

FEMS Microbiology Ecology

1	
2	
2	
1	
+ E	
5	
6	
1	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
10	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
20	
30	
31	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
51	
54	
50	
20	
5/	
58	
59	
60	

211

187	(Tourna, 2008). The nucleic acid not used for cDNA generation was considered DNA only
188	and its concentration was estimated using a NanoDrop 1000 Spectrophotometer (Thermo
189	Scientific, Loughborough, UK).
190	Archaeal and bacterial amoA genes, which encode subunit A of ammonia
191	monooxygenase, were quantified in a MasterCycler thermal cycler (Eppendorf, Hamburg,
192	Germany) using standard curves, as described previously (Catão et al., 2016). PCR
193	amplification was carried out using primers crenamo23f and crenamo616r for archaeal amoA
194	genes (Tourna, 2008) and amoA1F and amoA2R for bacterial amoA genes (Rotthauwe et al.,
195	1997). Each 20- μ L reaction contained 1× QuantiFast PCR Master Mix (for AOA) or
196	QuantiTect Master Mix (for AOB) (Qiagen, Crawley, UK), 0.4 µM of each primer for AOA
197	<i>amoA</i> or 0.6 μ M of each primer for AOB <i>amoA</i> , 2 μ g μ L ⁻¹ BSA (Promega), and 2 μ L DNA
198	(or cDNA). Archaeal <i>amoA</i> genes and transcripts were amplified using the following cycling
199	conditions: 15 min at 95°C, followed by 40 cycles of 15 s at 94°C and 90 s at 60°C. Bacterial
200	amoA genes and transcripts were amplified using the following cycling conditions: 15 min at
201	95°C, followed by 45 cycles of 1 min at 94°C, 1 min at 55°C, and 1 min at 72°C. To exclude
202	fluorescence contamination of potential primer-dimers, SYBR Green fluorescence was
203	measured after 5 s at 80°C or after 8 s at 83°C, for AOA and AOB, respectively. Melting
204	curves between 65°C and 95°C were analysed for each run. AOB amoA transcripts were
205	below the detection limit (5 copies μL^{-1}). Efficiency of amplification and r^2 for DNA were,
206	respectively, 0.92 and 0.998 for archaeal <i>amoA</i> and 104.6 and 0.993 for bacterial <i>amoA</i> .
207	AOA community composition in soil slurries was assessed before and after incubation
208	for 21 days by denaturing gradient gel electrophoresis (DGGE) of archaeal amoA gene using
209	the primers described above in a linear gradient of 15% - 55% denaturant, as described
210	previously (Nicol et al., 2005).

Statistical analysis

All analyses were conducted using R version (3.2.2). The effect of aqueous soil extracts on pure AOA and AOB cultures was analysed by testing differences in specific growth rate between treatments by one-way analysis of variance. Differences between nitrification rate in soil slurries were evaluated using a repeated-measures linear mixed model (package *nlme*) (Pinheiro et al., 2015). Each slurry was considered a subject with random effect to analyse the effect of treatment (Campo sujo soil, Craibstone soil, or soil mixture), time, and their interaction on inorganic N concentration and *amoA* gene (and transcript) abundance. The NO_3 concentration in the Campo sujo slurries was below the limit of detection; therefore, these samples were excluded from the analysis. Gene abundance data were log-transformed to achieve a normal distribution. When the interaction between independent variables was not significant, it was removed to analyse the effect of time or treatment independently over concentration of soil NH₄⁺ and NO_x. Two-way analysis of variance, with treatment and time as independent factors, was performed to evaluate differences in mineralisation and NO₃⁻ in PL-PL-the soil microcosms.

Results

Effects of soil extracts on ammonia oxidiser cultures

To assess the presence of nitrification inhibitors in the soil, pure cultures of four AOB and one AOA were grown in liquid batch culture in medium containing aqueous soil extracts, water (negative control) or allylthiourea (positive control). Extracts from Campo sujo and

- Craibstone soils had no significant effect on the growth of any of the ammonia-oxidising
- strains tested (Figs. 1 and S1). Allylthiourea completely inhibited all AOB cultures tested, but
- did not inhibit the growth of the AOA *Candidatus* N. franklandus (Figs. 1 and S1).

Page 33 of 50

FEMS Microbiology Ecology

237	Effects of	Campo	sujo :	soil on	nitrifica	tion in	Craibs	tone soil

Soil slurries containing Campo sujo soil, Craibstone soil, or a mixture of the two soils (at ratios of 1:1 and 4:1) were incubated for up to 21 days. In all slurries, pH increased (0.4 in the Campo sujo soil, 0.8 in Craibstone soil, but only 0.1 and 0.2 for the 1:1 and 4:1 mixed samples, respectively) after the first day of incubation but did not change significantly thereafter. Net NH_4^+ concentration after 21 days ranged from 0.62 (±0.02) to 1.76 (±0.39) ppm (mg L⁻¹ soil solution) for Craibstone soil and 0.87 (± 0.02) to 2.20 (± 0.02) ppm (mg L⁻¹) soil solution) for Campo sujo soil (Fig. 2). Initial NH_4^+ concentration was higher in the mixed soil slurries than in controls, but the mixed slurries accumulated less NH_4^+ over the incubation period. The greatest increase in NH₄⁺ concentration after 21 days was observed in Craibstone soil (2.9-fold). NO_3^{-1} concentration also increased in all soil slurries during incubation (p<0.0001, Fig. 2B), except in those containing Campo sujo only, in which NO_3^- was below the detection limit. In the mixed soil slurries, NO_3^- production was equivalent to or higher than the 50% and 20% expected for the 1:1 and 4:1 ratios of Campo sujo soil and Craibstone soil, respectively (Fig. 2C), providing no evidence for inhibition of Craibstone soil nitrification by Campo sujo soil. Ammonia oxidiser *amoA* gene abundance in the soil slurries did not change

significantly during the incubation period, even when significant NO₃⁻ accumulation was observed (Fig. 3). AOA *amoA* abundance in the Campo sujo-only slurries was approximately three orders of magnitude lower than that of Craibstone-only slurries (Fig. 3A). AOA *amoA* abundance in mixed soil slurries was lower than that of Craibstone-only slurries until day 14, after which differences were not significant (p=0.132). AOB *amoA* gene abundance in the Campo sujo-only slurries was also approximately three orders of magnitude lower than that of Craibstone-only slurries, and even significantly different (p=0.024) at day 21, when

Campo sujo-only AOB abundance was no longer significantly different from the those in themixed samples (Fig. 3B).

The AOB amoA gene abundance was lower than AOA amoA gene abundance in all slurries at each time point. The AOA: AOB *amoA* gene ratio did not change significantly in the Campo sujo-only slurries but increased in the Craibstone-only and mixed soil slurries (Fig. 3C). In all slurries, AOB *amoA* transcripts were below the level of detection (5 μ L⁻¹). The AOA *amoA* transcripts were detected in all slurries containing Craibstone soil throughout incubation but were detected in the Campo sujo-only slurries only at day 21 (Fig. 3D). Before incubation, DGGE profiles of *amoA* genes amplified from Craibstone soil contained more bands (potential OTUs) than profiles of Campo sujo soil (Fig. S2) and did not change significantly after incubation for 21 days. DGGE profiles of the AOA amoA genes in the 1:1 mixed slurry were similar to those of Craibstone soil, possibly masking the less abundant *amoA* genes from the Campo sujo soil (Fig. S2).

- *Effects of soil pH and moisture content*

The effects of pH and moisture content on nitrification in Campo sujo soil were investigated in soil microcosms. Net mineralisation was determined as the increase in concentration of inorganic N (NH_4^+ -N + NO_3^- -N) during incubation, assuming that other nitrogen cycle processes were not significant (Fig. S3). Mineralisation in the dry soil did not increase after wetting, in contrast to the expected 'Birch' effect (Birch, 1964) (Fig. S3). In addition, soil pH did not change significantly with time in the microcosms and remained at 5.2 for the 'Water Pulse', 'Moist' and 'Dry' treatments and at 6.3 for the 'pH' treatment, in which pH was increased artificially with CaCO₃. Nitrate concentration did not increase significantly in any of the treatments (Fig. S3), and no significant difference was observed between treatments (p=0.14). No significant differences were observed between samples incubated with or

FEMS Microbiology Ecology

3
4
5
6
7
8
0
3
10
11
12
13
14
15
16
17
10
10
19
20
21
22
23
24
25
26
20
21
28
29
30
31
32
33
34
25
30
36
37
38
39
40
41
42
43
11
44
40
46
47
48
49
50
51
52
52
55
э4
55
56
57
58
59
60

without acetylene, except for NO_3^- -N concentrations in the 'Moist' microcosms. After incubation for 21 days, the NO_3^- -N concentration was lower in the acetylene-treated moist microcosms than in those without added acetylene (Fig. S3).

290

DiscussionNitrification is frequently undetectable in undisturbed Cerrado ecosystems, although management and conversion to agricultural production increases nitrate production (Catão *et al.*, 2016). Previous studies suggest low abundance of AOA and AOB in Campo sujo soil (Catão *et al.*, 2016), which is also characterised by sparse shrubs over a continuous grass layer. The aim of this work was to determine whether the lack of nitrification and low abundance of ammonia oxidisers in this ecosystem were due to low pH, low soil moisture, NH_4^+ limitation or biological inhibition of ammonia oxidation.

298 Certain plants release biological nitrification inhibitors that suppress ammonia 299 oxidation in soils (Subbarao et al., 2015). For example, compounds produced by Brachiaria 300 (Subbarao et al., 2009) and Sorghum (Zakir et al., 2008) inhibited a recombinant N. europaea 301 strain, possibly by blocking ammonia monooxygenase and hydroxylamine oxidoreductase 302 (Subbarao *et al.*, 2008). Production of biological nitrification inhibitors can be promoted by 303 exposure to high NH₄⁺:NO₃⁻ ratios (Subbarao *et al.*, 2015), such as those found in Campo 304 sujo soil (Catão *et al.*, 2016). However, aqueous extracts of Campo sujo soil did not inhibit 305 growth of cultures of four AOB and one AOA, all of which were isolated from neutral to 306 alkaline soils. Allylthiourea, used as a positive control, prevented growth of the AOB cultures 307 but not the AOA culture, which is consistent with other studies reporting a greater tolerance 308 of AOA to allylthiourea (Hatzenpichler & Lebedeva, 2008, Stempfhuber et al., 2015). This 309 result demonstrates the need to test potential inhibitors against both AOA and AOB, rather 310 than *N. europaea* only.

FEMS Microbiology Ecology

Page 36 of 50

311	Cultivation-based studies were performed using aqueous soil extracts and a small
312	number of cultivated strains and potential inhibition was therefore assessed more directly by
313	mixing Campo sujo soil with Craibstone soil, a strongly nitrifying soil with similar pH, in soil
314	slurries (Nicol et al., 2008, Zhang et al., 2010). The soil slurries also provided no evidence of
315	nitrification inhibitors in Campo sujo soil. Nitrate accumulation in mixtures of Craibstone
316	soil and Campo sujo soil was lower than that of Craibstone soil only, but this difference was
317	less than or equal to that predicted by the lower volume of Craibstone soil in the slurry,
318	suggesting that nitrification was not inhibited by the Campo sujo soil. Similarly, the addition
319	of Campo sujo soil to Craibstone soil had no apparent effect on AOA and AOB amoA gene
320	abundances. Archaeal amoA genes were more abundant than those of bacteria in the soils,
321	and bacterial <i>amoA</i> gene expression was not detected, as reported by previous studies of
322	Craibstone soils (Zhang et al., 2010). Neither AOA nor AOB amoA abundance changed
323	significantly during incubation of any of the slurries containing Craibstone soil, despite
324	evidence of nitrate production. However, the AOA: AOB amoA gene ratio increased,
325	suggesting greater growth or lower death rates of AOA, but there was no evidence for growth
326	of AOB or AOA in the Campo sujo soil. DGGE profiles of the Campo sujo soil contained
327	fewer archaeal <i>amoA</i> bands than those of Craibstone soil, providing a further indication of
328	low abundance and activity of ammonia oxidisers in Campo sujo soil. Although AOA amoA
329	transcripts in Campo sujo-only slurries increased after incubation for 21 days, this increased
330	gene expression did not appear to lead to a detectable level of nitrate. Nitrate reduction during
331	denitrification was considered negligible due to previous experiments showing low NO
332	emissions and undetectable N ₂ O in Cerrado soils (Pinto et al., 2002).
333	In the absence of evidence for BNI, microcosm studies were performed to determine
334	whether the low nitrification rates in Campo sujo soil were due to low pH or low soil
335	moisture content. Gas measurements in Cerrado soil after rainfall (natural or simulated) led to

FEMS Microbiology Ecology

2
3
4
5
5
6
7
8
à
10
10
11
12
13
10
14
15
16
17
10
10
19
20
21
22
22
23
24
25
20
20
27
28
29
20
30
31
32
33
24
54
35
36
37
20
30
39
40
41
12
+2
43
44
45
46
47
4/
48
49
50
50
51
52
53
54
55
55
56
57
58
50
59
00

359

336	an increase in NO emissions (Pinto et al., 2002), which may result from the Birch effect
337	(Birch, 1964) of increased organic matter availability after rewetting (Fierer & Schimel,
338	2003). Soil pH is an important determinant of microbial diversity (Lauber et al., 2009, Fierer
339	et al., 2012) and influences soil ammonia oxidiser abundance and activity (de Boer and
340	Kowalchuk, Nicol et al. 2008), with higher transcriptional activity of Archaea than Bacteria
341	as pH decreases (Nicol et al., 2008). In our experiment, higher soil pH increased organic
342	nitrogen mineralisation rate but did not lead to detectable nitrate production in Campo sujo
343	soil after incubation for 28 days. Mineralisation was also lower in moist soil than in other
344	treatments, and the increase in moisture did not lead to detectable nitrate production (see
345	supplementary Fig. S3). Even though it can be argued that NO_3^- can be denitrified at higher
346	soil moisture, low or undetectable NO and N_2O emission in field measurements over the
347	seasons (Cruvinel et al., 2011) and no consistent NO ₃ ⁻ increase after one day or after 3 weeks
348	of incubation, suggested limitation of nitrification by other factors.
349	The low nitrification and low ammonia oxidiser abundance of Campo sujo soil, in
350	both microcosms and slurries, were not due to NH_4^+ limitation. The NH_4^+ concentration of
351	Campo sujo soil slurries was even higher than that of Craibstone soil slurries at the beginning
352	of the experiment. Jack pine forest soils showed similar high concentrations of ammonium
353	without detectable nitrate (Ste-Marie & Paré, 1999). None of the treatments in this study
354	increased nitrification in Campo sujo soil and this soil did not inhibit nitrification in
355	Craibstone soil or pure cultures of AOA or AOB. Similarly, in the jack pine forest soil,
356	nitrification was not stimulated by increased pH or ammonium amendment but was
357	stimulated by the addition of nitrifying soil from a forest floor (Ste-Marie & Paré, 1999). In
358	this study, both AOA and AOB were detected in Campo sujo soil, but at low levels that are

360 capacity to retain N as NH_4^+ through ion exchange, with minimal NO_3^- leaching.

unlikely to lead to detectable nitrate production. Consequently, these soils have much greater

Furthermore, NO pulses observed after rainfall are not due to nitrifier activity. However, experiments performed either for longer than 3 weeks or with rhizosphere soil might detect differences in nitrifier inhibition/stimulation and, despite the small effect of pH and H₂O on the Brazilian savanna soil nitrification rate, archaeal ammonia oxidisers started to show activity in slurries after 21 days of incubation. Taken together, our results show that low nitrification rates and ammonia oxidiser abundance in Campo sujo soil are not due to low moisture content, low pH or the presence of ammonia oxidiser inhibitors.

 Although low nitrate concentrations are unlikely to be due to denitrification, nitrate assimilation and dissimilatory nitrate reduction may reduce nitrate produced by nitrifiers. However, the high ammonium concentrations, low AOA and AOB abundances, and lack of evidence for ammonia oxidiser activity and growth suggest inhibition or limitation of ammonia oxidiser growth and activity. This study was performed using soil associated with one type of vegetation sampled at the beginning of the dry season. Production of BNI may vary seasonally and with vegetation, but low nitrification rates are found in soils sampled throughout the year (Nardoto & Bustamante, 2003) and ammonium and nitrate concentrations are high and low (2.5 (± 0.5) µg N-NH₄⁺ g⁻¹ dry soil and 0.072 (± 0.01) µg N-NO₃⁻ g⁻¹ dry soil), respectively, regardless of vegetation type (Catão et al., in preparation). Inhibition of ammonia oxidiser cultures was performed with water extracts from soil and it is possible that ammonia oxidisers were inhibited by water insoluble BNI. Other features of Cerrado soils may also be important. There is evidence for co-limitation of microbial decomposition in these soils by N and P (Kozovits et al., 2007, Jacobson et al., 2011) and ammonia oxidisers may have been limited by P and other nutrients, although mixing with Craibstone soil would be expected to relieve this limitation. Cerrado soils are deficient in P (Goedert, 1983), and the values observed for the Campo sujo are similar to the upper layer of other Cerrado soils

FEMS Microbiology Ecology

386	(Parron et al., 2011), where soil P sorption capacity is often related to Fe and Al contents
387	(Goedert, 1983). The soils investigated in this study also contain relative high Fe
388	concentrations (165.4 \pm 41.01 mg dm ⁻³), which have been associated with reduction in net
389	nitrification and AOA and AOB amoA gene abundance in subtropical acid soils (Jiang et al.,
390	2015). Although these possibilities suggest future experimental studies, the reasons for low
391	nitrification rates and low ammonia oxidiser abundances in Cerrado soil remain unclear and
392	this study provided no evidence for ammonia limitation, pH or inhibition by water extractable
393	inhibitors.
394	
395	Acknowledgements
396	The authors would like to thank Professor Paul Hallett (University of Aberdeen) for advice
397	and helpful discussions on soil physics and soil matric potential; Fabiano Bielefeld Nardoto,
398	owner of the Tabapuã dos Pireneus farm, for allowing soil sampling; and the Scottish
399	Agricultural College Craibstone Estate (Aberdeen, UK) for access to the Woodlands Field pH
400	plots. This work was supported by grants from the National Council of Technological and
401	Scientific Development (CNPq); Brazilian Federal Agency for Support and Evaluation of
402	Graduate Education (CAPES) to E. Catão; Foundation for Research Support of Distrito
403	Federal (FAP-DF); and funding of the European Comission's FP7 programme, EU-project
404	Ecological Function and Biodiversity Indicators in European Soils 'EcoFINDERS', no.
405	264465.
406	
407	Conflict of Interest
408	The authors have no conflict of interest to declare.

References

- Allison SM & Prosser JI (1993) Ammonia oxidation at low pH by attached populations of nitrifying bacteria. Soil Biology and Biochemistry 25: 935-941.
- Birch AF (1964) Mineralisation of plant nitrogen following alternate wet and dry conditions.
- *Plant and Soil* **24**: 333-339.
- Booth MS, Stark JM & Rastetter E (2005) Controls on nitrogen cycling in terrestrial ecosystems: A synthetic analysis of literature data. Ecological Monographs 75: 139-157.
- Burton SAQ & Prosser JI (2001) Autotrophic Ammonia Oxidation at Low pH through Urea
- Hydrolysis. Applied and Environmental Microbiology 67: 2952-2957.
- Castro E & Kauffman BJ (1998) Ecosystem structure in the Brazilian Cerrado: a vegetation gradient of aboveground biomass, root mass and consumption by fire. Journal of Tropical *Ecology* **14**: 263–283.
- Catão ECP, Lopes FAC, Rubini MR, Nardoto GB, Prosser JI & Krüger RH (2016) Short-term impact of soybean management on ammonia oxidizers in a Brazilian savanna under restoration as revealed by coupling different techniques. Biology and Fertility of Soils 52: 401-412.
- Cruvinel ÊBF, Bustamante MMC, Kozovits ARK & Zepp RG (2011) Soil emissions of NO,
 - N2O and CO2 from croplands in the savanna region of central Brazil. Agriculture, Ecosystems & Environment 144: 29-40.
- De Boer W, Duyts H & Laanbroek HJ (1989) Urea stimulated autotrophic nitrification in suspensions of fertilized, acid heath soil. Soil Biology and Biochemistry 21: 349-354.
- De Boer W & Kowalchuk GA (2001) Nitrification in acid soils: micro-organisms and mechanisms. Soil Biology and Biochemistry 33: 853-866.
- De Boer W, Klein Gunnewiek PJA, Veenhuis M, Bock E & Laanbroek HJ (1991) Nitrification at low pH by aggregated chemolithotrophic bacteria. Applied and Environmental *Microbiology* **57**: 3600-3604.
- Eiten G (1972) The cerrado vegetation of Brazil. *Botanical Review* 38: 201-341.
- Fierer N & Schimel JP (2003) A proposed mechanism for the pulse in carbon dioxide production commonly observed following the rapid rewetting of a dry soil. Soil Science society of America Journal 67: 798-805.
- Fierer N, Lauber CL, Ramirez KS, Zaneveld J, Bradford MA & Knight R (2012) Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients. The ISME journal 6: 1007-1017.
- Goedert WJ (1983) Management of the Cerrado soils of Brazil: a review. Journal of Soil Science 34: 405-428.
- Gubry-Rangin C, Hai B, Quince C, Engel M, Thomson BC, James P, Schloter M, Griffiths RI, Prosser JI & Nicol GW (2011) Niche specialization of terrestrial archaeal ammonia oxidizers. Proceedings of the National Academy of Sciences of the United States of America : 21206-21211.
- Hatzenpichler R & Lebedeva EV (2008) A moderately thermophilic ammonia-oxidizing
- crenarchaeote from a hot spring. Proceedings of the National Academy of Sciences 105: 2134-2139.
- Jacobson T, da Bustamante M & Kozovits A (2011) Diversity of shrub tree layer, leaf litter
- decomposition and N release in a Brazilian Cerrado under N, P and N plus P additions. Environmental pollution 159: 2236-2242.
- Jiang X, Xin X, Li S, Zhou J, Zhu T, Müller C, Cai Z & Wright AL (2015) Effects of Fe
- oxide on N transformations in subtropical acid soils. *Scientific Reports* **5**: 1-8.

FEMS Microbiology Ecology

Kozovits AR, Bustamante MMC, Garofalo CR, Bucci S, Franco AC, Goldstein G & Meinzer FC (2007) Nutrient resorption and patterns of litter production and decomposition in a Neotropical Savanna. Functional Ecology 21: 1034-1043. Lauber CL, Hamady M, Knight R & Fierer N (2009) Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Applied and Environmental Microbiology 75: 5111-5120. Lehtovirta-Morley LE, Stoecker K, Vilcinskas A, Prosser JI & Nicol GW (2011) Cultivation of an obligate acidophilic ammonia oxidizer from a nitrifying acid soil. Proceedings of the National Academy of Sciences 108: 15892-15897. Lehtovirta-Morley LE, Ross J, Hink L, Weber EB, Gubry-Rangin C, Thion C, Prosser JI & Nicol GW (2016) Isolation of 'Candidatus Nitrosocosmicus franklandus', a novel ureolytic soil archaeal ammonia oxidiser with tolerance to high ammonia concentration. FEMS *microbiology ecology* **92**: 1-10. Marris E (2005) The forgotten ecosystem. Nature 437: 944-945. Mooshammer M, Wanek W, Zechmeister-Boltenstern S & Richter A (2014) Stoichiometric imbalances between terrestrial decompsoer communities and their resources: mechanisms and implications of microbial adaptations to their resources. Frontiers in Microbiology 5: 1-10. Nardoto GB & Bustamante MMC (2003) Effects of fire on soil nitrogen dynamics and microbial biomass in savannas of Central Brazil. Pesquisa Agropecuária Brasileira 38: 955-962. Nicol GW, Tscherko D, Embley MT & Prosser JI (2005) Primary succession of soil Crenarchaeota across a receding glacier foreland. Environmental Microbiology 7: 337-347. Nicol GW, Leininger S, Schleper C & Prosser JI (2008) The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing archaea and bacteria. Environmental microbiology 10: 2966-2978. Parron LM, Bustamante MMC & Markewitz D (2011) Fluxes of nitrogen and phosphorus in a gallery forest in the cerrado of central brazil. *Biogeochemistry* **105**: 89-104. Pinheiro J, Bates D, DebRoy S, Sarkar D & Team RC (2015) nlme: Linear and Nonlinear Mixed Effects Models. p.^pp. Pinto AS, Bustamante MMC, Kisselle K, Burke R, Zepp R, Viana LT & Varella RFM, M. (2002) Soil emissions of N 2 O, NO, and CO 2 in Brazilian Savannas: Effects of vegetation type, seasonality, and prescribed fires. Journal of Geophysical Research 107: 1-9. Pinto AS, Bustamante MMC, da Silva MRSS, Kisselle KW, Brossard M, Kruger R, Zepp RG & Burke RA (2006) Effects of Different Treatments of Pasture Restoration on Soil Trace Gas Emissions in the Cerrados of Central Brazil. Earth Interactions 10: 1-26. Placella SA & Firestone MK (2013) Transcriptional response of nitrifying communities to wetting of dry soil. Applied Environmental Microbiology 79: 3294-3302. Reatto A, Correia JR & Spera ST (1998) Solos do bioma Cerrado: aspectos pedológicos. Cerrado: ambiente e flora, (Sano SM & Almeida SP, eds.), p.^pp. 47-86. Embrapa-CPAC, Planaltina. Rosolem C, Foloni J & Oliveira R (2003) Nitrogen dynamics in soil as affected by liming and nitrogen fertilization, with straw on the soil surface. Pesquisa Agropecuária Brasileira 38: 301-309. Rotthauwe JH. Witzel KP & Liesack W (1997) The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Applied Environmental Microbiology 63: 4704-4712. Shinn MB (1941) Colorimetric Method for Determination of Nitrate. Industrial and Engineering Chemistry Analytical Edition 13: 33-35.

- Skinner FA & Walker N (1961) Growth of Nitrosomonas europaea in batch and continuous culture. Archives of microbiology 38: 339-349. Ste-Marie C & Paré D (1999) Soil, pH and N availability effects on net nitrification in the forest floors of a range of boreal forest stands. Soil Biology and Biochemistry 31: 1579-1589. Stempfhuber B, Engel M, Fischer D, Neskovic-Prit G, Wubet T, Schöning I, Gubry-Rangin
- C, Kublik S, Schloter-Hai B & Rattei T (2015) pH as a Driver for Ammonia-Oxidizing Archaea in Forest Soils. Microbial ecology 69: 879-883.
- Subbarao GV, Ito O & Sahrawat KL (2006) Scope and strategies for regulation of
- nitrification in agricultural systems-challenges and opportunities. Critical Reviews in Plant Sciences 25: 303-335.
- Subbarao GV, Nakahara K, Ishikawa T, Yoshihashi T, Ito O, Ono H, Ohnishi-Kameyama M,
- Yoshida M, Kawano N & Berry WL (2008) Free fatty acids from the pasture grass Brachiaria humidicola and one of their methyl esters as inhibitors of nitrification. *Plant and Soil* 313: 89-99.
- Subbarao GV, Yoshihashi T, Worthington M, Nakahara K, Ando Y, Sahrawat KL, Rao IM, Lata J-CC, Kishii M & Braun H-J, J. (2015) Suppression of soil nitrification by plants. Plant science 233: 155-164.
- Subbarao GV, Sahrawat KL, Nakahara K, et al. (2012) Biological Nitrification Inhibition-A Novel Strategy to Regulate Nitrification in Agricultural Systems. Advances in Agronomy, Vol. 114 (Sparks D, ed.) p.^pp. 249-302. Academic Press, Burlington.
- Subbarao GV, Nakahara K, Hurtado MP, et al. (2009) Evidence for biological nitrification inhibition in Brachiaria pastures. Proceedings of the National Academy of Sciences of the United States of America 106: 17302-17307.
- Tannus JLS & Assis MA (2004) Composição de espécies vasculares de campo sujo e campo úmido em área de cerrado, Itirapina – SP, Brasil. Revista Brasileira de Botanica 27: 489-506.
- Thion C & Prosser JI (2014) Differential response of nonadapted ammonia-oxidising archaea and bacteria to drying-rewetting stress. *FEMS Microbiology Ecology* **90**: 380-389.
- Tourna MF, T. E.; Nicol, G. W.; Prosser, J. I. (2008) Growth, activity and temperature responses of ammonia-oxidizing archaea and bacteria in soil microcosms. Environmental microbiology 10: 1357-1364.
- Widdel F & Bak F (1992) Gram-Negative Mesophilic Sulfate-Reducing Bacteria. The Prokaryotes A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Application (Ballows A, Trüper HG, Dworkin M, Harder W & Schleifer K-H, eds.), p.^pp. 3352-3378 Springer.
- Zakir HA, Subbarao GV, Pearse SJ, et al. (2008) Detection, isolation and characterization of
- a root-exuded compound, methyl 3-(4-hydroxyphenyl) propionate, responsible for biological
 - nitrification inhibition by sorghum (Sorghum bicolor). New Phytologist 180: 442-451.
 - Zhang L-MM, Offre PR, He J-ZZ, Verhamme DT, Nicol GW & Prosser JI (2010)
 - Autotrophic ammonia oxidation by soil thaumarchaea. Proceedings of the National Academy
 - of Sciences of the United States of America 107: 17240-17245.

Figure 1. Effect of aqueous extracts of Campo sujo and Craibstone soils on the growth of ammonia-oxidising strains.

254x203mm (300 x 300 DPI)

Figure 2. Changes in inorganic N concentration during incubation of in slurries of Craibstone soil, Campo sujo soil and mixtures of these soils.

254x711mm (300 x 300 DPI)

Figure 3. Changes in *amoA* gene abundance in slurries of Craibstone soil, Campo sujo soil and mixtures of these soils.

495x467mm (300 x 300 DPI)

Figure Legends

Figure 1. Effect of aqueous extracts of Campo sujo and Craibstone soils on the growth of ammonia <u>ammonia-oxidisingoxidiser</u>. Maximum specific growth rate was estimated during exponential growth of the ammonia oxidising archaea (AOA) *Candidatus* Nitrosocosmicus franklandia (C13) and four soil ammonia-oxidising bacteria (*Nitrosospira briensis, Nitrosomonas europaea, Nitrosospira multiformis, Nitrosospira tenuis*) in liquid batch cultures containing aqueous extracts of Campo sujo soil or Craibstone soil, water (negative control), or 100 μ M allylthiourea (positive control). Error bars represent standard deviation of the mean from triplicate cultures.

Figure 2. Changes in inorganic N concentration during incubation of in-slurries of Craibstone soil, Campo sujo soil and mixtures of these soils. (A) NH_4^+ -N concentration and (B) NO_3^- -N were determined in all soil slurries. (C) NO_3^- concentration in the mixed slurries was expressed as the percentage of NO_3^- in the Craibstone soil slurry. *P* values for treatment, time, and their interaction were calculated with a linear mixed model with repeated measures (*lme4* package, R version 3.2.3) for each independent variable and their interaction, and the marginal r^2 associated with the fixed effects. Error bars represent standard deviation of the means from triplicate cultures. Values below the limit of detection were plotted as zero.

Figure 3. Changes in *amoA* gene abundance in slurries of Craibstone soil, Campo sujo soil and mixtures of these soils. (A) Ammonia-oxidising archaea (AOA) *amoA*, (B) ammonia-oxidising bacteria (AOB) *amoA*, (C) AOA:AOB *amoA* ratio and (D) AOA *amoA* transcripts were quantified during incubation of soil slurries. *P* values for treatment, time, and their interaction were calculated with a linear mixed model with repeated measures (lme4 package, R version 3.2.3) for each independent variable and their interaction, and the marginal r^2 associated with the fixed effects. Error bars represent standard deviation of the means from triplicate cultures.

Figure S1. Effects of Campo sujo and Craibstone soils on the growth of ammoniaoxidising archaea and bacteria. Semi-logarithmic plots of nitrite concentration vs. time during liquid batch culture of (A) *Candidatus* Nitrosocosmicus franklandia (AOA C13), (B) *Nitrosomonas europaea*, (C) *Nitrosospira briensis*, (D) *Nitrosospira tenuis* and (E) *Nitrosospira multiformis* after adding aqueous extracts of Campo sujo soil or Craibstone soil, water (negative control), or 100 μ M allylthiourea (positive control). Error bars represent standard deviation of the means from triplicate cultures.

Figure S2. Denaturing gradient gel electrophoresis analysis of archaeal ammonia oxidiser *amoA* genes in soil slurries. PCR-amplified archaeal *amoA* gene products from triplicate soil slurries of (G) Campo sujo soil only, (CG) Campo sujo:Craibstone mixed soil (1:1 ratio) and (C) Craibstone soil only were sampled before incubation (T0) and after incubation for 21 days (T21).

Figure S3. Effects of pH and moisture content on nitrification in Campo sujo soil. Changes in (A) $(NH_4^+-N + NO_3^--N)$ and (B) NO_3^--N in microcosms containing Campo sujo soil after manipulation of pH and moisture content. Open symbols represent treatments with 0.01% acetylene in the headspace. Dry: air-dried soil at 8.66 g H₂0 <u>100 g⁻¹</u> dry soil; Water: rewetted soil at 39.6 ± 1.92 g H₂0 <u>100 g⁻¹</u> dry soil; Moist: moist soil; pH: soil treated with CaCO₃ (pH 6.3; pH of other treatments was 5.2).

216x206mm (300 x 300 DPI)

406x208mm (300 x 300 DPI)

