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Summary14

1. Microbial communities perform highly dynamic and complex ecosystem15

functions that impact plants, animals and humans. Here we present an16

R-package, microPop, which is a dynamic model based on a functional17

representation of different microbiota.18

2. microPop simulates the deterministic dynamics and interactions of mi-19

crobial populations by solving a system of ordinary differential equations20
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which are constructed automatically based on a description of the system21

to be simulated.22

3. Data frames for a number of microbial functional groups and default func-23

tions for rates of microbial growth, resource uptake, metabolite production24

are provided but can be modified or replaced by the user.25

4. microPop can simulate growth in a single compartment (e.g. bio-reactor)26

or ‘compartments’ in series (e.g. human colon) or in a simple 1-d appli-27

cation (e.g. phytoplankton in a water column). Furthermore, a microbial28

functional group may contain multiple strains in order to study adaptation29

and diversity or parameter uncertainty. Also simple interactions between30

viruses (bacteriophages) and bacteria can be included in microPop.31

1 Introduction32

Microbial communities play a crucial role in bio-geochemical cycling and per-33

form ecosystem functions important to plants, animals and humans. Building34

predictive models that link microbial community composition to function is a35

key emerging challenge in microbial ecology (Widder et al., 2016). Here we36

present microPop, an R package which is a mechanistic model using ordinary37

differential equations (ODEs) to predict the dynamics and interactions of micro-38

bial functional groups. The general equations for rates of change of a microbial39

functional group (MFG), with quantity X, growing on a resource, with quantity40

R, at time, t, can be expressed as,41

dX(t)

dt
= vinX (t)Xin(t) +G(t)X(t)− voutX (t)X(t) (1)

dR(t)

dt
= vinR (t)Rin(t)−

G(t)X(t)

Y
− voutR (t)R(t) (2)

where vini and vouti are the inflow and outflow to the system (units of inverse42

time) for microbes (i = X) and resources (i = R), and Xin(t) and Rin(t)43

are the incoming quantities of microbes and resources respectively. G(t) is the44
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specific growth rate of microbes on the resource (units of inverse time) and can45

be expressed in a variety of ways (see Appendix B in supp. info.). The second46

term on the right hand side of Eq. 2 is the uptake rate of the resource due to47

microbial growth where Y is the yield i.e. the quantity of microbial growth per48

unit of resource taken up.49

When there are multiple resources and several microbial groups with multiple50

strains then Eqs. 1 and 2 expand into a large system with multiple metabolic51

pathways. This is where microPop is a useful tool. Rather than coding these52

equations, the user simply gives a description of the system (using 2 data frames,53

‘resourceSysInfo’ and ‘microbeSysInfo’) and a data frame for each MFG and54

these equations are constructed and solved by microPopModel (ODE solvers55

are provided by the deSolve package (Soetaert et al., 2010)).56

Data frames for a number of MFGs found in the human large intestine (e.g.57

Bacteroides, Acetogens, Methanogens, Butyrate Producers, Lactate Producers58

and so on) as described by Kettle et al. (2015) and the rumen (by Munoz-59

Tamayo et al. (2016)) are included in the package (Table 1). These two sets of60

microbial groups are not fundamentally different but rather a different approach61

has been used to subdivide the microbiota. If the user simply wishes to use these62

MFGs then microPop can be used ‘off the shelf’, however, any number of other63

MFGs may also be added by the user by defining a data frame in the correct64

format.65

Since many of the required parameter values for the MFGs are not well66

known it should be noted that the parameter values stated in the included67

MFG data frames will almost certainly change with increasing knowledge and68

in some cases can be interpreted as simply a ‘best guess’. One way of coping69

with this parameter uncertainty is addressed in our previous work (Kettle et al.,70

2015) (and included in microPop) where we assigned multiple strains to each71

MFG with stochastically-generated parameter values. The strains will compete72

with each other; some will flourish, some will die out, and by the time a steady73

state is reached a viable microbial community for the given environment will74
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have been created. By changing the seed for the random number generator in75

micropopModel, multiple viable communities can be created and ensemble76

statistics can be used to define the solution. Moreover, if only one strain per77

group is specified the user has a choice to either run the model with the param-78

eter values specified in the data frame or to randomly generate its parameters.79

This might be useful, for example, for generating model output to represent80

samples from a number of volunteers.81

Since microbial growth, resource uptake and metabolite production may be82

modelled in a number of ways, the choices behind microPop’s default growth and83

uptake rate functions are explained fully in the Appendix. All of these functions84

are contained in a list called ‘rateFuncs’ (Table 2) and may be redefined by85

the user (see Appendix A in supp. info.), allowing microPop to be applied86

to a large number of different microbial ecosystems. Although very complex87

systems with multiple microbial groups and strains may be slow to run in R,88

we hope that the transparency and flexibility of the code and its accessibility89

will enable researchers to simulate fairly complex systems without taking on a90

large computing project. Section 2 gives some examples of what microPopcan91

do, section 3 gives a brief description of how to use microPop; these sections92

can be read in either order depending on your preference.93

2 Example Applications94

Here we give a flavour of how microPop can be used to simulate a wide range95

of microbial systems. For more information on these examples please refer to96

the vignette included with the package (vignette(‘microPop’) in R). The97

scripts for all of these examples are included in the microPop package1 and are98

intended to serve as a template for users when defining their own problems.99

They are also included in the supporting information file ‘Scripts’. The name100

of the appropriate script is given in square brackets in each example heading101

1The location of these files can be found by ‘system.file("DemoFiles/ExampleFileName.R",
package = "microPop"). It is also printed to screen when the script is run.’
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and they can be run in R (after library(microPop)) e.g. using runMicroP-102

opExample(‘human1’) (for the human1.R script (Section 2.1.1)). Most of103

the plots shown in this paper are automatically generated by microPop and can104

be tweaked using the ‘plotOptions’ input list in microPopModel.105

2.1 Modelling human gut microbiota106

The microbial ecosystem in the human colon has been linked to numerous is-107

sues in human health. For example, its two important functions are harvesting108

extra energy from our food, thus warranting the name the “forgotten organ”109

(O’Hara and Shanahan, 2006), and aiding the development of our immune sys-110

tem (Chow et al., 2010). The following four examples are based on the model111

described by Kettle et al. (2015) which uses 10 different microbial groups to rep-112

resent the microbial community in the human colon (Table 1). Here we use just113

three of these – Bacteroides, NoButyStarchDeg (starch degraders that do not114

produce butyrate) and Acetogens – to demonstrate some features of microPop.115

The information describing the inflows and outflows of each state variable for116

these scenarios is contained in the data frames ‘resourceSysInfoHuman’ and117

‘microbeSysInfoHuman’ which are included with the package and are based on118

the system described by Kettle et al. (2015) and Walker et al. (2005). To look at119

these simply type ‘resourceSysInfoHuman’ or ‘microbeSysInfoHuman’ at the120

R prompt. Since these contain information on all 10 groups used in the full121

simulation by Kettle et al. (2015) the user can also use these when simulating122

the behaviour of any/all of the 10 groups.123

2.1.1 Microbial growth in a constant environment [human1.R]124

This is a simple example to show how microPopModel can be run using most125

of the default settings and intrinsic dataframes. In this scenario there is no limit126

on growth due to pH and the Bacteroides group dominate the system (Fig. 1).127
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2.1.2 How does temporal pH change affect microbial growth? [human2.R]128

In this scenario, pH changes from 5.5 to 6.5 halfway through the simulation. This129

is implemented by altering rateFuncs$pHFunc and setting input argument130

‘pHLimit=TRUE’. Due to their preferred pH ranges (determined by ‘pHcorners’131

in the data frames for each group) NoButyStarchDeg now dominate the first132

half of the simulation, however when the pH rises to 6.5 Bacteroides regain133

dominance (Fig. 2).134

2.1.3 How does spatial pH change affect microbial growth? [human3.R]135

Here we approximate the pH change in sections of the human colon by defin-136

ing the system as two compartments where the first one (at pH 5.5) flows into137

the second (at pH 6.0). To simulate two compartments we add a loop to call138

microPopModel twice. The first call simulates growth in the first compart-139

ment over the whole of the simulation time. The results from this are then140

used to provide the entry rates to the second compartment (using the function141

makeInputFromSoln) in the second microPopModel call. The results (Fig.142

3) show that NoButyStarchDeg dominate in first compartment (top row) and143

Bacteroides begin dominating the second compartment but this changes due to144

large inflow of NoButyStarchDeg from the previous compartment.145

2.1.4 How does microbial diversity affect response to pH? [human4.R]146

Here we use the ‘human2’ example, where pH changes from 5.5 to 6.5 halfway147

through the simulation, but include microbial diversity by assigning 5 strains148

to each microbial group (via input argument, ‘numStrains’). We assume that149

the strains within a microbial group have the same metabolic pathways i.e.150

those specified in the group data frame, but diversity is incoporated by ran-151

domly varying some of their growth parameters (based on Kettle et al. (2015)).152

The extent of the variation, the parameters which are to be randomised and153

whether trade-offs are required are all controlled via the ‘strainOptions’ list.154

Moreover, the user may also specify the parameter values for individual strains155
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using ‘paramsSpecified’ and ‘paramDataName’ also in this list (note, not all156

parameter values need to be specified - those that are specified will simply over-157

write the randomly generated values). Fig. 4 a and b show the results for each158

strain.159

Since there are multiple strains per group it is possible to examine how the160

mean group trait adapts over time using a biomass-weighted average at each161

time step:162

x(t) =

∑n

i ximi(t)∑n

i mi(t)
(3)

(Norberg et al., 2001) where x(t) is the average group trait at time t, xi is the163

trait value for strain i and mi(t) is the mass of strain i at time t. For example164

when pH changes, strains which prefer that new pH will flourish whilst others165

will be washed out. The centre of mass of the trapezoidal pH limitation can be166

computed using the function pHcentreOfMass and we define this one param-167

eter as the pH trait. We can compute and plot the change in time of any of the168

stochastically-varying parameters/traits using the function plotTraitChange169

(e.g. Fig. 4 c shows the variation of the pH trait over time for each microbial170

group). For more details on phenotype adaptation please see Kettle et al. (2015)171

or Norberg et al. (2001).172

2.2 Methane production from rumen microbiota [rumen.R]173

Methane production from fermentation of feed by ruminant livestock contributes174

significantly to greenhouse gas production by agriculture (Cottle et al., 2011).175

Here we use microPop to model fermentation in the rumen, based on a simplified176

version of the model by Munoz-Tamayo et al. (2016), to provide a basic demon-177

stration of how a mechanistic model may potentially aid in the design of diet178

strageties which reduce greenhouse emissions. The construction of this model is179

significantly different to the human colon model in Section 2.1 in several ways.180

Firstly, and most importantly, there are no substitutable resource; all resources181

are essential (see Appendix B.1 for an explanation of the different types of re-182
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source) and microbial growth is included explicitly in the group stoichiometries183

(the groups involved are sugar-utilisers (Xsu), amino-acid utilisers (Xaa) and184

hydrogen utilisers (Xh2); included data frames ‘Xh2’, ‘Xsu’ and ‘Xaa’). Secondly,185

hydrolysis is treated as a separate process such that polymer substrates must186

be hydrolised to soluble sugars and amino acids before they are available for187

microbial uptake. Thirdly, dead microbial cells are recycled into polymers.188

For demonstration purposes we have simplifed the original model by Munoz-189

Tamayo et al. (2016) as follows: we consider only constituents dissolved in the190

rumen fluid (thereby removing gas transfer from the fluid fluid to the rumen head191

space), we have removed carbon chemistry (we only consider dissolved inorganic192

carbon) and we have removed the calculation of pH from acid-base reactions.193

Also, we use units of mass rather than moles. Fig. 5 shows a schematic diagram194

of the system and notation of state variables (figure caption) 2.195

Since polymers are not used directly by any of the microbial groups (and are196

therefore not mentioned in the MFG data frames) they will not be automati-197

cally added as state variables by microPopModel. Thus to include hydrolysis198

we add Znsc, Zndf and Zpro to the microPop data frame for Xsu. We then199

explicitly state the parameters needed for hydrolysis and recycling of dead cells200

into polymers as these are not included in the input files. Furthermore, re-201

movalRateFunc is redefined to include the reduction rate for polymers and202

the entryRateFunc includes the equivalent increase for soluble sugars (Ssu)203

and soluble amino acids (Saa). Similarly the death of microbial cells is included204

in removalRateFunc and the increase in polymers from the dead cells is in-205

cluded in entryRateFunc.206

Using the same settings as Munoz-Tamayo et al. (2016), we investigate how207

increasing the initial concentrations of the feed polymers, Znsc, Zndf and Zpro,208

affects the concentration of methane in the rumen (Sch4). Thus we set the initial209

polymer concentrations at 1 g/l and then increase each one in turn to 20 g/l210

(Fig. 6). Increasing Zndf and Zpro leads to increasing methane concentrations211

2microPop code for the original (unsimplified model) is available on request for academic
purposes.
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as expected, however, the second row in Fig. 6 shows that, somewhat counter-212

intuitively, the amount of methane produced decreases as initial concentrations213

of Znsc increases over a threshold between 15-20 g/l. SIC (soluble inorganic car-214

bon) and Sh2
(soluble hydrogen, not shown) both increase with Znsc, therefore215

the cause of this appears to be the decrease in ammonia (Snh3) (third column216

in Fig. 6) which rapidly falls to zero for high initial values of Znsc. This is217

because Znsc is hyrolysed at a much faster rate (0.2 h−1) than Zndf (0.05 h−1)218

so increased Znsc leads to increased Ssu and rapid growth of Xsu and hence219

rapid uptake of Snh3. The depletion of Snh3 inhibits the growth of Xh2 and220

thus mitigates methane production in this simple model example.221

2.3 At what depth do phytoplankton grow best? [phyto.R]222

Here we show how microPop can be used in a simple 1D application to in-223

vestigate the depth at which phytoplankton blooms occur, given their growth224

relies on nutrients welling up from below and sun light entering from above.225

By simulating the competing growth of three different (theoretical) microbial226

groups we show how the groups form a vertical assemblage based on their dif-227

ferent requirements for light and nutrient (loosely based on work by Kettle and228

Merchant (2008)). The light level at depth, z (m), is given by,229

exp(−kLz), (4)

where kL is the light attenuation coefficient (we use kL=0.5 m−1). Nutrient230

upwelling is modelled by assuming that the inflow of nutrient, IN (g l−1d−1),231

increases with depth such that232

IN = vNz (5)

where vN is the gradient of inflow rate of nutrient with depth (g l−1d−1m−1).233

To define this system in microPop we consider nutrient to be the only re-234
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source since light is not depleted through microbial use and therefore does not235

need to be included as a state variable. Nutrient upwelling is incorporated via236

entryRateFunc and light limitation via extraGrowthLimFunc (the output237

from this function is used to scale the maximum growth rate in a similar way to238

pHLimFunc). There is no wash out rate for resources but we set a small wash239

out rate for the phytoplankton of 0.005 d−1 (see ‘systemInfoMicrobesPhyto.csv’)240

to represent death rate.241

We divide a depth of 20 m into 1 m layers and run microPop for each layer242

for a simulation time of 3 months. The simulation begins with phytoplankton243

spread evenly through the depth of the water column (e.g. this may occur244

after vertical mixing caused by high winds). Thereafter there is no mixing245

(calm conditions) and the phytoplankton are stationary in the water but grow246

at different rates according to the light and nutrient levels at that particular247

depth. In Case 1 (when running runMicroPopExample(‘phyto’) the user248

will be prompted to enter a case number) we simulate the growth of just one249

phytoplankton group. Fig. 7a shows how the magnitude and depth of the bloom250

changes.251

In Case 2 we add in 2 more groups, all with the same starting concentration.252

The 3 groups have different requirements for nutrient and light as determined253

by their half saturation values for nutrient and light (KN and KL respectively).254

Fig. 7b shows how over time the groups occupy different levels in the water255

column.256

2.4 Bacteriophages and resistance [phages.R]257

Although not the main intended use of microPop, bacteriophages (viruses which258

attack bacteria) can be included in microPop in a simplistic way. In this exam-259

ple we consider 2 (theorectical) groups of bacteria (called Bacteria1 and Bac-260

teria2) and 2 bacteriophages called Virus1 and Virus2. Both bacteria have the261

same substrate (nutrient) and the same parameters with the only difference that262

Bacteria2 has a higher maximum growth rate than Bacteria1. Virus1 attacks263
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Bacteria1, and Virus2 attacks Bacteria2. The two viruses have the same pa-264

rameter values and differ only in their choice of host cell (bacterial group). We265

consider a simple system with a constant dilution rate of 0.1 d−1. All variables266

have a starting value of 1 and the only inflow is nutrient.267

In order to infect a host cell, the bacteriophage attaches itself to the bacterial268

cell wall and then injects its genetic material into the host cell, causing the host269

cell to eventually die and release a large number of new phage particles. To270

model this within microPop we make some simplifying assumptions. Firstly,271

since one phage attacks one bacterial cell, the ‘consumption’ rate does not follow272

a Monod Equation but it is more like a predator-prey model where the rate of273

change of the number of cells of the virus, V , due to viral attack on B bacterial274

cells is275

dV

dt
= αV B (6)

where α is the specific reproduction rate (number of new virus cells made from276

one viral cell per bacterial cell per day). Within microPop we put the max-277

GrowthRate of V1 on B1 equal to α and redefine growthLimFunc so the278

‘limitation’ is now simply B rather than the Monod equation (this is multiplied279

by V later in derivsDefault). The rate of change of the number of bacterial280

cells due to death by virus attack is281

dB

dt
= −

α

Y
V B (7)

where Y is the yield i.e. the number of new virus cells per bacterial cell (note282

α = Y b where b is the binding rate (units of V −1d−1)).283

We now consider bacterial mutations by incorporating mutation of Bacteria1284

to a resistant strain via entryRateFunc so that a fraction of the Bacteria1285

population is converted to a resistant group (‘resistantBacteria1’, BR
1
) per day286

(fB). Thus the rate of change of BR
1

due to mutation is287

dBR
1

dt
= fBB1 (8)
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and the loss rate from B1 is the negative of this (also included via entryRate-288

Func). This model is a very simplified version of that of Cairns et al. (2009)289

where we have removed the time delay and the infected stage.290

We run microPop for 4 different system scenarios (when running runMi-291

croPopExample(‘phages’) the user will be prompted to choose from case 1292

to 4); the results are shown in Fig. 8. To begin with we look at the system with-293

out viruses and see the two bacteria competing for nutrient, since Bacteria2 has294

the highest growth rate it dominates the system (case 1; Fig. 8a). We now add295

in Virus2 which attacks Bacteria2 allowing Bacteria1 to dominate the system296

causing Bacteria2, and hence Virus2, to die out (case 2; Fig. 8b). If we now297

add in Virus1, so that we have both bacterial groups and both viral groups, we298

see more complex dynamics emerge (case 3; Fig. 8c). In the fourth case we add299

in random mutations from Bacteria1 to resistantBacteria1 which is resistant to300

Virus1 and therefore survives at the expense of the other bacterial groups (case301

4; Fig. 8d).302

3 Running microPop303

As previously mentioned the main function in the package is microPopModel304

and this is used to run a simulation. The input arguments to this function are305

used to completely define the system and its output is a list containing two306

elements - one is the solution to the ODEs i.e. a matrix of the values of the307

state variables over time (‘solution’) and the other is a list containing all of308

the information used to produce the solution (‘parms’). In the simplest case,309

the user need only specify 4 of the input arguments to microPopModel (the310

others have defaults) these 4 are:311

• ‘microbeNames’ - a vector of the names of the microbial groups in your312

system, e.g. c(‘Bacteroides’,‘Methanogens’). Note that a data frame with313

the same name must be available for each group specified.314

• ‘times’ - a vector defining the time sequence at which output is required,315
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e.g. seq(0,10,0.1).316

• ‘resourceSysInfo’ - this is a data frame or the name of a csv file describ-317

ing the inflow, outflow, start values and molar masses of the substrates and318

products associated with the microbial groups specified in microbeNames.319

See help(resourceSysInfo) for details.320

• ‘microbeSysInfo’ - this is a data frame or the name of a csv file describing321

the inflow, outflow and start values of the microbial groups specified in322

microbeNames. See help(microbeSysInfo) for details.323

Fig. 9 shows this in detail using the example given in help(microPopModel).324

Details of all the input arguments can be found via the function help and in the325

vignette included with the package.326

Supporting Information327

• Appendix 1 Equations and information on ‘rateFuncs’.328

• Appendix 2 R Scripts for the Example Applications in section 2.329
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Table 1: Microbial functional groups (MFGs) included in microPop. The
first ten groups are described by Kettle et al. (2015), the last three are de-
scribed by Munoz-Tamayo et al. (2016). It should be noted that these two
sets of microbial groups are not fundamentally different but rather a differ-
ent approach has been used to subdivide the microbiota. To see these data
frames simply type in the group name at the R prompt. Users should be
aware that the parameter values given in these data frames will almost cer-
tainly change with increasing knowledge of gut microbiota and in some cases
are simply a ‘best guess’. The csv files for these groups can be found us-
ing ‘system.file(‘extdata/groupname.csv’,package=‘microPop’)’ where
‘groupname’ is any one of the entries in the first column below.

MFG (Kettle et al.,
2015)

Description Examples

Bacteroides Acetate-
propionate-
succinate group

Bacteroides spp.

NoButyStarchDeg Non-butyrate-
forming starch
degraders

Ruminococcaceae related to Ru-
minococcus bromii. Might also include
certain Lachnospiraceae.

NoButyFibreDeg Non-butyrate-
forming fibre
degraders

Ruminococcaceae related to Ru-
minococcus albus, Ruminococcus
flavefaciens. Might also include certain
Lachnospiraceae.

LactateProducers Lactate producers Actinobacteria, especially Bifidobac-
terium spp, Collinsella aerofaciens

ButyrateProducers1 Butyrate Producers Lachnospiraceae related to Eubac-
terium rectale, Roseburia spp.

ButyrateProducers2 Butyrate Producers Certain Ruminococcaceae, in particular
Faecalibacterium prausnitzii

PropionateProducers Propionate produc-
ers

Veillonellaceae e.g. Veillonella spp.,
Megasphaera elsdenii

ButyrateProducers3 Butyrate Producers Lachnospiraceae related to Eubac-
terium hallii, Anaerostipes spp.

Acetogens Acetate Producers Certain Lachnospiraceae, e.g. Blautia
hydrogenotrophica

Methanogens Methanogenic
archaea

Methanobrevibacter smithii

MFG (Munoz-
Tamayo et al.,
2016)

Description Examples

Xsu Sugar utilizers
Xaa Amino acid utilizers
Xh2 Hydrogen utilizers Methanobrevibacter smithii
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Table 2: Top section of table: Functions contained in the list rateFuncsDefault
(further details on these functions are included in the Appendix (supp. info.)).
Bottom section of table: other functions in microPop. To get help on the
inputs and outputs of these functions use help(functionName) in R using the
function names below.

Function name Description
entryRateFunc Rate of entry of each state variable to system at

time t

removalRateFunc Rate of exit of each state variable from system at
time t

pHFunc pH value at time t

pHLimFunc pH limit on growth (varies between 0 and 1 for a
given pH value)

extraGrowthLimFunc Another limit on growth (default value is 1 i.e. no
limit). This is included to allow the user to add in
any kind of growth limitation as its output is used
to scale the maxGrowthRate value)

growthLimFunc This scales the maximum growth value (value be-
tween 0 and 1)

combineGrowthLimFunc Combining growth on multiple resources
uptakeFunc Uptake of resource due to microbial growth
productionFunc Production of metabolites resulting from microbial

growth
combinePathsFunc Combining the results of growth on multiple

metabolic pathways
createDF Creates a data frame from a .csv file
derivsDefault Describes the ODEs; called by ode
getGroupName Returns the name of the group from the strain name
makeInflowFromSoln Returns the exit rate of each state variable (ma-

trix[time,variable])
microPopModel Simulates growth of microbial populations (main

function)
pHcentreOfMass Finds the mean pH weighted by the pH limitation
plotTraitChange Plots the average group trait over time (when there

are multiple strains per group)
runMicroPopExample Used to run the scripts for the examples described

in Section 2
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Figure 1: Human Colon Application (human1)
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Figure 2: Human Colon Application (human2) - pH changes from 5.5 to 6.5
halfway through the simulation.
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Figure 3: Human Colon Application (human3) - two compartments with differ-
ent pH. Top row: first compartment (pH 5.5), bottom row: second compartment
(pH 6.0).
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Figure 4: Human Colon Application (human4) - five strains per group. Note,
to plot the sum of the strains in each group set ‘plotOptions$sumOverStrains
= TRUE’). c) shows the mean value of the pH trait for each of the three groups
computed using Eq 3.

19



microPop: modelling microbial populations

Figure 5: The rumen system based on the model by Munoz-Tamayo et al.
(2016) consists of polymers (non-structural carbohydrates (Znsc), cell wall car-
bohydrates (Zndf ) and proteins (Zpro) which are hydrolised to the soluble com-
ponents: sugars (Ssu) and amino acids (Saa). The microbial groups are sugar-
utilisers (Xsu), amino-acid utilisers (Xaa) and hydrogen utilisers (Xh2). They
convert their respective substrates to short chain fatty acids, SCFA, (acetate,
butyrate and propionate), hydrogen (Sh2), ammonia (Snh3), inorganic carbon
(SIC) and methane (Sch4). Dead microbial cells are recycled to the polymer
compartments (arrows not shown).
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Figure 6: Methane concentration in the rumen for initial concentrations between
1 and 20 g/l (legend in centre column) of the feed polymers Znsc, Zndf and Zpro

(while one polymer concentration is changed the other two are held at 1 g/l).
Note change in scale for Snh3 for Zpro.
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Figure 7: a) Concentration of Phyto1 at 9 day intervals when it is the only
group present (KN=1e-6 g l−1, KL=0.8 light units). b) Concentration of all
three groups at monthly intervals with Phyto1 in black (KN=1e-6 g l−1, KL=0.8
light units), Phyto2 in red (KN=1e-4 g l−1, KL=0.4 light units) and Phyto3 in
green (KN=1e-2 g l−1, KL=0.2 light units).
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Figure 8: a) Case 1: Two bacterial groups compete for one substrate (Nutrient);
no viruses present. b) Case 2: A virus (Virus1) which attacks Bacteria1 is added
to the system. c) Case 3: As in b) but a virus (Virus2) which attacks Bacteria2
is also added to the system. d) Case 4: As in c) but Bacteria1 randomly mutates
into a group (at a rate fBB1(t) where fB = 0.001 d −1) which is identical to
Bacteria1 apart from it has resistance to Virus1.
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Figure 9: Schematic showing how to call microPopModel (black box) for the
example shown in help(microPopModel). See section 3 for more details. The
csv (comma separated values) files are shown in Libre office but can be created
in Microsoft Excel or any text editor. The automatically generated plots are
shown at the bottom. Note that here the group data frame (‘Archea’) is defined
but this is not necessary if the user wishes to use any of the group data frames
already included in the package (Table 1). Also note that this example uses the
default rate functions. For information on how to change these please look at
the Example Applications in Section 2 and the code in Scripts (supp. info.).
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