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Abstract Monitoring of self-potentials (SPs) in the Chalk of England has shown that a consistent electrical
potential gradient exists within a coastal groundwater borehole previously affected by seawater intrusion (SI)
and that this gradient is absent in boreholes further inland. Furthermore, a small but characteristic
reduction in this gradient was observed several days prior to SI occurring. We present results from a
combined hydrodynamic and electrodynamic model, which matches the observed phenomena for the first
time and sheds light on the source mechanisms for the spatial and temporal distribution of SP. The model
predictions are highly sensitive to the relative contribution of electrochemical exclusion and diffusion
potentials, the exclusion efficiency, in different rock strata. Geoelectric heterogeneity, largely due to marls and
hardgrounds with a relatively high exclusion efficiency, was the key factor in controlling themagnitude of the
modeled SP gradient ahead of the saline front and its evolution prior to breakthrough. The model results
suggest that, where sufficient geoelectric heterogeneity exists, borehole SP may be used as an early warning
mechanism for SI.

1. Introduction

Globally, groundwater provides the main source of water for human consumption and is critically important
for agriculture in many countries (WWAP, 2014). Groundwater demand is particularly high in coastal areas,
where population density is more than three times the global average (Small & Nicholls, 2003).

Many coastal aquifers are vulnerable to seawater intrusion (SI), with numerous incidences reported in every
inhabited continent (Barlow & Reichard, 2010; Bocanegra et al., 2010; Custodio, 2010; Morgan &Werner, 2015;
Shi & Jiao, 2014; Steyl & Dennis, 2010). SI risks are greatest when the water table is low relative to local sea
levels, a situation exacerbated by increasing abstractions and climatic variability.

Traditional approaches for characterizing SI fall into three main categories (Werner et al., 2013): borehole
hydrochemistry, monitoring of groundwater levels, and geophysical investigations. Monitoring of borehole
water levels and hydrochemistry often fails to predict the timing of SI, particularly in heterogeneous
aquifers, where seawater may be transported along a small number of preferential flow paths. Time-lapse
resistivity and electromagnetic surveys have been used in various studies to investigate SI (e.g., Comte &
Banton, 2007; Fitterman, 2014; McDonald et al., 1998), although these typically require a large footprint
for the long-term installation of monitoring apparatus or repeated surveys during the predicted period
of SI risk.

This paper explores whether borehole measurements of self-potential (SP) may represent an alternative
means of identifying a nearby saline front, as concentration gradients are known to generate SP, through
the development of an electrochemical exclusion-diffusion potential VEED (e.g., Jackson, 2015; Jouniaux
et al., 2009; Lanteri et al., 2009; Leinov & Jackson, 2014; Martínez-Pagán et al., 2010; Revil, 1999;
Westermann-Clark & Christoforou, 1986). The relatively low cost of monitoring equipment, combined with
a small footprint within a single borehole, represent significant advantages compared to traditional methods
for identifying SI.

Electrochemically induced SPs have been used to track the position of an injected saline front in both field
(Jougnot et al., 2015; Sandberg et al., 2002) and laboratory (Martínez-Pagán et al., 2010) experiments, with
the latter suggesting that an SP signal occurs ahead of any increase in salinity. These experimental findings
are supported by numerical modeling of SI in hydrocarbon reservoirs, where changes in SP occurred several
tens of meters ahead of the saline front (Gulamali et al., 2011; Jackson et al., 2012).
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MacAllister et al. (2016) was the first study to demonstrate a link between tidal processes and borehole SP in a
coastal aquifer. This was done by monitoring borehole SP and fluid electrical conductivity σfin a coastal bore-
hole in the UK Chalk subject to regular SI (the Saltdean Observation Borehole, OBH). MacAllister et al. (2018)
then demonstrated that the tidal SP signal in the Saltdean OBH was dominated by the electrochemically
induced component of SP across a remote saline front.

MacAllister et al. (2018) also showed that the Saltdean OBH displays a consistent SP gradient ahead of the
saline front and that this feature is absent in Chalk boreholes further inland. Moreover, a characteristic
reduction in this gradient, or precursor, occurs several days prior to saline breakthrough in the borehole
(MacAllister, 2016). Numerical modeling conducted by MacAllister (2016) and MacAllister et al. (2018) was
unable to replicate the magnitude of the initial SP gradient and did not attempt to simulate the subsequent
precursor. Consequently, the source mechanisms for these phenomena remain unexplained.

The aims of the present study are twofold. First, we aim to match the observed SP gradient within the
borehole using a combined hydrodynamic and electrodynamic model and use this model to explain the
key parameters that control this phenomenon. Second, we will use the combined numerical model to match
the observed evolution of SP prior to breakthrough and investigate possible causes of the precursor, in order
to understand the broader applicability of SP as a predictor of SI.

2. SP Source Mechanisms

Numerousmechanisms can generate SPs, including electrokinetic, electrochemical, thermoelectric, piezoelec-
tric, and redox processes (e.g., Jouniaux et al., 2009). At conditions close to thermodynamic equilibrium (Revil
& Linde, 2011), the contributions of each source mechanism i can be related to total current flow j via the fol-
lowing generalized equation (Jackson, 2015; Jackson, Gulamali, et al., 2012; Saunders et al., 2008; Sill, 1983):

j ¼ �σT∇V þ ∑
i
Li∇Ui (1)

where σT is the effective conductivity of the host material including matrix and pore space constituents (S/m),
V is the electrical potential (V), Ui is the potential of the source mechanism (e.g., pressure and concentration),
and Li is the associated cross-coupling term. In the absence of SP source mechanisms, equation (1) is equiva-
lent to Ohm’s law. The cross-coupling term is often expressed in terms of a coupling coefficient Ci (Jackson,
Gulamali, et al., 2012):

Li ¼ σTCi: (2)

In coastal aquifers, VEED and VEK are likely to be themost significant components of SP (MacAllister et al., 2016,
2018), because of respective variations in pressure induced by tidal fluctuations and in groundwater salinity,
due to the presence of seawater at depth below comparatively fresh groundwater near the water table.

2.1. Electrokinetic Potential VEK

An excess of charge typically occurs at mineral-water interfaces, which is balanced by an adjoining layer of
opposing charge (counterions) within the fluid (Hunter, 1981). This arrangement is often referred to as the
electric double layer. The fluid layer closest to the mineral surface (the Stern layer) is characterized by strongly
sorbed counterions; the layer furthest from the mineral surface is known as the diffuse layer (or Gouy-
Chapman layer) and is characterized by a lower density of charge, which is mobile and can be transported
by flow (Revil et al., 1999).

In chalk saturated with groundwater or seawater, the surface charge is typically negative (Jackson, Butler, &
Vinogradov, 2012; MacAllister, 2016) and groundwater flow from nonhydrostatic pressure gradients trans-
ports positively charged ions along the diffuse layer, leading to an electrokinetic current (Jackson, 2015)
(Figure 1a). A conduction current arises to maintain overall electroneutrality, and VEK represents the electrical
potential required to sustain this current (Jackson, Gulamali, et al., 2012). In the absence of other current
sources, equations (1) and (2) give (Jackson, 2015)

jEK ¼ �σT∇VEK þ σTCEK∇Pn (3)

where Pn is nonhydrostatic pressure (Pa) and CEK is the electrokinetic coupling coefficient (V/Pa), which in the
absence of current flow is defined by
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∇VEK ¼ CEK∇Pn: (4)

The magnitude of CEK decreases with concentration up to the concentration of seawater; in highly saline
groundwater, counterions are closer to the mineral surface on average and a lower charge density is trans-
ported under a given (nonhydrostatic) pressure gradient (Jaafar et al., 2009; Vinogradov et al., 2010).

2.2. Exclusion-Diffusion Potential VEED

In the absence of other current sources, equations (1) and (2) can be used to give VEED (e.g., Jackson, 2015;
Revil & Linde, 2006), which comprises a diffusion (or liquid junction) and an exclusion (or membrane)
component:

jEED ¼ �σT∇VEED þ σTCEED∇ lnCf (5)

where Cf is the molar fluid concentration (M) and CEED is the electrochemical coupling coefficient (V). In the
absence of current flow, this may be rewritten as (Leinov & Jackson, 2014; Revil, 1999)

∇VEED ¼ � kBT
e

2Tþ � 1ð Þ∇ lnCf (6)

where T+ is the macroscopic Hittorf number for cations (dimensionless), kB is the Boltzmann constant (J/K), T
is temperature (K), and e is the charge on an electron (C).

In the case of a salinity gradient in an uncharged porous medium, where the solute is dominated by sodium
and chloride ions, charge separation is induced by the greater mobility of chloride, giving rise to an electro-
chemical diffusion potential (VED; e.g., Jackson, 2015; Revil, 1999; Figure 1b). In this scenario, the SP signal is
effectively a diffusion potential and T+ is equivalent to the microscopic Hittorf number for sodium, tNa.
Ignoring the weak concentration dependency of tNa, and assuming a constant temperature, gives the follow-
ing expression (Jackson, 2015; Leinov & Jackson, 2014):

∇VED Tþ¼tNa

�� ¼ � kBT
e

2tNa � 1ð Þ∇ lnCf : (7)

The following relation can be used to represent the slight changes in tNawith ionic strength (Gulamali et al.,
2011; Jackson, Gulamali, et al., 2012; Leinov & Jackson, 2014):

tNa ¼
0:39; Cf < 0:09M

0:366� 2:12�10�2 log10Cf ;Cf > 0:09M

�
: (8)

If the salinity gradient lies within a negatively charged porous medium and the electrical double layer is thick
relative to the pore-throat radius, chloride ions are excluded from the pore space, leading to an exclusion
potential VEE (Figure 1c). In a perfect membrane, T+ = 1, giving (Leinov & Jackson, 2014; Westermann-Clark
& Christoforou, 1986):

∇VEE ¼ � kBT
e

∇ lnCf : (9)

The relative importance of the exclusion and diffusion components is defined by the dimensionless exclusion
efficiency η (Leinov & Jackson, 2014; MacAllister, 2016; Westermann-Clark & Christoforou, 1986):

Figure 1. Pore-scale representation of (a) VEK, (b) VED, and (c) VEE(adapted from Jackson, Gulamali, et al., 2012).
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η ¼ ∇VEED � ∇VED

∇VEE � ∇VED
: (10)

3. Site Characterization

A downhole array of SP electrodes was installed in May 2013 in the Saltdean OBH near Brighton on the south
coast of England (Figure 2). The Saltdean OBH, which lies in a dry valley approximately 1.8 km from the coast,
was formerly used as an abstraction borehole, but was abandoned in 1936 because of repeated saline
intrusion (Jones & Robins, 1999). Borehole logs from the area suggest that an adit with a diameter of 1.4 m
intersects the Saltdean OBH at �2 m above Ordnance Datum (AOD) and extends 32 m to the northwest,
connecting the Saltdean OBH to two other groundwater boreholes nearby (BGS, 2018). The Saltdean OBH
now acts as a monitoring borehole for the Balsdean Pumping Station (PS) further inland, which provides
drinking water to the eastern part of Brighton.

3.1. Geology

The site lies within the South Downs, an area dominated by chalk strata that form part of the wider Chalk
Group. The Saltdean OBH extends to 60 m below ground level, intersecting a series of chalk, marl, and
hardground layers within the Seaford and Lewes Nodular Chalk Members of the White Chalk Subgroup
(Figure 2). The strata dip gently toward the coast (Jones & Robins, 1999) at an angle of approximately 5°,
based on the inferred depth of the Seaford-Lewes Nodular Chalk contact in the Saltdean OBH (AMEC,
2012) and at the PS (MWH, 2006).

3.2. Hydrogeology
3.2.1. Groundwater Flow
The majority of groundwater flow in the Chalk occurs within fractures (Allen et al., 1997; Bloomfield, 1996;
MacDonald & Allen, 2001), where the hydraulic conductivity is typically several orders of magnitude higher
than that of the surrounding matrix (Butler et al., 2012; Jones & Robins, 1999). Fractures may exist as faults,
joints, or bedding planes, although the latter are considered to be the most pervasive and the most
significant conduits for flow (Bloomfield, 1996).

Numerous, laterally extensive marl seams have been logged within the Chalk, which act as barriers to flow
due to their relatively low hydraulic conductivity (Gallagher et al., 2012; Molyneux, 2012; Zaidman et al.,
1999). Hardgrounds are often considered flow conduits, due to their brittle nature and enhanced fracturing
(Schurch & Buckley, 2002; Soley et al., 2012), although they may also be barriers to flow when fracturing is
minimal (Jones & Robins, 1999).

In general, the hydraulic conductivity of the Chalk decreases with depth and the most significant flow
horizons typically occur within 50m of the water table (Butler et al., 2009; Jones & Robins, 1999; Williams et al.,
2006). Laterally, the Chalk is significantly more permeable in valleys than in interfluves (Jones & Robins, 1999;

Figure 2. Map of study area and schematic of the Saltdean Observation Borehole (OBH). PS = Pumping Station; SP = self-potential.
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MacDonald & Allen, 2001). Within the South Downs, the Seaford Chalk is considered to be the major water-
bearing unit (Jones & Robins, 1999).

According to Jones and Robins (1999), logging of the Saltdean OBH has indicated a hydraulically significant
fracture at its base, which constitutes the main conduit for SI. This was later supported by MacAllister et al.
(2018), who showed through a series of σf profiles that saline water enters near the base of the borehole
and exits via the adit near the top of the water column.

Recharge estimates vary across the South Downs, although in the Brighton Block, where the Saltdean OBH is
located, Jones and Robins (1999) report a mean value of around 480 mm/yr. The majority of recharge occurs
during the winter months, with limited (Ireson et al., 2009; Wellings, 1984) or no recharge (Limbrick, 2002)
betweenMay and September. Despite theminimal flow occurring in the unsaturated zone during this period,
the narrow pore-throat diameters in the Chalk matrix imply that it remains almost entirely saturated within
30m of the water table (Price, 1987), although dewatering of the fractures occurs, typically accounting for less
than 1% of the total rock volume (Butler et al., 2012; Mathias, 2005; Price, 1987).
3.2.2. Aquifer Properties
The median storage coefficient in the South Downs Chalk, as reported by MacDonald and Allen (2001) is
0.0022 and the mean porosity of the White Chalk Subgroup in the south of England is 39% (Bloomfield
et al., 1995).

Based on observed drawdown at the Balsdean PS, MWH (2006) inferred a hydraulic conductivity K of
900 m/day for the surrounding aquifer, significantly higher than the median value of 9 m/day for the
South Downs as a whole (based on the median transmissivity of 880 m2/day reported by MacDonald and
Allen (2001) and an assumed aquifer thickness of 50 m). We estimate here a hydraulic conductivity of
250 m/day, based on a mean lag τof 0.152 days between tidal peaks observed at the coast (in Newhaven,
7 km to the southeast; British Oceanographic Data Centre, 2015) and using (Jacob, 1950):

K ¼ t0Sx2

4πbτ2
(11)

where t0 is the semidiurnal period of tidal fluctuation (0.518 days; MacAllister et al., 2016), S is storativity
(0.0022), x is distance from the coast (1,800 m), and b is aquifer thickness (50 m).

3.3. Electrical Parameters

Rearranging equations (5)–(7), (9), and (10), assuming no current flow, gives the following expression for CEED
in a fully saturated medium:

CEED ¼ � kBT
e

ηþ 1ð Þ 2tNa � 1ð Þ � η½ � (12)

MacAllister (2016) measured η in Seaford (0.01–0.12) and Lewes Nodular Chalk (0.02–0.06) cores saturated
with local groundwater and seawater, although no direct measurements of η are available for marls and
hardgrounds, which lie beneath the Saltdean study area. These values can be inferred based on observed
changes in σf and SP with depth in the Victoria Gardens borehole, 7 km west of Saltdean (see supporting
information Figure S1).

Values of σf in mS/cm are converted to total dissolved solids in mg/L (TDS), using the following relation
(Walton, 1989):

TDS ¼ 700σf : (13)

Measurements of TDS for seawater (34,113 mg/L) and groundwater (376 mg/L) are compared to calculated
values of Cf (0.673 for seawater; 0.00851 for groundwater) reported by MacAllister (2016) giving

Cf≈2:12�10�5TDS: (14)

Applying the variations in Cfand SP to equations (7) and (9) and assuming the variations in SP within the
borehole are representative of ∇VEED within the adjacent formation gives estimates of η for the Shoreham
Marl (0.15), the Hope Gap Hardground (0.21), and the Lewes Marl (0.28) using equation (10). These findings
are consistent with previous studies (Leinov & Jackson, 2014; MacAllister, 2016; Westermann-Clark &
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Christoforou, 1986), which suggest that lithologies with relatively narrow pore-throat diameters, such as shale
(Nelson, 2009), marls, and hardgrounds (Fay-Gomord et al., 2016) typically have higher values of η. Indeed,
the value of η for shale (0.24) reported by MacAllister (2016) is similar to the values derived for marls and
hardgrounds.

Vinogradov et al. (2010) showed that |ln(CEK)|varies linearly with ln(Cf) in fully saturated core samples below
seawater salinity. Using measurements of CEK for local groundwater (�5.12 × 10�6 V/Pa) and seawater
(�1.76 × 10�7 V/Pa) reported by MacAllister (2016), we obtain

CEK ¼ �1:286�10�9C�0:769
f : (15)

The electrical conductivity of the Chalk aquifer σT can be estimated using Archie’s law (Telford et al., 1990):

σT ¼ ϕmσf S2w (16)

wherem is the cementation exponent, ϕ is porosity, andSwis saturation. MacAllister (2016) derived values for
m of 2.1–2.6 from core samples of Seaford and Lewes Nodular Chalk.

The presence of clay minerals increases electrical conductivity; this can be accounted for using the empirical
Waxman-Smits equation (Darling, 2005), originally developed for shaly sands:

σT ¼ ϕmσf S2w 1þ B
ρmCEC

100ϕσf Sw

� �� �
(17)

where ρm is the mineral grain density (Fay-Gomord et al., 2016, report values of 2.7 g/cm for marl), CECis the
cation exchange capacity (averaging 9.5 mEq/100 g for a typical marl; Cornell & Aksoyoglu, 1991) and

B ¼ �1:28þ 0:255TC � 0:0004059TC2
� �

= 1þ 0:04TC � 0:27ð Þ
σ�1:23
f

� �
(18)

where TC is temperature in degrees Celsius, which remains close to 11°C in the Saltdean OBH throughout the
monitoring period.

4. Monitoring Apparatus and Data Processing

An array of 13 nonpolarizing Silvion Ag/AgCl WE300 electrodes was installed in the Saltdean OBH from
May 2013 to February 2015 (Figure 2). The shallowest of these was installed at �2.8 mAOD and used as
a reference electrode throughout, with the remaining electrodes spaced at 2-m intervals below it. The
deepest electrode was installed separately from the others at �26.8 mAOD, along with an AquaTroll
200 probe which recorded temperature T, σf, and pressure P; several vertical profiles of SP and σf were
collected over the monitoring period using this traveling electrode. Two further AquaTroll probes were
installed at �4.8 mAOD and �10.8 mAOD respectively to record vertical changes in T, σf, and P. The
monitoring apparatus was connected to a Campbell Scientific CR3000 data logger, which collected data
at 5-min intervals. Further details on the equipment used and data collection methods are given by
MacAllister et al. (2016).

The raw SP data include semidiurnal oscillations consistent with the M2 component of oceanic tides, which
dominate the signal (MacAllister et al., 2016). A first-order Savitsky-Golay (SG) moving average filter, with a
sampling window of 2.2 days, was applied to the data to assist in identifying longer-term trends in the SP data
set. The SG filter has previously been used for SP analysis (e.g., MacAllister, 2016; Maineult et al., 2008) and has
the advantages of maintaining the shape and amplitude of lower frequency oscillations, without introducing
phase delay (Savitsky & Golay, 1964).

In addition to the long-term monitoring conducted at the Saltdean OBH, vertical SP profiles were collected
from the Balsdean OBH around 1 km further inland (Figure 2a) and from borehole PL10B, located at
Trumpletts Farm in Berkshire, more than 60 km from the coast (MacAllister et al., 2018). All three boreholes
intersect the Seaford and Lewes Nodular Chalk, allowing a comparison of SP profiles in a similar geological
setting, at varying distances from the coast.
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5. Summary of Field Data

The data recorded by the deepest T/σf/P probe show that saline water
entered the Saltdean OBH in late summer/early autumn of both 2013
and 2014 (Figure 3a). These events occurred following prolonged periods
of low water levels in the borehole; intrusion ceased at the commence-
ment of the winter recharge period, as shown by the higher water levels
from November onward.

The potential gradient across the water column (based on vertical profiles
taken by the traveling electrode) remained close to 0.2 mV/m throughout
the monitoring period (Figure 3b). The respective SP gradients in the
Balsdean OBH and Trumpletts borehole, which both lie further inland,
are minimal by comparison (Figure 4). The σf in the Saltdean OBH was
approximately 0.87 mS/cm throughout the water column (~610 mg/L,
from equation (13)).

SP across the water column decreases by 0.2–0.3 mV several days prior to
intrusion (Figure 5); this precursor is most apparent in the 2013 data. These
precursors also appear in the 2014 data, although the occurrence of what
appear to be two minor intrusion events prior to more obvious saline
breakthrough on 12 September leads to a more complex pattern of both
salinity and SP.

As well as the intrusion of saline water when water levels are low, a smaller
increase in salinity occurs in conjunction with major recharge events, indi-
cating the presence of elevated salinity above the water table (Figure 6).
This influx of more saline water is preceded by a sharp reduction in σf of
short duration. This may reflect distinct contributions from (i) rapid

Figure 3. Data from the Saltdean Observation Borehole, comprising (a) σf and reduced water levels (RWLs; converted from
pressure recorded at �26.8 m above Ordnance Datum, AOD); and (b) σf and self-potential (SP) gradients across the water
column, calculated from vertical profiles taken with the traveling electrode and referenced to the shallowest borehole
electrode.

Figure 4. Self-potential (SP) profiles from the Saltdean Observation Borehole
(OBH), Balsdean OBH, and Trumpletts borehole, along with σf in the Saltdean
OBH.
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bypass flow in the fractures, delivering relatively fresh recharge to the
borehole, and (ii) piston flow, yielding more mineralized recharge, as a
result of prolonged interactions between percolating rainwater and the
rock matrix (see Jones & Robins, 1999).

6. Model Description

An electrodynamic model was produced to investigate the static SP
gradient (Figure 5) and variations in SP prior to intrusion (Figure 6) in the
Saltdean OBH. The electrodynamic model relies on distributions of
pressure and salinity (see equations (3)–(6)), which are provided by an
accompanying hydrodynamic model of the coastal Chalk aquifer.

6.1. Hydrodynamic Model

Hydrodynamic simulations were conducted using SUTRA3D (Voss &
Provost, 2002), one of the most widely used models for simulating
density-driven flow and transport (Werner et al., 2013). Three model
domains were used (Figure 7) to simulate pressure and salinity variations
at the coast, while giving a detailed 3-D representation of the geology
around the borehole, consistent with the stratigraphy and fracture zones
shown in Figure 2.

The model was run initially with long-term average conditions until a
steady state distribution of salinity was achieved. This steady state model
provided the initial conditions for a transient model, which includes tidal
oscillations in pressure at the coast and invokes saline intrusion by turning
off recharge after 7 days of the simulation.

Parameterization of the model is consistent with the site characterization
in sections 3.1 and 3.2. A detailed description of the parameters applied

to the hydrodynamic model, along with time stepping and solver parameters, is given in supporting
information Text S2.

Pressure and salinity distributions produced by the hydrodynamicmodel were used to calculate SP within the
electrodynamic model described in the following section.

6.2. Electrodynamic Model
6.2.1. Initial Data Processing
The electrodynamic model was written in MATLAB, using the controlled volume finite difference method,
and is based on the approach of Gulamali et al. (2011), Ijioma and Jackson (2014), and Jackson, Gulamali,

Figure 5. Transient self-potential (SP) and σf in the Saltdean Observation
Borehole around the time of saline intrusion in (a) 2013 and (b) 2014. All
data were collected from �26.8 m above Ordnance Datum. Characteristic
increases in SP prior to intrusion are highlighted by dotted gray lines and
arrows. Similar SP responses, marked A and B in (b), can be seen prior to
minor intrusion events.

Figure 6. Fluctuations in σf following major recharge events in (a) late 2013/early 2014 and (b) late 2014/early 2015. A
short-lived reduction in σf occurs as water levels begin to rise, followed by a more sustained increase in σf. RWL = reduced
water level; AOD = above Ordnance Datum.
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et al. (2012) for modeling SP in hydrocarbon reservoirs. It solves equations (3) and (5) for VEK and VEED,
assuming no external current sources or sinks, such that

j Γj ¼ ∇Pn Γj ¼ ∇ lnCf Γj ¼ 0 (19)

at the model boundaries. Modeled SP is obtained by adding the contributions of VEK and VEED.

The model begins by mapping pressures and concentrations from the 2-D local model onto the logically
rectangular mesh shown in Figure 8 and assuming no variation in the y direction. It then incorporates data
for the region covered by the 3-D hydrodynamic model. The top 40 elements in Figure 8 lie above the extent
of the 2-D local and 3-D hydrodynamic models; parameterization of this region is described in section 6.2.2.

Figure 7. Finite element meshes for (a) the 2-D regional model, including steady state boundary conditions, (b) the 2-D
local model, and (c) the 3-D model of the borehole and plane of the upper fracture zone.
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Hydrostatic pressure Ph was inferred by taking the nodal pressure values at the base of the fortieth element
P40, calculating the arithmetic mean of fluid density ρf between each element below them and invoking

ΔPh ¼ ρfgΔz (20)

where g is the acceleration due to gravity (9.81 m/s2), Δzis the change in elevation between elements, andρf is
linearly interpolated from the density of fresh water (1,000 kg/m3 for 0 mg/L) and sea water (1,025 kg/m3 for
35,000 mg/L). The nonhydrostatic pressure component Pn was obtained by subtracting Ph from the total
pressure at the center of each element.

Spuriously low or high salinities produced by numerical oscillations in the SUTRA model were removed by
limiting minimum and maximum concentrations to 609 mg/L and 35,000 mg/L, respectively. To mimic the
rate of breakthrough shown in Figure 6 and avoid minor fluctuations in borehole salinity prior to this, all
salinity values below 700 mg/L were set equal to 609 mg/L.

As the front within the 2-D local SUTRA model was more dispersed than that within the 3-D model
(see supporting information Text S2), the advancing salinity within the upper fracture zone (shown in
Figure 2) led to spurious elevated concentrations within the overlying strata at later time steps. To avoid this,
the salinity distribution for the start of the transient model was maintained throughout for elements, which
lie less than 2.5 m above the upper fracture zone.

Modeled porosity was 0.39 throughout themodel domain, except in the borehole and adit, where a value of 1
was applied.
6.2.2. Unsaturated Zone
Where the water table lies above the top of the SUTRA local model, its elevation was inferred from
equation (20) and values of P40, assuming hydrostatic conditions and a constant fluid density of
1,000.435 kg/m3 (consistent with a fluid concentration of 609 mg/L). Saturation was reduced from 1 to
0.995 over the two elements immediately above the water table to reflect dewatering of fractures and
concentration was increased linearly to 2,200 mg/L over a further two elements above this, reflecting the
presence of elevated salinity in the unsaturated zone (Figure 6). Constant values of saturation (0.995) and
concentration (2,200 mg/L) were maintained above this.
6.2.3. Electrical Parameters
TDS concentrations were converted to σf and Cf using equations (13) and (14).

The bulk electrical conductivity of the aquifer was simulated using equation (16), with a value of 2.5 for the
cementation exponent m below the unnamed marl and a value of 1.5 above this, reflecting an increased
degree of fracturing at shallow depths and, hence, greater connection between pores (Glover, 2009;
Roubinet et al., 2018). For marl seams, equation (17) was applied, reflecting the contribution of surface
conductance in clay minerals.

Figure 8. Finite element mesh for the electrodynamic model. OBH = Observation Borehole.
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The values of the coupling coefficients CEED and CEK were obtained from
equations (12) and (15); the values of η applied to equation (15) are shown
in Table 1.

7. Model Results and Discussion

Steady state SP within the borehole is compared to the observed profile in
Figure 9a. The modeled profile is dominated by VEED and the contribution
of VEK is negligible by comparison, consistent with the previous study of
MacAllister et al. (2018).

The sensitivity of the SP gradient to multiple input parameters is shown in Figure 9b. Increasing recharge by
25% produces a deeper saline front and reduces the SP gradient substantially. Removing variations in η has a
more pronounced effect on SP and in the case of a constant value of η (0.04) throughout the model domain,
the SP gradient ahead of the front disappears.

The removal of elevated salinity (and hence electrical conductivity) in the unsaturated zone also lowers the
modeled gradient. The elevated electrical conductivity of clay minerals in the marl bands does not greatly
affect the magnitude of the SP gradient, although it does appear to be responsible for the deviation in
observed SP adjacent to the Shoreham Marl, just below �20 mAOD.

The results suggest that the observed SP gradient relies both on a nearby saline front and local variations in η.
Given the extremely low permeability of the chalk matrix, the presence of a nearby saline front may reflect
historic SI over a period of many years. While these historic events would suggest a high risk of future intru-
sion, it is difficult to infer the timing of future events from a single SP profile. To this end, the evolution of the
SP gradient could provide a better indication of imminent SI.

Field observations of the precursor are compared to the results of the best fit model and sensitivity analyses
in Figure 10. This includes (on the left-hand side) raw model outputs and field data with a short-period SG
filter applied to remove high-frequency noise; and (on the right-hand side) field and model data with a
2.2-day SG filter applied to remove the effects of tidal oscillations. The results from the best fit model

Figure 9. Comparison of observed and simulated self-potential (SP) and σf profiles. (a) Best fit model results, showing the
contribution of VEED and VEK components. (b) Sensitivity analysis showing the effects of (1) representing formation con-
ductivity in the marl horizons using Archie’s law (cf. Waxman-Smitts), (2) applying a fluid concentration of 609 mg/L
throughout the unsaturated zone, (3) increasing steady state recharge by 25%, (4) applying η = 0.04 for all chalk layers
(excluding marls and hardgrounds), and (5) applying η = 0.04 for all chalk, marl, and hardground layers. AOD = above
Ordnance Datum.

Table 1
Modeled Exclusion Efficiencies η

Feature η

Seaford Chalk 0.09
Lewes Nodular Chalk (above lower fracture zone) 0.03
Lewes Nodular Chalk (≤3.5 m below lower fracture zone) 0.01
Lewes Nodular Chalk (>3.5 m below lower fracture one) 0.05
Shallow Marls (above base of borehole) 0.15
Deep Marls and Hardgrounds (below base of borehole) 0.24
Borehole void, adit, and fracture zones 0.00

10.1029/2018WR022972Water Resources Research

GRAHAM ET AL. 6065



(Figures 10c and 10d) closely match observations for summer 2013 (Figures 10a and 10b). The smaller mag-
nitude of σfpeaks following breakthrough in the model highlights the propensity for numerical models to
produce highly dispersed fronts (Konikow, 2011).

Sensitivity analysis in the model provides an important insight into the likely mechanisms that drive the pre-
cursor. The first analysis investigates the contribution of the inferred lower fracture zone in Figure 2 to the
evolution of SP. This is achieved by treating the lower fracture zone as a region of low permeability,

Figure 10. Observed and simulated self-potential (SP) precursors. (a) Field SP and σf data (Savitsky-Golay, SG, filter with a
105-min sampling window applied to reduce high-frequency noise). (b) Field SP and σf data (SG filtered, 2.2-day
sampling window). (c) Best fit model SP and σf (unfiltered). (d) Best fit model results (SG filtered, 2.2-day sampling window).
(e) Model sensitivity analysis: Fixed salinity distribution in the lower fracture zone throughout (unfiltered). (f) As in (e), with a
2.2-day SG filter. (g) Model sensitivity analysis: η = 0.01 above and below lower fracture zone (unfiltered). (h) As in (g),
with a 2.2-day SG filter. (i) Model sensitivity analysis: η = 0.01 above and below upper fracture zone and fixed salinity in
lower fracture zone. (j) As in (i), with a 2.2-day SG filter.
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unfractured chalk, and modeling the initial salinity distribution in this layer throughout the transient model
(while allowing the saline front to evolve freely throughout the rest of the model domain). As shown in
Figures 10e and 10f, this completely removes any precursor to intrusion.

However, movement of salinity beneath the borehole is not sufficient by itself to produce a precursor.
Applying η = 0.01 on both sides of the lower fracture zone also removes the modeled precursor

Figure 11. Modeled distributions of σf (a, c, e, and g) and changes in self-potential (SP) relative to initial conditions (b, d, f,
and h) immediately prior to saline breakthrough (t = 14.2 days). (a, b) Best-fit model, with a dynamic lower fracture zone
intersecting strata of differing η; (c, d) as in (a) and (b), with a static saline front in the lower fracture zone; (e, f) as in (a) and
(b) with η = 0.01 across the lower fracture zone; and (g, h) as in (a) and (b), with static lower fracture zone and differing
η across the upper fracture zone. The outlines of the borehole (solid lines), the upper fracture zone (solid lines), and the
lower fracture zone (dashed lines) are also shown. The limits of the ΔSP color scale have been curtailed to emphasize
changes in SP within the borehole. AOD = above Ordnance Datum.
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(Figures 10g and 10h). The precursor therefore reflects the movement of salinity through a heterogeneous
geoelectric environment.

A precursor is also obtained by applying the variation in η values (from 0.01 below to 0.03 above) across the
upper fracture zone (Figures 10i and 10j). In this scenario, a static front was maintained in the lower fracture
zone, so movement of saline water within the upper fracture zone was the source of the modeled precursor.
However, although the smoothed precursor is similar to that observed in the borehole, tidal oscillations are
notably smaller in magnitude than those observed in the field and in the best fit model.

Figure 11 shows the saline front near the borehole and changes in SP (relative to the steady state model)
immediately prior to SI. In each case, the saline front within the upper fracture zone lies <1 m laterally from
the base of the borehole, on its seaward side. Figures 11a and 11b, which represent the best fit model, show
how the SP gradient in the borehole is affected ahead of the saline front within the upper fracture zone.
When a static front is applied to the lower fracture zone only, changes to the vertical SP gradient occur
directly above the saline front within the upper fracture zone, with minimal changes ahead of it
(Figures 11c and 11d), thereby giving no clear precursor (as shown in Figure 10e).

When the best fit model is modified by applying η = 0.01 on either side of the lower fracture zone, changes in
the vertical SP gradient lag behind the advancing saline front in the upper fracture zone (Figures 11e and 11f).
Finally, by applying a change in η across the upper instead of lower fracture zone and implementing a static
front in the lower fracture zone (Figures 11g and 11h), the changes in SP are similar to those seen in the field
and in the best fit model.

The results from the transient model suggest that the precursor is driven by small spatial changes in η across
one or more conduits for saline intrusion. As shown in Figures 11e and 11f, the SP source conduit may inter-
sect the borehole, or it may lie immediately beneath it (Figures 11a and 11b).

In the latter scenario, the precursor does not directly reflect the movement of seawater that will enter the
borehole. However, geophysical logging and hydraulic testing (e.g., Butler et al., 2009; Gallagher et al.,
2012; Jones & Robins, 1999) suggests that there are typically numerous hydraulically significant fractures
within the upper 100 m of the Chalk. SI in the Chalk (and other fractured coastal aquifers) may therefore
be characterized by saline water filling progressively shallower fracture zones. Thus, the arrival of higher
salinity groundwater immediately beneath the borehole would be a strong but indirect indicator of imminent
breakthrough into the borehole itself.

At present, a precursor of this nature has been observed only at a single site, making it difficult to assess the
broader applicability of SP monitoring to predict SI. Furthermore, there are very few data on η, so the
prevalence and magnitude of small-scale variations in η around a typical borehole is unknown. Other
parameters, such as clay content and permeability, are highly variable in the Chalk and most other common
aquifer lithologies over distances of only a few millimeters. Consequently, there are grounds for optimism
that variations in η are also common and so SP precursors to SI may indeed be widespread. Further data
collection is required to identify the presence (or otherwise) of precursors in other boreholes.

Based on the sensitivity of the model and our experience of SP monitoring, it is important that nonpolarizing
Ag/AgCl or Pb/PbCl electrodes (see Perrier et al., 1997) are used to collect long-term SP data sets, to reduce
problems with electrode drift that may complicate subsequent analysis. MacAllister (2016) and MacAllister
et al. (2016) provide additional detail on the requirements for monitoring SP in a coastal aquifer.

8. Conclusions

Data collected from a groundwater observation borehole in a coastal aquifer near the south coast of England
show a strong and consistent SP gradient ahead of a saline front. There is a characteristic reduction in this
gradient several days prior to SI in the borehole. If present in other boreholes, this precursor could act as a
warning system for groundwater users and may allow sufficient time to mitigate the risk of SI occurring.

The combined hydrodynamic and electrodynamic model developed in this study closely matches the
phenomena observed in the field, using plausible values for the numerous input parameters. Through
sensitivity analysis, it is clear that the SP gradient requires a nearby saline front and local variations in the
exclusion efficiency, a parameter which will require further measurements to understand its distribution
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and variability in different aquifer types. The precursor signal modeled here also relies on local variations in
exclusion efficiency on either side of a fracture zone transmitting seawater inland. The fracture zone may
either intersect the borehole, or be located immediately below it, although only the latter scenario replicates
the observed magnitude of tidal SP variations. Further analysis should focus on tidal SP variations and how
they evolve prior to SI.

The results are a promising first step in demonstrating the possible use of SP as a predictor of SI, although
data from additional sites are required to demonstrate its widespread applicability.
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