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Abstract A finite elastic wedge shaped thick plate is considered. One of the faces is based on a
rigid base, the other is exposed to a dynamic oscillating load through an absolutely rigid overlay.
On the side faces conditions of sliding contact are fulfilled, at its end the stresses are given. The
solution is based on a special linear transformation of a Lame’s equations and application of the vector
integral transformations’ method. The proposed approach leads to a one-dimensional vector boundary
value problem for which an exact solution is constructed. The analysis of the eigenfrequency values
distribution and estimation of the edge resonance frequency are done. An analogous problem is solved
for the case when at the lower wedge-plate’s face the sliding conditions are given. In order to establish
the possibility of separation of the lower base, a comparison of the obtained values of the stress on the
bottom plate with the stresses arising in the analogous formulation of the static problem for wedge
plate considering its own weight was worked out.

Keywords wedge shaped thick plate · integral transformation · one-dimensional vector boundary
problem · exact solution

1 Introduction

Dynamic elasticity problems for wedge-shaped bodies are of obvious interest in both theory and appli-
cations. Wedge-shaped three dimensional structures have the wide range of industrial needs in aircraft
construction, reinforced concrete, advanced composite materials, etc. They are one of the most rele-
vant models in many engineering applications such as civil, military and marine structures also. The
wedge shaped constructions are widely present in the geological bodies, and the mechanics of the
wedge-shaped blocks with basal boundaries and so are of great interest and importance [1]. Such con-
structions are used as the elements of transport vehicles and engines, military, aerospace engineering,
etc. The influence of different strikes and bumps leads to the onset of three-dimensional dynamic stress
state in pie-wedged bodies. The theories of shells, shafts and plates are applied usually for to solve
the corresponding boundary valued problems in these situations. The theory of torsion and bending
of shafts, the generalized plane stress state and plane deformation describe a dynamic stress field.
However, all these theories are the approaches in some way, the applicability of which in some cases is
executed approximately. For trustworthy positive information on the extreme values of stress near the
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areas of loading influence, at the zones of the rapidly changing of a construction’s geometry or near the
edges of a body one should use the methods and results of the spatial problems analytical solutions.

Due to the practical importance the analytical solving methods that can provide accurate results are
vital in the understanding of a three-dimensional constructions’ dynamic characteristics and have thus
received much attention from the researchers over the past twenty years. Three-dimensional analytical
solutions give an advantage for direct comparisons with the results of more simple plate’s theories, an
analytical exact solution helps to compare results with other numerical methods and evaluation with
experimental results. Problems for the oscillatory processes are discussed and studied in [2]-[10], in
which detailed and extensive approaches were worked out and methods created for dynamical analysis
of elastic bodies under oscillation loading. This mathematical apparatus was applied successfully to
solve the complicated dynamic problem for bodies of rectangular, cylindrical and spherical shapes,
circular disks and plates [11]-[20].

It should be noted that the problem for the wedge-shaped bodies in view of the complexity of its
geometry has been studied much less. The mathematical difficulties of three-dimensional pie-shaped
wedge problems are sufficiently greater than their two-dimensional analogues. The estimation of the
stress field in a pie-shaped body was until recently a serious problem for researchers. Nevertheless,
some important results have been achieved in static and dynamic statements of elasticity problems for
a pie-shaped construction.

Three-dimensional asymptotic singular stress fields near the front of a wedge are presented in [21].
This investigation is devoted to the establishment of rigorous conditions as to whether the presence of
wedge or end face stress singularity, which depends on the prescribed boundary condition, can validate
or invalidate the heuristic assumption implicit in SaintVenant’s principle. This is accomplished by
applying a general approach to the solution of canonically singular problems, based on the concept
of the proper boundary-value problem, the theorem of homogeneous solutions, and classification of
boundary value problems (BVP) of three-dimensional elasticity theory into class S (SaintVenant) or
class N (non-SaintVenant).

In a static statement the problems for pie-shaped wedge plates were considered in [22]-[23]. Funda-
mental solutions for a three-dimensional wedge are used to investigate problems of a thin, rigid, elliptic
inclusion in a wedge [22]. A regular asymptotic form is employed which has previously been used in
contact problems for a wedge and in problems of a crack in a wedge in the case of an elliptic shape of the
contact region or crack. The method is effective in the case of an inclusion which is sufficiently distant
from an edge of the wedge when the known exact solution for the space can be taken as the zero-th
approximation. A numerical analysis and comparison of different characteristics of wedge problems is
carried out.

The exact solution of the first main elasticity problem for the wedge-shaped thick infinite elastic
plate was constructed in [23]. There the equilibrium equations were solved directly without use of
intermediary harmonic or byharmonic functions. The constructed solution fully describes the stress
state of the infinite spatial pie-shaped elastic construction. On the base of the proposed approach,
the more complicated mixed boundaryvalue elasticity problem for an infinite wedge-shaped plate with
regard to its proper weight was solved [23]. The exact solution was constructed and stress values were
analyzed in dependence of the proper weight of the pie-shaped construction.

The dynamic effects of a wedge-shaped plate were studied for steady harmonic oscillations in the
composite edge-like area in [24], where the authors proposed a special investigation method to solve
the boundary-value problem. The steady vibrations of circular and annular plates were investigated
numerically in [20], [26].

The special investigation method is applied to analyze the stress state of a composite wedge-like
body [27].

In [28] the authors proposed the analytical method to solve the problem of free vibrations of thick
sectorial plates with simply supported radial edges. An analytical method to obtain an exact solution
of the three-dimensional problem of the wedge plate’s free vibrations with some special boundary
conditions on its surface, was presented in [29]. A unified method for free vibration analysis of circular,
annular and sector plates with arbitrary boundary conditions is presented in [30]. In [31] the method
of constructing an exact solution’s for a pie-shaped wedge thick plate under an oscillating dynamical
load is given.

One of the important directions in studying the oscillatory processes is the determination of the
elastic bodies’ eigenfrequencies. This phenomenon was studied in detail and comprehensively for finite
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elastic cylinders, disks and rectangles [32]-[35]. The study of eigenfrequencies for a wedge shaped plate
apparently has not previously been conducted. Also useful is the investigation of an edge resonance
phenomenon, by which one means the eigen oscillations with significant localized zones of an increased
intensity of dynamic stress state around certain parts of the boundary surfaces. This phenomenon was
studied in detail and comprehensively for isotropic and transversely isotropic bodies of canonical form,
but studies for elastic wedge shaped bodies in the literature are not mentioned.

The conducted analyses of the researches of dynamical stress state of an elastic pie-shaped wedge
under oscillating load shows that the question of the exact estimations of its wave field is still open.
Analytical solutions of this problem are unavailable, despite the necessity for it for many engineering
applications.

In the proposed work an exact solution of the dynamic problem for a finite wedge plate is derived.
The eigenfrequencies’ spectrum is analysed and the edge resonance’s frequencies are detected.

2 The problem statement and its reduction to a one-dimensional vector boundary
problem

The elastic wedge shaped thick plate (Fig. 1) is defined in the cylindrical coordinate system as

0 ≤ r ≤ a, 0 ≤ ϕ ≤ Υ, 0 ≤ z ≤ h. (1)

A face plate z = h (the lower face) is considered to be based on a rigid smooth base

uz(r, ϕ, h, t) = 0, τzr(r, ϕ, h, t) = 0, τzϕ(r, ϕ, h, t) = 0 (2)

Fig. 1 Wedge shaped plate

In smooth contact with the face z = 0(top face) is an absolutely rigid plate of known mass m,
which has the same form as the upper face of the plate. The concentrated force P (t) P cos ω̃t (ω̃ is the
load’s frequency) is applied to the rigid plate through the line 0 < r < a, ϕ = Υ/2 at a distance l from
the vertex of the wedge. Under force’s influence the points of the upper bound are shifted at the value
δ +Ar cosϕ, and the conditions on the face z = 0 can be written as

uz(r, ϕ, 0, t) = (δ +Ar cosϕ) cos ω̃t, τzr(r, ϕ, 0, t) = 0, τzϕ(r, ϕ, 0, t) = 0 (3)

The unknown constants δ, A are determined from the rigid plate’s movement equations, which on the
basis of the D’Alamber’s principle are written as:

−P (t) +
π∫
−π

a∫
0

σz(r, ϕ, h, t)rdrdϕ− m∂2uz

∂t2

∣∣∣
z=h

= 0

−lP (t) +
π∫
−π

a∫
0

σz(r, ϕ, h, t)r
2 cosϕdrdϕ− 2ma sin2 Υ

3Υ
∂2uz

∂t2

∣∣∣
z=h

= 0
(4)
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The conditions of smooth contact are fulfilled at the faces ϕ = 0 and ϕ = Υ

uϕ(r, ϕ, z, t)|ϕ=0,Υ = 0, τϕz(r, ϕ, z, t)|ϕ=0,Υ = 0, τϕr(r, ϕ, z, t)|ϕ=0,Υ = 0 (5)

On the face r = a the conditions

σr(a, ϕ, z, t) = 0, τrϕ(a, ϕ, z, t) = 0, τrz(a, ϕ, z, t) = 0 (6)

are assumed (elasticity first fundamental problem).
It is required to find the solution of the problem satisfying the boundary conditions (2), (3), (5),

(6) and the movement equations for the displacements ur(r, ϕ, z, t) = u(r, ϕ, z) cos ω̃t, uϕ(r, ϕ, z, t) =
v(r, ϕ, z) cos ω̃t, uz(r, ϕ, z, t) = w(r, ϕ, z) cos ω̃t (one assumes that all of the functions are time-dependent
according to the law f(r, ϕ, z, t) = f(r, ϕ, z) cos ω̃t)

(ru′)′

r + u..

r2 + u,, + q2u− u
r2 −

2v.

r2 + µ0

[
(ru′)′

r − u
r2 −

v.

r2 + v′.

r + w′,
]

= 0,
(rv′)′

r + v..

r2 + v,, − v
r2 + q2v + 2u.

r2 + µ0

2

[
u′ + u

r + v.

r + w,
].

= 0,
(rw′)′

r + w..

r2 + w,, + q2wµ0

[
u′ + u

r + v.

r + w,
],

= 0

(7)

Here q2 = ω̃2ρ
G = ω̃2c2, µ0 = (1 − 2ν)−1, G, ρ, ν are a shear modulus, a density and a Poisson’s

ratio correspondently, a stroke above a letter denotes the derivative with respect to the first variable,
a point above a letter - to the second variable, a comma denotes the derivative with respect to the
third variable (here and further a wave above a letter is omitted).

3 The problem’s reduction to the one-dimensional boundary problem

With regard to change of variables, the boundary conditions will take the form

u,(r, ϕ, h) = 0, v,(r, ϕ, h) = 0, w(r, ϕ, h) = 0
u,(r, ϕ, 0) = −δ′(r, ϕ), v,(r, ϕ, 0) = − 1

r δ
.(r, ϕ), w(r, ϕ, 0) = δ(r, ϕ)

(8)

u.(r, ϕ, z)|ϕ=0,Υ = 0, v(r, ϕ, z)|ϕ=0,Υ = 0, w.(r, ϕ, z)|ϕ=0,Υ = 0 (9)

[
(1− ν)u′ + v

(
u
r + v.

r + w,
)]∣∣

r=a
= 0,[

u.−v
r + v′

]
r=a

= 0, [w′ + u,]|r=a = 0
(10)

One should apply the Fourier’s transformation with regard to the variable ϕ to the movement
equations (7) and the boundary conditions (8-10)[

un (r, z)
wn (r, z)

]
=

Υ∫
0

cosαnϕ

[
u (r, ϕ, z) ,
w (r, ϕ, z)

]
dϕ;n = 0, 1, 2, ...

vn(r, z) =
Υ∫
0

sinαnϕv(r, ϕ, z)dϕ;n = 1, 2, 3, ...;αn = πn
Υ

(11)

To the transformed equations and the boundary conditions (10) the Fourier’s transformation with
regard to the variable z was applied as[

unk (r)
vnk (r)

]
=

h∫
0

cosβkz

[
un (r, z) ,
vn (r, z)

]
dz;βk = πk

h , n = 0, 1, 2, ...

wnk(r) =
h∫
0

sinβkzwn(r, z)dz; k = 1, 2, 3, ...

(12)
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One has to use it with the transformed boundary conditions (8), and finally in the domain of the
integral transformations (11), (12) the movement equations and the boundary conditions will take the
form

(ru′nk)′

r − α2 unk

r2 − β
2unk + q2unk − 2αvnk

r2 +

+µ0

[
(ru′nk)′

r − unk

r2 −
αv′nk

r2 + βw′
]

= (µ0 − 1)δ′n(r)

(n = 0, 1, 2, ...; k = 1, 2, 3, ...)
(rv′nk)′

r − α2vnk

r2 − β2vnk − vnk

r2 + q2vnk−
− 2αunk

r2 − µ0
α
r

[
u′nk + unk

r + αvnk

r + βwnk
]

=

= (1− µ0)α δn(r)
2 (n = 0, 1, 2, ...; k = 1, 2, 3, ...)

(rw′nk)′

r − α2wnk

r2 − beta
2wnk + q2wnk−

−µ0β
[
u′nk + unk

r + α vnk

r + βwnk
]

=
= −βµ∗δn(r)(n = 0, 1, 2, ...; k = 1, 2, 3, ...)

(13)

unk(a) + µ̄[a−1unk(a) + αvnk(a) + βwnk(a)] = µ̄δn(a),
v′nk(a)− αa−1unk(a)− vnk(a) = 0, w′nk(a)− βunk(a) = 0

(14)

Here the notations α = αn, β = βk, µ∗ = 1 + m0, µ̄ = (µ0 − 1)µ−1
∗ , δn(r) = 2(−1)nAr sinΥ , are

introduced. At first it is useful to consider some particular cases of the proposed problem.

3.1 Solution of the one-dimensional vector boundary problem for the case n = 0, k ≥ 1

Let’s state the vector boundary problem, taking into account that v0k = 0, k ≥ 1. The system (13)
disintegrates on two equations. The vectors

y0k(r) =

(
u0k(r)
w0k(r)

)
, f0k(r) =

(
µ̄δ′0(r)

−µ∗βkδ0(r)

)
, γ(r) =

(
µ̄δ0(r)

0

)
and the matrixes L0k =

(
Dr − r−2− β2

kµ
−1
∗ + q2µ−1

∗ , µ0µ
−1
∗ βk∂r

−µ0βk
(
∂
∂r + 1

r

)
, Dr − β2

kµ∗ + q2

)
,U0k =

(
µ̄a−1 + ∂r, µ̄β
−β, 1

)
,

Dr = r−1(rf ′)′, ∂r = f ′ are introduced to construct the vector boundary-value problem. The system
(13) and transformed boundary conditions (14) are written in the form

L0k(y0k(r)) = f0k(r), 0 < r < a,
U0k(y0k(r)) = γ, k ≥ 1.

(15)

The solution of the inhomogeneous vector equation is derived as the superposition of the homoge-
neous equation’s (13) general solution y0(r) and the particular solution y∗k(r) of the inhomogeneous
equation [36]. One must first solve the homogenous matrix equation L0k (Y(r)) = 0, 0 < r < a to
construct y0(r) [37].

The matrix H0k(r, s) is found for it. This matrix satisfies the equality L0k (H0k(r, s)) = −H0k(r, s)M0k(r, s), 0 <

r < a. One can be sure of it by the direct checking the matrix H0k(r, s) =

(
J1(rs), 0
0, J0(rs)

)
sat-

isfies to this demand (the regularity in zero is guaranteed). The matrix M0k(r, s) has the form

M0k(r, s) =

(
s2 + β2µ−1

∗ − q2µ−1
∗ , µ0µ

−1
∗ βs

µ0βs, s
2 + β2µ−1

∗ − q2

)
.

The solution of the matrix equation is given by the formula [37] Y(r) = 1
2πi

∮
C

H0(r, s)M−1
0k (s)ds,

where C is the closed contour, covering the poles si, i = 1, 4 of the matrix M−1
0k (s).

M−1
0k (s) =

= (2ν−1)−1(2ν−2)−1

4∏
i=1

(s−si)

 (2(ν−1)s2+2(ν−1)(β2+q2))
2(ν−1)−1 , βs(2ν − 1)

2(ν − 1)βs,
(2(ν−1)s2+2(ν−1)(β2+q2))

2(ν−1)−1


s1,2 = ±

√
q2 − β2, s3,4 = ±

√
(2q2(1−2ν)−4β2(1−ν))

2
√

(ν−1)
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The contour C can be taken as the contour, covering only one of these poles, for example, s1. After
the calculation of the residuals, the solution of the homogenous matrix equation is derived

Y(r) =

(
Y11, Y12

Y21, Y22

)

Y11 =


(−ν+1)β2J1

(√
q2−β2r

)
√
q2−β2

, q > β,

(−ν+1)β2I1
(√

q2−β2r
)

√
q2−β2

, q < β,

Y12 =

 βJ1

(√
q2 − β2r

)
, q > β,

βiI1

(√
q2 − β2r

)
, q < β,

Y21 =

β(ν − 1)J0

(√
q2 − β2r

)
, q > β,

β(ν − 1)I0

(√
q2 − β2r

)
, q < β,

Y22 =

 −
√
q2 − β2J0

(√
q2 − β2r

)
, q > β,

−i
√
q2 − β2I0

(√
q2 − β2r

)
, q < β.

here Ji(x), Ii(x), i = 0, 1 are the Bessel functions of the first kind and the corresponding modified
Bessel functions [39]. As can be seen, the second column of the matrix in the case takes pure image
values, that is the reason for providing the displacements’ real value in this case (with regard of the
known correspondences for the Bessel functions J0(iz) = I0(z), J1(iz) = iI1(z) [38]), the solution of
the initial problem is constructed in the form

u0k(r) = C1Y11(r) + C2Y12(r), v0k(r) = C1Y21(r) + C2Y22(r), q > β,
u0k(r) = C1Y11(r) + iC2Y12(r), v0k(r) = C1Y21(r) + iC2Y22(r), q < β,

(16)

where Ci, i = 1, 2, are the unknown real constants; Yij , i, j = 1, 2 are the elements of the matrix solution
for the homogenous equation.

The particular solution of the inhomogeneous matrix equation is constructed with the use of the
fundamental matrix of the equation . Let’s define the vector equation (15) along the whole numerical

axis. The right hand part of the equation is taken in the form f+0k(r) =

{
f0k(r), 0 < r < a

0, r > a
for this. The

integral Hankel transformation with the kernel H0k(r, s) is applied to the equation. One obtains the

transformation of the particular solution y∗k(r) =
∞∫
0

sH0(ρs)y∗ksds after applying the inverse formula

to the correspondence y∗ks = −M−1
0k (s)

∞∫
0

ρH0(ρs)f+0k(ρ)dρ.

As a result the formula is constructed in the form y∗k(r) = −
a∫
0

Φ0k(r, ρ)f+0k(ρ)dρ, where Φ0k(r, ρ)

is the fundamental matrix Φ0k(r, ρ) =
∞∫
0

sH0(r, s)M−1
0kH0(ρ, s)ds. All elements of this matrix are

expressed through the integrals of such form

∞∫
0

smJµ(rs)Jν(ρs)

(s2 +A2)(s2 +B2)
ds = Ωmµ,ν , (17)

where m = 0, 1, 2, 3, A2 = β2 − q2, B2 =
(q2(1−2ν)+2β2(ν−1))

2(1−ν) , which are reduced to the known table

integrals [39]. The partial solution of the inhomogeneous equation is constructed.
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The displacements are given as

u∗k(r) = − 2ν−2
2ν−1 µ̄

a∫
0

ρδ′0(ρ)Ω1
1,1(r, ρ)dρ− 2(ν−2)β2+(1−2ν)q2

(2ν−1) µ̄
a∫
0

ρδ′0(ρ)Ω0
1,1(r, ρ)dρ

+ βµ∗
2(ν−1)

a∫
0

ρδ0(ρ)Ω2
1,0(r, ρ)dρ,

w∗k(r) = − βµ̄
(2ν−1)

a∫
0

ρδ′0(ρ)Ω2
1,0(r, ρ)dρ− µ∗

a∫
0

ρδ0(ρ)Ω1
0,0(r, ρ)dρ−

− (2ν−1)β2+(1−2ν)q2

2(ν−1) µ∗
a∫
0

ρδ0(ρ)Ω0
0,0(r, ρ)dρ.

(18)

The solution of the initial problem uk(r) = u0k(r) +u∗k(r), wk(r) = w0k(r) = w∗k(r) will finally be
derived, if the unknown constants Ci, i = 1, 2 would be defined. One must use the boundary functional
(15) with this aim.

Let’s consider the case n = 0, k = 0. The system of the movement equations (13) simplifies to one
equation (v00 = 0)

r2u00(r) + ru′00(r) + q2r2u00(r)− u00(r) =
µ0 − 1

µ
rδ′0(r), 0 < r < a

with the boundary conditions

au′00(a) + µ̄u00(a) = µ̄aδ0(a)

This problem has a simple solution in the Bessel functions [40].

3.2 General case of the initial boundary problem transformation

The new unknown functions associated with the original ones by the correspondences

W
(1)
nk (r) = unk(r) + vnk(r),W

(2)
nk (r) = unk(r)− vnk(r),W

(3)
nk (r) = wnk(r) (19)

should be input before considering of the general case for the Fourier transformation parameters’ values
n ≥ 1, k ≥ 1. As a result of the transformations, the system (13) takes the form[

κ
(
Dr − (α+ 1)2r−2

)
− (κ− 1)β2 + q2

]
W

(1)
nk (r)+

+
[
Dr − 2αr−1∂r + (α3 − 1)r−2

]
W

(2)
nk (r)+

+2β(∂r − αr−1)W
(3)
nk (r) = 4νδ′n(r),[

Dr + 2αr−1∂r + (α2 − 1)r−1
]
W

(1)
nk (r)+

+
[
κ
(
Dr − (α+ 1)2r−2

)
− (κ− 1)β2 + q2

]
W

(2)
nk (r)+

+2β(∂r + αr−1)W
(3)
nk (r) = 4νδ+

n (r),

−β(∂r + (α+ 1)r−1)W
(1)
nk (r)− β(∂r − (α− 1)r−1)W

(2)
nk (r)+

+
[
(κ− 1)(Dr − α2r−2)

−(κ+ 1)β2 + q2
]
W

(3)
nk (r) = 4(1− ν)βδn(r),

(20)

where κ = 3 − 4ν, δ∓n (r) = δn(r) ∓ αr−1δn(r). The boundary conditions (14) are transformed by
analogical transformations, and are written with the help of the newly input unknown functions

a
[
W

(1)′
nk (a) +W

(2)′
nk (a)

]
+ µ̄

[
(α+ 1)W

(1)
nk (a)+

+(1− α)W
(2)
nk (a) + 2βaW

(3)
nk (a)

]
= 2µ̄aδn(a),

a
[
W

(1)′
nk (a)−W (2)′

nk (a)
]

+
[
−(α+ 1)W

(1)
nk (a) + (1− α)W

(2)
nk (a)

]
= 0,

+2W
(3)′
nk (a)− β

[
W

(1)
nk (a)−W (2)

nk (a)
]

= 0,

(21)
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Let’s formulate the vector boundary problem for the equations system (20) and boundary conditions
(21). The matrix differential operator, the vectors and the additional matrix are given as

LnkW(r) = F(r), 0 < r < a (22)

where

Lnk =

a11, a12, a13

a21, a22, a23

a31, a32, a33


a11 = κ

(
Dr − (α+ 1)2r−2

)
− (κ− 1)β2 + q2, a12 = Dr − 2αr−1∂r + (α2 − 1)r−2,

a13 = 2β(∂r − αr−1), a21 = Dr + 2αr−1∂r + (α2 − 1)r−2,
a22 = κ

(
Dr − (α− 1)2r−2

)
− (κ− 1)β2 + q2, a23 = 2β(∂r + αr−1),

a31 = −β(∂r + (α+ 1)r−1), a32 = −β(∂r − (α− 1)r−1),
a33 = (κ− 1)(Dr − α2r−2)− (κ+ 1)β2 + q2

W(r) =

W
(1)
nk (r)

W
(2)
nk (r)

W
(3)
nk (r)

 ,F(r) =

 4µδ−n (r)
4µδ+

n (r)
−4β(1− µ)δn(r)

 ,

In this case matrix H should be taken in the form

Hn(r, s) =

Jα+1(rs), 0, 0
0, Jα−1(rs), 0
0, 0, Jα(rs)

 (23)

4 The solution of the vector boundary problem

A solution of the inhomogeneous vector equation is constructed as the superposition of the homogeneous
equation’s (22) general solution W0,k(r) and the inhomogeneous equation’s particular solution W∗k(r).
One has to solve the matrix homogenous equation Lnk (W(r)) = 0, 0 < r < a [21] to obtain the vector
solution W0(r). The choosing of matrix Hn(r, s) in the form (23) provides the correspondence validity
LnkHn(r, s) = −Hn(r, s)Mk(s). It can be proved obviously by direct checking, where

Mk(s) =

 κs2 + (κ− 1)β2 − q2,−s2, 2βs
−s2, κs2 + (κ− 1)β2 − q2,−2βs

βs,−βs, (κ− 1)s2 + (κ+ 1)β2 − q2



M−1
k (s) =

1

∆(β, s)

 κs2 + (κ− 1)β2 − q2, s2,−2βs
s2, κs2 + (κ− 1)β2 − q2, 2βs

−βs, βs, (κ− 1)s2 + (κ+ 1)β2 − q2


∆(β, s) =

4∏
i=1

(s− si), s1,2 = ±
√

(q2 − (κ+ 1)β2)√
(κ+ 1)

, s3,4 = ±
√

(q2 − (κ− 1)β2)√
(κ− 1)

As with the previous case, one needs to calculate the residual at one of the poles, for example at
the pole s1, to construct matrix solution with the help of the formula Y(r) = 1

2πi

∮
C

Hn(r, s)M−1
k (s)ds(

is the closed contour, covering one of the inverse matrix’s pole). The structure of the obtained matrix
Y(r) is

Y(r) =

=

 iIα+1(rs∗)((κ− 1)q2 + (1− κ2)β2),−iIα1
(rs∗)s

2
∗,−2Iα+1(rs∗)βs∗

iIα−1(rs∗)s
2
∗, iIα−1(rs∗)((κ− 1)q2 + (1− κ2)β2), 2Iα−1(rs∗)βs∗

−iIα(rs∗)βs∗, iIα(rs∗)βs∗, iIα(rs∗)(κq
2 − (κ− 1)(κ+ 1)2)


s∗ =

√
(κ+ 1)β2 − q2
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To provide the obtained values’ realness, the general solution regular at zero is constructed in the
form W0k(r) = Y(r)(iC1, iC2, C3)T , (Ci, i = 1, 2, 3 are the arbitrary real constants). As a result, the
formulas for the displacements’ transformations are obtained

W 1
0,nk(r) = C1Iα+1(rs∗)((κ− 1)q2 + (1− κ2)β2)−

−C2Iα+1(rs∗)s
2
∗ − 2C3Iα+1(rs∗)βs∗

W 2
0,nk(r) = C1Iα−1(rs∗)s

2
∗ + C2Iα−1((κ− 1)q2 + (1− κ2)β2)+

+2C3Iα−1(rs∗)βs∗
W 3

0,nk(r) = −C1Iα(rs∗)βs∗ + C2Iα(rs∗)βs∗−
−C3Iα(rs∗)(κq

2 − (κ− 1)(κ+ 1)2),

s∗ =
√

(κ+ 1)β2 − q2

(24)

Now let’s find the particular solution. The right hand part of the equation (22) is extended on the
whole axis by the zero at the segment r > a:

LnkW∗k(r) = F+(r), 0 < r <∞. (25)

The matrix integral transformation with kernel Hn(r, s), described by formulas (23), is applied to
the equation (25). The particular solution in the transformation’s domain will take the form Ws =

−M−1
nk (s)F+

s , F+
s =

a∫
0

ρHn(ρ, s)F(ρ)dρ. The vector’s original formula is written with the help of the

fundamental matrix [38] after inversion

Ws(r) = −
a∫
0

Φnk(r, ρ)F(ρ)dρ, 0 < r < a,

Φ(r, ρ) = −
∞∫
0

sHn(r, s)M−1
n (s)Hn(ρ, s)ds

the elements of this matrix are the integrals of (17) type:

Φ(r, ρ) =

=

κΩ3
α+1,α+1 + ((κ+ 1)β2 + q2)Ω1

α+1,α+1, κΩ
3
α+1,α+1,−2βΩ2

α+1,α

Ω3
α+1,α−1, κΩ

3
α−1,α−1 + ((κ+ 1)β2 − q2)Ω1

α−1,α−1, 2βΩ
2
α−1,α

−βΩ2
α+1,α, βΩ

2
α−1,α, (κ+ 1)Ω3

α,α + ((κ− 1)β2 − q2)Ω1
α,α


A2 = β2 − q2

κ+1 , B
2 = β2 + q2

κ−1

With the help of the formula W∗k(r) =
a∫
0

Φ(r, ρ)F+
nk(ρ)dρ, the partial solution of the vector equa-

tion is obtained.

W 1
∗,nk(r) = 4ν

a∫
0

(
κΩ3

α+1,α+1(r, ρ) +
(
(κ+ 1)β2 + q2

)
Ω1
α+1,α+1(r, ρ)

)
δ−n (ρ)dρ+

+4ν
a∫
0

κΩ3
α+1,α−1(r, ρ)δ+

n (ρ)dρ+ 8β2(1− ν)
a∫
0

Ω2
α+1,α(r, ρ)δn(ρ)dρ;

W 2
∗,nk(r) = 4ν

a∫
0

Ω3
α+1,α−1(r, ρ)δ−n (ρ)dρ+

4ν
a∫
0

(
κΩ3

α−1,α−1(r, ρ) +
(
(κ+ 1)β2 − q2

)
Ω1
α−1,α−1(r, ρ)

)
δ+
n (ρ)dρ−

−8β2(1− ν)
a∫
0

Ω2
α−1,α(r, ρ)δn(ρ)dρ;

W 3
∗,nk(r) = −4νβ

a∫
0

Ω2
α+1,α(r, ρ)δ−n (ρ)dρ+ 4νβ

a∫
0

Ω2
α−1,α(r, ρ)δ+

n (ρ)dρ−

−4β(1− ν)
a∫
0

(
(κ+ 1)Ω3

α,α(r, ρ) +
(
(κ− 1)β2 − q2

)
Ω1
α,α(r, ρ)

)
δn(ρ)dρ

(26)

The sum of the general regular solution (24) and partial solution (26) will finally define the three
input unknown functions, if three arbitrary constants in this sum will be found, one has to use the
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boundary conditions (21) for it. The transformations of the initial displacements one has to find by

the formulas

∥∥∥∥unk(r)
vnk(r)

∥∥∥∥ =
W

(1)

nk
(r)+W

(2)

nk
(r)

2 , wnk(r) = W
(3)
nk (r).

The application of the inverse Fourier’s transformation allows us to write the final representations

ũ(r, ϕ, z) = 2
h

∞∑
k=1

u0k(r) cosβkz + 4
Υh

∞∑
n=1

∞∑
k=0

unk(r) cosαnϕ cosβkz,

ṽ(r, ϕ, z) = 4
Υh

∞∑
n=1

∞∑
k=0

vnk(r) cosαnϕ cosβkz,

w̃(r, ϕ, z) = 2
Υh

∞∑
k=1

w0k(r) sinβkz + 4
Υh

∞∑
n=1

∞∑
k=0

wnk(r) cosαnϕ sinβkz.

(27)

The obtained series are conditionally convergent, this is connected with application of the integral
transformation with regard to the variable z by the inhomogeneous boundary conditions (the con-
ditionally convergence of the series obtained in such cases is proved in [20]). This is why before the
calculations of the stress values and differentiation of the expressions of the displacements, one needs
to extract a weak convergent part of the series. To do this the following procedure is proposed: a series

is separated on the sum of the two summands

(
N∑
k=1

+
∞∑

k=N+1

)
ak(r). The sum

N∑
k=1

ãk is added and sub-

tracted from this expression, (here ãk are asymptotical expressions of the series’ general terms, when
k →∞; a general term of the series is changed by an asymptotical expression at the second summand
∞∑
k=1

ak(r) =
∞∑
k=1

ãk(r) +
N∑
k=1

ak(r)−
N∑
k=1

ãk(r). The obtained series in this equality is summarized with

the known formulas [39].
The series in this form are substituted in the formulas for the stress calculation. The formulas (27)

will determine the wave field of the elastic wedge-liked plate, if the constants δ, A are known (these
parameters determine the value of the plate’s face subsidence).The formulas for the stress σz(r, ϕ, z, t)
and displacement uz(r, ϕ, z, t) are calculated and substituted into the rigid plate’s movement equations
(4). The system of the two equations is obtained and solved for the estimation of the unknown constants
δ, A. It finishes the construction of the wedge-like plate’s wave field.

It should be noted, that the proposed statement of the problem implies, that friction is absent at
the bottom face of the plate , and displacements uz(r, ϕ, z, t) through the axis 0z equals zero. Such
boundary conditions mean that at certain frequency values, separation of the bottom face can occur.
In order to find out whether it is possible to load the plate and to eliminate the possibility of base
separation, we take into account the weight of plate and find out whether it exceeds the dynamic
stresses, in this case, the plate’s stresses caused by its own weight.

In a static statement, the problem of the stress state of the elastic wedge plate under its own weight
has been solved earlier and an elementary solution was obtained [23]

u(r, ϕ, z) = v(r, ϕ, z) = 0, w(r, ϕ, z) = (Gµ∗)
−1
γz(0.5z − h),

σ(r, ϕ, z) = γ(z − h)

assuming the conditions of ideal contact on the bases and at the edge (γ is the dead weight of the plate
material). (The correctness of the solution can be verified by direct substitution of it in the movement
equations and boundary conditions).

To use this result with the proposed problem one has to change the boundary conditions at the
edge with the conditions of ideal contact ur(a, ϕ, z, t) = 0, τrϕ(a, ϕ, z, t) = 0, τrz(a, ϕ, z, t) = 0. The
general scheme of the solution remains the same, except for the one-dimensional problem where the
boundary conditions (6) will be changed (with their help one has to determine the unknown constants
of the general solution).

5 The results of the numerical analyses

The main goal of the numerical investigation in the proposed research is the identification of the elastic
wedge plate eigenfrequencies. The oscillations of the finite steel plate radius r = a with an angle of
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the opening ϕ = Υ and height h are investigated. The transition to the dimensionless coordinates was
done

Ω =
2Υh

πc2
, R =

a

h
, ūr =

ur
h
, ūϕ =

uϕ
h
, ūz =

uz
h
, σ =

σz
h
.

The oscillation’s eigenfrequencies were found by the following algorithm. The displacements and
stresses values were obtained by a given load in the same points of the region for different values of
frequencies, which previously were taken with step 0.1. In the case where a transition through the
eigenfrequency was noted, it was also noted that phases of the wave field calculated components are
changed. After that, the range of frequencies, during the transition through which was noted this
phenomenon, was divided by a smaller step - 0.01 - in order to clarify the value of the eigenfrequency
- and then again the procedure of displacement and stress calculations for a given interval of the
frequencies is used. The clarification of the frequencies’ values was produced to the fourth decimal
figure. This method of searching eigenfrequencies apparently has was first proposed and tested in [32].

The eigenfrequencies Ω were investigated and the dependence between their values and plate’s
geometrical parameters was established.

In Fig. 2 and Fig. 3 the changes in the spectrum of the wedge plate’s eigenfrequencies Ω depending
on changes in the relative radius R = a

h and the angle of wedge plate’s opening Υ are given.

Fig. 2 The changes in the spectrum on changes of the relative radius R = a
h

As can be seen on the graphs, the value of the eigenfrequencies in this case (the curvature in the
graphs corresponds to the number of an eigenfrequency) is inversely proportional to the relative radius
(the opening angle corresponds to the value Υ = π

4 ), and to the angle of the wedge plate’s opening
(the relative radius was chosen R = 4).

Comparison of the obtained results with the results shown in [15] was conducted. It confirmed the
inverse dependence of the frequencies as from the dimensionless radius so and from the elastic plate’s
opening angle.

A more complicated picture of the eigenfrequencies Ω distribution is observed when an angle of the
wedge is smaller than Υ = π

4 . As seen on Fig. 4 (opening angle Υ = π
12 ), by increasing the dimensionless

radius 3 ≤ R ≤ 7, the segments appear where the eigenfrequency is constant. These segments lie in the
frequency range 1.55 < ω̃ < 1.56. As described in detail in [16], the resonance phenomenon corresponds
to such segments. For the frequencies below the left edge of this segment, as in the previous case, the
inverse dependence of the eigenfrequency form of the wedge-like plate is noted.

With the aim of verifying this fact, the displacement and stress for various Eigenforms were cal-
culated. In particular, Figure 5 shows the dominant displacement ūz at the line R = 1, ϕ = Υ

2 , z = 1
2

corresponding to the frequencies that lie to the left edge of the resonance frequency (lines 1 and 2 of
Fig. 5) and to the frequency which is a mid-range 1.55 < ω̃ < 1.56 (line 3 in Fig. 5). As can be seen,
in the last case, the displacements’ values increase sharply as it approaches at the edge of the plate
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Fig. 3 The changes in the spectrum on changes of the angle of wedge opening Υ

Fig. 4 The changes in the spectrum when angle of wedge is smaller Υ = π
4

R = 1, and the contact mode has a characteristic form. A similar pattern is observed for the stress
(Fig. 6).

Here the stress values are shown corresponding to the frequencies that lie to the left edge of the
resonance frequency (lines 1 and 2) and to the frequency which is a mid-range 1.55 < ω̃ < 1.56 (line
3).

The graphs of the displacements ūr, ūϕ are shown at Fig. 7, Fig. 8 correspondently. It can be seen
that the behaviour of the displacements during the pass through the resonance frequency is similar. Also
it can be noticed that the absolute value of these displacements is significantly less than the values
of normal displacement ūz. (Authors would like to underline that the behaviour of the mechanical
characteristics at the vertex of the three-edged angle was not investigated).

Table. 1 presents data showing the dependence of the edge resonance’s frequency on the dimen-
sionless radius of the plate (the angle of the wedge’s opening Υ = π

12 ).
It can be noted that with an increase of the relative radius, an increase of the edge resonance’s

frequency is seen. The significant effect on the frequency of the plates’ edge resonance has the angle
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Fig. 5 The changes of dominant displacements uz on line R = 1, ϕ = Υ
2
, z = 1

2

Fig. 6 The changes of stress on line R = 1, ϕ = Υ
2
, z = 1

2

of the plate’s opening. Analysis of the results (shown in Table. 2 for the dimensionless radius R = 4)
shows that increasing of the opening angle’s values of the wedge plate lead to an increase of the edge
resonance frequency values.

It was established that increasing of Poisson’s coefficient values leads to the increasing of edge
resonance frequency also.

Also it was investigated at what frequency of forced oscillations the separation of the base begins,
Such effect can be observed when the conditions of the ideal contact are given at the base of the plate.
Calculations showed that with values of the forced oscillations’ frequency ω̃ < 2.62, the separation of
the plate base’s points with an opening angle Υ = π/3 is not observed. A significant impact on the
value of the frequency separation is the angle of the wedge opening. Thus, with the opening angle of
the plate Υ = π/4 the separation don’t start till the frequency ω̃ = 1.96, and with the angle Υ = π/6
the separation was not found till the frequency ω̃ < 1.65.

To validate the calculations the values of the static stress σz(r, ϕ, z) on the bottom face in the case
of the wedge plate loading by its dead weight (at the edge r = a are assumed the conditions of ideal
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Fig. 7 The changes of displacement uϕ on line R = 1, ϕ = Υ
2
, z = 1

2

Fig. 8 The changes of displacement ur on line R = 1, ϕ = Υ
2
, z = 1

2

Table 1 The dependence of the edge resonance’s frequency on the dimensionless radius of the plate

R = 3
ω̃ ∈

(1.551; 1.552)

R = 5
ω̃ ∈

(1.555; 1.556)

R = 7
ω̃ ∈

(1.555; 1.556)

R = 12
ω̃ ∈

(1.558; 1.559)

R = 15
ω̃ ∈

(1.621; 1.622)

contact) were calculated [23].The results correspond to line 1 at Fig. 9. These stresses were compared
with the values of the dynamic stresses σz(r, ϕ, z, t) that arise in a similar problem when the upper
face is uploaded with the oscillating force through an absolutely rigid overlay. At the Fig.9 the line 2
corresponds to the dynamic stresses that with values of the forced oscillations’ frequency ω̃ = 0.05. As
it seen, the graphics coincide close enough. Calculations of the dynamic stress with forced oscillations’
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Table 2 The dependence of the edge resonance’s frequency on the plate’s opening angle

Υ = π/12 Υ = π/6 Υ = π/4
1.554 < ω̃ < 1.555 1.555 < ω̃ < 1.556 1.556 < ω̃ < 1.557

Fig. 9 The stresses for the dynamic and static cases

frequency ω̃ = 1.5 showed that values of dynamic stresses are practically twice the value of static
stresses (line 3 on Fig. 9).

6 Conclusions

The exact solution of the problem on the forced oscillations of an elastic wedge shaped thick finite
plate is derived. Numerical results obtained on the basis of exact solution formulas of the problem can
be used to solve similar problems by the approximate or numerical methods.

The edge resonance frequencies and the influence of the geometrical parameters of the wedge plate
were studied. The frequency at which the lower edge separates from the base is identified, and its
dependence on the plate opening angle’s value is studied.

Important mechanical laws are established during the numerical analyses:

1) It was indicated that an inverse dependence of eigenfrequency values on linear dimension value
and opening angle of a plate by the angles larger than π/4.

2) It was noted the edge resonance phenomenon for the values of an opening angle smaller than
π/4. It is established that with increasing values of the linear size and the opening angle the edge
resonance first frequency value increases also.

3) The conditions for the appearance of tensile stresses were studied in the case of smooth contact
conditions on the lower surface of the plate. It was found that a significant impact on their appearance
is an opening angle value - with its increasing tensile stress occurring at higher frequencies. When
values of the angle opening are greater than π/3 the separation of the base is not observed.

The proposed method of the solution, based on special transformations of the movement equations
and the subsequent application of the matrix integral transformations method allows the solution of
the dynamic problem of the forced oscillations of an elastic wedge shaped infinite thick plate.
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