provided by Aberdeen Universit

CrossMark

data reports

CRYSTALLOGRAPHIC COMMUNICATIONS

OPEN access

Crystal structure of (1S,2R,4R,9S,11S,-

12R)-9a-hydroxy-4,8-dimethyl-12-[(thiomorpholin-4-yl)methyl]-3,14-dioxatricyclo[9.3.0.0^{2,4}]tetradec-7-en-13-one

Ahmed Benharref,^a* Mohamed Akssira,^b Lahcen El Ammari,^c Mohamed Saadi^c and Moha Berraho^a

^aLaboratoire de Chimie des Substances Naturelles, URAC16, Faculté des Sciences Semlalia, BP 2390 Bd My Abdellah, 40000 Marrakech, Morocco, ^bLaboratoire de Chimie Bioorganique et Analytique, URAC 22, BP 146, FSTM, Université Hassan II, Mohammedia-Casablanca 20810 Mohammedia, Morocco, and ^cLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Avenue Ibn Battouta BP 1014, Rabat, Morocco. *Correspondence e-mail: abenharref@yahoo.fr

Received 21 January 2015; accepted 26 January 2015

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

The title compound, $C_{19}H_{29}NO_4S$, was synthesised from 9α -(9α-hydroxy-4,8-dimethyl-12-methylhydroxyparthenolide ene-3,14-dioxatricyclo[9.3.0.0^{2,4}]tetradec-7-en-13-one), which was isolated from the chloroform extract of the aerial parts of the plant Anvillea radiata. The molecule is built up from two fused five- and ten-membered rings, with an additional epoxy ring system and a thiomorpholine group as a substituent. The ten-membered ring adopts an approximate chair-chair conformation, while the thiomorpholine ring displays a chair conformation and the five-membered ring has an envelope conformation, with the C atom closest to the hydroxy group forming the flap. An intramolecular O-H···N hydrogen bond closes an S(8) ring. The crystal structure features weak $C-H \cdots O$ hydrogen-bonding interactions, which link the molecules into [010] chains.

Keywords: crystal structure; Anvillea radiata; medicinal compound; hydrogen bonding.

CCDC reference: 1045641

1. Related literature

For background to the medicinal uses of the plant Anvillea radiata, see: El Hassany et al. (2004); Abdel Sattar et al. (1996). For the reactivity of this sesquiterpene, see: Hwang et al. (2006); Neelakantan et al. (2009); Loubidi et al. (2014).

V = 962.9 (3) Å³

Mo $K\alpha$ radiation

 $0.33 \times 0.17 \times 0.04 \text{ mm}$

3940 independent reflections

3749 reflections with $I > 2\sigma(I)$

 $\mu = 0.19 \text{ mm}^-$

T = 296 K

 $R_{\rm int} = 0.033$

Z = 2

2. Experimental

2.1. Crystal data

 $C_{19}H_{29}NO_4S$ $M_r = 367.49$ Monoclinic, P21 a = 11.920 (2) Å b = 6.7919 (13) Åc = 12.144 (3) Å $\beta = 101.659 \ (6)^{\circ}$

2.2. Data collection

Bruker APEXII CCD diffractometer 12288 measured reflections

2.3. Refinement R[

$R[F^2 > 2\sigma(F^2)] = 0.031$	$\Delta \rho_{\rm max} = 0.23 \text{ e} \text{ \AA}^{-3}$
$wR(F^2) = 0.083$	$\Delta \rho_{\rm min} = -0.18 \text{ e } \text{\AA}^{-3}$
S = 1.03	Absolute structure: Flack &
3940 reflections	Bernardinelli (2000), 1799 Friedel
229 parameters	pairs
1 restraint	Absolute structure parameter:
H-atom parameters constrained	0.04 (7)

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D{\cdots}A$	$D - \mathbf{H} \cdots A$
O4−H4···N2	0.82	2.21	3.0278 (18)	176
$C2-H2 \cdot \cdot \cdot O1^{i}$	0.98	2.51	3.2948 (19)	137
$C6-H6\cdots O2^{ii}$	0.93	2.59	3.2526 (19)	129

Symmetry codes: (i) -x + 1, $y - \frac{1}{2}$, -z + 1; (ii) x, y - 1, z.

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT-Plus (Bruker, 2009); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 2012).

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

Supporting information for this paper is available from the IUCr electronic archives (Reference: HB7355).

References

- Abdel Sattar, E., Galal, A. M. & Mossa, J. S. (1996). J. Nat. Prod. 59, 403-405. Bruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc.,
- Madison, Wisconsin, USA. El Hassany, B., El Hanbali, F., Akssira, M., Mellouki, F., Haidour, A. & Barrero, A. F. (2004). *Fitoterapia*, **75**, 573–576.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.

Flack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143-1148.

- Hwang, D.-R., Wu, Y.-S., Chang, C.-W., Lien, T.-W., Chen, W.-C., Tan, U.-K., Hsu, J. T. A. & Hsieh, H.-P. (2006). *Bioorg. Med. Chem.* **14**, 83–91.
- Loubidi, M., Benharref, A., El Ammari, L., Saadi, M. & Berraho, M. (2014). Acta Cryst. E70, 0497-0498.
- Neelakantan, S., Nasim, Sh., Guzman, M. L., Jordan, C. T. & Crooks, P. A. (2009). Bioorg. Med. Chem. Lett. 19, 4346–4349.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2015). E71, o140-o141 [doi:10.1107/S205698901500170X]

Crystal structure of $(1S,2R,4R,9S,11S,12R)-9\alpha$ -hydroxy-4,8-dimethyl-12-[(thio-morpholin-4-yl)methyl]-3,14-dioxatricyclo[9.3.0.0^{2,4}]tetradec-7-en-13-one

Ahmed Benharref, Mohamed Akssira, Lahcen El Ammari, Mohamed Saadi and Moha Berraho

S1. Comment

The natural sesquiterpene lactone, 9α -hydroxypartenolide is the main constituent of the chloroform extract of the aerial parts of Anvillea radiata (El Hassany et al., 2004; Qureshi et al.) and of Anvillea garcini (Abdel Sattar et al.,1996). The reactivity of this sesquiterpene lactone and its derivatives have been the subject of several studies (Hwang et al., 2006; Neelakantan et al., 2009; Loubidi et al., 2014), in order to prepare products with high value which can be used in the pharmacological industry. In this context, we have treated the 9α -hydroxy-parthenolide with an equivalent amount of thiomorpholine and prepared the 9α -Hydroxy-12- [thiomorpholin-N- methyl]-4,8-dimethyl-3,14-dioxatricyclo [9.3.0.0²,⁴] tetradec-7-en-13-one. The structure of this new product was confirmed by its single crystal X-ray structure. The molecule contains a fused ring system and thiomorpholin group as a substituent to a lactone ring. The molecular structure of (I), Fig.1, shows the lactone ring to adopt an envelope conformation, as indicated by puckering parameters Q = 0.2241 (15) Å and $\varphi = 291.3$ (4)°. The atom C10 deviate from the mean plane through other four atoms in the ring by 0.3601 (13)Å. The ten-membered ring displays an approximate chair-chair conformation, while the thiomorpholin ring has an almost ideal chair conformation with QT = 0.6400 (17)Å, $\theta = 178.37$ (15)° and $\varphi = 244$ (4)°. In the crystal structure, the molecules are linked by C—H···O intermolecular hydrogen bonds into chains along the b axis (Table 1, Fig.2). In addition an intramolecular O—H···N, hydrogen bond is also observed.

S2. Experimental

The mixture of 9α -hydoxypartenolide (9α -hydroxy-4,8-dimethyl- 12-methylene- 3,14-dioxatricyclo[$9.3.0.0^2$,⁴]tetradec-7en-13-one) (1 g, 3.8 mmol) and one equivalent of thiomorpholin in EtOH (20 ml) was stirred for ten hours at room temperature. Then the reaction was stopped by adding water (10 ml) and the solution was extracted with chloroform (3 *x* 20 ml). The combined organic layers were dried over anhydrous MgSO₄, filtered and concentrated under vacuum to give 0.9 g(2.5 mmol) of the title compound (yield: 66%). Recrystallization was performed from ethyl acetate solution to yield colourless plates.

S3. Refinement

All H atoms were fixed geometrically and treated as riding with C—H = 0.96 Å (methyl),0.97 Å (methylene), 0.98 Å (methine) with $U_{iso}(H) = 1.2$ Ueq(methylene, methine and OH) or $U_{iso}(H) = 1.5$ Ueq(methyl). Owing to the presence of S atom, the absolute configuration could be fully confirmed, by refining the Flack parameter (Flack & Bernardinelli (2000) as C1(S), C2(*R*), C4(*R*), C9(S), C11(S) and C2(*R*).

Figure 1

Molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level.

Figure 2

Partial packing view showing the C—H···O interactions (dashed lines) and the formation of a chain parallel to the *b* axis. H atoms not involved in hydrogen bonding have been omitted for clarity. [Symmetry code: (i) x, -1 + y, z.]

$(1S,2R,4R,9S,11S,12R)-9\alpha$ -Hydroxy-4,8-dimethyl-12-[(thiomorpholin-4-yl)methyl]-3,14-dioxatricyclo[9.3.0.0^{2,4}]tetradec-7-en-13-one

Crystal data	
$C_{19}H_{29}NO_4S$	$\beta = 101.659 \ (6)^{\circ}$
$M_r = 367.49$	$V = 962.9 (3) Å^3$
Monoclinic, $P2_1$	Z = 2
Hall symbol: P 2yb	F(000) = 396
a = 11.920 (2) Å	$D_{\rm x} = 1.268 {\rm ~Mg} {\rm ~m}^{-3}$
b = 6.7919 (13) Å	Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å
c = 12.144 (3) Å	Cell parameters from 3940 reflections

 $\theta = 2.7-26.4^{\circ}$ $\mu = 0.19 \text{ mm}^{-1}$ T = 296 K

Data collection

Bruker APEXII CCD
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
ω and φ scans
12288 measured reflections
3940 independent reflections

Refinement

5	
Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.031$	H-atom parameters constrained
$wR(F^2) = 0.083$	$w = 1/[\sigma^2(F_o^2) + (0.0458P)^2 + 0.1195P]$
S = 1.03	where $P = (F_o^2 + 2F_c^2)/3$
3940 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
229 parameters	$\Delta \rho_{\rm max} = 0.23 \text{ e} \text{ Å}^{-3}$
1 restraint	$\Delta \rho_{\rm min} = -0.18 \text{ e} \text{ Å}^{-3}$
Primary atom site location: structure-invariant	Absolute structure: Flack & Bernardinelli
direct methods	(2000), 1799 Friedel pairs
Secondary atom site location: difference Fourier	Absolute structure parameter: 0.04 (7)
map	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against all reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on all data will be even larger.

Platelet, colourless

 $R_{\rm int} = 0.033$

 $h = -14 \rightarrow 14$ $k = -8 \rightarrow 8$ $l = -15 \rightarrow 15$

 $0.33 \times 0.17 \times 0.04 \text{ mm}$

 $\theta_{\text{max}} = 26.4^{\circ}, \ \theta_{\text{min}} = 2.7^{\circ}$

3749 reflections with $I > 2\sigma(I)$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	r	12	7	1/*/1/	
	л	y	2	O iso / O eq	
S	0.75906 (4)	0.44169 (9)	0.12214 (4)	0.05970 (15)	
C11	0.47717 (11)	0.9710 (2)	0.29664 (11)	0.0287 (3)	
H11	0.4771	1.0444	0.2271	0.034*	
O2	0.35347 (8)	1.10088 (15)	0.40682 (8)	0.0328 (2)	
04	0.40208 (10)	0.43397 (19)	0.20264 (11)	0.0488 (3)	
H4	0.4583	0.5054	0.2205	0.073*	
C10	0.37095 (11)	0.8366 (2)	0.28037 (11)	0.0256 (3)	
H10	0.3907	0.7195	0.3274	0.031*	
01	0.53049 (10)	1.22191 (19)	0.44127 (10)	0.0458 (3)	
C12	0.46117 (12)	1.1124 (2)	0.38823 (12)	0.0317 (3)	
03	0.13476 (9)	0.9267 (2)	0.45208 (10)	0.0465 (3)	
C2	0.22047 (12)	0.8371 (2)	0.39912 (12)	0.0325 (3)	

H2	0.2684	0.7399	0.4466	0.039*
N2	0.60890 (10)	0.70195 (19)	0.25656 (10)	0.0310 (3)
C15	0.59162 (12)	0.8638 (2)	0.33252 (12)	0.0328 (3)
H15A	0.6533	0.9583	0.3362	0.039*
H15B	0.5962	0.8108	0.4075	0.039*
С9	0.32885 (13)	0.7685 (2)	0.15807 (12)	0.0315 (3)
H9A	0.3845	0.8096	0.1145	0.038*
H9B	0.2576	0.8361	0.1277	0.038*
C3	0.09931 (13)	0.7784 (2)	0.36578 (15)	0.0394 (4)
C1	0.28464 (11)	0.9606 (2)	0.33070 (11)	0.0286 (3)
H1	0.2315	1.0297	0.2711	0.034*
C19	0.64040 (14)	0.7794 (3)	0.15414 (13)	0.0387 (3)
H19A	0.7141	0.8447	0.1737	0.046*
H19B	0.5841	0.8762	0.1201	0.046*
C6	0.18706 (13)	0.4410 (2)	0.27405 (15)	0.0422 (4)
H6	0.2559	0.4241	0.3251	0.051*
C7	0.19578 (13)	0.4844 (2)	0.16970 (15)	0.0415 (4)
C17	0.69958 (13)	0.5726 (3)	0.31802 (13)	0.0399 (4)
H17A	0.6805	0.5356	0.3892	0.048*
H17B	0.7711	0.6451	0.3343	0.048*
C8	0.30887 (14)	0.5453 (2)	0.14119 (14)	0.0377 (3)
H8	0.3042	0.5174	0.0612	0.045*
C4	0.06950 (15)	0.5785 (3)	0.40637 (17)	0.0495 (4)
H4A	-0.0082	0.5813	0.4192	0.059*
H4B	0.1205	0.5488	0.4773	0.059*
C16	0.71589 (16)	0.3889 (3)	0.25369 (16)	0.0496 (4)
H16A	0.6447	0.3153	0.2384	0.059*
H16B	0.7737	0.3070	0.2997	0.059*
C18	0.64687 (16)	0.6178 (3)	0.07026 (14)	0.0498 (4)
H18A	0.6606	0.6759	0.0012	0.060*
H18B	0.5739	0.5497	0.0529	0.060*
C13	0.02051 (14)	0.8583 (3)	0.26257 (18)	0.0547 (5)
H13A	-0.0544	0.8785	0.2784	0.082*
H13B	0.0157	0.7660	0.2019	0.082*
H13C	0.0500	0.9812	0.2416	0.082*
C5	0.07965 (16)	0.4157 (3)	0.32077 (19)	0.0537 (5)
H5A	0.0811	0.2881	0.3570	0.064*
H5B	0.0132	0.4197	0.2597	0.064*
C14	0.09689 (18)	0.4951 (4)	0.06943 (19)	0.0679 (6)
H14A	0.0262	0.4726	0.0938	0.102*
H14B	0.1066	0.3965	0.0155	0.102*
H14C	0.0952	0.6230	0.0355	0.102*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S	0.0614 (3)	0.0736 (3)	0.0469 (2)	0.0211 (3)	0.0173 (2)	-0.0094 (3)
C11	0.0308 (7)	0.0301 (7)	0.0252 (6)	-0.0049 (5)	0.0051 (5)	0.0005 (5)

O2	0.0317 (5)	0.0312 (5)	0.0355 (5)	-0.0028 (4)	0.0070 (4)	-0.0086 (4)
O4	0.0411 (6)	0.0332 (6)	0.0703 (8)	0.0046 (5)	0.0068 (5)	-0.0056 (6)
C10	0.0270 (6)	0.0242 (6)	0.0249 (6)	-0.0015 (5)	0.0034 (5)	-0.0009 (5)
01	0.0422 (6)	0.0481 (7)	0.0460 (6)	-0.0143 (5)	0.0061 (5)	-0.0175 (6)
C12	0.0325 (7)	0.0309 (7)	0.0310 (7)	-0.0039 (6)	0.0044 (5)	-0.0015 (6)
O3	0.0366 (5)	0.0539 (7)	0.0539 (7)	-0.0044 (6)	0.0205 (5)	-0.0164 (6)
C2	0.0283 (7)	0.0357 (7)	0.0339 (8)	0.0011 (6)	0.0072 (6)	-0.0026 (6)
N2	0.0291 (5)	0.0378 (6)	0.0271 (6)	0.0022 (5)	0.0077 (4)	0.0028 (5)
C15	0.0280 (7)	0.0415 (8)	0.0282 (7)	-0.0020 (6)	0.0039 (5)	-0.0038 (6)
C9	0.0353 (7)	0.0320 (7)	0.0259 (7)	-0.0036 (6)	0.0029 (5)	-0.0033 (6)
C3	0.0290 (7)	0.0384 (8)	0.0525 (10)	-0.0007 (6)	0.0123 (6)	-0.0048 (7)
C1	0.0277 (6)	0.0267 (7)	0.0294 (6)	0.0008 (6)	0.0008 (5)	-0.0027 (6)
C19	0.0427 (8)	0.0431 (9)	0.0325 (8)	-0.0002 (7)	0.0130 (6)	0.0051 (7)
C6	0.0388 (8)	0.0243 (7)	0.0621 (10)	-0.0001 (7)	0.0069 (7)	0.0012 (8)
C7	0.0381 (8)	0.0299 (8)	0.0531 (10)	-0.0042 (6)	0.0012 (7)	-0.0095 (7)
C17	0.0355 (8)	0.0521 (10)	0.0322 (8)	0.0092 (7)	0.0067 (6)	0.0046 (7)
C8	0.0419 (8)	0.0321 (8)	0.0373 (8)	-0.0015 (6)	0.0034 (6)	-0.0106 (6)
C4	0.0364 (9)	0.0519 (11)	0.0640 (11)	-0.0091 (8)	0.0191 (8)	0.0040 (9)
C16	0.0498 (9)	0.0484 (11)	0.0504 (10)	0.0141 (8)	0.0097 (8)	0.0056 (8)
C18	0.0586 (11)	0.0602 (11)	0.0312 (8)	0.0090 (9)	0.0107 (7)	-0.0017 (8)
C13	0.0335 (8)	0.0461 (10)	0.0776 (14)	0.0004 (8)	-0.0054 (8)	-0.0018 (9)
C5	0.0491 (9)	0.0350 (9)	0.0782 (13)	-0.0101 (8)	0.0157 (9)	0.0050 (9)
C14	0.0487 (10)	0.0836 (17)	0.0633 (13)	-0.0162 (11)	-0.0080 (9)	-0.0134 (11)

Geometric parameters (Å, °)

S-C18	1.810 (2)	C1—H1	0.9800
S-C16	1.810 (2)	C19—C18	1.510 (3)
C11—C12	1.510(2)	C19—H19A	0.9700
C11—C15	1.530 (2)	C19—H19B	0.9700
C11—C10	1.5410 (18)	C6—C7	1.325 (3)
C11—H11	0.9800	C6—C5	1.512 (2)
O2—C12	1.3500 (17)	С6—Н6	0.9300
O2—C1	1.4592 (16)	C7—C14	1.516 (2)
O4—C8	1.424 (2)	C7—C8	1.516 (2)
O4—H4	0.8200	C17—C16	1.505 (3)
С10—С9	1.5396 (19)	C17—H17A	0.9700
C10-C1	1.5476 (19)	C17—H17B	0.9700
C10—H10	0.9800	C8—H8	0.9800
O1—C12	1.1983 (18)	C4—C5	1.539 (3)
O3—C2	1.4471 (18)	C4—H4A	0.9700
O3—C3	1.454 (2)	C4—H4B	0.9700
С2—С3	1.474 (2)	C16—H16A	0.9700
C2—C1	1.495 (2)	C16—H16B	0.9700
С2—Н2	0.9800	C18—H18A	0.9700
N2-C19	1.4674 (19)	C18—H18B	0.9700
N2-C17	1.4735 (19)	C13—H13A	0.9600
N2	1.4758 (19)	C13—H13B	0.9600

C15—H15A	0.9700	C13—H13C	0.9600
C15—H15B	0.9700	С5—Н5А	0.9700
С9—С8	1.542 (2)	C5—H5B	0.9700
С9—Н9А	0.9700	C14—H14A	0.9600
С9—Н9В	0.9700	C14—H14B	0.9600
C3—C13	1.507 (3)	C14—H14C	0.9600
C3—C4	1.511 (3)		0.000
C18—S—C16	96.67 (8)	C18—C19—H19B	109.3
C12—C11—C15	109.33 (11)	H19A—C19—H19B	108.0
C12—C11—C10	104.37 (11)	C7—C6—C5	128.33 (16)
C15—C11—C10	114.62 (12)	С7—С6—Н6	115.8
C12—C11—H11	109.4	С5—С6—Н6	115.8
C15—C11—H11	109.4	C6—C7—C14	125.47 (17)
C10—C11—H11	109.4	C6—C7—C8	121.62 (15)
C12-02-C1	111 34 (10)	C14-C7-C8	112.74(17)
C8-04-H4	109 5	N_{2} C17 C16	112.94 (13)
C9-C10-C11	113 63 (12)	N2	109.0
C9-C10-C1	115.55 (11)	C_{16} C_{17} H_{17A}	109.0
$C_{11} - C_{10} - C_{1}$	102.81 (11)	N2_C17_H17B	109.0
$C_{10} = C_{10} = C_{10}$	102.01 (11)	$C_{16} C_{17} H_{17B}$	109.0
$C_{11} = C_{10} = H_{10}$	108.2	$H_{17A} = C_{17} = H_{17B}$	109.0
C1 C10 H10	108.2	M/A = C1/=M/B	107.8 111.77(14)
C1 = C12 = O2	100.2	04 - 08 - 07	111.77(14)
01 - C12 - 02	121.40(14) 127.01(14)	04 - 08 - 09	111.08(13) 111.02(12)
01 - C12 - C11	127.91 (14)	$C/=C_{8}=C_{9}$	111.03 (13)
02-02-01	110.62 (11)	04—08—H8	107.4
$C_2 = 0_3 = C_3$	61.08 (10)	C/C8H8	107.4
03-02-03	59.68 (10)	C9—C8—H8	107.4
03	119.82 (13)	C3-C4-C5	111.69 (15)
C3—C2—C1	125.59 (13)	C3—C4—H4A	109.3
O3—C2—H2	113.7	C5—C4—H4A	109.3
C3—C2—H2	113.7	C3—C4—H4B	109.3
C1—C2—H2	113.7	C5—C4—H4B	109.3
C19—N2—C17	110.84 (12)	H4A—C4—H4B	107.9
C19—N2—C15	110.78 (12)	C17—C16—S	112.55 (13)
C17—N2—C15	107.95 (11)	C17—C16—H16A	109.1
N2—C15—C11	113.93 (11)	S—C16—H16A	109.1
N2—C15—H15A	108.8	C17—C16—H16B	109.1
C11—C15—H15A	108.8	S-C16-H16B	109.1
N2—C15—H15B	108.8	H16A—C16—H16B	107.8
C11—C15—H15B	108.8	C19—C18—S	112.36 (12)
H15A—C15—H15B	107.7	C19—C18—H18A	109.1
С10—С9—С8	115.79 (13)	S-C18-H18A	109.1
С10—С9—Н9А	108.3	C19—C18—H18B	109.1
С8—С9—Н9А	108.3	S-C18-H18B	109.1
С10—С9—Н9В	108.3	H18A—C18—H18B	107.9
С8—С9—Н9В	108.3	С3—С13—Н13А	109.5
Н9А—С9—Н9В	107.4	C3—C13—H13B	109.5

O3—C3—C2	59.24 (9)	H13A—C13—H13B	109.5
O3—C3—C13	113.05 (14)	C3—C13—H13C	109.5
C2—C3—C13	122.86 (15)	H13A—C13—H13C	109.5
O3—C3—C4	116.16 (15)	H13B—C13—H13C	109.5
C2—C3—C4	115.81 (15)	C6—C5—C4	111.07 (15)
C13—C3—C4	116.52 (15)	C6—C5—H5A	109.4
O2—C1—C2	107.44 (11)	C4—C5—H5A	109.4
O2—C1—C10	105.77 (10)	С6—С5—Н5В	109.4
C2-C1-C10	111.70 (12)	C4—C5—H5B	109.4
O2—C1—H1	110.6	H5A—C5—H5B	108.0
C2—C1—H1	110.6	C7—C14—H14A	109.5
C10-C1-H1	110.6	C7—C14—H14B	109.5
N2-C19-C18	111.59 (15)	H14A—C14—H14B	109.5
N2-C19-H19A	109.3	C7—C14—H14C	109.5
C18—C19—H19A	109.3	H14A—C14—H14C	109.5
N2—C19—H19B	109.3	H14B—C14—H14C	109.5

Hydrogen-bond geometry (Å, °)

HA	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
O4—H4…N2	0.82	2.21	3.0278 (18)	176
C2—H2···O1 ⁱ	0.98	2.51	3.2948 (19)	137
C6—H6····O2 ⁱⁱ	0.93	2.59	3.2526 (19)	129

Symmetry codes: (i) -x+1, y-1/2, -z+1; (ii) x, y-1, z.