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Abstract

Brain plasticity, also known as neuroplasticity, is a fundamental mech-
anism of neuronal adaptation in response to changes in the environment
or due to brain injury. In this review, we show our results about the
effects of synaptic plasticity on neuronal networks composed by Hodgkin-
Huxley neurons. We show that the final topology of the evolved network
depends crucially on the ratio between the strengths of the inhibitory and
excitatory synapses. Excitation of the same order of inhibition revels an
evolved network that presents the rich-club phenomenon, well known to
exist in the brain. For initial networks with considerably larger inhibitory
strengths, we observe the emergence of a complex evolved topology, where
neurons sparsely connected to other neurons, also a typical topology of
the brain. The presence of noise enhances the strength of both types of
synapses, but if the initial network has synapses of both natures with
similar strengths. Finally, we show how the synchronous behaviour of the
evolved network will reflect its evolved topology.
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1 Introduction

The brain 1 is the most complex organ in the human body. It contains approx-
imately 102 billion neurons and 103 trillion synaptic connections, where each
neuron can be connected to up to 104 other neurons [1]. The neuron is the basic
working unit of the brain and it is responsible for carrying out the communi-
cation and the processing of information within the brain [2]. Those tasks are
achieved through neuronal firing spatio-temporal patterns that are depended on
the neuron own dynamics and the way they are networked.

Towards the goal to understand the brain, over the past several years, math-
ematical models have been introduced to emulate neuronal firing patterns. A
simple model that has been considered to describe neuronal spiking is based
on the cellular automaton [3, 4]. This model uses discrete state variables, co-
ordinates and time [5]. Another proposed bursting behaviour model is a sim-
plification of the neuron model described by differential equations, where the
state variables are continuous, while the coordinates and the time are discrete
[6, 7, 8]. Girardi-Schappo et al. [9, 10] and Ibarz et al. [11] proposed a map-
based model that reproduces neuronal excitatory and autonomous behaviour
that are observed experimentally.

Differential equations have also been used to model neuronal patterns [12,
13, 14, 15]. The integrate-and-fire model was developed by Lapicque in 1907
[16] and it is still widely used. But one of the most successful and cerebrated
mathematical models using differential equations was proposed by Hodgkin and
Huxley in 1952 [17]. The Hodgkin-Huxley model explains the ionic mechanisms
related to propagation and initiation of action potentials, i.e., the characteristic
potential pulse that propagates in the neurons. In 1984, Hindmarsh and Rose
[18] developed a model that simulates bursts of spikes. The phenomenological
Hindmarsh-Rose model may be seen as a simplification of the Hodgkin-Huxley
model.

Hodgkin-Huxley neuron networks have been successfully used as a mathe-
matical model to describe processes occurring in the brain. An important brain
activity phenomenon is the neuronal synchronisation. This phenomenon is re-
lated to cognitive functions, memory processes, perceptual and motor skills, and
information transfer [15, 19, 20, 21, 22].

There has been much work on neuronal synchronisation. Temporal synchro-
nisation of neuronal activity happens when neurons are excited synchronously,
namely assemblies of neurons fire simultaneously [15, 23]. Newly, Borges and
collaborators [24] modelled spiking and bursting synchronous behaviour in a
neuronal network. They showed that not only synchronisation, but also the
kind of synchronous behaviour depends on the coupling strength and neuronal
network connectivity. Studies showed that phase synchronisation is related to

1The Brain is wider than the Sky,
For, put them side by side,
The one the other will include
With ease, and you beside.
Emily Dickinson, Complete Poems. 1924 (1830-1886).
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information transfer between brain areas at different frequency bands [25]. Neu-
ronal synchronisation can be related to brain disorders, such as epilepsy and
Parkinson’s disease. Parkinson’s disease is associated with synchronised oscil-
latory activity in some specific part of the brain [26]. Based on that, Lameu et
al. [27] proposed interventions in neuronal networks to provide a procedure to
suppress pathological rhythms associated with forms of synchronisation.

In this review, we focus the attention on the weakly and strongly synchronous
states in dependence with brain plasticity. Brain plasticity, also known as neu-
roplasticity, is a fundamental mechanism for neuronal adaptation in response to
changes in the environment or to new situations [28]. In 1890, James [29] pro-
posed that the interconnection among the neurons in the brain and so the func-
tional behaviour carried on by neurons are not static. Experimental evidence
of plasticity was demonstrated by Lashley in 1923 [30] through experiments on
monkeys. Scientific evidence of anatomical brain plasticity was published in
1964 by Bennett et al. [31] and Diamond et al. [32].

In the field of theoretical neuroscience, Hebb [33] wrote his ideas in words
that inspired mathematical modelling related to synaptic plasticity [34]. Ac-
cording to Hebbian theory, the synaptic strength increases when a presynaptic
neuron participates in the firing of a postsynaptic neuron, in other words, neu-
rons that fire together, also wire together. The Hebbian plasticity led to the
modelling of spike timing-dependent plasticity (STDP) [35, 36]. It was possi-
ble to obtain the STDP function for excitatory synapses by means of synaptic
plasticity experiments performed by Bi and Poo [37]. The STDP function for
inhibitory synapses was reported in experimental results in the entorhinal cortex
by Haas et al. [38].

In this review, we show results that allow to understand the relation between
spike synchronisation and synaptic plasticity and this dependence with the non-
trivial topology that is induced in the brain due to STDP. As so, we consider
an initial all-to-all network, where the neuronal network is built by connecting
neurons by means of excitatory and inhibitory synapses. We show that the
transition from weakly synchronous to strongly synchronous states depends on
the neuronal network architecture, as well as to the STDP network evolves to
non-trivial topology. When the strength of the inhibitory connections is of the
same order of that of the excitatory connections, the final topology in the plastic
brain presents the rich-club phenomenon, where neurons that have high degree
connectivity towards neurons of the same presynaptical group (either excitatory
of inhibitory) become strongly connected to neurons of the other postsynaptical
group. The final topology has all the features of a non-trivial topology, when
the strength of the synapses becomes reasonably larger than the strength of the
excitatory connections, where neurons only sparsely connect to other neurons.

The structure of the review is the following. In Section 2, we introduce
the Hodgkin-Huxley model for a neuron and the synchronisation dynamics of
neuronal networks. Section 3 presents the Hebbian rule and the spike-timing
dependent plasticity (STDP) in excitatory and inhibitory synapses. In Section
4, we show the effects of the synaptic plasticity on the network topology and
synchronous behaviour. Finally, in the last Section, we draw the conclusions.
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2 Hodgkin-Huxley Neuronal Networks

2.1 Neurons

Figure 1: Schematic illustration showing the three main parts of neurons (den-
drite, soma and axon), including the presynaptic and postsynaptic neurons.

Neurons are cells responsible for receiving, processing and transmitting in-
formation in the neuronal system [39]. They have differences in sizes, length
of axons and dendrites, in the number of dendrites and axons terminals. Fig-
ure 1 illustrates the three main parts of the neuron: dendrite, cell body or
soma, and axon [40]. The dendrites are responsible for the signal reception, and
the axons drive the impulse from the cell body to another neuron. The neu-
rons are connected through synapses, where the neuron that sends the signal is
called presynaptic and the postsynaptic is the neuron that receives it. The most
common form of neuron communication is by means of the chemical synapses,
where the signal is propagated from the presynaptic to postsynaptic neurons by
releasing neurotransmitters.

The signal propagates by means of the variation of internal neuron electric
potential. An action potential occurs when a neuron sends information from
the soma to the axon. The action potential is characterised by a rapid change
in the membrane potential, as shown in Fig. 2. In the absence of stimulus,
the membrane potential remains near a baseline level. A depolarisation occurs
when the action potential is greater than a threshold value. After the depolar-
isation, the action potential goes through a certain repolarisation stage, where
the action potential rapidly reaches the refractory period or hyperpolarisation.
The refractory period is the time interval in which the axon does not transmit
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the impulse [40].
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Figure 2: Plot of the action potential showing the various phases at a point on
the cell membrane.

Action potentials are generated and propagates due to different ions crossing
the neuron membrane. The ions can cross the membrane through ion channels
and ion pumps [41]. Figure 3(a) shows the ion channels of sodium (Na+) and
potassium (K+). In the depolarisation stage, a great amount of sodium ions
move into the axon (I), while the repolarisation occurs when the potassium ions
move out of the axon (II). Figure 3(b) shows the transport of sodium (I and
II) and potassium ions (III and IV) through the pumps. The sodium-potassium
pumps transport sodium ions out and potassium ions in, and it is responsible
for maintaining the resting potential [41].

2.2 Hodgkin-Huxley Model

Hodgkin and Huxley [17] performed experiments on the giant squid axon us-
ing microelectrodes introduced into the intracellular medium. They proposed
a mathematical model that allowed the development of a quantitative approxi-
mation to understand the biophysical mechanism of action potential generation.
In 1963, Hodgkin and Huxley were awarded with the Nobel Prize in Physiology
or Medicine for their work. The Hodgkin-Huxley model is given by

CV̇ = I − gKn4(V − EK)− gNam
3h(V − ENa)

−gL(V − EL), (1)

ṅ = αn(V )(1− n)− βn(V )n, (2)

ṁ = αm(V )(1−m)− βm(V )m, (3)

ḣ = αh(V )(1− h)− βh(V )h, (4)

where C is the membrane capacitance (µF/cm2), V is the membrane potential
(mV), I is the constant current density, parameter g is the conductance, and
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Figure 3: Schematic diagram of the ions traffic across cell membranes, (a) ion
channels and (b) ion pumps.

E the reversal potentials for each ion. The functions m(V ) and n(V ) represent
the activation for sodium and potassium, respectively, and h(V ) is the function
for the inactivation of sodium. The functions αn, βn, αm, βm, αh, βn are given
by

αn(v) =
0.01v + 0.55

1− exp (−0.1v − 5.5)
, (5)

βn(v) = 0.125 exp

(
−v − 65

80

)
, (6)

αm(v) =
0.1v + 4

1− exp (−0.1v − 4)
, (7)

βm(v) = 4 exp

(
−v − 65

18

)
, (8)

αh(v) = 0.07 exp

(
−v − 65

20

)
, (9)

βh(v) =
1

1 + exp (−0.1v − 3.5)
, (10)

where v = V/[mV]. We consider C = 1 µF/cm2, gK = 36mS/cm2, EK =
−77mV, gNa = 120mS/cm2, ENa = 50mV, gL = 0.3mS/cm2, EL = −54.4mV
[24]. Depending on the value of the external current density I (µA/cm2) the
neuron can present periodic spikings or single spike activity. In the case of
periodic spikes, if the constant I increases, the spiking frequency also increases.
Figure 4 shows the temporal evolution of the membrane potential of a Hodgkin-
Huxley neuron for I = 0µA/cm2 (black line) and for I = 9µA/cm2 (red line).
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For the case without current, the neuron shows an initial firing and, after the
spike, it remains in the resting potential. In the second case the external current
I is greater than the required threshold and the neuron exhibits firings.
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Figure 4: Membrane potential V of a Hodgkin-Huxley neuron with I = 0µA/cm2

(black line) and I = 9µA/cm2 (red line).

2.3 Neuronal Synchronisation

The synchronisation process here is related to natural phenomena ranging from
metabolic processes in our cells to the highest cognitive activities [42]. Neuronal
synchronisation has been found in the brain during different tasks and at rest
[43]. We study in this text neuronal synchronisation process in a network of
coupled Hodgkin-Huxley neurons. The network dynamics is given by [44]

CV̇i = Ii − gKn4(Vi − EK)− gNam
3h(Vi − ENa)

−gL(Vi − EL) +
(V Exc

r − Vi)
ωExc

NExc∑
j=1

εijsj

+
(V Inhib
r − Vi)
ωInhib

NInhib∑
j=1

σijsj + Γi, (11)

where the elements of the matrix εij (σij) are the intensity of the excitatory
(inhibitory) synapse (coupling strength) between the presynaptic neuron j and
the postsynaptic neuron i, ωExc (ωInhib) represents the mean number of exci-
tatory (inhibitory) synapses of each neuron, Γi is an external perturbation so
that the neuron is randomly chosen and the chosen one receives an input with
a constant intensity γ, NExc is the number of excitatory neurons, and NInhib

is the number of inhibitory neurons. The excitatory (inhibitory)neurons are
connected with reverse potential V Exc

r = 20mV (V Inhib
r = −75mV), and the
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postsynaptic potential si is given by [44]

dsi
dt

=
5(1− si)

1 + exp(−Vi+3
8 )
− si. (12)

One measure that we adopt to quantify synchronous behaviour is the Ku-
ramoto order parameter that reads as [45]

Z(t) = R(t)eiψ(t) =
1

N

N∑
j=1

eiθj(t), (13)

where R(t) is the amplitude, ψ(t) is the angle of a centroid phase vector, and

θj(t) = 2π
t− tj,m

tj,m+1 − tj,m
(14)

is the phase of the neuron j, with tj,m < t < tj,m+1. The time tj,m denotes
the m-th spike of the neuron j. In a complete synchronised state the network
exhibits R = 1. For a strongly synchronised regime it has R ≥ 0.9, whereas a
weakly synchronous behaviour occurs for R < 0.9.

Figure 5(a) and (b) exhibit the raster plots of spike onsets for a random
network with 100 Hodgkin-Huxley neurons coupled by means of excitatory
synapses, mean degree K = 10, γ = 0, excitatory coupling intensity εij = 0.1
and εij = 0.5, respectively. In Figure 5(a), the neuronal network presents weakly
synchronous behaviour, while in Figure 5(b) the network shows strongly syn-
chronised spiking (though not complete synchronisation). Figure 5(c) shows the
order parameter R(t) for εij = 0.1 (black line) and εij = 0.5 (red line). By in-
creasing the coupling strength, from 0.1 to 0.5, the neuronal network asymptotes
to a synchronous behaviour.

3 Spike-Timing Dependent Plasticity

Work carried to try to unveil the role of synaptic plasticity in learning and
memory has the Hebb rule as a basis. Hebb rule is a postulate proposed in
1949 by Hebb in his book “The organization of behavior” [33]. He conjectured
that the synapse from presynaptic to postsynaptic neuron should be maximally
strengthened if the input from presynaptic neuron contributes to the firing of
postsynaptic. In this way, a long-term potentiation is caused when there is
coincident spiking of presynaptic and postsynaptic neurons [46].

In the synaptic plasticity, synapse weakening and strengthening are imple-
mented by long-term depression (LTD) and potentiation (LTP), respectively
[47]. LTP refers to a long-lasting increase in excitatory postsynaptic potential,
while LTD decreases the efficacy of a synapse. Bliss et al. [48] suggested that
low-frequency firing drives LTD, whereas LTP is driven by presynaptic firing
of the high-frequency. Synaptic plasticity alteration as a function of the rela-
tive timing of presynaptic and postsynaptic firing was named as spike timing-
dependent plasticity (STDP) by Song et al. [49]. STDP has been observed in
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Figure 5: (Colour online) Raster plots of spike onsets for a random network
with 100 Hodgkin-Huxley neurons, γ = 0, (a) εij = 0.1 and (b) εij = 0.5. In (c)
the time evolution of the Kuramoto order parameter for εij = 0.1 (black line)
and εij = 0.5 (red line).
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brain regions, and relevant studies on it were carried out by Gerstner [50] and
Markram et al. [51, 52]. Frégnac et al. [53] provided the existence of STDP
in cat visual cortex in vivo. Moreover, research on STDP has focused in the
hippocampus and cortex [54].

We have studied the changes in synchronous and desynchronous states caused
in a Hodgkin-Huxley network due to excitatory (eSTDP), as well as inhibitory
(iSTDP) spike timing-dependent plasticity. We have considered the plasticity
as a function of the difference of postsynaptic and presynaptic excitatory and
inhibitory firing according to Refs. [37] and [38], respectively.

The excitatory eSTDP is given by

∆εij =

{
A1 exp(−∆tij/τ1) , ∆tij ≥ 0
−A2 exp(∆tij/τ2) , ∆tij < 0

, (15)

where
∆tij = ti − tj = tpos − tpre, (16)

tpos is the spike time of the postsynaptic neuron, and tpre is the spike time of
the presynaptic one.

Figure 6(a) shows the result obtained from Eq. (15) for A1 = 1.0, A2 = 0.5,
τ1 = 1.8ms, and τ2 = 6.0ms. The initial synaptic weights εij are normally dis-
tributed with mean and standard deviation equal to 0.25 and 0.02, respectively
(0 ≤ εij ≤ 0.5). They are updated according to Eq. (15), where

εij → εij + 10−3∆εij . (17)

The green dashed line denotes the intersection between the absolute values of the
depression (black line) and potentiation (red line) curves. For ∆tExcc < 1.8ms
the potentiation is larger than the depression. In addition, the red line denotes
the absolute value of the coupling strength (|∆εij |).

In the inhibitory iSTDP synapses, the coupling strength σij is adjusted
according to the equation

∆σij =
g0

gnorm
αβ |∆tij |∆tijβ−1 exp(−α|∆tij |), (18)

where g0 is the scaling factor accounting for the amount of change in inhibitory
conductance induced by the synaptic plasticity rule, and gnorm = ββ exp(−β)
is the normalising constant. In Figure 6(b) we see the result obtained from
Eq. (18) for g0 = 0.02, β = 10.0, α = 0.94 if ∆tij > 0, and for α = 1.1 if
∆tij < 0. As a result, ∆σij > 0 for ∆tij > 0, and ∆σij < 0 for ∆tij < 0.
The initial inhibitory synaptic weights σij are normally distributed with mean
and standard deviation equal to σ = cε (1 ≤ c ≤ 3) and 0.02, respectively
(0 ≤ σij ≤ 2cε). The coupling strengths are updated according to Eq. (18),
where

σij → σij + 10−3∆σij . (19)

The updates for εij and σij are applied to the last postsynaptic spike. For
∆tInhibc < 9.8ms the depression is larger than the potentiation.
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4 Influence of the Synaptic Plasticity on the Net-
work Topology

4.1 Without External Perturbation

About 20% of the synapses in the brain have inhibitory characteristics [55]. We
consider that the intensities of both excitatory and inhibitory synapses are mod-
ifiable over time by a plasticity rule. We use a network of 200 Hodgkin-Huxley
neurons with Ii normally distributed in the interval [9.0-10.0]. Ei represents
the i-th excitatory neurons with sub-index i in the interval [1-160] and Ii rep-
resents the i-th inhibitory neuron with the sub-index i in [161-200]. In all the
simulations, we consider a total time interval of 2000s.
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Figure 7: Intensity of the final coupling for initial couplings with σ
ε = 1 and

γ = 0, (a) excitatory and (b) inhibitory synapses. The coupling matrix has a
triangular shape.

When the initial intensity of the inhibitory synapses is small (σε ≈ 1), we
show that the potentiation occurs in both kinds of synapses and the final cou-
pling matrix exhibits a triangular shape, as seen in Fig. 7. In the excitatory
synapses a reinforcement is observed from the neurons of greater to smaller fre-
quency (Fig. 7(a)), whereas in the inhibitory synapses, the potentiation occurs
from the neurons of smaller to greater frequency (Fig. 7(b)). Figure 7(a) points
out that presynaptic excitatory neurons that are more likely to strongly con-
nect to a large number of postsynaptic excitatory neurons are also more likely
to strongly connect to postsynaptic inhibitory neurons. Similarly, Figure 7(b)
points out that presynaptic inhibitory neurons that are more likely to strongly
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connect to a large number of postsynaptic inhibitory neurons are also more
likely to strongly connect to postsynaptic excitatory neurons. This reveal a rich
club phenomenon in the neural plasticity, where the neurons with larger de-
grees to its own ”club” (either the excitatory or the inhibitory community) tend
to be also more connected to the other ”club”. The rich-club phenomenon is
known to exist in the topological organisation of the brain [56] and was recently
hypothetised to be an effect of Hebbian learning mechanisms in Ref. [57].

In Fig. 8 it is exhibited the value of the excitatory (ε̄) and the inhibitory
(σ̄) mean coupling as a function of σ

ε . A small variability around the mean
values of the excitatory and inhibitory couplings is observed for small values
of σ

ε . However, increasing the inhibitory synapse implies in an increase in the
variability around both mean values, as indicated by the standard deviation
bars. This fact becomes notable when the initial intensity of the inhibitory
synapses is greater than σ

ε = 1.5. As a result, the inhibitory synapses act
more intensely on the neuronal network dynamics, and a different asymptotic
behaviour can be observed. Figures 9 and 10, at t = 2000s, show the coupling
matrices with the values of the excitatory and inhibitory couplings for an initial
value given by σ

ε = 2.7. In some simulations, the synaptic connections tend to
zero, namely, the network becomes disconnected (Fig. 9). In other simulations,
disconnected blocks are observed, as shown in Fig. 10. Nevertheless, for the
same value of the σ

ε parameter, the system can exhibit an asymptotic behaviour
similar to the case when initial coupling have σ

ε = 1.0 (Fig.7).

1 2 3
σ__

ε

0 0

0.25 0.25

0.5 0.5

ε
ij

σ
ij

Figure 8: Mean excitatory (black circles) and inhibitory (red triangles) couplings
as a function of σ

ε , where we consider simulations without external perturba-
tions. The bars indicate the standard deviation calculated for the mean value
from 30 simulations.

The behaviour observed in the synapse intensity can be explained in terms of
the average time between spikes. For that, we defined the mean time between
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spikes among neurons having both excitatory and inhibitory synapses by the
equations

∆̄t
Exc
ij =

1

τ

∑
i6=j

|tExc
pre − tpos|, (20)

∆̄t
Inhib
ij =

1

τ

∑
i6=j

|tInhibpre − tpos|. (21)

In Figure 11, ∆̄t
Exc
ij and ∆̄t

Inhib
ij values are show for the extreme case of initial

couplings given by σ
ε = 2.7 (black lines) and initial coupling given by σ

ε = 1.0
(red lines). For the case where the neuronal network becomes disconnected
(black lines), the average time values that are more frequently are found in the

depression region of the eSTDP and iSTDP models (∆̄t
Exc
ij > ∆tExc

c = 1.8ms

and ∆̄t
Inhib
ij < ∆tInhibc = 9.8ms). However, in simulations where a neuronal

network becomes strongly connected, a higher concentration of the average
time values in the potentiation regions of the plasticity models is observed

(∆̄t
Exc
ij < ∆tExc

c = 1.8ms and ∆̄t
Inhib
ij > ∆tInhibc = 9.8ms). So, potentiation

happening for high frequencies excitatory synapses and lower frequencies in-
hibitory synapses promote the strengthening of synaptic connectivity and the
rich-club phenomenon.

4.2 With External Perturbation

An external perturbation combined with eSTDP and iSTDP can provide a pos-
itive contribution to the excitatory and inhibitory mean coupling. In this case,
we observe that when the influence of the inhibitory is smaller than the ex-
citatory synapse (σε < 2.3), the potentiation occurs in approximately all the
synapses (excitatory and inhibitory) (Fig. 12). Then, the network remains
strongly connected, with a topology close to all-to-all. Almost all the intensities
of the connections converge to high values (ε̄ij ≥ 0.4 and σ̄ij ≈ 0.5). Only a few
connections, where the presynaptic neurons have lower frequency, tend to zero.

For larger σ
ε values, we also observe that the inhibitory connections become

strengthened. The inhibitory mean coupling converges to the largest value al-
lowed in the interval when σ

ε > 2.3. However, for this same value of σ
ε , there

is a trend of decreasing intensity of excitatory synapses (ε̄ij ≈ 0). The neurons
remain connected through the inhibitory synapses (Fig. 13).

An abrupt transition in the mean excitatory coupling values can also be seen
for σ

ε ≈ 2.3. For values slightly less than 2.3 (σε = 2.2), both excitatory and
inhibitory synapses undergo an increase in their intensities, whereas, for values
of σ

ε larger than this threshold, the inhibitory synapses undergo potentiation
while the excitatory synapses tend to zero (Fig. 14).

The time evolution of both excitatory and inhibitory synapses depend on the
time interval between spikes of presynaptic and postsynaptic neurons. Figure
15 shows the frequency between the mean times among presynaptic and post-
synaptic spikes. This figure exhibits the two extreme cases, when the neuronal
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Figure 11: Probability distribution frequency of the average firing times for
σ
ε = 2.7, γ = 0, (a) excitatory and (b) inhibitory synapses. For the triangular
shape and unidirectionally connected coupling matrix (Fig. 7), the ∆̄tij values
are more frequently found in the potentiation regions (red curves in (a) and (b)).
The black lines in (a) and (b) illustrate the completely opposite case observed
in Fig. 9. The values of ∆tc were obtained in Fig. 6.
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Figure 12: Perturbed intensity of the final coupling for σ
ε = 2.2, γ = 10µA/cm2,

(a) excitatory and (b) inhibitory synapses. Almost all connections in the neu-
ronal networks are reinforced.
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Figure 13: Perturbed intensity of the final coupling for for initial coupling given
by σ

ε = 2.4, γ = 10µA/cm2, (a) excitatory and (b) inhibitory synapses. All the
excitatory connections in the neuronal networks disappear, but the inhibitory
synapses are enhanced.
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Figure 14: Perturbed mean excitatory (black circles) and inhibitory (red trian-
gles) couplings as a function of σ

ε , where we consider γ = 10µA/cm2.

network converges to a strongly connected global topology or to a network with
only inhibitory synapses, for σ

ε = 2.3. When the increase of the weights occurs
in almost all the synapses, the ∆̄tij values appear more frequently in the re-

gions of potentiation of both models of plasticity (∆̄t
Exc
ij < ∆tExc

c = 1.8ms and

∆̄t
Inhib
ij > ∆tInhibc = 9.8ms). However, when only strong inhibitory synapses

are observed in the final neuronal network, it is verified that ∆̄tij values in
excitatory synapses are more frequently found in the depression region of the

eSTDP model (∆̄t
Exc
ij > ∆tExc

c = 1.8ms). In this case, the inhibitory synapses

are reinforced due to the fact that the ∆̄tij values are more frequently found in

the region of potentiation of the iSTDP model (∆tInhibij > ∆tInhibc = 9.8ms).
Therefore, noise can always enhance inhibitory synapses in the plastic brain.

Excitatory synapses can also be enhanced if the initial network has sufficiently
large excitatory synaptic strength (no less than about half the value of the
inhibitory synapses strength).

5 Influence of the Synaptic Plasticity on the Syn-
chronous Behaviour

5.1 Without External Perturbation

The change in the behaviour of the synapse intensity between presynaptic and
postsynaptic neurons due to plasticity is reflected on the spike synchronisation.
In Fig. 16 we observe different behaviours in relation to synchronisation, where
we calculate the order parameter. Figure 16 exhibits the behaviour of the order
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Figure 15: Probability distribution function of the average firing times for σ
ε =

2.3, γ = 10µA/cm2, (a) excitatory and (b) inhibitory synapses. For all-to-all
topology (Fig 12, the ∆̄tij vales are more frequently found in the potentiation
regions (red curves in (a) and (b)). The black lines in (a) and (b) illustrate the
completely opposite case observed in Fig. 13. The values of ∆tc were obtained
from Fig. 6.
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parameter as a function of time for simulations without external perturbations,
discarding a large transient time. The neuronal network evolves to the strong
synchronised state with R(t) > 0.9 (black line) if the initial ratio of intensities
of the inhibitory synapses are weak (σε ≈ 1.0), this inhibition and excitation
have similar initial strengths. However, with the increase of the inhibitory
synapses intensities σ

ε > 1.5, different final states are observed in relation to the
synchronisation (red, green and blue lines).

1999 2000

t (s)

0

0.5

1

R

Figure 16: Order parameter for σ
ε = 1.0 (black line) and σ

ε = 2.7 (red, blue and
green lines).

5.2 With External Perturbation

We consider an external perturbation (γ = 10µA/cm2) when the initial in-
hibitory synapses intensity ratio are small (σε ≈ 1.0). In this case, the network
has a synchronous behaviour (R̄(t) > 0.9), as shown in Fig. 17 (black line).
When inhibitory synapses intensities have a great influence on the network dy-
namics (σε ≈ 3.0), neurons tend to exhibit desynchronised firing behaviour with
R̄(t) ≈ 0.1 (red line). However, when σ

ε ≈ 2.3, we observe two possible asymp-
totic values for the order parameter. In some simulations a strongly synchro-
nised behaviour appears, while in others it is observed a weakly synchronous
evolution of spikes between the neurons in the network (green and blue lines).

6 Conclusions

Neuronal networks based on the Hodgkin-Huxley model have been used to sim-
ulate coupled spiking neurons. The Hodgkin-Huxley neuron is a coupled set
of ordinary nonlinear differential equations that describes the ionic basis of
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Figure 17: Order parameter for γ = 10µA/cm2, σ
ε = 1.0 (black line), σ

ε = 3.0
(red line) and σ

ε = 2.3 (blue and green lines).

the membrane potential. In this review, we considered a Hodgkin-Huxley net-
work with synaptic plasticity (STDP). The STDP is a process that adjusts the
strength of the synapses in the brain according to time interval between presy-
naptic and postsynaptic spikes.

We studied the effects of STDP on the topology and spike synchronisation.
Regarding the final topology and depending on the balance between inhibitory
and excitatory couplings, the network can evolve not only to different coupling
strength configurations, but also to different connectivities.

When the strength of the inhibitory connections is of the same order of
that of the excitatory connections, the final topology in the plastic brain ex-
hibits the rich-club phenomenon, where neurons that have high degree connec-
tivity towards neurons of the same presynaptical group (either excitatory of
inhibitory) become strongly connected to neurons of the other postsynaptical
group, i.e., a presynaptical neuron that is highly connected to presynaptical
excitatory neurons (or inhibitory ones) becomes strongly connected to postsy-
naptical inhibitory (or excitatory ones).

When the strength of the synapses becomes reasonably larger than the
strength of the excitatory connections, then the final topology has all the fea-
tures of a complex topology, where neurons only sparsely connect to other neu-
rons with a non-trivial topology.

When noise is introduced in the neural network, we observe that inhibitory
synapses are always enhanced in the plastic brain. Excitatory synapses can
also be enhanced if the initial network has sufficiently large excitatory synaptic
strength (no less than about half the value of the inhibitory synapsis strength).

The changes in the synapse strength and the connectivities due to STDP
produce significant alterations in the synchronous states of the neuronal net-
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work. We observe that the synchronous states depend on the balance between
the excitatory and inhibitory intensities. We also find coexistence of strongly
synchronous and weakly synchronous behaviours.
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