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Budding yeast Rif1 binds to replication origins and
protects DNA at blocked replication forks
Shin-ichiro Hiraga1,* , Chandre Monerawela1, Yuki Katou2, Sophie Shaw3 , Kate RM Clark1,

Katsuhiko Shirahige2 & Anne D Donaldson1,**

Abstract

Despite its evolutionarily conserved function in controlling DNA
replication, the chromosomal binding sites of the budding yeast
Rif1 protein are not well understood. Here, we analyse genome-
wide binding of budding yeast Rif1 by chromatin immunoprecipita-
tion, during G1 phase and in S phase with replication progressing
normally or blocked by hydroxyurea. Rif1 associates strongly with
telomeres through interaction with Rap1. By comparing genomic
binding of wild-type Rif1 and truncated Rif1 lacking the Rap1-
interaction domain, we identify hundreds of Rap1-dependent and
Rap1-independent chromosome interaction sites. Rif1 binds to
centromeres, highly transcribed genes and replication origins in a
Rap1-independent manner, associating with both early and late-
initiating origins. Interestingly, Rif1 also binds around activated
origins when replication progression is blocked by hydroxyurea,
suggesting association with blocked forks. Using nascent DNA
labelling and DNA combing techniques, we find that in cells
treated with hydroxyurea, yeast Rif1 stabilises recently synthesised
DNA. Our results indicate that, in addition to controlling DNA repli-
cation initiation, budding yeast Rif1 plays an ongoing role after
initiation and controls events at blocked replication forks.
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Introduction

Chromosomes are highly dynamic, and chromatin changes its struc-

tural composition during functional processes and at different cell

cycle stages. For example, replication or transcription fork passage

requires the disassembly then reassembly of nucleosomes. During

mitosis, chromatin is compacted and must withstand the physical

tension occurring during sister chromatid segregation. Additionally,

spontaneous and replication-associated damage to chromosomes

must be repaired in a timely way during the cell cycle. Failure or

incomplete execution of any of these processes can cause genome

instability.

Rif1 is an evolutionarily conserved protein involved in multiple

genome integrity pathways. Rif1 was originally identified in the

budding yeast Saccharomyces cerevisiae as a component of telomeric

chromatin that regulates telomere length [1,2]. Rif1 associates with

telomeres, and with the MAT locus and mating cassettes, mainly

through interaction with the transcription factor Rap1 [3]. Rap1

recognises a TG-rich motif present upstream of genes it regulates.

This recognition motif also occurs within the telomeric terminal TG

repeat sequences, and multiple copies of Rap1 bind telomeres [4].

While originally isolated for its role in binding Rap1 at telomeres,

Rif1 (Rap1-Interacting Factor 1) has recently been identified as an

important regulator of DNA replication initiation, in a function

conserved from yeast to human [5–11]. Despite replication control

being one of its conserved functions, it however proved difficult for

many years to demonstrate binding of Rif1 at replication origin sites.

Rif1 has been implicated in additional pathways of genome integ-

rity, in particular directing double-strand break repair pathway

choice [12–18], and suppressing or resolving mitotic chromosome

entanglements [19,20].

A critical step in replication initiation is executed by Dbf4-depen-

dent protein kinase (DDK), which promotes DNA replication initia-

tion by phosphorylating the MCM complex to activate it as the

replicative helicase. In DNA replication control, Rif1 counteracts the

function of DDK by directing Protein Phosphatase 1 (PP1) to dephos-

phorylate MCM proteins and oppose replication initiation. Notably,

this action of Rif1 as a substrate-targeting subunit for PP1 is evolu-

tionarily conserved, with Rif1 also controlling replication initiation

in mammalian cells [8–10,21–23]. Budding yeast Rif1 and PP1 bound

to the chromosome ends specify the late replication timing of origins

in the vicinity of telomeres [8,10,24–26]. However, in S. cerevisiae,

the importance of Rif1 for the replication timing programme at sites

other than telomeres appears to be fairly minor in an unimpeded S

phase [26]. Although its contribution to specification of the replica-

tion temporal programme occurs primarily at telomeres, budding

yeast Rif1 does nonetheless clearly affect initiation at numerous

replication origins genome-wide, since when available DDK is
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limited, deletion of RIF1 permits replication initiation to occur

throughout large tracts of the genome [9]. Also, when replication is

blocked by hydroxyurea (HU), additional replication origins show

initiation in a rif1Δ mutant when compared to wild type [11]. These

observations suggest that Rif1 does play a critical role in controlling

origin firing, especially under replication stress, even though the role

of S. cerevisiae Rif1 in normal replication timing control otherwise

appears largely limited to telomeric regions.

Our understanding of the effects of Rif1 in replication control

has been impeded by the fact that it has been difficult to detect Rif1

interacting directly with replication origins, even in S. cerevisiae

which has the best understood replication origin sites of any

eukaryote [27,28]. No high-resolution chromatin immunoprecipita-

tion (ChIP) analysis has been described for S. cerevisiae Rif1, and

until now, the available information describing chromosome associ-

ation of Rif1 in budding yeast has been limited to a few very speci-

fic sites, including the telomeres, the MAT locus, and mating type

cassettes—interactions all mediated mainly through interaction with

Rap1 [3]. One impediment to genome-wide analysis of Rif1 binding

has been the very strong preference displayed by Rif1 for these

specific, repeated chromosomal loci, which tended to obscure bind-

ing to other loci in microarray analyses of ChIP experiments. To

obtain a better understanding of Rif1 function in DNA replication

and genome maintenance, we examined the chromatin association

patterns of Rif1 by next-generation sequencing analysis of ChIP

samples (ChIP-Seq), which provides an improved dynamic range of

analysis compared to microarrays. As well as wild-type Rif1, we

examined a mutated version of Rif1 that lacks the Rap1-interaction

domain, to distinguish Rap1-dependent and Rap1-independent bind-

ing sites. Our results reveal Rif1 interaction with several new

classes of chromosome loci. We find clear association of Rif1 with

replication origins throughout the yeast genome. We additionally

detect Rif1 localised to various other types of genomic site, includ-

ing blocked replication forks, highly transcribed genes and centro-

meric sequences. These observations suggest potential new roles

for Rif1 in modulating chromosome transactions. Investigating in

particular the role of Rif1 at blocked replication forks, we find that

at forks whose progression is blocked by hydroxyurea treatment,

Rif1 is crucial to protect newly replicated DNA.

Results

The C-terminal portion of yeast Rif1 is dispensable for opposing
DDK in replication control

Rif1 associates with telomeric regions, consistent with its function

in controlling telomere length and replication timing near telomeres

[1,2,8,11,25]. Rif1 additionally binds the HML, HMR and MAT loci,

interacting with Rap1 at these sites as at telomeres [3,29]. However,

although it impacts on replication control more broadly, the associa-

tion of budding yeast Rif1 protein with other chromosomal loci has

not been reported. We suspected that its strong preference for

telomeric regions might have hindered the detection of Rif1 at non-

telomeric regions in previous microarray studies. Structural studies

revealed two domains within Rif1 that interact with Rap1: the Rap1-

binding motif (RBM) and a C-terminal domain (CTD; Fig 1A) [30].

To explore the behaviour and physiological functions of Rif1

independent of Rap1, we used a truncated version of Rif1 lacking

the RBM and CTD (Fig 1A) [10]. This C-terminally truncated RIF1

allele, rif1-ΔC594, retains the ability to control DNA replication by

counteracting DDK, since it represses growth of a cdc7-1 mutant

strain at 30°C, like wild-type RIF1+. A rif1Δ allele in contrast

permits growth of a cdc7-1 mutant at 30°C (Fig 1B), as previously

described. The repressive effect of rif1-ΔC594 on cdc7-1 growth is

consistent with previous observations that the C-terminal region of

Rif1 is dispensable for replication control [9,10]. We designate the

truncated protein Rif1-ΔC594.

ChIP-Seq analysis identifies Rif1 genomic binding site dependent
on Rap1

Since next-generation sequencing provides an increased dynamic

range compared to microarray-based methods, we investigated

whether ChIP-Seq analysis could reveal non-telomeric chromosome

association sites of Rif1. We also tested binding of Rif1-ΔC594, to

distinguish Rap1-dependent and Rap1-independent chromosome
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Figure 1. The C-terminus of yeast Rif1 is dispensable for control of DNA
replication.

A Structure of budding yeast Rif1 and C-terminally truncated mutant Rif1-
ΔC594. RBM, Rap1-binding motif; CTD, C-terminal domain.

B Rif1-ΔC594 retains function to control DNA replication. Growth of a cdc7-1
rif1-ΔC594 mutant was compared with growth of cdc7-1 RIF1 and cdc7-1
rif1Δ strains at 23°C (permissive temperature for cdc7-1 allele), 26°C (mild
restrictive temperature) and 30°C (strict restrictive temperature).
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association sites. Myc-tagged versions of Rif1 and Rif1-ΔC594 were

utilised to enable ChIP-Seq analysis of chromatin association. Bind-

ing was analysed during G1 phase (cells blocked with a-factor), 60
and 90 min after release from a-factor at 16°C, and in cells released

from a-factor into hydroxyurea (HU) to block replication fork

progression. As expected [3], full-length Rif1 showed strong binding

to telomeres (Fig 2A blue plots), as well as mating type cassettes

(Fig EV1A blue plots). Rif1-ΔC594, in contrast, showed greatly

reduced association with telomere and subtelomeric sequences

(Fig 2A red plots) and virtually no association with mating type loci

(Fig EV1A red plots). These effects on association with telomeres

and mating loci are as expected, since both modes of binding

depend to a large extent on interaction with Rap1.

As well as associating with telomeres, Rap1 regulates multiple

genes as a promoter-bound transcription factor. At these sites of

Rap1 transcriptional control, we detected binding of Rif1 dependent

on its C-terminal Rap1 interaction domain. For example, full-length

Rif1 bound the promoter regions of the Rap1-regulated genes PAU3

and MAM3 (Fig 2B, blue plots) [31–33]. In contrast, Rif1-ΔC594

protein did not bind these promoters (Fig 2B, red plots). Our results

therefore clearly demonstrate that Rif1-ΔC594 is defective for Rap1-

dependent association, both with telomeres and sites of Rap1-

mediated transcription regulation.

ChIP-Seq analysis identifies multiple Rap1-independent Rif1
genomic binding sites

In addition to the expected Rap1-dependent associations, we

observed that full-length Rif1 and Rif1-ΔC594 bind hundreds of

additional sites, with binding intensity often appearing higher for

the Rif1-ΔC594 protein.

Both full-length Rif1 and Rif1-ΔC594 associate with many DNA

replication origins (Figs 2A, and 3A and B), including both telom-

ere-proximal origins and origins distant from telomeres, as

discussed in more detail below.

Unexpectedly, we also found Rif1 and Rif1-ΔC594 association

with the coding regions of highly transcribed genes, for example

ACT1, RPL22B and HAC1 genes as shown in Fig 2A, and tRNA genes

as illustrated by Fig 3A. Since Rif1-ΔC594 binds to these sites with

generally similar intensity to full-length Rif1, association with highly

transcribed loci appears to be independent of Rap1 interaction.

We also noticed association of Rif1 with centromeres (Figs 3C and

EV2A). Full-length Rif1 binds some centromeres fairly weakly during

G1 phase, but binds much more strongly when cells enter S phase

(Fig 3C), and to virtually all centromeres in HU-blocked cells

(Fig EV2A). Rif1-ΔC594 on the other hand showed slightly higher

association with centromeres during G1 phase than the full-length

protein, but reduced association under conditions of HU blockage

(Fig EV2A), suggesting that Rif1 association with centromeres is

largely dependent on its C-terminus. This association is, however,

unlikely to occur through Rap1 interaction, because previous

genome-wide ChIP study did not find Rap1 associated with centro-

meres [33].

Rif1 associates with replication origins

We observed binding of Rif1 and Rif1-ΔC594 to many replication

origin sites genome-wide, with typical patterns observed illustrated

by Figs 2A, and 3A and B). Rif1 associated with both early-activated

(e.g. ARS607, Fig 3A and ARS1426, Fig 3B left) and late-activated

(e.g. ARS1412, Fig 3B right) origins, before and after origin initia-

tion (e.g. at ARS1412, 90 min after release from a-factor). Rif1-

ΔC594 was observed more frequently at origins than full-length Rif1

(e.g. at ARS603 in Fig 2A), presumably reflecting increased avail-

ability of the truncated protein for binding to non-telomeric sites,

caused by its release from telomeres.

Results of the ChIP-Seq analysis were confirmed at individual

origins by ChIP followed by real-time quantitative PCR (ChIP-qPCR;

Fig 4A). For example, using ChIP-qPCR we observed clear associa-

tion of Rif1-ΔC594 with late origin ARS1412 during G1 phase, asso-

ciation that was further increased at an HU block (Fig 4A right

panel). The full-length Rif1 protein showed somewhat weaker asso-

ciation with ARS1412, again occurring in both G1 phase and HU-

arrested cells (Fig 4A right panel). This association pattern is

consistent with the ChIP-Seq result at the same locus (Fig 3B right).

Rif1 and Rif1-ΔC594 showed similar binding patterns at an early

origin (ARS1426, Fig 4A left), again consistent with the ChIP-Seq

result (Fig 3B left). Although there was considerable scatter in the

data (as is typical for ChIP-qPCR results close to the detection

threshold), the results consistently revealed above-background

binding and confirm that the ChIP-Seq profiles represent the

genome-wide binding efficiencies of Rif1 and Rif1-ΔC594 reason-

ably well. These ChIP-qPCR analyses do also generally suggest

higher binding levels of the Δ594 protein than wild type, possibly

reflecting increased availability of the truncated protein due to its

release from telomeres. By ChIP-Seq Rif1-ΔC594 also appears to

show higher binding than full-length Rif1 at many loci (e.g. at

ARS1412). However, peak heights in ChIP-Seq data may not

provide an accurate measure of occupancy, due to limitations in

the standardisation of ChIP-Seq results.

We performed peak-calling analysis on the ChIP-Seq data to

allow comparison of the detected peaks with experimentally con-

firmed replication origins. Of the 410 replication origins that are

experimentally confirmed in S. cerevisiae, we used a list of 329

origins that are not telomere proximal (> 15 kb from telomeres) and

whose replication timing can be designated as either early or late

(based on whether they have initiated in HU-arrested wild-type cells

[34]). Within this list, 165 origins were assigned as early non-telo-

meric and 164 as late non-telomeric origins.

We observed full-length Rif1 associated with 104 of these 329

replication origins in G1 cells (Fig 4B; see also Fig EV2B); 47 of

these were early and 57 late origins, indicating that Rif1 binds with

no particular preference for early or late origins (Fig 4B). Rif1-

ΔC594 associated with a larger number of origins in G1 phase, 174

of the total 329, but similar to the full-length protein showed no

clear preference for either early or late.

We also observed clear binding of Rif1 proteins to origin sites in

cells where replication was blocked by HU. In HU-blocked cells,

full-length Rif1 bound to 111 of the origin sites; 86 of these corre-

sponded to early and 25 to late-initiating origins, so that under HU

blockage conditions full-length Rif1 shows a clear preference for

early over late origin sites (Fig 4B). The highest number of origin

sites was bound in Rif1-ΔC594 cells blocked with HU, where a large

majority of both early and late origins (300 of the total 329) showed

association with this truncated Rif1 protein. Overall, while Rif1 and

Rif1-ΔC594 have somewhat different preferences for origin
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association, these preferences do not directly reflect the initiation

time of origins, or their pre- or post-activation status.

Replicating timing is maintained in rif1-ΔC594 mutant

The preference of full-length Rif1 for early over late origins in HU

(Fig 4B) led us to consider the possibility that, after S phase begins,

Rif1 can only bind origins that have already initiated. Such a possi-

bility could be consistent with the binding of Rif1-ΔC594 to both

early and late origin sites in HU, if it were the case that in the rif1-

ΔC594 mutant the replication timing programme was disrupted, so

that almost all origins initiate before the HU block. To investigate

this possibility, we tested whether the replication timing programme

is intact in the rif1-ΔC594 strain by examining bromodeoxyuridine

(BrdU) incorporation at early and late origins in HU-blocked cells.

As assessed by BrdU incorporation, early origin ARS607 was already

activated in HU as expected (Fig 4C left). Two different late origins,

ARS422.5 and ARS1412, were inactive in both RIF1+ and also in

rif1-ΔC594 strains (Fig 4C, middle and right), indicating that these

origins remain inactive in HU and the replication timing programme

is not lost in the rif1-ΔC594 mutant. Both of these late origins

showed somewhat increased BrdU incorporation in rif1D as

expected based on previous analysis [11]. Overall therefore, the rif1-

ΔC594 mutant does not undergo wholesale disruption of the
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Figure 2. Full-length and C-terminally truncated Rif1 proteins bind distinct chromosomal loci.

A Specimen overview of chromosome VI-left region showing results of ChIP-Seq analysis of Rif1 and Rif1-ΔC594 proteins. ChIP sequence reads were normalised against
sequence reads from corresponding input samples, and relative enrichment is plotted for chromosome VI coordinates 1–80,000. Y-axis shows enrichment values
(linear scale, range is 0–3.5). Values below 1 are shown in grey, and values above 1 (i.e. sequences enriched in ChIP samples) are coloured blue (Rif1) and red (Rif1-
ΔC594). Plots show ChIP analysis results from cells arrested by a-factor (G1), released from a-factor at 16°C for 60 and 90 min, or released from a-factor into 0.2 M
HU for 60 min at 23°C.

B Rap1-dependent association of Rif1 with the promoter regions of Rap1-controlled genes. ChIP enrichment around PAU3 (left) and MAM3 (right), both genes whose
transcription is controlled by Rap1. Values above 1 (i.e. enriched) shown by overlaid blue and red histograms for Rif1 and Rif1-ΔC594, respectively. Values below 1
shown in grey.
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replication timing programme but instead maintains the distinction

between early and late origin activation. It moreover appears that

Rif1-ΔC594 does associate with virtually all origins under HU-

arrested condition (Figs 4B and EV2B), irrespective of whether

origins have been activated or not.

Rif1 protects nascent DNA at HU-blocked replication forks

We noticed that peaks of full-length Rif1 at early origins tend to

broaden in HU (e.g. ARS606 & ARS607, Fig 3A). This broadened asso-

ciation seems to be specific to the HU-arrested condition, because it

was not observed in the unperturbed S phase samples (Fig 3A).

Systematic analysis at early origins confirmed an increase in median

peak width at early origins from 0.4 kb in G1 phase to 1.6 kb at the

HU block (Figs 4D and EV3, heat maps). We did not observe such

peak broadening at late origins (Figs 4D and EV3), suggesting that

peak broadening requires origin activation, and probably therefore

reflects association with replication forks stalled by HU inhibition. In

a few cases (e.g. early origin ARS1528, Fig EV4A), we indeed

observed peak splitting surrounding the origin site, consistent with

the pattern representing association with blocked forks. Interestingly,

the Rif1-ΔC594 mutant protein did not exhibit this pattern of replica-

tion fork association, as evidenced by the fact that peak broadening

was not observed around early origins in HU (Fig EV3).
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A ChIP-Seq analysis of Rif1 and Rif1-ΔC594 proteins shows tRNA gene and origin binding, with widened peaks at early origins ARS606 and ARS607 in HU block. Plots
show chromosome VI genome coordinates 160,000–210,000. Plot colours here and in following Figures are as in Fig 2B. Widened peaks are not observed in
unperturbed S phase samples, or for Rif1-ΔC594.

B Association of Rif1-ΔC594 at replication origins is enhanced in HU block. ChIP enrichment of Rif1 and Rif1-ΔC594 around early origin ARS1426 (left) and late origin
ARS1412 (right).

C Differential association of Rif1 and Rif1-ΔC594 to centromeres. ChIP enrichment of Rif1 and Rif1-ΔC594 around the CEN4 locus.
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This pattern of Rif1 association suggested that yeast Rif1 might

potentially play a role at blocked replication forks or on post-replica-

tive chromatin. Since the Rif1-ΔC594 mutant does not show peak

broadening, any such role might be expected to depend on the

C-terminus of Rif1. Emerging data suggest that mammalian Rif1

stabilises nascent DNA at blocked replication forks [35]. We there-

fore tested whether yeast Rif1 protects nascent DNA at blocked

replication forks, using DNA combing assays to analyse cells with

nascent DNA labelled in vivo by iododeoxyuridine (IdU). Cells were

released from a-factor in medium containing IdU. After 18 min,

when cells have only just entered S phase so that only DNA synthe-

sised from very early initiating origins will be labelled, IdU was

removed and HU added to inhibit further replication. To examine

the fate of the IdU-labelled nascent DNA, after either 1 or 1.5 h in

HU genomic DNA was combed onto slides and the length of IdU-

containing DNA tracts analysed (Fig 5A and B). At 0 h (the time of

HU addition), all three strains showing IdU-labelled tract of median

length around 18 kb, consistent with an early stage of S phase when

only some origins have initiated and bidirectional forks have trav-

elled, on average, 9 kb each (Fig 5C). The length of nascent DNA

tracts was similar in RIF1+, rif1Δ and rif1-ΔC594 strains, indicating

that in the three strains forks had progressed a similar distance from

early origins. In RIF1+ cells, the nascent DNA tract length remained

stable throughout the subsequent 1.5-h incubation in HU. In rif1D
cells, the nascent DNA tracts were in contrast noticeably eroded

during the HU incubation period, with the median length decreasing

from 21 to 13 kb in the first hour of the HU block. This result

indicates that Rif1 is required to prevent degradation of newly-

synthesised DNA at forks blocked by HU. In rif1-ΔC594 cells, the

IdU tract lengths were also shortened during the HU block when

compared with RIF1+ cells, consistent with the suggestion based on

our ChIP results that the C-terminal region of Rif1 is important for

protecting nascent DNA. The nascent tract shortening was not as

severe in rif1-ΔC594 as in rif1Δ, suggesting that while the protection

of nascent DNA by Rif1-ΔC594 is significantly impaired, it may not

be totally lost. Unexpectedly, we observed that despite the initial
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the value obtained at a control locus (see Materials and Methods). Bars indicate the averages of two biological replicates, with values from each replicate shown by
open circles.

B Numbers of early and late origins associated with Rif1 and Rif1-ΔC594 peaks. Plot showing numbers of early and late origins bound by Rif1 and Rif1-ΔC594 in G1
phase and HU-blocked cells, based on peak-calling results.

C Replication timing programme is intact in rif1-ΔC594 cells. Replication of selected origins at an HU block analysed by BrdU incorporation. Cells were synchronised by
a-factor and released into the medium containing 0.2 M HU and 1.13 mM BrdU. Plots show the percentage of total ARS607, ARS422.5 or ARS1412 DNA pulled down
by IP with anti-BrdU, calculated from two biological replicate samples. Bars indicate the average of two biological replicates and open circles the values from each
replicate. Insets in ARS422,5 and ARS1412 panels show the same data with Y-axis scales adjusted to 0–0.03%.

D Peaks of Rif1 become broader in HU-arrested cells. Box and whisker plot shows peak widths of full-length Rif1 at early and late origins in G1 phase and HU-blocked
cells. Analysis was performed on those origins detected by peak calling as associated with a Rif1 peak. Boxes show the range of 25th to 75th percentiles, with
horizontal lines within the boxes representing 50th percentiles. Whiskers represent 95% confidence intervals. Outliers are presented as open circles. Numbers of
origins analysed are as follows: 46 early origins in G1, 56 late origins in G1, 85 early origins in HU and 24 late origins in HU.
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shortening, after 1.5 h the median labelled tract length was

increased in the rif1-ΔC594 mutant (Fig 5C), an effect that was

reproducible (Fig EV4B). While the reason for this observation is

unclear, it could possibly reflect the complete loss of some particu-

larly quickly degraded tracts in this rif1-ΔC594 mutant context, if

other tracts remain exempt from degradation.

We obtained similar results in a second experiment, using a

longer initial IdU labelling period of 22 min, which produced slightly

longer initial tracts in the 0-h samples (Fig EV4B). Based on these

results, we propose that the Rif1 protein is recruited to blocked repli-

cation forks, as indicated by our ChIP-Seq analysis, where it func-

tions to stabilise nascent DNA and prevent its over-degradation.

Rif1 associates with highly transcribed genes

As mentioned above, we found that both Rif1 and Rif1-ΔC594 tend

to associate with the coding sequences of highly transcribed genes,

such as FBA1 on chromosome XI (Fig 6A, left panel). These sites

often correspond to genes encoding ribosomal proteins (e.g.

RPL22B, Fig 2A), other housekeeping genes (e.g. ACT1, Fig 2A),

tRNA genes (Fig 3A) or genes involved in sugar metabolism (such

as FBA1 which encodes Fructose 1,6-bisphosphate aldolase required

for glycolysis and gluconeogenesis). Consistent with their recruit-

ment to highly transcribed genes, in a-factor-blocked cells Rif1 and

Rif1-ΔC594 associate with FIG1 gene, whose transcription is induced

by a-factor [36]. This binding is lost once cells are released into S

phase (Fig 6A middle panel). Conversely, Rif1 and Rif1-ΔC594 asso-

ciate with the RNR1 gene as cells enter S phase, and association is

further increased in HU (Fig 6A right panel), mirroring the tran-

scriptional control described for RNR1 [37]. Note that Rif1 and Rif1-

ΔC594 ChIP signals are significantly stronger than those obtained

from an untagged control strain at the same sites (Fig 6A, lower two

plots).

To assess whether Rif1 and Rif1-ΔC594 genuinely associate pref-

erentially with highly transcribed genes, we identified those genes

showing occupancy by Rif1 or Rif1-ΔC594 that extends across 90%

of their coding sequences, and compared the expression levels of

these genes with the expression levels of all S. cerevisiae genes

using published results [38] (Fig 6B). Genes with high Rif1 or Rif1-

ΔC594 occupancy showed a clear tendency to be highly transcribed

(Fig 6B), with median levels of transcription fourfold to eightfold

higher than the genomic average.

In budding yeast, the few genes with introns tend to be highly

expressed [39], and genes showing high occupancy by Rif1 or Rif1-

ΔC594 have higher then random likelihood of containing an intron

(Table EV1). Genes encoding ribosomal proteins are generally

highly expressed and showed a particularly interesting pattern of

Rif1 association, with binding of Rif1-ΔC594 generally weakened in

HU while that of full-length Rif1 was maintained (Fig EV5A RPS31

plots and Fig EV5B heat maps). Rap1 regulates transcription of most

ribosomal protein genes [40], and as expected, these genes

frequently also show Rap1-dependent Rif1 binding of Rif1 in their

upstream region (Fig EV5A and B). Another effect associated with

strong transcription is the formation of R loops, DNA:RNA hybrid

structures formed if a nascent transcript re-anneals to its template

strand [41,42]. Many Rif1 and Rif1-ΔC594 peaks in coding

sequences coincide with such R loop-forming loci (“DNA:RNA

hybrid” track in Fig 6C and Table EV2).

Fission yeast Rif1 is suggested to bind G-quadruplex (G4)-forming

sequences, so we also compared Rif1 and Rif1-ΔC594 ChIP patterns

with positions of predicted S. cerevisiae G4-forming sequences

[43,44]. However, at chromosome locations distant from telomeres,

predicted G4 sites generally did not coincide with Rif1 and

Rif1-ΔC594 peaks (“Predicted G4” track in Fig 6C and Table EV2).
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Figure 5. Rif1 protein is required to protect nascent DNA from
degradation.

A Experimental scheme of nascent DNA protection assay. RIF1, rif1Δ and rif1-
ΔC594 strains (VGY85, CMY6 and CMY7 containing thymidine kinase gene
insertions) were arrested with a-factor and released in the medium with
1.13 mM IdU. After 18 min of IdU labelling, IdU was removed by filtration
and cells were resuspended in fresh medium with 0.2 M HU and 5 mM
thymidine. This thymidine chase was included so that any residual fork
extension or do novo origin activation occurring during the HU block would
produce unlabelled DNA. After 0, 1 or 1.5 h, DNA combing was performed
and IdU tract lengths analysed.

B Specimen IdU tracts on a DNA fibre. DNA fibre is coloured blue and IdU
tracts red. Scale bar is 10 lm (=20 kb).

C Degradation of nascent DNA in the absence of Rif1. Plot shows distribution
of IdU tract lengths obtained from DNA fibres prepared from cells
incubated in the HU block for the time indicated. At least 100 tracts were
measured for each condition. Black horizontal bars indicate median values.
** and **** indicate P-values less than 0.01 and 0.0001, respectively,
obtained by Mann–Whitney–Wilcoxon test. ns means “not significant”.
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Discussion

We have examined genome-wide binding of the S. cerevisiae Rif1

protein, at several cell cycle stages. Compared to a previous, microar-

ray-based analysis we identified numerous previously undescribed

binding sites [3]. The possibility of identifying these sites was

provided by the power of next-generation sequencing of ChIP

samples, enabling analysis of millions of DNA fragments. This depth

of analysis allows for a higher dynamic range within the data and

therefore more effective identification of “secondary” binding sites,

likely to be physiologically relevant but nonetheless obscured in previ-

ous studies by the very strong interaction of Rif1 with the telomeres,

MAT locus and silent mating type cassettes. Thus, while our analysis

effectively re-identified these strong, Rap1-dependent binding sites, it

also permitted the identification of new types of Rif1 interaction with

chromosomes. The use of a C-terminal truncation mutant, Rif1-

ΔC594, allowed Rap1-dependent and Rap1-independent binding sites

to be distinguished. We unexpectedly also found non-Rap1-associated

sites that are bound by full-length Rif1 but not by Rif1-ΔC594, which

are therefore likely to be under a control that requires the C-terminal

region of Rif1. In this category are the associations with replication

forks, centromeres (in S phase cells) and transcription units encoding

ribosomal proteins (under HU-blocked conditions; Fig EV5).

An illustrative overview of the results is provided by Fig 6C,

presenting data for the entire chromosome VI. Together with

Fig EV1, Fig 6C illustrates all of the different binding site types we

identified. Based on our analysis, we can categorise six different

“types” of Rif1 chromosome binding site, as outlined:

(1) The highest levels of Rif1 binding are observed at telomeres,

the MAT locus and silent mating type cassettes—all sites where Rif1

was already known to bind and function. Our observation that these

sites are bound by Rif1 but not Rif1-ΔC594 confirms them to be

Rap1-dependent sites of Rif1 binding.

(2) We also identified as Rif1 binding sites promoters that are

regulated by Rap1. These sites were bound by full-length Rif1 but

not Rif1-ΔC594, confirming the interaction to be Rap1-dependent.

Although it might be expected that Rif1 would be present at sites

where Rap1 acts as a transcriptional regulator, such sites had not

been described before. Our observation of Rif1 at Rap1-regulated

promoters implies that multiple copies of Rap1 are not needed for

Rif1 recruitment. A previous genome-wide study indicated that

that RIF1 does not affect transcription of Rap1-controlled genes

outside subtelomeric regions [45], suggesting that Rif1 recruitment

to such promoters is not essential for transcriptional regulation

by Rap1.

(3) Replication origins represent the third category of sites of Rif1

binding. Since both Rif1 and Rif1-ΔC594 bind to origins, this associ-

ation is independent of Rap1. Since Rif1 is well established as a

regulator of the replication timing programme in mammalian cells

and the fission yeast Schizosaccharomyces pombe, we examined our

results for any relation between Rif1 binding and origin initiation

time. However, no such relationship was evident, except in the

special case of telomere-proximal origins. The finding that Rif1 has

no particular preference for either early or late-initiating origins is

consistent with our knowledge that other than at telomeres, budding

yeast Rif1 is not a major effector of the replication timing program.

Instead, loss of Rif1 allows initiation from many origins, including

normally early origins, under conditions of compromised DDK activ-

ity (i.e. in cdc7-1 cells [9]), suggesting that Rif1 globally regulates

origin activation rather than specifically suppressing late origins.

Therefore, it is not surprising to find Rif1 localised to both early and

late origins.

The mechanism through which Rif1 binds origins is unclear.

While one possibility is that Rif1 interacts with a component of the

pre-Replication Complex, this idea is not consistent with our obser-

vation of Rif1 binding to origin sites after their activation (e.g. at

early origin ARS607 in normal S phase samples, Fig 3A). Rif1 could

potentially be recruited by ORC, which in yeast is believed to re-

bind to origin sites quickly after their replication [46,47]. An alterna-

tive possibility is that Rif1 binds to origin DNA directly, perhaps

mediated through the HEAT repeat domain which was recently

identified as able to bind DNA directly [18].

(4) Our investigation has identified several types of genome

interaction that were not predicted based on known S. cerevisiae

Rif1 functions, the first of which is binding of full-length Rif1 in

broadened peaks around early replication origins in HU-blocked

cells. This association pattern could reflect Rif1 association during

replication stress either with post-replicative chromatin or blocked

forks. At one site, we observed peak splitting consistent with bind-

ing of bidirectional replication forks diverged from the replication

origin itself. Since we did not observe Rif1 associated with replica-

tion forks in normal S phase, we suspect this pattern may reflect

checkpoint-dependent recruitment of Rif1 specifically to blocked

forks. Such checkpoint-dependent recruitment could potentially be

controlled by the Rif1 C-terminal region, through a cluster of phos-

phorylation sites present in full-length Rif1 but absent in our Rif1-

ΔC594 protein (Fig EV3) [25].

Saccharomyces cerevisiae Rif1 has not previously been identified

interacting with replication forks, but mammalian Rif1 was already

shown to be present at nascent chromatin [48], and emerging

◀ Figure 6. Rif1 and Rif1-ΔC564 associate with highly transcribed genes.

A Rif1 and Rif1-ΔC association with coding sequences of highly transcribed genes. Left panel shows association with the housekeeping gene FBA1, middle panel
association with the mating pheromone-induced gene FIG1 and right panel association with RNR1, which is expressed in S phase and induced further by hydroxyurea.
Bottom two plots (dark grey) show results obtained at these loci using an “Untagged” control strain.

B Rif1-associated genes tend to be highly transcribed. Genes showing occupancy by Rif1 or Rif1-ΔC594 that extends across 90% of their coding sequences were
selected, and the transcription levels of these genes plotted compared to the transcription levels of all genes (shown at left). Number of genes analysed are 18 (Rif1,
G1), 68 (Rif1, HU), 42 (Rif1-ΔC594, G1) and 64 (Rif-1ΔC594, HU). Boxes show the range of 25th to 75th percentiles, with horizontal lines within the boxes representing
50th percentiles. Whiskers represent 95% confidence intervals. Outliers are presented as open circles. *** indicates that P-value obtained by Student’s t-test was below
0.001.

C Plot comparing chromosome-wide association of Rif1 and Rif1-ΔC594 with R loop-prone sites. Plot shows ChIP profiles of Rif1 and Rif1-ΔC594 across entire
chromosome VI. R loop-prone sites are marked in green (“DNA:RNA hybrid” track in green), as previously assessed by S1-DRIP-Seq analysis. Also shown are positions of
predicted G4-forming sequences (“Predicted G4” track in orange), and positions of replication origins (ARS) and centromere (CEN6).
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results implicate mammalian Rif1 in protecting nascent DNA at

stalled replication forks [35]. We tested nascent DNA protection in

yeast using a DNA combing approach and found indeed that lack of

S. cerevisiae Rif1 leaves nascent DNA exposed to abnormal degrada-

tion (Fig 5). It is unlikely that the short tracts observed after HU

exposure are caused by new origin firing events labelled by residual

IdU, since the appearance of shortened tracts was unaffected by the

addition or omission of a thymidine chase after IdU labelling (not

shown).

Defective protection of nascent DNA was also seen in the rif1-

ΔC594 strain, consistent with the defective recruitment of Rif1-

ΔC594 to stalled forks, although in some experiments, the rif1-ΔC594

fork protection defect was not as complete as in rif1Δ (compare

Figs 5C with EV4B). One possibility is that Rif1-ΔC594 protein can

partially protect nascent DNA, perhaps through passive or transient

association with the forks. Increased availability of the truncated

protein (since it is not sequestered at telomeres) may contribute to

such a passive mechanism. Ongoing experiments will further test the

molecular mechanism through which yeast Rif1 protects nascent

DNA. It will be of particular interest to identify the nuclease respon-

sible for nascent DNA degradation, and whether PP1 is required. It is

unclear at this point how the nascent DNA degradation we observe

may be related to previous studies in vertebrate cells implicating Rif1

in replication restart [49,50].

(5) A completely unexpected observation was binding of Rif1 to

loci that are highly transcribed, including protein and RNA-encoding

genes. Spurious binding caused by increased accessibility of highly

transcribed loci (so-called hyper-ChIPability) is a recognised issue in

ChIP analysis [51,52]. While we did observe some increased back-

ground signal at highly transcribed genes, binding of Rif1 to highly

transcribed loci does not appear to be caused simply by “hyper-

ChIPability”, as in general signal clearly depended on the epitope

tag (Fig 6A). Normalising the ChIP data with data from an untagged

strain did not substantially change the Rif1 and Rif1-ΔC594 localisa-

tion patterns (data not shown). Our observation of distinct patterns

for full-length Rif1 and the Rif1-ΔC594 mutant (e.g. at ribosomal

protein genes Fig EV5) is also inconsistent with binding simply

representing a consequence of increased locus accessibility,

although we cannot exclude that “hyper-ChIPility” makes some

contribution to the association pattern. At present, the functional

significance of Rif1 binding to highly transcribed loci is unclear, but

one intriguing possibility is that Rif1 recruitment is associated with

the RNA:DNA hybrid “R loop” structures that tend to form at highly

transcribed genes when an RNA transcript re-anneals to its template

DNA. Interestingly, yeast Rif1 is reported to interact with the RNase

H1 and RNase H2 enzymes that suppress excessive R loop formation

(in cells over-expressing these RNase H proteins [53]). Another

possibility is that Rif1 protects unwound DNA on the non-tran-

scribed strand.

(6) Finally, we found that full-length Rif1 binds to centromeres

(Figs 3C and EV2A). Interestingly, Rif1 associates more strongly

with centromeres as cells traverse the cell cycle (Figs 3C and

EV2A). It was recently shown that DDK-mediated phosphorylation

of the kinetochore protein Ctf19 during G1 phase promotes recruit-

ment of the cohesin loader complex to centromeres [54], raising the

possibility that Rif1-PP1 regulates this process during the cell cycle.

The six different categories of binding site we have found

together form a profile that differs significantly from the binding

patterns described for Rif1 in other organisms. S. pombe Rif1

binds sequences with a tendency to form G4 DNA structures

[55,56]. While we generally see no such tendency for S. cerevisiae

Rif1 (Fig 6C and Table EV2), an intriguing possibility is that single

stranded DNA exposed by transcription or impaired DNA replica-

tion may form G4 DNA that binds Rif1. In mouse embryonic stem

cells (mESC), Rif1 has been described as occupying extended chro-

mosomal domains, typically covering several megabases, which

represent regions showing coordinated late replication timing [57].

The only chromosomal location where we see any similar pattern

for S. cerevisiae Rif1 is close to telomeres (Figs 2A, 6C and EV1),

where the full-length protein shows very high levels of binding

extending over several kilobases, and where Rif1 is well-estab-

lished as controlling replication timing over extended telomere-

proximal domains [8–10,24,26]. Elsewhere in the genome the

binding pattern of S. cerevisiae Rif1 is quite unlike that in mESCs

and appears largely unrelated to the replication timing

programme. Our discoveries are, however, consistent with the fact

that S. cerevisiae Rif1 has fairly minor effects on replication timing

at locations distant from telomeres. While mouse Rif1 was found

at some transcription start sites, Foti et al did not find localisation

of Rif1 to origin sites, centromeres, coding sequences of highly

transcribed genes or replication forks (despite the fact that

mammalian Rif1 has been detected as a nascent chromatin

protein). The fact such binding sites were not identified in their

study might mean that these modes of binding are specific to

S. cerevisiae and are generally not conserved in mammalian cells,

but equally might reflect the conditions or cell type used by

Foti et al in their investigation, or be due to less intense binding

sites being obscured by the extended domains of high Rif1 associ-

ation.

A very recent report has described genome-wide chromosome

association profiles of full-length and C-terminally truncated S. cere-

visiae Rif1, obtained using the completely different methodology of

ChEC-Seq (chromatin endogenous cleavage -Seq) [58]. Consistent

with our findings, that study described strong Rif1 binding to telom-

eres and sub-telomeres through Rap1 interaction, and found associ-

ation with internal replication origins that was enhanced by release

of Rif1 from telomeres. Hafner et al do find Rif1 associating prefer-

entially with origins whose timing it affects, but this observation

may primarily reflect strong Rif1 binding in telomeric and telomere-

proximal regions since origins close to telomeres were included in

their assessment. The ChEC-Seq study did not report binding to the

other sites (replication forks, centromeres, highly transcribed genes)

that we have identified by ChIP-Seq. Direct comparison of the data-

sets is complicated by the very different numbers of peaks identified

in the two studies (~1,600 peaks here, compared to ~5,500 in the

ChEC-Seq study).

To summarise, our investigation represents the first effective

chromatin immunoprecipitation analysis of genome-wide binding

sites of S. cerevisiae Rif1. It has identified several new modes of Rif1

genomic interaction, and in particular, it has led to our discovery

that S. cerevisiae Rif1 protects nascent DNA at replication forks. Our

approach, moreover, opens new avenues to understand how Rif1 is

recruited to replication origins, blocked forks and sites of high tran-

scription, which will enable substantial new insights into the molec-

ular mechanisms deployed by this intriguing and multifunctional

protein.
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Materials and Methods

Yeast strains and plasmids

Yeast strains used in this study are in a W303 RAD5+ background

and are described in Table 1. Strain CMY6 was created by replacing

the RIF1 gene of the strain VGY85 (Gali et al in preparation) with

the HIS3 gene using one-step PCR replacement. CMY7 was created

by replacing the segment of RIF1 encoding the C-terminal 594 amino

acids with a 6His-3FLAG-natMX cassette, using the plasmid pSB54

as a template [59].

ChIP-Seq analysis

Chromatin immunoprecipitation of Rif1-13myc (strain YSM20) and

Rif1-ΔC594-13myc (strain KCY022) was performed essentially as

described [60] using a monoclonal anti-Myc antibody [PL14]

(MBL #M047-3) and Dynabeads Protein G (Dynal 10004D). Library

DNA was prepared for Illumina sequencing using NEBNext Ultra

II DNA Library Prep Kit for Illumina kit (NEB) following manufac-

turer’s instructions and was analysed by Illumina HiSeq 2500. The

result was initially visualised and validated using DROMPA [61].

ChIP analysis from an untagged strain (YK402) was analysed

similarly.

Bioinformatic analysis of ChIP-Seq data

UCSC sacCer3 was used as the reference budding yeast genome

throughout the study. Sequence reads from fastq files were mapped

and sorted against this reference genome using Bowtie and

SAMtools sort, respectively. ChIP peaks were detected using MACS2

callpeak. Rif1 ChIP peaks are a mixture of narrow peaks (e.g. peaks

at ARS elements in G1 phase) and broad peaks (e.g. ORF peaks and

peaks at early origins in HU arrest). Testing both “narrow” and

“broad” peak options of MACS2, we opted to use “narrow peak”

option, which often assigns multiple subpeaks in broad Rif1 ChIP

peaks. Numbers of peaks detected are listed in Table EV3. Coverage

of ORFs by ChIP peaks was analysed using BEDTools AnnotateBed.

Average ChIP profiles and heat maps at centromeres, DNA replica-

tion origins and ribosomal protein genes were created by DeepTools

computeMatrix and DeepTools plotHeatmap, using ChIP enrichment

data (=ChIP data normalised by Input). Above procedures were

performed using the Galaxy web interface (http://usegalaxy.org)

[62]. ARS consensus sequence (ACS) position data were obtained

from [63]. The list of yeast genes encoding ribosomal protein was

obtained from the Ribosomal Protein Gene Database (http://ribo

some.med.miyazaki-u.ac.jp/) [64], and their genome coordinates in

20110203 release (corresponding to sacCer3) were obtained from

the Saccharomyces Genome Database (SGD; https://www.yeastge

nome.org/). Positions of centromeres were also obtained from

20110203 release of SGD.

For illustration of ChIP results, enrichment of sequence reads in

ChIP samples over corresponding input samples was calculated

using DeepTools bamCompare, with bin size 100 bp and smoothing

window 300 bp, and then visualised using Integrated Genome

Browser (IGV) version 2.4.4. Genome coordinate information of

known replication origins was obtained from OriDB (http://www.

oridb.org) [27,28]. Positions of DNA:RNA hybrid detected by S1-

DRIP-Seq in rnh1Δ rnh201Δ strain were obtained from [42].

Predicted positions of G4-forming sequence were obtained from

[43]. Since genome coordinates of OriDB and G4 positions were

based on an older genome assembly (sacCer1), the coordinates were

converted to that of sacCer3 using LiftOver tool at UCSC Genome

Browser (https://genome.ucsc.edu/cgi-bin/hgLiftOver). Information

of budding yeast genes with experimentally identified and predicted

introns was obtained from the Ares Lab Yeast Intron Database

Version 4.3 UCSC (http://intron.ucsc.edu/yeast4.3/) [65]. Genome-

wide transcript-level data were obtained from [38].

For comparison of the location of ChIP peaks and experimentally

confirmed replication origins, the summit position of each ChIP

peak was compared with the centre position of the closest confirmed

ARS using a custom R script. If the distance to the closest ARS was

less than 1 kb, the peak was marked to colocalise with the ARS.

Where more than one peak was identified as colocalising with an

ARS, ChIP profiles were inspected manually to determine where

these corresponded to different subpeaks of a broad peak, or instead

to two independent peaks (as in some cases, for example where one

peak is close to an ARS, and a neighbouring peak is associated with

a nearby genetic element such as a tRNA gene). When multiple

Table 1. Yeast strains used in this study.

Name
Relevant
genotype Background

Source/
reference

YK402 MATa bar1Δ::hisG
ade2-1 can1-100
his3-11,15 leu2-3,112
trp1-1 ura3-1

W303 RAD5+ Hiraga et al [9]

YSM20 MATa bar1Δ ade2-1
can1-100 his3-11,15
leu2-3,112 trp1-1
ura3-1
Rif1-13Myc::HIS3MX6

W303 RAD5+ Sridhar et al
[25]

KCY022 MATa bar1Δ::hphNT
ade2-1 can1-100
his3-11,15 leu2,3-112
trp1-1 ura3-1
rif1-ΔC594-13Myc::
HIS3MX6

W303 RAD5+ This study

SHY538 MATa bar1Δ::hisG
RAD5 ade2-1 his3-
11,15 leu2-3,112 trp1-
1 ura3-1 can1-100
cdc7-1

W303 RAD5+ Hiraga et al [9]

SHY614 SHY538
RIF11-6His-3FLAG::
kanMX

W303 RAD5+ This study

SHY616 SHY538
rif1-ΔC594-6His-
3FLAG::kanMX

W303 RAD5+ This study

VGY85 YK402
trp1-1Δ::BrdU-InC-
KanMX4

W303 RAD5+ Gali et al in
preparation

CMY6 VGY85
rif1Δ::HIS3

W303 RAD5+ This study

CMY7 VGY85
rif1-ΔC-594-6His-
3FLAG::natMX

W303 RAD5+ This study
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peaks were manually assigned as belonging to a single broad peak,

the peak width was re-calculated for the merged peak. Note that

peaks within 15 kb from each chromosome ends were excluded

from this analysis, because the peaks tend to be fused with each

other.

ChIP-qPCR

ChIP of Rif1 and Rif1-ΔC594 was performed essentially as described

[60] using antibody and beads as for the ChIP-Seq experiments.

ChIP and corresponding input samples were analysed by LightCy-

cler 480 II (Roche) using Light cycler SYBR Green master reagent

(Roche). ChIP efficiency at each locus was calculated as the median

of three technical replicates. “Normalised ChIP efficiency” was

calculated by subtracting the ChIP efficiency value at the control

(IRS4 locus) at each strain and each culture condition from that of

each locus tested. IRS4 locus was chosen based on low association

of Rif1 and Rif1-ΔC594 throughout the cell cycle in our ChIP-Seq

data, as well as low background in “untagged” control experiments.

See Table 2 for qPCR primers used.

BrdU-IP-qPCR

BrdU-IP was performed essentially as described [66]. Strains

containing thymidine kinase insertion constructs, VGY85, CMY6

and CMY7, were arrested with a-factor and released into fresh

media containing 1.13 mM (400 lg/ml) BrdU and 0.2 M HU, and

cultivated for 60 min. Genomic DNA was isolated as previously

described [67]. 1 lg of total genomic DNA was immunoprecipitated

with 10 lg of anti-BrdU antibody (ab2285, Abcam). BrdU-labelled

DNA was then extracted using Dynabeads Protein G (Dynal) and

purified using QIAquick PCR Purification Kit (QIAGEN). qPCR anal-

ysis was performed as above, and IP efficiency calculated as the

percentage of total sequence pulled down. See Table 2 for qPCR

primers used.

DNA combing

Cells were arrested with a-factor, released into fresh media contain-

ing 1.13 mM IdU and cultivated for 18 min (for the experiments

shown in Fig 5) or 22 min (Fig EV4B) at 30°C. Cells were then fil-

tered, washed and resuspended in fresh media containing 0.2 M

HU. Note that 5 mM thymidine was also included during the HU

incubation to minimise the labelling of any ongoing DNA synthesis

by residual IdU. Cells were collected at 0, 1 and 1.5 h (2 h for

Fig EV4B) and encapsulated in plugs of low melting temperature

agarose. Spheroplasting was carried out in agarose plugs, followed

by genomic DNA preparation using FiberPrep DNA extraction kit

(Genomic Vision) according to manufacturer’s instructions. DNA

combing was performed using FiberComb instrument (Genomic

Vision). Coverslips with combed DNA were processed for immunos-

taining with anti-IdU (Becton Dickinson 347580) and anti-ssDNA

(Millipore MAB3034) followed by appropriate secondary antibodies

with fluorescent conjugates. IdU tracks were imaged under a Zeiss

Axio Imager.M2 microscope equipped with Zeiss MRm digital

camera, with a Zeiss Plan-Apochromat 63×/1.40 Oil objective lens.

Images were analysed using ImageJ software. IdU-labelled tract

lengths were measured, requiring that tracts must be at least 2 lm
in length, separated from each other by 5 lm or more, and lie on a

fragment at least 50 lm in length with the tract finishing at least

5 lm from the fragment end as visualised by ssDNA antibody.

Length of the IdU tracks (in lm) was converted to kilobases using

the predetermined value (2 kb/lm) for the DNA combing method.

Data availability

ChIP-Seq data and corresponding input data were submitted to

ArrayExpress under accession number E-MTAB-6736.

Expanded View for this article is available online.
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Table 2. List of primers for qPCR.

Locus Orientation Name Sequence (50 to 30)

ARS422.5 Forward CM24 ACTGTCGGAATTGATGAGGGTG

Reverse CM25 TCTCTTGCCTCCAAATTGTCCG

ARS607 Forward VG54 CGGCTCGTGCATTAAGCTTG

Reverse VG55 TGCCGCACGCCAAACATTGC

ARS1412 Forward VG64 GCGTACGATGCGGTATGGAG

Reverse VG65 TGCCGCACGCCAAACATTGC

ARS1426 Forward SH709 GCAAAGTCTTCCAAGAATCTGGTT

Reverse SH710 GAGTTTCTATAGGTTTTAAAGGTGTGC

IRS4 Forward SH713 ACTCGGTTGTTGTTCATGTTGTC

Reverse SH714 ATTTGGTAGTAAGCCCAAGCACT

12 of 14 EMBO reports e46222 | 2018 ª 2018 The Authors

EMBO reports Yeast Rif1 at origins and blocked forks Shin-ichiro Hiraga et al

Published online: August 13, 2018 

https://doi.org/10.15252/embr.201846222


Conflict of interest
The authors declare that they have no conflict of interest.

References

1. Hardy CF, Sussel L, Shore D (1992) A RAP1-interacting protein involved

in transcriptional silencing and telomere length regulation. Genes Dev 6:

801 – 814

2. Kedziora S, Gali VK, Wilson RHC, Clark KRM, Nieduszynski CA, Hiraga SI,

Donaldson AD (2018) Rif1 acts through Protein Phosphatase 1 but inde-

pendent of replication timing to suppress telomere extension in budding

yeast. Nucleic Acids Res 46: 3993 – 4003

3. Smith CD, Smith DL, DeRisi JL, Blackburn EH (2003) Telomeric protein

distributions and remodeling through the cell cycle in Saccharomyces

cerevisiae. Mol Biol Cell 14: 556 – 570

4. Lieb JD, Liu X, Botstein D, Brown PO (2001) Promoter-specific binding of

Rap1 revealed by genome-wide maps of protein-DNA association. Nat

Genet 28: 327 – 334

5. Cornacchia D, Dileep V, Quivy JP, Foti R, Tili F, Santarella-Mellwig R,

Antony C, Almouzni G, Gilbert DM, Buonomo SB (2012) Mouse Rif1 is a

key regulator of the replication-timing programme in mammalian cells.

EMBO J 31: 3678 – 3690

6. Hayano M, Kanoh Y, Matsumoto S, Renard-Guillet C, Shirahige K, Masai

H (2012) Rif1 is a global regulator of timing of replication origin firing

in fission yeast. Genes Dev 26: 137 – 150

7. Yamazaki S, Ishii A, Kanoh Y, Oda M, Nishito Y, Masai H (2012) Rif1

regulates the replication timing domains on the human genome. EMBO

J 31: 3667 – 3677

8. Dave A, Cooley C, Garg M, Bianchi A (2014) Protein phosphatase 1

recruitment by Rif1 regulates DNA replication origin firing by counter-

acting DDK activity. Cell Rep 7: 53 – 61

9. Hiraga S, Alvino GM, Chang F, Lian HY, Sridhar A, Kubota T, Brewer BJ,

Weinreich M, Raghuraman MK, Donaldson AD (2014) Rif1 controls DNA

replication by directing Protein Phosphatase 1 to reverse Cdc7-mediated

phosphorylation of the MCM complex. Genes Dev 28: 372 – 383

10. Mattarocci S, Shyian M, Lemmens L, Damay P, Altintas DM, Shi T,

Bartholomew CR, Thoma NH, Hardy CF, Shore D (2014) Rif1 controls

DNA replication timing in yeast through the PP1 phosphatase Glc7. Cell

Rep 7: 62 – 69

11. Peace JM, Ter-Zakarian A, Aparicio OM (2014) Rif1 regulates initiation

timing of late replication origins throughout the S. cerevisiae genome.

PLoS One 9: e98501

12. Callen E, Di Virgilio M, Kruhlak MJ, Nieto-Soler M, Wong N, Chen HT,

Faryabi RB, Polato F, Santos M, Starnes LM, et al (2013) 53BP1 mediates

productive and mutagenic DNA repair through distinct phosphoprotein

interactions. Cell 153: 1266 – 1280

13. Chapman JR, Barral P, Vannier JB, Borel V, Steger M, Tomas-Loba A,

Sartori AA, Adams IR, Batista FD, Boulton SJ (2013) RIF1 is essential for

53BP1-dependent nonhomologous end joining and suppression of DNA

double-strand break resection. Mol Cell 49: 858 – 871

14. Escribano-Diaz C, Orthwein A, Fradet-Turcotte A, Xing M, Young JT, Tkac

J, Cook MA, Rosebrock AP, Munro M, Canny MD, et al (2013) A cell

cycle-dependent regulatory circuit composed of 53BP1-RIF1 and BRCA1-

CtIP controls DNA repair pathway choice. Mol Cell 49: 872 – 883

15. Feng L, Fong KW, Wang J, Wang W, Chen J (2013) RIF1 counteracts

BRCA1-mediated end resection during DNA repair. J Biol Chem 288:

11135 – 11143

16. Zimmermann M, Lottersberger F, Buonomo SB, Sfeir A, de Lange T

(2013) 53BP1 regulates DSB repair using Rif1 to control 5’ end resection.

Science 339: 700 – 704

17. Isobe SY, Nagao K, Nozaki N, Kimura H, Obuse C (2017) Inhibition of

RIF1 by SCAI allows BRCA1-mediated repair. Cell Rep 20: 297 – 307

18. Mattarocci S, Reinert JK, Bunker RD, Fontana GA, Shi T, Klein D, Cavadini

S, Faty M, Shyian M, Hafner L, et al (2017) Rif1 maintains telomeres and

mediates DNA repair by encasing DNA ends. Nat Struct Mol Biol 24:

588 – 595

19. Hengeveld RC, de Boer HR, Schoonen PM, de Vries EG, Lens SM, van

Vugt MA (2015) Rif1 is required for resolution of ultrafine DNA bridges

in anaphase to ensure genomic stability. Dev Cell 34: 466 – 474

20. Zaaijer S, Shaikh N, Nageshan RK, Cooper JP (2016) Rif1 regulates the

fate of DNA entanglements during mitosis. Cell Rep 16: 148 – 160

21. Alver RC, Chadha GS, Gillespie PJ, Blow JJ (2017) Reversal of DDK-

mediated MCM phosphorylation by Rif1-PP1 regulates replication

initiation and replisome stability independently of ATR/Chk1. Cell Rep

18: 2508 – 2520

22. Hiraga SI, Ly T, Garzon J, Horejsi Z, Ohkubo YN, Endo A, Obuse C, Boul-

ton SJ, Lamond AI, Donaldson AD (2017) Human RIF1 and protein phos-

phatase 1 stimulate DNA replication origin licensing but suppress origin

activation. EMBO Rep 18: 403 – 419

23. Sukackaite R, Cornacchia D, Jensen MR, Mas PJ, Blackledge M,

Enervald E, Duan G, Auchynnikava T, Kohn M, Hart DJ, et al (2017)

Mouse Rif1 is a regulatory subunit of protein phosphatase 1 (PP1).

Sci Rep 7: 2119

24. Lian HY, Robertson ED, Hiraga S, Alvino GM, Collingwood D, McCune HJ,

Sridhar A, Brewer BJ, Raghuraman MK, Donaldson AD (2011) The effect

of Ku on telomere replication time is mediated by telomere length but

is independent of histone tail acetylation. Mol Biol Cell 22: 1753 – 1765

25. Sridhar A, Kedziora S, Donaldson AD (2014) At short telomeres Tel1

directs early replication and phosphorylates Rif1. PLoS Genet 10:

e1004691

26. Gispan A, Carmi M, Barkai N (2017) Model-based analysis of DNA repli-

cation profiles: predicting replication fork velocity and initiation rate by

profiling free-cycling cells. Genome Res 27: 310 – 319

27. Nieduszynski CA, Hiraga S, Ak P, Benham CJ, Donaldson AD (2007) OriDB:

a DNA replication origin database. Nucleic Acids Res 35: D40 –D46

28. Siow CC, Nieduszynska SR, Muller CA, Nieduszynski CA (2012) OriDB, the

DNA replication origin database updated and extended. Nucleic Acids

Res 40: D682 –D686

29. Park S, Patterson EE, Cobb J, Audhya A, Gartenberg MR, Fox CA (2011)

Palmitoylation controls the dynamics of budding-yeast heterochromatin

via the telomere-binding protein Rif1. Proc Natl Acad Sci USA 108:

14572 – 14577

30. Shi T, Bunker RD, Mattarocci S, Ribeyre C, Faty M, Gut H, Scrima A, Rass U,

Rubin SM, Shore D, et al (2013) Rif1 and Rif2 shape telomere function and

architecture through multivalent Rap1 interactions. Cell 153: 1340 – 1353

31. MacIsaac KD, Wang T, Gordon DB, Gifford DK, Stormo GD, Fraenkel E

(2006) An improved map of conserved regulatory sites for Saccharomyces

cerevisiae. BMC Bioinformatics 7: 113

32. Hu Z, Killion PJ, Iyer VR (2007) Genetic reconstruction of a functional

transcriptional regulatory network. Nat Genet 39: 683 – 687

33. Lickwar CR, Mueller F, Hanlon SE, McNally JG, Lieb JD (2012) Genome-

wide protein-DNA binding dynamics suggest a molecular clutch for

transcription factor function. Nature 484: 251 – 255

34. Crabbe L, Thomas A, Pantesco V, De Vos J, Pasero P, Lengronne A

(2010) Analysis of replication profiles reveals key role of RFC-Ctf18

ª 2018 The Authors EMBO reports e46222 | 2018 13 of 14

Shin-ichiro Hiraga et al Yeast Rif1 at origins and blocked forks EMBO reports

Published online: August 13, 2018 



in yeast replication stress response. Nat Struct Mol Biol 17:

1391 – 1397

35. Ray Chaudhuri A, Callen E, Ding X, Gogola E, Duarte AA, Lee JE, Wong

N, Lafarga V, Calvo JA, Panzarino NJ, et al (2016) Replication fork

stability confers chemoresistance in BRCA-deficient cells. Nature 535:

382 – 387

36. Roberts CJ, Nelson B, Marton MJ, Stoughton R, Meyer MR, Bennett HA,

He YD, Dai H, Walker WL, Hughes TR, et al (2000) Signaling and circuitry

of multiple MAPK pathways revealed by a matrix of global gene expres-

sion profiles. Science 287: 873 – 880

37. Elledge SJ, Davis RW (1990) Two genes differentially regulated in the cell

cycle and by DNA-damaging agents encode alternative regulatory subu-

nits of ribonucleotide reductase. Genes Dev 4: 740 – 751

38. Nagalakshmi U, Wang Z, Waern K, Shou C, Raha D, Gerstein M, Snyder

M (2008) The transcriptional landscape of the yeast genome defined by

RNA sequencing. Science 320: 1344 – 1349

39. Spingola M, Grate L, Haussler D, Ares M Jr (1999) Genome-wide bioinfor-

matic and molecular analysis of introns in Saccharomyces cerevisiae.

RNA 5: 221 – 234

40. Knight B, Kubik S, Ghosh B, Bruzzone MJ, Geertz M, Martin V,

Denervaud N, Jacquet P, Ozkan B, Rougemont J, et al (2014) Two

distinct promoter architectures centered on dynamic nucleosomes

control ribosomal protein gene transcription. Genes Dev 28:

1695 – 1709

41. Hamperl S, Cimprich KA (2014) The contribution of co-transcriptional

RNA:DNA hybrid structures to DNA damage and genome instability. DNA

Repair (Amst) 19: 84 – 94

42. Wahba L, Costantino L, Tan FJ, Zimmer A, Koshland D (2016) S1-DRIP-

seq identifies high expression and polyA tracts as major contributors to

R-loop formation. Genes Dev 30: 1327 – 1338

43. Capra JA, Paeschke K, Singh M, Zakian VA (2010) G-quadruplex DNA

sequences are evolutionarily conserved and associated with distinct

genomic features in Saccharomyces cerevisiae. PLoS Comput Biol 6:

e1000861

44. Duquette ML, Handa P, Vincent JA, Taylor AF, Maizels N (2004) Intracel-

lular transcription of G-rich DNAs induces formation of G-loops, novel

structures containing G4 DNA. Genes Dev 18: 1618 – 1629

45. Kemmeren P, Sameith K, van de Pasch LA, Benschop JJ, Lenstra TL,

Margaritis T, O’Duibhir E, Apweiler E, van Wageningen S, Ko CW,

et al (2014) Large-scale genetic perturbations reveal regulatory

networks and an abundance of gene-specific repressors. Cell 157:

740 – 752

46. Diffley JF, Cocker JH (1992) Protein-DNA interactions at a yeast replica-

tion origin. Nature 357: 169 – 172

47. Diffley JF, Cocker JH, Dowell SJ, Rowley A (1994) Two steps in the assembly

of complexes at yeast replication origins in vivo. Cell 78: 303 – 316

48. Alabert C, Bukowski-Wills JC, Lee SB, Kustatscher G, Nakamura K, de

Lima Alves F, Menard P, Mejlvang J, Rappsilber J, Groth A (2014) Nascent

chromatin capture proteomics determines chromatin dynamics during

DNA replication and identifies unknown fork components. Nat Cell Biol

16: 281 – 293

49. Xu D, Muniandy P, Leo E, Yin J, Thangavel S, Shen X, Ii M, Agama K, Guo

R, Fox D III, et al (2010) Rif1 provides a new DNA-binding interface for

the Bloom syndrome complex to maintain normal replication. EMBO J

29: 3140 – 3155

50. Xu Y, Ning S, Wei Z, Xu R, Xu X, Xing M, Guo R, Xu D (2017) 53BP1 and

BRCA1 control pathway choice for stalled replication restart. Elife 6:

e30523

51. Park D, Lee Y, Bhupindersingh G, Iyer VR (2013) Widespread misinter-

pretable ChIP-seq bias in yeast. PLoS One 8: e83506

52. Teytelman L, Thurtle DM, Rine J, van Oudenaarden A (2013) Highly

expressed loci are vulnerable to misleading ChIP localization of

multiple unrelated proteins. Proc Natl Acad Sci USA 110:

18602 – 18607

53. Graf M, Bonetti D, Lockhart A, Serhal K, Kellner V, Maicher A, Jolivet P,

Teixeira MT, Luke B (2017) Telomere length determines TERRA and R-

loop regulation through the cell cycle. Cell 170: 72 – 85 e14

54. Hinshaw SM, Makrantoni V, Harrison SC, Marston AL (2017) The kineto-

chore receptor for the Cohesin loading complex. Cell 171: 72 – 84 e13

55. Kanoh Y, Matsumoto S, Fukatsu R, Kakusho N, Kono N, Renard-Guillet C,

Masuda K, Iida K, Nagasawa K, Shirahige K, et al (2015) Rif1 binds to G

quadruplexes and suppresses replication over long distances. Nat Struct

Mol Biol 22: 889 – 897

56. Moriyama K, Yoshizawa-Sugata N, Masai H (2018) Oligomer formation

and G-quadruplex binding by purified murine Rif1 protein, a key orga-

nizer of higher-order chromatin architecture. J Biol Chem 293:

3607 – 3624

57. Foti R, Gnan S, Cornacchia D, Dileep V, Bulut-Karslioglu A, Diehl S,

Buness A, Klein FA, Huber W, Johnstone E, et al (2016) Nuclear architec-

ture organized by Rif1 underpins the replication-timing program. Mol

Cell 61: 260 – 273

58. Hafner L, Lezaja A, Zhang X, Lemmens L, Shyian M, Albert B, Follonier C,

Nunes JM, Lopes M, Shore D, et al (2018) Rif1 binding and control of

chromosome-internal DNA replication origins is limited by telomere

sequestration. Cell Rep 23: 983 – 992

59. Hiraga S, Botsios S, Donze D, Donaldson AD (2012) TFIIIC localizes

budding yeast ETC. sites to the nuclear periphery. Mol Biol Cell 23:

2741 – 2754

60. Katou Y, Kaneshiro K, Aburatani H, Shirahige K (2006) Genomic

approach for the understanding of dynamic aspect of chromosome

behavior. Methods Enzymol 409: 389 – 410

61. Nakato R, Itoh T, Shirahige K (2013) DROMPA: easy-to-handle peak call-

ing and visualization software for the computational analysis and vali-

dation of ChIP-seq data. Genes Cells 18: 589 – 601

62. Afgan E, Baker D, van den Beek M, Blankenberg D, Bouvier D, Cech M,

Chilton J, Clements D, Coraor N, Eberhard C, et al (2016) The Galaxy

platform for accessible, reproducible and collaborative biomedical analy-

ses: 2016 update. Nucleic Acids Res 44: W3 –W10

63. Eaton ML, Galani K, Kang S, Bell SP, MacAlpine DM (2010) Conserved nucle-

osome positioning defines replication origins. Genes Dev 24: 748 – 753

64. Nakao A, Yoshihama M, Kenmochi N (2004) RPG: the ribosomal protein

gene database. Nucleic Acids Res 32: D168 –D170

65. Grate L, Ares M Jr (2002) Searching yeast intron data at Ares lab Web

site. Methods Enzymol 350: 380 – 392

66. Viggiani CJ, Knott SR, Aparicio OM (2010) Genome-wide analysis of DNA

synthesis by BrdU immunoprecipitation on tiling microarrays (BrdU-IP-chip)

in Saccharomyces cerevisiae. Cold Spring Harb Protoc 2010: pdb.prot5385

67. Hoffman CS, Winston F (1987) A ten-minute DNA preparation from yeast

efficiently releases autonomous plasmids for transformation of Escheri-

chia coli. Gene 57: 267 – 272

License: This is an open access article under the

terms of the Creative Commons Attribution 4.0

License, which permits use, distribution and reproduc-

tion in any medium, provided the original work is

properly cited.

14 of 14 EMBO reports e46222 | 2018 ª 2018 The Authors

EMBO reports Yeast Rif1 at origins and blocked forks Shin-ichiro Hiraga et al

Published online: August 13, 2018 


