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Abstract 
 

Small-scale faults with associated drag folds in brittle-ductile rocks can retain detailed 
information on the kinematics and amount of deformation the host rock experienced. 
Measured fault orientation (α), drag angle (β) and the ratio of the thickness of deflected layers 
at the fault (L) and further away (T) can be compared with α, β and L/T values that are 
calculated with a simple analytical model. Using graphs or a numerical best-fit routine, one 
can then determine the kinematic vorticity number and initial fault orientation that best fits the 
data. The proposed method was successfully tested on both analogue experiments and 
numerical simulations with BASIL. Using this method, a kinematic vorticity number of one 
(dextral simple shear) and a minimum finite strain of 2.5 to 3.8 was obtained for a population 
of antithetic faults with associated drag folds in a case study area at Mas Rabassers de Dalt on 
Cap de Creus in the Variscan of the easternmost Pyrenees, Spain. 
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1. Introduction 
 

One of the aims of structural geology is to 
determine and quantify the amount and type of 
deformation that rocks experienced. For this 
structural geologist use a variety of structures 
that record deformation, such as folds, 
boudins, veins, etc. (e.g. Ramsay and Huber, 
1983). In this paper we propose a new method 
to determine finite strain and the kinematics of 
deformation using isolated, discrete small-
scale faults and their associated drag folds.  

Slip along a fault will cause 
heterogeneous deformation in the vicinity of 
the fault. Drag folds are the usual result in 
foliated rocks. Recently, much attention has 
been given to small-scale faults and their 

associated drag folds in mostly ductile rocks 
(Passchier, 2001; Grasemann and Stüwe, 
2001; Grasemann et al., 2003; Exner et al., 
2004; Grasemann et al., 2005; Wiesmayr and 
Grasemann, 2005; Coelho at al., 2005; Kocher 
and Mancktelow, 2006). In the modern 
literature, these structures were first described 
by Gayer et al. (1978) and Hudleston (1989). 
These structures were later dubbed "flanking 
folds" or "flanking structures" by Passchier 
(2001), who used this term for a variety of 
structures apart from fault-related drag folds. 
Instead of this new terminology, we prefer to 
use well-known and long-used terms: faults 
and drag folds. 

The aforementioned authors described 
a range of drag fold structures and proposed a 



Gomez-Rivas, E., Bons, P.D., Griera, A., Carreras, J., Druguet, E., and Evans, L. (2007). Strain and vorticity analysis 
using small-scale faults and associated drag folds. Journal of Structural Geology, 29, 1882-1899 

 

2 
 

number of classification schemes. Basically, 
an isolated fault with its associated drag folds 
falls into one of four categories by the 
combination of two parameters: fault 
movement is antithetic (a-type of Grasemann 
et al., 2003) or synthetic (s-type) with regard 
to the far-field sense of shear, and drag folds 
are normal or reverse with regard to the slip 
along the fault. Of these four, the antithetic 
reverse-drag category is the most common for 
isolated faults. The fact that reverse drag is 
common is to be expected for isolated faults in 
an otherwise homogeneously deforming 
medium. A straight foliation element 
(layering, cleavage) that is cut by the fault will 
remain on a single straight plane away from 
the fault, whereas close to the fault, it is bent 
by the fault movement (Fig. 1a). Both 
synthetic and antithetic faults will therefore 
initially develop reverse-drag folds. However, 
Exner et al. (2004) showed that the slip 

direction may change at a high strain and 
reverse drag folds then become normal drag 
folds.  

An isolated, discrete fault will typically 
develop drag folds with a constant sign of 
curvature. In a ductile shear band (i.e. minor 
shear zone) the foliation is not cut by a fault, 
but can be traced continuously through the 
shear band (Fig. 1b). This implies that there is 
an inflexion point where curvature changes 
sign (Coelho et al., 2005). This produces 
shear-band type structures in the terminology 
of Wiesmayr and Grasemann (2005). 
However, these structures still exhibit the 
same reverse or normal drag on a larger scale 
than the deflection caused by the localised 
shearing within the shear band. These reverse-
drag folds can usually not be discerned when 
shear band spacing is on the same scale as the 
reverse drag folds. 

 

 
 

Fig. 1. Schematic illustration of the formation of reverse-drag folds adjacent to (a) isolated faults and (b) shear bands 
in a general shear field (Wk=0.64) that is homogeneous far away from the fault/shear band. In case of a ductile shear 
band, normal drag is found within the shear band, in addition to reverse drag away from the shear band. The same 
applies to antithetic movement (top) and to synthetic movement (bottom). Left column shows the geometry before 
deformation. 

 
Despite the several field studies (Gayer 

et al., 1978; Druguet et al., 1997; Harris, 
2003), as well as numerical (Grasemann and 
Stüwe, 2001; Grasemann et al., 2003; 
Grasemann et al., 2005; Wiesmayer and 
Grasemann, 2005; Coelho et al., 2005; Kocher 
and Mancktelow, 2006) and experimental 
simulations (Hudleston, 1989; Odonne, 1990; 

Koyi and Skelton, 2001; Harris et al., 2002; 
Exner et al., 2004; Kocher and Mancktelow, 
2006) of drag fold structures, so far only 
Kocher and Mancktelow (2005) proposed a 
way to use these structures to quantify the 
finite strain and kinematics of deformation. 
They employed the analytical solution of 
Schmid and Podladchikov (2003) for the 
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deformation field along an isolated fault that 
itself is passively deformed by the applied 
bulk flow. Their method is essentially 
applying the reverse model strain field to 
straighten out the foliation. Since bulk 
deformation kinematics and finite strain are 
not known a priori, a range of finite strains 
and vorticities are applied and the one that best 
straightens the foliation is chosen as the 
solution. The advantage of the method is that a 
single structure can be used to determine the 
vorticity of deformation, the finite strain since 
formation of the fault, and the original 
orientation of the fault relative to the foliation. 
A disadvantage is that appropriate software is 
needed. 

In this paper we propose a similar 
method to determine these three parameters. 
The advantage of our proposed method is that 
the method does not necessarily require a 
computer. Instead, charts can be used, which 
means the method can easily be applied in the 
field. However, a more accurate determination 
can only be achieved numerically, as is 
described in this paper. A disadvantage is that 
multiple fault-drag fold structures are needed 
at different stages of development (finite strain 
since formation). This study is based on a 
population of drag fold structures in deformed 
quartzites from Mas Rabassers de Dalt on the 
Cap de Creus Peninsula in north-eastern Spain 
(Fig. 2). These structures and their setting will 
be described first to provide the background 
for the method that is described in the 
subsequent sections. 
 
2. Examples from the Rabassers quartzite 
 
2.1. Regional setting of the Mas Rabassers de 
Dalt locality 
 

The Cap de Creus Peninsula is the 
easternmost outcrop of the Variscan basement 
exposed along the Axial Zone of the Pyrenees 
(Barnolas and Chiron, 1996; Carreras, 2001). 
The dominant lithology in the area of interest 
near the ruin of Mas Rabassers de Dalt (UTM 
31N 0523100, 4685200, Fig. 3) is a 
monotonous series of amphibolite-facies meta-
turbidites (Druguet, 1997; 2001). The rocks 

experienced multiple deformation phases 
during the Variscan Orogeny (Druguet, 1997; 
Druguet, 2001; Bons et al., 2004). Some 
quartzite beds, ranging from a few tens of 
centimetres to a few metres in thickness, are 
intercalated in the meta-turbidites. They form 
the only marker horizons that can be traced 
over distances of up to a few hundred metres. 
All the drag fold structures discussed in this 
paper were found in one such bed, which has a 
distinct black-and-white cm-scale banding 
(Fig. 2). The banding is layer-parallel and 
therefore assumed to be original sedimentary 
layering. The colour difference is a result of 
different amounts of graphite and other 
impurities, which also results in a difference in 
grain size between the layers (Fig. 2g-h). 
There are no indications for any significant 
differences in rheological properties between 
the dark and light bands (no cuspate-lobate 
structures, buckle folds in specific layers, etc.). 

Near Mas Rabassers de Dalt, the 
quartzite and S1 layer-parallel foliation (S01) 
are affected by two more folding events (D2 
and D3), resulting in a complex exposure 
pattern (Druguet, 1997). Pegmatites that 
intruded during peak-metamorphic conditions 
(Druguet and Hutton, 1998) are only affected 
by retrograde D3 folding and shearing. The 
regional trend of the S01 main foliation is NW-
SE, when not affected by D3 shearing. A broad 
zone of dextral NW-SE-trending D3 shearing 
rotated S01 towards the NE-SW trend that 
dominates in the area shown in figure 3. The 
curvature of the quartzite layer and the S01 
foliation is due to decametric folds predating 
the shearing event that can be recognized from 
the structural map. Localisation of the shearing 
led to the formation of a number of narrower 
(≥10 m) shear zones with distinctly elevated 
shear strain. Although the superposition of 
three deformation events makes it difficult to 
interpret the map pattern at Mas Rabassers de 
Dalt (Fig. 3), extensive mapping at the site and 
the region has unambiguously established the 
dextral nature of the D3 shearing and 
associated folding (Carreras and Casas, 1987; 
Carreras, 2001; Carreras et al., 2005; Fusseis 
et al., 2006). 
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Fig. 2. Drag fold structures in the banded quartzite at Mas Rabassers de Dalt, Cap de Creus, Spain. Sense of shear is 
top (east) to the right. (a-d) Antithetic faults with reverse-drag folds at different stages of development. (e) One of the 
rare synthetic faults. (f) Photograph and sketch showing that in the third dimension the faults are straight and extend 
further than their length perpendicular to the banding. (g) Plane-polarised light micrograph of an antithetic fault. 
Variations in the content of graphite and mica particles form the dark and light bands. (h) Same image in cross-
polarised light. Quartz grain size is largest in clean quartz. All images looking onto the surface perpendicular to the 
foliation and faults. Black scale bars 10 mm, white scale bars 0.5 mm, Ø of 5 €-cent coin is 21 mm. 
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Fig. 3. Detailed map of the Mas Rabassers de Dalt Outcrop showing the refolded quartzite bed and the localities 
where the small-scale faults were found and measured. The stereoplot summarizes the main structural information: 
poles to quartzite bedding (open dots) that lie on great circle (dashed line) defining the D3 fold axis (closed dot) 
which lies on the great circle of the average D3 shear plane. The cross is the average D3 shear direction. Black arrows 
indicate sense of D3 shear zones. (Based on Druguet, 1997). 
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2.2. Drag fold structures 
 

The discrete faults with drag folds are 
mainly found in the refolded quartzite bed. 
Within that bed they only occur in sections of 
the bed that run roughly parallel to the D3 
shear zones. This suggests that they formed 
during D3 dextral shearing and not during 
earlier deformation events. Almost all 
(localities A-F in Fig. 3) occur in the western 
limb of a D2-fold, of which the hinge is skirted 
by one of the zones of most intense localised 
shearing. 

The drag folds form at cm-scale, 
steeply plunging faults, best seen on gently 
dipping outcrop surfaces. Almost all drag folds 
are reverse. Faults with the least offset relative 
to their length are almost perpendicular to the 
banding in the quartzite (Fig 2a). More 
evolved structures make an increasingly 
smaller angle with the banding, suggesting the 
structures progressively rotated clockwise 
(Fig. 2c-d). Fault tips can rarely be discerned, 
as faults tend to bend in a listric form to 
become parallel to the banding at both ends. 
Dextral layer-parallel slip is observed in a few 
rare cases where crosscutting veins are offset. 
Clockwise rotation of the faults and layer-
parallel slip all indicate dextral shear. The 
faults are therefore interpreted as antithetic 
faults. Synthetic faults (Fig. 2e) are rare in the 
quartzite, and usually make a small angle with 
the banding. In the third dimension, the small 
faults are remarkably straight and may extend 
over more than a metre (Fig. 2f). Even on the 
microscopic scale, the faults are discrete 
planes with only a very narrow damage zone 
(Fig. 2g-h). 
 
3. Method 
 

The method described below is aimed at 
estimating the kinematic vorticity number 
(Means et al., 1980) and finite strain that the 
rock experienced using parameters of the drag 
fold structures that can be measured easily. 
The following parameters can be determined 
in the field (Fig. 4): the angle (α) between the 
fault and the far-field foliation, the drag angle 
(β) between the foliation and the fault 

measured at the fault, preferably in the middle 
of the fault, and finally the ratio between the 
thickness of a marker layer at the fault, 
measured parallel to the fault (L) at the fault, 
and perpendicular to the layer (T) away from 
the fault. All parameters must be measured in 
the plane perpendicular to the fault and 
foliation. 

The first main assumption is that the 
fault acts as a passive, straight marker line that 
is being rotated and stretched/shortened by the 
applied bulk flow. This assumption is 
validated by both numerical and physical 
experiments (Grasemann and Stüwe, 2001; 
Exner et al., 2004). Clearly, the four 
parameters will evolve from their initial values 
(α0=β0 and L0/T0=1/sin(α0)), depending on the 
flow field relative to the initial orientation of 
the fault and foliation. We need to know how 
α, β and L/T evolve, as a function of 
progressive deformation and initial conditions, 
to determine which initial conditions, 
kinematics of flow and finite strain lead to the 
combinations of α, β and L/T that were 
measured in the field. However, there may not 
be a unique solution for any given single 
combination of α, β and L/T. This brings us to 
the second main assumption for the proposed 
method: during progressive deformation faults 
form at different stages, but with the same 
initial orientation (α0). At the end of 
deformation (the state observed in the field), 
each fault experienced different amounts of 
deformation and is therefore in a different state 
of development (Fig. 2a-d). Analysis of 
several of such faults produces a number of 
different α, β and L/T combinations. These 
measured combinations should lie on a path in 
α, β and L/T space that is unique to the flow 
kinematics and initial orientation of the faults. 

The basic idea of our proposed method 
is that theoretical paths for all flow kinematics 
and initial fault orientations can be 
determined, and can then be compared with α, 
β and L/T data sets that are measured in the 
field. The path that best fits the data provides 
us with the flow kinematics and the initial fault 
orientation. It also allows us to determine 
which data point represents the highest strain, 
which gives a minimum estimate of the finite 
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strain. Comparison of theoretical paths and 
data can be done using charts or with a 
computer program that carries out the best fit. 
The advantage of using charts is that they can 
easily be employed in the field. 
 

 
 
Fig. 4. Sketch showing a fault and drag fold in the 
undeformed (a) and deformed (b) stage, with all the 
parameters that are required for the analysis. 
 
3.1. Theoretical α-β-L/T paths 
 

The following analysis is based on the 
deformation at an isolated single straight fault 
in an otherwise homogenously deforming 
medium. The fault is supposed to have a 
limited extent, so that the offset reduces to 
zero at both ends. We consider a plane-strain 
case, with the fault oriented parallel to the 
intermediate principal stretching direction. The 
problem can therefore be regarded as two-
dimensional. If deformation is not plane strain, 
stretching or shortening in the third dimension 
would cause an area change in the section 
under consideration, but no changes in the 
angles and other parameters that are used 
below. We further consider an initially straight 
foliation perpendicular to the section under 
consideration.  

Similar to Kocher and Mancktelow 
(2005), we fix our reference frame to be 
parallel and perpendicular to the far-field 
foliation orientation. The foliation is assumed 
to be parallel to a direction of zero rotation and 
therefore parallel to one of the flow 
eigenvectors or apophyses (Passchier, 1988; 

Ebner and Grasemann, 2006). As in most 
studies, we assume that the kinematics of 
strain do not change during deformation. The 
bulk flow field is now given by the position 
gradient tensor F: 

 F =
a g

0 1/a

 

 
 




, (1) 

where a is the amount of stretching, and g the 
amount of shearing, both parallel to the 
foliation. Because of the definition of the 
reference frame, the far field foliation does not 
rotate relative to the reference frame, but it 
may stretch or shorten if a≠1. F is area-
conservative because of our assumption of 
plane-strain flow. 

It is also assumed that the fault is 
frictionless, so that it cannot support any shear 
stress. This implies that the material adjacent 
to the fault stretches/shortens in pure shear 
parallel to the fault. Rotation of the fault adds 
a spin to the deformation, but deformation 
immediately adjacent to the fault plane 
remains coaxial. The no-friction assumption is 
unlikely to be completely valid in reality. 
However, our experiments and numerical 
simulations below show that small deviations 
in mechanical properties of the fault or shear 
zone do not noticeably change the outcome. 
Furthermore, the fault as a whole behaves as a 
passive plane, or a line in 2D, and therefore 
stretches and shortens according to the bulk 
flow field. We define e as the amount of 
stretch or longitudinal strain of the fault (its 
finite length / original length). With these 
assumptions an analytical solution exists for 
the evolution of α, β and L/T for a layer that 
intersects the fault at its centre. 

To determine the orientation of the 
fault with progressive strain, we consider a 
unit vector parallel to the fault. This vector has 
initial coordinates [cos(α0),sin(α0)]. After 
deformation, and due to the application of the 
tensor F, the vector will have new coordinates 
[a·cos(α0)+g·sin(α0),(1/a)·sin(α0)]. The stretch 
(e), parallel to the fault, is the ratio of the finite 
and original length of the unit vector: 

 

 e= a ⋅cosα0( ) + g ⋅sin α0( )( )2
+ 1

a2
sin2 α0( )  (2) 
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The finite orientation (α) of the fault 

relative to foliation is: 
 

 α = arctan
sin α0( )

a2 ⋅cosα0( ) + a ⋅ g ⋅sin α0( )
 

 
  

 

 
   (3) 

 
As deformation progresses the foliation 

is reoriented at the fault, describing a drag 
angle (β) between the foliation and the fault 
plane. We use the assumption of a frictionless 
fault and therefore pure shear parallel to the 
fault. The foliation at the fault thus 
experiences a stretch (e) parallel to the fault, 
while it passively rotates along with the fault. 
Stretching and rotation determine the drag 
angle. A local position gradient (F’ ) tensor can 
be defined in a coordinate system parallel to 
the fault: 

 

 F'=
e 0

0 1/e

 

 
 




 (4) 

 
A unit vector in this local coordinate 

system will change from initial coordinates 
[cos(β0),sin(β0)] to new coordinates 
[e·cos(β0),(1/e)·sin(β0)]. The angle (β) between 
foliation at the fault and that fault will then be 
(using α0 = β0): 

 

β = arctan
sin β0( )

e2 ⋅cos β0( )
 

 
  

 

 
  = arctan

sin a0( )
e2 ⋅cos a0( )
 

 
  




 (5) 

 
The reference layer should intersect the 

fault just at the centre of it, where the 
maximum displacement can be found. Away 
from the fault the finite thickness (T) of that 
layer is a function of the bulk finite strain and 
its original thickness (T0): 

 

 T = T0

a
 (6) 

 
The initial fault-parallel thickness (L0) is: 
 

 L0 = T0

sin α0( )
 (7) 

 

This line L0 gets stretched by the same amount 
(e) as the fault, so its length after deformation 
will be: 

 L = e⋅ L0 = e⋅T0

sin α0( )
 (8) 

 
As the absolute dimensions are irrelevant for 
the geometry of the system, we combine 
equation (7) and (8) to obtain the ratio L/T: 
 

 L /T = e⋅T0

sin α0( )
a
T0

= e⋅ a
sin α0( )

 (9) 

 
We now have the three measurable 

parameters α, β and L/T as a function of the 
unknown variables α0, a, and g. Although the 
combination of a and g defines the amount of 
finite strain and the kinematics of strain, it 
may be more useful to use the two variables 
finite strain ration (Rf) and angle between the 
two flow apophyses on the vorticity-normal 
section (ω) or kinematic vorticity number 
(Wk). Rf is the axial ratio of the finite strain 
ellipse and ω the angle between the flow 
apophyses, with: 

 1/arctanaagω−=

, 
()cosWkω=

 (10) 

and   
 

Rf =
2 g2 + 1

4
1/a+ a( )2 + g2 + a−1/a( )2

2 g2 + 1
4

1/a+ a( )2 − g2 + a−1/a( )2
 (11) 

 
ω can range from 0° for simple shear (Wk=1) 
to +90° for pure shear (Wk=0) stretching 
parallel to the foliation, or -90° for pure shear 
shortening parallel to the foliation. 

With the above equations, curves of α 
and L/T as a function of β are shown for 
different vorticities and starting orientation of 
the fault (Fig. 5).  
   
3.2. Determining vorticity and initial fault 
angle with charts 
 
To determine the vorticity (ω) and initial fault 
orientation (α0), α, β and L/T need to be 
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measured on a population of faults with drag 
folds. Such data can be measured in the field 
or from pictures. The plane of observation 
should be perpendicular to both fault and 
foliation. If not, the apparent values should be 
corrected to get the true values. The data 
should be collected as close as possible to the 
middle of the fault, so that equation (2) holds 
for the stretching of the material immediately 
adjacent to the fault. It should also be noted 
that these equations can be only used when the 
fault is discrete. In case of a narrow ductile 
shear band, the angle β would be modified due 
to shearing of the foliation in the narrow zone 
(Fig. 1b). 

Applying the above equations, several 
unique graphs for the evolution of α’ , β and 
L/T can be plotted for progressive strain, for a 
certain starting orientation of the fault (α0) and 
a certain kinematic vorticity number (Wk) (Fig 
5). Charts covering the full range of ω from -
90 to +90° and α0 from 0 to 180° are provided 
in the appendix. We assume that all the shear 
bands start off at different times, but with a 
similar orientation. Each fault then represents 
a different stage of development. The data can 
be plotted in each of the graphs of figure 5. 
Ideally, all data should plot on a single curve 
that represents the evolution of a fault system 
with a certain α0 and ω. The fault that 
experienced the least strain should lie closest 
to the estimated initial fault angle (α0). The 
total amount of strain can be estimated from 
that for the most developed fault system. This 
is, of course, a minimum estimate, because 
even the most developed, oldest fault that is 
found must not necessarily have experienced 
the total finite strain of the host rock. The pair 
of curves in figure 5 that best fits the eight 
measurements is the one for ω=0° (simple 
shear) and α0 is 70º to 80°. The highest strain 
the rock experienced is estimated to be 
between Rf=8 and 16, which corresponds to a 
dextral shear strain of 2.5 to 3.8. 

Figure 5 shows that the curves for 
different α0 and ω are distinct, as long as α0 is 
larger than about 40°. This means that the 
method is only applicable to faults that started 
off at a high angle to the foliation. 

 
3.3. Numerical implementation of the method 
 

Finding the curve that best fits the data can 
also be done numerically, using a least-squares 
approach. A small program that does the curve 
fitting was written in the language "C" (source 
code can be obtained from the authors). Input 
is a text file containing a list of α, β and L/T 
data. The program cycles through all possible 
kinematic vorticity numbers (-1 to +1) and α0 
angles (0 to 180°), each with increments of 1°. 
For each ω and α0 combination, the program 
then calculates the α-β-L/T curve for 
progressive strain, increasing strain in small 
increments. For each strain increment and each 
i-th data point, the difference ∆i between the 
theoretical and measured α, β, L/T values is 
calculated: 

 
( ) ( )

( )0

2 2

( , , ) 2
/ /

c i c i

i Rf

c iw L T L T
α ω

α α β β− + −
∆ =

+ −
 (12) 

 
Here the subscript c stands for 

theoretical values and i for measured data. 
Because the range of L/T values differs from 
that of the angles α and β, L/T data may be 
given a different weighting (w) for the least-
squares best fit. For a given ω and α0 
combination, the sum (Σ∆i) of the smallest ∆i-
value for each data point is a measure of how 
well that ω and α0 combination fits the data. 
The ω and α0 combination with the lowest Σ∆i 
is regarded as the best estimate of ω and α0. 
Once a best estimate for ω and α0 is found, 
one can estimate the amount of strain that each 
analysed fault experienced by finding the 
strain that minimises ∆i, using equation (12).  
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Fig. 5. Curves of α and L/T as a function of β for different vorticities and starting orientations of the fault. This chart 
can be used to estimate Rf, vorticity and initial fault angle in the field. Insets show the Mohr-circle for stretch for an 
Rf-value of 4. Eight data points from Rabassers de Dalt are plotted in each of the graphs. The pair of curves that best 
fits these data is the one for ω=0° (simple shear) and α0 is between 70º and 80°. The highest strain the rock 
experienced is estimated to be between Rf=8 to 16 (shear strain is 2.5 to 3.8). 
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4. Validation of the method 
 
4.1. Introduction 
 

In order to ascertain the validity of the 
method, it has been tested on several analogue 
and numerical experiments with different 
initial fault angles and different boundary 
conditions. First, the method has been applied 
to a simple shear analogue model from Exner 
et al. (2004) and later to a pure shear 
experiment of our own. We also ran a series of 
numerical experiments with a variety of initial 
angles and vorticities, ranging from pure to 
simple shear. In all cases, we measured α, β 
and L/T of a single drag fold structure at 
different stages of its development, and 
applied the least-squares best-fit routine to the 
data. 
 
4.2. Validation on a simple shear analogue 
experiment 
 

Exner et al. (2004) studied drag fold 
structures at a fault in a deforming a 
homogeneous, linear viscous matrix material 
(PDMS) in a ring shear rig. Each of their 
models started with a predefined fault, 
lubricated using liquid soap and silicone oil. 
They tracked the offset and deflection of 
foliation around the fault using a marker grid. 
We used published images of one experiment 
for α0=90° according to the authors (Fig 6, 
after their figure 6). It should be noted that the 
actual starting angle in that experiment was 
slightly less, about 87°. The fault initially has 
antithetic slip and develops reverse drag folds. 
At a shear strain of 2.3, the fault has rotated 
67° and slip reverses to become synthetic.  In 
the terminology of Grasemann et al. (2003) the 
system evolves from a reverse-drag a-type, to 
a normal-drag s-type flanking fold. 

Nine groups of data (α, β, L/T) were 
measured from the figures of Exner et al. 
(2004) up to a shear strain of 1.8, where the 
finite offset along the fault is still antithetic. 
With our analysis (Fig. 7) we obtained an 
estimated initial fault angle of 85° (true value 
87°) and an angle between flow apophyses of 

ω=3° or Wk=1.00 (true value 0° and 1.00 
respectively).  
 

 
 

Fig. 6. Progressive development of a reverse a-type 
flanking fold (Modified from Exner et al. (2004). 
 
4.3. Validation on pure shear analogue 
experiments 
 

To test the method on a pure shear case, we 
used the deformation apparatus described by 
Carreras and Ortuño (1990) and Druguet and 
Carreras (2006). The deforming medium was 
soft, commercially available plasticine. This 
material has been characterized as non-linear 
elasto-viscous with a stress exponent of 3, an 
effective viscosity η∼4·107 Pa·s at the 
experimental conditions, a density ρ of 
1.15·103 kg/m3, and shear modulus G∼105 Pa 
(Gomez-Rivas, 2005). The model had initial 
dimensions of 29x15x10 cm and was 
deformed in pure shear at a temperature of 
26ºC and at a strain rate of 4·10-5 s-1. Since 
tests with a lubricated cut, as used by Exner et 
al. (2004), failed, we simulated the fault with a 
lenticular fracture that was filled with much 
softer PDMS (Fig. 8). The fault was initially 
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oriented 60° to the extension direction. A 5 
mm grid was drawn on the surface of the 
plasticine. Plane-strain pure-shear deformation 

was applied by moving the sides of the 
sample, while keeping the sample thickness 
constant at 10 cm. 

 

 
Fig. 7. Curves of α, β and L/T for simple shear and a starting orientation of the fault of 85º, which best fit the data 

measured from the experiment of Exner et al. (2004). 
 
 Shortening lead to a rotation of the 
fault and the development of reverse-drag 
folds. The soft PDMS was squeezed towards 
the tips of the fault, where wing cracks 
developed. Despite these developments, our 
analysis of six data groups, measured every 
10% shortening, gave a good estimate of the 
vorticity (89° instead of 90°) and initial fault 
angle (59° instead of 60°) (Fig. 9). 
 

 
 
Fig. 8. Initial and final stage of a pure shear analogue 
model showing the evolution of an pre-existing fault (a 
PDMS-filled lens) and its associated drag folds. The 
side of each square is 0,5 cm. wide. 

4.4. Validation on finite element numerical 
simulations 
 

As shown above, our proposed method 
appears to work well for ideal pure and simple 
shear deformation. Unfortunately, 
experimental data were not available for 
general shear. We therefore conducted a series 
of finite element models to test the method for 
a range of vorticities and initial fault angles. 
For the numerical simulations we used the 
code BASIL (Barr and Houseman, 1996) that 
is linked to the modelling platform Elle 
(Jessell et al., 2001). 

The models were two-dimensional and 
consisted of a square containing a narrow 
ellipse in the centre (Fig. 10). The host rock 
was simulated with a homogeneous isotropic 
linear viscous material with a viscosity (η) of 
one. A single layer of viscosity 1.1 represented 
the foliation in the host rock. Like Grasemann 
et al. (2003) we simulated the fault in the 
centre of each model with a narrow ellipse 
with a viscosity of 0.01. Two types of initial 
geometries were considered, with the ellipse 
oriented at 45º and 75º to the foliation, 
respectively. These two models were deformed 
under different velocity boundary conditions, 
from simple to pure shear, varying the angle 
between flow apophyses (ω) by 30º (Table 1). 
The grid was generated with a self-meshing 
routine using Delauney triangles with a 
minimum angle of 10º. 
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At least 6 groups of data (α, β, L/T) 
were measured at different finite strain from 
each simulation, and analyzed to determine the 
vorticity and initial fault angle. The difference 
between true and estimated values are plotted 
in Fig. 11, and listed in table 1. Differences in 
Wk ranges from 0 to 0.1 at the most, and 

estimated initial fault angles are within 7º of 
the true values. 

Summarizing, in all tests the results 
from the analysis closely match the known 
true values of the physical and numerical 
experiments, allowing us to apply the method 
to naturally deformed rocks with confidence. 

 

 
 
Fig. 9. Curves of α, β and L/T for pure shear and a starting orientation of the fault of 59º. The measured data points 
of our experiment fit precisely to the calculated curves. 
 
  

 
 

Fig. 10. (a) Initial configuration in finite element simulations with BASIL for an initial fault angle of 75º. (b) 
Geometry at the end of a simulation for Wk=0.5 at a finite strain of Rf=2.6. 

 
5. Strain analysis applied to the Mas 
Rabassers de Dalt outcrop 
 
A total of 29 small antithetic faults in the 
quartzite layer at Mas Rabassers de Dalt (Fig. 
3) were analyzed to estimate the deformation 
experienced by this rock. The finite fault 
orientations ranged from α=10 to 64° (Table 
2). The data were processed with the software 
described in section 3.3. The results showed an 
initial fault angle (α0) of 78º and an angle 
between flow apophyses (ω) of 3º, which gives 
a bulk kinematic vorticity number (Wk) of 1.00 
(dextral simple shear). The highest strain was 

recorded by fault structure number 5 (at 
locality C in Fig. 3) with a finite strain of 
about Rf=8 to 16, which is equivalent to a 
shear strain of about 2.5 to 3.8. 

The dextral simple shear inferred from 
this analysis is consistent with the field 
observations: the quartzite layer is oriented 
parallel to the zone of highest D3 shear strain. 
Only one small fault (locality F) was found 
away from the main shear zone, but this one, 
with a high angle of α=54° to the foliation, 
experienced less finite shear strain.  
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Fig. 11. Comparison of true (open dots) and estimated 
(closed dots) values of kinematic vorticity number and 
initial fault angles, for eight numerical simulations with 
BASIL. 

 
Table 1 
True and calculated values of bulk kinematic vorticity 
number (Wk) and initial fault angle (α0) for eight finite 
element simulations, showing that errors in Wk are 
below 0.1 and in α0 below 7º 
Initial ω Initial Calculated Wk Initial Calculated α0 
angle Wk Wk error α0 α0 error 
0º 1.00 0.92 0.08 45º 52.0º 7.0º 
0º 1.00 1.00 0.00 75º 75.1º 0.1º 
30º 0.87 0.79 0.08 45º 48.8º 3.8º 
30º 0.87 0.86 0.01 75º 69.0º 6.0º 
60º 0.50 0.48 0.02 45º 44.7º 0.3º 
60º 0.50 0.58 0.08 75º 72.7º 2.3º 
90º 0.00 0.01 0.01 45º 44.1º 0.9º 
90º 0.00 0.10 0.10 75º 75.7º 0.7º 

 
The available data set it is large enough 

to test the precision of the method. This was 
done by randomly selecting subsets of 5, 9, 13, 

17, 21 and 25 data and using these subsets to 
determine vorticity and initial fault angle. Ten 
different random subsets were processed for 
each size of the subset. Figure 13 shows that 
even very small datasets (5 to 9 data) already 
give approximately the right solution. It should 
also be noted that least-squares best fit using 
29 data points (measured by EGR) produced 
almost identical results to that using the graphs 
(Fig. 5) on only eight data points 
independently collected by someone else 
(PDB). This not only indicates that the 
graphical method with a limited data set 
produces good results but also that user bias 
does not seem to be a significant factor in the 
analysis. 
 
6. Discussion and conclusions 
 

In this paper we have shown that 
small-scale faults with drag folds can be used 
to determine vorticity, initial fault angle, and 
estimate of the minimum finite strain since 
first fault nucleation. This is a useful addition 
to the structural geologist's "toolbox" because 
relatively few methods exist to determine and 
quantify vorticity (Ghosh, 1987; Passchier and 
Urai, 1988; Wallis, 1992; Short and Johnson, 
2006). 

 

 
 

Fig. 12. Curves of α, β and L/T for an angle between flow apophyses of 3º and an initial fault angle of 78º. The 
plotted data correspond to the measured parameters at Mas Rabassers de Dalt. 
 

The initial fault angle (α0) can usually 
be estimated in the field, by finding the 
steepest fault with the least offset and drag 
fold bending. If this α0 is determined 

independently first, it can of course be used in 
the subsequent determination of the angle 
between flow apophyses (ω), either when 
using the graphs (Fig. 5 and Appendix), or 
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when using the least-squares technique. In the 
latter case one can set α0 and only iterate over 
ω and Rf to find the best fit. However, without 
using a priori knowledge of α0, the method 
appears robust and produced estimated values 
close (<10°) to the true ones in all tests on 
experiments and numerical simulations.  

 
Table 2 
Values of α, β and L/T measured from the Rabassers de 
Dalt outcrop 
locality data group α0 β0 L/T 
A 1 14 39 2.93 
 2 36 67 1.93 
B 3 53 77 1.56 
C 4 21 28 2.81 
 5 10 31 2.98 
 6 28 61 1.89 
 7 13 21 3.31 
D 8 30 39 1.83 
 9 26 53 1.50 
 10 35 46 1.42 
 11 33 50 1.75 
 12 63 84 1.30 
 13 26 60 1.65 
 14 29 56 1.91 
 15 19 49 1.95 
 16 42 73 1.62 
 17 54 66 1.28 
 18 39 69 1.83 
 19 64 81 0.94 
 20 34 61 1.50 
 21 36 52 1.71 
 22 43 62 1.50 
 23 21 54 2.13 
E 24 27 41 1.71 
 25 23 57 1.53 
 26 22 26 2.42 
 27 56 83 1.02 
F 28 51 81 1.08 
G 29 54 76 1.15 

 
In the field study with 29 measured 

faults, simple shear deformation was obtained, 
which is consistent with the known local 
deformation at Mas Rabassers de Dalt. Still, 
one cannot determine the exact vorticity that 
the quartzite experienced with only 
orientations of foliations, fold axes, and other 
structural elements. Local field observations 
made so far only indicated a dominant simple 
shear component, leaving open sub-simple 
shear with some shortening or stretching 

parallel to the shear plane. With the new 
analysis of the faults with drag folds the 
kinematic vorticity number is better 
constrained. 

 

 
 

Fig. 13. Graph showing the stability of this analytical 
method using a different number of groups of 
measurements. The solution becomes stable using less 
than 10 groups of data. 

 
In conclusion, we propose a new 

method to determine vorticity, initial fault 
angle and finite strain using small-scale faults 
with drag folds. Theory and validation tests on 
experiments and numerical simulations show 
that the method is robust, provided the 
following assumptions hold: (a) the structures 
nucleate at different stages during 
deformation, and therefore record different 
amounts of strain, (b) the faults all nucleate in 
approximately the same orientation (α0), (c) 
the flow kinematics do not change during 
deformation, (d) the structures are isolated to 
avoid interference between adjacent structures, 
and (e) the faults are discrete, so that the drag 
angle (β) can be determined accurately. The 
last assumption means that ductile shear bands 
(Fig. 1b) are not suitable for this method.  

Although a least-squares best fit 
routine is preferred to obtain the best estimate 
of kinematic vorticity number, initial fault 
angle and minimum finite strain, charts can be 
used to obtain a first estimate. 
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Fig. A1. Definition of parameters 

 

 
Fig. A2. Plot your data on a transparency using these blank charts 
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Appendix A. Charts to estimate initial fault 
angle (α0), vorticity ( ω) and minimum finite 
strain (Rf) 
 
To use these charts, measure the following 
parameters from a number of fault systems, 
preferably at different stages of development 
(Fig. A1): 

· The angle between the fault and the 
foliation away from the fault (α); 
· The angle between the fault and the 
deflected foliation at the fault (β); 

· The ratio (L/T) of the thickness of a layer 
away from the fault (T) and the thickness of 
the same layer parallel to the fault and at 
the fault (L). 

Each pair of graphs is for a certain 
vorticity, defined by the angle between the 
flow apophyses (ω) or the kinematic vorticity 
number (Wk). Arrows in the graphs show α-β 
(left) and L/T-β  (right) paths as a function of 
increasing finite strain and initial fault 
orientation (α0). Dashed lines are finite strain 
contours at Rf = 2, 4, 8, and 16.  

Plot your measurements on a 
transparency, using the blank pair of graphs 
provided (Fig. A2). Then overlay your plot on 
the graphs (Figs. A3 to A6) and find the 
vorticity where your data most closely follow 
one single arrow on both graphs. The arrow 
fitting your data points provides you with the 
starting orientation of the faults. Ideally, each 
data point should have the same finite strain in 
both graphs as well. 
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Fig. A3 to A6. Curves of α and L/T as a function of β for different vorticities and starting orientations of the fault 
(α0). Insets show the Mohr-circle for stretch for an Rf-value of 4. Dashed lines are finite strain contours at Rf = 2, 4, 
8, and 16. 
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